Science.gov

Sample records for ground water exploration

  1. The surface waves-based seismic exploration of soil and ground water

    NASA Astrophysics Data System (ADS)

    Serdyukov, AS; Yablokov, AV; Chernyshov, GS; Azarov, AV

    2017-02-01

    We consider the method to study physical properties of soils. The new seismic exploration approach, based on new modification of refracted wave plus-minus method and multichannel analysis of surface waves (MASW), is proposed. We present the field data processing example. The ground water level and zones of erosion are detected.

  2. Ground Water

    USGS Publications Warehouse

    ,

    1986-01-01

    Some water underlies the Earth's surface almost everywhere, beneath hills, mountains,plains, and deserts. It's not always accessible, or fresh enough for use without treatment, and it's sometimes difficult to locate or to measure and descri be. This water may occur close to the land surface, as in a marsh, or it may lie many hundreds of feet below the surface, as in some arid areas of the West. Water at very shallow depths might be just a few hours old ; at moderate depth, it may be 100 years old; and at great depth or after having flowed long distances from places of entry, water may be several thousands of years old . Water under the Earth's surface is called ground water.

  3. Ground water contamination

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Ground water contamination and basic concepts of water law; Federal law governing water contamination and remediation; Ground water flow and contaminant migration; Ground water cleanup under CERCLA; Technical methods of remediation and prevention of contamination; Liability for ground water contamination; State constraints on contamination of ground water; Water quantity versus water quality; Prevention of use of contaminated ground water as an alternative to remediation; Economic considerations in liability for ground water contamination; and Contamination, extraction, and injection issues.

  4. Record of ground-water exploration and development, 1975-76, Moen, Truk, eastern Caroline Islands

    USGS Publications Warehouse

    Davis, Daniel Arthur

    1977-01-01

    The exploration for and development of ground water described in this report consisted of the drilling and testing of 22 holes and the conversion of 8 of the holes into production wells on the island of Moen, Truk Islands, in the period November 1975 to July 1976. The objective of the program was to find sources of water to provide an improved supply for the reservoirs and pipelines of the Moen water system. The bulk of the report consists of records collected at the drilling sites during drilling and testing. Given for each test hole are a description of the drilling operation; a record of development of the hole; a record of each pumping test; and a log of the hole giving a summary description of rock units penetrated by the bit. For wells, there are records, where they are available, of the reaming of test holes to production-well diameter; data on casing, screens, gravel pack, and grout seal; and records of pumping tests. (Woodard-USGS)

  5. Organic geochemistry of deep ground waters from the Palo Duro Basin, Texas: implications for radionuclide complexation, ground-water origin, and petroleum exploration

    SciTech Connect

    Means, J.L.; Hubbard, N.J.

    1985-05-01

    This report describes the organic geochemistry of 11 ground-water samples from the Palo Duro Basin, Texas and discusses the implications of their organic geochemical compositions in terms of radionuclide complexation, ground-water origin, and the petroleum potential of two candidate repository sites in Deaf Smith and Swisher Counties. Short-chain aliphatic acid anions are the principal organic constituents present. Stability constant data and simple chemical equilibria calculations suggest that short-chain aliphatic acids are relatively weak complexing agents. The extent of complexation of a typical actinide by selected inorganic ligands present in these brines is expected to far outweigh actinide complexation by the aliphatic acid anions. Various lines of evidence suggest that some portion of the bromide concentrations in the brines is derived from the same source as the short-chain aliphatic acid anions. When the postulated organic components are subtracted from total bromide concentrations, the origins of the Palo Duro brines, based on chloride versus bromide relationships, appear largely consistent with origins based on isotopic evidence. The short-chain aliphatic acid anion content of the Palo Duro brines is postulated to have been much greater in the geologic past. Aliphatic acid anions are but one of numerous petroleum proximity indicators, which consistently suggest a greater petroleum exploration potential for the area surrounding the Swisher County site than the region encompassing the candidate site in Deaf Smith County. Short-chain aliphatic acid anions appear to provide a useful petroleum exploration tool as long as the complex reactions that may dimish their concentrations in ground water are recognized. 71 refs., 10 figs., 10 tabs.

  6. Ground water

    USGS Publications Warehouse

    ,

    1999-01-01

    Some water underlies the Earth's surface almost everywhere, beneath hills, mountains, plains, and deserts. It is not always accessible, or fresh enough for use without treatment, and it's sometimes difficult to locate or to measure and describe. This water may occur close to the land surface, as in a marsh, or it may lie many hundreds of feet below the surface, as in some arid areas of the West. Water at very shallow depths might be just a few hours old; at moderate depth, it may be 100 years old; and at great depth or after having flowed long distances from places of entry, water may be several thousands of years old.

  7. Rural ground water contamination

    SciTech Connect

    D'Itri, F.M.

    1987-01-01

    The contents of this book are: Remedial Actions; Analysis and Control of Rural Ground Wate; Ground Water Contamination Sources; Research Theory, and Practice; and Regulations Pertaining to Rural Ground Water.

  8. Ground water and energy

    SciTech Connect

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  9. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  10. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    USGS Publications Warehouse

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  11. Ground-water exploration in the Bosque del Apache Grant, Socorro County, New Mexico

    USGS Publications Warehouse

    Cooper, James B.

    1968-01-01

    Test drilling along the Rio Grande in the Bosque del Apache Grant in Socorro County, New Mexico has shown that the area is hydrologically complex and that the quality of the ground water varies from saline to fresh within short distances both laterally and vertically. Nearly all of the riverside land in the Grant is occupied by the migratory waterfowl refuge of the Bosque del Apache National Wildlife Refuge. Potable and near-potable water is obtained from 12 wells in this area that tap sand and gravel, and the wells are capable of yielding 1,000 gallons per minute or more. Stallion Range Center, a military installation on the White Sands Missile Range, about 15 miles east of =he waterfowl refuge, needs about 100,000 gallons per day of potable water. Potable water in large quantities is not known to be available at a location closer to the Center than the refuge area. The Fish and Wildlife Service, which operates the waterfowl refuge, gave permission to White Sands Missile Range to test drill and to develop a supply well in certain areas along the Rio Grande outside the managed lands of the refuge. The U.S. Geological Survey was then asked by White Sands Missile Range to choose locations for test drilling and to monitor drilling and testing of the wells. Between 1963 and 1967 test wells were drilled and a suitable location for a supply well as found. The well would be about 250 feet deep and would tap a body of potable water that is about 100 feet in thickness and is thought to underlie an area of at least 5 square miles. This report contains diagrammatic sections that show the lateral and vertical relation of waters of different quality along the Rio Grande in a part of the Bosque del Apache Grant. Basic data are given in tables; they include records of 7 test wells and 12 high-yield supply wells, and 52 chemical analyses of ground water from the wells.

  12. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  13. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  14. Ground water: a review.

    USGS Publications Warehouse

    Bredehoeft, J.D.

    1983-01-01

    There is growing documentation that a significant portion of the Nation's fresh ground water in the densely populated areas of the USA is contaminated. Because of the slow rates of ground-water movement, ground water once contaminated will remain so for decades, often longer. Cleanup of contaminated ground water is almost always expensive and often technically unfeasible; the expense is often prohibitive. -from Author

  15. Proceedings of ground water

    SciTech Connect

    Lennon, G.P.

    1991-01-01

    This book contains proceedings of Ground Water. Topics covered include: Practical use and pitfalls of numerical models; Reliability of predictions; Strengths and limitations of coupled flow/transport/geochemical models; Ground water management/water resources; The macrodispersion experiment (made-scale tracer test; Partially saturated models; Use of ground water flow/transport modeling for aquifer evaluation; Aquifer tests and tracer tests; Risk assessment for groundwater pollution control; and Groundwater quality management.

  16. Ground Water Modeling Research

    EPA Pesticide Factsheets

    EPA is supporting region, state, and tribal partners at Superfund sites and brownfields to develop new methods to better characterize, monitor, and treat ground water contamination; in order to protect drinking water, surface water, and indoor air.

  17. Ground water in Minnesota

    USGS Publications Warehouse

    Lindholm, Gerald F.; Norvitch, Ralph F.

    1976-01-01

    Although Minnesota is generally rich in ground-water resources, it is not without associated problems. In the western part of the State, ground-water quality is often a problem, especially in deep aquifers. Throughout the State, few buried outwash aquifers have been delineated or evaluated as to their water-yielding capabilities. Some aquifers are highly susceptible to pollution. Planned development and monitoring of water levels and water quality would be beneficial.

  18. Ground Water in Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Oki, Delwyn S.

    2000-01-01

    Ground water is one of Hawaii's most important natural resources. It is used for drinking water, irrigation, and domestic, commercial, and industrial needs. Ground water provides about 99 percent of Hawaii's domestic water and about 50 percent of all freshwater used in the State. Total ground water pumped in Hawaii was about 500 million gallons per day during 1995, which is less than 3 percent of the average total rainfall (about 21 billion gallons per day) in Hawaii. From this perspective, the ground-water resource appears ample; however, much of the rainfall runs off to the ocean in streams or returns to the atmosphere by evapotranspiration. Furthermore, ground-water resources can be limited because of water-quality, environmental, or economic concerns. Water beneath the ground surface occurs in two principal zones: the unsaturated zone and the saturated zone. In the unsaturated zone, the pore spaces in rocks contain both air and water, whereas in the saturated zone, the pore spaces are filled with water. The upper surface of the saturated zone is referred to as the water table. Water below the water table is referred to as ground water. Ground-water salinity can range from freshwater to that of seawater. Freshwater is commonly considered to be water with a chloride concentration less than 250 mg/L, and this concentration represents about 1.3 percent of the chloride concentration of seawater (19,500 mg/L). Brackish water has a chloride concentration between that of freshwater (250 mg/L) and saltwater (19,500 mg/L).

  19. Ground water and energy

    SciTech Connect

    Not Available

    1980-05-01

    In view of complex environmental/energy decisions, the Environmental Impacts Division of the Office of Technology Impacts develops analytical methods for conducting policy analyses supporting decision making. The methods development process often begins with a workshop of leading experts and specialists in the relevant disciplines and issue areas; workshop findings are subsequently utilized by OTI to form a more solid foundation for viable policies. The National Workshop on Ground Water and Energy Production was envisioned as a tool through which OTI could obtain insights, information, and methods (on environmental, economical, physical, political, legal, and social issues) to use in its analyses, models, and assessments. To accomplish this, the Workshop comprised both plenary sessions and individual working groups. The former provided opportunities for all participants to explore issues from a broad perspective, whereas the latter enabled participants to focus on the three following areas: ground water supply; conflicts and barriers to its use; and alternatives or solutions to the various issues. This report summarizes information and insights gained by the Office of Technology Impacts during the course of the Workshop. The Key Findings section summarizes the most important facts discovered during the Workshop. The three general topics that follow (Supply, Conflicts and Barriers, and Alternatives) are those described in the Core Issues statements. The statements are reflective of the recommendations and analyses prepared by the several working groups.

  20. Ground water in Oklahoma

    USGS Publications Warehouse

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U.S. Geological Survey. Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water-resources investigations of the U.S. Geological Survey. In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board. In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator. The Ground Water Branch of the U.S. Geological Survey collects, analyzes, and evaluates basic information on ground-water resources and prepares interpretive reports based on those data. Cooperative ground-water work was first concentrated in the Panhandle counties. During World War II most work was related to problems of water supply for defense requirements. Since 1945 detailed investigations of ground-water availability have been made in 11 areas, chiefly in the western and central parts of the State. In addition, water levels in more than 300 wells are measured periodically, principally in the western half of the State. In Oklahoma current studies are directed toward determining the source, occurrence, and availability of ground water and toward estimating the quantity of water and rate of replenishment to specific areas and water-bearing formations. Ground water plays an important role in the economy of the State. It is

  1. Surface electromagnetic geophysical exploration of the ground-water resources of Isla de Mona, Puerto Rico, a caribbean carbonate island

    USGS Publications Warehouse

    Martinez, M.I.; Troester, Joseph W.; Richards, Ronald T.

    1995-01-01

    Ground-water flow in the coastal plain appears to be radial from the center of the freshwater mound. At the intersection between the coastal plain and the plateau, the flow is parallel to the coastline. The direction of flow on the rest of the plateau could not be determined accurately with the available data.

  2. GROUND WATER CONTAMINATION

    SciTech Connect

    Unknown

    1999-09-01

    As required by the terms of the above referenced grant, the following summary serves as the Final Report for that grant. The grant relates to work performed at two separate sites, the Hoe Creek Underground Coal Gasification Site south of Gillette, Wyoming, and the Rock Springs In-Situ Oil Shale Retort Site near Rock Springs, Wyoming. The primary concern to the State of Wyoming at each site is ground water contamination (the primary contaminants of concern are benzene and related compounds), and the purpose of the grant has been to provide tiding for a Geohydrologist at the appropriate State agency, specifically the Land Quality Division (LQD) of the Wyoming Department of Environmental Quality. The LQD Geohydrologist has been responsible for providing technical and regulatory support to DOE for ground water remediation and subsequent surface reclamation. Substantial progress has been made toward remediation of the sites, and continuation of LQD involvement in the remediation and reclamation efforts is addressed.

  3. Ground water and climate change

    USDA-ARS?s Scientific Manuscript database

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  4. Ground water: the hidden resource

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    Ground water is water underground in saturated zones beneath the land surface. Contrary to popular belief, ground water does not form underground "rivers." It fills the pores and fractures in underground materials such as sand, gravel, and other rock. If ground water flows from rock materials or can be removed by pumping from the saturated rock materials In useful amounts, the rock materials are called aquifers. Ground water moves slowly, typically at rates of 7 to 60 centimeters per day in an aquifer. As a result, water could remain in an aquifer for hundreds or thousands of years. Ground water is the source of about 40 percent of water used for public supplies and about 38 percent of water used for agriculture in the United States.

  5. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  6. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  7. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  8. Ground water and climate change

    NASA Astrophysics Data System (ADS)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2013-04-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  9. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  10. Exploratorium: Exploring Water.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2001-01-01

    This issue of Exploratorium focuses on water and its varied uses in our environment. Articles include: (1) "Adventures with Water" (Eric Muller); (2) "Water: The Liquid of Life" (Karen E. Kalumuck); (3) "Water-Drop Projector" (Gorazd Planinsic); (4) "Waterways and Means" (Pearl Tesler); (5) "Explore Natural Phenomena in the Museum--and Just…

  11. Exploratorium: Exploring Water.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2001-01-01

    This issue of Exploratorium focuses on water and its varied uses in our environment. Articles include: (1) "Adventures with Water" (Eric Muller); (2) "Water: The Liquid of Life" (Karen E. Kalumuck); (3) "Water-Drop Projector" (Gorazd Planinsic); (4) "Waterways and Means" (Pearl Tesler); (5) "Explore Natural Phenomena in the Museum--and Just…

  12. Natural Radionuclides in Ground Water.

    ERIC Educational Resources Information Center

    Davis, Stanley N.

    1988-01-01

    Described are the natural trace radionuclides in ground water. Indicates the geologic origin of these radionuclides. Discusses the importance of these radionuclides. Suggests future uses of a number of additional radionuclides. (CW)

  13. Natural Radionuclides in Ground Water.

    ERIC Educational Resources Information Center

    Davis, Stanley N.

    1988-01-01

    Described are the natural trace radionuclides in ground water. Indicates the geologic origin of these radionuclides. Discusses the importance of these radionuclides. Suggests future uses of a number of additional radionuclides. (CW)

  14. Ground water investigations in Oklahoma

    USGS Publications Warehouse

    Davis, Leon V.

    1955-01-01

    Prior to 1937, ground-water work in Oklahoma consisted of broad scale early-day reconnaissance and a few brief investigations of local areas. The reconnaissance is distinguished by C. N. Gould's "Geology and Water Resources of Oklahoma" (Water-Supply Paper 148, 1905), which covers about half of the present State of Oklahoma. Among the shorter reports are two by Schwennesen for areas near Enid and Oklahoma City, one by Renick for Enid, and one by Thompson on irrigation possibilities near Gage. These reports are now inadequate by modern standards.Cooperative ground-water work in Oklahoma by the United States Geological Survey began in 1937, with the Oklahoma Geological Survey as cooperating agency. With the passage of the new ground-water law by the State Legislature in 1949, the need for more information on available ground waters and the safe yield of the various aquifers became very pressing. Accordingly, the Division of Water Resources of the Oklahoma Planning and Resources Board, to which was delegated the responsibility of administering the Ground-Water Law, entered into a cooperative agreement with the U.S. Geological Survey, providing for an expansion of ground-water investigations. Both cooperators have consistently given full and enthusiastic cooperation, often beyond the requirements of the cooperative program.The first cooperative investigation was an evaluation of ground-water supplies available for irrigation in the Panhandle. In 1937 the Panhandle was still very much in the dust bowl, and it was hoped that irrigation would alleviate the drought. A bulletin on Texas County was published in 1939, and one on Cimarron County in 1943. Ground-water investigations during the World War II were restricted to the demands of Army and Navy installations, and to defense industries. Ground-water investigations since 1945 have included both country-wide and aquifer-type investigations. In Oklahoma it has been the policy for the State cooperator to publish the results

  15. Modeled ground water age distributions

    USGS Publications Warehouse

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  16. Modeled ground water age distributions.

    PubMed

    Woolfenden, Linda R; Ginn, Timothy R

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  17. Ground-water exploration and test pumping in the Halma-Lake Bronson area Kittson County, Minnesota

    USGS Publications Warehouse

    Schiner, George R.

    1963-01-01

    Large quantities of water suitable for most industrial purposes are available in the Halma-Lake Bronson area. Yields of 1,000 to 2,000 gpm could probably be obtained from wells located by an adequate program of exploratory drilling and test pumping.

  18. Ground water in Pavant Valley

    USGS Publications Warehouse

    Dennis, P. E.; Maxey, G.B.; Thomas, H.E.

    1946-01-01

    The users of wells for irrigation in Pavant Valley, particularly in the Flowell district, have long been cognizant of their utter dependency upon ground water for livelihood, and were among the first in the State to make an organized effort to conserve supplies by prevention of waste. Since passage of the State ground-water law in 1935, the State Engineer has not approved applications for new wells in the areas of most concentrated development, and has deferred adjudication of existing water rights until adequate data concerning the ground-water resources become available. The investigation of ground-water resources in Pavant Valley was suggested by the State Engineer and constitutes one of a series that are being made in the important groundwater basins of Utah by the Federal Geological Survey in cooperation with the State Engineer. The investigation was under the general supervision of Oscar E. Meinzer, geologist in charge of the ground-water division of the Federal Geological Survey. H. E. Thomas, in charge of groundwater investigations in Utah, returned from military service overseas in time to assist in the completion of the manuscript, and edited the report.

  19. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  20. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  1. Ground water quality protection

    SciTech Connect

    Canter, L.W.; Fairchild, D.; Knox, R.C.

    1986-01-01

    Considered by the EPA to be one of the ''major Environmental Issues of the 1980s'' groundwater supplies a large majority of the water we use. Here is a book that deals with this problem. It is necessary that this problem be studied and action taken to prevent despoliation of the aquifers where this water is now found, because once contaminated an aquifer is difficult to decontaminate. CONTENTS-Groundwater: An Important Resource; Groundwater Hydrology; Groundwater Information Sources; Groundwater Pollution Sources; Pollutant Transport and Fate in the Subsurface Environment: Abiotic and Biotic Processes; Pollutant Transport and Fate in the Subsurface Environment: Hydrodynamic Processes and Flow and Solute Modeling; Pollution Source Evaluation; Empirical Assessment Methods; Groundwater Monitoring Planning; Groundwater Sampling and Analysis; Groundwater Quality Management; Groundwater Clean-up. References. Index.

  2. Culture, Relevance, and Schooling: Exploring Uncommon Ground

    ERIC Educational Resources Information Center

    Scherff, Lisa, Ed.; Spector, Karen, Ed.

    2011-01-01

    In "Culture, Relevance, and Schooling: Exploring Uncommon Ground," Lisa Scherff, Karen Spector, and the contributing authors conceive of culturally relevant and critically minded pedagogies in terms of opening up new spatial, discursive, and/or embodied learning terrains. Readers will traverse multiple landscapes and look into a variety of spaces…

  3. Culture, Relevance, and Schooling: Exploring Uncommon Ground

    ERIC Educational Resources Information Center

    Scherff, Lisa, Ed.; Spector, Karen, Ed.

    2011-01-01

    In "Culture, Relevance, and Schooling: Exploring Uncommon Ground," Lisa Scherff, Karen Spector, and the contributing authors conceive of culturally relevant and critically minded pedagogies in terms of opening up new spatial, discursive, and/or embodied learning terrains. Readers will traverse multiple landscapes and look into a variety of spaces…

  4. Radon in ground water supplies

    SciTech Connect

    Dixon, K.L.; Lee, R.G.

    1989-06-01

    In September 1986, the System Water Quality Department of the American Water Works Service Co. began conducting a radon survey that was designed to determine the levels of radon in American ground water supplies, and to assess the radon removal efficiency of existing treatment processes such as filtration through granular activated carbon (GAC) and various forms of aeration. The survey found that companies in the northeastern part of the country experienced the highest levels of radon in ground water supplies. The highest concentrations were in individual wells in New Hampshire, Maryland, Connecticut, Rhode Island, New Jersey, Pennsylvania and California. The analytical results from the occurrence phase of the survey seemed to correlate well with the known geology of the aquifer materials from which samples of ground water were drawn. The highest levels were associated with formations of uranium-bearing granitic rocks. GAC can effectively reduce radon concentrations in drinking water supplies to very low levels. However, the amount of contact time within the carbon bed required to do so would be prohibitive to many water utilities from an operational and economic standpoint. Further, disposal of the spent GAC as a low-level radioactive waste may be required. Aeration is very effective in the removal of radon from drinking water. Packed tower aerators achieved > 95% reduction in radon concentrations and conventional cascading tray aerators achieved > 75% reduction in radon concentrations. 7 refs., 6 tabs.

  5. Microbiology of potable water and ground water

    SciTech Connect

    Allen, M.J.

    1982-06-01

    A literature review dealing with the microbiology of potable water and ground water is presented. In recent years, there has been increased interest in the use of granular activated carbon (GAC) and alternate disinfection practices to reduce trihalomethane. Results of studies utilizing GAC columns are reported as well as studies evaluating ozone, chlorine dioxide, and chloromines. Virus removal efficiencies were compared with several disinfectants. Ground water studies demonstrate that biological contaminants can travel large distances underground without substantial attenuation by aquifer material.(KRM)

  6. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  7. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  8. GROUND WATER SAMPLING FOR VOCS

    EPA Science Inventory

    Sampling protocol should be dictated by the sampling objective(s). It is important to obtain representative ground water samples, regardless of the sampling objective(s). Low-flow (minimum draw-down) purging and sampling techniques are best in most instances, particularly for VOC...

  9. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  10. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  11. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  12. Ground Water Rule - Boil Water Advisory - Public Notification Template

    EPA Pesticide Factsheets

    The Ground Water Rule - Boil Water Advisory - Public Notification Template can be use to issue a Tier 1 Public Notification when it has been determined that source ground water is contaminated with E. Coli bacteria.

  13. Sustainability of ground-water resources

    USGS Publications Warehouse

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  14. Chemical contamination of ground water in India

    SciTech Connect

    Mohapatra, S.P.; Agnihoiri, N.P.

    1996-10-01

    Ground water is the main source of drinking water in rural areas and many urban areas in India. In addition, it has been increasingly used for irrigation in farmland. Contamination of ground water by persistent inorganic and organic chemicals has emerged as a major environmental concern in recent years. Nitrate, fluoride, heavy metals and organochlorine compounds are found to be major contaminants of ground water in different parts of the country. At many places the concentrations of these chemicals exceed national and international guideline values for drinking water. While large concentrations of heavy metals come from industrial sources, agricultural activities are responsible for ground water contamination by nitrate and organochlorine insecticides.

  15. International borders, ground water flow, and hydroschizophrenia.

    PubMed

    Jarvis, Todd; Giordano, Mark; Puri, Shammy; Matsumoto, Kyoko; Wolf, Aaron

    2005-01-01

    A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?

  16. Ground water near Newton, Jasper County, Iowa

    USGS Publications Warehouse

    Buchmiller, Robert C.

    2001-01-01

    The water quality in the South Skunk River and the alluvial aquifer was similar, except most ground-water samples contained low dissolved oxygen concentrations. The low dissolved-oxygen concentrations in ground water resulted in high concentrations of iron and manganese in some locations and reduced forms of nitrogen.

  17. Mississippi Embayment Regional Ground Water Study

    EPA Science Inventory

    Increased water usage in the southeastern United States in the tri-state area of Tennessee, Mississippi and Arkansas poses a dilemma to ensuring long-term sustainability of the quantity and quality of ground-water resources that underlie the region. Demand for ground water by ag...

  18. Mississippi Embayment Regional Ground Water Study

    EPA Science Inventory

    Increased water usage in the southeastern United States in the tri-state area of Tennessee, Mississippi and Arkansas poses a dilemma to ensuring long-term sustainability of the quantity and quality of ground-water resources that underlie the region. Demand for ground water by ag...

  19. Ground water resources of Lee County

    USGS Publications Warehouse

    Gordon, Donivan L.

    1980-01-01

    In terms of these factors, there are few locations in Lee County where the availability of ground water is not limited to some degree. The most common limitation is poor water quality, that is, highly mineralized ground water. Secondary limitations are generally related to poor distribution, small yields from some sources, and poor accessibility due to the great depths to adequate sources.

