Science.gov

Sample records for ground waters annual

  1. EPA's ground water and drinking water program: Making a difference. Annual report

    SciTech Connect

    Not Available

    1992-10-01

    This is the first Annual Report highlighting the successes of EPA's newly formed Office of Ground Water and Drinking Water and its counterparts in the EPA Regional Offices. The report chronicles a year of change and progress and describes plans for meeting the many important challenges facing the program.

  2. Annual ground-water use in the Twin Cities metropolitan area, Minnesota, 1970-79

    USGS Publications Warehouse

    Horn, M.A.

    1984-01-01

    Annual ground-water use in the Twin Cities Metropolitan Area from 1970-79 is presented by aquifer and type of use. The data show that most ground water is withdrawn from wells in the Prairie du Chien-Jordan aquifer and that major uses of the water are for self-supplied industry and public supplies. Annual ground-water-use data are presented by county for each of the five major aquifers; Prairie du Chien-Jordan, Mount Simon-Hinckley, Ironton-Galesville, St. Peter, and drift. The data also are presented by county for each major use type, including public supply, self-supplied industry, commercial air-conditioning, irrigation, lake-level maintenance, and dewatering. The data were collected initially by the Minnesota Department of Natural Resources and were supplemented by data collected by the U.S. Geological Survey.

  3. Demonstrating remediation by natural attenuation using numerical ground water models and annual ground water sampling. Book chapter

    SciTech Connect

    Vessely, M.; Moutoux, D.E.; Kampbell, D.; Hansen, J.E.

    1997-09-01

    Activities at a former fire training area at Westover Air Reserve Base (ARB) in Massachusetts resulted in contamination of shallow soils and ground water with a mixture of fuel hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). Extensive hydrogeologic and geochemical data were collected in May 1995 and in July 1996. A numerical ground water model calibrated using hydrogeologic and geochemical data collected in 1995 was constructed to estimate the fate and transport of the dissolved BTEX compounds. Data collected during the second sampling round was used to assess the accuracy of model predictions and to confirm the effectiveness of natural attenuation processes. Data suggest that BTEX compounds are degrading through aerobic respiration and the anaerobic processes of ferric iron reduction, denitrification, sulfate reduction, and methanogenesis. A solute fate and transport model predicted that BTEX contaminant levels would increase over a 5-year period due to leaching of contaminants from soils into ground water.

  4. Generalized estimates from streamflow data of annual and seasonal ground-water-recharge rates for drainage basins in New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Tasker, Gary D.

    2004-01-01

    This report presents regression equations to estimate generalized annual and seasonal ground-water-recharge rates in drainage basins in New Hampshire. The ultimate source of water for a ground-water withdrawal is aquifer recharge from a combination of precipitation on the aquifer, ground-water flow from upland basin areas, and infiltration from streambeds to the aquifer. An assessment of ground-water availability in a basin requires that recharge rates be estimated under `normal' conditions and under assumed drought conditions. Recharge equations were developed by analyzing streamflow, basin characteristics, and precipitation at 55 unregulated continuous record stream-gaging stations in New Hampshire and in adjacent states. In the initial step, streamflow records were analyzed to estimate a series of annual and seasonal ground-water-recharge components of streamflow in each drainage basin evaluated in this study. Regression equations were then developed relating the series of annual and seasonal ground-water-recharge values to the corresponding series of annual and seasonal precipitation values as determined at the centroid of each drainage basin. This resulted in one equation for each of the 55 basins for each of the four seasonal periods and the annual period, or a total of 275 regression equations. Average annual and seasonal precipitation data for 1961-90 were then used to compute a set of normalized ground-water-recharge values that reflected the long-term average annual and seasonal variations (normalized) and mean recharge characteristics of each drainage basin. Ordinary-least-squares regression was applied in the process of selecting 10 out of 93 possible basin and climatic characteristics for further testing in the development of the equations for computing the generalized estimate of annual and seasonal ground-water recharge based on the set of normalized recharge values. Generalized-least-squares regression was used for the final parameter estimation and

  5. Aquifer-test results, direction of ground-water flow, and 1984-90 annual ground-water pumpage for irrigation, lower Big Lost River Valley, Idaho

    USGS Publications Warehouse

    Bassick, M.D.; Jones, M.L.

    1992-01-01

    The study area (see index map of Idaho), part of the Big Lost River drainage basin, is at the northern side of the eastern Snake River Plain. The lower Big Lost River Valley extends from the confluence of Antelope Creek and the Big Lost River to about 4 mi south of Arco and encompasses about 145 mi2 (see map showing water-level contours). The study area is about 18 mi long and, at its narrowest, 4 mi wide. Arco, Butte City, and Moore, with populations of 1,016, 59, and 190, respectively, in 1990, are the only incorporated towns. The entire study area, except the extreme northwestern part, is in Butte City. The study area boundary is where alluvium and colluvium pinch out and abut against the White Knob Mountains (chiefly undifferentiated sedimentary rock with lesser amounts of volcanic rock) on the west and the Lost River Range (chiefly sedimentary rock) on the east. Gravel and sand in the valley fill compose the main aquifer. The southern boundary is approximately where Big Lost River valley fill intercalates with or abuts against basalt of the Snake River Group. Spring ground-water levels and flow in the Big Lost River depend primarily on temperature and the amount and timing of precipitation within the entire drainage basin. Periods of abundant water supply and water shortages are, therefore, related to the amount of annual precipitation. Surface reservoir capacity in the valley (Mackay Reservoir, about 20 mi northwest of Moore) is only 20 percent of the average annual flow of the Big Lost River (Crosthwaite and others, 1970, p. 3). Stored surface water is generally unavailable for carryover from years of abundant water supply to help relieve drought conditions in subsequent years. Many farmers have drilled irrigation wells to supplement surface-water supplies and to increase irrigated acreage. Average annual flow of the Big Lost River below Mackay Reservoir near Mackay (gaging station 13127000, not shown) in water years 1905, 1913-14, and 1920-90 was about 224

  6. Ground Water Technical Support Center (GWTSC) Annual Report FY 2012: October 2011 – September 2012

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  7. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2014 (FY14)

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  8. Annual summary of ground-water conditions in Arizona, spring 1979 to spring 1980

    USGS Publications Warehouse

    ,

    1981-01-01

    Withdrawal of ground water, about 4.0 million acre-feet in Arizona in 1979, is about 200,000 acre-feet less than the amount withdrawn in 1978. The withdrawals in 1978 and 1979 are the smallest since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. The large amount of water in storage in the surface-water reservoirs, release of water from the reservoirs, floods, and conservation practices contributed to the decrease in ground-water use and caused water-level rises in the Salt River Valley, Gila Bend basin, and Gila River drainage from Painted Rock Dam to Texas Hill. Two small-scale maps show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1980, and change in water level in selected wells from 1975 to 1980. A brief text summarizes the current ground-water conditions in the State. (USGS)

  9. Ground Water

    USGS Publications Warehouse

    ,

    1986-01-01

    Some water underlies the Earth's surface almost everywhere, beneath hills, mountains,plains, and deserts. It's not always accessible, or fresh enough for use without treatment, and it's sometimes difficult to locate or to measure and descri be. This water may occur close to the land surface, as in a marsh, or it may lie many hundreds of feet below the surface, as in some arid areas of the West. Water at very shallow depths might be just a few hours old ; at moderate depth, it may be 100 years old; and at great depth or after having flowed long distances from places of entry, water may be several thousands of years old . Water under the Earth's surface is called ground water.

  10. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    SciTech Connect

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs.

  11. Annual summary of ground-water conditions in Arizona, spring 1984 to spring 1985

    USGS Publications Warehouse

    ,

    1986-01-01

    In arid and semiarid regions such as Arizona, the availability of adequate water supplies has a significant influence on the type and extent of economic development. About two-thirds of the water used in the State is groundwater. The nature and extent of the groundwater reservoirs must be known for proper management of this valuable resource. The U.S. Geological Survey, in cooperation with the State of Arizona, has conducted a program of groundwater studies in Arizona since 1939. The primary purposes of these studies are to define the amount, location, and quality of the groundwater resources of Arizona and to monitor the effects of large-scale development of the groundwater supplies. The program includes the collection, compilation, and analysis of the geologic and hydrologic data necessary to evaluate the groundwater resources of the State. The basic hydrologic data are in computer storage and are available to the public. Since 1974, a major thrust of the program has been to inventory the groundwater conditions in the 68 groundwater areas of the State. Several selected groundwater areas are studied each year; water levels are measured annually in a statewide observation well network, many groundwater samples are collected and analyzed annually, and groundwater pumpage is computed for most of the areas. As of July 1985, reports had been published for 56 of the 68 groundwater areas. Data collected in the groundwater areas include information on selected wells, water level measurements, and water samples for chemical analysis. The data for each of the selected groundwater areas are analyzed, and the results are published in map form. Typically, the maps show depth to water; change in water levels; altitude of the water level; and quality of water data, such as specific conductance, dissolved solids, and fluoride. (Lantz-PTT)

  12. Regression Method for Estimating Long-Term Mean Annual Ground-Water Recharge Rates from Base Flow in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370

  13. Ground water

    USGS Publications Warehouse

    ,

    1999-01-01

    Some water underlies the Earth's surface almost everywhere, beneath hills, mountains, plains, and deserts. It is not always accessible, or fresh enough for use without treatment, and it's sometimes difficult to locate or to measure and describe. This water may occur close to the land surface, as in a marsh, or it may lie many hundreds of feet below the surface, as in some arid areas of the West. Water at very shallow depths might be just a few hours old; at moderate depth, it may be 100 years old; and at great depth or after having flowed long distances from places of entry, water may be several thousands of years old.

  14. Ground water and energy

    SciTech Connect

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  15. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  16. Ground-water pumpage and artificial recharge estimates for calendar year 2000 and average annual natural recharge and interbasin flow by hydrographic area, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Evetts, David M.

    2004-01-01

    Nevada's reliance on ground-water resources has increased because of increased development and surface-water resources being fully appropriated. The need to accurately quantify Nevada's water resources and water use is more critical than ever to meet future demands. Estimated ground-water pumpage, artificial and natural recharge, and interbasin flow can be used to help evaluate stresses on aquifer systems. In this report, estimates of ground-water pumpage and artificial recharge during calendar year 2000 were made using data from a variety of sources, such as reported estimates and estimates made using Landsat satellite imagery. Average annual natural recharge and interbasin flow were compiled from published reports. An estimated 1,427,100 acre-feet of ground water was pumped in Nevada during calendar year 2000. This total was calculated by summing six categories of ground-water pumpage, based on water use. Total artificial recharge during 2000 was about 145,970 acre-feet. At least one estimate of natural recharge was available for 209 of the 232 hydrographic areas (HAs). Natural recharge for the 209 HAs ranges from 1,793,420 to 2,583,150 acre-feet. Estimates of interbasin flow were available for 151 HAs. The categories and their percentage of the total ground-water pumpage are irrigation and stock watering (47 percent), mining (26 percent), water systems (14 percent), geothermal production (8 percent), self-supplied domestic (4 percent), and miscellaneous (less than 1 percent). Pumpage in the top 10 HAs accounted for about 49 percent of the total ground-water pumpage. The most ground-water pumpage in an HA was due to mining in Pumpernickel Valley (HA 65), Boulder Flat (HA 61), and Lower Reese River Valley (HA 59). Pumpage by water systems in Las Vegas Valley (HA 212) and Truckee Meadows (HA 87) were the fourth and fifth highest pumpage in 2000, respectively. Irrigation and stock watering pumpage accounted for most ground-water withdrawals in the HAs with the sixth

  17. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  18. Ground water: a review.

    USGS Publications Warehouse

    Bredehoeft, J.D.

    1983-01-01

    There is growing documentation that a significant portion of the Nation's fresh ground water in the densely populated areas of the USA is contaminated. Because of the slow rates of ground-water movement, ground water once contaminated will remain so for decades, often longer. Cleanup of contaminated ground water is almost always expensive and often technically unfeasible; the expense is often prohibitive. -from Author

  19. Ground Water in Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Oki, Delwyn S.

    2000-01-01

    Ground water is one of Hawaii's most important natural resources. It is used for drinking water, irrigation, and domestic, commercial, and industrial needs. Ground water provides about 99 percent of Hawaii's domestic water and about 50 percent of all freshwater used in the State. Total ground water pumped in Hawaii was about 500 million gallons per day during 1995, which is less than 3 percent of the average total rainfall (about 21 billion gallons per day) in Hawaii. From this perspective, the ground-water resource appears ample; however, much of the rainfall runs off to the ocean in streams or returns to the atmosphere by evapotranspiration. Furthermore, ground-water resources can be limited because of water-quality, environmental, or economic concerns. Water beneath the ground surface occurs in two principal zones: the unsaturated zone and the saturated zone. In the unsaturated zone, the pore spaces in rocks contain both air and water, whereas in the saturated zone, the pore spaces are filled with water. The upper surface of the saturated zone is referred to as the water table. Water below the water table is referred to as ground water. Ground-water salinity can range from freshwater to that of seawater. Freshwater is commonly considered to be water with a chloride concentration less than 250 mg/L, and this concentration represents about 1.3 percent of the chloride concentration of seawater (19,500 mg/L). Brackish water has a chloride concentration between that of freshwater (250 mg/L) and saltwater (19,500 mg/L).

  20. 1990 annual ground-water report K-1407-B and K-1407-C interim status units Oak Ridge K-25 Site

    SciTech Connect

    Not Available

    1991-02-01

    The Tennessee Department of Health and Environment (TDHE) Rules Governing Hazardous Waste Management require that specific ground-water information for interim status units be reported in conjunction with the annual hazardous waste treatment, storage, and disposal report (TN 1200-1-11-.05(6)(e)1 and 2). To be included in the report are, the data from annual/semiannual ground-water sampling, results of statistical analyses, and an evaluation of ground-water surface elevations for units in detection monitoring. Martin Marietta Energy Systems, Inc. manages the K-25 Site in Oak Ridge, Tennessee for the Department of Energy. Two interim status units at K-25 require ground-water monitoring, the K-1407-B and K-1407-C Holding Ponds. Both of these units were surface impoundments that have been drained and the waste sludges removed in response to the November 8, 1988, interim status closure milestone. The K-1407-C Pond was drained in mid-1987 and sludge removal activities were completed in November of 1988. The K-1407-B Pond was drained inOctober 1988, and sludge removal activities were completed in August of 1989. Both units have undergone soil sampling to verify complete sludge removal which would allow them to be ``clean closed`` under interim status regulations. Analytical results of soil samples from K-1407-C Pond are currently being evaluated and soil samples from K-1407-B Pond are undergoing laboratory analysis at this time. This report presents the results of the ground-water monitoring conducted at each unit in compliance with interim status regulations.

  1. 1990 annual ground-water report K-1407-B and K-1407-C interim status units Oak Ridge K-25 Site

    SciTech Connect

    Not Available

    1991-02-01

    The Tennessee Department of Health and Environment (TDHE) Rules Governing Hazardous Waste Management require that specific ground-water information for interim status units be reported in conjunction with the annual hazardous waste treatment, storage, and disposal report (TN 1200-1-11-.05(6)(e)1 and 2). To be included in the report are, the data from annual/semiannual ground-water sampling, results of statistical analyses, and an evaluation of ground-water surface elevations for units in detection monitoring. Martin Marietta Energy Systems, Inc. manages the K-25 Site in Oak Ridge, Tennessee for the Department of Energy. Two interim status units at K-25 require ground-water monitoring, the K-1407-B and K-1407-C Holding Ponds. Both of these units were surface impoundments that have been drained and the waste sludges removed in response to the November 8, 1988, interim status closure milestone. The K-1407-C Pond was drained in mid-1987 and sludge removal activities were completed in November of 1988. The K-1407-B Pond was drained inOctober 1988, and sludge removal activities were completed in August of 1989. Both units have undergone soil sampling to verify complete sludge removal which would allow them to be clean closed'' under interim status regulations. Analytical results of soil samples from K-1407-C Pond are currently being evaluated and soil samples from K-1407-B Pond are undergoing laboratory analysis at this time. This report presents the results of the ground-water monitoring conducted at each unit in compliance with interim status regulations.

  2. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2002-2003 Annual Report.

    SciTech Connect

    Faucera, Jason

    2003-06-23

    This project was designed to provide project coordination and technical assistance to producers in Sherman County for on the ground water quality enhancement and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Enhancement Reserve Program (CREP) and other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Three of those four streams and one other major Sherman County stream are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Temperature in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns

  3. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2003-2004 Annual Report.

    SciTech Connect

    Faucera, Jason

    2004-05-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  4. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon : Coordination and Technical Assistance, 2004-2005 Annual Report.

    SciTech Connect

    Faucera, Jason

    2005-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  5. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2005-2006 Annual Report.

    SciTech Connect

    Faucera, Jason

    2006-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  6. Ground water in Oklahoma

    USGS Publications Warehouse

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U.S. Geological Survey. Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water-resources investigations of the U.S. Geological Survey. In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board. In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator. The Ground Water Branch of the U.S. Geological Survey collects, analyzes, and evaluates basic information on ground-water resources and prepares interpretive reports based on those data. Cooperative ground-water work was first concentrated in the Panhandle counties. During World War II most work was related to problems of water supply for defense requirements. Since 1945 detailed investigations of ground-water availability have been made in 11 areas, chiefly in the western and central parts of the State. In addition, water levels in more than 300 wells are measured periodically, principally in the western half of the State. In Oklahoma current studies are directed toward determining the source, occurrence, and availability of ground water and toward estimating the quantity of water and rate of replenishment to specific areas and water-bearing formations. Ground water plays an important role in the economy of the State. It is

  7. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  8. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  9. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-06-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions

  10. Annual ground-water discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; DeMeo, Guy A.

    2006-01-01

    Flow from major springs and seeps along the eastern margin of Death Valley serves as the primary local water supply and sustains much of the unique habitat in Death Valley National Park. Together, these major spring complexes constitute the terminus of the Death Valley Regional Ground-Water Flow System--one of the larger flow systems in the Southwestern United States. The Grapevine Springs complex is the least exploited for water supply and consequently contains the largest area of undisturbed riparian habitat in the park. Because few estimates exist that quantify ground-water discharge from these spring complexes, a study was initiated to better estimate the amount of ground water being discharged annually from these sensitive, spring-fed riparian areas. Results of this study can be used to establish a basis for estimating water rights and as a baseline from which to assess any future changes in ground-water discharge in the park. Evapotranspiration (ET) is estimated volumetrically as the product of ET-unit (general vegetation type) acreage and a representative ET rate. ET-unit acreage is determined from high-resolution multi-spectral imagery; and a representative ET rate is computed from data collected in the Grapevine Springs area using the Bowen-ratio solution to the energy budget, or from rates given in other ET studies in the Death Valley area. The ground-water component of ET is computed by removing the local precipitation component from the ET rate. Two different procedures, a modified soil-adjusted vegetation index using the percent reflectance of the red and near-infrared wavelengths and land-cover classification using multi-spectral imagery were used to delineate the ET units within each major spring-discharge area. On the basis of the more accurate procedure that uses the vegetation index, ET-unit acreage for the Grapevine Springs discharge area totaled about 192 acres--of which 80 acres were moderate-density vegetation and 112 acres were high

  11. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  12. Ground-water conditions in Georgia, 1993

    USGS Publications Warehouse

    Joiner, C.N.; Cressler, A.M.

    1994-01-01

    Ground-water conditions during 1993 and recent ground-water level and quality trends in Georgia were evaluated using data from precipitation, ground-water, and ground-water quality monitoring networks. Data for 1993 included in this report are from precipitation records from 10 National Weather Service stations, continuous water-level records from 72 wells, and chloride analyses from 13 wells. Annual mean ground-water levels in Georgia in 1993 ranged from about 3.2 feet higher to about 9.6 feet lower than in 1992. Of the 72 wells summarized in this report, 30 wells had annual mean water levels that were higher and 42 wells had annual mean water levels that were lower in 1993 than in 1992. Record-high daily mean water levels were recorded in one well tapping the surficial aquifer, one well tapping the Upper Floridan aquifer, one well tapping the Claiborne aquifer, and one well tapping the crystalline- rock aquifers. These record highs were from about 0.1 to 0.7 feet higher than previous record highs. Record-low daily mean water levels were recorded in one well tapping the surficial aquifer, two wells tapping the Upper Floridan aquifer, four wells tapping the Cretaceous aquifer, one well tapping the Dublin-Midville aquifer system, and one well tapping the crystalline-rock aquifers. These record lows were from about 0.1 foot to 7.2 feet lower than the previous record lows. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was below drinking water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency and has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking water standards.

  13. Ground-water conditions in Georgia, 1997

    USGS Publications Warehouse

    Cressler, A.M.

    1998-01-01

    Ground-water conditions in Georgia during 1997 and for the period of record were evaluated using data from ground-water-level and ground-water-quality monitoring networks. Data for 1997 included in this report are from continuous water-level records from 71 wells and chloride analyses from 14 wells. In 1997, annual mean ground-water levels in Georgia ranged from 6.2 feet (ft) lower to 5.6 ft higher than in 1996. Of the 71 wells summarized in this report, 23 wells had annual mean water levels that were higher, 35 wells had annual mean water levels that were lower, and 11 wells had annual mean water levels that were about the same in 1997 as during 1996. Data for two wells are incomplete because data collection was discontinued at one well, and the equipment was vandalized at one well. Record-low daily mean water levels were recorded in six wells tapping the Upper Floridan aquifer, one well tapping the Caliborne aquifer, two wells tapping the Clayton aquifer, and three wells tapping Cretaceous aquifers. These record lows were from 0.2 to 5.6 ft lower than previous record lows. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standard. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water

  14. Ground water at Towaoc, Colorado

    USGS Publications Warehouse

    Powell, William J.

    1954-01-01

    At the request of the U.S bureau of Indian Affairs, the Ground Water Branch of the U. S Geological Survey made a reconnaissance of ground-water conditions in part of the Southern Ute Indian Reservation in the vicinity of Towaoc School. The study was requested because the water supply for the school and settlement was inadequate. 

  15. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  16. Ground water investigations in Oklahoma

    USGS Publications Warehouse

    Davis, Leon V.

    1955-01-01

    Prior to 1937, ground-water work in Oklahoma consisted of broad scale early-day reconnaissance and a few brief investigations of local areas. The reconnaissance is distinguished by C. N. Gould's "Geology and Water Resources of Oklahoma" (Water-Supply Paper 148, 1905), which covers about half of the present State of Oklahoma. Among the shorter reports are two by Schwennesen for areas near Enid and Oklahoma City, one by Renick for Enid, and one by Thompson on irrigation possibilities near Gage. These reports are now inadequate by modern standards. Cooperative ground-water work in Oklahoma by the United States Geological Survey began in 1937, with the Oklahoma Geological Survey as cooperating agency. With the passage of the new ground-water law by the State Legislature in 1949, the need for more information on available ground waters and the safe yield of the various aquifers became very pressing. Accordingly, the Division of Water Resources of the Oklahoma Planning and Resources Board, to which was delegated the responsibility of administering the Ground-Water Law, entered into a cooperative agreement with the U.S. Geological Survey, providing for an expansion of ground-water investigations. Both cooperators have consistently given full and enthusiastic cooperation, often beyond the requirements of the cooperative program. The first cooperative investigation was an evaluation of ground-water supplies available for irrigation in the Panhandle. In 1937 the Panhandle was still very much in the dust bowl, and it was hoped that irrigation would alleviate the drought. A bulletin on Texas County was published in 1939, and one on Cimarron County in 1943. Ground-water investigations during the World War II were restricted to the demands of Army and Navy installations, and to defense industries. Ground-water investigations since 1945 have included both country-wide and aquifer-type investigations. In Oklahoma it has been the policy for the State cooperator to publish the

  17. Ground-water data for Georgia, 1980

    USGS Publications Warehouse

    Matthews, S.E.; Hester, Willis G.; O'Byrne, M. P.

    1981-01-01

    More than 2,000 water-level measurements made in Georgia in 1980 provided the basic data for this report. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations of the monthly mean water level are shown for the previous 10 years in selected observation wells in Georgia. Monitoring ground-water levels is essential to the understanding of storage changes in a ground-water reservoir or aquifer. Fluctuations and long-term trends in water levels occur as a result of recharge to and discharge from the reservoir. Mean annual water levels across Georgia were from 1.92 feet higher to 12.61 feet lower in 1980 than in 1979, and in some areas were the lowest on record. (USGS)

  18. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  19. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  20. Hanford Site ground-water surveillance for 1989

    SciTech Connect

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs.

  1. Modeled ground water age distributions

    USGS Publications Warehouse

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  2. Dating desert ground water

    USGS Publications Warehouse

    Thatcher, L.; Rubin, M.; Brown, G.F.

    1961-01-01

    Tritium in Arabian rainfall has followed the trend observed in North America with peaks in 1958 and the spring of 1959. These measurements will be useful for future hydrologie studies. Water from wadi gravels averages 10 yr old. Carbon-14 measurements of deep waters indicate ages of several thousand years.

  3. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  4. USGS Annual Water Data Reports

    SciTech Connect

    2012-04-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by the National Water Information System (NWIS). Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. Data provided include extreme and mean discharge rates.

  5. Minnesota ground-water quality

    USGS Publications Warehouse

    Albin, D.R.; Bruemmer, L.B.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  6. Texas ground-water quality

    USGS Publications Warehouse

    Strause, Jeffrey L.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  7. [Microbiology of ground water and drinking water].