  20. Regional Analysis of Ground-Water Recharge

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2007-01-01

    A modeling analysis of runoff and ground-water recharge for the arid and semiarid southwestern United States was performed to investigate the interactions of climate and other controlling factors and to place the eight study-site investigations into a regional context. A distributed-parameter water-balance model (the Basin Characterization Model, or BCM) was used in the analysis. Data requirements of the BCM included digital representations of topography, soils, geology, and vegetation, together with monthly time-series of precipitation and air-temperature data. Time-series of potential evapotranspiration were generated by using a submodel for solar radiation, taking into account topographic shading, cloudiness, and vegetation density. Snowpack accumulation and melting were modeled using precipitation and air-temperature data. Amounts of water available for runoff and ground-water recharge were calculated on the basis of water-budget considerations by using measured- and generated-meteorologic time series together with estimates of soil-water storage and saturated hydraulic conductivity of subsoil geologic units. Calculations were made on a computational grid with a horizontal resolution of about 270 meters for the entire 1,033,840 square-kilometer study area. The modeling analysis was composed of 194 basins, including the eight basins containing ground-water recharge-site investigations. For each grid cell, the BCM computed monthly values of potential evapotranspiration, soil-water storage, in-place ground-water recharge, and runoff (potential stream flow). A fixed percentage of runoff was assumed to become recharge beneath channels operating at a finer resolution than the computational grid of the BCM. Monthly precipitation and temperature data from 1941 to 2004 were used to explore climatic variability in runoff and ground-water recharge. The selected approach provided a framework for classifying study-site basins with respect to climate and dominant recharge

  1. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  2. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  3. Ground-water data for Michigan 1985

    USGS Publications Warehouse

    Huffman, G.C.

    1986-01-01

    Water levels, locations, depths, and aquifers tapped are given for 113 observation wells. Tabulated data include extremes of water levels for calendar year 1985 and for the period of record, pumpage of most major ground-water users in the State, and water-quality data from selected wells. The largest reported user of ground-water, the city of Lansing, pumped 7.9 billion gallons from the Saginaw Formation and glacial deposits in 1985.

  4. Ground-water data for Michigan 1989

    USGS Publications Warehouse

    Huffman, G.C.; Whited, C.R.

    1991-01-01

    Water levels, locations, depths, and aquifers tapped are given for 108 observation wells. Tabulated data include a listing of ground-water reports in Michigan, extremes of water levels for calendar year 1989 and for the period of record, pumpage of most major ground-water users in the State, and water-quality data from selected wells. In 1989, the two largest municipal users of ground water were Lansing and Kalamazoo. Lansing pumped 7.2 billion gallons from the Saginaw Formation and glacial deposits; Kalamazoo pumped 6.7 billion gallons from glacial deposits only.

  5. Ground-water data for Michigan 1990

    USGS Publications Warehouse

    Huffman, G.C.; Whited, C.R.

    1993-01-01

    Water levels, locations, depths, and aquifers tapped are given for 107 observation wells. Tabulated data include a listing of ground-water reports in Michigan, extremes of water levels for calendar year 1990 and for the period of record, pumpage of most major ground-water users in the State, and a map showing previous collected water-quality data from selected wells. In 1990, the two largest municipal users of ground water were Lansing and Kalamazoo. Lansing pumped 7.2 billion gallons from the Saginaw Formation and glacial deposits; Kalamazoo pumped 7.0 billion gallons from glacial deposits only.

  6. Ground-water data for Michigan 1988

    USGS Publications Warehouse

    Huffman, G.C.; Whited, C.R.

    1989-01-01

    Water levels, locations, depths, and aquifers tapped are given for 112 observation wells. Tabulated data include a listing of ground water reports in Michigan, extremes of water levels for calendar year 1988 and for the period of record, pumpage of most major ground-water users in the State, and water-quality data from selected wells. The two largest municipal users of ground water, were the cities of Lansing and Kalamazoo. In 1988, Lansing pumped 7.8 billion gallons from the Saginaw Formation and glacial deposits and Kalamazoo pumped 7.4 billion gallons from glacial deposits only.

  7. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  8. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  9. Ground water currents: Developments in innovative ground water treatment, June 1994

    SciTech Connect

    Not Available

    1994-06-01

    ;Contents: Low-level uranium removed from ground water; Promising ion exchange technology seeks site for demonstration; Pervaporation membrane removes volatile organic compounds (VOCs); and Ground water sampling information available.

  10. Ground-water quality in Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1984-01-01

    This report graphically summarizes ground-water quality from selected chemical-quality data for about 2,300 ground-water sites in Wyoming. Dissolved-solids, nitrate, fluoride, arsenic, barium, cadmium, chromium, lead, mercury, selenium, iron, and manganese concentrations are summarized on a statewide basis. The major chemical-quality problem that limits the use of Wyoming ground-water is excessive dissolved-solids concentrations. The aquifers with the best quality water, based on the lowest median dissolved-solids concentration of water in aquifers with 20 or more sampled sites, are Holocene lacustrine deposits, the upper Testiary Ogallala Formation and Arikaree Formation, and the Mississippian Madison Limestone. The counties with the best quality water, based on the lowest median dissolved-solids concentrations are Teton County and Laramie County. Hot Springs County and Natrona County have the highest median dissolved-solids concentrations. About 3 percent of the nitrate concentrations of ground-water samples exceeded the national primary drinking-water standard of 10 milligrams per liter. Fluoride concentrations exceeded the national primary drinking-water standard in 14 percent of the ground-water samples. Except for selenium, toxic trace elements generally have not been found in concentrations in excess of the drinking-water standards. About 19 percent of the iron and about 30 percent of the manganese concentrations in ground-water samples exceeded the national secondary drinking-water standards. (USGS)

  11. Ground-water data for Michigan 1983

    USGS Publications Warehouse

    Huffman, G.C.

    1984-01-01

    Water levels, locations, depths, and aquifers tapped are given for 115 observation wells. Tabulated data include extremes of water levels for 1983 and for the period of record, pumpage of most major ground-water users in the State, and quality data on selected wells. The largest reported user of ground-water, the city of Lansing, pumped 8.1 billion gallons from the Saginaw Formation and glacial deposits.

  12. Ground-water data for Michigan 1982

    USGS Publications Warehouse

    Huffman, G.C.

    1983-01-01

    Water levels, locations, depths, and aquifers tapped are given for 117 observation wells. Tabulated data include extremes of water levels for 1982 and for the period of record, pumpage of most major ground-water users in the State, and quality data on selected wells. The largest reported user of ground-water, the city of Lansing, pumped 8.2 billion gallons from the Saginaw Formation and glacial deposits.

  13. FUNDAMENTALS OF GROUND-WATER MODELING

    EPA Science Inventory

    Ground-water flow and contaminant transport modeling has been used at many hazardous waste sites with varying degrees of success. odels may be used throughout all phases of the site investigation and remediation processes. eveloping a better understanding of ground-water modeling...

  14. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  15. Procedures for ground-water investigations

    SciTech Connect

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  16. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  17. FUNDAMENTALS OF GROUND-WATER MODELING

    EPA Science Inventory

    Ground-water flow and contaminant transport modeling has been used at many hazardous waste sites with varying degrees of success. odels may be used throughout all phases of the site investigation and remediation processes. eveloping a better understanding of ground-water modeling...

  18. Ground-water conditions in Georgia, 1999

    USGS Publications Warehouse

    Cressler, Alan M.

    2000-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water investigations conducted by the U.S. Geological Survey (USGS), in cooperation with the State of Georgia and city and county governments, a Statewide water-level-measurement program was started in 1938. Initially, this program consisted of an observation-well network in the coastal area of Georgia to monitor variations in ground-water storage and quality. Additional wells were later included in areas where data could be used to aid in water resources development and management. During 1999, periodic water-level measurements were made in 46 wells, and continuous water-level measurements were obtained from 165 wells. Continuous water-level records were obtained using analog (pen and chart

  19. Water resources data, Virginia, water year 2004 volume 2. Ground-water-level and ground-water-quality records

    USGS Publications Warehouse

    White, Roger K.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2005-01-01

    Water-resources data for the 2004 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 346 observation wells and water quality at 40 wells. Locations of these wells are shown on figures 4 through 9. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  20. Exploring Pond Water

    ERIC Educational Resources Information Center

    Raun, Chester E.; Metz, William C.

    1975-01-01

    An activity utilizing a bucket of pond water for study of microorganisms as presented to elementary school preservice and inservice teachers, and subsequently to their pupils, is described. Procedures for collecting, studying, tabulating data and extended activities are presented. (EB)

  1. Hanford site ground water protection management plan

    SciTech Connect

    Not Available

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  2. Ground-water program in Alabama

    USGS Publications Warehouse

    LaMoreaux, P.E.

    1955-01-01

    Several recent years of drought have emphasized the importance of Alabama's ground-water supplies, a matter of concern to us all.  So far we have been blessed in Alabama with ample ground-water, although a combination of increased use, waste, pollution, and drought has brought about critical local water shortages.  These problems serve as a fair warning of what lies ahead if we do not take the necessary steps to obtan adequate knowledge of our ground-water resources.

  3. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  4. Pollution of ground water in Europe

    PubMed Central

    Buchan, S.; Key, A.

    1956-01-01

    This paper discusses pollution of ground water in 20 countries of the European region, giving for each an account of the geology and hydrogeology, water supplies, the extent and nature of ground water pollution, and the legal, administrative, and technical means of controlling that pollution. For the countries not considered in the preceding article on surface water pollution, an account is also given of the superficial physical features, rainfall, population, and industries. A general discussion follows of such questions as the ways in which ground water pollution may occur, the factors mitigating or aggravating pollution, and ways of protection against pollution. The authors consider that the problem of ground water pollution in Europe may well be more serious than it would appear to be on the evidence so far obtained. PMID:13374533

  5. Where this occurs: Ground Water and Drinking Water

    EPA Pesticide Factsheets

    As ground water works its way through the soil, it can pick up excess nutrients and transport them to the water table. When polluted groundwater reaches drinking water systems it can pose serious public health threats.

  6. STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.

    USGS Publications Warehouse

    Burton, James S.; ,

    1985-01-01

    This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.

  7. Ground-water conditions in Georgia, 2000

    USGS Publications Warehouse

    Cressler, A.M.; Blackburn, D.K.; McSwain, K.B.

    2001-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards.

  8. Ground-water conditions in Georgia, 1998

    USGS Publications Warehouse

    Cressler, Alan M.

    1999-01-01

    Ground-water conditions in Georgia during 1998 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1998 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards.

  9. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  10. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  11. Ground-Water Protection and Monitoring Program

    SciTech Connect

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  12. Ground-Water Recharge in Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Falteisek, J.D.

    2007-01-01

    'Ground-water recharge' broadly describes the addition of water to the ground-water system. Most water recharging the ground-water system moves relatively rapidly to surface-water bodies and sustains streamflow, lake levels, and wetlands. Over the long term, recharge is generally balanced by discharge to surface waters, to plants, and to deeper parts of the ground-water system. However, this balance can be altered locally as a result of pumping, impervious surfaces, land use, or climate changes that could result in increased or decreased recharge. * Recharge rates to unconfined aquifers in Minnesota typically are about 20-25 percent of precipitation. * Ground-water recharge is least (0-2 inches per year) in the western and northwestern parts of the State and increases to greater than 6 inches per year in the central and eastern parts of the State. * Water-level measurement frequency is important in estimating recharge. Measurements made less frequently than about once per week resulted in as much as a 48 percent underestimation of recharge compared with estimates based on an hourly measurement frequency. * High-quality, long-term, continuous hydrologic and climatic data are important in estimating recharge rates.

  13. Ground water in Tooele Valley, Utah

    USGS Publications Warehouse

    Gates, J.S.; Keller, O.A.

    1970-01-01

    This short report was written by condensing parts of a technical report on the ground water in Tooele Valley, which was prepared as part of a cooperative program between the Utah Department of Natural Resources, Division of Water Rights, and the U. S. Geological Survey to study water in Utah. If you would like to read the more detailed technical report, write for a copy of the Utah State Engineer Technical Publication 12, “Reevaluation of the ground-water resources of Tooele Valley, Utah” by J. S. Gates. Copies can be obtained free of charge from the Division of Water Rights, State Capitol, Salt Lake City, Utah 84114.

  14. Ground-water resources of Cambodia

    USGS Publications Warehouse

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  15. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  16. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  17. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  18. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  19. Ground-water conditions in Georgia, 1997

    USGS Publications Warehouse

    Cressler, A.M.

    1998-01-01

    Ground-water conditions in Georgia during 1997 and for the period of record were evaluated using data from ground-water-level and ground-water-quality monitoring networks. Data for 1997 included in this report are from continuous water-level records from 71 wells and chloride analyses from 14 wells. In 1997, annual mean ground-water levels in Georgia ranged from 6.2 feet (ft) lower to 5.6 ft higher than in 1996. Of the 71 wells summarized in this report, 23 wells had annual mean water levels that were higher, 35 wells had annual mean water levels that were lower, and 11 wells had annual mean water levels that were about the same in 1997 as during 1996. Data for two wells are incomplete because data collection was discontinued at one well, and the equipment was vandalized at one well. Record-low daily mean water levels were recorded in six wells tapping the Upper Floridan aquifer, one well tapping the Caliborne aquifer, two wells tapping the Clayton aquifer, and three wells tapping Cretaceous aquifers. These record lows were from 0.2 to 5.6 ft lower than previous record lows. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standard. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water

  20. Ground water geology of Edwards County, Texas

    USGS Publications Warehouse

    Long, Archie T.

    1963-01-01

    About 150,000 acre-feet of water is recharged annually to and discharged from the Edwards and associated limestones in Edwards County. Most of this water is available for additional development inasmuch as only about 900 acre-feet per year is currently being used; however, additional development of ground water will result in a reduction in streamflow.

  1. Ground-water models cannot be validated

    USGS Publications Warehouse

    Konikow, L.F.; Bredehoeft, J.D.

    1992-01-01

    Ground-water models are embodiments of scientific hypotheses. As such, the models cannot be proven or validated, but only tested and invalidated. However, model testing and the evaluation of predictive errors lead to improved models and a better understanding of the problem at hand. In applying ground-water models to field problems, errors arise from conceptual deficiencies, numerical errors, and inadequate parameter estimation. Case histories of model applications to the Dakota Aquifer, South Dakota, to bedded salts in New Mexico, and to the upper Coachella Valley, California, illustrate that calibration produces a nonunique solution and that validation, per se, is a futile objective. Although models are definitely valuable tools for analyzing ground-water systems, their predictive accuracy is limited. The terms validation and verification are misleading and their use in ground-water science should be abandoned in favor of more meaningful model-assessment descriptors. ?? 1992.

  2. Fundamentals of Ground-Water Modeling

    EPA Pesticide Factsheets

    This paper presents an overview of the essential components of ground-water flow and contaminant transport modeling in saturated porous media. While fractured rocks and fractured porous rocks may behave like porous media with respect to many flow and...

  3. Section 9: Ground Water - Likelihood of Release

    EPA Pesticide Factsheets

    HRS training. the ground water pathway likelihood of release factor category reflects the likelihood that there has been, or will be, a release of hazardous substances in any of the aquifers underlying the site.

  4. Reagent removal of manganese from ground water

    NASA Astrophysics Data System (ADS)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  5. Section 10: Ground Water - Waste Characteristics & Targets

    EPA Pesticide Factsheets

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  6. Geology and ground-water resources of Galveston County, Texas

    USGS Publications Warehouse

    Petitt, Ben McDowell; Winslow, Allen George

    1957-01-01

    Much additional ground water could be obtained from both the "Alta Loma" sand and the upper part of the Beaumont clay, especially in the northern and western parts of the county. Before large developments of supplies are planned, however, these areas should be explored by test drilling. The problems of well spacing and pumping rates should be thoroughly studied in order to determine the maximum development permitted by the ground-water supply. Current observations should be continued with special emphasis on the progress of salt-water encroachment.

  7. MTBE concentrations in ground water in Pennsylvania

    USGS Publications Warehouse

    McAuley, Steven D.

    2003-01-01

    The distribution, concentrations, and detection frequency of methyl tert-butyl-ether (MTBE), a gasoline additive used in reformulated gasoline to improve air quality, were characterized in Pennsylvania?s ground water. Two sources of MTBE in ground water, the atmosphere and storage-tank release sites, were examined. An analysis of atmospheric MTBE concentrations shows that MTBE detections (MTBE greater than or equal to 0.2 micrograms per liter) in ground water are more likely the result of storage-tank releases than atmospheric deposition. A comparison of 86 ground-water samples near storage-tank releases and 359 samples from ambient ground water (not thought to be affected by point-source releases of MTBE or BTEX compounds) shows that samples within about 0.5 mile downgradient of storagetank release sites have significantly greater MTBE detection frequency than ambient ground-water samples. Aquifer type, land use, and the use of Reformulated Gasoline (RFG) are associated with high rates of occurrence of MTBE in ground water in Pennsylvania. Ground-water samples from wells in crystalline-rock aquifers near storage- tank release sites have a significantly greater MTBE detection frequency (57 percent) compared to other aquifers. Samples from wells in urban areas have a significantly greater MTBE detection frequency compared to ambient samples in agricultural and forested areas. Samples from the RFG-use areas in the five southeastern counties of Pennsylvania have a significantly greater MTBE detection frequency than samples outside of the RFG-use area. MTBE detection frequency of samples near storage- tank release sites in the RFG-use area (45 percent) are significantly greater than ambient samples in the RFG-use area.

  8. Ground-water conditions in Georgia, 1993

    USGS Publications Warehouse

    Joiner, C.N.; Cressler, A.M.

    1994-01-01

    Ground-water conditions during 1993 and recent ground-water level and quality trends in Georgia were evaluated using data from precipitation, ground-water, and ground-water quality monitoring networks. Data for 1993 included in this report are from precipitation records from 10 National Weather Service stations, continuous water-level records from 72 wells, and chloride analyses from 13 wells. Annual mean ground-water levels in Georgia in 1993 ranged from about 3.2 feet higher to about 9.6 feet lower than in 1992. Of the 72 wells summarized in this report, 30 wells had annual mean water levels that were higher and 42 wells had annual mean water levels that were lower in 1993 than in 1992. Record-high daily mean water levels were recorded in one well tapping the surficial aquifer, one well tapping the Upper Floridan aquifer, one well tapping the Claiborne aquifer, and one well tapping the crystalline- rock aquifers. These record highs were from about 0.1 to 0.7 feet higher than previous record highs. Record-low daily mean water levels were recorded in one well tapping the surficial aquifer, two wells tapping the Upper Floridan aquifer, four wells tapping the Cretaceous aquifer, one well tapping the Dublin-Midville aquifer system, and one well tapping the crystalline-rock aquifers. These record lows were from about 0.1 foot to 7.2 feet lower than the previous record lows. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was below drinking water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency and has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking water standards.

  9. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  10. Ground-water data for Michigan 1986

    USGS Publications Warehouse

    Huffman, G.C.

    1988-01-01

    Water levels, locations, depths, and aquifers tapped are given for 112 observation wells. Tabulated data include extremes of water levels for calendar year 1986 and for the period of record, pumpage of most major groundwater users in the State, and water-quality data from selected wells. The largest reported user of ground-water, the city of Lansing, pumped 7.6 billion gallons from the Saginaw Formation and glacial deposits in 1986.

  11. Ground-water data for Michigan, 1976

    USGS Publications Warehouse

    Huffman, G.C.

    1977-01-01

    The purpose of this report is to make available the records of water levels in principal aquifers of the State through 1976 and to compile related data, such as records of ground-water pumpage. Also included in the report are data on municipal, public, and industrial water-supply facilities. Records of water levels in areas of heavy pumpage and in areas where changes are principally due to natural influences are illustrated or tabulated to allow comparison between these types of water-level fluctuations. Water levels and related data provide a record for the evaluation of available ground-water supplies. The long-term records serve as a framework to which short-term records may be related. This report is written for persons, municipalities, industries, institutions, consultants, drillers, and hydrologists interested in the groundwater resources of the State.

  12. Ground Water Technical Support Center (GWTSC) Annual ...

    EPA Pesticide Factsheets

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo

  13. Ground Water Discharges (EPA's Underground Injection ...

    EPA Pesticide Factsheets

    2017-07-06

    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  14. Ground Water Flow No Longer A Mystery

    ERIC Educational Resources Information Center

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  15. Ground Water Flow No Longer A Mystery

    ERIC Educational Resources Information Center

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  16. Ground-water data for Michigan, 1980

    USGS Publications Warehouse

    Huffman, G.C.

    1981-01-01

    The purpose of this report is to make available the 1980 records of water levels and related data for the principal aquifers of the State. This report is written for municipalities, industries, institutions, consultants, drillers, hydrologists and other people interested in the ground-water resources.

  17. Ground-water data for Michigan 1979

    USGS Publications Warehouse

    Huffman, G.C.

    1980-01-01

    The purpose of this report is to make available the 1979 records of water levels and related data for the principal aquifers of the State. This report is written for municipalities, industries, institutions, consultants, drillers, hydrologists, and other people interested in the ground-water resources.

  18. Ground-water data for Michigan, 1978

    USGS Publications Warehouse

    Huffman, G.C.

    1979-01-01

    The purpose of this report is to make available the 1978 records of water levels and related data for the principal aquifers of the State. This report is written for municipalities, industries, institutions, consultants, drillers, hydrologists, and other people interested in the ground-water resources of the State.

  19. Ground-water control of evaporite deposition

    USGS Publications Warehouse

    Wood, W.W.; Sanford, W.E.

    1990-01-01

    The ratio of ground-water outflow to inflow (flux ratio) in hydrologically open basins is as important in determining the mineralogy and thicknesses of evaporite deposits as the solute composition of the inflow water. Attainment of steady state flux ratios permits large thicknesses of two or three minerals to form rather than thin veneers of many minerals. -from Authors

  20. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  1. Recharge estimation for transient ground water modeling.

    PubMed

    Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D

    2002-01-01

    Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.

  2. The Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  3. The Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  4. Iowa ground-water quality

    USGS Publications Warehouse

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).

  5. Ground-water data for Michigan, 1981

    USGS Publications Warehouse

    Huffman, G.C.

    1982-01-01

    This report summarizes data on water levels in 124 observation wells and provides information on well locations, depths, altitudes, and aquifers that they tap. Tabulated data include extremes of water levels for 1981 and for the period of record; pumpage of most major groundwater users in the State; and quality data on selected wells. The city of Lansing was the largest reported user of ground-water, pumping 8.6 billion gallons from the Saginaw Formation and glacial deposits.

  6. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  7. Water rights in areas of ground-water mining

    USGS Publications Warehouse

    Thomas, Harold E.

    1955-01-01

    Ground-water mining, the progressive depletion of storage in a ground-water reservoir, has been going on for several years in some areas, chiefly in the Southwestern States. In some of these States a water right is based on ownership of land overlying the ground-water reservoir and does not depend upon putting the water to use; in some States a right is based upon priority of appropriation and use and may be forfeited if the water is allowed to go unused for a specified period, but ownership of land is not essential; and in several States both these doctrines or modifications thereof are accepted, and each applies to certain classes of water or to certain conditions of development.Experience to date indicates that a cure for ground-water mining does not necessarily depend upon the water-rights doctrine that is accepted in the area. Indeed, some recent court decisions have incorporated both the areal factor of the landownership doctrines and the time factor of the appropriation doctrine. Overdraft can be eliminated if water is available from another source to replace some of the water taken from the affected aquifer. In areas where no alternate source of supply is available at reasonable cost, public opinion so far appears to favor treating ground water as a nonrenewable resource comparable to petroleum and metals, and mining it until the supply is exhausted, rather than curbing the withdrawals at an earlier date.

  8. Exploring Water Pollution. Part II

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1975-01-01

    This is part two of a three part article related to the science activity of exploring environmental problems. Part one dealt with background information for the classroom teacher. Presented here is a suggested lesson plan on water pollution. Objectives, important concepts and instructional procedures are suggested. (EB)

  9. Exploring Water Pollution. Part II

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1975-01-01

    This is part two of a three part article related to the science activity of exploring environmental problems. Part one dealt with background information for the classroom teacher. Presented here is a suggested lesson plan on water pollution. Objectives, important concepts and instructional procedures are suggested. (EB)

  10. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  11. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  12. Ground-water situation in Oregon

    USGS Publications Warehouse

    Newcomb, R.C.

    1951-01-01

    The water that occurs beneath the land surface follows definite and well-known rules of hydraulics, the same as water on the surface. However, ground water must be studied by methods, some of which are unique to that type of water occurrence, in order to evaluate the part it plays in the over-all water scheme.Water that falls on the land surface as rain or snow and water that rests upon the surface may in places pass laterally or downward through the pores of the earth materials. There it may take one or more of a variety of paths before again flowing out on the surface or being expelled to the atmosphere by evaporation and by the transpiration of plants. Water so diverted underground is delayed or diverted from its course toward the sea and that digression results in many services of prime importance to mankind. Underground, the water generally exceeds in total quantity the water present on the land surface at any one time.The discussion of ground water can be clarified somewhat by a description of the major parts or phases of the normal path of water underground.

  13. Ground-Water Data for Georgia, 1988

    USGS Publications Warehouse

    Joiner, Charles N.; Peck, Michael F.; Reynolds, Mark S.; Stayton, Welby L.