    PubMed

    Dott, W; Frank, C; Kämpfer, P; Tuschewitzki, G J; Wernicke, F

    1986-10-01

    Groundwater has been considered a safe source for drinking water protected against surface contamination. However, a number of reports about chemical and microbiological contamination have disproved this assumption. Besides hygienical monitoring, little is known about the microbiology of ground- and drinking water. The purpose of this paper is to give a review about the main fields of investigation concerning microbial activity in ground- and drinking-water-action. The hygienical relevant topics are: survival and transport of microorganisms, microbiological degradation of organic pollutants, turn-over of nitrogen compounds, oxidation and reduction of iron and manganese and development of methods for microbiological water examination.

  8. Ground-Water Data for Georgia, 1988

    USGS Publications Warehouse

    Joiner, Charles N.; Peck, Michael F.; Reynolds, Mark S.; Stayton, Welby L.

    1989-01-01

    Continuous water-level records from 144 wells and water-level measurements from an additional 617 wells in Georgia during 1988 provide the basic data for this report. Daily mean water-level hydrographs for selected wells illustrate the effects that changes ln recharge and discharge have had on the ground-water reservoirs in the State during 1988. Monthly mean water levels are shown for the 10-year period 1979-88. Maps showing the potentiometric surface of the Upper Floridan aquifer for Hay 1988 and the Claiborne and Clayton aquifers for October 1988 also are presented. Annual mean water levels in Georgia generally were below those measured in 1987; water levels ranged from 6.9 feet higher to 7.3 feet lower. Record-low water levels were measured during the last half of 1988 in 18 wells tapping the crystalline rock aquifer, the Cretaceous rock aquifer system, the Midville aquifer system, and the Clayton, Upper Floridan, and upper Brunswick aquifers. These record lows were from 0.1 to 1.4 feet lower than the previous record lows. A prolonged drought resulted in decreased recharge to the aquifers and increased ground-water pumping, which caused water levels to decline. Water-quality samples collected periodically throughout Georgia are analyzed as part of areal and regional ground-water studies. Maps showing chloride concentrations in the Upper Floridan aquifer in October 1988 in coastal Georgia and in the Savannah and Brunswick areas are presented. Periodic monitoring of water quality in the Savannah and Brunswick areas indicates that chloride concentrations in the Upper Floridan generally have remained stable.

  9. COMPILATION OF GROUND WATER MODELS

    EPA Science Inventory

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  10. GROUND WATER SAMPLING FOR VOCS

    EPA Science Inventory

    Sampling protocol should be dictated by the sampling objective(s). It is important to obtain representative ground water samples, regardless of the sampling objective(s). Low-flow (minimum draw-down) purging and sampling techniques are best in most instances, particularly for VOC...

  11. Drinking Water Program 1992 annual report

    SciTech Connect

    Andersen, B.D.; Peterson-Wright, L.J.

    1993-08-01

    EG&G Idaho, Inc., initiated a monitoring program for drinking water in 1988 for the US Department of Energy at the Idaho National Engineering Laboratory. EG&G Idaho structured this monitoring program to ensure that they exceeded the minimum regulatory requirements for monitoring drinking water. This program involves tracking the bacteriological, chemical, and radiological parameters that are required for a {open_quotes}community water system{close_quotes} (maximum requirements). This annual report describes the drinking water monitoring activities conducted at the 17 EG&G Idaho operated production wells and 11 distribution systems. It also contains all of the drinking water parameters that were detected and the regulatory limits that were exceeded during 1992. In addition, ground water quality is discussed as it relates to contaminants identified at the wellhead for EG&G Idaho production wells.

  12. Hydrology and Simulation of Ground-Water Flow in the Tooele Valley Ground-Water Basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  13. Regional Analysis of Ground-Water Recharge

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2007-01-01

    processes. The average climate for all 194 basins ranged from hyperarid to humid, with arid and semiarid basins predominating (fig. 6, chapter A, this volume). Four of the 194 basins had an aridity index of dry subhumid; two of the basins were humid. Of the eight recharge-study sites, six were in semiarid basins, and two were in arid basins. Average-annual potential evapotranspiration showed a regional gradient from less than 1 m/yr in the northeastern part of the study area to more than 2 m/yr in the southwestern part of the study area. Average-annual precipitation was lowest in the two arid-site basins and highest in the two study-site basins in southern Arizona. The relative amount of runoff to in-place recharge varied throughout the study area, reflecting differences primarily in soil water-holding capacity, saturated hydraulic conductivity of subsoil materials, and snowpack dynamics. Climatic forcing expressed in El Ni?o and Pacific Decadal Oscillation indices strongly influenced the generation of precipitation throughout the study area. Positive values of both indices correlated with the highest amounts of runoff and ground-water recharge.

  14. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  15. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  16. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  17. Fundamental studies of the removal of contaminants from ground and waste waters via reduction by zero-valent metals. 1998 annual progress report

    SciTech Connect

    Yarmoff, J.A.; Amrhein, C.

    1998-06-01

    'Contaminated groundwater and surface waters are a problem throughout the US and the world. In many instances, the types of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium, chromium, uranium, arsenic, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition, the careless disposal of cleaning solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. Oxyanions of selenium, nitrogen, arsenic, vanadium, uranium, chromium, and molybdenum are contaminants in agricultural areas of the Western US. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California, the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis. Both in-situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. Only limited success has been achieved in the field, partly because the basic surface chemical reactions are not well understood. The authors are performing fundamental

  18. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  19. Regional estimation of total recharge to ground water in Nebraska.

    PubMed

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2005-01-01

    Naturally occurring long-term mean annual recharge to ground water in Nebraska was estimated by a novel water-balance approach. This approach uses geographic information systems (GIS) layers of land cover, elevation of land and ground water surfaces, base recharge, and the recharge potential in combination with monthly climatic data. Long-term mean recharge > 140 mm per year was estimated in eastern Nebraska, having the highest annual precipitation rates within the state, along the Elkhorn, Platte, Missouri, and Big Nemaha River valleys where ground water is very close to the surface. Similarly high recharge values were obtained for the Sand Hills sections of the North and Middle Loup, as well as Cedar River and Beaver Creek valleys due to high infiltration rates of the sandy soil in the area. The westernmost and southwesternmost parts of the state were estimated to typically receive < 30 mm of recharge a year.

  20. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  1. Sustainability of ground-water resources

    USGS Publications Warehouse

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  2. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  3. Chemical contamination of ground water in India

    SciTech Connect

    Mohapatra, S.P.; Agnihoiri, N.P.

    1996-10-01

    Ground water is the main source of drinking water in rural areas and many urban areas in India. In addition, it has been increasingly used for irrigation in farmland. Contamination of ground water by persistent inorganic and organic chemicals has emerged as a major environmental concern in recent years. Nitrate, fluoride, heavy metals and organochlorine compounds are found to be major contaminants of ground water in different parts of the country. At many places the concentrations of these chemicals exceed national and international guideline values for drinking water. While large concentrations of heavy metals come from industrial sources, agricultural activities are responsible for ground water contamination by nitrate and organochlorine insecticides.

  4. Ground-water studies and analog models

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1962-01-01

    Hydrologists make ground-water studies to aid managers and users of water resources in solving their problems in the development and management of ground water. Geologic and hydrologic information provides the basic knowledge for construction of electric analog models that portray the ground-water system in miniature. Analog models can be analyzed electrically, and the results of the analysis are presented in terms of the ground-water system so that the effects of alternative methods of water development can be assessed.

  5. Fundamental studies of the removal of contaminants from ground and waste waters via reduction by zero-valent metals. Annual progress report, September 1, 1996--August 31, 1997

    SciTech Connect

    Yarmoff, J.A.; Amrhein, C.

    1997-01-01

    'Contaminated groundwater is a problem throughout the US and the world. In many instances the tvpes of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium. chromium. uranium. arsenic. and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition. the careless disposal of cleaning solvents. such as carbon tetrachloride and trichloroethylene. has further contaminated many groundwaters at these sites. In agricultural areas of the western US, shallow groundwaters have become contaminated with high levels of selenate, chromate, and uranyl. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California. the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. At sites where solid-propellant rocket motors were tested or disposed of, high concentrations of perchlorate and trichloroethylene are being found in the groundwater. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used, on an experimental basis, for the reductive dechlorination of solvents and the removal of toxic trace elements. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the

  6. Ground-water resources of Cambodia

    USGS Publications Warehouse

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    Cambodia (now the Khmer Republic), in tropical, humid southeast Asia, has an area of 175,630 km and a population of about 5 million. The Mekong River, one of the world's largest rivers, flows through Cambodia. Also, the Tonle Sap (Grand Lac), a highly productive fresh-water lake, functions as a huge off-channel storage reservoir for flood flow of the Mekong River. Surfacewater discharge in streams and rivers of Cambodia is abundant during the wet season, mid-May through mid-November, when 85 percent of the precipitation falls, but is frequently deficient during the remainder of the year. Annual rainfall ranges from 1,370 mm in the central lowlands to more than 5,000 mm in the mountainous highlands. The mean annual temperature for the country is 27.5?C and the evaporation rate is high. During 1960-63, 1,103 holes were drilled in 16 of the 18 khets (provinces), of which 795 or approximately 72 percent, were productive wells at rates ranging from 1.1 to 2,967 l/min. The productive wells ranged in depth from 2 to 209.4 m and were 23.2 m deep on the average. Mr. Rasmussen ' studied the subsurface geology of Cambodia in considerable detail by examining drillers' logs and constructing nine geologic cross sections. The principal aquifer tapped by drilled wells in Cambodia is the Old Alluvium. In many places, however, dug wells and a few shallow drilled wells obtain water from the Young Alluvium. Sandstone of the Indosinias Formation yields moderate to small quantities of water to wells in a number of places. Also, wells tapping water-bearing basalt have a small to moderate yield. The quality of water is recorded in only a few analyses. The dissolved solids concentrations appear to be generally low so that the water is usable for most purposes without treatment. Some well waters, however, are high in iron and would have to be aerated and filtered before use. In this report, well records are tabulated, and the geology and hydrology is discussed by khets. The bulk of the

  7. Mississippi Embayment Regional Ground Water Study

    EPA Science Inventory

    Increased water usage in the southeastern United States in the tri-state area of Tennessee, Mississippi and Arkansas poses a dilemma to ensuring long-term sustainability of the quantity and quality of ground-water resources that underlie the region. Demand for ground water by ag...

  8. Ground water near Newton, Jasper County, Iowa

    USGS Publications Warehouse

    Buchmiller, Robert C.

    2001-01-01

    The water quality in the South Skunk River and the alluvial aquifer was similar, except most ground-water samples contained low dissolved oxygen concentrations. The low dissolved-oxygen concentrations in ground water resulted in high concentrations of iron and manganese in some locations and reduced forms of nitrogen.

  9. Ground water resources of Lee County

    USGS Publications Warehouse

    Gordon, Donivan L.

    1980-01-01

    In terms of these factors, there are few locations in Lee County where the availability of ground water is not limited to some degree. The most common limitation is poor water quality, that is, highly mineralized ground water. Secondary limitations are generally related to poor distribution, small yields from some sources, and poor accessibility due to the great depths to adequate sources.

  10. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  11. Ground water applications of the heat capacity mapping mission

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Moore, D. G.

    1981-01-01

    The paper discusses the ground water portion of a hydrologic investigation of eastern South Dakota using data from the Heat Capacity Mapping Mission (HCMM) satellite. The satellite carries a two-channel radiometer (0.5-1.1 and 10.5-12.5 microns) in a sun synchronous orbit and collects data at approximately 0230 and 1330 local standard time with repeat coverage of 5 to 16 days depending on latitude. It is shown that HCMM data acquired at appropriate periods of the diurnal and annual temperature cycle can provide useful information on shallow ground water.

  12. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  13. Ground-water quality in Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1984-01-01

    This report graphically summarizes ground-water quality from selected chemical-quality data for about 2,300 ground-water sites in Wyoming. Dissolved-solids, nitrate, fluoride, arsenic, barium, cadmium, chromium, lead, mercury, selenium, iron, and manganese concentrations are summarized on a statewide basis. The major chemical-quality problem that limits the use of Wyoming ground-water is excessive dissolved-solids concentrations. The aquifers with the best quality water, based on the lowest median dissolved-solids concentration of water in aquifers with 20 or more sampled sites, are Holocene lacustrine deposits, the upper Testiary Ogallala Formation and Arikaree Formation, and the Mississippian Madison Limestone. The counties with the best quality water, based on the lowest median dissolved-solids concentrations are Teton County and Laramie County. Hot Springs County and Natrona County have the highest median dissolved-solids concentrations. About 3 percent of the nitrate concentrations of ground-water samples exceeded the national primary drinking-water standard of 10 milligrams per liter. Fluoride concentrations exceeded the national primary drinking-water standard in 14 percent of the ground-water samples. Except for selenium, toxic trace elements generally have not been found in concentrations in excess of the drinking-water standards. About 19 percent of the iron and about 30 percent of the manganese concentrations in ground-water samples exceeded the national secondary drinking-water standards. (USGS)

  14. GROUND-WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    This flyer describes the objectives and activities of the Ground-Water Technical Support Center, which is part of the Ground Water and Ecosystems Restoration Division. It is directed toward technical audiences (EPA Regions and State regulators within the Regions) and will be use...

  15. Procedures for ground-water investigations

    SciTech Connect

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  16. FUNDAMENTALS OF GROUND-WATER MODELING

    EPA Science Inventory

    Ground-water flow and contaminant transport modeling has been used at many hazardous waste sites with varying degrees of success. odels may be used throughout all phases of the site investigation and remediation processes. eveloping a better understanding of ground-water modeling...

  17. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  18. Summary of ground-water conditions in Arizona, 1987-90

    USGS Publications Warehouse

    Anning, D.W.; Duet, N.R.

    1994-01-01

    Annual ground-water withdrawals in Arizona were 2.9, 3.3, 3.6, and 3.4 million acre-feet for calendar years 1987. 1988, 1989, and 1990. The average annual ground-water withdrawal for Arizona from 1980-89 was 3.7 million acre-feet, which was the lowest average annual withdrawal for any decade since the 1940' s. Since 1947, annual ground-water withdrawals in Arizona were at the lowest rate in 1983 and at the second lowest rate in 1987. For 1987-90, the distribution of ground-water use was 11.8 percent for municipal, 8.3 percent for industnal, 72.6 percent for agriculture, and 7.3 percent for draining irrigated lands. More than 94 percent of the ground-water withdrawals in Arizona occurred in the Basin and Range lowlands province during 1987-90. This province contains the two areas with the largest rates of ground-water withdrawal in Arizona--the Salt River Valley and the lower Santa Cruz basin. The average annual ground-water withdrawal for the Salt River Valley from 1980-89 is 1,013,000 acre-feet, which is the lowest average annual withdrawal for any decade since the 1930 's. Ground-water withdrawals in the lower Santa Cruz basin during 1990 were the lowest on record since 1940. In 1985, the Central Arizona Project began delivering Colorado River water to central Arizona to mitigate ground-water overdraft. The Harquahala basin began receiving water from the Central Arizona Project in 1985. From 1985 to 1990, ground-water withdrawals decreased from 59,000 acre-feet to 2,000 acre-feet, and water levels rose as much as 70 feet.

  19. Ground-water conditions in Georgia, 1999

    USGS Publications Warehouse

    Cressler, Alan M.

    2000-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water investigations conducted by the U.S. Geological Survey (USGS), in cooperation with the State of Georgia and city and county governments, a Statewide water-level-measurement program was started in 1938. Initially, this program consisted of an observation-well network in the coastal area of Georgia to monitor variations in ground-water storage and quality. Additional wells were later included in areas where data could be used to aid in water resources development and management. During 1999, periodic water-level measurements were made in 46 wells, and continuous water-level measurements were obtained from 165 wells. Continuous water-level records were obtained using analog (pen and chart

  20. Arsenic contamination in ground water: Indian scenario.

    PubMed

    Jain, C K

    2002-07-01

    The ground water in a huge alluvial tract along the river Hooghly covering a stretch of about 470 km., encompassing eight districts in the state of West Bengal (India) is affected by arsenic pollution of ground water. The probable source of arsenic has been reported to be through geological formations. Occurrence of iron-pyrite and the change of geo-chemical environment due to over-exploitation of ground water or excessive fluctuation of ground water table are the possible reasons of decomposition of pyrite to ferrous sulphate, ferric sulphate and sulfuric acid. However, no definite explanation regarding the source of arsenic could be established so far. Keeping in view the severity of the problem, an attempt has been made to bring out the nature and extent of arsenic problem in ground water of West Bengal, India, as well as need for watershed management to combat the situation.

  1. Water resources data, Virginia, water year 2004 volume 2. Ground-water-level and ground-water-quality records

    USGS Publications Warehouse

    White, Roger K.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2005-01-01

    Water-resources data for the 2004 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 346 observation wells and water quality at 40 wells. Locations of these wells are shown on figures 4 through 9. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  2. Ground-water program in Alabama

    USGS Publications Warehouse

    LaMoreaux, P.E.

    1955-01-01

    Several recent years of drought have emphasized the importance of Alabama's ground-water supplies, a matter of concern to us all.  So far we have been blessed in Alabama with ample ground-water, although a combination of increased use, waste, pollution, and drought has brought about critical local water shortages.  These problems serve as a fair warning of what lies ahead if we do not take the necessary steps to obtan adequate knowledge of our ground-water resources.

  3. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    : Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  4. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  5. Surface-water/ground-water relations in the Lemhi River Basin, east-central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    1998-01-01

    This report summarizes work carried out in cooperation with the Bureau of Reclamation to provide hydrologic information to help Federal, State, and local agencies meet the goals of the Lemhi River Model Watershed Project. The primary goal of the project is to maintain, enhance, and restore anadromous and resident fish habitat in the Lemhi River, while maintaining a balance between resource protection and established water uses. The main objectives of the study were to carry out seepage measurements to determine seasonal distributed gains and losses in the Lemhi River and to estimate annual ground-water underflow from the basin to the Salmon River. In 1997, seepage measurements were made during and after the irrigation season along a 60-mile reach of the Lemhi River between Leadore and Salmon. Except for one 4-mile reach that lost 1.3 cubic feet per second per mile, the river gained from ground water in early August when ground-water levels were high. Highest flows in the Lemhi River in early August were about 400 cubic feet per second. In October, when ground-water levels were low, river losses to ground water were about 1 to 16 cubic feet per second per mile. In October, highest flows in the Lemhi River were about 500 cubic feet per second, near the river's mouth. Annual ground-water underflow from the Lemhi River Basin to the Salmon River was estimated by using a simplified water budget and by using Darcy's equation. The water-budget method contained large uncertainties associated with estimating precipitation and evapotranspiration. Results of both methods indicate that the quantity of ground water leaving the basin as underflow is small, probably less than 2 percent of the basin's total annual water yield.

  6. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Ground water surface elevations

    SciTech Connect

    Shevenell, L.; Switek, J.

    1992-02-01

    The purpose of this document is to provide a summary and interpretation of hydraulic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Periodic water level observations are presented using hydrographs and water table contour maps based on data obtained from quarterly sampling during calendar year 1991. Generalized, preliminary interpretation of results are presented. The two sites covered by this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each rate are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the up-gradient and down-gradient directions for each of the sites is included.

  7. Pollution of ground water in Europe

    PubMed Central

    Buchan, S.; Key, A.

    1956-01-01

    This paper discusses pollution of ground water in 20 countries of the European region, giving for each an account of the geology and hydrogeology, water supplies, the extent and nature of ground water pollution, and the legal, administrative, and technical means of controlling that pollution. For the countries not considered in the preceding article on surface water pollution, an account is also given of the superficial physical features, rainfall, population, and industries. A general discussion follows of such questions as the ways in which ground water pollution may occur, the factors mitigating or aggravating pollution, and ways of protection against pollution. The authors consider that the problem of ground water pollution in Europe may well be more serious than it would appear to be on the evidence so far obtained. PMID:13374533

  8. Iowa ground-water-quality monitoring program

    USGS Publications Warehouse

    Detroy, M.G.

    1985-01-01

    More than 1,200 wells are available and acceptable for the network. From these and newly completed wells, 200 samples will be collected and analyzed annually. Analyses will be made for common anions and cations, trace metals, nutrients, and radionuclides. One out of ten samples will be analyzed for priority pollutants and pesticides. Data from this program will be published annually in Water Resources Data, Iowa, U.S. Geological Survey Water-Data Report.

  9. A primer on ground water

    USGS Publications Warehouse

    Baldwin, Helene L.; McGuinness, C.L.

    1963-01-01

    Most of us don't have to look for water. We grew up either in big cities where there was a public water supply, or in small towns or on farms where the water came from wells. But there are some people to whom finding a new supply of water is vitally important.

  10. Ground-water conditions in Georgia, 2000

    USGS Publications Warehouse

    Cressler, A.M.; Blackburn, D.K.; McSwain, K.B.

    2001-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards.

  11. Ground-water conditions in Georgia, 1998

    USGS Publications Warehouse

    Cressler, Alan M.

    1999-01-01

    Ground-water conditions in Georgia during 1998 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1998 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards.

  12. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  13. Ground-Water Protection and Monitoring Program

    SciTech Connect

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  14. Ground-Water Recharge in Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Falteisek, J.D.

    2007-01-01

    'Ground-water recharge' broadly describes the addition of water to the ground-water system. Most water recharging the ground-water system moves relatively rapidly to surface-water bodies and sustains streamflow, lake levels, and wetlands. Over the long term, recharge is generally balanced by discharge to surface waters, to plants, and to deeper parts of the ground-water system. However, this balance can be altered locally as a result of pumping, impervious surfaces, land use, or climate changes that could result in increased or decreased recharge. * Recharge rates to unconfined aquifers in Minnesota typically are about 20-25 percent of precipitation. * Ground-water recharge is least (0-2 inches per year) in the western and northwestern parts of the State and increases to greater than 6 inches per year in the central and eastern parts of the State. * Water-level measurement frequency is important in estimating recharge. Measurements made less frequently than about once per week resulted in as much as a 48 percent underestimation of recharge compared with estimates based on an hourly measurement frequency. * High-quality, long-term, continuous hydrologic and climatic data are important in estimating recharge rates.

  15. Artificial recharge of humic ground water.

    PubMed

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  16. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  17. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  18. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  19. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of:...

  20. Ground-water models cannot be validated

    USGS Publications Warehouse

    Konikow, L.F.; Bredehoeft, J.D.

    1992-01-01

    Ground-water models are embodiments of scientific hypotheses. As such, the models cannot be proven or validated, but only tested and invalidated. However, model testing and the evaluation of predictive errors lead to improved models and a better understanding of the problem at hand. In applying ground-water models to field problems, errors arise from conceptual deficiencies, numerical errors, and inadequate parameter estimation. Case histories of model applications to the Dakota Aquifer, South Dakota, to bedded salts in New Mexico, and to the upper Coachella Valley, California, illustrate that calibration produces a nonunique solution and that validation, per se, is a futile objective. Although models are definitely valuable tools for analyzing ground-water systems, their predictive accuracy is limited. The terms validation and verification are misleading and their use in ground-water science should be abandoned in favor of more meaningful model-assessment descriptors. ?? 1992.

  1. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  2. Ground-water hydrology of the Willamette basin, Oregon

    USGS Publications Warehouse

    Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.

    2005-01-01

    The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple

  3. Ground-water availability on the Kitsap Peninsula, Washington

    USGS Publications Warehouse

    Hansen, Arnold J.; Bolke, E.L.

    1980-01-01

    Unconsolidated deposits on the Kitsap Peninsula, Wash., are of glacial and interglacial origin. These deposits were divided into three units based on lithology and hydraulic properties. Two of the three units are composed of layers of sand and gravel , and silt and clay. The third unit consists of silt and clay and in most places separates the other two units. Water-bearing strata in the upper unit are fairly continuous and average 15 feet in thickness. The lower water-bearing strata are not believed to be as continuous as those in the upper unit, but yield larger quantities of water to wells. The silt-and-clay unit averages 70 feet in thickness, occurs generally near sea level, and is not known to contain major water-bearing deposits. The average annual ground-water recharge to streams on the Kitsap Peninsula was estimated to be 17 times the 1975 annual ground-water pumpage for the peninsula. Some, but an unknown amount, of this water is available for increased withdrawal by wells. Increased withdrawals cause decreased streamflow, declining water levels, and increased seawater contamination. There appears to be no widespread seawater contamination of wells in the study area. Local areas where chloride concentrations from wells exceed 25 milligrams per liter are near the southern part of the Longbranch Peninsula, Horsehead Bay, Point Evans, Sinclair Inlet, Eagle Harbor, Fletcher Bay, the northern end of Bainbridge Island, and the northern tip of the Kitsap Peninsula. (USGS)

  4. MTBE concentrations in ground water in Pennsylvania

    USGS Publications Warehouse

    McAuley, Steven D.

    2003-01-01

    The distribution, concentrations, and detection frequency of methyl tert-butyl-ether (MTBE), a gasoline additive used in reformulated gasoline to improve air quality, were characterized in Pennsylvania?s ground water. Two sources of MTBE in ground water, the atmosphere and storage-tank release sites, were examined. An analysis of atmospheric MTBE concentrations shows that MTBE detections (MTBE greater than or equal to 0.2 micrograms per liter) in ground water are more likely the result of storage-tank releases than atmospheric deposition. A comparison of 86 ground-water samples near storage-tank releases and 359 samples from ambient ground water (not thought to be affected by point-source releases of MTBE or BTEX compounds) shows that samples within about 0.5 mile downgradient of storagetank release sites have significantly greater MTBE detection frequency than ambient ground-water samples. Aquifer type, land use, and the use of Reformulated Gasoline (RFG) are associated with high rates of occurrence of MTBE in ground water in Pennsylvania. Ground-water samples from wells in crystalline-rock aquifers near storage- tank release sites have a significantly greater MTBE detection frequency (57 percent) compared to other aquifers. Samples from wells in urban areas have a significantly greater MTBE detection frequency compared to ambient samples in agricultural and forested areas. Samples from the RFG-use areas in the five southeastern counties of Pennsylvania have a significantly greater MTBE detection frequency than samples outside of the RFG-use area. MTBE detection frequency of samples near storage- tank release sites in the RFG-use area (45 percent) are significantly greater than ambient samples in the RFG-use area.

  5. Estimating ground water discharge by hydrograph separation.

    PubMed

    Hannula, Steven R; Esposito, Kenneth J; Chermak, John A; Runnells, Donald D; Keith, David C; Hall, Larry E

    2003-01-01

    Iron Mountain is located in the West Shasta Mining District in California. An investigation of the generation of acid rock drainage and metals loading to Boulder Creek at Iron Mountain was conducted. As part of that investigation, a hydrograph separation technique was used to determine the contribution of ground water to total flow in Boulder Creek. During high-flow storm events in the winter months, peak flow in Boulder Creek can exceed 22.7 m3/sec, and comprises surface runoff, interflow, and ground water discharge. A hydrograph separation technique was used to estimate ground water discharge into Boulder Creek during high-flow conditions. Total ground water discharge to the creek approaches 0.31 m3/sec during the high-flow season. The hydrograph separation technique combined with an extensive field data set provided reasonable estimates of ground water discharge. These estimates are useful for other investigations, such as determining a corresponding metals load from the metal-rich ground water found at Iron Mountain and thus contributing to remedial alternatives. PMID:12772830

  6. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  7. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  8. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    USGS Publications Warehouse

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  9. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  10. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to

  11. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  12. Availability of Ground-Water Data for California, Water Year 2006

    USGS Publications Warehouse

    Huff, Julia A.

    2007-01-01

    Introduction The U.S. Geological Survey, Water Resources, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year (October 1-September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to ground-water data for water year 2006. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for water year 2006 (fig. 2) and instructions for obtaining this and other ground-water information contained in the databases of the U.S. Geological Survey, California Water Science Center. From 1985 to 1993, data were published in the annual report 'Water Resources Data for California, Volume 5. Ground-Water Data'; prior to 1985, the data were published in U.S. Geological Survey Water-Supply Papers.

  13. Availability of Ground-Water Data for California, Water Year 2005

    USGS Publications Warehouse

    Huff, Julia A.

    2006-01-01

    The U.S. Geological Survey, Water Resources, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year (October 1-September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to ground-water data for water year 2005. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for water year 2005 (fig. 2) and instructions for obtaining this and other ground-water information contained in the databases of the U.S. Geological Survey, California Water Science Center. From 1985 to 1993, data were published in the annual report 'Water Resources Data for California, Volume 5. Ground-Water Data'; prior to 1985, the data were published in U.S. Geological Survey Water-Supply Papers.

  14. Availability of Ground-Water Data for California, Water Year 2007

    USGS Publications Warehouse

    Huff, Julia A.; Haltom, Thomas C.

    2008-01-01

    The U.S. Geological Survey, Water Resources, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year (October 1-September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to ground-water data for water year 2007. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for water year 2007 (fig. 2) and instructions for obtaining this and other ground-water information contained in the databases of the U.S. Geological Survey, California Water Science Center. From 1985 to 1993, data were published in the annual report 'Water Resources Data for California, Volume 5. Ground-Water Data'; prior to 1985, the data were published in U.S. Geological Survey Water-Supply Papers.

  15. Ground-water and surface-water relations along the Mojave River, southern California

    USGS Publications Warehouse

    Lines, G.C.

    1996-01-01

    The Mojave River and the associated flood-plain aquifer are important water supplies in the Mojave Desert of Southern California. The river and aquifer, in many areas, are in excellent hydraulic connection, and when flow conditions change in one, the other almost always is affected. To better understand these relations, records of gaging stations were analyzed to determine the frequency and duration of historical streamflow. Annual ground-water recharge from the river during water years 1931-94 was estimated from an accounting of all streamflow accretions and losses. Annual recharge ranged from about 24,000 to 460,000 acre-feet and averaged about 96,000 acre-feet. Channel-geometry regression techniques were used to estimate runoff of ungaged ephemeral streams that are tributary to the river. Water-table and gravity changes were used to estimate specific yield of the aquifer and changes in ground-water storage following storm runoff during the winters of 1992-94. In addition, streamflow hydrographs were analyzed to estimate both ground-water discharge to the river (base flow) and historical streamflow depletion caused by ground-water pumping and evapotranspiration. Ground-water pumpage from the flood-plain aquifer was about 120,000 acre-feet during water year 1994. Annual evapotranspiration along the river probably ranges from about 10,000 to 30,000 acre-feet. Factors controlling the exchange of water are identified in this report on the basis of the historical response of the river-aquifer system to stress (stormflows and pumping). Also identified are reaches of the river that are hydraulically suitable for artificial recharge.

  16. Ground Water Flow No Longer A Mystery

    ERIC Educational Resources Information Center

    Lehr, Jay H.; Pettyjohn, Wayne A.

    1976-01-01

    Examined are the physical characteristics of ground water movement. Some potential pollution problems are identified. Models are used to explain mathematical and hydraulic principles of flow toward a pumping well and an effluent stream, flow around and through lenticular beds, and effects of pumping on the water table. (Author/MR)

  17. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    USGS Publications Warehouse

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  18. Ground-water conditions and studies in Georgia, 2001

    USGS Publications Warehouse

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  19. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  20. Recharge estimation for transient ground water modeling.

    PubMed

    Jyrkama, Mikko I; Sykes, Jon F; Normani, Stefano D

    2002-01-01

    Reliable ground water models require both an accurate physical representation of the system and appropriate boundary conditions. While physical attributes are generally considered static, boundary conditions, such as ground water recharge rates, can be highly variable in both space and time. A practical methodology incorporating the hydrologic model HELP3 in conjunction with a geographic information system was developed to generate a physically based and highly detailed recharge boundary condition for ground water modeling. The approach uses daily precipitation and temperature records in addition to land use/land cover and soils data. The importance of the method in transient ground water modeling is demonstrated by applying it to a MODFLOW modeling study in New Jersey. In addition to improved model calibration, the results from the study clearly indicate the importance of using a physically based and highly detailed recharge boundary condition in ground water quality modeling, where the detailed knowledge of the evolution of the ground water flowpaths is imperative. The simulated water table is within 0.5 m of the observed values using the method, while the water levels can differ by as much as 2 m using uniform recharge conditions. The results also show that the combination of temperature and precipitation plays an important role in the amount and timing of recharge in cooler climates. A sensitivity analysis further reveals that increasing the leaf area index, the evaporative zone depth, or the curve number in the model will result in decreased recharge rates over time, with the curve number having the greatest impact.

  1. Ground water hydrology of the Elizabethtown area, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Lyverse, M.A.

    1984-01-01

    The principal aquifer in a 52 square mile karst area in north central Kentucky is the St. Louis Limestone of Mississippian age. Unconsolidated residuum and surficial deposits of slumped material may store water and recharge the underlying limestone aquifer. Precipitation averages 49 inches annually; 6 inches recharges ground-water reservoirs. The shallow ground-water velocity ranged from 0.30 to 1.40 feet per second. Flow net analysis indicates that about 2 million gallons of water per day flows through a 1.8 mile wide section of the aquifer. A water-level contour map indicates that the hydraulic gradient averages 40 feet per mile and that the water levels near the city supply wells have not lowered in 10 years. The effects of three faults on the ground-water flow system is shown as ponding on the upthrown side of the faults. Caliper logs suggest that shallow ground-water flow occurs in sheet-like openings within 100 feet of land surface. The openings range in height from 1 inch or less to 6 feet. A test well penetrated 5 zones of horizontal openings. The specific capacity ranged from 11.5 to 12.1 gallons per minute per foot of drawdown after 12 and 72 hours of pumping at 280 to 510 gallons per minute. Water in 28 wells and springs meets most drinking water standards and generally is a very hard calcium bicarbonate type. Heavily pumped industrial and public-supply wells tend to yield water with high values of specific conductance and sulfate. Coliform bacteria varied widely in rural wells and the city springs. Seven wells had no coliform bacteria. (USGS)

  2. Iowa ground-water quality

    USGS Publications Warehouse

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).

  3. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  4. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  5. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  6. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    SciTech Connect

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  7. Ground-water levels and quality data for Georgia

    USGS Publications Warehouse

    ,

    1979-01-01

    This report begins a publication format that will present annually both water-level and water-quality data in Georgia. In this format the information is presented in two-page units: the left page includes text which summarizes the information for an area or subject and the right page consists of one or more illustrations. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations for the monthly mean water level the previous 10 years for selected observation wells. The well data best illustrate the effects of changes in recharge and discharge in the various ground-water reservoirs in the State. A short narrative explains fluctuations and trends in each hydrograph. (Woodard-USGS)

  8. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  9. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of...

  10. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  11. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number...

  12. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) to prevent contamination of samples and the ground water. ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A...

  13. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  14. Hydrogeology and quality of ground water in Orange County, Florida

    USGS Publications Warehouse

    Adamski, James C.; German, Edward R.

    2004-01-01

    Ground water is the main source of water supply in central Florida and is critical for aquatic habitats and human consumption. To provide a better understanding for the conservation, development, and management of the water resources of Orange County, Florida, a study of the hydrogeologic framework, water budget, and ground-water quality characteristics was conducted from 1998 through 2002. The study also included extensive analyses of the surface-water resources, published as a separate report. An increase in population from about 264,000 in 1960 to 896,000 in 2000 and subsequent urban growth throughout this region has been accompanied by a substantial increase in water use. Total ground-water use in Orange County increased from about 82 million gallons per day in 1965 to about 287 million gallons per day in 2000. The hydrogeology of Orange County consists of three major hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. Data were compiled from 634 sites to construct hydrogeologic maps and sections of Orange County. Water-level elevations measured in 23 wells tapping the surficial aquifer system ranged from about 10.6 feet in eastern Orange County to 123.8 feet above NGVD 29 in northwestern Orange County from March 2000 through September 2001. Water levels also were measured in 14 wells tapping the Upper Floridan aquifer. Water levels fluctuate over time from seasonal and annual variations in rainfall; however, water levels in a number of wells tapping the Upper Floridan aquifer have declined over time. Withdrawal of ground water from the aquifers by pumping probably is causing the declines because the average annual precipitation rate has not changed substantially in central Florida since the 1930s, although yearly rates can vary. A generalized water budget was computed for Orange County from 1991 to 2000. Average rates for the 10-year period for the following budget components were computed based

  15. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  16. Ground-water provinces of Brazil

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    As part of a study of the status of investigations and development of ground water in Brazil, made under the auspices of the United States International Cooperation Administration and with the cooperation of the Government of Brazil, the country was divided into seven ground-water provinces. The identification and delineation of the provinces were based on the regional distribution of the dominant geologic units which are known or inferred to have distinctive water-bearing characteristics. Three of the provinces, covering most of the country, are underlain by Precambrian crystalline rocks. Three others coincide in part with four extensive sedimentary basins--the Parnaiba or Maranhfio basin and the contiguous Sao Francisco basin in the northeast and east, the Amazon basin in the north and northwest, and the Paranfi basin in the south and southwest. In addition, the narrow, discontinuous coastal plain is considered as a province. the occurrence of ground water is discussed briefly, and pertinent data are given on the more important aquifers, together with information on some existing wells. Because of the widespread distribution of crystalline rocks of low permeability, it is difficult in many areas to develop large or even adequate ground-water supplies. In general, satisfactory supplies of water are available in most of the rest of the country. Some problems include the relative deficiency of rainfall in the northeast together with the occurrence, in parts of this region, of mineralized water in the crystalline rocks. Also, there is a potential problem of excessive lowering of water levels and interference among wells in the intensively developed area of the city of Sao Paulo.

  17. Ground water work breakdown structure dictionary

    SciTech Connect

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  18. PRIORITIZATION OF GROUND WATER CONTAMINANTS AND SOURCES

    EPA Science Inventory

    The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their...

  19. EPA'S GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    The purpose and the services provided by EPA's Ground Water Technical Support Center (GWTSC) will be presented. In 1987 the Office of Solid Waste and Emergency Response, Regional Waste Management Offices, and ORD established the Technical Support Project (TSP)

    The purpos...

  20. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  1. Ground Water in a Fish Tank.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1992-01-01

    Describes creating a Model Aquatic/Terrestrial Ecosystem for use in helping students understand how water moves beneath the ground's surface. The model is constructed from a fish tank using rocks, soil, gravel, clay, and organic materials. Author describes possible cooperative-learning and problem-solving activities that can be done with this…

  2. IN-SITU BIOREMEDIATION OF GROUND WATER

    EPA Science Inventory

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. n an attemp...

  3. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    EPA Science Inventory

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  4. Ground-water sample collection and analysis plan for the ground-water surveillance project

    SciTech Connect

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy`s (DOE`s) Hanford Site in support of DOE`s environmental surveillance responsibilities. The purpose of this document is to translate DOE`s General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

  5. Ground-water sample collection and analysis plan for the ground-water surveillance project

    SciTech Connect

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

  6. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  7. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1988-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  8. Ground water maps of the Hanford Site

    SciTech Connect

    Kasza, G.L.; Harris, S.F.; Hartman, M.J.

    1990-12-01

    This report presents the results of the June 1990, ground water level measurement program at the 100 Areas and 200 Areas of the Hanford Site (Figure 1). The water levels beneath these areas are measured regularly on a semiannual basis and the data received are used to produce the following set of maps for public release. For clarity, the locating prefixes have been omitted from all well numbers shown on the maps. Wells in the 100 Areas have the prefix 199; wells in the 200 Areas have the prefix 299, and the wells outside these areas have the prefix 699. Ground Water Maps of the Hanford Site is prepared by the Geosciences Group, Environmental Division, Westinghouse Hanford Company, for the US Department of Energy, Richland Operations Office. 1 ref., 6 figs., 2 tabs.

  9. Simulation of ground-water flow and areas contributing ground water to production wells, Cadillac, Michigan

    USGS Publications Warehouse

    Hoard, Christopher J.; Westjohn, David B.

    2005-01-01

    Ground water is the primary source of water for domestic, municipal, and industrial use within the northwest section of Michigan's Lower Peninsula. Because of the importance of this resource, numerous communities including the city of Cadillac in Wexford County, Michigan, have begun local wellhead protection programs. In these programs, communities protect their ground-water resources by identifying the areas that contribute water to production wells, identifying potential sources of contamination, and developing methods to cooperatively manage and minimize threats to the water supply. The U.S. Geological Survey, in cooperation with the city of Cadillac, simulated regional ground-water flow and estimated areas contributing recharge and zones of transport to the production well field. Ground-water flow models for the Clam River watershed, in Wexford and Missaukee Counties, were developed using the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model (MODFLOW 2000). Ground-water flow models were calibrated using the observation, sensitivity, and parameter estimation packages of MODFLOW 2000. Ground-water-head solutions from calibrated flow models were used in conjunction with MODPATH, a particle-tracking program, to simulate regional ground-water flow and estimate areas contributing recharge and zones of transport to the Cadillac production-well field for a 10-year period. Model simulations match the conceptual model in that regional ground-water flow in the deep ground-water system is from southeast to northwest across the watershed. Areas contributing water were determined for the optimized parameter set and an alternate parameter set that included increased recharge and hydraulic conductivity values. Although substantially different hydrologic parameters (assumed to represent end-member ranges of realistic hydrologic parameters) were used in alternate numerical simulations, simulation results differ little in predictions of

  10. Characterization of Climax granite ground water

    SciTech Connect

    Isherwood, D.; Harrar, J.; Raber, E.

    1982-08-01

    The Climax ground water fails to match the commonly held views regarding the nature of deep granitic ground waters. It is neither dilute nor in equilibrium with the granite. Ground-water samples were taken for chemical analysis from five sites in the fractured Climax granite at the Nevada Test Site. The waters are high in total dissolved solids (1200 to 2160 mg/L) and rich in sodium (56 to 250 mg/L), calcium (114 to 283 mg/L) and sulfate (325 to 1060 mg/L). Two of the samples contained relatively high amounts of uranium (1.8 and 18.5 mg/L), whereas the other three contained uranium below the level of detection (< 0.1 mg/L). The pH is in the neutral range (7.3 to 8.2). The differences in composition between samples (as seen in the wide range of values for the major constituents and total dissolved solids) suggest the samples came from different, independent fracture systems. However, the apparent trend of increasing sodium with depth at the expense of calcium and magnesium suggests a common evolutionary chemical process, if not an interconnected system. The waters appear to be less oxidizing with depth (+ 410 mV at 420 m below the surface vs + 86 mV at 565 m). However, with Eh measurements on only two samples, this correlation is questionable. Isotopic analyses show that the waters are of meteoric origin and that the source of the sulfate is probably the pyrite in the fracture-fill material. Analysis of the measured water characteristics using the chemical equilibrium computer program EQ3 indicates that the waters are not in equilibrium with the local mineral assemblage. The solutions appear to be supersaturated with respect to the mineral calcite, quartz, kaolinite, muscovite, k-feldspar, and many others.

  11. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    EPA Science Inventory

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  12. Ground-water resources of Cumberland County, New Jersey

    USGS Publications Warehouse

    Rooney, James G.

    1971-01-01

    Water use in Cumberland County varies and is highly seasonal, mainly because of increasing requirements for irrigation and the food processing industries in the county. In 1964 seasonal use ranged from 27 mgd in March to 145 mgd in August. This is much higher than withdrawals in neighboring Salem and Cape May Counties. In 1964 withdrawals in Cumberland County averaged about 51 mgd; almost all of this, 49.4 mgd, was from ground-water supplies. The total annual water use in 1964 according to type of use was: for public supply, 10.6 mgd; for industrial uses, 19.0 mgd; irrigation, 15.4 mgd; suburban, rural, residential, institutional, farm, and commercial, 5.9 mgd. 

  13. Procedures for ground-water investigations

    SciTech Connect

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  14. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  15. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  16. Potential for using the Upper Coachella Valley ground-water basin, California, for storage of artificially recharged water

    USGS Publications Warehouse

    Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.

    1980-01-01

    This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)

  17. FRACFLO. Two-Dimensional Ground Water Transport

    SciTech Connect

    Gureghian, A.B.

    1990-07-01

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturated with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.

  18. Land-subsidence and ground-water storage monitoring in the Tucson Active Management Area, Arizona

    USGS Publications Warehouse

    Pool, Don R.; Winster, Daniel; Cole, K.C.

    2000-01-01

    The Tucson Active Management Area (TAMA) comprises two basins--Tucson Basin and Avra Valley. The TAMA has been directed by Arizona ground-water law to attain an annual balance between groundwater withdrawals and recharge by the year 2025. This balance is defined by the statute as "safe yield." Current ground-water withdrawals exceed recharge, resulting in conditions of ground-water overdraft, which causes removal of water from ground-water storage and subsidence of the land surface. Depletion of storage and associated land subsidence will not be halted until all discharge from the system, both natural and human induced, is balanced by recharge. The amount of the ground-water overdraft has been difficult to estimate until recently because it could not be directly measured. Overdraft has been estimated using indirect water-budget methods that rely on uncertain estimates of recharge. As a result, the status of the ground-water budget could not be known with great certainty. Gravity methods offer a means to directly measure ground-water overdraft through measurement of changes in the gravitational field of the Earth that are caused by changes in the amount of water stored in the subsurface. Changes in vertical position also affect the measured gravity value and thus subsidence also must be monitored. The combination of periodic observations of gravity and vertical positions provide direct measures of changes in stored ground water and land subsidence.

  19. Ground water in Myrtle Creek - Glendale area, Douglas County, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1979-01-01

    The purpose of this report is to describe briefly the occurence of ground water and to present ground-water information that will help water users, public officials, and planners to determine the probability of obtaining adequate quanitities of good-quality ground water in the Myrtle Creek-Glendale area.

  20. Geology and ground-water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Cline, Denzel R.

    1965-01-01

    The purpose of the ground-water investigation of Dane County, Wis., was to determine the occurrence, movement, quantity, quality, and availability of ground water in the unconsolidated deposits and the underlying bedrock. The relationships between ground water and surface water were studied in general in Dane County and in detail in the Madison metropolitan area. An analysis was made of the hydrologic system of the Yahara River valley and of the effects of ground-water pumpage on that system.

  1. Pesticides in Ground Water of Wyoming, 1995-2006

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Hallberg, Laura L.

    2009-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticides Strategy Committee (GPSC) to prepare the State of Wyoming Generic Management Plan for Pesticides in Ground Water. Little existing information was available describing pesticide occurrence in ground water; therefore, statewide baseline ground-water sampling was considered a high priority by the GPSC. The GPSC identified 20 pesticides and degradates for baseline ground-water sampling (referred to herein as focal pesticides). Sampling focused on the State's most vulnerable ground water (Wyoming Ground-water and Pesticides Strategy Committee, 1999) as determined by Hamerlinck and Arneson (1998; fig. 1). Ground-water vulnerability is based on inherent sensitivity of the hydrogeology (such as a shallow water table or highly permeable aquifer materials) and overlying land use.

  2. National water summary 1986; Hydrologic events and ground-water quality

    USGS Publications Warehouse

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries. Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream. Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water. Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  3. Ground water in Creek County, Oklahoma

    USGS Publications Warehouse

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  4. Remediation of dichloromethane (DCM)-contaminated ground water

    SciTech Connect

    Flathman, P.E.; Jerger, D.E.; Woodhull, P.M. )

    1992-08-01

    This case history describes the physical and biological treatment of dichloromethane (DCM)-contaminated ground water following the rupture of an underground pipeline which contaminated an estimated 11,000 m[sup 3] (14,000 yd[sup 3]) of soil and ground water in the early fall of 1983. Air stripping DCM from recovered ground water was initiated and provided an estimated 97% reduction in the ground water concentration of DCM. When it became evident that physical treatment alone would no longer be effective in removing residual DCM from the ground water environment, the practice of air stripping DCM from recovered ground water was terminated. Biological treatment was initiated and provided greater than a 500,000-fold reduction in the ground water concentration of DCM. Biological treatment had far exceeded the ability of physical treatment along to remediate a ground water environment contaminated with a biodegradable contaminant. 14 refs., 12 figs., 4 tabs.

  5. EVALUATING THE EFFECTIVENESS OF GROUND WATER EXTRACTION SYSTEMS (JOURNAL)

    EPA Science Inventory

    The most common process for remediating contaminated ground water is extraction and treatment. Data from 19 ongoing and completed ground water extraction systems were collected and analyzed to evaluate the effectiveness of this process in achieving cleanup concentration goals for...

  6. Use of Microgravity to Assess the Effects of El Nino on Ground-Water Storage in Southern Arizona

    USGS Publications Warehouse

    Parker, John T.C.; Pool, Donald R.

    1998-01-01

    The availability of ground water is of extreme importance in areas, such as southern Arizona, where it is the main supply for agricultural, industrial, or domestic purposes. Where ground-water use exceeds recharge, monitoring is critical for managing water supplies. Typically, monitoring has been done by measuring water levels in wells; however, this technique only partially describes ground-water conditions in a basin. A new application of geophysical technology is enabling U.S. Geological Survey (USGS) scientists to measure changes in the amount of water in an aquifer using a network of microgravity stations. This technique enables a direct measurement of ground-water depletion and recharge. In Tucson, Arizona, residents have relied solely upon ground water for most of their needs since the 19th century. Water levels in some wells in the Tucson area have declined more than 200 ft in the past 50 years. Similar drops in water levels have occurred elsewhere in Arizona. In response to the overdrafting of ground water, the State of Arizona passed legislation designed to attain 'safe yield,' which is defined as a balance between ground-water withdrawals and annual recharge of aquifers. To monitor progress in complying with the legislation, ground-water withdrawals are measured and estimated, and annual recharge is estimated. The Tucson Basin and Avra Valley are two ground-water basins that form the Tucson Active Management Area (TAMA), which by State statute must attain 'safe yield' by the year 2025.

  7. Focused Ground-Water Recharge in the Amargosa Desert Basin

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Walvoord, Michelle A.; Abraham, Jared D.; Stewart-Deaker, Amy E.; Glancy, Patrick A.; Constantz, Jim; Laczniak, Randell J.; Andraski, Brian J.

    2007-01-01

    The Amargosa River is an approximately 300-kilometer long regional drainage connecting the northern highlands on the Nevada Test Site in Nye County, Nev., to the floor of Death Valley in Inyo County, Calif. Streamflow analysis indicates that the Amargosa Desert portion of the river is dry more than 98 percent of the time. Infiltration losses during ephemeral flows of the Amargosa River and Fortymile Wash provide the main sources of ground-water recharge on the desert-basin floor. The primary use of ground water is for irrigated agriculture. The current study examined ground-water recharge from ephemeral flows in the Amargosa River by using streamflow data and environmental tracers. The USGS streamflow-gaging station at Beatty, Nev., provided high-frequency data on base flow and storm runoff entering the basin during water years 1998?2001. Discharge into the basin during the four-year period totaled 3.03 million cubic meters, three quarters of which was base flow. Streambed temperature anomalies indicated the distribution of ephemeral flows and infiltration losses within the basin. Major storms that produced regional flow during the four-year period occurred in February 1998, during a strong El Ni?o that more than doubled annual precipitation, and in July 1999. The study also quantified recharge beneath undisturbed native vegetation and irrigation return flow beneath irrigated fields. Vertical profiles of water potential and environmental tracers in the unsaturated zone provided estimates of recharge beneath the river channel (0.04?0.09 meter per year) and irrigated fields (0.1?0.5 meter per year). Chloride mass-balance estimates indicate that 12?15 percent of channel infiltration becomes ground-water recharge, together with 9?22 percent of infiltrated irrigation. Profiles of potential and chloride beneath the dominant desert-shrub vegetation suggest that ground-water recharge has been negligible throughout most of the basin since at least the early Holocene

  8. Bacteriophages as surface and ground water tracers

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  9. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  10. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  11. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  12. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the...