    1989-01-01

    Continuous water-level records from 144 wells and water-level measurements from an additional 617 wells in Georgia during 1988 provide the basic data for this report. Daily mean water-level hydrographs for selected wells illustrate the effects that changes ln recharge and discharge have had on the ground-water reservoirs in the State during 1988. Monthly mean water levels are shown for the 10-year period 1979-88. Maps showing the potentiometric surface of the Upper Floridan aquifer for Hay 1988 and the Claiborne and Clayton aquifers for October 1988 also are presented. Annual mean water levels in Georgia generally were below those measured in 1987; water levels ranged from 6.9 feet higher to 7.3 feet lower. Record-low water levels were measured during the last half of 1988 in 18 wells tapping the crystalline rock aquifer, the Cretaceous rock aquifer system, the Midville aquifer system, and the Clayton, Upper Floridan, and upper Brunswick aquifers. These record lows were from 0.1 to 1.4 feet lower than the previous record lows. A prolonged drought resulted in decreased recharge to the aquifers and increased ground-water pumping, which caused water levels to decline. Water-quality samples collected periodically throughout Georgia are analyzed as part of areal and regional ground-water studies. Maps showing chloride concentrations in the Upper Floridan aquifer in October 1988 in coastal Georgia and in the Savannah and Brunswick areas are presented. Periodic monitoring of water quality in the Savannah and Brunswick areas indicates that chloride concentrations in the Upper Floridan generally have remained stable.

  14. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) to prevent contamination of samples and the ground water. ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A...

  15. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  16. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  17. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  18. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  19. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 258.51... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  20. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 257.22... Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  1. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  2. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  3. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  4. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  5. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  6. Ground-water provinces of Brazil

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    As part of a study of the status of investigations and development of ground water in Brazil, made under the auspices of the United States International Cooperation Administration and with the cooperation of the Government of Brazil, the country was divided into seven ground-water provinces. The identification and delineation of the provinces were based on the regional distribution of the dominant geologic units which are known or inferred to have distinctive water-bearing characteristics. Three of the provinces, covering most of the country, are underlain by Precambrian crystalline rocks. Three others coincide in part with four extensive sedimentary basins--the Parnaiba or Maranhfio basin and the contiguous Sao Francisco basin in the northeast and east, the Amazon basin in the north and northwest, and the Paranfi basin in the south and southwest. In addition, the narrow, discontinuous coastal plain is considered as a province. the occurrence of ground water is discussed briefly, and pertinent data are given on the more important aquifers, together with information on some existing wells. Because of the widespread distribution of crystalline rocks of low permeability, it is difficult in many areas to develop large or even adequate ground-water supplies. In general, satisfactory supplies of water are available in most of the rest of the country. Some problems include the relative deficiency of rainfall in the northeast together with the occurrence, in parts of this region, of mineralized water in the crystalline rocks. Also, there is a potential problem of excessive lowering of water levels and interference among wells in the intensively developed area of the city of Sao Paulo.

  7. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    EPA Science Inventory

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  8. PRIORITIZATION OF GROUND WATER CONTAMINANTS AND SOURCES

    EPA Science Inventory

    The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their...

  9. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  10. Ground water work breakdown structure dictionary

    SciTech Connect

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  11. Trace metal concentrations in shallow ground water

    USGS Publications Warehouse

    Zelewski, L.M.; Krabbenhoft, D.P.; Armstrong, D.E.

    2001-01-01

    Trace metal clean sampling and analysis techniques were used to examine the temporal patterns or Hg, Cu, and Zn concentrations in shallow ground water, and the relationships between metal concentrations in ground water and in a hydrologically connected river. Hg, Cu, and Zn concentrations in ground water ranged from 0.07 to 4.6 ng L-1, 0.07 to 3.10 ??g L-1, and 0.17 to 2.18 ??g L-1, respectively. There was no apparent seasonal pattern in any of the metal concentrations. Filtrable Hg, Cu, and Zn concentrations in the North Branch of the Milwaukee River ranged from below the detection limit to 2.65 ng Hg L-1, 0.51 to 4.30 ??g Cu L-1, and 0.34 to 2.33 ??g Zn L-1. Thus, metal concentrations in ground water were sufficiently high to account for a substantial fraction of the filtrable trace metal concentration in the river. Metal concentrations in the soil ranged from 8 to 86 ng Hg g-1, 10 to 39 ??g Cu g-1, and 15 to 84 ??g Zn g-1. Distribution coefficients, KD, in the aquifer were 7900, 22,000, and 23,000 L kg-1 for Hg, Cu, and Zn, respectively. These values were three to 40 times smaller than KD values observed in the Milwaukee River for suspended particulate matter.

  12. EPA'S GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    The purpose and the services provided by EPA's Ground Water Technical Support Center (GWTSC) will be presented. In 1987 the Office of Solid Waste and Emergency Response, Regional Waste Management Offices, and ORD established the Technical Support Project (TSP)

    The purpos...

  13. Ground Water in a Fish Tank.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1992-01-01

    Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…

  14. Ground Water Sampling for Metal Analyses

    EPA Pesticide Factsheets

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Superfund cleanup ractices occurs where one EPA Region implements a remedial action based on...

  15. PRIORITIZATION OF GROUND WATER CONTAMINANTS AND SOURCES

    EPA Science Inventory

    The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their...

  16. IN-SITU BIOREMEDIATION OF GROUND WATER

    EPA Science Inventory

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. n an attemp...

  17. IN-SITU BIOREMEDIATION OF GROUND WATER

    EPA Science Inventory

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. n an attemp...

  18. EPA'S GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    The purpose and the services provided by EPA's Ground Water Technical Support Center (GWTSC) will be presented. In 1987 the Office of Solid Waste and Emergency Response, Regional Waste Management Offices, and ORD established the Technical Support Project (TSP)

    The purpos...

  19. Ground Water in a Fish Tank.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1992-01-01

    Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…

  20. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1988-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  1. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  2. Reading Ground Water Levels with a Smartphone

    NASA Astrophysics Data System (ADS)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  3. Simulation of ground-water flow and areas contributing ground water to production wells, Cadillac, Michigan

    USGS Publications Warehouse

    Hoard, Christopher J.; Westjohn, David B.

    2005-01-01

    Ground water is the primary source of water for domestic, municipal, and industrial use within the northwest section of Michigan's Lower Peninsula. Because of the importance of this resource, numerous communities including the city of Cadillac in Wexford County, Michigan, have begun local wellhead protection programs. In these programs, communities protect their ground-water resources by identifying the areas that contribute water to production wells, identifying potential sources of contamination, and developing methods to cooperatively manage and minimize threats to the water supply. The U.S. Geological Survey, in cooperation with the city of Cadillac, simulated regional ground-water flow and estimated areas contributing recharge and zones of transport to the production well field. Ground-water flow models for the Clam River watershed, in Wexford and Missaukee Counties, were developed using the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model (MODFLOW 2000). Ground-water flow models were calibrated using the observation, sensitivity, and parameter estimation packages of MODFLOW 2000. Ground-water-head solutions from calibrated flow models were used in conjunction with MODPATH, a particle-tracking program, to simulate regional ground-water flow and estimate areas contributing recharge and zones of transport to the Cadillac production-well field for a 10-year period. Model simulations match the conceptual model in that regional ground-water flow in the deep ground-water system is from southeast to northwest across the watershed. Areas contributing water were determined for the optimized parameter set and an alternate parameter set that included increased recharge and hydraulic conductivity values. Although substantially different hydrologic parameters (assumed to represent end-member ranges of realistic hydrologic parameters) were used in alternate numerical simulations, simulation results differ little in predictions of

  4. Ground-water data for Michigan, 1977

    USGS Publications Warehouse

    Huffman, G.C.

    1979-01-01

    The purpose of this report is to make available the 1977 records of water levels and related data for the principal aquifers of the State. These records and data provide a means for evaluating available ground-water supplies. Long- term records serve as a framework to which short-term records may be related. Also, water levels in areas of heavy pumping may be compared to levels in areas of little or no pumping. This report is written for municipalities, industries, institutions, consultants, drillers, hydrologists, and other people interested in the groundwater resources of the State.

  5. ERTS imagery for ground-water investigations

    USGS Publications Warehouse

    Moore, Gerald K.; Deutsch, Morris

    1975-01-01

    ERTS imagery offers the first opportunity to apply moderately high-resolution satellite data to the nationwide study of water resources. This imagery is both a tool and a form of basic data. Like other tools and basic data, it should be considered for use in ground-water investigations. The main advantage of its use will be to reduce the need for field work. In addition, however, broad regional features may be seen easily on ERTS imagery, whereas they would be difficult or impossible to see on the ground or on low-altitude aerial photographs. Some present and potential uses of ERTS imagery are to locate new aquifers, to study aquifer recharge and discharge, to estimate ground-water pumpage for irrigation, to predict the location and type of aquifer management problems, and to locate and monitor strip mines which commonly are sources for acid mine drainage. In many cases, boundaries which are gradational on the ground appear to be sharp on ERTS imagery. Initial results indicate that the accuracy of maps produced from ERTS imagery is completely adequate for some purposes.

  6. Ground-water reconnaissance of American Samoa

    USGS Publications Warehouse

    Davis, Daniel Arthur

    1963-01-01

    The principal islands of American Samoa are Tutuila, Aunuu, Ofu, Olosega, and Ta'u, which have a total area of about 72 square miles and a population of about 20,000. The mean annual rainfall is 150 to 200 inches. The islands are volcanic in origin and are composed of lava flows, dikes, tuff. and breccia, and minor amounts of talus, alluvium, and calcareous sand and gravel. Tutuila is a complex island formed of rocks erupted from five volcanoes. Aunuu is a tuff cone. Ofu, Olosega, and Ta'u are composed largely of thin-bedded lava flows. Much of the rock of Tutuila has low permeability, and most of the ground water is in high-level reservoirs that discharge at numerous small springs and seeps. The flow from a few springs and seeps is collected in short tunnels or in basins for village supply, but most villages obtain their water from streams. A large supply of basal ground water may underlie the Tafuna-Leone plain at about sea level in permeable lava flows. Small basal supplies may be in alluvial fill at the mouths of large valleys. Aunuu has small quantities of basal water in beach deposits of calcareous sand and gravel. Minor amounts of high-level ground-water flow from springs and seeps on Ofu, Olosega, and Ta'u. The generally permeable lava flows in the three islands contain substantial amounts of basal ground water that can be developed in coastal areas in wells dug to about sea level.

  7. Characterization of Climax granite ground water

    SciTech Connect

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  8. Ground water exfiltration in a river oxbow

    NASA Astrophysics Data System (ADS)

    Suck, M.; Nützmann, G.; Lewandowski, J.

    2009-04-01

    This paper deals with the quantification of the exchange between ground water and surface water in a river oxbow. Implementation and evaluation of the study site are based upon a conceptual model, in which exfiltration into the oxbow and mainly into the adjacent river Spree are supposed as major transport processes. A clogging mud layer in the oxbow with its low hydraulic conductivity controls exfiltration and is the highest hydraulic resistance in the considered aquatic system. The measurement of temperature depth profiles within that layer was one of the methods applied to measure groundwater exfiltration. Because of the different groundwater and surface water temperatures there are temperature differences between the upper and lower boundary of the mud layer. Depending on the extent of ground water exfiltration that depth profile is more or less curved. By adaptation of an analytical solution to the plotted temperature depth profiles the flux rates were calculated. A supplementary method to measure exfiltration, the seepage meter, is used for direct measurements of the flux rates. With that method the ground water flux which passes a defined cross section of the sediment-water boundary is collected. The evaluation of the results yields higher exfiltration rates for the temperature depth profiles than for the seepage meters. For the seepage meters the results show only a part of the actual flux rates because of several error sources. Despite those errors the comparison of the results from both methods shows a similar flux pattern with strong small-scale heterogeneities. At scales of few meters the measured flux rates fluctuate more than an order of magnitude. The flux rates near the bank are frequently higher than in the middle of the oxbow. However, the flux rates are controlled by the thickness of the clogging mud layer, its hydraulic conductivity, its heterogeneity and the water table differences between surface water and adjacent aquifer.

  9. Ground water currents: Developments in innovative ground water treatment, issue No. 13, September 1995

    SciTech Connect

    1995-09-01

    ;Contents: Ground Water Remediation Center; A solution to bioremediation`s soil plugging; Bioremediation video; VISITT 4.0 update; Update on ZENON pervaporation; and Site search-NAPL contaminated site wanted.

  10. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  11. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  12. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  13. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  14. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  15. Nitrate behavior in ground water of the southeastern USA

    SciTech Connect

    Nolan, B.T.

    1999-10-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993 to 1995 to explore potential nitrate-attenuation processes in ground waters of the southeastern USA. Nitrate reduction is an important attenuation process in selected areas of the Southeast. A nitrate-reduction component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen (DO) are inversely related to ammonium, iron, manganese, and dissolved organic carbon (DOC). Additional components extracted by PCA include calcite dissolution (18% of variance explained) and phosphate dissolution (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water-quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Drainage Basin (ALBE) Coastal Plain is {lt}0.05 mg L{sup {minus}1}, median DOC concentration is 4.2 mg L{sup {minus}1}, and median DO concentration is 2.1 mg L{sup {minus}1}, consistent with denitrification. Nitrate reduction does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola-Chattahoochee-Flint River Basin (ACFB) are 6.2 to 7.1 mg L{sup {minus}1}, and median nitrate concentrations are 0.61 to 2.2 mg L{sup {minus}1}, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain (GAFL) is 6.0 mg L{sup {minus}1} and median nitrate concentration is 5.8 mg L{sup {minus}1}.

  16. Procedures for ground-water investigations

    SciTech Connect

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  17. Ground water hydraulics as a geophysical aid

    USGS Publications Warehouse

    Ferris, John G.

    1948-01-01

    The publication of the non-equilibrium formula in 1935 in a paper by Theis marked the opening of a new era in the analysis and understanding of the hydraulics of percolating ground waters. Through the past decade 9 an ever-increasing number of engineers and geologists have become familiar-with the application of this formula to practical problems of ground-water flow and have tested it in the field, against precise observations, under controlled conditions. Although the highly idealized aquifer assumed for the derivation of this formula is not of widespread occurrence in the field, we gain increasing confidence in the use of the Theis method as our backlog of proven data accumulates until we now look askance at test data which do not conform to this theory. In many cases, careful study of these anomalous data will reveal the means for estimating the degree or manner in which an observed aquifer diverges from the idealized aquifer.

  18. REGIONAL GROUND-WATER-QUALITY NETWORK DESIGN.

    USGS Publications Warehouse

    Templin, William E.; ,

    1985-01-01

    This paper describes the approach used in designing a regional network to monitor the complex ground-water-quality conditions in the San Joaquin Valley, California. The actual network approximates the ideal network with the constraint of primarily using wells that are already being monitored by someone for some purpose. Further inventories of monitoring networks and installation of some specialized monitoring wells will be needed. Use of statistical network analysis techniques is also needed to make network improvements. Following these actions, the actual network will more closely approximate the ideal network in providing information on ground-water-quality trends, contaminant sources, prevention of future sources of contamination, monitoring well distributions, sampling frequencies, and constituents to be monitored.

  19. Coupled surface-water and ground-water model

    USGS Publications Warehouse

    Swain, Eric D.; Wexler, Eliezer J.

    1991-01-01

    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  20. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... result in contamination of ground water which may be needed or used for human consumption. This finding... water supplies; (vi) The existing quality of the ground water, including other sources of contamination... result in the contamination of ground water which may be needed or used for human consumption. Such...

  1. Ground water in Myrtle Creek - Glendale area, Douglas County, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1979-01-01

    The purpose of this report is to describe briefly the occurence of ground water and to present ground-water information that will help water users, public officials, and planners to determine the probability of obtaining adequate quanitities of good-quality ground water in the Myrtle Creek-Glendale area.

  2. Hydrogeology, water quality, and ground-water-development alternatives in the Upper Wood River Ground-Water Reservoir, Rhode Island. Water resources investigations

    SciTech Connect

    Dickerman, D.C.; Bell, R.W.

    1993-12-31

    This report describes the hydrogeology, water quality, and ground-water-development alternatives in the upper Wood River ground-water reservoir, Rhode Island. The report includes discussion of (1) recharge to and hydraulic properties of the stratified-drift aquifer, (2) stream-aquifer interconnection, (3) assessment of the quality of ground water and surface water, (4) input to and calibration of a two-dimensional ground-water-flow model, and (5) results of simulations of the effect of alternative ground-water-development schemes on ground-water levels and streamflow.

  3. Ground Water Atlas of the United States

    USGS Publications Warehouse

    ,

    2000-01-01

    PrefaceThe Ground Water Atlas of the United States presents a comprehensive summary of the Nation's ground-water resources and is a basic reference for the location, geography, geology, and hydrologic characteristics of the major aquifers in the Nation. The information was collected by the U.S. Geological Survey and other agencies during the course of many years of study. Results of the Regional Aquifer-System Analysis Program, a systematic study of the Nation's major aquifers by the U.S. Geological Survey, were used as a major, but not exclusive, source of information of the Atlas. The Atlas, which is designed in a graphical format that is supported by descriptive discussions, includes 13 chapters, each representing areas that collectively cover the 50 States and Puerto Rico, as well as the U.S. Virgin Islands. Each chapter of the Atlas presents and describes hydrogeologic and hydrologic conditions for the major aquifers in each regional area. The scale of the Atlas does not allow portrayal of minor features of the geology or hydrology of each aquifer presented, nor does it include detailed discussion of minor aquifers. Those readers who seek detailed local information for the aquifers will find extensive lists of references at the end of each chapter. The introductory chapter in this volume presents an overview of ground-water conditions Nationwide and gives an example of an aquifer in each of six hydrogeologic settings.

  4. Ground water in the Cuyama Valley, California

    USGS Publications Warehouse

    Upson, J.E.; Worts, George Frank

    1951-01-01

    This is the fourth of a series of interpretive reports on the water resources of the major valleys of Santa Barbara County, Calif., prepared by the Geological Survey, United States Department of the Interior, in cooperation with Santa Barbara County. The first three reports described the other major valleys in the county: the south-coast basins, Goleta and Carpinteria, and the Santa Maria and Santa Ynez River valleys. This report deals with the Cuyama Valley in the northeastern part of the county and adjoining parts of San Luis Obispo, Kern, and Ventura Counties. It includes estimates of natural discharge, pumpage, and yield of ground water, and all data on water levels, well records, and water quality that were available up to June 1946.

  5. Multiple-Agent Air/Ground Autonomous Exploration Systems

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  6. EVALUATING THE EFFECTIVENESS OF GROUND WATER EXTRACTION SYSTEMS (JOURNAL)

    EPA Science Inventory

    The most common process for remediating contaminated ground water is extraction and treatment. Data from 19 ongoing and completed ground water extraction systems were collected and analyzed to evaluate the effectiveness of this process in achieving cleanup concentration goals for...

  7. EVALUATING THE EFFECTIVENESS OF GROUND WATER EXTRACTION SYSTEMS (JOURNAL)

    EPA Science Inventory

    The most common process for remediating contaminated ground water is extraction and treatment. Data from 19 ongoing and completed ground water extraction systems were collected and analyzed to evaluate the effectiveness of this process in achieving cleanup concentration goals for...

  8. Ground water in Creek County, Oklahoma

    USGS Publications Warehouse

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  9. Worldwide occurrences of arsenic in ground water

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2002-01-01

    Numerous aquifers worldwide carry soluble arsenic at concentrations greater than the World Health Organization--and U.S. Environmental Protection Agency--recommended drinking water standard of 10 mg per liter. Sources include both natural (black shales, young sediments with low flushing rates, gold mineralization, and geothermal environments) and anthropogenic (mining activities, livestock feed additives, pesticides, and arsenic trioxide wastes and stockpiles). Increased solubility and mobility of arsenic is promoted by high pH (>8.5), competing oxyanions, and reducing conditions. In this Policy Forum, Nordstrom argues that human health risks from arsenic in ground water can be minimized by incorporating hydrogeochemical knowledge into water management decisions and by more careful monitoring for arsenic in geologically high-risk areas.

  10. Natural radionuclides in Hanford site ground waters

    SciTech Connect

    Smith, M.R.; Laul, J.C.; Johnson, V.G.

    1987-10-01

    Uranium, Th, Ra, Rn, Pb and Po radionuclide concentrations in ground waters from the Hanford Site indicate that U, Th, and Ra are highly sorbed. Relative to Rn, these radionuclides are low by factors of 10/sup -3/ to 10/sup -6/. Uranium sorption is likely due to its reduction from the +6 state, where it is introduced via surface waters, to the +4 state found in the confined aquifers. The distribution of radionuclides is very similar in all of the confined aquifers and significantly different from the distribution observed in the unconfined and surface waters. Barium correlates well with Ra over three orders of magnitude, indicating that stable element analogs may be useful for inferring the behavior of radioactive waste radionuclides in this candidate geologic repository. 8 refs., 7 figs., 1 tab.

  11. Estimating ground water yield in small research basins

    Treesearch

    Elon S. Verry

    2003-01-01

    An analysis of ground water recharge in 32 small research watersheds shows the average flow of ground water out of the watershed (deep seepage) is 45% of streamflow and ranges from 8 to 350 mm/year when apportioned over the watershed area. It is time to meld ground water and small watershed science. The use of we11 networks and the evaluation of ground water well...

  12. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  13. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  14. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  15. Ground water and small research basins: an historical perspective

    Treesearch

    Elon S. Verry

    2003-01-01

    Scientists have been studying hydrological processes within a watershed context for hundreds of years. Throughout much of that history, little attention was paid to the significance of ground water; in nearly all early studies, ground water was never considered. In many recent studies, ground water fluxes are assumed to be insignificantly small. The following is a...

  16. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  17. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  18. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  19. Ground-water resources of Chester County, Pennsylvania

    USGS Publications Warehouse

    McGreevy, Laurence J.; Sloto, Ronald A.

    1977-01-01

    Fifty gallons per minute (3 liters per second) or more may be obtained from wells in almost all parts of the county, but not at all locations. Adequate exploration to find fracture or solution openings is required. Five hundred gallons per minute (30 liters per second) or more may be obtained from some of the carbonate rocks. Linear features are visible on 1:1,000,000-to 1:24,000-scale aerial imagery. Many linear features, but not all, have geologic or hydrologic significance, and some may indicate fractured rock that might be tapped by wells. Dissolved-solids concentration of most ground water is less than 500 milligrams per liter. Chemical-quality problems are predominantly caused by acidity, iron and manganese, or nitrate. Base (ground-water) runoff during a near-average year, 1968, was about 420 million gallons per day (18 cubic meters per second).

  20. Winter Thaws Can Raise Ground Water Levels in Driftless Area

    Treesearch

    Richard S. Sartz

    1967-01-01

    Springflow and ground water levels both rose with winter thaws, even when the ground was frozen. A high soil water content suggests that water moved to the water table through a continuous column of soil water rather than as a wetting front

  1. Water resources data, New Jersey, water year 2005.Volume 2 - ground-water data

    USGS Publications Warehouse

    Jones, Walter D.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2005 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 214 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  2. Water resources data, New Jersey, water year 2004--volume 2. ground-water data

    USGS Publications Warehouse

    Jones, Walter D.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2004 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 196 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, Sate, and local agencies in New Jersey.

  3. Water Resources Data, New Jersey, Water Year 2003 - Volume 2. Ground-Water Data

    USGS Publications Warehouse

    Jones, Walter D.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2003 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 185 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, Sate, and local agencies in New Jersey.

  4. Ground-water development in Utah and effects on ground-water levels and chemical quality

    USGS Publications Warehouse

    Gates, Joseph S.; Allen, David V.

    1996-01-01

    Systematic ground-water development began in Utah shortly after settlement by Mormon pioneers in 1847. By 1939, about 230,000 acrefeet per year of ground water was being withdrawn from wells for irrigation, public supply, industrial use, and rural-domestic and stock supply. Withdrawals increased from about 600,000 to 700,000 acre-feet per year during 1963-67 to about 800,000 to 900,000 acre-feet per year during 1989-93, with a peak of 940,000 acre-feet in 1990.Most ground-water withdrawals from wells have been from unconsolidated basin-fill deposits in 13 areas along or near the eastern edge of the Basin and Range Province, which extends from the northern edge of Utah to its southwestern part. The proportions of withdrawals for various uses have changed; in 1964, 72 percent of withdrawals was for irrigation and II percent for public supply, whereas in 1993,64 percent was for irrigation and 21 percent for public supply.Long-term withdrawals from wells have caused declines in water levels in parts of western Utah from the 1940's and 1950's to 1994; the withdrawals apparently have caused local increases in dissolved-solids concentrations in ground water. Water levels have declined as much as 67 feet owing to withdrawals for public supply and industrial use in northwestern Utah, and as much as 88 feet owing to withdrawals for irrigation in southwestern Utah. Declines of this magnitude, however, are confined to local areas of large withdrawals. Withdrawals for irrigation apparently have caused increases in dissolved-solids concentrations in ground water in at least six irrigated areas of western Utah. Minor land subsidence related to compaction of basin-fill deposits caused by water-level declines has been observed locally in southwestern Utah.

  5. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  6. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  7. The role of ground water in sub-Saharan Africa.

    PubMed

    Braune, Eberhard; Xu, Yongxin

    2010-01-01

    Although water resources managers speak of a water crisis in Africa, the management of ground water has to date not featured strongly in national and regional African water agendas. Examination of the physical environment of the continent and, in particular, the water resources in relation to the socioeconomic landscape and regional development challenges makes it clear that widely occurring, albeit largely low-yielding, ground water resources will be crucial in the achievement of water security and development. Ground water is important primarily in domestic water and sanitation services, but also for other local productive needs like community gardens, stock watering, and brick-making, all essential to secure a basic livelihood and thus to alleviate poverty. Despite the importance of small-scale farming in Africa, there is little information on the present and potential role of ground water in agriculture. In contrast to its socioeconomic and ecological importance, ground water has remained a poorly understood and managed resource. Widespread contamination of ground water resources is occurring, and the important environmental services of ground water are neglected. There appear to be critical shortcomings in the organizational framework and the building of institutional capacity for ground water. Addressing this challenge will require a much clearer understanding and articulation of ground water's role and contribution to national and regional development objectives and an integrated management framework, with top-down facilitation of local actions.