  13. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51...

  14. Overview of Ground-Water Recharge Study Sites

    USGS Publications Warehouse

    Constantz, Jim; Adams, Kelsey S.; Stonestrom, David A.

    2007-01-01

    Multiyear studies were done to examine meteorologic and hydrogeologic controls on ephemeral streamflow and focused ground-water recharge at eight sites across the arid and semiarid southwestern United States. Campaigns of intensive data collection were conducted in the Great Basin, Mojave Desert, Sonoran Desert, Rio Grande Rift, and Colorado Plateau physiographic areas. During the study period (1997 to 2002), the southwestern region went from wetter than normal conditions associated with a strong El Ni?o climatic pattern (1997?1998) to drier than normal conditions associated with a La Ni?a climatic pattern marked by unprecedented warmth in the western tropical Pacific and Indian Oceans (1998?2002). The strong El Ni?o conditions roughly doubled precipitation at the Great Basin, Mojave Desert, and Colorado Plateau study sites. Precipitation at all sites trended generally lower, producing moderate- to severe-drought conditions by the end of the study. Streamflow in regional rivers indicated diminishing ground-water recharge conditions, with annual-flow volumes declining to 10?46 percent of their respective long-term averages by 2002. Local streamflows showed higher variability, reflecting smaller scales of integration (in time and space) of the study-site watersheds. By the end of the study, extended periods (9?15 months) of zero or negligible flow were observed at half the sites. Summer monsoonal rains generated the majority of streamflow and associated recharge in the Sonoran Desert sites and the more southerly Rio Grande Rift site, whereas winter storms and spring snowmelt dominated the northern and westernmost sites. Proximity to moisture sources (primarily the Pacific Ocean and Gulf of California) and meteorologic fluctuations, in concert with orography, largely control the generation of focused ground-water recharge from ephemeral streamflow, although other factors (geology, soil, and vegetation) also are important. Watershed area correlated weakly with focused

  15. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  16. Measuring economic losses from ground water contamination: An investigation of household avoidance costs

    SciTech Connect

    Abdalla, C.W. )

    1990-06-01

    Economic losses from ground water contamination were estimated in a central Pennsylvania community. The averting expenditures method was applied via a mail survey of households in which water contained the unregulated volatile organic chemical, perchloroethylene (PCE). Expenditures were estimated at $148,900 (1987 dollars) over the six-month contamination period or approximately $252 per household annually. These costs underestimate the lower bound measure of welfare losses to households from ground water contamination. An upper bound measure of welfare losses was estimated at $383 per household annually. These estimates do not represent the full economic losses resulting from ground water contamination since the study did not address municipal-level and business avoidance costs and losses from actual health effects, increased fear and anxiety, ecological damages, and nonuser ground water benefits. The results expand the existing empirical base of information about municipal-level responses and economic losses from ground water contamination to include household-level impacts. The findings indicate that households undertake substantial averting actions in response to ground water contamination and that such actions can have significant economic consequences. These extent and magnitude of avoidance costs documented suggests that policy-makers should give greater attention to this category of economic losses.

  17. Water Resources Data, New Jersey, Water Year 2003 - Volume 2. Ground-Water Data

    USGS Publications Warehouse

    Jones, Walter D.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2003 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 185 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, Sate, and local agencies in New Jersey.

  18. Water resources data, New Jersey, water year 2005.Volume 2 - ground-water data

    USGS Publications Warehouse

    Jones, Walter D.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2005 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 214 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  19. Water resources data, New Jersey, water year 2004--volume 2. ground-water data

    USGS Publications Warehouse

    Jones, Walter D.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2004 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 196 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, Sate, and local agencies in New Jersey.

  20. Two-Dimensional Ground Water Transport

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  1. Geology and ground-water resources of Washington County, Colorado

    USGS Publications Warehouse

    McGovern, Harold E.

    1964-01-01

    to the thickness of saturated material. Development of ground water for irrigation has been generally restricted to the South Platte, Arikaree, and Beaver valleys. There were 134 irrigation wells, 3 industrial wells, and 10 municipal wells in the county in 1959. The annual ground-water pumpage from Washington County is estimated to be 18,000 acre-ft; about 10,000 acre-ft is from the High Plains ground-water province. Although some ground water enters the county as underflow, most of the recharge to ground-water reservoirs is from precipitation on the land surface. Recharge to the Ogallala Formation in the county is assumed to be approximately equal to the natural discharge from the county by underflow because ground-water withdrawals are from storage, and no other significant amount of natural discharge is apparent. Undertow in the Ogallala was calculated to be 83,000 acre-ft per year and the rate of recharge from precipitation to be about 0.95 inch per year. Neither recharge nor discharge was calculated for that part of the county in the South Platte River basin. All ground water in Washington County has a high proportion of carbonate and is classed as hard to very hard. The sodium-adsorption-ratio for all samples analyzed was below the limit recommended for irrigation water. All the water from the Ogallala Formation and most of the water from the Chadron Formation is suitable for domestic use. Some water from the alluvial deposits overlying the Pierre Shale was exceptionally high in calcium, magnesium, and sodium sulfates. Ground water has been heavily developed for irrigation in the South Platte valley and in some parts of the Beaver and Arikaree valleys. Some additional areas, however, could be developed in the latter two valleys. Large quantities of ground water in the Ogallala Formation are available for future development. The quantity of water in storage in the High Plains ground-water province in Washington County is about 6.5 million acre-f

  2. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... existing motor vehicle waste disposal wells within your State. (b) Ground water protection areas. (1) For... area is complete every existing motor vehicle waste disposal well owner in that ground water protection.... Existing motor vehicle waste disposal well owners and operators within other sensitive ground water...

  3. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... existing motor vehicle waste disposal wells within your State. (b) Ground water protection areas. (1) For... area is complete every existing motor vehicle waste disposal well owner in that ground water protection.... Existing motor vehicle waste disposal well owners and operators within other sensitive ground water...

  4. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... apply to all existing motor vehicle waste disposal wells within your State. (b) Ground Water Protection... protection area is complete every existing motor vehicle waste disposal well owner in that ground water.... Existing motor vehicle waste disposal well owners and operators within other sensitive ground water...

  5. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  6. The role of ground water in sub-Saharan Africa.

    PubMed

    Braune, Eberhard; Xu, Yongxin

    2010-01-01

    Although water resources managers speak of a water crisis in Africa, the management of ground water has to date not featured strongly in national and regional African water agendas. Examination of the physical environment of the continent and, in particular, the water resources in relation to the socioeconomic landscape and regional development challenges makes it clear that widely occurring, albeit largely low-yielding, ground water resources will be crucial in the achievement of water security and development. Ground water is important primarily in domestic water and sanitation services, but also for other local productive needs like community gardens, stock watering, and brick-making, all essential to secure a basic livelihood and thus to alleviate poverty. Despite the importance of small-scale farming in Africa, there is little information on the present and potential role of ground water in agriculture. In contrast to its socioeconomic and ecological importance, ground water has remained a poorly understood and managed resource. Widespread contamination of ground water resources is occurring, and the important environmental services of ground water are neglected. There appear to be critical shortcomings in the organizational framework and the building of institutional capacity for ground water. Addressing this challenge will require a much clearer understanding and articulation of ground water's role and contribution to national and regional development objectives and an integrated management framework, with top-down facilitation of local actions.

  7. Estimating ground water recharge from topography, hydrogeology, and land cover.

    PubMed

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  8. Ground-water models: Validate or invalidate

    USGS Publications Warehouse

    Bredehoeft, J.D.; Konikow, L.F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  9. Monitoring for pesticides in ground water in Nevada

    USGS Publications Warehouse

    Adams, Patricia A.; Moses, Charles W.; Bevans, Hugh E.

    1997-01-01

    Many pesticides designed to control weed encroachment, plant disease, and insect predation are used in agricultural and urban areas in the United States. Contamination of ground water by pesticides has increased over the last 20 years (U.S. Environmental Protection Agency, 1992). In 1985, the U.S. Environmental Protection Agency (USEPA) estimated the detection of at least 17 agricultural pesticides in the ground water of 23 states. By 1988, pesticides identified in ground water had increased to 46 in 26 states. To protect ground water from pesticide contamination, USEPA, through the Federal Fungicide Insecticide and Rodenticide Act (FIFRA), requires all states to institute a ground-water protection program.

  10. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  11. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  12. Ground-water and surface-water flow and estimated water budget for Lake Seminole, southwestern Georgia and northwestern Florida

    USGS Publications Warehouse

    Dalton, Melinda S.; Aulenbach, Brent T.; Torak, Lynn J.

    2004-01-01

    , and about 2 percent lake evaporation. Measurement error and uncertainty in flux calculations cause a flow imbalance of about 4 percent between inflow and outflow water-budget components. Most of this error can be attributed to errors in estimating ground-water discharge from the lake, which was calculated using a ground-water model calibrated to October 1986 conditions for the entire Apalachicola?Chattahoochee?Flint River Basin and not just the area around Lake Seminole. Evaporation rates were determined using the preferred, but mathematically complex, energy budget and five empirical equations: Priestley-Taylor, Penman, DeBruin-Keijman, Papadakis, and the Priestley-Taylor used by the Georgia Automated Environmental Monitoring Network. Empirical equations require a significant amount of data but are relatively easy to calculate and compare well to long-term average annual (April 2000?March 2001) pan evaporation, which is 65 inches. Calculated annual lake evaporation, for the study period, using the energy-budget method was 67.2 inches, which overestimated long-term average annual pan evaporation by 2.2 inches. The empirical equations did not compare well with the energy-budget method during the 18-month study period, with average differences in computed evaporation using each equation ranging from 8 to 26 percent. The empirical equations also compared poorly with long-term average annual pan evaporation, with average differences in evaporation ranging from 3 to 23 percent. Energy budget and long-term average annual pan evaporation estimates did compare well, with only a 3-percent difference between estimates. Monthly evaporation estimates using all methods ranged from 0.7 to 9.5 inches and were lowest during December 2000 and highest during May 2000. Although the energy budget is generally the preferred method, the dominance of surface water in the Lake Seminole water budget makes the method inaccurate and difficult to use, because surface water makes up m

  13. Water Resources Data, Florida, Water Year 2001, Volume 3B. Southwest Florida Ground Water

    USGS Publications Warehouse

    Stoker, Y.E.; Kane, R.L.; Fletcher, W.L.

    2002-01-01

    Water resources data for the 2001 water year in Florida consist of continuous or daily discharges for 406 streams, periodic discharge for 12 streams, continuous daily stage for 142 streams, periodic stage for 12 streams, peak stage and discharge for 37 streams, continuous or daily elevations for 11 lakes, periodic elevations for 30 lakes; continuous ground-water levels for 424 wells, periodic ground-water levels for 1,426 wells, and quality-of-water data for 80 surface-water sites and 245 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 33 wells; miscellaneous ground-water elevations at 347 wells; and water quality at 25 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  14. Water resources data, Florida, water year 2005. Volume 3B: Southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2005-01-01

    Water resources data for the 2005 water year in Florida consist of continuous or daily discharges for 429 streams, periodic discharge for 9 streams, continuous or daily stage for 218 streams, periodic stage for 5 streams, peak stage for 28 streams and peak discharge for 28 streams, continuous or daily elevations for 15 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 401 wells, periodic ground-water levels for 1,098 wells, and quality-of-water data for 211 surface-water sites and 208 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 108 wells; periodic ground-water elevations at 24 wells; miscellaneous ground-water elevations at 354 wells; and water quality at 2 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  15. Water resources data Florida, water year 2004: Volume 3B: southwest Florida ground water

    USGS Publications Warehouse

    Kane, Richard L.

    2004-01-01

    Water resources data for the 2004 water year in Florida consist of continuous or daily discharges for 405 streams, periodic discharge for 12 streams, continuous or daily stage for 159 streams, periodic stage for 19 streams, peak stage for 30 streams and peak discharge for 30 streams, continuous or daily elevations for 14 lakes, periodic elevations for 23 lakes; continuous ground-water levels for 408 wells, periodic ground-water levels for 1,188 wells, and quality-of-water data for 140 surface-water sites and 240 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 98 wells; periodic ground-water elevations at 56 wells; miscellaneous ground-water elevations at 374 wells; and water quality at 25 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  16. Water Resources Data, Florida, Water Year 2002, Volume 3B. Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2003-01-01

    Water resources data for the 2002 water year in Florida consist of continuous or daily discharges for 392 streams, periodic discharge for 15 streams, continuous daily stage for 191 streams, periodic stage for 13 streams, peak stage for 33 streams and peak discharge for 33 streams, continuous or daily elevations for 14 lakes, periodic elevations for 49 lakes; continuous ground-water levels for 418 wells, periodic ground-water levels for 1,287 wells, and quality-of-water data for 116 surface-water sites and 291 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 125 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 377 wells; and water quality at 46 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  17. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  18. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  19. Ground water hydrology report: Revision 1, Attachment 3. Final

    SciTech Connect

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  20. Water resources data--North Dakota, water year 2004, volume 2. Ground water

    USGS Publications Warehouse

    Robinson, S.M.; Wald, J.D.

    2005-01-01

    Water-resources data for the 2004 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 2 contains water-level records for 135 ground-water wells and water-quality records for 97 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  1. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  2. Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981

    USGS Publications Warehouse

    Paulachok, Gary N.

    1986-01-01

    Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.

  3. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  4. Model of tritium dispersion by ground water

    NASA Astrophysics Data System (ADS)

    Golubev, A. V.; Mavrin, S. V.; Sten'gach, A. V.

    2000-07-01

    A three-dimensional model of ground-water contamination in the zone of a steady source of tritium is presented. The model is oriented toward long-term modeling of contamination (for up to several decades) on a large area (of up to several hundred square kilometers) where the contaminant arrives through the roof of the aquiferous stratum by infiltration. The three-dimensional equation of convective diffusion is solved numerically by the method of splitting. The convective component is calculated by the method of particles. The dispersion component of the transfer is calculated using the finite-difference method. A transformation of the vertical coordinate is introduced. A solution of the model problem is presented and an interpretation of the results is given.

  5. Potential for satellite remote sensing of ground water.

    PubMed

    Becker, Matthew W

    2006-01-01

    Predicting hydrologic behavior at regional scales requires heterogeneous data that are often prohibitively expensive to acquire on the ground. As a result, satellite-based remote sensing has become a powerful tool for surface hydrology. Subsurface hydrology has yet to realize the benefits of remote sensing, even though surface expressions of ground water can be monitored from space. Remotely sensed indicators of ground water may provide important data where practical alternatives are not available. The potential for remote sensing of ground water is explored here in the context of active and planned satellite-based sensors. Satellite technology is reviewed with respect to its ability to measure ground water potential, storage, and fluxes. It is argued here that satellite data can be used if ancillary analysis is used to infer ground water behavior from surface expressions. Remotely sensed data are most useful where they are combined with numerical modeling, geographic information systems, and ground-based information.

  6. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  7. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  8. Isotopes and sustainability of ground water resources, North China Plain.

    PubMed

    Zongyu, Chen; Zhenlong, Nie; Zhaoji, Zhang; Jixiang, Qi; Yunju, Nan

    2005-01-01

    Ground water in deep confined aquifers is one of the major water resources for agricultural, industrial, and domestic uses in the North China Plain. Detailed information on ground water age and recharge is vital for the proper management of these water resources, and to this end, we used carbon 14 of dissolved inorganic carbon and tritium in water to measure the age and determine the recharge areas of ground water in the North China Plain. These isotopic data suggest that most ground water in the piedmont part of the North China Plain is <40 years old and is recharged locally. In contrast, ground water in the central and littoral portions of the North China Plain is 10,000 to 25,000 years old. The delta18O (deltaD) values of this ground water are 1.7 per thousand (11 per thousand) less than that in the piedmont plain ground water and possibly reflect water recharged during a cooler climate during the last glaciation. The temperature of this recharge, based on delta18O values, ranges from 3.7 degrees C to 8.4 degrees C, compared to 12 degrees C to 13 degrees C of modern recharge water. The isotopic data set combined indicates that ground water in the central and littoral part of the North China Plain is being mined under non-steady state conditions.

  9. Statistical summaries of ground-water level data collected in the Suwannee River Water Management District, 1948 to 1994

    USGS Publications Warehouse

    Collins, J.J.; Freeman, L.D.

    1996-01-01

    Since 1948, ground-water level data have beensystematically collected from selected wells in theSuwannee River Water Management District (SRWMD) by the U.S. Geological Survey (USGS),the SRWMD, and other agencies. Records of waterlevels in the SRWMD (fig. 1), collected by the USGS and SRWMD through 1990, and by the SRWMD from 1990 to 1994, have been published for many years in the USGS annual report series "Water Resources Data for Florida." However, no systematic statistical summaries of water levels in the SRWMD have been previously published. The need for such statistical summary data forevaluations of drought severity, ground-water supplyavailability, and minimum water levels for regulatory purposes increases daily as demands for ground-water usage increase. Also, much of the base flow of the Suwannee River is dependent upon ground water. As the population and demand for ground water for drinking water and irrigation purposes increase, the ability to quickly and easily predict trends in ground-water availability will become paramount. In response to this need, the USGS, in cooperation with the SRWMD, compiled this report. Ground-water sta tistics for 136 sites are presented as well as figures showing water levels that were measured in wells from 1948 through September 1994. In 1994, the SRWMD and the USGS began a long- term program of cooperative studies designed tobetter understand minimum and maximum streamflows and ground-water levels in the SRWMD. Minimum and maximum flows and levels are needed by the district to manage the surface- and ground-water resources of the SRWMD and to maintain or improve the various ecosystems. Data evaluation was a necessary first step in the long- term SRWMD ground-water investigations program, because basic statistics for ground-water levels are not included in the USGS annual data reports such as "Water Resources Data for Florida, Water Year 1994" (Fran klin and others, 1995). Statistics included in this report were generated

  10. Water-level predictions for Indian Wells Valley ground-water basin, California, 1978

    USGS Publications Warehouse

    Mallory, Michael J.

    1979-01-01

    Ground-water pumpage in Indian Wells Valley, virtually a closed basin in the Mojave Desert of southern California, has increased gradually since 1945 and presently exceeds the long-term mean annual recharge (perennial supply). In order to aid in the understanding and management of the ground-water basin, a digital ground-water model was constructed by the U.S. Geological Survey. Since the original development of this model, conditions in the basin, including areal distribution and rates of ground-water pumpage, have changed. The results of simulation for the period 1969-76 constitute a second verification of the original model. Calculated heads for 1976 agree with the observed heads, indicating a good calibration of the original model. A predictive simulation for the period 1977-2020 used pumpage values increasing from about 15,500 acre-feet per year to about 26,000 acre-feet per year. The pumpage used in this report reflects a slightly slower growth rate and a more concentrated pattern of development than that investigated when the model was originally developed. The effects of this pattern of pumpage are reflected in the water levels simulated by the model. Predicted drawdowns for 1983 are less extensive but locally more severe than those predicted earlier. The reversal of the hydraulic gradient between China Lake playa and the city of Ridgecrest, as produced by these drawdowns by the year 2020, suggests that the water-quality effects of such drawdowns should be investigated, as this could result in inferior water from the China Lake playa area flowing southward into areas of withdrawal. (Woodard-USGS)

  11. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    SciTech Connect

    Reiner,S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J.LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-29

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  12. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    USGS Publications Warehouse

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  13. Geology and occurrence of ground water in Lyon County, Minnesota

    USGS Publications Warehouse

    Rodis, Harry G.

    1963-01-01

    Large quantities of ground water are available from melt-water channels in the county. Moderate quantities, adequate for domestic and small industrial needs, are available from many of the small isolated deposits of sand and gravel in the till. Small quantities of ground water, adequate only for domestic supply, generally can be obtained from Cretaceous sandstone.

  14. Ground-water resources of Rusk County, Texas

    USGS Publications Warehouse

    Sandeen, W.M.

    1984-01-01

    Some mineralization of ground water is due to natural causes. Other mineralization of ground water is due to contamination. A program needs to be initiated to determine the extent and cause of mineralization that has taken place in freshwater sands. Water-quality data is needed at Henderson in order to monitor saltwater encroachment.

  15. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not...-water contamination in the uppermost aquifer. The relevant point of compliance specified by the Director... uppermost aquifer. (b) The Director of an approved State may approve a multi-unit ground-water...

  16. Estimated Ground-water Withdrawals From the Death Valley Regional Flow System, Nevada and California, 1913-98

    SciTech Connect

    M.T. Moreo; K.J. Halford; R.J. LaCamera; and R.J. Laczniak

    2003-09-30

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional,three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  17. Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98

    USGS Publications Warehouse

    Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

    2003-01-01

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  18. Ground-water geology of Kordofan Province, Sudan

    USGS Publications Warehouse

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  19. The importance of ground water in the Great Lakes Region

    USGS Publications Warehouse

    Grannemann, N.G.; Hunt, R.J.; Nicholas, J.R.; Reilly, T.E.; Winter, T.C.

    2000-01-01

    Ground water is a major natural resource in the Great Lakes Region that helps link the Great Lakes and their watershed. This linkage needs to be more fully understood and quantified before society can address some of the important water-resources issues in the Great Lakes. The Great Lakes constitute the largest concentration of unfrozen fresh surface water in the western hemisphere—about 5,440 mi3. Because the quantity of water in the lakes is so large, ground water in the Great Lakes Basin is often overlooked when evaluating the hydrology of the region. Ground water, however, is more important to the hydrology of the Great Lakes and to the health of ecosystems in the watershed than is generally recognized.Although more than 1,000 mi3 of ground water are stored in the basin—a volume of water that is approximately equal to that of Lake Michigan—development of the groundwater resource must be carefully planned. Development of the ground-water resource removes water from storage and alters the paths of ground-water flow. Ground water that normally discharges to streams, lakes, and wetlands can be captured by pumping (the most common form of development), which may deplete or reduce inflows to the Great Lakes.Ground water is important to ecosystems in the Great Lakes Region because it is, in effect, a large, subsurface reservoir from which water is released slowly to provide a reliable minimum level of water flow to streams, lakes, and wetlands. Ground-water discharge to streams generally provides good quality water that, in turn, promotes habitat for aquatic animals and sustains aquatic plants during periods of low precipitation. Because of the slow movement of ground water, the effects of surface activities on ground-water flow and quality can take years to manifest themselves. As a result, issues relative to ground water are often seemingly less dire than issues related to surface water alone.Ground water is a major natural resource in the Great Lakes Region

  20. Ground-water resources of Snohomish County, Washington

    USGS Publications Warehouse

    Newcomb, Reuben Clair

    1952-01-01

    Snohomish County comprises an east-west strip, six townships wide, extending 60 miles from the eastern shore of Puget Sound to the drainage divide of the Cascade Mountains. Topographically, the eastern two-thirds of the county varies frown hills and low mountain spurs at the west to the continuous high, maturely carved mountains of the Cascade Range at the east. The western third of the county lies in the Puget Sound lowland section: it is made up largely of unconsolidated deposits, as contrasted with the hard rocks of the mountain section. High-level deposits of glacial debris in some places form a transitional ramp from the lowlands to the mountain topography; in other places the transition is abrupt. The principal rivers--the Snohomish, Skykomish, Stillaguamish, and Sauk--drain westward and northwestward to Puget Sound. The Puget Sound lowland, with its extensions up the river valleys, is economically the important part. of the county. Within that part., ground-water development is of particular importance. The climate is equable and dominantly oceanic, with an average of about 32 h. of rainfall annually, but with a pronounced dry season from June to September. A mean annual temperature of 52 F, a growing season of more than 200 days, and a variety of good soils form a setting in which supplemental irrigation can at least double the average crop production. Within the coastal lowland, plateau segments 200 to 600 ft or more in altitude are separated by flat-bottomed, alluviated river gorges. The river flats in some eases represent the surface of as much as 500 to 600 ft of glacial and alluvial deposits backfilled into canyonlike arms of the aneestral drainage system. The plateau segments are formed of the till-smoothed remnants of bedrock or the tabular segments of Pleistocene deposits. The Pleistocene deposits consist, above sea level, of about 200 ft of Admiralty clay and as much as 1,000 ft of deposits of the Vashon glaciation. The latter include as much as

  1. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  2. An overview of ground-water quality data in Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1984-01-01

    This report contains a summary of ground-water-quality data for Wisconsin and an evaluation of the adequacy of these data for assessing the impact of land disposal of wastes on ground-water quality. Chemical analyses used in data summaries were limited to those stored in the USGS computer system (WATSTORE). Information on documented instances of ground-water contamination and sources of potential contamination from land disposal of wastes was provided by the Wisconsin Department of Natural Resources. Available data provide an overview of ground water quality but may be insufficient for assessment of ground-water contamination from land disposal of wastes. Many sources of potential ground-water contamination (landfills, surface waste-storage impoundments, and buried tanks) are known. Some of these are probably causing local ground-water contamination that is not apparent from available regional data. Information needs for assessment of ground-water contamination from land disposal of wastes include improved understanding of both ground-water hydrology and the chemical behavior of specific contaminants in the environment. (USGS)

  3. Georgia's Ground-Water Resources and Monitoring Network, 2008

    USGS Publications Warehouse

    ,

    2008-01-01

    Ground water is an abundant resource in Georgia, providing 1.45 billion gallons per day, or 22 percent, of the total freshwater used (including thermoelectric) in the State (Fanning, 2003). Contrasting geologic features and landforms of the physiographic provinces of Georgia affect the quantity and quality of ground water throughout the State. Most ground-water withdrawals are in the Coastal Plain in the southern one-half of the State, where aquifers are highly productive. For a more complete discussion of the State's ground-water resources, see Leeth and others (2005).