  8. Ground water in the northern part of Clackamas County, Oregon

    USGS Publications Warehouse

    Leonard, A.R.; Collins, C.A.

    1983-01-01

    The number of domestic wells and domestic-water use have increased rapidly since 1960 in the 250-square-mile study area southeast of Portland, Oregon. The rolling upland area is underlain by volcanic and stream-deposited rocks, all units of which serve as aquifers locally. Depths of wells range from less than 50 to more than 1,000 feet and yields from less than one to several hundred gallons per minute. Local recharge rates are judged to be adequate for any forseeable projected development for domestic water supplies. Wells are expected to yield adequate water for domestic needs nearly everywhere in the study area. However, some exploration, as by test drilling, may be needed in siting irrigation, industrial, or public-supply wells of moderate to high yield. Additional ground water can be developed from all aquifers, but the Columbia River Basalt Group is considered susceptible to problems of overdevelopment locally. (USGS)

  9. Options for modeling ground water pollution potential by dissolved chemicals

    NASA Astrophysics Data System (ADS)

    Jury, William A.; Tseng, Peng-Hsiang

    A common characteristic of virtually all forms of non-point source pollutants is that they move downward through the soil under the influence of erratic and generally unsaturated water flow. As a consequence, both soil-water flow and solute-transport properties must be known to model the event on a field or larger scale. The extensive spatial variability of these properties make deterministic modeling unfeasible at this scale, necessitating some form of approximate stochastic approach that extrapolates from limited samples of properties and input parameters. There are a number of options for exercising this strategy, but most of them involve using a local-model representation that is averaged over the spatial domain in a statistical sense, by using a number of discrete one-dimensional simulations in parallel. With this strategy, the important question becomes what type of local model to use, and how complex to make it. This paper explores options for local representation in modeling the water flow regime, ranging from full simulation using the Richards flow equation, to steady flow using only the field-capacity estimate of water content. Simulations of flow and transport to ground water are run on a hypothetical field with variable climatic data and properties generated by geometric scaling theory, using data from 20 sites averaged in parallel to represent field-scale movement to ground water for a conservative and reactive chemical pulse. Although the transient-flow model is necessary to achieve accurate representation of the position of the pulse within the profile, mass loading of ground water was represented quite accurately with a simple flow regime assuming steady-state flow and uniform, water content. The field-capacity estimate was greatly out of agreement with the other methods, however.

  10. Heterogeneity and thermal modeling of ground water.

    PubMed

    Ferguson, Grant

    2007-01-01

    Heat transport in aquifers is becoming an increasingly important topic due to recent growth in the use of ground water in thermal applications. However, the effect of heterogeneity on heat transport in aquifers has yet to be examined in the same detail as it has been for solute transport, and it is unclear what effect this may have on our ability to create accurate models. This study examines this issue through stochastic modeling using the geostatistics for two aquifers with low and high degrees of heterogeneity. The results indicate that there is considerable uncertainty in the distribution of heat associated with injection of warm water into an aquifer. Heterogeneity in the permeability field was also found to slightly reduce the ability to recover this introduced heat at a later time. These simulations also reveal that hydrodynamic macrodispersion is an important consideration in some heat flow problems.

  11. Animating ground water levels with Excel.

    PubMed

    Shikaze, Steven G; Crowe, Allan S

    2003-01-01

    This note describes the use of Microsoft Excel macros (programs written in Excel's internal language, Visual Basic for Applications) to create simple onscreen animations of transient ground water data within Excel. Compared to many specialized visualization software packages, the use of Excel macros is much cheaper, much simpler, and can rapidly be learned. The Excel macro can also be used to create individual GIF files for each animation frame. This series of frames can then be used to create an AVI video file using any of a number of graphics packages, such as Corel PhotoPaint. The technique is demonstrated through a macro that animates changes in the elevation of a water table along a transect over several years.

  12. Monitoring for pesticides in ground water in Nevada

    USGS Publications Warehouse

    Adams, Patricia A.; Moses, Charles W.; Bevans, Hugh E.

    1997-01-01

    Many pesticides designed to control weed encroachment, plant disease, and insect predation are used in agricultural and urban areas in the United States. Contamination of ground water by pesticides has increased over the last 20 years (U.S. Environmental Protection Agency, 1992). In 1985, the U.S. Environmental Protection Agency (USEPA) estimated the detection of at least 17 agricultural pesticides in the ground water of 23 states. By 1988, pesticides identified in ground water had increased to 46 in 26 states. To protect ground water from pesticide contamination, USEPA, through the Federal Fungicide Insecticide and Rodenticide Act (FIFRA), requires all states to institute a ground-water protection program.

  13. Ground-water models: Validate or invalidate

    USGS Publications Warehouse

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  14. Water Resources Data, Florida, Water Year 2002, Volume 3B. Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2003-01-01

    Water resources data for the 2002 water year in Florida consist of continuous or daily discharges for 392 streams, periodic discharge for 15 streams, continuous daily stage for 191 streams, periodic stage for 13 streams, peak stage for 33 streams and peak discharge for 33 streams, continuous or daily elevations for 14 lakes, periodic elevations for 49 lakes; continuous ground-water levels for 418 wells, periodic ground-water levels for 1,287 wells, and quality-of-water data for 116 surface-water sites and 291 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 125 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 377 wells; and water quality at 46 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  15. Water Resources Data, Florida, Water Year 2001, Volume 3B. Southwest Florida Ground Water

    USGS Publications Warehouse

    Stoker, Y.E.; Kane, R.L.; Fletcher, W.L.

    2002-01-01

    Water resources data for the 2001 water year in Florida consist of continuous or daily discharges for 406 streams, periodic discharge for 12 streams, continuous daily stage for 142 streams, periodic stage for 12 streams, peak stage and discharge for 37 streams, continuous or daily elevations for 11 lakes, periodic elevations for 30 lakes; continuous ground-water levels for 424 wells, periodic ground-water levels for 1,426 wells, and quality-of-water data for 80 surface-water sites and 245 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 33 wells; miscellaneous ground-water elevations at 347 wells; and water quality at 25 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  16. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  17. Water resources data Florida, water year 2004: Volume 3B: southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous or daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 98 wells; periodic ground-water elevations at 56 wells; miscellaneous ground-water elevations at 374 wells; and water quality at 25 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  18. Water resources data, Florida, water year 2005. Volume 3B: Southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 108 wells; periodic ground-water elevations at 24 wells; miscellaneous ground-water elevations at 354 wells; and water quality at 2 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  19. Water Resources Data North Dakota Water Year 2002, Volume 2. Ground Water

    USGS Publications Warehouse

    Harkness, R.E.; Wald, J.D.

    2003-01-01

    Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 2 contains water-level records for 117 ground-water wells and water-quality records for 65 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  20. Exploring for Biosignatures of Extant Life in Martian Ground Ice

    NASA Astrophysics Data System (ADS)

    Farmer, J.

    2003-12-01

    The strategy for the next decade of Mars exploration emphasizes the discovery of favorable sites for sampling ancient, aqueously-formed sedimentary rocks, especially those capable of capturing and preserving fossil biosignatures. Nevertheless, it is widely accepted that habitable zones of deep groundwater, able to support extant Martian life, could also be present in the subsurface today. Generally speaking, access to subsurface groundwater habitats could require drilling to depths of several km, far deeper than could be accomplished with the current generation of robotic landers and rovers. But, in the absence of advanced drilling technologies and perhaps human explorers needed to operate them, is it still possible, with present capabilities, to gain access to a deep subsurface hydrosphere on Mars during the robotic phase of exploration? Subsurface cryosphere-magma interactions appear to have been active throughout Martian history. Magma bodies emplaced into the shallow cryosphere would set up deeply convecting hydrothermal systems that would, in turn, carry subsurface organic chemistry and any organisms present in subsurface groundwater, upward into the shallow crust. Upon cooling, these materials could be incorporated into shallow ground ice. Such ice deposits may be accessible to future surface robotic missions via shallow drilling (tens to hundreds of meters depth) of recently active igneous/volcanic areas. Discoveries from the Mars Global Surveyor and Odyssey missions have already discovered several geological environments on Mars favorable for such magma-cryosphere processes. These include numerous small gully systems ("seeps"), mostly found on steep, poleward-facing slopes at high latitudes (Malin and Edgett 2000; Christensen 2003), sites marginal to the Martian polar caps where periodic outflooding events appear to have occurred (Clifford 1987) and recent volcanic constructs situated in ground ice-rich regions at high latitudes. While the strategy for

  1. When People Push Water Deep Under Ground, It Can Cause Repeating Ground Shakes

    NASA Astrophysics Data System (ADS)

    Brudzinski, M.; Skoumal, R.; Currie, B.

    2016-12-01

    We look for ground shakes that repeat many times using a fast computer. We can do this when people put out a box that senses ground waves and stores all of them in computer memory. When a ground shake happens, we take the wave form from the ground shake, and use the fast computer to look for any matching wave forms in all of the ground waves stored in memory. Repeating ground shakes can happen when people push water deep down into the ground, which makes it easier for rocks to slip past each other. Sometimes people really push water down deep to break tight rocks and get more stuff stored inside that we use for power. The left over water from breaking rocks is not clean so it often gets pushed down even deeper, far away from the water people drink. In 99 out of 100 cases, pushing the water deep down under ground does not cause ground shakes we can see, even with a computer. Even fewer cases can be felt by people. In the cases where the water causes ground shakes, very small repeating ground shakes often happen early on. We can use a fast computer to find these repeating ground shakes to help us know if larger ground shakes might happen.

  2. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  3. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  4. Quality of ground water at selected sites in the upper Mahoning Creek Basin, Pennsylvania

    USGS Publications Warehouse

    Langland, Michael J.

    1996-01-01

    The ground-water quality of the upper Mahoning Creek Basin is largely unknown. Human activities in the basin have altered much of the landscape. The presence of coal mining, oil and gas exploration, agriculture, on-lot septic systems, and commercial development within the basin can introduce contaminants altering the natural chemistry of the ground water. Data collected to document current ground-water quality also can serve as a baseline for comparison of any future water-quality changes by continuing human activities. This report presents the results of a synoptic ground-water-quality sampling in the upper Mahoning Creek Basin. Present ground-water quality in the basin is characterized in relation to published standards, local land-use activities, and other areas with similar natural characteristics.

  5. Exploring Water Pollution. Part 3

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1976-01-01

    Lists over 30 outdoor science activities dealing with water formation, erosion, pollution, and other water-related topics. Provides, in addition, a selected bibliography of films, tapes, booklets and pamphlets, and filmstrips as additional reference materials. (CP)

  6. Exploring Water Pollution. Part 3

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1976-01-01

    Lists over 30 outdoor science activities dealing with water formation, erosion, pollution, and other water-related topics. Provides, in addition, a selected bibliography of films, tapes, booklets and pamphlets, and filmstrips as additional reference materials. (CP)

  7. Water resources data, North Carolina, water year 2003. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2004-01-01

    Water-resources data for the 2003 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 213 gaging stations; stage for 61 gaging stations; and continuous precipitation at 118 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  8. REMEDIATION STRATEGIES FOR GROUND WATER CONTAMINATED WITH METALS: CHROMIUM AND ARSENIC CASE STUDIES

    EPA Science Inventory

    This departmental seminar will explore current research activities at EPA's Ground Water and Ecosystem Restoration Division. In particular, aspects of the geochemistry of chromium and arsenic will be discussed as will be mechanisms of contaminant uptake in context to ground-wate...

  9. Mars exploration: follow the water

    NASA Technical Reports Server (NTRS)

    Park, Young Ho

    2004-01-01

    Over the centuries, the red planet Mars has been a subject of imagination as well as intense scientific interest. As the overwhelming success of two Mars Exploration Rovers unfolds before us, this article provides an overview of and rationale for NASA's Mars exploration program.

  10. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  11. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-water contamination in the uppermost aquifer. The relevant point of compliance specified by the Director... of the ground water, including other sources of contamination and their cumulative impacts on the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems....

  12. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified...

  13. Geology and occurrence of ground water in Lyon County, Minnesota

    USGS Publications Warehouse

    Rodis, Harry G.

    1963-01-01

    Large quantities of ground water are available from melt-water channels in the county. Moderate quantities, adequate for domestic and small industrial needs, are available from many of the small isolated deposits of sand and gravel in the till. Small quantities of ground water, adequate only for domestic supply, generally can be obtained from Cretaceous sandstone.

  14. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified...

  15. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified...

  16. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified...

  17. Ground-water resources of Rusk County, Texas

    USGS Publications Warehouse

    Sandeen, W.M.

    1984-01-01

    Some mineralization of ground water is due to natural causes. Other mineralization of ground water is due to contamination. A program needs to be initiated to determine the extent and cause of mineralization that has taken place in freshwater sands. Water-quality data is needed at Henderson in order to monitor saltwater encroachment.

  18. Progress in ground-water protection and restoration

    SciTech Connect

    Not Available

    1990-02-01

    Since issuing EPA's 'Ground-Water Protection Strategy' in 1984, the Agency has made significant strides in the protection of ground-water resources, both in implementing the ground-water related statutory authorities and in developing new EPA initiatives and activities. States also have made great progress in developing their own ground-water protection strategies and wellhead protection programs. Despite the progress already made in the protection and restoration of ground water, as documented in the report, much remains to be done--especially with respect to preventing pollution of ground-water resources. On July 18, 1989, a ground-water task force with the primary goal to develop a strategy for the direction EPA will take in ground-water protection. The strategy will incorporate recommendations and initiatives to ensure effective and consistent decision-making in all Agency actions affecting the resource, guide us as we deal with future ground-water issues, and assure that a clean and safe source of water will be available to all Americans and to the ecological systems on which we depend.

  19. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  20. Calibration of the DRASTIC ground water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, M.G.

    2001-01-01

    Ground water vulnerability maps developed using the DRASTIC method have been produced in many parts of the world. Comparisons of those maps with actual ground water quality data have shown that the DRASTIC method is typically a poor predictor of ground water contamination. This study significantly improved the effectiveness of a modified DRASTIC ground water vulnerability map by calibrating the point rating schemes to actual ground water quality data by using nonparametric statistical techniques and a geographic information system. Calibration was performed by comparing data on nitrite plus nitrate as nitrogen (NO2 + NO3-N) concentrations in ground water to land-use, soils, and depth to first-encountered ground water data. These comparisons showed clear statistical differences between NO2 + NO3-N concentrations and the various categories. Ground water probability point ratings for NO2 + NO3-N contamination were developed from the results of these comparisons, and a probability map was produced. This ground water probability map was then correlated with an independent set of NO2 + NO3-N data to demonstrate its effectiveness in predicting elevated NO2 + NO3-N concentrations in ground water. This correlation demonstrated that the probability map was effective, but a vulnerability map produced with the uncalibrated DRASTIC method in the same area and using the same data layers was not effective. Considerable time and expense have been outlaid to develop ground water vulnerability maps with the DRASTIC method. This study demonstrates a cost-effective method to improve and verify the effectiveness of ground water vulnerability maps.

  1. An application of thermometry to the study of ground water

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    The precise measurement of fluctuations in ground-water temperature, based on monthly readings in shallow glacial-outwash aquifers (up to about 70 feet deep), is useful in the study of ground-water movement and recharge. In addition to the study of natural phenomena in the hydrologic cycle, thermometry may be used as a tool in making detailed studies of (1) the effects of inducing the infiltration of surface water, (2) artificial recharge, (3) the effects of injecting petroleum products or radioactive or other wastes into the ground, and (4) ground-water movement in mines.

  2. Hanford Site environmental data for calendar year 1991 -- Ground water

    SciTech Connect

    Dresel, P.E.; Bates, D.J.; Merz, J.K.

    1993-03-01

    This report tabulates ground-water radiological and chemical data reported for calendar year 1991 by the Ground-Water Surveillance Project, Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1991 (Evans et al. 1992) and Hanford Site Environmental Report for Calendar Year 1991 (Woodruff and Hanf 1992). The data listings provided here were generated from the Hanford Environmental Information System database.

  3. Hanford Site environmental data for calendar year 1990 -- Ground water

    SciTech Connect

    Dresel, P.E.; Bates, D.J.; Merz, J.K.

    1993-03-01

    This report tabulates ground-water radiological and chemical data for calendar year 1990 by the Ground-Water Surveillance Project, reported Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1990 (Evans et al. 1992) and mental Report for Calendar Year 1990 (Woodruff and Hanf 1991). The data listings provided here were generated from the Hanford Environmental Information System database.

  4. Georgia's Ground-Water Resources and Monitoring Network, 2008

    USGS Publications Warehouse

    ,

    2008-01-01

    Ground water is an abundant resource in Georgia, providing 1.45 billion gallons per day, or 22 percent, of the total freshwater used (including thermoelectric) in the State (Fanning, 2003). Contrasting geologic features and landforms of the physiographic provinces of Georgia affect the quantity and quality of ground water throughout the State. Most ground-water withdrawals are in the Coastal Plain in the southern one-half of the State, where aquifers are highly productive. For a more complete discussion of the State's ground-water resources, see Leeth and others (2005).

  5. An overview of ground-water quality data in Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1984-01-01

    This report contains a summary of ground-water-quality data for Wisconsin and an evaluation of the adequacy of these data for assessing the impact of land disposal of wastes on ground-water quality. Chemical analyses used in data summaries were limited to those stored in the USGS computer system (WATSTORE). Information on documented instances of ground-water contamination and sources of potential contamination from land disposal of wastes was provided by the Wisconsin Department of Natural Resources. Available data provide an overview of ground water quality but may be insufficient for assessment of ground-water contamination from land disposal of wastes. Many sources of potential ground-water contamination (landfills, surface waste-storage impoundments, and buried tanks) are known. Some of these are probably causing local ground-water contamination that is not apparent from available regional data. Information needs for assessment of ground-water contamination from land disposal of wastes include improved understanding of both ground-water hydrology and the chemical behavior of specific contaminants in the environment. (USGS)

  6. Exploration Challenges: Transferring Ground Repair Techniques to Space Flight Application

    NASA Technical Reports Server (NTRS)

    McLemore, Carole A.; Kennedy, James P.; Rose, Frederick A.; Evans, Brian W.

    2007-01-01

    Fulfilling NASA's Vision for Space Exploration will demand an extended presence in space at distances from our home planet that exceed our current experience in space logistics and maintenance. The ability to perform repairs in lieu of the customary Orbital Replacement Unit (ORU) process where a faulty part is replaced will be elevated from contingency to routine to sustain operations. The use and cost effectiveness of field repairs for ground based operations in industry and the military have advanced with the development of technology in new materials, new repair techniques and new equipment. The unique environments, accessibility constraints and Extra Vehicular Activity (EVA) issues of space operations will require extensive assessment and evolution of these technologies to provide an equivalent and expected level of assurance to mission success. Challenges include the necessity of changes in design philosophy and policy, extremes in thermal cycling, disruptive forces (such as static charge and wind entrainment) on developed methods for control of materials, dramatically increased volatility of chemicals for cleaning and other compounds due to extremely low pressures, the limits imposed on dexterity and maneuverability by current EVA equipment and practices, and the necessity of unique verification methodology. This paper describes these challenges in and discusses the effects on the established ground techniques for repair. The paper also describes the leading repair methodology candidates and their beneficial attributes for resolving these issues with the evolution of technology.

  7. A geographic data model for representing ground water systems.

    PubMed

    Strassberg, Gil; Maidment, David R; Jones, Norm L

    2007-01-01

    The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.

  8. Ground-water availability and water quality, Farmington, Connecticut

    USGS Publications Warehouse

    Mazzaferro, David L.

    1980-01-01

    The strataified-drift aquifer in Farmington, Conn., is capable of yielding large amounts of water to individual wells. About 14 square miles of Farmington is underlain by stratified-drift deposits which, in places, are more than 450 feet thick. The most productive deposits are found in the Farmington River valley, from Unionville to River Glen, and along Scott Swamp Brook. In these areas, saturated, coarse-grained, stratified-drift deosits exceed 80 feet in thickness and estimated yields to individual wells ranged from 250 to 1,000 gallons per minute. Results of mathematical model analysis of three of the most favorable ground-water areas indicate that long-term yields range from 1.2 to 2.5 million gallons per day. Water in the Framington and Pequabuck Rivers meets the Connecticut Drinking Water Standards, assuming complete conventional treatment, for coliform orgaisms, color, trubidity, chloride, copper, and nitrate. Coliform bacteria concentrations in the Pequabuck river (12-month geometric mean of about 6,800 colonies per 100 milliliters of water) indicate a potential problem. Water in the stratified-drift aquifer is of good quality with the exception of manganese; 10 of 11 wells sampled had maganese concentrations above 0.05 milligram per liter. (USGS)

  9. Ground-water conditions in Utah, spring of 2008

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  10. Ground-water conditions in Utah, spring of 2009

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  11. Ground-water conditions in Utah, spring of 2007

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  12. Land subsidence caused by ground water withdrawal in urban areas

    USGS Publications Warehouse

    Holzer, T.L.; Johnson, A.I.

    1985-01-01

    At least eight urban areas in the world have encountered significant economic impact from land subsidence caused by pumping of ground water from unconsolidated sediment. The areas, most of which are coastal, include Bangkok, Houston, Mexico City, Osaka, San Jose, Shanghai, Tokyo, and Venice. Flooding related to decreased ground elevation is the principal adverse effect of the subsidence. Lesser effects include regional tilting, well-casing failures, "rising" buildings, and ground failure or rupture. Subsidence of most of these urban areas began before the phenomenon was discovered and understood. Thus, the subsidence problems were unanticipated. Methods to arrest subsidence typically have included control of ground water pumping and development of surface water to offset the reductions of ground water pumping. Ground water recharge has also been practiced. Areas threatened by flooding have been protected by extensive networks of dikes and sea walls, locks, and pumping stations to remove storm runoff. ?? 1985 D. Reidel Publishing Company.

  13. Ground-water monitoring in the Albuquerque area

    USGS Publications Warehouse

    Thorn, Condé R.

    1996-01-01

    At present (1996), all drinking water for Albuquerque residents comes from ground-water reserves. The Albuquerque area is the largest population center in the State and the largest consumer of ground water. Recent reports concerning the water resources of the Albuquerque area suggest that the Albuquerque Basin may soon face serious water-availability and water-quality problems due to anticipated ground-water development. Recent studies completed by the U.S. Geological Survey (USGS) have improved the understanding of the ground-water resources in the Albuquerque Basin. These studies have indicated that the more permeable units within the aquifer system--the upper Santa Fe Group--are less extensive than previously thought, and that water-levels have declined as much as 160 feet.

  14. Guide to North Dakota's Ground-Water Resources

    USGS Publications Warehouse

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  15. Hanford Site ground-water monitoring for 1994

    SciTech Connect

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  16. Exploring Water-Tight Compartments.

    ERIC Educational Resources Information Center

    Fishman, Steve

    John Dewey employed the phrase "water-tight compartments" to mark deficiencies of integration within an individual's personality. For Dewey, the self is complex, but a strong personality integrates its various habits so that they reinforce rather than conflict with one another. Dewey's focus on this problem of personality has relevance…

  17. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  18. Specific conductance identifies perched and ground water lakes.

    Treesearch

    Clarence F. Hawkinson; Elon S. Verry

    1975-01-01

    Shows that lakes can be classified into perched, ground water, and transitional categories according to specific conductance values. Confirms the classification with 10 years of water table measurements in 29 wells and discusses several applications of lake specific conductance values.

  19. Ground-water conditions in Utah, spring of 2005

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2005-01-01

    This is the forty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2004. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources. This report is available online at http://www.waterrights.utah.gov/techinfo/ wwwpub/gw2005.pdf and http://ut.water.usgs.gov/publications/GW2005.pdf.

  20. Water resources data for North Carolina, water year 1995. Volume 2. Ground-water records. Water data report (Annual), 1 October 1994-30 September 1995

    SciTech Connect

    Smith, D.G.; George, E.D.; Breton, P.L.

    1996-06-01

    Water-resources data for the 1995 water year for North Carolina consist of records of ground-water levels and water quality of ground water; records of stage, discharge, and water quality of streams; and stage and contents of lakes and reservoirs. This report contains ground-water level data from 81 observation wells and ground-water quality data from 125 wells.

  1. Water resources data for North Carolina, water year 1993. Volume 2. Ground-water records. Water-data report (Annual), 1 October 1992-30 September 1993

    SciTech Connect

    Coble, R.W.; Smith, D.G.; Ragland, B.C.

    1994-04-13

    Water-resources data for the 1993 water year for North Carolina consist of records of ground-water levels and water quality of ground water; records of stage, discharge and water quality of streams; and stage and contents of lakes and reservoirs. This report contains ground-water level data from 82 observation wells and ground-water quality data from 41 wells.

  2. Ground Water in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.; Gingerich, Stephen B.

    1998-01-01

    A multi-phased study of ground-water resources, including well drilling, aquifer tests, analysis of ground-water discharge, and numerical ground-water modeling, indicates that the rocks of the southern Lihue Basin, Kauai, have permeabilities that are much lower than in most other areas of ground-water development in the Hawaiian islands. The regional hydraulic conductivity of the Koloa Volcanics, which dominates fresh ground-water flow in the basin, is about 0.275 foot per day. The Waimea Canyon Basalt which surrounds the basin and underlies the Koloa Volcanics within the basin is intruded by dikes that reduce the bulk hydraulic conductivity of the rocks to about 1.11 feet per day. The low permeabilities result in steeper head gradients compared with other areas in the Hawaiian islands, and a higher proportion of ground-water discharging to streams than to the ocean. Water levels rise from near sea level at the coast to several hundreds of feet above sea level at the center of the basin a few miles inland. The high inland water levels are part of a completely saturated ground-water system. Because of the low regional hydraulic conductivity and high influx of water from recharge in the southern Lihue Basin, the rocks become saturated nearly to the surface and a variably saturated/unsaturated (perched) condition is not likely to exist. Streams incising the upper part of the aquifer drain ground water and keep the water levels just below the surface in most places. Streams thus play an important role in shaping the water table in the southern Lihue Basin. At least 62 percent of the ground water discharging from the aquifer in the southern Lihue Basin seeps to streams; the remainder seeps directly to the ocean or is withdrawn by wells.

  3. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  4. Water Recovery Systems for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.

    2007-01-01

    As NASA prepares for the Vision for Space Exploration, advances in technology for water recovery systems are necessary to enable future missions. This paper examines the proposed water recovery systems for the initial Constellation exploration missions as well as the capability gaps that exist in the current technology portfolio. We discuss how these gaps will be addressed with future technology development. In addition, the paper reviews how the water recovery system matures throughout the sequence of planned exploration missions, to ultimately support a 180-day lunar mission.

  5. Latin hypercube approach to estimate uncertainty in ground water vulnerability

    USGS Publications Warehouse

    Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.

  6. EPA Research Evaluating CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  7. Ground Water Quality Protection. State and Local Strategies.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Using regional case studies, this document examines representative programs for dealing with ground water contamination. Section one describes the ground water protection strategy of the U.S. Environmental Protection Agency (EPA); (2) discusses the limited data available for determining the extent of contamination; (3) provides a listing of the…

  8. Procedures for ground-water investigations. Revision 1

    SciTech Connect

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  9. EPA Research Evaluating CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  10. Ground-water levels in Arkansas, spring 1984

    USGS Publications Warehouse

    Edds, Joe

    1984-01-01

    This report contains about 680 ground-water level measurements made in observation wells in Arkansas in the spring of 1984. In addition, the report contains well hydrographs relating to the alluvial aquifer and the Sparta Sand and Memphis Sand aquifers, the most important aquifers with respect to ground-water availability and use in Arkansas. (USGS)

  11. In-Situ Bioremediation of Contaminated Ground Water

    EPA Pesticide Factsheets

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing ...

  12. A ground-water flow Mathematica tool package

    SciTech Connect

    Cheng, A.H.D.; Sidauruk, P.

    1996-01-01

    Mathematica, a symbolic computer mathematics program, is used to construct a tool package for ground-water flow and contaminant transport simulations. High level, mnemonic functions are designed that allow users to plot type curves, to animate ground-water flow fields, to perform parameter determination, and to visualize the movement of contaminant cloud.

  13. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    USGS Publications Warehouse

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  14. Ground Water Quality Protection. State and Local Strategies.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Using regional case studies, this document examines representative programs for dealing with ground water contamination. Section one describes the ground water protection strategy of the U.S. Environmental Protection Agency (EPA); (2) discusses the limited data available for determining the extent of contamination; (3) provides a listing of the…

  15. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  16. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  17. Landscape approach to identifying environments where ground water and surface water are closely interrelated

    USGS Publications Warehouse

    Winter, Thomas C.

    1995-01-01

    Understanding the interaction of ground water and surface water is fundamental to solving many of the water resource problems facing the Nation. To facilitate efficient management of the Nation's water resources, a program of study and evaluation of the interaction of ground water and surface water is proposed that would emphasize intersite comparison between 24 environments throughout the Nation.

  18. From Ground to Space: A Roadmap with Robotic & Exploration Elements

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Bowman, J.; Burns, J.; Farrell, W.; Jones, D.; Kasper, J.; Stewart, K.; Weiler, K.

    2012-05-01

    Ground-based 21 cm cosmology and astrophysics measurements are underway, with initial limits on the H I signal at various redshifts established. The Moon is a unique platform for 21 cm cosmology and astrophysics because its farside is shielded from intense terrestrial emissions and its ionosphere is significantly less dense than Earth's. There is international interest in returning humans to the Moon, with instrument packages and telescopes deployed as part of Exploration activities. A roadmap for the staged deployment of lunar telescopes is Stage I: On-going ground-based activities to develop the instruments and techniques, as well as detect or place austere limits on the redshifted H I 21 cm line. Stage IIa: One antenna (or a few) on a lunar orbiter. The prime science is to detect the sky-averaged, redshifted H I 21 cm line that is excited by the UV and X-ray fields of the first stars and accreting black holes. Stage IIb: One antenna (or a few) on the lunar surface. A near-side antenna would monitor the lunar ionosphere and track the balance between solar wind-induced effects and lunar interior outgassing; a far-side antenna would study the redshifted 21 cm line. Deployment could be done either during astronaut sorties or telerobotically. This stage could occur in parallel with Stage IIa. Stage III: A near-side telescope capable of studying particle acceleration within the inner heliosphere ( 100 antennas distributed over 1 km). Such a telescope could detect the magnetically-generated emissions from solar system planets, and potentially from extrasolar planets. Stage IV: A far-side telescope capable of imaging the H I 21 cm line from Cosmic Dawn and into the Dark Ages ( 105 antennas over 10 km). It would also be capable of detecting the magnetospheric emission from extrasolar planets.

  19. Ground-water conditions in Utah, spring of 2000

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Johnson, K.K.; Kenny, T.A.; Brockner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2000-01-01

    This is the thirty-seventh in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1999. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  20. Ground-water conditions in Utah, spring of 2004

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2004-01-01

    This is the forty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2003. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  1. Ground-water conditions in Utah, spring of 2003

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  2. Ground-water conditions in Utah, spring of 2002

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  3. Ground-water conditions in Utah, spring of 2001

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2001-01-01

    This is the thirty-eighth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2000. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  4. Ground-water conditions in Utah, spring of 1999

    USGS Publications Warehouse

    Burden, Carole B.; Spangler, L.E.; Sory, J.D.; Eacret, Robert J.; Kenney, T.A.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    1999-01-01

    This is the thirty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1998. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  5. Exploring Primary Children's Views and Experiences of the School Ground: The Case of a Greek School

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Tsevreni, Irida; Epitropou, Maria; Kittas, Constantinos

    2013-01-01

    The present study explores the use of a conventional school ground of a primary school and its potential as a space for creative play and environmental learning. Children's play behavior and views of the school ground are explored, as well as their vision for its improvement. The research constitutes part of a wider school ground project and was…

  6. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  7. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, S.A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  8. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  9. Pesticides in Ground Water - Sublette County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Sublette County. This fact sheet describes and summarizes results of the baseline monitoring in Sublette County.

  10. Pesticides in Ground Water - Carbon County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Carbon County. This fact sheet describes and summarizes results of the baseline monitoring in Carbon County.

  11. Pesticides in Ground Water - Campbell County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Campbell County. This fact sheet describes and summarizes results of the baseline monitoring in Campbell County.

  12. Ground water in the San Joaquin Valley, California

    USGS Publications Warehouse

    Kunkel, Fred; Hofman, Walter

    1966-01-01

    Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the San Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the San Joaquin Valley was "Ground Water in the San Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the San Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the San Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of

  13. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  14. Impact of poor solid waste management on ground water.

    PubMed

    Vasanthi, P; Kaliappan, S; Srinivasaraghavan, R

    2008-08-01

    The leachate produced by waste disposal sites contains a large amount of substances which are likely to contaminate ground water. The impact of such sites upon ground water can be judged by monitoring the concentration of potential contaminants at a number of specific monitoring points. In this study, the quality of ground water around a municipal solid waste disposal site in Chennai was investigated. Chemical analyses were carried out on water samples collected at various radial distances from the boundary of the dumping yard, at intervals of 3 months and for a period of 3 years. The study has revealed that the ground water quality does not conform to the drinking water quality standards as per Bureau of Indian Standards. The effects of dumping activity on ground water appeared most clearly as high concentrations of total dissolved solids, electrical conductivity, total hardness, chlorides, chemical oxygen demand, nitrates and sulphates. Leachate collected from the site showed presence of heavy metals. The contaminant concentrations tend to decrease, during the post monsoon season and increase, during the pre monsoon season in most of the samples. The study clearly indicates that landfills in densely populated cities should have the ground water monitored on regular basis. Furthermore, ground water in and around the landfill sites shall not be used for drinking purposes unless it meets specific standards. Indiscriminate dumping of wastes in developed areas without proper solid waste management practices should be stopped.

  15. Ground-water conditions in Utah, spring of 1997

    USGS Publications Warehouse

    Gerner, S.J.; Steiger, J.I.; Sory, J.D.; Burden, Carole B.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1997-01-01

    This is the thirty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep aware of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1996. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  16. Ground-water conditions in Utah, spring of 1998

    USGS Publications Warehouse

    Susong, David D.; Burden, Carole B.; Sory, J.D.; Eacret, Robert J.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1998-01-01

    This is the thirty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1997. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  17. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  18. Water resources data, North Carolina, water year 2005. Volume 2: Ground-water records

    USGS Publications Warehouse

    Fine, J.M.; Huffman, B.A.; Breton, P.L.

    2006-01-01

    Water-resources data for the 2005 water year for North Carolina consist of records of stage, discharge, and water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 215 gaging stations; stage and contents for 60 lakes and reservoirs; stage only records for 25 gaging stations; elevations for 10 stations; water quality for 35 gaging stations and continuous water quality for 19 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 180 observation wells, ground-water-quality data from 36 wells, continuous water quality for 3 sites and continuous precipitation at 4 sites. Additional water data were collected at 53 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  19. Ground-water geology of Kordofan Province, Sudan

    USGS Publications Warehouse

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  20. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  1. The ground-water-level monitoring network in Iowa

    USGS Publications Warehouse

    Lambert, R.B.

    1992-01-01

    The objectives of the ground-water-level monitoring network in Iowa are to provide the data needed to: (1) determine the change in aquifer storage, (2) document the effects of climatic stress and human activities on discharge and recharge to the principal aquifers, (3) quantify the physical characteristics of ground-water flow including the transmissivity, hydraulic conductivity, and specific capacity of aquifers; and (4) provide historical baseline data for future research. The design of the ground-water-level monitoring network in Iowa that satisfies these objectives includes three types of data: (1) hydrologic data, (2) water-management data for use by State and local officials, and (3) baseline data.

  2. Water: A Critical Material Enabling Space Exploration

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  3. Natural recharge and localization of fresh ground water in Kuwait

    USGS Publications Warehouse

    Bergstrom, R.E.; Aten, R.E.

    1965-01-01

    Fresh ground water (200 parts per million total dissolved solids and upwards) occurs in portions of Pleistocene sandstone aquifers beneath basins and wadis in north Kuwait where the mean rainfall is about five inches per year. The fresh water is surrounded and underlain by brackish water (> 4000 ppm TDS). Drilling and testing show that fresh water saturation is restricted to wadis and basin areas; in Rawdatain basin it attains a maximum thickness of about 110 feet and a lateral extent of about seven miles. The fresh ground water represents recharge localized, during infrequent, torrential rain storms, in areas of concentrated runoff where sediments in the vadose zone are moderately permeable and depth to the water table is generally less than a hundred feet. Concentration of runoff appears to be the primary control in the localization of recharge. The fresh water percolates downward to the ground-water reservoir following rare storms, then flows in the direction of hydraulic gradient and gradually becomes brackish. Theoretical delineation of the recharge area and ground-water flow pattern in Rawdatain was confirmed by tritium and C14 dating of the water. Brackish ground-water conditions prevail from water table downward in areas where rainfall infiltrates essentially where it falls, permeability of sediments in the vadose zone is low, or the water table is several hundred feet below land surface. In these areas, rainfall is retained and lost within the soil zone or becomes mineralized during deep percolation. ?? 1964.

  4. Geology and ground-water resources of Outagamie County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1957-01-01

    The ground water differs greatly in chemical quality from well to well, but it is generally a very hard calcium magnesium bicarbonate water, some of it high in iron. To aid in determining the source of well waters, 22 chemical analyses were plotted on a logarithmic diagram to obtain characteristic patterns for waters from several geologic sources.

  5. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  6. Dynamic factor analysis for estimating ground water arsenic trends.

    PubMed

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  7. Ground-water quality protection; why it's important to you

    USGS Publications Warehouse

    Webbers, Ank

    1995-01-01

    Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.

  8. Applications of thermal remote sensing to detailed ground water studies

    NASA Technical Reports Server (NTRS)

    Souto-Maior, J.

    1973-01-01

    Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.

  9. Base flow and ground water in upper Sweetwater Valley, Tennessee

    USGS Publications Warehouse

    Evaldi, R.D.; Lewis, J.G.

    1983-01-01

    Base flow measurements showed interbasin transfer of water among sub-basins of upper Sweetwater Valley. In general, topographically higher sub-basins have deficient surface outflow unless significant spring flow occurs in the basin. Topographically lower areas adjacent to the main channel of Sweetwater Creek generally have surplus flow. Major flow surpluses were associated with areas in which the majority of flow originated at a spring. Unusual outflow was related to geology to hypothesize a ground-water flow network. Areas of ground-water flow up-gradient of large springs were hypothesized as likely areas for significant ground-water reservoirs. A water budget study indicated that during dry years approximately three-fourths of the annual flow to Sweetwater Creek may be derived from ground-water sources. Streamflow records were analyzed to estimate the frequency of low-flow of Sweetwater Creek. (USGS)

  10. Ground-water resources of the Lexington, Kentucky, area

    USGS Publications Warehouse

    Faust, R.J.

    1977-01-01

    Ground water in the Lexington, Kentucky, area occurs in Ordovician Limestones in which cavity development is generally limited to about 100 feet below land surface. Some wells produce about 300 gallons per minute in some of the large stream valleys , about 50 gallons per minute in the rolling upland and small stream valleys, and about 5 gallons per minute on hilltops and steep slopes. Many wells throughout the area do not furnish adequate water for domestic supplies because no significant water-bearing openings are penetrated during drilling. Ground-water use is limited mostly to domestic and stock supplies and a few small public supplies. Ground water is generally a calcium bicarbonate type and in places contains sodium chloride and (or) hydrogen sulfide. Bacterial pollution of ground water is widespread because of direct recharge of polluted runoff and streamflow to cavernous limestones. (Woodard-USGS)

  11. Ground Watering of the Death Valley Region, Nevada and California

    SciTech Connect

    USGS

    2006-10-12

    Water is a precious commodity, especially in the arid southwest region of the US, where there is a limited supply of both surface water and ground water. Ground water has a variety of uses (such as agricultural, commercial, and domestic) in the Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California. The DVRFS, an area of about 100,000 square kilometers, contains very complex geology and hydrology. Using a computer model to represent this complex system the US Geological Survey (USGS) simulated ground-water flow in the Death Valley region for use with US Department of Energy (DOE) projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the Nation's proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  12. Pesticides in ground water: distribution, trends, and governing factors

    USGS Publications Warehouse

    Barbash, Jack; Resek, Elizabeth A.

    1997-01-01

    A comprehensive review of published information on the distribution and behavior of pesticides and their transformation products in ground water indicates that pesticides from every chemical class have been detected in ground waters of the United States. Many of these compounds are commonly present at low concentrations in ground water beneath agricultural land. Little information is available on their occurrence beneath non-agricultural land, although the intensity of their use in such areas (on lawns, golf courses, rights of way, timberlands, etc.) is often comparable to, or greater than agricultural use. Information on pesticides in ground water is not sufficient to provide either a statistically representative view of pesticide occurrence in ground water across the United States, or an indication of long-term trends or changes in the severity or extent of this contamination over the past three decades. This is largely due to wide variations in analytical detection limits, well selection procedures, and other design features among studies conducted in different areas or at different times. Past approaches have not been well suited for distinguishing "point source" from "nonpoint source" pesticide contamination. Among the variety of natural and anthropogenic factors examined, those that appear to be most strongly associated with the intensity of pesticide contamination of ground water are the depth, construction and age of the sampled wells, the amount of recharge (by precipitation or irrigation), and the depth of tillage. Approaches commonly employed for predicting pesticide distributions in the subsurface--including computer simulations, indicator solutes (e.g., nitrate or tritium), and ground-water vulnerability assessments--generally provide unreliable predictions of pesticide occurrence in ground water. Such difficulties may arise largely from a general failure to account for the preferential transport of pesticides in the subsurface. Significant

  13. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    EPA Science Inventory

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  14. Evidence for ground-water stratification near Yucca Mountain, Nevada

    USGS Publications Warehouse

    Futa, K.; Marshall, B.D.; Peterman, Z.E.

    2006-01-01

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  15. Ground-Water Reconnaissance at Pinnacles National Monument, California

    USGS Publications Warehouse

    Evenson, R.E.

    1962-01-01

    Ground-water supplies at Pinnacles National Monument have been obtained from springs that occur in fractures and along bedding planes of volcanic flows and deposits, and from springs discharged from perched water in a sedimentary fanglomerate formation. The spring-water yield is barely adequate to supply existing camp facilities, and therefore a supplemental water supply is necessary before existing campgrounds can be expanded. This supplemental water can be supplied by good-quality ground water obtained from shallow wells drilled in the alluvium of Chalone Creek. The yield of properly constructed wells in this area should exceed 10 gallons per minute.

  16. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  17. Ground-water conditions in Utah, spring of 1990

    USGS Publications Warehouse

    Herbert, L.R.; Smith, G.J.; Kariya, Kim A.; Eads, James P.; Allen, D.V.; Stolp, Bert; Brooks, Lynette E.; Garrett, R.B.; Brothers, W.C.; Puchta, R.W; Swenson, R.L.; Emett, D.C.; Overman, W.R.; Sandberg, G.W.

    1990-01-01

    This is the twenty-seventh in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data such as graphs showing chemical quality of water and maps showing water-level contours are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water development in the State for the calendar year 1989. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1990. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  18. Ground-water conditions in Utah, spring of 1994

    USGS Publications Warehouse

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  19. Ground-water conditions in Utah, spring of 1993

    USGS Publications Warehouse

    Batty, D.M.; Allen, D.V.; Sory, J.D.; Hanson, K.M.; Thomas, W.J.; Greene, M.R.; Danner, M.R.; Herbert, L.R.; Hadley, H.K.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    1993-01-01

    This is the thirtieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water development in the State for the calendar year 1992. Water-level fluctuations and selected related data, however, are described from the spring of 1988 to the spring of 1993. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  20. Ground-water conditions in Utah, spring of 1992

    USGS Publications Warehouse

    Batty, D.M.; Herbert, L.R.; Sory, J.D.; Hanson, Karen M.; Eads, James P.; Smith, G.J.; Danner, M.R.; Drumiler, M.M.; Garrett, R.B.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Thomas, B.K.

    1992-01-01

    This is the twenty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water development in the State for the calendar year 1991. Water-level fluctuations and selected related data, however, are described from the spring of 1987 to the spring of 1992. Most of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights and Division of Water Resources, Utah Department of Natural Resources.

  1. The Virginia Beach shallow ground-water study

    USGS Publications Warehouse

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  2. Progress report on selected ground-water basins in Utah

    USGS Publications Warehouse

    Waite, H.A.; Nelson, W.B.; Lofgren, B.E.; Feth, John Henry Frederick

    1954-01-01

    This technical publication consists essentially of the interpretation of data collected in connection with a detailed inventory of ground-water pumpage and water-level trends in four irrigation districts in southern Utah. Much of this information was assembled in a preliminary report entitled "Inventory of ground-water pumpage in three irrigation districts in southern Utah," by H. A. Waite and others, and was used by the State Engineer in a court hearing in Parowan in February 1954.

  3. Ground water for oil-shale development, Piceance Basin, Colorado.

    USGS Publications Warehouse

    Alley, W.M.

    1983-01-01

    Uses a synthetic streamflow model to investigate the effects of using conservative estimates of ground water on the required active storage capacity of a hypothetical reservoir on the White River. Results of the study indicate that use of ground water from mine drainage and/or auxiliary wells may have a significant impact on the size and timing of surface-water reservoirs. -from Author

  4. Explorations with the Sand and Water Table.

    ERIC Educational Resources Information Center

    Texas Child Care, 2001

    2001-01-01

    Presents sand and water activities for young children as examples of sensory explorations, science activities, and comforting play. Includes information on health and safety precautions, adaptations for children with physical disabilities, the use of other materials, and sand and water toys made from one-liter plastic bottles. (KB)

  5. Explorations with the Sand and Water Table.

    ERIC Educational Resources Information Center

    Texas Child Care, 2001

    2001-01-01

    Presents sand and water activities for young children as examples of sensory explorations, science activities, and comforting play. Includes information on health and safety precautions, adaptations for children with physical disabilities, the use of other materials, and sand and water toys made from one-liter plastic bottles. (KB)

  6. Ground-water contribution to dose from past Hanford operations

    SciTech Connect

    Freshley, M. D.; Thorne, P. D.

    1992-01-01

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work

  7. Characterization and identification of Na-Cl sources in ground water

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O'Kelly, D. J.

    2006-01-01

    Elevated concentrations of sodium (Na+) and chloride (Cl -) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br-), and iodide (I-) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I- and Br-; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources. Copyright ?? 2005 National Ground Water Association.

  8. Hanford Site ground-water monitoring for 1993

    SciTech Connect

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  9. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    USGS Publications Warehouse

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  10. Georgia's Ground-Water Resources and Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.

    2006-01-01

    The U.S. Geological Survey (USGS) ground-water network for Georgia currently consists of 170 wells in which ground-water levels are continuously monitored. Most of the wells are locatedin the Coastal Plain in the southern part of the State where ground-water pumping stress is high. In particular, there are large concentrations of wells in coastal and southwestern Georgia areas, where there are issues related to ground-water pumping, saltwater intrusion along the coast, and diminished streamflow in southwestern Georgia due to irrigation pumping. The map at right shows the USGS ground-water monitoring network for Georgia. Ground-water levels are monitored in 170 wells statewide, of which 19 transmit data in real time via satellite and posted on the World Wide Web at http://waterdata.usgs.gov/ga/nwis/current/?type=gw . A greater concentration of wells occurs in the Coastal Plain where there are several layers of aquifers and in coastal and southwestern Georgia areas, which are areas with specific ground-water issues.

  11. Ground water/surface water interaction in a fractured rock aquifer.

    PubMed

    Oxtobee, Jaime P A; Novakowski, Kent S

    2003-01-01

    In a recent field study of ground water/surface water interaction between a bedrock stream and an underlying fractured rock aquifer, it was determined that the majority of ground water discharge occurred through sparsely located vertical fractures. In this paper, the dominant mechanisms governing ground water/surface water exchange in such an environment are investigated using a numerical model. The study was conducted using several conceptual models based on the field study results. Although the field results provided the motivation for the modeling study, it was not intended to match modeling and field results directly. In addition, the extent of capture zones for discharging or recharging fractures was explored. The results of this study are intended to provide a better understanding of contaminant migration in the vicinity of bedrock streams. Based on the numerical results, the rate of ground water discharge (or recharge) was found to depend on the aperture size of the discharging feature, and on the distribution of hydraulic head with depth within the fracture network. It was determined that the extent of both the capture zone and reverse capture zone for an individual fracture can be extremely large, and will be determined by the height of the stream stage, the fracture apertures of the network, and the hydraulic-head distribution within the network. Because both the stream stage and the hydraulic-head distribution are transient, the size of the capture zone and/or the reverse capture zone for an individual fracture may change significantly over time. As a result, the migration path for contaminants within the fracture network and between the surface and subsurface will also vary significantly with time.

  12. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    : Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  13. Ground-water resources data for Baldwin County, Alabama

    USGS Publications Warehouse

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  14. Ground-water conditions in Utah, spring of 1989

    USGS Publications Warehouse

    Burden, Carole B.; Smith, G.J.; Greene, Michael R.; Eads, James P.; Allen, D.V.; Yarbrough, John A.; Brooks, Lynette E.; Garrett, R.B.; Brothers, W.C.; Puchta, R.W; Swenson, R.L.; Emett, D.C.; Overman, W.R.; Sandberg, G.W.; Thomas, B.K.

    1989-01-01

    This is the twenty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-level contours are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water development in the State for the calendar year 1988. Water-level fluctuations, however, are described from the spring of 1988 to the spring of 1989. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  15. Ground-water conditions in Utah, spring of 1991

    USGS Publications Warehouse

    Herbert, L.R.; Gates, Joseph S.; Sory, J.D.; Kariya, Kim A.; Eads, James P.; Smith, G.J.; Thomas, B.K.; Brooks, Lynette E.; Garrett, R.B.; Overman, W.R.; Swenson, R.L.; Emett, D.C.; Drumiler, M.M.

    1991-01-01

    This is the twenty-eighth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water development in the State for the calendar year 1990. Water-level fluctuations and selected related data, however, are described from the spring of 1986 to the spring of 1991. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  16. Ground-water conditions in Utah, spring of 1995

    USGS Publications Warehouse

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  17. Ground-water conditions in Utah, spring of 1996

    USGS Publications Warehouse

    Steiger, J.I.; Gerner, S.J.; Sory, J.D.; Burden, Carole B.; Loving, B.L.; Danner, M.R.; Herbert, L.R.; Hadley, H.K.; Enright, Michael; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Brockner, S.J.

    1996-01-01

    This is the thirty-third in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1995. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  18. Radon-222 in the ground water of Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units. The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Signifi- cant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types. Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  19. Identification of technical guidance related to ground water monitoring

    SciTech Connect

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  20. Sampling colloids and colloid-associated contaminants in ground water

    USGS Publications Warehouse

    Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.

    1993-01-01

    It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in

  1. Water Resources Data, Florida, Water Year 2001, Volume 2B. South Florida Ground Water

    USGS Publications Warehouse

    Prinos, S.; Overton, K.; Byrne, M.