  4. An application of thermometry to the study of ground water

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    The precise measurement of fluctuations in ground-water temperature, based on monthly readings in shallow glacial-outwash aquifers (up to about 70 feet deep), is useful in the study of ground-water movement and recharge. In addition to the study of natural phenomena in the hydrologic cycle, thermometry may be used as a tool in making detailed studies of (1) the effects of inducing the infiltration of surface water, (2) artificial recharge, (3) the effects of injecting petroleum products or radioactive or other wastes into the ground, and (4) ground-water movement in mines.

  5. Hanford Site environmental data for calendar year 1990 -- Ground water

    SciTech Connect

    Dresel, P.E.; Bates, D.J.; Merz, J.K.

    1993-03-01

    This report tabulates ground-water radiological and chemical data for calendar year 1990 by the Ground-Water Surveillance Project, reported Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1990 (Evans et al. 1992) and mental Report for Calendar Year 1990 (Woodruff and Hanf 1991). The data listings provided here were generated from the Hanford Environmental Information System database.

  6. Hanford Site environmental data for calendar year 1991 -- Ground water

    SciTech Connect

    Dresel, P.E.; Bates, D.J.; Merz, J.K.

    1993-03-01

    This report tabulates ground-water radiological and chemical data reported for calendar year 1991 by the Ground-Water Surveillance Project, Resource Conservation and Recovery Act (RCRA) Monitoring, and Operational Monitoring. The Ground-Water Surveillance Project is conducted by the Pacific Northwest Laboratory and the RCRA and Operational Monitoring Projects are conducted by the Westinghouse Hanford Company. This document supplements the reports Hanford Site Ground-Water Monitoring for 1991 (Evans et al. 1992) and Hanford Site Environmental Report for Calendar Year 1991 (Woodruff and Hanf 1992). The data listings provided here were generated from the Hanford Environmental Information System database.

  7. Ground-water resources of Sheridan County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Cummings, T. Ray

    1966-01-01

    Sheridan County is in the north-central part of Wyoming and is an area of about 2,500 square miles. The western part of the county is in the Bighorn Mountains, and the eastern part is in the Powder River structural basin. Principal streams are the Powder and Tongue Rivers, which are part of the Yellowstone River system. The climate is semiarid, and the mean annual precipitation at Sheridan is about 16 inches. Rocks of Precambrian age are exposed in the central part of the Bighorn Mountains, and successively younger rocks are exposed eastward. Rocks of Tertiary age, which are the most widespread, are exposed throughout a large part of the Powder River structural basin. Deposits of Quaternary age underlie the flood plains and terraces along the larger streams, particularly in the western part of the basin. Aquifers of pre-Tertiary age are exposed in the western part of the county, but they dip steeply and are deeply buried just a few miles east of their outcrop. Aquifers that might yield large supplies of water include the Bighorn Dolomite, Madison Limestone, Amsden Formation, and Tensleep Sandstone. The Flathead Sandstone, Sundance Formation, Morrison Formation, Cloverly Formation,. Newcastle Sandstone, Frontier Formation, Parkman Sandstone, Bearpaw Shale, .and Lance Formation may yield small or, under favorable conditions, moderate supplies of water. Few wells tap aquifers of pre-Tertiary age, and these are restricted to the outcrop area. The meager data available indicate that the water from the Lance Formation, Bearpaw Shale, Parkman Sandstone, Tensleep Sandstone and Amsden Formation, and Flathead Standstone is of suitable quality for domestic or stock purposes, and that water from the Tensleep Sandstone and Amsden Formation and the Flathead Sandstone is of good quality for irrigation. Samples could not be obtained from other aquifers of pre-Tertiary age; so the quality of water in these aquifers could not be determined. Adequate supplies of ground water for

  8. A geographic data model for representing ground water systems.

    PubMed

    Strassberg, Gil; Maidment, David R; Jones, Norm L

    2007-01-01

    The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features. PMID:17600583

  9. Response of the Rio Grande and shallow ground water in the Mesilla Bolson to irrigation, climate stress, and pumping

    USGS Publications Warehouse

    Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.

    1999-01-01

    The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.

  10. Land subsidence caused by ground water withdrawal in urban areas

    USGS Publications Warehouse

    Holzer, T.L.; Johnson, A.I.

    1985-01-01

    At least eight urban areas in the world have encountered significant economic impact from land subsidence caused by pumping of ground water from unconsolidated sediment. The areas, most of which are coastal, include Bangkok, Houston, Mexico City, Osaka, San Jose, Shanghai, Tokyo, and Venice. Flooding related to decreased ground elevation is the principal adverse effect of the subsidence. Lesser effects include regional tilting, well-casing failures, "rising" buildings, and ground failure or rupture. Subsidence of most of these urban areas began before the phenomenon was discovered and understood. Thus, the subsidence problems were unanticipated. Methods to arrest subsidence typically have included control of ground water pumping and development of surface water to offset the reductions of ground water pumping. Ground water recharge has also been practiced. Areas threatened by flooding have been protected by extensive networks of dikes and sea walls, locks, and pumping stations to remove storm runoff. ?? 1985 D. Reidel Publishing Company.

  11. Heat, chloride, and specific conductance as ground water tracers near streams

    USGS Publications Warehouse

    Cox, M.H.; Su, G.W.; Constantz, J.

    2007-01-01

    Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.

  12. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  13. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements...

  14. Guide to North Dakota's Ground-Water Resources

    USGS Publications Warehouse

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  15. Ground-water monitoring in the Albuquerque area

    USGS Publications Warehouse

    Thorn, Condé R.

    1996-01-01

    At present (1996), all drinking water for Albuquerque residents comes from ground-water reserves. The Albuquerque area is the largest population center in the State and the largest consumer of ground water. Recent reports concerning the water resources of the Albuquerque area suggest that the Albuquerque Basin may soon face serious water-availability and water-quality problems due to anticipated ground-water development. Recent studies completed by the U.S. Geological Survey (USGS) have improved the understanding of the ground-water resources in the Albuquerque Basin. These studies have indicated that the more permeable units within the aquifer system--the upper Santa Fe Group--are less extensive than previously thought, and that water-levels have declined as much as 160 feet.

  16. Ground water contamination from creosote sites

    SciTech Connect

    Kiilerich, O.; Arvin, E.

    1996-05-01

    Field data from 44 waste sites contaminated with creosote have been compiled in a database. The data from each site included geological and hydrogeological parameters and the concentrations of creosote compounds in the ground water at various distances from the pollution sources. The creosote compounds that were measured included mononuclear aromatic hydrocarbons and polynuclear aromatic hydrocarbons (PAH) and phenols. Already 50 m down-gradient of the creosote waste sites, 90% of the concentrations were from three to 50 times lower than at the source, and most of the median concentrations were below detection limit (0.1 to 0.5 {micro}g/L). The maximum concentrations of benzene, toluene, and xylenes (BTX) and phenols were much lower under aerobic than under anaerobic conditions. Among the phenols, the xylenols (dimethylphenols) appear in higher concentrations under aerobic conditions than phenol and the cresols do. The highest concentrations found were of the same order of magnitude as the calculated solubilities found in the literature, except the chrysene and benz(a)pyrene concentrations, which were one to two orders of magnitude higher than the solubilities.

  17. General database for ground water site information.

    PubMed

    de Dreuzy, Jean-Raynald; Bodin, Jacques; Le Grand, Hervé; Davy, Philippe; Boulanger, Damien; Battais, Annick; Bour, Olivier; Gouze, Philippe; Porel, Gilles

    2006-01-01

    In most cases, analysis and modeling of flow and transport dynamics in ground water systems require long-term, high-quality, and multisource data sets. This paper discusses the structure of a multisite database (the H+ database) developed within the scope of the ERO program (French Environmental Research Observatory, http://www.ore.fr). The database provides an interface between field experimentalists and modelers, which can be used on a daily basis. The database structure enables the storage of a large number of data and data types collected from a given site or multiple-site network. The database is well suited to the integration, backup, and retrieval of data for flow and transport modeling in heterogeneous aquifers. It relies on the definition of standards and uses a templated structure, such that any type of geolocalized data obtained from wells, hydrological stations, and meteorological stations can be handled. New types of platforms other than wells, hydrological stations, and meteorological stations, and new types of experiments and/or parameters could easily be added without modifying the database structure. Thus, we propose that the database structure could be used as a template for designing databases for complex sites. An example application is the H+ database, which gathers data collected from a network of hydrogeological sites associated with the French Environmental Research Observatory.

  18. Hanford Site ground-water monitoring for 1994

    SciTech Connect

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  19. Simulation of ground-water flow and evaluation of water-management alternatives in the Assabet River Basin, Eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.

    2004-01-01

    Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from

  20. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  1. REMEDIATION AND PROTECTION OF GROUND WATER FROM CONTAMINATION BY ARSENIC

    EPA Science Inventory

    Successful prevention of public exposure to arsenic in ground-water resources impacted by natural sources or contaminated sites is dependent on scientifically-based strategies for site remediation and water resource management. Research within the National Risk Management Resear...

  2. Distribution of Elevated Nitrate Concentrations in Ground Water in Washington State

    USGS Publications Warehouse

    Frans, Lonna

    2008-01-01

    More than 60 percent of the population of Washington State uses ground water for their drinking and cooking needs. Nitrate concentrations in ground water are elevated in parts of the State as a result of various land-use practices, including fertilizer application, dairy operations and ranching, and septic-system use. Shallow wells generally are more vulnerable to nitrate contamination than deeper wells (Williamson and others, 1998; Ebbert and others, 2000). In order to protect public health, the Washington State Department of Health requires that public water systems regularly measure nitrate in their wells. Public water systems serving more than 25 people collect water samples at least annually; systems serving from 2 to 14 people collect water samples at least every 3 years. Private well owners serving one residence may be required to sample when the well is first drilled, but are unregulated after that. As a result, limited information is available to citizens and public health officials about potential exposure to elevated nitrate concentrations for people whose primary drinking-water sources are private wells. The U.S. Geological Survey and Washington State Department of Health collaborated to examine water-quality data from public water systems and develop models that calculate the probability of detecting elevated nitrate concentrations in ground water. Maps were then developed to estimate ground water vulnerability to nitrate in areas where limited data are available.

  3. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  4. Ground Water in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.; Gingerich, Stephen B.

    1998-01-01

    A multi-phased study of ground-water resources, including well drilling, aquifer tests, analysis of ground-water discharge, and numerical ground-water modeling, indicates that the rocks of the southern Lihue Basin, Kauai, have permeabilities that are much lower than in most other areas of ground-water development in the Hawaiian islands. The regional hydraulic conductivity of the Koloa Volcanics, which dominates fresh ground-water flow in the basin, is about 0.275 foot per day. The Waimea Canyon Basalt which surrounds the basin and underlies the Koloa Volcanics within the basin is intruded by dikes that reduce the bulk hydraulic conductivity of the rocks to about 1.11 feet per day. The low permeabilities result in steeper head gradients compared with other areas in the Hawaiian islands, and a higher proportion of ground-water discharging to streams than to the ocean. Water levels rise from near sea level at the coast to several hundreds of feet above sea level at the center of the basin a few miles inland. The high inland water levels are part of a completely saturated ground-water system. Because of the low regional hydraulic conductivity and high influx of water from recharge in the southern Lihue Basin, the rocks become saturated nearly to the surface and a variably saturated/unsaturated (perched) condition is not likely to exist. Streams incising the upper part of the aquifer drain ground water and keep the water levels just below the surface in most places. Streams thus play an important role in shaping the water table in the southern Lihue Basin. At least 62 percent of the ground water discharging from the aquifer in the southern Lihue Basin seeps to streams; the remainder seeps directly to the ocean or is withdrawn by wells.

  5. Ground-water recharge through active sand dunes in northwestern Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1992-01-01

    Most water-resource investigations in semiarid basins of the Great Basin in western North America conclude that ground-water recharge from direct precipitation on the valley floor is negligible. However, many of these basins contain large areas covered by unvegetated, active sand dunes that may act as conduits for ground-water recharge. The potential for this previously undocumented recharge was investigated in an area covered by sand dunes in Desert Valley, northwestern Nevada, using a deep percolation model. The model uses daily measurements of precipitation and temperature to determine energy and moisture balance, from which estimates of long-term mean annual recharge are made. For the study area, the model calculated a mean annual recharge rate of as much as 1.3 inches per year, or 17 percent of the long-term mean precipitation. Model simulations also indicate that recharge would be virtually zero if the study area were covered by vegetation rather than dunes.

  6. Origin and recharge rates of alluvial ground waters, Eastern Desert, Egypt.

    SciTech Connect

    Sultan, M.; Gheith, H.; Sturchio, N. C.; El Alfy, Z.; Danishwar, S.

    2002-04-12

    Stable isotope and tritium analyses of shallow ground waters in the Eastern Desert of Egypt showed that the waters were derived largely by evaporation of regional precipitation and at least partly from precipitation in the past 45 y. To estimate the ground water recharge rate, we developed an integrated hydrologic model based on satellite data, geologic maps, infiltration parameters, and spatial rainfall distribution. Modeling indicated that during a severe 1994 storm, recharge through transmission loss in Wadi El-Tarfa was 21% of the precipitation volume. From archival precipitation data, we estimate that the annual recharge rate for the El-Tarfa alluvial aquifer is 4.7 x 10{sup 6} m{sup 3}. Implications for the use of renewable ground waters in arid areas of Egypt and in neighboring countries are clear.

  7. Ground-water outflow from Chino Basin, Upper Santa Ana Valley, southern California

    USGS Publications Warehouse

    French, James J.

    1972-01-01

    Ground-water outflow from Chino basin was calculated ,by a direct method using the equation Q = PIA, in which Q is the quantity of ground-water outflow, P is the average coefficient of permeability of the sediments through which the flow occurs, I is the average hydraulic gradient, and A is the cross-sectional area of the sediments through which the flow occurs. The period selected for the calculation was 1930-66. Permeability of the water-bearing sediments was calculated from aquifer test data and from computations involving specific-capacity data from 200 wells in the outflow area. Permeability ranged from less than 100 to more than 5,000 gallons per day per square foot. The annual hydraulic gradient was derived from contour maps of average water levels in wells for each water year for the period 1930-66. The cross-sectional area used to calculate ground-water outflow from Chino basin extends southwestward from Pedley Hills to Puente Hills. The area of the outflow section is the saturated thickness of permeable materials measured along the line of section. Part of the lower boundary is the interface between the alluvium and the underlying basement complex, and part is a change in permeability within sedimentary rocks. Geological methods were combined with geophysical methods to determine the cross-sectional area of the water-bearing sediments. Gravity and seismic traverses, drill-hole logs, and data from a more than 600 drill holes, including eight test holes drilled as a part of this investigation, were used to delineate the size and the shape of the outflow area. For the period of calculation, 1930-66, the total area of the outflow section varied from about 16 to 22 million square feet. The fluctuation in total area is caused by changes in the altitude of the water table. Annual ground-water outflow from Chino basin calculated by the direct method for the period 1930-66 ranged from 38,000 acre-feet in the 1941 water year to 9,400 acre-feet in the 1966 water

  8. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for

  9. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  10. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  11. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  12. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  13. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to sewage sludge that is not used or disposed through a practice regulated in 40 CFR part 503 may... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an...

  14. Ground Water Quality Protection. State and Local Strategies.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Using regional case studies, this document examines representative programs for dealing with ground water contamination. Section one describes the ground water protection strategy of the U.S. Environmental Protection Agency (EPA); (2) discusses the limited data available for determining the extent of contamination; (3) provides a listing of the…

  15. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  16. EPA Research Evaluating CAFO Impacts on Ground Water Quality

    EPA Science Inventory

    An overview of several projects will be presented on a research program currently underway at ORD’s Ground Water and Ecosystems Restoration Division (GWERD) to evaluate CAFO impacts on ground water quality. The overall research objectives are to characterize the potential for gro...

  17. Procedures for ground-water investigations. Revision 1

    SciTech Connect

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  18. Ground-water remediation with granular collection system

    SciTech Connect

    Frieseke, R.W.; Christensen, E.R.

    1996-06-01

    The purpose of this study is to evaluate the use of a granular ground-water collection system to increase ground-water recovery well yield and radial influence during remediation of gasoline-contaminated ground water. The field study was conducted at a site in Kenosha, Wisconsin. Two identical recovery wells were designed and installed within the granular ground-water collection system (RW No. 1) and the native silty fine sand soils (RW No. 2), respectively, in order to allow a direct comparison of recovery well yields and radial influence. The comparison was based on laboratory grain size and permeability tests, and in-situ yield and pump tests. The results show that RW No. 1 can produce 2.2--4.5 times the quantity of ground water of RW No. 2, and that the radial influence (ground-water drawdown) created by extracting from RW No. 1 was three to four times the drawdown from RW No. 2. There was a significant improvement in ground-water quality since the implementation of the remediation system. The achieved increase in the recovery well yield and radial influence should reduce the time and cost to complete a ground-water remediation project.

  19. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water protection standard....

  20. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is...

  1. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    USGS Publications Warehouse

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  2. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  3. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    avenues of ground-water flow. Prior to this investigation, the conceptual model of ground-water flow for the region focused primarily on bedding planes and strike-parallel faults and joints as controls on ground-water flow but did not recognize the importance of cross-strike faults and fracture zones that allow ground water to flow downgradient across or through less permeable geologic formations. Results of the ground-water flow simulation indicate that current operations at the Center do not substantially affect either streamflow (less than a 5-percent reduction in annual streamflow) or ground-water levels in the Leetown area under normal climatic conditions but potentially could have greater effects on streamflow during long-term drought (reduction in streamflow of approximately 14 percent). On the basis of simulation results, ground-water withdrawals based on the anticipated need for an additional 150 to 200 gal/min (gallons per minute) of water at the Center also would not seriously affect streamflow (less than 8 to 9 percent reduction in streamflow) or ground-water levels in the area during normal climatic conditions. During drought conditions, however, the effects of current ground-water withdrawals and anticipated additional withdrawals of 150 to 200 gal/min to augment existing supplies result in moderate to substantial declines in water levels of 0.5-1.2 feet (ft) in the vicinity of the Center's springs and production wells. Streamflow was predicted to be reduced locally by approximately 21 percent. Such withdrawals during a drought or prolonged period of below normal ground-water levels would result in substantial declines in the flow of the Center's springs and likely would not be sustainable for more than a few months. The drought simulated in this model was roughly equivalent to the more than 1-year drought that affected the region from November 1998 through February 2000. The potential reduction in streamflow is a result of capture of ground water tha

  4. Pesticides in Ground Water - Sublette County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Sublette County. This fact sheet describes and summarizes results of the baseline monitoring in Sublette County.

  5. Pesticides in Ground Water - Carbon County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Carbon County. This fact sheet describes and summarizes results of the baseline monitoring in Carbon County.

  6. Pesticides in Ground Water - Campbell County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Campbell County. This fact sheet describes and summarizes results of the baseline monitoring in Campbell County.

  7. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  8. Southwest Principal Aquifers Regional Ground-Water Quality Assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, S.A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  9. Availability of ground water in the Gallup area, New Mexico

    USGS Publications Warehouse

    West, Samuel Wilson

    1961-01-01

    A thick succession of sedimentary rocks (about 6,000 feet) underlies the town of Gallup and crops out nearby. Although all the sedimentary rocks are capable of yielding some water, only a few units of sandstone and limestone yield water in sufficient quantity and of acceptable quality to be considered as sources of large supplies. The five stratigraphic units that are most productive of ground water form three aquifers, as follows: (a) the Glorieta sandstone and San Andres limestone, (b) the Westwater Canyon member of the Morrison formation and the Dakota sandstone, and (e) the Gallup sandstone. The Glorieta sandstone yields only small amounts of water to wells, except where it is intensely fractured. It probably contributes large amounts of water to the overlying, more permeable San Andres limestone by slow vertical leakage over large areas, as water is withdrawn from the San Andres. The San Andres limestone is discontinuous in the eastern part of the area, wedging out entirely a few miles east of Gallup. Its permeability varies widely because locally the permeability has been greatly increased by fractures and solution channels. On the north flank of the Zuni Mountains, near its outcrop, the San Andres yields as much as 1,100 gpm (gallons per minute) of water to wells. The specific capacity of wells that tap the aquifer formed by this Glorieta sandstone and San Andres limestone ranges from 0.1 to 29 gpm per foot of drawdown. In general, the water in the Glorieta sandstone and San Andres limestone is hard, because it contains much calcium. Both bicarbonate and sulfate anions are abundant. The chemical quality of the water deteriorates with increasing distance from the outcrop. The Westwater Canyon member of the Morrison formation and the Dakota sandstone form a single hydrologic unit extending from about 5 miles east of Gallup westward into Arizona. To the east they are separated by shale of the Brushy Basin member of the Morrison formation. The water

  10. Photosynthetic water splitting: 1987 annual report

    SciTech Connect

    Greenbaum, E.

    1988-01-01

    This document is an annual report of photosynthetic water splitting for the production of hydrogen and oxygen. Unicellular green algae are capable of evolving molecular hydrogen in the presence of carbon dioxide. Controlling factors that determine hydrogen evolution are either temperature or light intensity. Also, mutants of the green alga Chlamydomonas are capable of evolving hydrogen in the presence of carbon dioxide. The significance of these discoveries is that the presence of carbon dioxide (or bicarbonate) is a key factor in determining the activity of the Photosystem II water splitting complex. Second, a new advance in oxygen sensor technology has been made that, for the first time, allows the absolute measurement of photosynthetically evolved oxygen from a single colony of microalgae growing on a solidified agar medium. The key aspect of this electrochemical sensor is the utilization of ultra-pure potassium hydroxide as the electrolyte and a recognition of the role that electrolyte impurities play in contributing to base line noise. 9 refs., 8 figs., 2 tabs.

  11. Ground water in the Piedmont upland of central Maryland

    USGS Publications Warehouse

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  12. Ground-water aspects of the lower Henrys Fork region, Idaho

    USGS Publications Warehouse

    Crosthwaite, E.J.; Mundorff, M.J.; Walker, E.H.

    1967-01-01

    The lower Henrys Fork region includes the plains and low benches between Ashton and the junction of Henrys Fork and Snake River in eastern Idaho. The northwestern and western parts of the area are part of the Snake River lava plain. The central part of the area is occupied by alluvial plains of the Snake, Teton, and Falls Rivers, and Henrys Fork. The southeastern part of the area is a bench (Rexburg Bench), chiefly on silicic and basaltic volcanic rocks, which rises gradually to mountain peaks southeast of the area. The basalt, and the sand and gravel under the alluvial plains are good aquifers and yield large amounts of water with small drawdowns. The silicic volcanic rocks and the interbedded ash, pyroclastics, and sedimentary deposits generally yield much less water than the basalt and alluvium. The regional water table slopes southward beneath the basalt and alluvial plains. Seepage from stream channels and irrigated tracts has resulted in an extensive body of ground water perched above the regional water table. The perched water in part moves vertically down to the regional water table and in part laterally to the streams. Ground water beneath the Rexburg Bench moves generally northwestward to join the regional ground-water body beneath the alluvial plain. The regional water table is below the level of the streams in the area and ground water in the main aquifer, therefore is not tributary to the streams. Recharge to the regional water table is estimated to average 725,000 acre-feet annually. Pumping from the regional ground-water reservoir for irrigation or other uses would have no effect on streamflow or surface-water rights within the study area. However, depletion of the underflow would eventually reduce the inflow to American Falls Reservoir unless the depletion was offset by additional recharge. Total withdrawals of ground water for irrigation in 1962 were estimated to be 25,000 acre-feet and caused no significant decline in the water table. In the

  13. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    USGS Publications Warehouse

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  14. Ground water in the Pullman area, Whitman County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Washburn, R.L.

    1963-01-01

    Pullman. The area receives about 21 inches of precipitation annually, about two-thirds of it from October through March. 0nly a fraction of the precipitation reaches the aquifers; the remainder is returned to the atmosphere by evapotranspiration or leaves the area as surface runoff. The basalt is recharged mainly by infiltration from streams and downward percolation from the overlying loess. The ground water moves generally westward. However, most water in the artesian aquifers tapped by wells in the vicinity of Pullman may move toward the city of Pullman, which is the center of major pumping. The rate of movement ranges from extremely slow in the loess and the massive basalt to very rapid in the permeable zones of basalt. The principal modes of discharge from the artesian aquifers are seepage to streams and pumpage from wells. The amount of natural discharge is unknown, but the pumpage ranged from about 340 to 870 million gallons per year, and during 1949-59 it averaged about 800 million gallons (2,500 ac-ft) per year. For about the last 25 years at least, the piezometric surface of the artesian zones has declined each year, indicating that the annual ground-water discharge from the artesian aquifers (including pumpage and natural discharge) has exceeded the recharge in the Pullman area. An analysis of the relation of pumpage to the decline in artesian level indicates that during 1952-59 an average of about 65 million gallons per year was removed from storage. Although the decline in artesian pressures has resulted in an increase in the recharge to the aquifers, the present rate of pumping may be equal to or even exceed the perennial yield of the artesian aquifer in the report area under natural conditions. Geologic and hydrologic conditions seem favorable for the existence of potentially good aquifers below those which are now extensively developed. The deep aquifers seem to have only a slight hydraulic connection with the overlying artesian basalt

  15. Effects of ground water exchange on the hydrology and ecology of surface water.

    PubMed

    Hayashi, Masaki; Rosenberry, Donald O

    2002-01-01

    Ground water exchange affects the ecology of surface water by sustaining stream base flow and moderating water-level fluctuations of ground water-fed lakes. It also provides stable-temperature habitats and supplies nutrients and inorganic ions. Ground water input of nutrients can even determine the trophic status of lakes and the distribution of macrophytes. In streams the mixing of ground water and surface water in shallow channel and bankside sediments creates a unique environment called the hyporheic zone, an important component of the lotic ecosystem. Localized areas of high ground water discharge in streams provide thermal refugia for fish. Ground water also provides moisture to riparian vegetation, which in turn supplies organic matter to streams and enhances bank resistance to erosion. As hydrologists and ecologists interact to understand the impact of ground water on aquatic ecology, a new research field called "ecohydrology" is emerging.