    2002-01-01

    Water resources data for 2001 water year in Florida consists of continuous or daily discharge for 404 streams, periodic discharge for 15 streams, continuous or daily stage for 154 streams, periodic stage for 12 stream, peak discharge for 37 streams, and peak stage for 37 streams, continuous or daily elevations for 12 lakes, periodic elevations for 50 lakes, continuous ground-water levels for 426 wells, periodic ground-water levels for 1251 wells, quality of water data for 112 surface-water sites, and 235 wells. The data for South Florida included continuous or daily discharge for 89 streams, continuous or daily stage for 64 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 244 wells, periodic ground-water levels for 255 wells, water quality for 32 surface-water sites, and 166 wells. The data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  2. Ground-water conditions in Utah, spring of 2006

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Wilberg, D.E.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2006-01-01

    This is the forty-third in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2005. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/techinfo/wwwpub/gw2006.pdf and http://ut.water.usgs. gov/publications/GW2006.pdf.

  3. Transboundary impacts on regional ground water modeling in Texas

    USGS Publications Warehouse

    Rainwater, K.; Stovall, J.; Frailey, S.; Urban, L.

    2005-01-01

    Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to

  4. Ground-water field trip, Tucson to Nogales, Arizona

    USGS Publications Warehouse

    Coates, D.R.; Halpenny, L.C.

    1954-01-01

    A field excursion following the route described herein was conducted as a part of the curriculum of the 6th Ground Water Short Course, which was held by the Geological Survey at the University of Arizona in April 1954. The route log and descriptive text were designed to provide a general background of the ground-water situation in the Upper Santa Cruz Basin, a few of the geologic features that affect the occurrence of ground water, and some of the historical highlights of the region. 

  5. An imminent human resource crisis in ground water hydrology?

    PubMed

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  6. Sewage in ground water in the Florida Keys

    SciTech Connect

    Shinn, E.A.

    1995-12-31

    More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels were beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.

  7. Tectonic influences on ground water quality: insight from complementary methods.

    PubMed

    Earman, Sam; McPherson, Brian J O L; Phillips, Fred M; Ralser, Steve; Herrin, James M; Broska, James

    2008-01-01

    A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories.

  8. Identification of Naegleria fowleri in warm ground water aquifers.

    PubMed

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  9. Ground-water levels in Wyoming, 1974 through 1983

    USGS Publications Warehouse

    Ragsdale, J.O.; Oberender, C.B.

    1985-01-01

    Ground-water levels are measured periodically in a network of about 270 observation wells in Wyoming, mostly in areas where ground water is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State engineer and the Wyoming Department of Economic Planning and Development. This report contains hydrographs for most observation wells showing water-level fluctuations from 1974 through 1983. Also included in the report are maps showing locations of observation wells and tabulations of well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)

  10. Ground-water resources of Coke County, Texas

    USGS Publications Warehouse

    Wilson, Clyde A.

    1973-01-01

    Coke County, located in semiarid west-central Texas, where large ranches, small farms, and oil production are the main bases of the economy, has a small supply of ground and surface water. Of the approximately 1,900 acre-feet of fresh to moderately saline ground water used in 1968, industry used 880 acre-feet, irrigation used 210 acre-feet, and domestic supply and livestock used 820 acre-feet. All of the water for municipal supply and some of the water for industry is obtained from surface-water reservoirs.

  11. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  12. Arsenic Species in the Ground Water

    EPA Science Inventory

    Abstract Arsenic concentrations in ground varies widely and regionally across the United States and exists as oxyanions having two oxidation states: As(+III) and As(+V). As(V) is effectively removed by most arsenic treatment processes whereas uncharged As(III) is poorly removed...

  13. Hydrology, water quality, and ground-water-development alternatives in the Chipuxet ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Johnston, H.E.; Dickerman, D.C.

    1985-01-01

    A glacial sand and gravel aquifer in the Chipuxet River basin of Rhode Island forms a ground-water reservoir that could yield as much as 8.6 million gallons per day to wells; however, some streams would go dry for extended periods of time. The State Water Resources Board has tested five site that it proposes to develop for a public supply of 3 million gallons per day. A digital model was used to determine how withdrawal at this rate from alternative combinations of wells would affect water levels and streamflow. Results show that withdrawal of 3 million gallons per day would have a minimal effect on water levels, but that withdrawal at this rate from some well combinations could cause the Chipuxet River to have little or no flow for 90 consecutive days on the average of 1 year in 20. Quality of ground water is generally good, but leaching of fertilizers applied to croplands, which overlie much of the aquifer, has caused locally excessive concentrations of nitrate. Induced infiltration of surface water through organic sediments that line the bottoms of ponds and streams also seems to be the cause of elevated concentrations of manganese in water from some heavily pumped wells. (USGS)

  14. Water Resources Data, New Jersey, Water Year 2002--Volume 2. Ground-Water Data

    USGS Publications Warehouse

    ,

    2003-01-01

    Water-resources data for the 2002 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2002 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 15 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 6 continuous-recording stations. Locations of water-quality stations are shown in figures 12-14. Locations of miscellaneous water-quality sites are shown in figures 40-41. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  15. Advanced Exploration Systems Water Architecture Study Interim Results

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2013-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  16. Factors affecting ground-water quality in Oakland County, Michigan

    USGS Publications Warehouse

    ,

    2004-01-01

    Ground water is water stored in pores within soil and rock beneath the land surface. When these pores are connected so that water can be transmitted to wells or springs, these bodies of soil and rock are termed aquifers, from two Greek words meaning “water” and “to bear.” 

  17. Selected bibliography of ground-water in the United States

    SciTech Connect

    Ward-McLemore, E.

    1984-01-01

    This bibliography contains 899 records related to the hydrology of the US. Specific topics include, but are not limited to: aquifers; artesian wells; geophysics; ground water; flow models; pollution; tritium; water levels; water policy; and legal aspects. The subject index provides listings of records related to each state. Some of the items (81) are themselves bibliographies.

  18. Ground-water resources and geology of Colquitt County, Georgia

    USGS Publications Warehouse

    Zimmerman, E.A.

    1977-01-01

    The ground water is generally hard, but is otherwise of good quality. One exception is near the hypothesized Ochlockonee fault where water contains higher-than-usual concentrations of various ions, especially sulfate. Another exception occurs along the axis of the Suwannee strait where clay minerals in the channel facies may soften the water by ion exchange.

  19. Ground Water / Surface Water Exchange: Streambed Versus a Channel Bar

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Constantz, J. E.; Cooper, C. A.; McKay, W. A.

    2007-12-01

    The streambed is important in controlling exchange of water, solutes, and heat between streams and ground water. Processes such as sedimentation, erosion, and fluctuations in diurnal temperatures can have significant effects on the streambed hydraulic conductivity, which in turn affects fluid velocities across the streambed. The objectives of this study are to quantify the difference in flux magnitude and direction within and around a channel bar. The focus of this presentation is to compare fluxes in channel bar sediments with fluxes in the streambed to determine the effect of the upper boundary conditions on sediment fluxes. A network of piezometers was installed on and around a channel bar located within the Truckee River, a dense 6th order river network, located primarily in northwest Nevada. Instruments used were temperature loggers, pressure transducers, and stage recorders. Several methods were simultaneously utilized to quantify water and heat fluxes and to interpret the hydrodynamic processes through the streambed sediments. Numerical simulations are being completed to quantify the spatial and temporal fluid flux and heat transport in relation to varied hydraulic parameters such as variable river stage, geometry, and hydraulic conductivity. In general, we have found that surface water exchange to the streambed occurs at the upstream portion of bed features and streambed discharge dominates at the downstream bed feature. This exchange is evidenced at the channel bar as well as localized riffles and point bars adjacent to the channel bar. We found that at least two separate hydraulic conditions are evident during our study. The range in water levels between the piezometers was altered from approximately 1.25 m to a minimum of 0.10 m and the mean potentiometric surface increased by 1 m. These variations are geomorphic responses due to a flood event, inundating the channel bar, and a channel restoration project both upstream and downstream of the study area

  20. Flowpath delineation and ground water age, Allequash Basin, Wisconsin

    USGS Publications Warehouse

    Pint, Christine D.; Hunt, Randall J.; Anderson, Mary P.

    2003-01-01

    An analysis of ground water flowpaths to a lake and creek in northern Wisconsin shows the flow system in a geologically simple basin dominated by lakes can be surprisingly complex. Differences in source area, i.e., lakes or terrestrial, combined with the presence of intervening lakes, which may or may not capture underflowing ground water as water moves downgradient from recharge areas, contribute to a complex mix of flowpaths. The result is water of different chemistry and vastly different ages may discharge in close proximity. Flowpaths, travel times, and capture zones in the Allequash Basin in northern Wisconsin were delineated using particle tracking based on a calibrated steady-state ground water flow model. The flowpath analysis supports the conclusions of Walker et al. (2003) who made inferences about flowpath characteristics from isotope and major ion chemistry. Simulated particle tracking agreed with Walker et al.'s measurements of water source (lake or terrestrial recharge) in the stream subsurface and also supported their assertion that ground water with a high calcium concentration in the lower basin of Allequash Lake is derived from long flowpaths. Numerical simulations show that ground water discharging in this area originates more than 5 km away in a source area located upgradient of Big Muskellunge Lake, which is upgradient of Allequash Lake. These results graphically illustrate that in settings with multiple sources of water with different age characteristics and converging flowlines (like the Allequash Basin) it may be difficult to obtain accurate estimates of ground water age by chemical analyses of ground water.

  1. Hydrogeology, simulated ground-water flow, and ground-water quality at two landfills in Bristol, Vermont

    USGS Publications Warehouse

    Mack, Thomas J.

    1995-01-01

    A study was done to describe the hydrogeology of unconsolidated deposits, simulated ground-water flow, and ground-water quality at two landfills in Bristol, Vermont. The study area is characterized by a glacial delta greater than 200 feet thick on the west flank of the Green Mountains. An upper unconfined, coarse-grained glacial aquifer and a lower fine-grained glacial aquifer are separated throughout most of the study area by a sand, silt, and clay confining unit. A two-layer ground-water flow model was designed and calibrated to estimate ground-water-flow paths form the aquifers beneath the landfills. Large upward head gradients of 0.03 to 0.30 foot per foot are the result of ground water leaking from the underlying bedrock aquifer, which caused ground-water flow to concentrate in the upper aquifer. Most simulated ground-water-flow paths in the lower glacial aquifer beneath the landfills crossed into the upper aquifer. Simulated ground- water-flow paths in the upper aquifer, beneath the landfills, remained in the upper aquifer. Ground water characterized as landfill leachate, or influenced by landfill leachate, has a median specific conductance of 700 microseimens per centimeter at 25 degrees Celsius. Landfill leachate contained mean concentrations 1.5 to 10 times the background concentrations of common constituents and metals, including calcium, potassium, sodium, chloride, iron, magnesium, and manganese. Trace metals detected in the leachate included copper, nickel, zinc, cobalt, lead, and arsenic. Ten volatile organic compounds were found at four observation wells associated with one landfill and three volatile organic compounds were found at two observation wells associated with the record landfill. No one volatile organic compound was consistently found and detections were generally at or near detection limits.

  2. Methods of collecting and interpreting ground-water data

    USGS Publications Warehouse

    Bentall, Ray

    1963-01-01

    Because ground water is hidden from view, ancient man could only theorize as to its sources of replenishment and its behavior. His theories held sway until the latter part of the 17th century, which marked the first experimental work to determine the source and movement of ground water. Thus founded, the science of ground-water hydrology grew slowly and not until the 19th century is there substantial evidence of conclusions having been based on observational data. The 20th century has witnessed tremendous advances in the science in the methods of field investigation and interpretation of collected data, in the methods of determining the hydrologic characteristics of water-bearing material, and in the methods of inventorying ground-water supplies. Now, as is true of many other disciplines, the science of ground-water hydrology is characterized by frequent advancement of new ideas and techniques, refinement of old techniques, and an increasing wealth of data awaiting interpretation.So that its widely scattered staff of professional hydrologists could keep abreast of new ideas and advances in the techniques of groundwater investigation, it has been the practice in the U.S. Geological Survey to distribute such information for immediate internal use. As the methods become better established and developed, they are described in formal publications. Six papers pertaining to widely different phases of ground-water investigation comprise this particular contribution. For the sake of clarity and conformity, the original papers have been revised and edited by the compiler.

  3. Predicting ground water nitrate concentration from land use.

    PubMed

    Gardner, Kristin K; Vogel, Richard M

    2005-01-01

    Ground water nitrate concentrations on Nantucket Island, Massachusetts, were analyzed to assess the effects of land use on ground water quality. Exploratory data analysis was applied to historic ground water nitrate concentrations to determine spatial and temporal trends. Maximum likelihood Tobit and logistic regression analyses of explanatory variables that characterize land use within a 1000-foot radius of each well were used to develop predictive equations for nitrate concentration at 69 wells. The results demonstrate that historic nitrate concentrations downgradient from agricultural land are significantly higher than nitrate concentrations elsewhere. Tobit regression results demonstrate that the number of septic tanks and the percentages of forest, undeveloped, and high-density residential land within a 1000-foot radius of a well are reliable predictors of nitrate concentration in ground water. Similarly, logistic regression revealed that the percentages of forest, undeveloped, and low-density residential land are good indicators of ground water nitrate concentration > 2 mg/L. The methodology and results outlined here provide a useful tool for land managers in communities with shallow water tables overlain with highly permeable materials to evaluate potential effects of development on ground water quality.

  4. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  5. Guide for fabricating and installing shallow ground water observation wells

    Treesearch

    Carolyn C. Bohn

    2001-01-01

    The fabrication and use of three tools to assist in the manual installation of shallow ground water observation wells are described. These tools are easily fabricated at a local machine shop. A method for calibrating pressure transducers is also described.

  6. ACQUISITION OF REPRESENTATIVE GROUND WATER QUALITY SAMPLES FOR METALS

    EPA Science Inventory

    R.S. Kerr Environmental Research Laboratory (RSKERL) personnel have evaluated sampling procedures for the collection of representative, accurate, and reproducible ground water quality samples for metals for the past four years. Intensive sampling research at three different field...

  7. Use of RORA for Complex Ground-Water Flow Conditions

    USGS Publications Warehouse

    Rutledge, A.T.

    2004-01-01

    The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.

  8. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  9. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethynylestradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl der...

  10. NATURAL ATTENUATION OF CHLORINATED SOLVENTS IN GROUND WATER

    EPA Science Inventory

    There are a variety of mechanisms that destroy chlorinated solvents in ground water, including reductive dechlorination (biotic or abiotic), dehydrochloroelimination (abiotic), and hydrolysis (biotic or abiotic). Most proposals for Monitored Natural Attenuation (MNA) of chlorina...

  11. GROUND WATER REMEDIATION RESEARCH: ENHANCED BIOREMEDIATION AND MONITORED NATURAL ATTENUATION

    EPA Science Inventory

    An overview of ground water remediation research conducted at the Subsurface Protection and Remediation Division is provided. The focus of the overview is on Enhanced Bioremediation and Monitored Natural Attenuation research for the remediation of organic and inorganic contamina...

  12. Site Characterization for MNA of Radionuclides in Ground Water

    EPA Science Inventory

    Monitored natural attenuation is often evaluated as a component of the remedy for ground water contaminated with radionuclides. When properly employed, monitored natural attenuation (MNA) may provide an effective knowledge-based remedy where a thorough engineering analysis inform...

  13. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  14. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  15. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethynylestradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl der...

  16. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethinyl estradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl de...

  17. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  18. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethinyl estradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl de...

  19. GROUND WATER REMEDIATION RESEARCH: ENHANCED BIOREMEDIATION AND MONITORED NATURAL ATTENUATION

    EPA Science Inventory

    An overview of ground water remediation research conducted at the Subsurface Protection and Remediation Division is provided. The focus of the overview is on Enhanced Bioremediation and Monitored Natural Attenuation research for the remediation of organic and inorganic contamina...

  20. CONTAMINATION OF PUBLIC GROUND WATER SUPPLIES BY SUPERFUND SITES

    EPA Science Inventory

    Multiple sources of contamination can affect ground water supplies, including municipal landfills, industrial operations, leaking underground storage tanks, septic tank systems, and prioritized uncontrolled hazardous waste sites known as “Superfund” sites. A review of Superfund R...

  1. Site Characterization for MNA of Radionuclides in Ground Water

    EPA Science Inventory

    Monitored natural attenuation is often evaluated as a component of the remedy for ground water contaminated with radionuclides. When properly employed, monitored natural attenuation (MNA) may provide an effective knowledge-based remedy where a thorough engineering analysis inform...

  2. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  3. Reductive Dehalogenation of Organic Contaminants in Soils and Ground Water

    EPA Pesticide Factsheets

    Reductive dehalogenation is a process which may prove to be of paramount importance in dealing with a particularly persistent class of contaminants often found in soil and ground water at superfund sites.

  4. CONTAMINATION OF PUBLIC GROUND WATER SUPPLIES BY SUPERFUND SITES

    EPA Science Inventory

    Multiple sources of contamination can affect ground water supplies, including municipal landfills, industrial operations, leaking underground storage tanks, septic tank systems, and prioritized uncontrolled hazardous waste sites known as “Superfund” sites. A review of Superfund R...

  5. The effects of using ground water to maintain water levels of Cedar Lake, Wisconsin

    USGS Publications Warehouse

    McLeod, R.S.

    1980-01-01

    There were no identifiable changes in measured physical and chemical characteristics of lake water during sustained pumping of ground water into the lake, nor were there identifiable changes in the number or makeup of the phytoplankton community. Differences in physical and chemical characteristics of lake water and ground water added to the lake probably were not great enough to cause changes within the lake.

  6. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  7. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  8. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  9. Description of the ground-water flow system in the Portland Basin, Oregon and Washington

    USGS Publications Warehouse

    McFarland, William D.; Morgan, David S.

    1996-01-01

    An increasing dependence on ground-water resources in the Portland Basin has made it necessary for State and local governments to evaluate the capability of the ground-water system to meet present and future demands for water. This report describes the regional ground-water system and provides a conceptualization of the aquifer system. Aquifer geometry, recharge, ground-water flow directions, ground-water/surface water relations, water use, and water-level changes with time are presented.

  10. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  11. Tritium migration in A/M-Area ground water

    SciTech Connect

    Strom, R.N.; Kaback, D.S.

    1992-01-01

    Volatile organic compounds (VOC's) have entered aquifers in Cretaceous-aged sediments in the A/M-Area as a result of site operations. Tritium in A/M-Area ground water was investigated as a tracer to determine the movement of ground water in the subsurface and the transport mechanism of VOC's. The investigation was focused primarily on determining the continuity and integrity of the clay layers in the Ellenton Formation and their effectiveness as aquitards below the aquifers in Tertiary sediments.

  12. Proceedings of the second international conference on ground water ecology

    SciTech Connect

    Stanford, J.A.; Valett, H.M.

    1994-12-31

    This conference was held March 27--30, 1994 in Atlanta, Georgia. The purpose of this conference was to provide a forum for state-of-the-art information on groundwater ecosystems. Attention is focused on the following topics: Biogeochemistry; ecology of metazoans; ground water management; microbial ecology; modeling; pollution, restoration and bioremediation; problems in karst systems; and surface and ground water interaction zones. Individual papers are processed separately for inclusion in the appropriate data bases.

  13. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  14. Handbook for state ground water managers

    SciTech Connect

    Not Available

    1992-05-01

    ;Table of Contents: Nonpoint Source Implementation; State Public Water System Supervision; State Underground Water Source Protection (Underground Injection Control); Water Pollution Control -- State and Interstate Program Support (106 Grants); Water Quality Management Planning; Agriculture in Concert with the Environment; Consolidated Pesticide Compliance Monitoring and Program Cooperative Agreements; Pollution Prevention Incentives for States; Hazardous Substance Response Trust Fund; Hazardous Waste Financial Assistance; Underground Storage Tank Program; Leaking Underground Storage Tank Trust Fund; State/EPA Data Management Financial Assistance Program; Environmental Education; and Multi-Media Assistance Agreements for Indian Tribes.

  15. Preliminary report on ground water in the Michaud Flats Project, Power County, Idaho

    USGS Publications Warehouse

    Stewart, J.W.; Nace, Raymond L.; Deutsch, Morris

    1952-01-01

    The Michaud Flats Project area, as here described, includes about 65 square miles in central Power County, south of the Snake River in the southeastern Snake River Plain of Idaho. The principal town and commercial center of the area is American Falls. The immediate purpose of work in the area by the U.S. Geological Survey was to investigate the possibility of developing substantial quantities of ground water for irrigating high and outlying lands in the proposed Michaud Flats Project area of the U.S. Bureau of Reclamation. Initial findings are sufficiently favorable to warrant comprehensive further investigation. Advanced study would assist proper utilization of ground-water resources and would aid ultimate evaluation of total water resources available in the area. About 10,000 acres of low-lying lands in the Michaud Flats project could be irrigated with water from the Snake River under a low-line distribution system involving a maximum pumping lift of about 200 feet above the river. An additional larger area of high and outlying lands is suitable for irrigation with water pumped from wells. If sufficient ground water is economically available, the expense of constructing and operating a costly highline distribution system for surface water could be saved. Reconnaissance of the ground-water geology of the area disclosed surface outcrops of late Cenozoic sedimentary, pyroclastic, and volcanic rocks. Well logs and test borings show that similar materials are present beneath the land surface in the zone of saturation. Ground water occurs under perched, unconfined, and confined (artesian) conditions, but the aquifers have not been adequately explored. Existing irrigation wells, 300 feet or less in depth, yield several hundred to 1,400 gallons of water a minute, with pumping drawdowns of 6 to 50 feet, and perhaps more. A few wells have been pumped out at rates of less than 800 gallons a minute. Scientific well-construction and development methods would lead to more

  16. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.

    PubMed

    Harvey, F Edwin; Ayers, Jerry F; Gosselin, David C

    2007-01-01

    Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics.

  17. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  18. Assessing background ground water chemistry beneath a new unsewered subdivision

    USGS Publications Warehouse

    Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.

  19. Geochemistry and the understanding of ground-water systems

    USGS Publications Warehouse

    Glynn, Pierre D.; Plummer, L. Niel

    2005-01-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems.

  20. Transboundary impacts on regional ground water modeling in Texas.

    PubMed

    Rainwater, Ken; Stovall, Jeff; Frailey, Scott; Urban, Lloyd

    2005-01-01

    Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to

  1. Ground-water data for Georgia, 1986

    USGS Publications Warehouse

    Clarke, J.S.; Longsworth, S.A.; Joiner, C.N.; Peck, M.F.; McFadden, K.W.; Milby, B.J.

    1987-01-01

    Continuous water level records from 152 wells and water level measurements from an additional 750 wells in Georgia during 1986 provide the basic data for this report. Hydrographs for selected wells illustrate the effects that changes in recharge and discharge have had on the groundwater reservoirs in the State. Daily mean water levels are shown in hydrographs for 1986. Monthly mean water levels are shown for the 10-yr period 1977-86. During 1986, a prolonged drought resulted in water level declines throughout the State. Annual mean water levels were from 2.7 ft higher to 17.3 ft lower than in 1985, and record lows were measured in 33 wells in the summer and fall. The 1986 lows were from 0.02 ft to 29.2 ft lower than the previous record lows. The largest declines were measured in the Clayton aquifer in the southwestern part of the State. The declines can be attributed to reduced recharge and increased pumping that resulted from below-normal precipitation during the first half of the year. Water quality samples are collected periodically throughout Georgia and analyzed as part of areal and regional groundwater studies. Periodic monitoring of water quality in the Savannah and Brunswick areas indicates that the chloride concentration in the Upper Floridan aquifer there generally has remained stable. (USGS)

  2. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  3. The acetochlor registration partnership: prospective ground water monitoring program.

    PubMed

    Newcombe, Andrew C; Gustafson, David I; Fuhrman, John D; van Wesenbeeck, Ian J; Simmons, Nick D; Klein, Andrew J; Travis, Kim Z; Harradine, Kevin J

    2005-01-01

    The Acetochlor Registration Partnership conducted a prospective ground water (PGW) monitoring program to investigate acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] transport to ground water at eight sites. The distribution of soil textures among these sites was weighted toward coarser soil types, while also including finer-textured soils that dominate most corn (Zea mays L.)-growing areas of the United States. Each site consisted of a 1.2-ha test plot adjacent to a 0.2-ha control plot. Suction lysimeters and monitoring wells were installed at multiple depths within each test and control plot to sample soil-pore water and near-surface ground water. Irrigation was applied to each site during the growing season to ensure water input of 110 to 200% of average historical rainfall. Acetochlor dissipated rapidly from surface soils at all sites with a DT(50) (time for 50% of the initial residues to dissipate) of only 3 to 9 d, but leaching was not an important loss mechanism, with only 0.25% of the 15,312 soil-pore water and ground water samples analyzed containing parent acetochlor at or above 0.05 microg L(-1). However, quantifiable residues of a soil degradation product, acetochlor ethanesulfonic acid, were more common, with approximately 16% of water samples containing concentrations at or above 1.0 microg L(-1). A second soil degradation product, acetochlor oxanilic acid, was present at concentrations at or above 1.0 microg L(-1) in only 0.15% of water samples analyzed. The acetochlor PGW program demonstrated that acetochlor lacks the potential to leach to ground water at detectable concentrations, and when applied in accordance with label restrictions, is unlikely to move to ground water at concentrations hazardous to human health.

  4. 76 FR 77829 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY... of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by... at the site is potential ground water contamination, based on resident complaints about...

  5. 77 FR 19012 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ...] Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY... titled, ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research... Ground Water Contamination near Pavillion, Wyoming'' is available via the Internet on the EPA Region...

  6. 77 FR 62234 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ...-0895] Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY... titled, ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research... Ground Water Contamination near Pavillion, Wyoming.'' is available via the Internet on the EPA Region...

  7. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.403 Treatment technique requirements for ground water systems. (a) Ground water systems with...

  8. Hydrogeology and simulation of regional ground-water-level declines in Monroe County, Michigan

    USGS Publications Warehouse

    Reeves, Howard W.; Wright, Kirsten V.; Nicholas, J.R.

    2004-01-01

    Observed ground-water-level declines from 1991 to 2003 in northern Monroe County, Michigan, are consistent with increased ground-water demands in the region. In 1991, the estimated ground-water use in the county was 20 million gallons per day, and 80 percent of this total was from quarry dewatering. In 2001, the estimated ground-water use in the county was 30 million gallons per day, and 75 percent of this total was from quarry dewatering. Prior to approximately 1990, the ground-water demands were met by capturing natural discharge from the area and by inducing leakage through glacial deposits that cover the bedrock aquifer. Increased ground-water demand after 1990 led to declines in ground-water level as the system moves toward a new steady-state. Much of the available natural discharge from the bedrock aquifer had been captured by the 1991 conditions, and the response to additional withdrawals resulted in the observed widespread decline in water levels. The causes of the observed declines were explored through the use of a regional ground-water-flow model. The model area includes portions of Lenawee, Monroe, Washtenaw, and Wayne Counties in Michigan, and portions of Fulton, Henry, and Lucas Counties in Ohio. Factors, including lowered water-table elevations because of below average precipitation during the time period (1991 - 2001) and reduction in water supply to the bedrock aquifer because of land-use changes, were found to affect the regional system, but these factors did not explain the regional decline. Potential ground-water capture for the bedrock aquifer in Monroe County is limited by the low hydraulic conductivity of the overlying glacial deposits and shales and the presence of dense saline water within the bedrock as it dips into the Michigan Basin to the west and north of the county. Hydrogeologic features of the bedrock and the overlying glacial deposits were included in the model design. An important step of characterizing the bedrock aquifer was the

  9. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  10. Coliphages and bacteria in ground water from Tehran, Iran

    SciTech Connect

    Shariatpanahi, M.; Anderson, A.C.

    1987-07-01

    The purpose of this study was to examine the microbial quality of Tehran's ground water and selected springs, using coliphages and selected bacteria as indicator organisms. The water table in Tehran varies from approximately 160 meters in the north to approximately 5 meters in the south. Individual wells and subterranean man-made aqueducts (qanate) tap the ground water. Since Tehran lacks municipal sewage facilities, waste disposal is by means of seepage pits, privies and leaching cesspools. There is potential for waste from these sites to leach into the ground water, particularly in the south where the water table is near the surface and the clay content of the soil holds moisture during periods of heavy rainfall.

  11. Bibliography of publications relating to ground water in Connecticut

    USGS Publications Warehouse

    Cushman, R.V.

    1950-01-01

    In 1939, when it became necessary to curtail the work being carried on by the Works Progress Administration, cooperation was arranged between the Federal Ecological Survey and the State Water Commission to continue investigations relative to the over-development of ground-water supplies in the New Haven area. From time to time additional funds have been made available to meet growing demands by the State for data on its ground-water supplied and the present cooperative program between the U.S. Geological Survey and the State Water Commission is a continuation of the original arrangement. It is estimated that about 14 per cont of the State has been covered by recent ground-water surveys and in addition some data are available for another 20 per cent of he State.

  12. Hanford Site ground-water monitoring for 1992

    SciTech Connect

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  13. Correlation between nitrate contamination and ground water pollution potential.

    PubMed

    Chowdhury, Shafiul H; Kehew, Alan E; Passero, Richard N

    2003-01-01

    AQUIPRO, a PC-based method, was used to assess aquifer vulnerability using digital water well logs. The AQUIPRO model is a parameter/factor weighting system for rating the pollution potential of an aquifer. This method uses the well depth, as well as the clay and partial clay thickness in a well, to generate pollution potential scores. In this model, aquifer protection increases as the AQUIPRO vulnerability scores increase and ground water pollution potential decreases. Computerized water well records of 2435 domestic wells with partial chemistry data were used to determine the ground water pollution potential of Kalamazoo County, Michigan. Theoretically, low AQUIPRO pollution potential scores should have more frequent occurrences of ground water contamination events than areas with high AQUIPRO scores with similar land-use, well construction, and well densities. The relative AQUIPRO scores were compared with the frequency of occurrences of nitrate-N in ground water wells. The average nitrate-N concentrations within each relative AQUIPRO vulnerability scores category were also compared. The results indicate that domestic wells containing 5 mg/L or more nitrate-N showed a positive correlation between the frequency of occurrences of nitrate-N and relative decrease of AQUIPRO (r2 = 0.99) vulnerability scores. In other words, as the ground water pollution potential increases, the occurrence frequency of nitrate-N also increases. Furthermore, the results show that as the relative AQUIPRO (r2 = 0.96) vulnerability scores decrease, the mean nitrate-N concentrations also increase.

  14. Analytic game—theoretic approach to ground-water extraction

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  15. Water resources data Iowa water year 1998, Volume 2. surface water--Missouri River Basin, and ground water

    USGS Publications Warehouse

    May, J.E.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    1999-01-01

    Water resources data for Iowa for the 1998 water year consists of records of stage, discharge, and water quality of streams; stage, and/or contents of lakes and reservoirs; ground water levels and water quality of ground-water wells. This report volume contains discharge records for 32 gaging stations; stage or contents for 2 lakes; water quality for 1 stream-gaging station, and sediment records for 3 stream-gaging stations. Also included are data for 34 crest-stage partial record stations and ground-water levels for 176 wells. Additional water data were collected at various sites, but are not part of the systematic data collection program and are published as miscellaneous discharge and miscellaneous water-quality analyses.

  16. Ground-water conditions and studies in Georgia, 2001

    USGS Publications Warehouse

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  17. Pesticides in Ground Water of the Maryland Coastal Plain

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  18. GROUND WATER AND WATERSHEDS AND ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    Effective watershed management has the potential to achieve both drinking water and ecological protection goals. However, it is important that the watershed perspective be three- dimensional and include the hidden subsurface. The subsurface catchment, or groundwatershed, is geohy...

  19. GROUND WATER AND WATERSHEDS AND ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    Effective watershed management has the potential to achieve both drinking water and ecological protection goals. However, it is important that the watershed perspective be three- dimensional and include the hidden subsurface. The subsurface catchment, or groundwatershed, is geohy...

  20. Kindergarten Explorations with Snow, Ice, and Water

    ERIC Educational Resources Information Center

    Carroll, Martha A.

    1978-01-01

    Using winter snow, kindergarten students can explore the properties of water. Students demonstrate melting, freezing, expansion, and evaporation through a number of activities involving a paper cup and a scoop of snow. Procedures and student reactions are described in detail by the teacher-author. (MA)

  1. Kindergarten Explorations with Snow, Ice, and Water

    ERIC Educational Resources Information Center

    Carroll, Martha A.

    1978-01-01

    Using winter snow, kindergarten students can explore the properties of water. Students demonstrate melting, freezing, expansion, and evaporation through a number of activities involving a paper cup and a scoop of snow. Procedures and student reactions are described in detail by the teacher-author. (MA)

  2. Iowa ground-water-quality monitoring program

    USGS Publications Warehouse

    Detroy, M.G.

    1985-01-01

    More than 1,200 wells are available and acceptable for the network. From these and newly completed wells, 200 samples will be collected and analyzed annually. Analyses will be made for common anions and cations, trace metals, nutrients, and radionuclides. One out of ten samples will be analyzed for priority pollutants and pesticides. Data from this program will be published annually in Water Resources Data, Iowa, U.S. Geological Survey Water-Data Report.

  3. Dolomitization by ground-water flow systems in carbonate platforms

    SciTech Connect

    Simms, M.

    1984-09-01

    Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

  4. Interactions between ground water and surface water in the Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; DeHan, R.S.; Hirten, J.J.; Catches, J.S.

    1997-01-01

    Ground water and surface water constitute a single dynamic system in roost parts of the Suwannee River basin due to the presence of karat features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.

  5. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  6. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    USGS Publications Warehouse

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999). In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns. As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of

  7. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  8. Delineating and quantifying ground water discharge zones using streambed temperatures.

    PubMed

    Conant, Brewster

    2004-01-01

    Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed.

  9. Pesticides in Ground Water of Central and Western Maryland

    USGS Publications Warehouse

    Ator, Scott W.; Reyes, Betzaida

    2008-01-01

    Selected pesticides and degradates (products of pesticide degradation) are detectable in ground water in many parts of central and western Maryland, although concentrations are generally less than 0.1 micrograms per liter. Ground-water samples collected recently (1994-2003) from 72 wells in areas of Maryland underlain by consolidated carbonate, crystalline, or siliciclastic aquifers (areas north and west of the Fall Line) were analyzed for selected pesticides and degradates. Pesticides were typically detected in mixtures of multiple compounds in ground water, and degradates were commonly detected, often at greater concentrations than their respective parent compounds. No pesticides were observed at concentrations greater than established standards for drinking water, and nearly all observed concentrations were below other health-based guidelines. Although such standards and guidelines are generally much greater than measured concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of pesticides and degradates in ground water is related to application practices, as well as chemical and environmental factors that affect the fate and movement of individual compounds.

  10. Eolian transport of geogenic hexavalent chromium to ground water

    USGS Publications Warehouse

    Wood, W.W.; Clark, D.; Imes, J.L.; Councell, T.B.

    2010-01-01

    A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.

  11. Deep Aquifer Remediation Tools (DARTs): A new technology for ground-water remediation

    USGS Publications Warehouse

    Naftz, David L.; Davis, James A.

    1999-01-01

    Potable ground-water supplies throughout the world are contaminated or threatened by advancing plumes containing radionuclides, metals, and organic compounds. Currently (1999), the most widely used method of ground-water remediation is a combination of extraction, ex-situ treatment, and discharge of the treated water, commonly known as pump and treat. Pump-and-treat methods are costly and often ineffective in meeting long-term protection standards (Travis and Doty, 1990; Gillham and Burris, 1992; National Research Council, 1994). This fact sheet describes a new and potentially cost-effective technology for removal of organic and inorganic contaminants from ground water. The U.S. Geological Survey (USGS) is currently exploring the possibilities of obtaining a U.S. Patent for this technology.

  12. INVESTIGATION OF GROUND WATER CONTAMINATION NEAR PAVILLION, WYOMING

    EPA Science Inventory

    In response to complaints by domestic well owners regarding objectionable taste and odor problems in well water, the U.S. Environmental Protection Agency initiated a ground water investigation near the town of Pavillion, Wyoming under authority of the Comprehensive Environmental ...

  13. Ground water in north Monterey County, California, 1980

    USGS Publications Warehouse

    Johnson, M.J.

    1983-01-01

    Present ground-water demands exceed long-term recharge throughout much of North Monterey County in the shallow Quaternary deposits--principally the upper part of the Aromas Sand--and the overlying alluvium. Recharge occurs largely from local precipitation, although small quantities of potable ground water from outside areas also recharge these aquifers. Water levels in the Pajaro and Salinas River valleys north and south of the study area are lower than most of the intervening area, and recharge from the east is blocked by faults and impervious rock. Ocean water moves in from the west to replace depleted freshwater storage in the upper part of the Aromas Sand, alluvium, and terrace deposits. The North County area was divided into subareas to estimate pumpage demands and to evaluate ground-water yields. Pumpage near the granitic ridge, an area of limited storage, nearly matches local recharge. West of the granitic ridge, pumpage exceeds available recharge but draws upon a large storage potential. Deeper units than those now tapped by wells in the Aromas Sand and the underlying Purisima Formation may have substantial water-bearing potential for additional ground-water development. Extensive development of water from these formations might be limited, however, by the remoteness of the recharge source and by the proximity to the ocean. (USGS)

  14. INVESTIGATION OF GROUND WATER CONTAMINATION NEAR PAVILLION, WYOMING

    EPA Science Inventory

    In response to complaints by domestic well owners regarding objectionable taste and odor problems in well water, the U.S. Environmental Protection Agency initiated a ground water investigation near the town of Pavillion, Wyoming under authority of the Comprehensive Environmental ...

  15. Exploring the Common Ground of Rhetoric and Logic.

    ERIC Educational Resources Information Center

    Lamb, Catherine E.

    In teaching the principles of rational discourse in advanced expository writing, it is necessary to clarify the similarities and differences between the logic and rhetoric of Aristotle and to identify a common ground between the two. The study of logic within rhetoric focuses on the inductive standards used to support two kinds of argument: the…

  16. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  17. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  18. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  19. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  20. Continued utilization of ground-water storage basins

    USGS Publications Warehouse

    Thomas, H.E.

    1957-01-01

    Doubtless most of you are more familiar with surface reservoirs, their capabilities and limitations, than you are with ground-water reservoirs. I believe that this is true of people in general, even the experts. And because of our inadequate knowledge of ground-water reservoirs, our use of them creates problems that are rarely if ever encountered in the operation of surface reservoirs. Nevertheless there are many similarities between these two basic forms of water storage, and I should like to point out some of these similarities, was well as some important contrasts.

  1. Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2004-01-01

    Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  2. Ground water quality protection: the issue in perspective

    SciTech Connect

    Hall, C.W.

    1984-01-01

    The importance of protecting ground water resources cannot be overstated, and many people throughout the world seem anxious to physically and financially support a rational program to this end. Public complacency regarding the quality of ground water was destroyed with headline-grabbing incidents of pollution such as Love Canal, Valley of the Drums, and Times Beach. Contrary to earlier popular belief, the soil mantle has been shown to be ineffective in cleansing certain pollutants from the water flowing through it. The legislative basis for developing and implementing broad ground water quality protection programs exists, although it is dispersed in a variety of pieces of legislation. Such programs presuppose the existence of the scientific knowledge necessary to produce viable and effective results from its implementation. This article addresses the research needed for accumulation of this information. 12 references.

  3. Water Use, Ground-Water Recharge and Availability, and Quality of Water in the Greenwich Area, Fairfield County, Connecticut and Westchester County, New York, 2000-2002

    USGS Publications Warehouse

    Mullaney, John R.

    2004-01-01

    Ground-water budgets were developed for 32 small basin-based zones in the Greenwich area of southwestern Connecticut, where crystalline-bedrock aquifers supply private wells, to determine the status of residential ground-water consumption relative to rates of ground-water recharge and discharge. Estimated residential ground-water withdrawals for small basins (averaging 1.7 square miles (mi2) ranged from 0 to 0.16 million gallons per day per square mile (Mgal/d/mi2). To develop these budgets, residential ground-water withdrawals were estimated using multiple-linear regression models that relate water use from public water supply to data on residential property characteristics. Average daily water use of households with public water supply ranged from 219 to 1,082 gallons per day (gal/d). A steady-state finite-difference ground-water-flow model was developed to track water budgets, and to estimate optimal values for hydraulic conductivity of the bedrock (0.05 feet per day) and recharge to the overlying till deposits (6.9 inches) using nonlinear regression. Estimated recharge rates to the small basins ranged from 3.6 to 7.5 inches per year (in/yr) and relate to the percentage of the basin underlain by coarse-grained glacial stratified deposits. Recharge was not applied to impervious areas to account for the effects of urbanization. Net residential ground-water consumption was estimated as ground-water withdrawals increased during the growing season, and ranged from 0 to 0.9 in/yr. Long-term average stream base flows simulated by the ground-water-flow model were compared to calculated values of average base flow and low flow to determine if base flow was substantially reduced in any of the basins studied. Three of the 32 basins studied had simulated base flows less than 3 in/yr, as a result of either ground-water withdrawals or reduced recharge due to urbanization. A water-availability criteria of the difference between the 30-day 2-year low flow and the recharge rate

  4. Water use, ground-water recharge and availability, and quality of water in the Greenwich area, Fairfield County, Connecticut and Westchester County, New York, 2000-2002

    USGS Publications Warehouse

    Mullaney, John R.

    2004-01-01

    Ground-water budgets were developed for 32 small basin-based zones in the Greenwich area of southwestern Connecticut, where crystalline-bedrock aquifers supply private wells, to determine the status of residential ground-water consumption relative to rates of ground-water recharge and discharge. Estimated residential ground-water withdrawals for small basins (averaging 1.7 square miles (mi2)) ranged from 0 to 0.16 million gallons per day per square mile (Mgal/d/mi2). To develop these budgets, residential ground-water withdrawals were estimated using multiple-linear regression models that relate water use from public water supply to data on residential property characteristics. Average daily water use of households with public water supply ranged from 219 to 1,082 gallons per day (gal/d). A steady-state finite-difference ground-water- flow model was developed to track water budgets, and to estimate optimal values for hydraulic conductivity of the bedrock (0.05 feet per day) and recharge to the overlying till deposits (6.9 inches) using nonlinear regression. Estimated recharge rates to the small basins ranged from 3.6 to 7.5 inches per year (in/yr) and relate to the percentage of the basin underlain by coarse- grained glacial stratified deposits. Recharge was not applied to impervious areas to account for the effects of urbanization. Net residential ground-water consumption was estimated as ground-water withdrawals increased during the growing season, and ranged from 0 to 0.9 in/yr. Long-term average stream base flows simulated by the ground-water-flow model were compared to calculated values of average base flow and low flow to determine if base flow was substantially reduced in any of the basins studied. Three of the 32 basins studied had simulated base flows less than 3 in/yr, as a result of either ground-water withdrawals or reduced recharge due to urbanization. A water-availability criteria of the difference between the 30-day 2-year low flow and the recharge

  5. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    EPA Science Inventory

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  6. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    EPA Science Inventory

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  7. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  8. The role of hand calculations in ground water flow modeling.

    PubMed

    Haitjema, Henk

    2006-01-01

    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  9. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  10. Geology, ground-water flow, and dissolved-solids concentrations in ground water along hydrogeologic sections through Wisconsin aquifers

    USGS Publications Warehouse

    Kammerer, P.A.

    1998-01-01

    A cooperative project between the U.S. Geological Survey (USGS) and the Wisconsin Department of Natural Resources (DNR) was begun with the objectives of describing water quality and its relation to the hydrology of Wisconsin's principal aquifers and summarizing instances of ground-water contamination and quality problems from information available in DNR files. The first objective was met by a hydrologic investigation done by the USGS, and the second, by preparation of a report by the DNR, for their internal use, that describes the State's water resources and known ground-water quality and contamination problems and makes policy recommendations for ground-water management.The USGS investigation was divided into two phases. The first phase consisted of compiling available water-quality and hydrogeologic data and collecting new data to describe general regional water-quality and hydrogeologic relations within and between Wisconsin aquifers. The second phase began concurrently with the later part of the first phase and consisted of an areal description of water quality and flow in the State's shallow aquifer system (Kammerer, 1995). The overall purpose of this investigation was to provide a regional framework that could serve as a basis for intensive local and site specific ground-water investigations by State and local government agencies.This report presents the results of the first phase of the USGS investigation. Regional hydrogeologic and water-quality relations within and between aquifers are shown along 15 hydrogeologic sections that traverse the State. Maps are used to show surficial geology of bedrock and unconsolidated deposits and horizontal direction of ground-water flow. Interpretations on the maps and hydrogeologic sections are based on data from a variety of sources and provide the basis for the areal appraisal of water quality in the State's shallow aquifer system in the second phase of the investigation.

  11. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    USGS Publications Warehouse

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  12. Impact of eustatic sea level changes on the salt-water fresh-water interface in coastal ground waters

    NASA Astrophysics Data System (ADS)

    Riedel, Thomas; Lettmann, Karsten; Brumsack, Hans-Jürgen

    2010-05-01

    During the Holocene sea level rise has been inundating former glacial to inter-glacial deposits at the North German coast some of which are in use for municipal drinking water abstraction. Sea water intrusion into these sediments represents a serious threat to the coastal freshwater resources. To date, mechanisms and timing of salt water intrusion have not been explored. Interstitial waters from two drilling cores recovered about 3 km offshore the coastline of Northern Germany now offer the possibility of investigating the origin and possible age of the sea water intrusion. The chloride inventory shows that the sea-water fresh-water interface in the subsurface is currently not in equilibrium with the position of todaýs coastline. Furthermore, the shape of the chloride depth profile suggests that at least one regression must have intermitted the Holocene transgression. Based on these findings we conducted a transient numerical simulation to elucidate the impact of eustatic sea level changes on the salt-water fresh-water distribution within the subsurface of coastal regions. We applied a modified Henry model with an inclined surface and forced by a dynamic sea level. The results show that salt fronts in the subsurface follow the coastline during transgressions and promote a fast salinization of the model aquifer. A regression immediately leads to the freshening of surface sediments via the replacement of saline and brackish waters with meteoric waters, while flushing of deeper parts of the model aquifer with fresh-water was significantly slower. Although the coastline has moved seaward saline ground waters remained at depth because ground water velocities are slower and density-driven recirculation of sea water constantly resupplies salt water. The results indicate that the shape of the salt-water fresh-water interface in coastal aquifers may strongly be affected by eustatic sea level changes. They also provide evidence that man-made fixation of the coast line by

  13. Toward implementation of a national ground water monitoring network

    USGS Publications Warehouse

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  14. Ground water in the vicinity of Roosevelt, Oklahoma

    USGS Publications Warehouse

    Hollowell, J.R.

    1961-01-01

    The principal source of additional ground-water supply in the Roosevelt area of west-central Kiowa County is from alluvial deposits. Ground water can be obtained in varying amounts from the red beds of Permian age, but yields of wells are small and the water is of poor quality at most places. Roosevelt's municipal water needs are supplied from 9 wells, 2 miles west of town (fig. 1). Eight of these wells obtain water from the red beds. The other well taps an alluvial deposit about 30 feet in thickness. It was reported that test drilling for the town of Roosevelt found this deposit to be 25 to 30 feet in thickness with only the lower few feet saturated. Development of additional water supply from either the red beds or alluvial deposit at this location is unlikely. (available as photostat copy only)

  15. A national look at nitrate contamination of ground water

    USGS Publications Warehouse

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Knowing where and what type of risks to ground water exist can alert water-resource managers and private users of the need to protect water supplies. Although nitrate generally is not an adult public-health threat, ingestion in drinking water by infants can cause low oxygen levels in the blood, a potentially fatal condition (Spalding and Exner, 1993). For this reason, the U.S. Environmental Protection Agency (EPA) has established a drinking-water standard of 10 milligrams per liter (mg/L) nitrate as nitrogen (U.S. Environmental Protection Agency, 1995). Nitrate concentrations in natural ground waters are usually less than 2 mg/L (Mueller and others, 1995).

  16. Naturally occurring radionuclides in the ground water of southeastern Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2000-01-01

    Naturally occurring radionuclides in the ground water of southeastern Pennsylvania may pose a health hazard to some residents, especially those drinking water from wells drilled in the Chickies Quartzite. Water from 46 percent of wells sampled in the Chickies Quartzite and 7 percent of wells sampled in other geologic formations exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for total radium. Radon-222 may pose a health problem for homeowners by contributing to indoor air radon-222 levels. The radon-222 activity of water from 89 percent of sampled wells exceeded 300 pCi/L (picocuries per liter), the proposed USEPA MCL, and water from 16 percent of sampled wells exceeded 4,000 pCi/L. Uranium does not appear to be present in elevated concentrations in ground water in southeastern Pennsylvania.

  17. Deposit control in ground water remediation equipment

    SciTech Connect

    Horn, B.; Soeder, K.

    1995-12-31

    Remedial actions at all types of hazardous waste sites require the implementation of various water treatment technologies. Though the many groundwater treatment technologies are constantly developing, some age-old problems associated with handling any water remains. These operating problems include deposition of naturally occurring inorganic solutes such as iron, manganese, calcium and fouling by indigenous micro-organisms. Fouling of air stripping towers is a common example of this phenomenon. Virtually all groundwater treatment systems experience some degree of operating impediment from this cause. Some systems may take years for deposits to become problems, but many systems become inoperable within weeks or months. Recently released studies by the American Petroleum Institute show that deposit control is the most common operation problem causing remediation system failure. Such failures result in greatly increased operation & maintenance costs and non compliance with regulatory mandates.

  18. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  19. Dichlorobenzene in ground water: Evidence for long-term persistence

    USGS Publications Warehouse

    Barber, L.B.

    1988-01-01

    Hydrologic and geochemical evidence were used to establish the long-term persistence of dichlorobenzene in ground water that has been contaminated from 50 years of rapid-infiltration sewage disposal. An extensive plume of dichlorobenzene extends more than 3,500 meters downgradient from the disposal beds, with concentrations of the combined isomers ranging from less than 0.01 to over 1.0 ??g/l. Based on estimates of maximum ground-water flow velocities, a minimum age of 20 years was established for the farthest downgradient zone of dichlorobenzene contamination. Branched-chained, alkylbenzenesulfonic acid surfactants, that were introduced into the ground water prior to 1966, occur along with dichlorobenzene in the downgradient part of the plume, further establish residence of the compounds in the aquifer for at least 20 years. Although dichlorobenzene can be biologically degraded under aerobic conditions, its persistence at this field site is attributed to the dynamics of the ground-water system. Denitrifying conditions, resulting from the degradation of organic compounds in the aquifer near the disposal beds, appear to have enhanced the persistence of dichlorobenzene, which is not degraded by anaerobic bacteria. Biological degradation of dichlorobenzene in the aerobic part of the plume downgradient from the source is probably limited by the paucity of a suitable organic-carbon substrate and the low concentrations of dissolved oxygen in the contaminated ground water.

  20. Remediation of ground water containing volatile organic compounds and tritium

    SciTech Connect

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ``pump-and-treat`` technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations.