  16. Municipal ground-water development and withdrawals in the central Lower Peninsula of Michigan, 1870-1987

    USGS Publications Warehouse

    Baltusis, M.A.; Quigley, M.F.; Mandle, Richard J.

    1992-01-01

    Municipal water-supply systems in the central Lower Peninsula of Michigan were categorized into four regions on the basis of source of water for 1987. These categories included water systems that obtained water from aquifers in glacial drift, bedrock, or both, as well as those that obtained water from surface-water sources. Data on ground-water development were collected for 182 municipal water-supply systems for the period 1870-1987. Of the 182 systems, 135 used ground water for supply. Wells in glacial-drift aquifers supplied water for 60 municipalities; wells in bedrock aquifers supplied 58 municipalities. Combinations of wells in bedrock and glacial-drift aquifers supplied 17 municipalities. Surface-water sources supplied 45 municipalities; two municipalities used surface water and ground water. Of the 182 municipal systems, withdrawal data were available for only 145. Withdrawal data were collected for the period 1903-1985. Analysis of annual ground-water withdrawal data for the 145 municipal water-supply systems indicates that average annual per capita municipal ground-water withdrawal ranged from 60 gallons per day per person in 1915 to 166 gallons per day per person in 1973. The maximum reported groundwater withdrawal for the area was 103 million gallons per day in 1979. Records from most municipalities include long periods for which no ground-water withdrawal data are available. The average annual per capita data among the municipalities varies over the period of record because of incomplete reporting of pumping rates, unusually high pumping rates, short-term economic changes, and other changes not associated with local population changes.

  17. Regional estimation of base recharge to ground water using water balance and a base-flow index.

    PubMed

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2003-01-01

    Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.

  18. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  19. Ground water recharge and flow characterization using multiple isotopes.

    PubMed

    Chowdhury, Ali H; Uliana, Matthew; Wade, Shirley

    2008-01-01

    Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern carbon [pmC]), and (3)H (tritium units [TU]), suggesting older recharge. In addition, water levels lie at greater depths, and basin-bounding faults that locally act as a flow barrier may further reduce subsurface inflow into the aquifer along the mountain front. Chemical differences in ground water composition, attributed to varying aquifer mineralogy and recharge processes, further discriminate the basin-margin and the basin-center water. Direct recharge through the indurated sandstones and mudstones in the basin center is minimal. Modern recharge in the aquifer is mainly through the broad, exposed stream channel beds containing coarse sand and gravel where ground water contains higher delta(18)O, (14)C (pmC), and (3)H (TU). Spatial differences in delta(18)O, (14)C (pmC), and (3)H (TU) and occurrences of extensive mudstones in the basin center suggest sluggish ground water movement, including local compartmentalization of the flow system.

  20. Geology and ground-water resources of Outagamie County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1957-01-01

    The ground water differs greatly in chemical quality from well to well, but it is generally a very hard calcium magnesium bicarbonate water, some of it high in iron. To aid in determining the source of well waters, 22 chemical analyses were plotted on a logarithmic diagram to obtain characteristic patterns for waters from several geologic sources.

  1. Dynamic factor analysis for estimating ground water arsenic trends.

    PubMed

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  2. Ground-water contribution to dose from past Hanford Operations

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  3. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  4. Ground-water quality protection; why it's important to you

    USGS Publications Warehouse

    Webbers, Ank

    1995-01-01

    Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.

  5. Ground-water resources of the Clatsop Plains sand-dune area, Clatsop County, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1970-01-01

    Although the average annual precipitation of the Clatsop Plains is 78.5 inches, the area is not without problems of water supply. The Clatsop Plains area ix underlain by Tertiary bedrock of low permeability that stores and yields small quantities of ground water, which may be of poor chemical quality. This Tertiary bedrock furnishes only minor ground-water discharge to maintain the base flow of streams. The flow of rivers and creeks, normally abundant during the wet season, decreases greatly during the dry summer months. The lowlands are overlain by extensive deposits of dune and beach sand. The dune sand is permeable and can absorb and store, as fresh water, a large percentage of the annual precipitation. In the central part of the dune area, the saturated thickness of the sand ranges from 95 to more than 150 feet. Most of the ground water in the sand discharges to the ocean through beach-line seeps and underflow. Much of the water now being discharged to the ocean could be recovered by pumping from properly located, designed, and constructed wells. Three test wells drilled as part of this study are capable of yielding 100 gallons per minute although they are equipped with only short lengths of well screen. It is estimated that 2,500 acre-feet of ground water per year per square mile of area may be available for withdrawal in the 10 square mile area that is most favorable for development. The water from the dune sand is soft to moderately hard, has a low chloride concentration, and is of generally good chemical quality; however, at places it is weakly acidic and contains sufficient dissolved iron to make iron removal necessary for some uses. Ground water from shallow depths beneath a few swampy low-lying areas is brown and contains excessive concentrations of iron.

  6. Pesticides in ground water: distribution, trends, and governing factors

    USGS Publications Warehouse

    Barbash, Jack; Resek, Elizabeth A.

    1997-01-01

    A comprehensive review of published information on the distribution and behavior of pesticides and their transformation products in ground water indicates that pesticides from every chemical class have been detected in ground waters of the United States. Many of these compounds are commonly present at low concentrations in ground water beneath agricultural land. Little information is available on their occurrence beneath non-agricultural land, although the intensity of their use in such areas (on lawns, golf courses, rights of way, timberlands, etc.) is often comparable to, or greater than agricultural use. Information on pesticides in ground water is not sufficient to provide either a statistically representative view of pesticide occurrence in ground water across the United States, or an indication of long-term trends or changes in the severity or extent of this contamination over the past three decades. This is largely due to wide variations in analytical detection limits, well selection procedures, and other design features among studies conducted in different areas or at different times. Past approaches have not been well suited for distinguishing "point source" from "nonpoint source" pesticide contamination. Among the variety of natural and anthropogenic factors examined, those that appear to be most strongly associated with the intensity of pesticide contamination of ground water are the depth, construction and age of the sampled wells, the amount of recharge (by precipitation or irrigation), and the depth of tillage. Approaches commonly employed for predicting pesticide distributions in the subsurface--including computer simulations, indicator solutes (e.g., nitrate or tritium), and ground-water vulnerability assessments--generally provide unreliable predictions of pesticide occurrence in ground water. Such difficulties may arise largely from a general failure to account for the preferential transport of pesticides in the subsurface. Significant

  7. Ground Watering of the Death Valley Region, Nevada and California

    SciTech Connect

    USGS

    2006-10-12

    Water is a precious commodity, especially in the arid southwest region of the US, where there is a limited supply of both surface water and ground water. Ground water has a variety of uses (such as agricultural, commercial, and domestic) in the Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California. The DVRFS, an area of about 100,000 square kilometers, contains very complex geology and hydrology. Using a computer model to represent this complex system the US Geological Survey (USGS) simulated ground-water flow in the Death Valley region for use with US Department of Energy (DOE) projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the Nation's proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  8. Applications of thermal remote sensing to detailed ground water studies

    NASA Technical Reports Server (NTRS)

    Souto-Maior, J.

    1973-01-01

    Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.

  9. Ground-water in the Austin area, Lander County, Nevada

    USGS Publications Warehouse

    Phoenix, David A.

    1949-01-01

    The U.S. Geological Survey, in cooperation with the State Engineer of Nevada, made a preliminary survey of ground-water conditions in the Austin area, Nev., during the period July 25 to 28, 1949. The purpose was to evaluate ground-water conditions with special reference to the quantity of ground water that might be available in the area--an adequate water supply has been a constant problem throughout the history of the Austin area. The investigation was made by the writer under the supervision of Thomas W. Robinson, district engineer, Ground Water Branch, U.S. Geological Survey. Material assistance was given in the field by local residents. Frank Bertrand, water commissioner, Thomas Peacock, county assessor, and George McGinnis, county commissioner, guided the writer to springs new utilized by the town of Austin and rendered other valuable field assistance.

  10. Ground-Water Reconnaissance at Pinnacles National Monument, California

    USGS Publications Warehouse

    Evenson, R.E.

    1962-01-01

    Ground-water supplies at Pinnacles National Monument have been obtained from springs that occur in fractures and along bedding planes of volcanic flows and deposits, and from springs discharged from perched water in a sedimentary fanglomerate formation. The spring-water yield is barely adequate to supply existing camp facilities, and therefore a supplemental water supply is necessary before existing campgrounds can be expanded. This supplemental water can be supplied by good-quality ground water obtained from shallow wells drilled in the alluvium of Chalone Creek. The yield of properly constructed wells in this area should exceed 10 gallons per minute.

  11. Evidence for ground-water stratification near Yucca Mountain, Nevada

    USGS Publications Warehouse

    Futa, K.; Marshall, B.D.; Peterman, Z.E.

    2006-01-01

    Major- and trace-element concentrations and strontium isotope ratios (strontium-87/strontium-86) in samples of ground water potentially can be useful in delineating flow paths in the complex ground-water system in the vicinity of Yucca Mountain, Nevada. Water samples were collected from boreholes to characterize the lateral and vertical variability in the composition of water in the saturated zone. Discrete sampling of water-producing intervals in the saturated zone includes isolating borehole sections with packers and extracting pore water from core obtained by sonic drilling. Chemical and isotopic stratification was identified in the saturated zone beneath southern Fortymile Wash.

  12. Ground-water contribution to dose from past Hanford operations

    SciTech Connect

    Freshley, M. D.; Thorne, P. D.

    1992-01-01

    The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work

  13. Evaluation of the ground-water resources of the lower Susquehanna River basin, Pennsylvania and Maryland

    USGS Publications Warehouse

    Gerhart, James M.; Lazorchick, George J.

    1988-01-01

    Ground water in the 3,458-square-mile lower Susquehanna River basin occupies secondary openings in bedrock. The distribution of openings is a function of lithology, depth, and topography. Local flow systems account for most of the total ground-water flow. Average annual recharge for the lower basin is 1,857 million gallons per day, most of which discharges to streams. The water table is a subdued replica of land surface; its depth varies with topography but is generally 20 to 70 feet below land surface. Ground water circulates to depths of 500 to 600 feet below the water table. A digital model of regional, unconfined groundwater flow was developed and used to evaluate the ground-water resources of the lower basin. On the basis of lithologic and hydrologic differences, the area was subdivided into 21 hydrogeologic units, each with different hydrologic characteristics. Each unit was divided into two layers to take into account decreasing secondary permeability with depth. A finite-difference grid with square blocks approximately 1 mile on a side was used. The model was calibrated under steady-state and transient conditions. In the steady-state calibration, the model-generated results were compared with estimated water-table altitudes and estimated base flows. In the transient calibration, the model-generated results were compared with observed changes in water-table altitude from November 1, 1980, through April 22, 1981. Hydraulic conductivity increases from hilltops to Valley bottoms. The average hydraulic conductivity for carbonate units is about 21 feet per day, which is an order of magnitude greater than the corresponding averages for Paleozoic sedimentary, Triassic sedimentary, and crystalline units. The Cumberland Valley carbonate rocks have the greatest average hydraulic conductivity-about 174 feet per day in valley bottoms. The average gaining-stream leakage coefficient for all carbonate units is about 16 feet per day, which is two orders of magnitude greater

  14. Estimated ground-water availability in the Delaware River basin, 1997-2000

    USGS Publications Warehouse

    Sloto, Ronald A.; Buxton, Debra E.

    2006-01-01

    Ground-water availability using a watershed-based approach was estimated for the 147 watersheds that make up the Delaware River Basin. This study, conducted by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission (DRBC), supports the DRBC's Water Resources Plan for the Delaware River Basin. Different procedures were used to estimate ground-water availability for the region underlain by fractured rocks in the upper part of the basin and for surficial aquifers in the region underlain by unconsolidated sediments in the lower part of the basin. The methodology is similar to that used for the Delaware River Basin Commission's Ground-Water Protected Area in Pennsylvania. For all watersheds, ground-water availability was equated to average annual base flow. Ground-water availability for the 109 watersheds underlain by fractured rocks in Delaware, New Jersey, New York, and Pennsylvania was based on lithology and physiographic province. Lithology was generalized by grouping 183 geologic units into 14 categories on the basis of rock type and physiographic province. Twenty-three index streamflow-gaging stations were selected to represent the 14 categories. A base-flow-recurrence analysis was used to determine the average annual 2-, 5-, 10-, 25-, and 50-year-recurrence intervals for each index station. A GIS analysis used lithology and base flow at the index stations to determine the average annual base flow for the 109 watersheds. Average annual base flow for these watersheds ranged from 0.313 to 0.915 million gallons per day per square mile for the 2-year-recurrence interval to 0.150 to 0.505 million gallons per day per square mile for the 50-year-recurrence interval. Ground-water availability for watersheds underlain by unconsolidated surficial aquifers was based on predominant surficial geology and land use, which were determined from statistical tests to be the most significant controlling factors of base flow. Twenty-one index streamflow

  15. Hanford Site ground-water monitoring for 1993

    SciTech Connect

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  16. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    USGS Publications Warehouse

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  17. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona--2004-05

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2006-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2004, total ground-water withdrawals were 7,210 acre-feet, industrial withdrawals were 4,370 acre-feet, and municipal withdrawals were 2,840 acre-feet. From 2003 to 2004, total withdrawals decreased by less than 1 percent, industrial withdrawals decreased by 2 percent, and municipal withdrawals increased by 2 percent. From 2004 to 2005, annually measured water levels declined in 6 of 13 wells in the unconfined areas of the aquifer, and the median change was -0.1 foot. Water levels declined in 8 of 12 wells in the confined area of the aquifer, and the median change was -1.2 feet. From the prestress period (prior to 1965) to 2005, the median water-level change for 33 wells was -9.0 feet. Median water-level changes were -0.6 foot for 16 wells in the unconfined areas and -32.0 feet for 17 wells in the confined area. Discharges were measured once in 2004 and once in 2005 at four springs. Discharge increased by 8 percent at Pasture Canyon Spring, decreased by 5 percent at Moenkopi School Spring, increased by 71 percent at an unnamed spring near Dennehotso, and stayed the same at Burro Spring. For the period of record at each spring, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent

  18. Assessing ground water development potential using landsat imagery.

    PubMed

    Mutiti, Samuel; Levy, Jonathan; Mutiti, Christine; Gaturu, Ndung'u S

    2010-01-01

    Seven villages in southeastern Kenya surround Mt. Kasigau and depend on the mountain's cloud forest for their water supply. Five of these villages have regularly experienced water shortages, and all village water supplies were contaminated with Escherichia coli bacteria. There is a need to economically find new sources of fresh ground water. Remote sensing offers a relatively quick and cost-effective way of identifying areas with high potential for ground water development. This study used spectral properties of features on Landsat remote sensing imagery to map linear features, soil types, surface moisture, and vegetation. Linear features represented geologic or geomorphologic features indicating either shallow ground water or areas of increased subsurface hydraulic conductivity. Regarding soil type, black soils were identified as potential indicators of shallow aquifers based on their relatively lower elevation and association with river valleys. A vegetation map was created using unsupervised classification, and three of the resulting vegetation classes were observed to be commonly associated with wet areas and/or ground water discharge. A wetness map, created using tasseled cap analysis, was used to identify all areas of high ground moisture, including those that corresponded to vegetated areas. The linear features, soil type, vegetation, and wetness maps were overlaid to produce a composite that highlighted areas with the highest potential for ground water development. Electrical resistivity surveys confirmed that areas highlighted by the composite image had relatively shallow depths to the water table. Some figures in this paper are available in color in the online version of the paper. PMID:19210559

  19. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  20. Georgia's Ground-Water Resources and Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.

    2006-01-01

    The U.S. Geological Survey (USGS) ground-water network for Georgia currently consists of 170 wells in which ground-water levels are continuously monitored. Most of the wells are locatedin the Coastal Plain in the southern part of the State where ground-water pumping stress is high. In particular, there are large concentrations of wells in coastal and southwestern Georgia areas, where there are issues related to ground-water pumping, saltwater intrusion along the coast, and diminished streamflow in southwestern Georgia due to irrigation pumping. The map at right shows the USGS ground-water monitoring network for Georgia. Ground-water levels are monitored in 170 wells statewide, of which 19 transmit data in real time via satellite and posted on the World Wide Web at http://waterdata.usgs.gov/ga/nwis/current/?type=gw . A greater concentration of wells occurs in the Coastal Plain where there are several layers of aquifers and in coastal and southwestern Georgia areas, which are areas with specific ground-water issues.

  1. Latin hypercube approach to estimate uncertainty in ground water vulnerability.

    PubMed

    Gurdak, Jason J; McCray, John E; Thyne, Geoffrey; Qi, Sharon L

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. PMID:17470124

  2. Ground-water resources of the El Paso area, Texas

    USGS Publications Warehouse

    Sayre, Albert Nelson; Livingston, Penn Poore

    1945-01-01

    released from storage by the formation of the cone centering in the Mesa field was calculated at 22,000 acre-feet, but the total pumpage was estimated to have been 90,000 acre-feet. Thus, about one-fourth of the total pumpage was taken from storage; the remaining three-fourths and apparently was taken from recharge. About 210,000 acre-feet of water has been pumped from the cone of depression in the El Paso Valley in and near El Paso. The volume of this cone could not be determined because there are artesian conditions in this area. Computations were made of the amount of water that would be recovered from storage if, for a distance of 10 miles north of the Mesa well field, the water level in a series of wells were drawn down the same amount as the present drawdown in the wells in that field. The water that would be recovered from storage in the formation 0f this depression in the ground water surface was calculated at about 130,000 acre-feet, the equivalent of about 70 years' supply at the 1935 rate of pumping.It is, of course, available in addition to the annual recharge. The sudden increase in 1924 in the saltwater content of the water from El Paso well 3 (well 52), in the Montana well field, was shown to be the result of a leak in the casing at a depth of about 127 feet, and the well was successfully repaired during the investigation. However, the chloride content of all of the wells in the field has been increasing gradually. This may indicate that salty water is being pulled in from considerable distances or that the barriers between the fresh-water-bearing beds and the saltwater-bearing beds above-them are not capable of preventing vertical movement of the ground water. The fact that in the valley the static water level in the shallow beds yielding poor water is higher than that in the deeper beds is disquieting, and if the level in the lower beds continues to decline, seepage from the river will eventually force the shallow highly mineralized water

  3. Radon-222 in the ground water of Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units. The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Signifi- cant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types. Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  4. Identification of technical guidance related to ground water monitoring

    SciTech Connect

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  5. Ground-water resources data for Baldwin County, Alabama

    USGS Publications Warehouse

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  6. The ground-water system in southeastern Laramie County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.; Borchert, William B.

    1972-01-01

    Increased development of irrigation wells in southeastern Laramie County, Wyo., has caused concern about the quantity of water available. Ground water from approximately 230 large-capacity wells is used to irrigate most of the 18,165 acres under irrigation. The purpose of this study is to provide more knowledge about the character of the aquifers, quantity of water in storage, rate of withdrawal, and the effect of withdrawals on streamflow. The area studied consists of about 400 square miles in southeastern Laramie County in the extreme southeast corner of Wyoming. The White River Formation of Oligocene age and alluvium of Quaternary age are the principal aquifers. The White River Formation is made up primarily of clay, silt, and fine sand. Secondary permeability in the White River Formation accounts for it being an important aquifer. The alluvium, which Includes terrace and flood-plain deposits, consists of sand and gravel that contain some lenses of silt and clay. Existence of secondary permeability in the White River Formation has been accepted for some time although the nature of the secondary permeability has been disputed. Examination of downhole conditions with a television camera during this study revealed openings in the formation that appeared to be similar to tubes or caverns. The openings were of various sizes and shapes but only a few appeared to be associated with fracturing. Solution activity in the formation probably is an important factor in the development of secondary permeability. The study area was divided into the Pine Bluffs-Egbert area and the Carpenter area. Ground-water movement in the Pine Bluffs-Egbert area is generally eastward into Nebraska; in the Carpenter area, movement is generally southward into Colorado. Pumpage from large-capacity wells in the Pine Bluffs-Egbert area was estimated to be about 21,790 acre-feet in 1971. Water levels exhibited a declining trend annually in some areas during the period of record. Data indicate that

  7. Ground-water resources of north-central Connecticut

    USGS Publications Warehouse

    Cushman, Robert Vittum

    1964-01-01

    The term 'north-central Connecticut' in this report refers to an area of about 640 square miles within the central lowland of the Connecticut River basin north of Middletown. The area is mostly a broad valley floor underlain by unconsolidated deposits of Pleistocene and Recent age which mantle an erosional surface formed on consolidated rocks of pre-Triassic and Triassic age. The mean annual precipitation at Hartford, near the center of the area, is 42.83 inches and is uniformly distributed throughout the year. The average annual streamflow from the area is about 22 inches or about half the precipitation. The consolidated water-bearing formations are crystalline rocks of pre-Triassic age and sedimentary and igneous rocks of the Newark group of Triassic age. The crystalline rocks include the Middletown gneiss, the Maromas granite gneiss, the Glastonbury granite-gneiss of Rice and Gregory (1906), and the Bolton schist which form the basement complex and the Eastern Upland of north-central Connecticut. Enough water for domestic, stock, and small commercial use generally can be obtained from the crystalline rocks. Recoverable ground water occurs in the interconnected joints and fracture zones and is yielded in amounts ranging from 29 to 35 gpm (gallons per minute) to wells ranging in depth from 29 to 550 feet. The sedimentary rocks of Triassic age underlie all the Connecticut River Lowland and are predominantly arkosic sandstone and shale. Water supplies sufficient for domestic, stock, and small commercial use can be obtained from shallow wells penetrating these rocks, and larger supplies sufficient for industries and smaller municipalities can probably be obtained from deeper wells. Reported yields range from ? to 578 gpm; the larger yields are generally obtained from wells between 300 and 600 feet in depth. Yields are larger where the overlying material is sand and gravel or where the rocks are well fractured. The igneous rocks of Triassic age are basalt and have

  8. Deregulation, chemical waste, and ground water: a 1949 debate.

    PubMed

    Ross, Benjamin; Amter, Steven

    2002-03-01

    When did scientists, regulators, and industry first realize that industrial waste threatens the quality of ground-water? The conventional wisdom holds that widespread knowledge of this problem only dates back to the 1970s. In this view, what knowledge did exist earlier was confined to small circles of technical specialists and not generally known in industry. The passage of the Dickey Act, which established California's Water Quality Control Boards in 1949, provides documentation of events and ideas against which this hypothesis can be tested directly. A legislative committee, after lenghty public hearings, produced a detailed scientific report about ground-water and stream pollution. Bitter public controversy then erupted among politicians, industry, regulators and scientists about whether and how to protect ground-water supplies from contamination by industrial wastes. This controversy in the most populous region of the western United States demonstrates that many well-informed policy-makers knew that industrial wastes could pollute ground-water.

  9. Ground-water field trip, Tucson to Nogales, Arizona

    USGS Publications Warehouse

    Coates, D.R.; Halpenny, L.C.

    1954-01-01

    A field excursion following the route described herein was conducted as a part of the curriculum of the 6th Ground Water Short Course, which was held by the Geological Survey at the University of Arizona in April 1954. The route log and descriptive text were designed to provide a general background of the ground-water situation in the Upper Santa Cruz Basin, a few of the geologic features that affect the occurrence of ground water, and some of the historical highlights of the region. 

  10. Estimating the probability of elevated nitrate (NO2+NO3-N) concentrations in ground water in the Columbia Basin Ground Water Management Area, Washington

    USGS Publications Warehouse

    Frans, Lonna M.

    2000-01-01

    Logistic regression was used to relate anthropogenic (man-made) and natural factors to the occurrence of elevated concentrations of nitrite plus nitrate as nitrogen in ground water in the Columbia Basin Ground Water Management Area, eastern Washington. Variables that were analyzed included well depth, depth of well casing, ground-water recharge rates, presence of canals, fertilizer application amounts, soils, surficial geology, and land-use types. The variables that best explain the occurrence of nitrate concentrations above 3 milligrams per liter in wells were the amount of fertilizer applied annually within a 2-kilometer radius of a well and the depth of the well casing; the variables that best explain the occurrence of nitrate above 10 milligrams per liter included the amount of fertilizer applied annually within a 3-kilometer radius of a well, the depth of the well casing, and the mean soil hydrologic group, which is a measure of soil infiltration rate. Based on the relations between these variables and elevated nitrate concentrations, models were developed using logistic regression that predict the probability that ground water will exceed a nitrate concentration of either 3 milligrams per liter or 10 milligrams per liter. Maps were produced that illustrate the predicted probability that ground-water nitrate concentrations will exceed 3 milligrams per liter or 10 milligrams per liter for wells cased to 78 feet below land surface (median casing depth) and the predicted depth to which wells would need to be cased in order to have an 80-percent probability of drawing water with a nitrate concentration below either 3 milligrams per liter or 10 milligrams per liter. Maps showing the predicted probability for the occurrence of elevated nitrate concentrations indicate that the irrigated agricultural regions are most at risk. The predicted depths to which wells need to be cased in order to have an 80-percent chance of obtaining low nitrate ground water exceed 600 feet

  11. Transboundary impacts on regional ground water modeling in Texas

    USGS Publications Warehouse

    Rainwater, K.; Stovall, J.; Frailey, S.; Urban, L.