  1. GWVis: A tool for comparative ground-water data visualization

    NASA Astrophysics Data System (ADS)

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application ( GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. GWVis works with ground-water level elevation data collected or modeled over a given time span, together with a matching fixed underlying terrain. GWVis was developed using the Python programming language in conjunction with associated extension packages and application program interfaces such as OpenGLTM to improve performance and allow us fine control of attributes of the model such as lighting, material properties, transformations, and interpolation. There are currently several systems available for visualizing ground-water data. We classify these into two categories: research-oriented models and static presentation-based models. While both of them have their strengths, we find the former overly complex and non-intuitive and the latter not engaging and presenting problems showing multiple data dimensions. GWVis bridges the gap between static and research based visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives, infer information about simulations, and view a comparison of two datasets. By incorporating scientific data in an environment that can be easily understood, GWVis allows that information to be presented to a large audience base.

  2. Assessing background ground water chemistry beneath a new unsewered subdivision.

    PubMed

    Wilcox, Jeffrey D; Bradbury, Kenneth R; Thomas, Curtis L; Bahr, Jean M

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 microg/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed.

  3. Pesticides in ground-water data base: 1988 interim report

    SciTech Connect

    Not Available

    1988-12-01

    One of EPA's priorities is to determine the extent of pesticides occurring in the nation's ground water. While many individual, localized ground-water monitoring studies have been conducted across the country, there has been no comprehensive compilation of these results. In response to this, the EPA's Office of Pesticide Programs has developed the Pesticides in Ground Water Data Base. The data base contains information derived from monitoring studies conducted by pesticide registrants, universities, and government agencies. The data base identifies the pesticides that have been looked for in ground water, the areas that have been monitored, and the pesticides that have been detected. The data base was developed in the first quarter of 1988, and at the same time, a public docket was established so interested parties could have access to the source information. Following the development of the data base, the EPA has been conducting a program to assess the validity of the information it contains. At this time, the authors believe they have gathered sufficient information to provide the public with an interim report on the national status of pesticide residues in ground water.

  4. Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000

    USGS Publications Warehouse

    Susong, D.D.

    2005-01-01

    Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.

  5. Ground-water geology of Karnes County, Texas

    USGS Publications Warehouse

    Anders, Robert B.

    1963-01-01

    Most of the usable ground water in Karnes County is of substandard quality; whereas water from the San Antonio River, although hard, is of excellent quality. Wells tapping the Carrizo may yield as much as 1,000 gpm in the northwestern part of the county; wells in the shallower formations may yield as much as 600 gpm in the most favorable areas, but in some places may yield only a few gallons per minute of water suitable only for stock.

  6. Hydrogeochemical and stable isotope geochemical characterization of shallow ground waters and submarine ground water discharge in North-Eastern Germany

    NASA Astrophysics Data System (ADS)

    Böttcher, Michael E.; Schmiedinger, Iris; Böttcher, Gerd; Schwerdtfeger, Beate; Lipka, Marko; Westphal, Julia

    2017-04-01

    The evolution and hydrochemical composition of ground waters in Mecklenburg-Western Pommerania (North-Eastern Germany) is controlled by different natural and anthropogenic factors. In the present study, the hydrogeochemistry and stable isotope geochemistry (H, C, O, S) of shallow ground waters was investigated in 2014 and 2015. A mass balance approach is combined with physico-chemical modeling to define the mineral dissolution/precipitation potential as well as the processes taking place during the ground water development. The dissolved inorganic carbon system of the ground waters is controlled by the dissolution of biogenic carbon dioxide, the dissolution of (marine) carbonates and the oxidation of anthropogenically introduced DOC and at a few sites biogenic methane. The sulfur isotope composition of dissolved sulfate indicates the substantial impact from the oxidation of sedimentary pyrite using oxygen or nitrate as electron acceptor. The combined results are the base for a quantitative reaction path analysis. The composition of ground water is discussed with respect to its role as a source for fresh waters forming SGD and in a re-wetting wetland area (Hütelmoor) at the southern Baltic Sea coast line. Acknowledgements: The SGD/Hütelmoor part of this study is supported by German Science Foundation during DFG research training group BALTIC TRANSCOAST.

  7. Geophysical Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  8. Stream bottom resistivity tomography to map ground water discharge.

    PubMed

    Nyquist, Jonathan E; Freyer, Paul A; Toran, Laura

    2008-01-01

    This study investigates the effectiveness of direct current electrical resistivity as a tool for assessing ground water/surface water interactions within streams. This research has shown that patterns of ground water discharge can be mapped at the meter scale, which is important for understanding stream water quality and ecosystem function. Underwater electrical resistivity surveys along a 107-m stream section within the Burd Run Watershed in South Central Pennsylvania identified three resistivity layers: a resistive (100 to 400 Omega m) surface layer corresponding to the streambed sediments, a conductive (20 to 100 Omega m) middle layer corresponding to residual clay sediments, and a resistive (100 to 450 Omega m) bottom layer corresponding to the carbonate bedrock. Tile probing to determine the depth to the bedrock and resistivity test box analysis of augered sediment samples confirmed these interpretations of the resistivity data. Ground water seeps occurred where the resistivity data showed that the residual clays were thinnest and bedrock was closest to the streambed. Plotting the difference in resistivity between two surveys, one conducted during low-stage and the other during high-stage stream conditions, showed changes in the conductivity of the pore fluids saturating the sediments. Under high-stream stage conditions, the top layer showed increased resistivity values for sections with surface water infiltration but showed nearly constant resistivity in sections with ground water seeps. This was expressed as difference values less than 50 Omega m in the area of the seeps and greater than 50 Omega m change for the streambed sediments saturated by surface water. Thus, electrical resistivity aided in characterizing ground water discharge zones by detecting variations in subsurface resistivity under high- and low-stream stage conditions as well as mapping subsurface heterogeneities that promote these exchanges.

  9. Ground-water hydrology and projected effects of ground-water withdrawals in the Sevier Desert, Utah

    USGS Publications Warehouse

    Holmes, Walter F.

    1984-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mountain areas and from adjoining areas. Discharge is by wells, springs, seepage to the Sevier River, evapotranspiration, and subsurface outflow to adjoining areas.

  10. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  11. Ground water hydrology of the Elizabethtown area, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Lyverse, M.A.

    1984-01-01

    The principal aquifer in a 52 square mile karst area in north central Kentucky is the St. Louis Limestone of Mississippian age. Unconsolidated residuum and surficial deposits of slumped material may store water and recharge the underlying limestone aquifer. Precipitation averages 49 inches annually; 6 inches recharges ground-water reservoirs. The shallow ground-water velocity ranged from 0.30 to 1.40 feet per second. Flow net analysis indicates that about 2 million gallons of water per day flows through a 1.8 mile wide section of the aquifer. A water-level contour map indicates that the hydraulic gradient averages 40 feet per mile and that the water levels near the city supply wells have not lowered in 10 years. The effects of three faults on the ground-water flow system is shown as ponding on the upthrown side of the faults. Caliper logs suggest that shallow ground-water flow occurs in sheet-like openings within 100 feet of land surface. The openings range in height from 1 inch or less to 6 feet. A test well penetrated 5 zones of horizontal openings. The specific capacity ranged from 11.5 to 12.1 gallons per minute per foot of drawdown after 12 and 72 hours of pumping at 280 to 510 gallons per minute. Water in 28 wells and springs meets most drinking water standards and generally is a very hard calcium bicarbonate type. Heavily pumped industrial and public-supply wells tend to yield water with high values of specific conductance and sulfate. Coliform bacteria varied widely in rural wells and the city springs. Seven wells had no coliform bacteria. (USGS)

  12. Ground-water hydrology of the Willamette basin, Oregon

    USGS Publications Warehouse

    Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.

    2005-01-01

    The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple

  13. Ground water available in the Davenport area, Oklahoma

    USGS Publications Warehouse

    Schoff, Stuart L.

    1948-01-01

    This memorandum describes the ground-water resources in the vicinity of Davenport, Lincoln County, Oklahoma. It is based on a one-day trip to Davenport made by the writer on February 11, 1948, to obtain information in addition to that in the ground-water files in Norman on the availability of ground water for public supply or other uses in the Davenport area. Davenport is a town of about 1,000 in east-central Lincoln County, Oklahoma, on U.S. Highway 66, about half way between Oklahoma City and Tulsa. It is in an area of undulating to gently rolling topography underlain by rocks of Pennsylvanian age. The area is drained into Deep Fork of the Canadian River, by Dry Creek and its tributary, Chuckaho Creek.

  14. The effect of the earth's rotation on ground water motion.

    PubMed

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  15. Research to More Effectively Manage Critical Ground-Water Basins

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  16. Ground-water recharge in humid areas of the United States: A summary of Ground-Water Resources Program studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  17. Ground-water quality and geochemistry, Carson Desert, western Nevada

    USGS Publications Warehouse

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  18. National water-information clearinghouse activities; ground-water perspective

    USGS Publications Warehouse

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  19. Intelligent Space Tube Optimization for speeding ground water remedial design.

    PubMed

    Kalwij, Ineke M; Peralta, Richard C

    2008-01-01

    An innovative Intelligent Space Tube Optimization (ISTO) two-stage approach facilitates solving complex nonlinear flow and contaminant transport management problems. It reduces computational effort of designing optimal ground water remediation systems and strategies for an assumed set of wells. ISTO's stage 1 defines an adaptive mobile space tube that lengthens toward the optimal solution. The space tube has overlapping multidimensional subspaces. Stage 1 generates several strategies within the space tube, trains neural surrogate simulators (NSS) using the limited space tube data, and optimizes using an advanced genetic algorithm (AGA) with NSS. Stage 1 speeds evaluating assumed well locations and combinations. For a large complex plume of solvents and explosives, ISTO stage 1 reaches within 10% of the optimal solution 25% faster than an efficient AGA coupled with comprehensive tabu search (AGCT) does by itself. ISTO input parameters include space tube radius and number of strategies used to train NSS per cycle. Larger radii can speed convergence to optimality for optimizations that achieve it but might increase the number of optimizations reaching it. ISTO stage 2 automatically refines the NSS-AGA stage 1 optimal strategy using heuristic optimization (we used AGCT), without using NSS surrogates. Stage 2 explores the entire solution space. ISTO is applicable for many heuristic optimization settings in which the numerical simulator is computationally intensive, and one would like to reduce that burden.

  20. Montana's Coalbed Methane Ground-Water Monitoring Program: Year One

    NASA Astrophysics Data System (ADS)

    Wheaton, J. R.; Smith, M.; Donato, T. A.; Bobst, A. L.

    2003-12-01

    Tertiary coal seams in the Powder River Basin in southeastern Montana provide three very important resources: ground water, coal, and natural gas. Ground water from springs and wells is essential for the local agricultural economy. Because coal seams in the Fort Union Formation have higher hydraulic conductivity values and are more continuous than the sandstone units, they are the primary aquifers in this region. Coalbed methane (CBM) production is beginning in the Powder River Basin, and requires removal and management of large quantities of water from the coal-seam aquifers. The extensive pumping required to produce the methane is expected to create broad areas of severe potentiometric decline. The Montana CBM ground-water monitoring program, now in place, is based on scientific concepts developed during more than 30 years of coal-mine hydrogeology research. The program includes inventories of ground-water resources and regular monitoring at dedicated wells and selected springs. The program is now providing baseline potentiometric and water-quality data, and will continue to be active through the duration of CBM production and post-production ground-water recovery. An extensive inventory of ground-water resources in the Montana portion of the Powder River Basin has located 300 springs and 21 wells on private land, and 460 springs and 21 wells on U. S. Forest Service and U. S. Bureau of Land Management land, all producing ground water from the methane bearing strata. In southeastern Montana, 134 monitoring wells are currently included in the CBM monitoring program. They are completed either in coal seams, adjacent sandstone units, or alluvium. During the coal boom of the 1970's and 1980's many monitoring wells were drilled, but most have been since unused. Thirty-six of these existing wells have now been returned to service to decrease start-up costs for the CBM program. This network of existing wells has been augmented at key sites with 26 new wells drilled

  1. Evaluation of ground-water quality data from Kentucky

    USGS Publications Warehouse

    Sprinkle, C.L.; Davis, R.W.; Mull, D.S.

    1983-01-01

    The report reviews and summarizes 10,578 chemical analyses, from 2,362 wells and springs in Kentucky. These water-quality data were collected prior to September 30, 1981, and are available in computer files of the U.S. Geological Survey. The principal water-bearing rocks in Kentucky were combined into 10 major groups to aid in data summary preparation and general description of the ground-water quality of the State. Ground water in Kentucky is generally fresh near the outcrop of the rocks comprising the aquifer. Slightly saline to briny water occurs at variable depths beneath the freshwater. Preparation of quadrilinear diagrams revealed three principal geochemical processes in the aquifers of Kentucky: (1) mixing of freshwater and saline water in an interface zone; (2) dedolomitization of the Devonian and Silurian and Lower Mississippian carbonate rocks; (3) sodium for calcium exchange in the freshwater sections of many of the sandstone-shale aquifers. A number of errors and deficiencies were found in the data base. The principal deficiencies were: (1) very few complete analyses which included important field measurements; (2) inadequate definition of the chemistry of the freshwater-saline water interface zone throughout much of the State; (3) no analyses of stable isotopes and dissolved gases; (4) fewer than 10 analyses of most trace metals, radionuclides, and man-made organic chemicals; and (5) no data on bacteria in ground water from any aquifer in the State. (USGS)

  2. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  3. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  4. Geology and ground-water resources of Richardson County, Nebraska

    USGS Publications Warehouse

    Emery, Philip A.

    1964-01-01

    Richardson County is in the extreme southeast corner of Nebraska. It has an area of 545 square miles, and in 1960 it had a population of 13,903. The county is in the physiographic region referred to as the Dissected Loess-covered Till Prairies. Major drainage consists of the Big Nemaha River, including its North and South Forks, and Muddy Creek. These streams flow southeastward and empty into the Missouri River, which forms the eastern boundary of the county. The climate of Richardson County is subhumid; the normal annual precipitation is about 35 inches. Agriculture is the chief industry, and corn is the principal crop. Pleistocene glacial drift, loess, and alluvial deposits mantle the bedrock except in the southern and southwestern parts of the county where the bedrock is at the surface. Ground water is obtained from glacial till, fluvioglacial material, terrace deposits, and coarse alluvial deposits, all of Pleistocene age--and some is obtained from bedrock aquifers of Pennsylvanian and Permian age. Adequate supplies of ground water are in many places difficult to locate because the water-bearing sands and gravels of Pleistocene age vary in composition and lack lateral persistence. Perched water tables are common in the upland areas and provide limited amounts of water to many of the shallow wells, Very few wells in bedrock yield adequate supplies, as the permeability of the rock is low and water that is more than a few tens of feet below the bedrock surface is highly mineralized. Recharge is primarily from local precipitation, and water levels in many wells respond rapidly to increased or decreased precipitation. The quality of the ground water is generally satisfactory for most uses, although all the water is hard, and iron and manganese concentrations, in some areas, are relatively high. Ground water is used mainly for domestic and stock purposes.

  5. The Hydrolysis of Di-Isopropyl Methylphosphonate in Ground Water

    SciTech Connect

    Sega, G.A., Tomkins, B.A., Griest, W.H., Bayne, C.K.

    1997-12-31

    Di-isopropyl methylphosphonate (DIMP) is a byproduct from the manufacture of the nerve agent Sarin. The persistence of DIMP in the ground water is an important question in evaluating the potential environmental impacts of DIMP contamination. The half-life of DIMP in ground water at 10 deg C was estimated to be 500 years with a 95% confidence interval of 447 to 559 years from measurements of the hydrolysis rates at temperatures between 70 to 98 deg C.Extrapolation of the kinetics to 10 deg C used the Arrhenius equation, and calculation of the half-life assumed first-order kinetics. Inorganic phosphate was not detected.

  6. Ground water applications of the heat capacity mapping mission

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1981-01-01

    The paper discusses the ground water portion of a hydrologic investigation of eastern South Dakota using data from the Heat Capacity Mapping Mission (HCMM) satellite. The satellite carries a two-channel radiometer (0.5-1.1 and 10.5-12.5 microns) in a sun synchronous orbit and collects data at approximately 0230 and 1330 local standard time with repeat coverage of 5 to 16 days depending on latitude. It is shown that HCMM data acquired at appropriate periods of the diurnal and annual temperature cycle can provide useful information on shallow ground water.

  7. Ground Water Under the Direct Influence of Surface Water (GWUDISW) Presentation

    EPA Pesticide Factsheets

    The GWUDISW Presentation discusses factors that contribute to contamination of ground water, how to protect a well or spring, GW and SW differences, how GWUDISW determinations are made and what happens if source water is classified as GWUDISW

  8. Salinity of the ground water in western Pinal County, Arizona

    USGS Publications Warehouse

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  9. Geology and ground water of the Tualatin Valley, Oregon

    USGS Publications Warehouse

    Hart, D.H.; Newcomb, R.C.

    1965-01-01

    The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland. Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains. Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial aquifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development. The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers. The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor

  10. Water resources data, Iowa, water year 2002--Volume 2. surface water—Missouri River Basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2003-01-01

    Water resources data for Iowa for the 2002 water year consists of records of stage, discharge, and water quality of streams; stage, and/or contents of lakes and reservoirs; ground water levels and water quality of ground-water wells. This report volume contains discharge records for 31 gaging stations; stage or contents for 3 lakes; water quality for 1 stream-gaging station, and sediment records for 2 stream-gaging stations. Also included are data for 33 crest-stage partial record stations and ground-water levels for 157 wells.

  11. Ground-water and stream-water interaction in the Owl Creek basin, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.

    1996-01-01

    Understanding of the interaction of ground-water and surface-water resources is vital to water management when water availability is limited.Inflow of ground water is the primary source ofwater during stream base flow. The water chemistry of streams may substantially be affected by that inflow of ground water. This report is part of a study to examine ground-water and surface-water interaction in the Owl Creek Basin, Wyoming, completed by the U.S. Geological Survey incooperation with the Northern Arapaho Tribe and the Shoshone Tribe. During a low flow period between November\\x1113 - 17, 1991, streamflowmeasurements and water-quality samples were collected at 16 selected sites along major streams and tributaries in the Owl Creek Basin,Wyoming. The data were used to identify stream reaches receiving ground-water inflow and to examine causes of changes in stream chemistry.Streamflow measurements, radon-222 activity load, and dissolved solids load were used to identified stream reaches receiving ground-water inflow.Streamflow measurements identified three stream reaches receiving ground-water inflow. Analysis of radon-222 activity load identified five stream reaches receiving ground-water inflow. Dissolvedsolids load identified six stream reaches receiving ground-water inflow. When these three methods were combined, stream reaches in two areas, theEmbar Area and the Thermopolis Anticline Area, were identified as receiving ground-water inflow.The Embar Area and the Thermopolis Anticline Area were then evaluated to determine the source of increased chemical load in stream water. Three potential sources were analyzed: tributary inflow, surficial geology, and anticlines. Two sources,tributary inflow and surficial geology, were related to changes in isotopic ratios and chemical load in the Embar Area. In two reaches in the Embar Area, isotopic ratios of 18O/16O, D/H, and 34S/32S indicated that tributary inflow affected stream-water chemistry. Increased chemical load of

  12. Water Exploration: An Online High School Water Resource Education Program

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; McCall, L. R.; Amos, S.; McGowan, R. F.; Mote, A.; Negrito, K.; Paloski, B.; Ryan, C.; Cameron, B.

    2010-12-01

    The Institute for Geophysics at The University of Texas at Austin and 4empowerment.com, a Texas-based for-profit educational enterprise, teamed up with the Texas Water Development Board to develop and implement a Web-based water resources education program for Texas high school students. The program, Water Exploration uses a project-based learning approach called the Legacy Cycle model to permit students to conduct research and build an understanding about water science and critical water-related issues, using the Internet and computer technology. The three Legacy Cycle modules in the Water Exploration curriculum are: Water Basics, Water-Earth Dynamics and People Need Water. Within each Legacy Cycle there are three different challenges, or instructional modules, laid out as projects with clearly stated goals for students to carry out. Each challenge address themes that map to the water-related “Big Ideas” and supporting concepts found in the new Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science. As students work through a challenge they follow a series of steps, each of which is associated (i.e., linked online) with a manageable number of corresponding, high quality, research-based learning activities and Internet resources, including scholarly articles, cyber tools, and visualizations intended to enhance understanding of the concepts presented. The culmination of each challenge is a set of “Go Public” products that are the students’ answers to the challenge and which serve as the final assessment for the challenge. The “Go Public” products are posted to a collaborative workspace on the Internet as the “legacy” of the students’ work, thereby allowing subsequent groups of students who take the challenge to add new products. Twenty-two science educators have been trained on the implementation of the Water Exploration curriculum. A graduate student pursuing a master’s degree in science education through The

  13. The role of ground water in the national water situation: With state summaries based on reports by District Offices of Ground Water Branch

    USGS Publications Warehouse

    McGuinness, Charles Lee

    1963-01-01

    This report outlines briefly the principles of water occurrence and describes the water situation in the United States as of 1960-61, with emphasis on the occurrence of ground water and the status of development and accompanying problems. The Nation has been divided into 10 major ground-water regions by H. E. Thomas (1952a). The report summarizes the occurrence and development of ground water in each of Thomas' regions. In a large terminal section it also describes the occurrence and development of water, again with emphasis on ground water, in each of the 50 States and in certain other areas. The main text ends with a discussion of the water situation and prospects of the Nation.

  14. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  15. Ground-water monitoring at Santa Barbara, California; Phase 2, effects of pumping on water levels and water quality in the Santa Barbara ground-water basins

    USGS Publications Warehouse

    Martin, Peter

    1982-01-01

    From July 1978 to January 1980, water levels declined more than 100 feet in the coastal area of the Santa Barbara ground-water basin in southern California. The water-level declines are the result of increases in municipal pumping since July 1978. The pumping, centered in the city less than 1 mile from the coast, has caused water-level declines in the main water-bearing zones to altitudes below sea level. Consequently, the ground-water basin is threatened with salt-water intrusion if the present pumpage is maintained or increased. Water-quality data suggest that salt-water intrusion has already degraded the water yielded from six coastal wells. Chloride concentrations in the six wells ranged from about 400 to 4,000 milligrams per liter. Municipal supply wells near the coast currently yield water of suitable quality for domestic use. There is, however, no known physical barrier to the continued inland advance salt water. Management alternatives to control salt-water intrusion in the Santa Barbara area include (1) decreasing municipal pumping, (2) increasing the quantity of water available for recharge by releasing surplus water to Mission Creek, (3) artificially recharing the basin using injection wells, and (4) locating municipal supply wells farther from the coast and farther apart to minimize drawdown. (USGS)

  16. Ground Water on Tropical Pacific Islands - Understanding a Vital Resource

    USGS Publications Warehouse

    Tribble, Gordon

    2008-01-01

    To a casual observer, tropical Pacific islands seem idyllic. Closer scrutiny reveals that their generally small size makes them particularly vulnerable to economic and environmental stresses imposed by rapidly growing populations, increasing economic development, and global climate change. On these islands, freshwater is one of the most precious resources. Ground water is the main source of drinking water on many islands, and for quite a few islands, it is the only reliable source of water throughout the year. Faced with a growing demand for this valuable resource, and the potential negative effects on its availability and quality from changes in global climate, increasingly sophisticated management approaches will be needed to ensure a dependable supply of freshwater for the residents of these islands. Much scientific information has been collected by the U.S. Geological Survey (USGS) and other organizations about the ground-water resources of tropical Pacific islands. The aim of this Circular is to give members of the public, policymakers, and other stakeholders knowledge that will help ensure that this information can be used to make informed decisions about the management of these life-giving resources. As the demand for freshwater grows, new monitoring and research efforts will be needed to (1) characterize the extent and sustainability of ground-water resources on different tropical Pacific islands, (2) better understand linkages between ground-water discharge and freshwater and nearshore ecosystems, and (3) prepare for the effects of climate change, which will likely include the loss of habitable land and reduced areas for the accumulation of ground water as a result of rising sea levels.

  17. System and boundary conceptualization in ground-water flow simulation

    USGS Publications Warehouse

    Reilly, T.E.

    2001-01-01

    Ground-water models attempt to represent an actual ground-water system with a mathematical counterpart. The conceptualization of how and where water originates in the ground-water-flow system and how and where it leaves the system is critical to the development of an accurate model. The mathematical representation of these boundaries in the model is important because many hydrologic boundary conditions can be mathematically represented in more than one way. The determination of which mathematical representation of a boundary condition is best usually is dependent upon the objectives of the study. This report focuses on the specific aspect of describing different ways to simulate, in a numerical model, the physical features that act as hydrologic boundaries in an actual ground-water system. The ramifications, benefits, and limitations of each approach are enumerated, and descriptions of the representation of boundaries in models for Long Island, New York, and the Middle Rio Grande Basin, New Mexico, illustrate the application of some of the methods.

  18. GWVis: A Tool for Comparative Ground-Water Data Visualization

    SciTech Connect

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application (GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. Current three dimensional models of ground-water are overly complex, while the two dimensional representations (i.e., on paper) are neither comprehensive, nor engaging. At present, GWVis operates on water head elevation data over a given time span, together with a matching (fixed) underlying geography. Two elevation scenarios are compared with each other, typically a control data set (actual field data) and a simulation. Scenario comparison can be animated for the time span provided. We developed GWVis using the Python programming language, associated libraries, and pyOpenGL extension packages to improve performance and control of attributes of the mode (such as color, positioning, scale, and interpolation). GWVis bridges the gap between two dimensional and dynamic three dimensional research visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives and to infer information about scenarios. By incorporating scientific data in an environment that can be easily understood, GWVis allows the information to be presented to a large audience base.

  19. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  20. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...