    2005-01-01

    Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to

  12. Tectonic influences on ground water quality: insight from complementary methods.

    PubMed

    Earman, Sam; McPherson, Brian J O L; Phillips, Fred M; Ralser, Steve; Herrin, James M; Broska, James

    2008-01-01

    A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories.

  13. Sewage in ground water in the Florida Keys

    SciTech Connect

    Shinn, E.A.

    1995-12-31

    More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels were beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.

  14. An imminent human resource crisis in ground water hydrology?

    PubMed

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  15. Identification of Naegleria fowleri in warm ground water aquifers.

    PubMed

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  16. Arsenic Species in the Ground Water

    EPA Science Inventory

    Abstract Arsenic concentrations in ground varies widely and regionally across the United States and exists as oxyanions having two oxidation states: As(+III) and As(+V). As(V) is effectively removed by most arsenic treatment processes whereas uncharged As(III) is poorly removed...

  17. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.

    2005-01-01

    Cedar Valley, located in the eastern part of Iron County in southwestern Utah, is experiencing rapid population growth. Cedar Valley traditionally has supported agriculture, but the growing population needs a larger share of the available water resources. Water withdrawn from the unconsolidated basin fill is the primary source for public supply and is a major source of water for irrigation. Water managers are concerned about increasing demands on the water supply and need hydrologic information to manage this limited water resource and minimize flow of water unsuitable for domestic use toward present and future public-supply sources. Surface water in the study area is derived primarily from snowmelt at higher altitudes east of the study area or from occasional large thunderstorms during the summer. Coal Creek, a perennial stream with an average annual discharge of 24,200 acre-feet per year, is the largest stream in Cedar Valley. Typically, all of the water in Coal Creek is diverted for irrigation during the summer months. All surface water is consumed within the basin by irrigated crops, evapotranspiration, or recharge to the ground-water system. Ground water in Cedar Valley generally moves from primary recharge areas along the eastern margin of the basin where Coal Creek enters, to areas of discharge or subsurface outflow. Recharge to the unconsolidated basin-fill aquifer is by seepage of unconsumed irrigation water, streams, direct precipitation on the unconsolidated basin fill, and subsurface inflow from consolidated rock and Parowan Valley and is estimated to be about 42,000 acre-feet per year. Stable-isotope data indicate that recharge is primarily from winter precipitation. The chloride mass-balance method indicates that recharge may be less than 42,000 acre-feet per year, but is considered a rough approximation because of limited chloride concentration data for precipitation and Coal Creek. Continued declining water levels indicate that recharge is not

  18. Quality of ground water in southern Buchanan County, Virginia

    USGS Publications Warehouse

    Rogers, Stanley M.; Powell, John D.

    1983-01-01

    In seven small contiguous stream basins in the coal area of southwest Virginia, ground water is predominantly bicarbonate in anion composition, with calcium as the major cation in the ridges and sodium the major cation in the lower altitudes. Sulfate is the major anion in water associated with coal seams and in stream waters draining areas extensively disturbed by mining activities. Water found along a major linear feature in the Big Prater Creek valley and water from deep wells in Levisa Fork basin contain chloride as the predominant anion. Hydrogen ion activities (pH) in the ground water range from 5.2 to 8.4. Iron concentrations as high as 14,000 micrograms per liter are present in domestic wells. The chemical composition of most streams changes with diminishing discharge and at baseflow is similar to the composition of local ground water. At high flows, streams draining mined areas are enriched with sulfate. (USGS)

  19. Ground-water resources of Coke County, Texas

    USGS Publications Warehouse

    Wilson, Clyde A.

    1973-01-01

    Coke County, located in semiarid west-central Texas, where large ranches, small farms, and oil production are the main bases of the economy, has a small supply of ground and surface water. Of the approximately 1,900 acre-feet of fresh to moderately saline ground water used in 1968, industry used 880 acre-feet, irrigation used 210 acre-feet, and domestic supply and livestock used 820 acre-feet. All of the water for municipal supply and some of the water for industry is obtained from surface-water reservoirs.

  20. Geology and ground-water resources of the Ahtanum Valley, Yakima County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1962-01-01

    , variations in the flow of irrigation ditches and in rates of water application, variations in local precipitation, and seasonal differences in withdrawals from wells. Annual fluctuations of levels generally are less than 10 feet except in localities of heavy pumping. Periodic measurements of water levels in two observation wells in the area indicate, locally at least, a persistent decline in artesian pressures in confined basalt aquifers, although the record is too short to show whether withdrawal by pumping has reached, or is nearing, an optimum balance with recharge. The aquifers are recharged by precipitation, by infiltration from streams, and by ground-water underflow into the area. Ground water is discharged by seepage to streams, by evapotranspiration, by springs and seeps at the land surface, and, artificially, by withdrawal from wells. It is estimated that the seepage discharge to the Yakima River from the area studied may range from about 20,000 to 25,000 acre-feet per year. The consumptive waste of ground water by phreatophytes probably exceeds 4,000 acre-feet per year and may represent a large reclaimable source of water in the area. The annual withdrawal of ground water from wells in the area for domestic, industrial, irrigation, public, and stock supplies is estimated to be 6,300 acre-feet. The chemical quality of the ground water generally is satisfactory for most purposes, although the water from many wells is harder than is desirable for domestic use.

  1. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  2. Herbicide loading to shallow ground water beneath Nebraska's Management Systems Evaluation Area.

    PubMed

    Spalding, Roy F; Watts, Darrell G; Snow, Daniel D; Cassada, David A; Exner, Mary E; Schepers, James S

    2003-01-01

    Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality. PMID:12549546

  3. Hydrology, water quality, and ground-water-development alternatives in the Chipuxet ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Johnston, H.E.; Dickerman, D.C.

    1985-01-01

    A glacial sand and gravel aquifer in the Chipuxet River basin of Rhode Island forms a ground-water reservoir that could yield as much as 8.6 million gallons per day to wells; however, some streams would go dry for extended periods of time. The State Water Resources Board has tested five site that it proposes to develop for a public supply of 3 million gallons per day. A digital model was used to determine how withdrawal at this rate from alternative combinations of wells would affect water levels and streamflow. Results show that withdrawal of 3 million gallons per day would have a minimal effect on water levels, but that withdrawal at this rate from some well combinations could cause the Chipuxet River to have little or no flow for 90 consecutive days on the average of 1 year in 20. Quality of ground water is generally good, but leaching of fertilizers applied to croplands, which overlie much of the aquifer, has caused locally excessive concentrations of nitrate. Induced infiltration of surface water through organic sediments that line the bottoms of ponds and streams also seems to be the cause of elevated concentrations of manganese in water from some heavily pumped wells. (USGS)

  4. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the uppermost aquifer (as defined in § 258.2) that: (1) Represent the quality of background ground... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... under § 258.40 that ensure detection of groundwater contamination in the uppermost aquifer. (b)...

  5. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, Through December 1992

    USGS Publications Warehouse

    La Camera, Richard J.; Westenburg, Craig L.

    1994-01-01

    Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.

  6. Flowpath delineation and ground water age, Allequash Basin, Wisconsin

    USGS Publications Warehouse

    Pint, Christine D.; Hunt, Randall J.; Anderson, Mary P.

    2003-01-01

    An analysis of ground water flowpaths to a lake and creek in northern Wisconsin shows the flow system in a geologically simple basin dominated by lakes can be surprisingly complex. Differences in source area, i.e., lakes or terrestrial, combined with the presence of intervening lakes, which may or may not capture underflowing ground water as water moves downgradient from recharge areas, contribute to a complex mix of flowpaths. The result is water of different chemistry and vastly different ages may discharge in close proximity. Flowpaths, travel times, and capture zones in the Allequash Basin in northern Wisconsin were delineated using particle tracking based on a calibrated steady-state ground water flow model. The flowpath analysis supports the conclusions of Walker et al. (2003) who made inferences about flowpath characteristics from isotope and major ion chemistry. Simulated particle tracking agreed with Walker et al.'s measurements of water source (lake or terrestrial recharge) in the stream subsurface and also supported their assertion that ground water with a high calcium concentration in the lower basin of Allequash Lake is derived from long flowpaths. Numerical simulations show that ground water discharging in this area originates more than 5 km away in a source area located upgradient of Big Muskellunge Lake, which is upgradient of Allequash Lake. These results graphically illustrate that in settings with multiple sources of water with different age characteristics and converging flowlines (like the Allequash Basin) it may be difficult to obtain accurate estimates of ground water age by chemical analyses of ground water.

  7. Factors affecting ground-water quality in Oakland County, Michigan

    USGS Publications Warehouse

    ,

    2004-01-01

    Ground water is water stored in pores within soil and rock beneath the land surface. When these pores are connected so that water can be transmitted to wells or springs, these bodies of soil and rock are termed aquifers, from two Greek words meaning “water” and “to bear.” 

  8. Selected bibliography of ground-water in the United States

    SciTech Connect

    Ward-McLemore, E.

    1984-01-01

    This bibliography contains 899 records related to the hydrology of the US. Specific topics include, but are not limited to: aquifers; artesian wells; geophysics; ground water; flow models; pollution; tritium; water levels; water policy; and legal aspects. The subject index provides listings of records related to each state. Some of the items (81) are themselves bibliographies.

  9. Areas contributing ground water to the Peconic Estuary, and ground-water budgets for the north and south forks and Shelter Island, eastern Suffolk County, New York

    USGS Publications Warehouse

    Schubert, C.E.

    1998-01-01

    Fork, 11 x 106 ft3/d from the South Fork, and 1.7 x 106 ft3/d from Shelter Island. The total contribution to the estuary from these areas is about 16 x 106 ft3/d?roughly twice the total contribution from the main body of Long Island. In contrast to the freshwater contribution from the main body of Long Island, which is concentrated near the head of the estuary, the contributions from the North and South Forks and Shelter Island are distributed along the east-west length of the estuary. Changes in water-table altitude and the resulting changes in total discharge to the Peconic Estuary were estimated from the relative changes in annual mean water level at observation wells. The 1985-95 interval included 7 years (1985-88, 1991- 92, 1995) of generally below-average water-table altitudes that presumably caused similar decreases in ground-water discharge to the estuary; intense Brown Tide blooms coincided with six of these years (1985-88, 1991, 1995), and localized blooms coincided with the remaining year (1992). Watertable altitudes in the remaining 4 years of the 1985-95 interval (1989-90, 1993-94) were nearly average or above average, and presumably produced comparably near-average or increased amounts of ground-water discharge to the estuary; none of these years saw any widespread Brown Tide blooms. Fluctuations in the amounts of ground-water discharge to the estuary appear to affect the occurrence of Brown Tide blooms, although the factors that trigger the blooms have not been determined.

  10. The 19th Annual Intelligent Ground Vehicle Competition: student built autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2012-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 19 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from almost 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  11. The 18th Annual Intelligent Ground Vehicle Competition: trends and influences for intelligent ground vehicle control

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Frederick, Philip; Smuda, William

    2011-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 18 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 75 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  12. Water Resources Data, New Jersey, Water Year 2002--Volume 2. Ground-Water Data

    USGS Publications Warehouse

    ,

    2003-01-01

    Water-resources data for the 2002 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and quality of streams; stage and contents of lakes and reservoirs; and levels and quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2002 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 15 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 6 continuous-recording stations. Locations of water-quality stations are shown in figures 12-14. Locations of miscellaneous water-quality sites are shown in figures 40-41. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  13. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... necessary, to enable collection of ground-water samples. The annular space (i.e., the space between the bore... maintained so that they perform to design specifications throughout the life of the monitoring program....

  14. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... necessary, to enable collection of ground-water samples. The annular space (i.e., the space between the bore... maintained so that they perform to design specifications throughout the life of the monitoring program....

  15. CONTAMINATION OF PUBLIC GROUND WATER SUPPLIES BY SUPERFUND SITES

    EPA Science Inventory

    Multiple sources of contamination can affect ground water supplies, including municipal landfills, industrial operations, leaking underground storage tanks, septic tank systems, and prioritized uncontrolled hazardous waste sites known as “Superfund” sites. A review of Superfund R...

  16. ACQUISITION OF REPRESENTATIVE GROUND WATER QUALITY SAMPLES FOR METALS

    EPA Science Inventory

    R.S. Kerr Environmental Research Laboratory (RSKERL) personnel have evaluated sampling procedures for the collection of representative, accurate, and reproducible ground water quality samples for metals for the past four years. Intensive sampling research at three different field...

  17. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  18. Site Characterization for MNA of Radionuclides in Ground Water

    EPA Science Inventory

    Monitored natural attenuation is often evaluated as a component of the remedy for ground water contaminated with radionuclides. When properly employed, monitored natural attenuation (MNA) may provide an effective knowledge-based remedy where a thorough engineering analysis inform...

  19. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  20. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethynylestradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl der...

  1. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethinyl estradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl de...

  2. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  3. Availability of Ground-Water Data for Idaho, Water Year 2006

    USGS Publications Warehouse

    Campbell, A.M.

    2007-01-01

    Introduction The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, collects a large amount of data each year pertaining to the ground-water resources of Idaho. These data constitute a valuable database for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 2005, data were published in a report series entitled, 'Water Resources Data for Idaho, Ground-Water Data.' Prior to the introduction of that series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 2006, the ground-water data reporting requirement was discontinued. However, data continue to be available in our databases. This fact sheet serves as an index to ground-water data for 2006.

  4. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  5. Handbook for state ground water managers

    SciTech Connect

    Not Available

    1992-05-01

    ;Table of Contents: Nonpoint Source Implementation; State Public Water System Supervision; State Underground Water Source Protection (Underground Injection Control); Water Pollution Control -- State and Interstate Program Support (106 Grants); Water Quality Management Planning; Agriculture in Concert with the Environment; Consolidated Pesticide Compliance Monitoring and Program Cooperative Agreements; Pollution Prevention Incentives for States; Hazardous Substance Response Trust Fund; Hazardous Waste Financial Assistance; Underground Storage Tank Program; Leaking Underground Storage Tank Trust Fund; State/EPA Data Management Financial Assistance Program; Environmental Education; and Multi-Media Assistance Agreements for Indian Tribes.

  6. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  7. Tritium migration in A/M-Area ground water

    SciTech Connect

    Strom, R.N.; Kaback, D.S.

    1992-01-01

    Volatile organic compounds (VOC's) have entered aquifers in Cretaceous-aged sediments in the A/M-Area as a result of site operations. Tritium in A/M-Area ground water was investigated as a tracer to determine the movement of ground water in the subsurface and the transport mechanism of VOC's. The investigation was focused primarily on determining the continuity and integrity of the clay layers in the Ellenton Formation and their effectiveness as aquitards below the aquifers in Tertiary sediments.

  8. Proceedings of the second international conference on ground water ecology

    SciTech Connect

    Stanford, J.A.; Valett, H.M.

    1994-12-31

    This conference was held March 27--30, 1994 in Atlanta, Georgia. The purpose of this conference was to provide a forum for state-of-the-art information on groundwater ecosystems. Attention is focused on the following topics: Biogeochemistry; ecology of metazoans; ground water management; microbial ecology; modeling; pollution, restoration and bioremediation; problems in karst systems; and surface and ground water interaction zones. Individual papers are processed separately for inclusion in the appropriate data bases.

  9. Ground water discharge by evapotranspiration in wetlands of an arid intermountain basin

    NASA Astrophysics Data System (ADS)

    Sanderson, John S.; Cooper, David J.

    2008-04-01

    SummaryTo improve basin-scale modeling of ground water discharge by evapotranspiration (ET) in relation to water table depth, daily ET was measured using the Bowen ratio energy balance method during 1999-2005 in five herbaceous plant dominated wetlands in an arid intermountain basin in Colorado, USA. Three wetlands were wet meadows supplied primarily by regional ground water flow and two were playas supplied primarily by local stream flow. In wet meadows, mean daily water table depth (WTD) ranged from 0.00 m (ground surface) to 1.2 m, with low inter-annual variability. In wet meadows, annual actual ET (ET a) was 751-994 mm, and ground water discharge from the shallow aquifer (ET g) was 75-88% of ET a. In playas, mean daily WTD ranged from -0.65 to 1.89 m, with high inter-annual variability. In playas, annual ET a was 352-892 mm, and ET g was 0-77% of ET a. The relationship of annual ET g to WTD was compared to existing ET g-WTD models. For wet meadows, ET g decreased exponentially as WTD increased from 0.13 to 0.95 m ( r2 = 0.83, CV = 5%, p < 0.001). In comparison with our findings, existing models under- and over-estimate ET g by -30% to 47% at WTD of 0.13 m, and they under-estimate ET g by -12% to -42% at WTD of 0.95 m. This study found that as the water table declined from near the soil surface to 0.95 m, ET g decreased only ˜26% versus 39-55% estimated by existing models. The magnitude of ET g decrease was 220 mm, whereas existing models predicted decreases up to 700 mm (218% greater). In playas, there was no clear ET g-WTD relationship. Instead, ET g was strongly dependent on the surface water supply. When sufficient surface water inputs occurred to meet ET demand, ET g was ≈0 mm/yr and independent of WTD. When inputs did not meet ET demand, ET g was positive though highly variable at WTD up to 1.68 m.

  10. Ground-water use, locations of production wells, and areas irrigated using ground water in 1998, middle Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2003-01-01

    In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994

  11. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  12. Review of methods for assessing nonpoint-source contaminated ground-water discharge to surface water

    SciTech Connect

    Not Available

    1991-04-01

    The document provides an overview of selected methods that have been used for assessing nonpoint source contaminated ground water discharge to surface water. EPA undertook the project in response to the growing awareness that contaminated ground water discharge is a significant source of nonpoint source contaminant loading to surface water in many parts of the country.

  13. The effects of using ground water to maintain water levels of Cedar Lake, Wisconsin

    USGS Publications Warehouse

    McLeod, R.S.

    1980-01-01

    There were no identifiable changes in measured physical and chemical characteristics of lake water during sustained pumping of ground water into the lake, nor were there identifiable changes in the number or makeup of the phytoplankton community. Differences in physical and chemical characteristics of lake water and ground water added to the lake probably were not great enough to cause changes within the lake.

  14. Ground and Intermediate Water Equilibrium with Water-Bearing Rock Minerals (Moldova) under Anthropogenic Impact

    NASA Astrophysics Data System (ADS)

    Timoshenkova, A. N.; Moraru, C. Ye; Pasechnik, Ye Yu; Tokarenko, O. G.; Butoshina, V. A.

    2016-03-01

    The calculation results of ground water equilibrium with the major water-bearing rock minerals (Moldova) are presented under the condition of anthropogenic impact. As a calculation model the HydroGeo software is used. It is shown that both “ground water-rock” and “intermediate water-rock” systems are in equilibrium with a number of minerals.

  15. Ground-water resources of the alluvial aquifers in northeastern Larimer County, Colorado

    USGS Publications Warehouse

    Hurr, R.T.; Schneider, P.A.

    1977-01-01

    Ground water is a source of municipal, domestic, stock, and irrigation supply for most of northeastern Larimer County, Colo. A study of the alluvial aquifers in the northeastern part of the county was conducted to determine volume of water in storage, rate and location of ground-water withdrawals, and chemical quality of the water with particular attention to dissolved solids, hardness, sulfate, and selenium. There are 251 large-capacity wells in the study area. Well yields range from about 80 gpm (gallons per minute) to a little over 1,800 gpm. Total volume of water in storage is about 133,000 acre-feet--32 ,000 acre-feet in the alluvium of Buckeye terrace and 101,000 acre-feet in the valley-fill aquifer associated with Boxelder Creek. Ground-water withdrawals for irrigation are about 25,000 acre-feet annually. The municipal wells pumped 210 acre-feet in 1974. The factors affecting ground-water quality are the quality of applied irrigation water, the amount of water lost to evapotranspiration during irrigation, and, to a lesser degree, solution of soluble material in the alluvium and in the bedrock at the base of the alluvium. Ground water at the north end of the Buckeye terrace contains only about 300 mg/liter dissolved solids. Recharge is from surface water containing less than 90 mg/liter dissolved solids. Concentrations of all constituents increase downgradient to the south due to solution and evaporative concentration. (Woodard-USGS)

  16. Ground-water, surface-water, and water-chemistry data, Black Mesa area, Northeastern Arizona: 1999

    USGS Publications Warehouse

    Thomas, Blakemore E.; Truini, Margot

    2000-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and a precipitation of only about 6 to 12 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 1999, total ground-water withdrawals were 7,110 acre-feet, industrial use was 4,210 acre-feet, and municipal use was 2,900 acre-feet. From 1998 to 1999, total withdrawals increased by 0.7 percent, industrial use increased by 4 percent, and municipal use decreased by 4 percent. From 1998 to 1999, water levels declined in 11 of 15 wells in the unconfined part of the aquifer, and the median decline was 0.7 foot. Water levels declined in 14 of 16 wells in the confined part of the aquifer, and the median decline was 1.2 feet. From the prestress period (prior to 1965) to 1999, the median water-level decline in 31 wells was 10.6 feet. Median water-level changes were 0.0 foot for 15 wells in the unconfined part of the aquifer and a decline of 45.5 feet in 16 wells in the confined part. From 1998 to 1999, discharges were measured annually at four springs. Discharges declined 30 percent and 3 percent at 2 springs, did not change at 1 spring, and increased by 11 percent at 1 spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend was not observed. Continuous records of surface-water discharge have been collected from July 1976 to 1999 at Moenkopi Wash, July 1996 to 1999 at Laguna Creek, June 1993 to 1999 at Dinnebito Wash, and April

  17. Electrical-analog analysis of ground-water depletion in central Arizona

    USGS Publications Warehouse

    Anderson, T.W.

    1968-01-01

    The Salt River Valley and the lower Santa Cruz River basin are the two largest agricultural areas in Arizona. The extensive use of ground water for irrigation has resulted in the need for a thorough appraisal of the present and future ground-water resources. The ground-water reservoir provides 80 percent (3.2 million acre-feet) of the total annual water supply. The amount of water pumped greatly exceeds the rate at which the ground-water supply is being replenished and has resulted in water-level declines of as much as 20 feet per year in some places. The depletion problem is of economic importance because ground water will become more expensive as pumping lifts increase and well yields decrease. The use of electrical-analog modeling techniques has made it possible to predict future ground-water levels under conditions of continued withdrawal in excess of the rate of replenishment. The electrical system is a representation of the hydrologic system: resistors and capacitors represent transmissibility and storage coefficients. The analogy between the two systems is accepted when the data obtained from the model closely match the field data in this instance, measured water-level change since 1923. The prediction of future water-table conditions is accomplished by a simple extension of the pumping trends to determine the resultant effect on the regional water levels. The results of this study indicate the probable depths to water in central Arizona in 1974 and 1984 if the aquifer characteristics are accurately modeled and if withdrawal of ground water continues at the same rate and under the tame areal distribution as existed between 1958 and 1964. The greatest depths to water in 1984 will be more than 700 feet near Stanfield and more than 650 feet in Deer Valley and northeast of Gilbert. South of Eloy and northwest of Litchfield Park, a static water level of more than 550 feet is predicted. The total water-level decline in the 20-year period 1964-84 at the deepest

  18. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  19. Assessing background ground water chemistry beneath a new unsewered subdivision

    USGS Publications Warehouse

    Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.

  20. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.

    PubMed

    Harvey, F Edwin; Ayers, Jerry F; Gosselin, David C

    2007-01-01

    Many endangered or threatened ecosystems depend on ground water for their survival. Nebraska's saline wetlands, home to a number of endangered species, are ecosystems whose development, sustenance, and survival depend on saline ground water discharge at the surface. This study demonstrates that the saline conditions present within the eastern Nebraska saline wetlands result from the upwelling of saline ground water from within the underlying Dakota Aquifer and deeper underlying formations of Pennsylvanian age. Over thousands to tens of thousands of years, saline ground water has migrated over regional scale flowpaths from recharge zones in the west to the present-day discharge zones along the saline streams of Rock, Little Salt, and Salt Creeks in Lancaster and Saunders counties. An endangered endemic species of tiger beetle living within the wetlands has evolved under a unique set of hydrologic conditions, is intolerant to recent anthropogenic changes in hydrology and salinity, and is therefore on the brink of extinction. As a result, the fragility of such systems demands an even greater understanding of the interrelationships among geology, hydrology, water chemistry, and biology than in less imperiled systems where adaptation is more likely. Results further indicate that when dealing with ground water discharge-dependent ecosystems, and particularly those dependent on dissolved constituents as well as the water, wetland management must be expanded outside of the immediate surface location of the visible ecosystem to include areas where recharge and lateral water movement might play a vital role in wetland hydrologic and chemical mixing dynamics. PMID:17973752

  1. Transboundary impacts on regional ground water modeling in Texas.

    PubMed

    Rainwater, Ken; Stovall, Jeff; Frailey, Scott; Urban, Lloyd

    2005-01-01

    Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to

  2. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  3. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  4. Ground water in the Eugene-Springfield area, southern Willamette Valley, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1973-01-01

    quantity of ground water available annually from this area is far greater than the 23,000 acre-feet pumped for all uses in 1968. This pumpage was about 23 percent of the perennial yield (100,000 acre-ft), and about 77,000 acre-feet of water was left available for additional withdrawal. If annual withdrawals of water were increased to 100,000 acre-feet per year, the levels in the ground-water reservoir would be lowered. Once new equilibriums are established, increased withdrawals could be accommodated without progressive losses in aquifer storage or excessive losses in flow of the larger streams. Ground water from the alluvial deposits of the valley plain is chemically suitable for irrigation and other uses, as is most of the water obtained from perched-water bodies in the sedimentary and volcanic rocks. However, the mineral content of water from the older sedimentary rocks, particularly from deeper producing zones, is greater than the mineral content of water from the alluvial deposits. Locally, some of the water from the older rocks is too saline for most uses. Increased use of ground water may result in certain problems pertaining to waste-disposal practices, local overdraft of aquifers, well interference, and well construction. Present data are adequate to evaluate some of the factors relating to foreseeable problems but allow only tentative conclusions to be drawn about other factors, which include local direction of flow, rate of ground-water movement, and areas of possible ground-water contamination. Additional information obtained through systematic study will be needed to deal with these problems.

  5. Bibliography of publications relating to ground water in Connecticut

    USGS Publications Warehouse

    Cushman, R.V.

    1950-01-01

    In 1939, when it became necessary to curtail the work being carried on by the Works Progress Administration, cooperation was arranged between the Federal Ecological Survey and the State Water Commission to continue investigations relative to the over-development of ground-water supplies in the New Haven area. From time to time additional funds have been made available to meet growing demands by the State for data on its ground-water supplied and the present cooperative program between the U.S. Geological Survey and the State Water Commission is a continuation of the original arrangement. It is estimated that about 14 per cont of the State has been covered by recent ground-water surveys and in addition some data are available for another 20 per cent of he State.

  6. Assessing Ground-Water Contamination Across Broad Regions

    NASA Astrophysics Data System (ADS)

    Helsel, D. R.

    2001-05-01

    Ground-water quality is measured at discrete locations, and often interpreted at local scales. However, regional patterns in ground-water quality can be used to: 1) Assess relations between water quality and broad patterns of human activities or geochemical variation; 2) Reduce monitoring costs by sampling more frequently in areas of highest concentration or vulnerability; 3) Prioritize locations for prevention efforts such as for nitrate reduction, to obtain maximum benefits for lower costs; and 4) Project water-quality conditions to unsampled locations based on a regional understanding or "model". Examples of methods for modeling and interpreting ground-water quality at regional scales are presented along with their utility for cost reduction and contamination prevention purposes.

  7. 76 FR 77829 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, Wyoming AGENCY... of Ground Water Contamination near Pavillion, Wyoming.'' The draft research report was prepared by... at the site is potential ground water contamination, based on resident complaints about...

  8. 77 FR 19012 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY... titled, ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research... Ground Water Contamination near Pavillion, Wyoming'' is available via the Internet on the EPA Region...

  9. 77 FR 62234 - Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... AGENCY Draft Research Report: Investigation of Ground Water Contamination Near Pavillion, WY AGENCY... titled, ``Investigation of Ground Water Contamination near Pavillion, Wyoming.'' The draft research... Ground Water Contamination near Pavillion, Wyoming.'' is available via the Internet on the EPA Region...

  10. GROUND WATER AND WATERSHEDS AND ENVIRONMENTAL PROTECTION

    EPA Science Inventory

    Effective watershed management has the potential to achieve both drinking water and ecological protection goals. However, it is important that the watershed perspective be three- dimensional and include the hidden subsurface. The subsurface catchment, or groundwatershed, is geohy...

  11. Hanford Site ground-water monitoring for 1992

    SciTech Connect

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  12. Geology and ground-water resources of Rock County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1964-01-01

    Rock County is in south-central Wisconsin adjacent to the Illinois State line. The county has an area of about 723 square miles and had a population of about 113,000 in 1957 ; it is one of the leading agricultural and industrial counties in the State. The total annual precipitation averages about 32 inches, and the mean annual temperature is about 48 ? F. Land-surface altitudes are generally between 800 and 00 feet, but range from 731 feet, where the Rock River flows into Illinois, to above 1,080 feet, at several places in the northwestern part of the county. The northern part of Rock County consists of the hills and kettles of a terminal moraine which slopes southward to a flat, undissected outwash plain. The southeastern part of the county is an area of gentle slopes, whereas the southwestern part consists of steep-sided valleys and ridges. Rock County is within the drainage basin of the Rock River, which flows southward through the center of the county. The western and southwestern parts of ,the county are drained by the Sugar River und Coon Creek, both of which flow into the Pecatonica River in Illinois and thence into the Rock River. The southeastern part of the county is drained by Turtle Creek, which also flows into Illinois before joining the Rock River. Nearly all the lakes and ponds are in the northern one-third of the county, the area of most recent glaciation. The aquifers in Rock County are of sedimentary origin and include deeply buried sandstones, shales, and dolomites of the Upper Cambrian series. This series overlies crystalline rocks of Precambrian age and supplies water to all the cities and villages in the county. The St. Peter sandstone of Ordovician age underlies all Rock County except where the formation has been removed by erosion in the Rock and Sugar River valleys, and perhaps in Coon Creek valley. The St. Peter sandstone is the principal source of water for domestic, stock, and small industrial wells in the western half of the county

  13. Pesticides in Ground Water of the Maryland Coastal Plain

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  14. Software design for an autonomous ground vehicle for the 13 th Annual Intelligent Ground Vehicle Competition

    NASA Astrophysics Data System (ADS)

    Roberts, Tim; Barber, Daniel; Becker, Brian C.; Gonzalez, Fernando

    2005-10-01

    This paper presents the vision and path planning software design of a totally autonomous vehicle built to compete in the 13th Intelligent Ground Vehicle Competition, IGVC. The vehicle, Calculon, is based on a powered wheelchair and uses a variety of sensors for its navigation and obstacle avoidance including a 3CCD Sony color camera, an outdoor laser range finder, a DGPS, 2 wheel encoders and a solid state compass. The modules forming the core vision system include: filters, color classifier, image segments, and line finder. Our color classifier is based on a modified implementation of an adaptive Gaussian color model similar to those used in some skin detection algorithms. A combination of various image enhancing filters and the color classifier allow for the isolation of possible obstacles within the image. After filtering the image for areas of high brightness and contrast, the line finder performs a Hough Transform to find lines in the image. Our path planning is accomplished using a variety of known and custom algorithms in combination including a modified road map method, a Rapidly Exploring Trees method and a Gaussian Potential Field's method. This paper will present the software design and methods of our autonomous vehicle focusing mainly on the 2 most difficult components, the vision and path planning.

  15. Carbon biogeochemistry of ground water, Guiyang, southwest China.

    PubMed

    Li, Si-Liang; Liu, Cong-Qiang; Tao, Fa-Xiang; Lang, Yun-Chao; Han, Gui-Lin

    2005-01-01

    Variations in the concentrations and isotopic compositions (delta13C(DIC)) of dissolved inorganic carbon (DIC) reflect contamination and biogeochemical cycling of the carbon in ground water. In order to understand contamination and biogeochemical cycling of DIC, we carried out research on the geochemistry of ground water of Guiyang, the capital city of Guizhou Province, China. Results show that ground water is mainly characterized by SO4.HCO3-Ca.Mg and HCO3-Ca.Mg chemical compositions. The hydrochemical characteristics of these types of water are mainly controlled by lithology of the aquifers. HCO3- is the dominant species of DIC in ground water and has lower concentrations and more negative values of delta13C(DIC) in the high-flow (summer monsoon) season, as compared to the low-flow season. This indicates that DIC is relatively enriched in carbon of biological origin in the high-flow season as compared to the low-flow season and that biological activities are the predominant control on shifts of stable carbon isotope values. The evidence that the delta13C(DIC) values of ground water decrease with increasing concentrations of anthropogenic species shows that the carbon isotopic composition of DIC can be a useful tracer of contamination, in addition to biogeochemical cycling of inorganic carbon in ground water. Results from this study show that ground water is impacted by significant levels of contamination from human activities, especially in the urban areas, as well as the northeast and west suburbs, in Guiyang city, southwest China. PMID:16029175

  16. Uranium isotopes in ground water as a prospecting technique

    SciTech Connect

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

  17. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  18. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per

  19. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.

  20. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  1. Evaluation of ground-water contribution to streamflow in coastal Georgia and adjacent parts of Florida and South Carolina

    USGS Publications Warehouse

    Priest, Sherlyn

    2004-01-01

    Stream-aquifer relations in the coastal area of Georgia and adjacent parts of Florida and South Carolina were evaluated as part of the Coastal Georgia Sound Science Initiative, the Georgia Environmental Protection Division's strategy to protect the Upper Floridan aquifer from saltwater intrusion. Ground-water discharge to streams was estimated using three methods: hydrograph separation, drought-streamflow measurements, and linear-regression analysis of streamflow duration. Ground-water discharge during the drought years of 1954, 1981, and 2000 was analyzed for minimum ground-water contribution to streamflow. Hydrograph separation was used to estimate baseflow at eight streamflow gaging stations during the 31-year period 1971?2001. Six additional streamflow gaging stations were evaluated using linear-regression analysis of flow duration to determine mean annual baseflow. The study area centers on three major river systems ? the Salkehatchie?Savannah?Ogeechee, Altamaha?Satilla?St Marys, and Suwannee ? that interact with the underlying ground-water system to varying degrees, largely based on the degree of incision of the river into the aquifer and on the topography. Results presented in this report are being used to calibrate a regional ground-water flow model to evaluate ground-water flow and stream-aquifer relations of the Upper Floridan aquifer. Hydrograph separation indicated decreased baseflow to streams during drought periods as water levels declined in the aquifer. Average mean annual baseflow ranged from 39 to 74 percent of mean annual streamflow, with a mean contribution of 58 percent for the period 1971?2001. In a wet year (1997), baseflow composed from 33 to 70 percent of mean annual streamflow. Drought-streamflow analysis estimated baseflow contribution to streamflow ranged from 0 to 24 percent of mean annual streamflow. Linear-regression analysis of streamflow duration estimated the Q35 (flow that is equaled or exceeded 35 percent of the time) as the most

  2. Water Resources Data, Florida, Water Year 2003, Volume 1B: Northeast Florida Ground Water

    USGS Publications Warehouse

    George, H.G.; Nazarian, A.P.; Dickerson, S.M.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  3. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    USGS Publications Warehouse

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999). In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns. As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of

  4. Delineating and quantifying ground water discharge zones using streambed temperatures.

    PubMed

    Conant, Brewster

    2004-01-01

    Streambed temperature mapping, hydraulic testing using minipiezometers, and geochemical analyses of interstitial water of the streambed were used to delineate the pattern of ground water discharge in a sandy streambed and to develop a flux-based conceptual model for ground water/surface water interactions. A new and simple empirical method was used to relate fluxes obtained from minipiezometer data to streambed temperatures. The relationship allowed flux to be calculated at locations where only streambed temperature measurements were made. Slug testing and potentiomanometer measurements at 34 piezometers indicated ground water discharge ranged from 0.03 to 446 L/m2/day (and possibly as high as 7060 L/m2/day) along a 60 m long by 11 to 14 m wide reach of river. Complex but similar plan-view patterns of flux were calculated for both summer and winter using hundreds of streambed temperatures measured on a 1 by 2 m grid. The reach was dominated by ground water discharge and 5% to 7% of the area accounted for approximately 20% to 24% of the total discharge. < 12% of the total area consisted of recharge zones or no-discharge zones. A conceptual model for ground water/surface water interactions consisting of five different behaviors was developed based on the magnitude and direction of flux across the surface of the streambed. The behaviors include short-circuit discharge (e.g., high-flow springs), high discharge (e.g., preferential flowpaths), low to moderate discharge, no discharge (e.g., horizontal hyporheic or ground water flow), and recharge. Geological variations at depth played a key role in determining which type of flow behavior occurred in the streambed. PMID:15035588

  5. Pesticides in Ground Water of Central and Western Maryland

    USGS Publications Warehouse

    Ator, Scott W.; Reyes, Betzaida

    2008-01-01

    Selected pesticides and degradates (products of pesticide degradation) are detectable in ground water in many parts of central and western Maryland, although concentrations are generally less than 0.1 micrograms per liter. Ground-water samples collected recently (1994-2003) from 72 wells in areas of Maryland underlain by consolidated carbonate, crystalline, or siliciclastic aquifers (areas north and west of the Fall Line) were analyzed for selected pesticides and degradates. Pesticides were typically detected in mixtures of multiple compounds in ground water, and degradates were commonly detected, often at greater concentrations than their respective parent compounds. No pesticides were observed at concentrations greater than established standards for drinking water, and nearly all observed concentrations were below other health-based guidelines. Although such standards and guidelines are generally much greater than measured concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of pesticides and degradates in ground water is related to application practices, as well as chemical and environmental factors that affect the fate and movement of individual compounds.

  6. Eolian transport of geogenic hexavalent chromium to ground water

    USGS Publications Warehouse

    Wood, W.W.; Clark, D.; Imes, J.L.; Councell, T.B.

    2010-01-01

    A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.

  7. Ground-water data collected in the Missouri River Basin units in Kansas during 1949

    USGS Publications Warehouse

    Berry, Delmar W.

    1950-01-01

    Ground-water studies in the Missouri River Basin were begun by the United States Geological Survey during the fall of 1945 as a part of the program for development of the resources of the basin by the U.S. Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the Basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the Federal Geological Survey and the State Geological Survey of Kansas with the cooperation of the Division of Sanitation of the Kansas State Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture. Areas in which ground-water data have been collected under the Missouri Basin program include the Almena Unit in Norton and Phillips Counties; the Bostwick Unit in Jewell, Republic, and Cloud Counties; the Cedar Bluff Unit in Ellis, Rush, and Trego Counties; the Glen Elder Unit in Mitchell County; the Webster Unit in Osborne County; and the Wilson Unit in Lincoln County. Most of the ground-water data presented in this report were collected during 1949. Most of the data collected in these areas prior to the end of 1947 were presented in a report that was mimeographed in September 1948 and most of the data collected during 1948 were presented in a report that was mimeographed in November 1949. This report is the third of a series of annual reports on ground-water data collected in the Missouri Basin units in Kansas. These annual reports are a means of more promptly releasing for administrative use the data collected each year. Data that are included in the annual reports for a given area will be assembled later in a report on the geology and hydrology of that area. An index of the data collected and presented in the 1947, 1948, and 1949 reports is given in table 1.

  8. Availability Of Ground-Water Data For California, Water Year 2000

    USGS Publications Warehouse

    Huff, Julia

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year. These data constitute a valuable database for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled ?Water Resources Data for California, Volume 5. Ground-Water Data.? Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 1994, the Volume 5 Ground-Water Data report was discontinued, but data continue to be available in our databases. This Fact Sheet serves as an index to ground-water data for water year 2000. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for water year 2000 (fig. 2) and instructions for obtaining this and other ground-water information contained in the databases of the Water Resources Division, California District.

  9. Ground-water hydrology of the Mormon Island Crane Meadows Wildlife Area near Grand Island, Hall County, Nebraska

    USGS Publications Warehouse

    Hurr, T.R.

    1981-01-01

    The Platte River in south-central Nebraska flows generally eastward in a broad, flat valley. The river banks and many areas adjacent to the river support thick stands of cottonwood and willow trees. Brush, grass, pasture land, and cultivated fields occupy most of the remaining area. This is the habitat for many types of wildlife that live in the area or stop over in the area during annual migrations. Both sandhill cranes and whooping cranes are part of the annual migration. There is concern that water-management changes, such as surface-water diversions or ground-water withdrawals for irrigation, may alter the hydrologic environment of the wetland areas and be harmful to the wildlife habitat. In order to determine what affect changes in water management might have on ground-water levels in the wetland areas, detailed data were collected from Crane Meadows Wildlife Area, which is on an island in the Platte River near Grand Island, Nebr. Ground-water levels beneath the island respond to changes in river stage, to recharge from snowmelt and precipitation, and to evapotranspiration by riparian vegetation and from areas where the water table is close to the land surface. The data show that ground-water levels respond rapidly to changes in river stage--usually within 24 hours for distances up to 2,500 feet from the edge of the river. Thus changes in river stage due to changes in surface-water diversions will not have a long-term effect on ground-water levels. Changes in ground-water withdrawals will have the double effect of changing ground-water levels due to changes in drawdown and due to changes in river stage caused by the effects of pumping on river flow. These effects will develop slowly and be long lasting. (USGS)

  10. Quality of ground water from private domestic wells

    USGS Publications Warehouse

    DeSimone, Leslie A.; Hamilton, Pixie A.; Gilliom, Robert J.

    2009-01-01

    This article highlights major findings from two USGS reports: DeSimone (2009) and DeSimone and others (2009). These reports can be accessed at http://water.usgs.gov/nawqa. This article is followed by a summary of treatment considerations and options for owners of private domestic wells, written by Cliff Treyens of the National Ground Water Association.

  11. INVESTIGATION OF GROUND WATER CONTAMINATION NEAR PAVILLION, WYOMING

    EPA Science Inventory

    In response to complaints by domestic well owners regarding objectionable taste and odor problems in well water, the U.S. Environmental Protection Agency initiated a ground water investigation near the town of Pavillion, Wyoming under authority of the Comprehensive Environmental ...

  12. Geology and ground-water resources of Galveston County, Texas

    USGS Publications Warehouse

    Petitt, Ben McDowell; Winslow, Allen George

    1957-01-01

    Much additional ground water could be obtained from both the "Alta Loma" sand and the upper part of the Beaumont clay, especially in the northern and western parts of the county. Before large developments of supplies are planned, however, these areas should be explored by test drilling. The problems of well spacing and pumping rates should be thoroughly studied in order to determine the maximum development permitted by the ground-water supply. Current observations should be continued with special emphasis on the progress of salt-water encroachment.

  13. Ground-water quality in Wisconsin through 1972

    USGS Publications Warehouse

    Skinner, E.L.; Holt, C. L. R.

    1972-01-01

    Ground water, a plentiful and largely underdeveloped resource of Wisconsin, has good to excellent chemical quality in most places. This resource is readily available in most parts of the State for municipal, industrial, and rural uses. In 1970, about 0.5 billion gallons of ground water a day was pumped in Wisconsin for all uses (Murray and Reeves, 1972). In addition, underground reservoirs discharge an average of 16 billion gallons per day of water of relatively constant temperature and uniform quality, which maintains the base flow of streams and the level of lakes (Holt, 1964).

  14. Ground water quality protection: the issue in perspective

    SciTech Connect

    Hall, C.W.

    1984-01-01

    The importance of protecting ground water resources cannot be overstated, and many people throughout the world seem anxious to physically and financially support a rational program to this end. Public complacency regarding the quality of ground water was destroyed with headline-grabbing incidents of pollution such as Love Canal, Valley of the Drums, and Times Beach. Contrary to earlier popular belief, the soil mantle has been shown to be ineffective in cleansing certain pollutants from the water flowing through it. The legislative basis for developing and implementing broad ground water quality protection programs exists, although it is dispersed in a variety of pieces of legislation. Such programs presuppose the existence of the scientific knowledge necessary to produce viable and effective results from its implementation. This article addresses the research needed for accumulation of this information. 12 references.

  15. Determination of natural radioactivity by gross alpha and beta measurements in ground water samples.

    PubMed

    Turhan, S; Ozçitak, E; Taşkin, H; Varinlioğlu, A

    2013-06-01

    In this study, the activity concentrations of the gross α and β in ground water samples collected from the different drilled wells in Nevşehir province were measured to assess annual effective dose due to the ingestion of the water samples. Nevşehir province is one of the major cities of Cappadocia Region which is a popular tourist destination as it has many areas with unique geological, historic, and cultural features. Sampling and measurements were carried out in the autumn of 2011 and the spring of 2012. The values of the activity concentrations of the gross α and β measured in the water samples ranged from 80 to 380 mBq L(-1) with a mean of 192 mBq L(-1) and 120-3470 mBq L(-1) with a mean of 579 mBq L(-1) respectively. All values of the gross α were lower than the limit value of 500 mBq L(-1) while two ground water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). Therefore two water samples were the subject of further radioisotope-specific analysis. The obtained result indicated that the elevated activity concentrations of the gross β in these water samples are dominated by (40)K activity. Annual effective doses ranged from 0.04 to 0.20 mSv y(-1).

  16. Questa baseline and pre-mining ground-water quality investigation. 21. Hydrology and water balance of the Red River basin, New Mexico 1930-2004

    USGS Publications Warehouse

    Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.

    2006-01-01

    A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and

  17. Distinguishing sources of ground water recharge by using δ2H and δ18O

    USGS Publications Warehouse

    Blasch, Kyle W.; Bryson, Jeannie R.

    2007-01-01

    Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.

  18. Distinguishing sources of ground water recharge by using delta2H and delta18O.

    PubMed

    Blasch, Kyle W; Bryson, Jeannie R

    2007-01-01

    Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.

  19. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  20. Ground-water levels and directions of flow in Geauga County, Ohio, September 1994, and changes in ground-water levels, 1986-94

    USGS Publications Warehouse

    Jagucki, M.L.; Lesney, L.L.

    1995-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with Geauga County Planning Commission and Board of County Commissioners, to determine directions of ground-water flow and to assess differences from 1986 to 1994 in ground-water levels in the glacial deposits and Pottsville Formation, Cuyahoga Group, and the Berea Sandstone. Water levels were measured in 219 wells in Geauga County, Ohio, in September 1994. Water levels measured in January and February 1986 in 88 of the 219 wells were used for comparison. Water-level maps constructed from measurements made in September 1994 to show that ground-water levels in the Pottsville Formation and the glacial deposits generally correspond to the land-surface configuration and that ground water flows from the uplands to adjacent streams and buried valleys. Ground-water flow in the Cuyahoga Group is generally downward from the Pottsville Formation to the Berea Sandstone. Directions of ground-water flow in the Berea Sandstone are toward outcrop areas at the north and east edges of Geauga County and toward sub-crops beneath buried glacial valley deposits in Chardon, Chester, Munson, and Russel Townships and along the west edge of the county. A comparison of water level measurements in 1986 and 1994 indicates that water levels declined in 70 percent of the measured wells and increased in 30 percent. The change in water levels from 1986 to 1994 ranged from an increase of 13.58 feet to a decrease of 29.25 feet. Thirty percent of all water-level changes were less than 1 foot in magnitude. In nearly 80 percent of the wells, water-level changes were within the range of plus or minus 5 feet. Among the wells for which two or more historical measurements were available, the 1994 water levels in 54 percent were outside the range of water-levels observed in previous studies (only 24 percent were greater than 1 foot outside of the previously-observed range). Water-level declines of greater than 10 feet

  1. Availability of Ground-Water Data for California, Water Year 1999

    USGS Publications Warehouse

    Huff, Julia A.

    2000-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year. These data constitute a valuable data base for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled ?Water Resources Data for California, Volume 5. Ground-Water Data.? Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 1994, the Volume 5 Ground-Water Data report was discontinued, but data continue to be available in our data bases. This Fact Sheet serves as an index to ground-water data for 1999. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for the current water year (fig. 2) and instructions for obtaining this and other ground-water information contained in the data bases of the Water Resources Division, California District.

  2. Availability of Ground-Water Data for California, Water Year 1997

    USGS Publications Warehouse

    Huff, Julia H.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year. These data constitute a valuable data base for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled 'Water Resources Data for California, Volume 5. Ground-Water Data.' Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 1994, the Volume 5 Ground-Water Data report was discontinued, but data continue to be available in our data bases. This Fact Sheet serves as an index to ground-water data for 1997. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for the current water year (fig. 2) and instructions for obtaining this and other ground-water information contained in the data bases of the Water Resources Division, California District.

  3. Availability of Ground-Water Data For California, Water Year 1998

    USGS Publications Warehouse

    Huff, Julia A.

    1999-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and local water agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year. These data constitute a valuable data base for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled ?Water Resources Data for California, Volume 5. Ground-Water Data.? Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers. In 1994, the Volume 5 Ground-Water Data report was discontinued, but data continue to be available in our data bases. This Fact Sheet serves as an index to ground-water data for 1998. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and water-quality data for the current water year (fig. 2) and instructions for obtaining this and other ground-water information contained in the data bases of the Water Resources Division, California District.

  4. The role of hand calculations in ground water flow modeling.

    PubMed

    Haitjema, Henk

    2006-01-01

    Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.

  5. Deposit control in ground water remediation equipment

    SciTech Connect

    Horn, B.; Soeder, K.

    1995-12-31

    Remedial actions at all types of hazardous waste sites require the implementation of various water treatment technologies. Though the many groundwater treatment technologies are constantly developing, some age-old problems associated with handling any water remains. These operating problems include deposition of naturally occurring inorganic solutes such as iron, manganese, calcium and fouling by indigenous micro-organisms. Fouling of air stripping towers is a common example of this phenomenon. Virtually all groundwater treatment systems experience some degree of operating impediment from this cause. Some systems may take years for deposits to become problems, but many systems become inoperable within weeks or months. Recently released studies by the American Petroleum Institute show that deposit control is the most common operation problem causing remediation system failure. Such failures result in greatly increased operation & maintenance costs and non compliance with regulatory mandates.

  6. Fresh and saline ground-water zones in the Punjab region, West Pakistan

    USGS Publications Warehouse

    Swarzenski, W.V.

    1968-01-01

    An extensive program of test drilling and water sampling, undertaken by the Water and Soils Investigation Division (WASID) of the West Pakistan Water and Power Development Authority (WAPDA) to evaluate hydrologic problems related to waterlogging and soil salinity, has furnished data for the delineation of fresh and saline ground-water zones in the Punjab region of West Pakistan. Fresh ground water containing generally less than 500 ppm (parts per million) of total dissolved solids is found in wide belts paralleling the major rivers and in other areas of ground-water recharge. The fresh groundwater zone of upper (northeastern) Rechna Doab, where annual precipitation in places exceeds 30 inches, is the most extensive of the Punjab region and attains a depth of 1,700 feet or more below land surface near Gujranwala. Fresh ground water adjacent to the Indus River extends locally to depths of about l,500 feet. Saline ground water occurs downgradient from sources of recharge, particularly in the central parts of the interfluvial areas. Also, available data indicate a gradual increase in mineralization with depth and distance from sources of fresh-water recharge. Thus, even extensive fresh-water zones appear to be underlain, at variable depths, by saline ground water in most of the Punjab region. The saline ground waters of the Punjab region do not constitute, however, a distinct salt-water body that can be defined in terms of stratigraphic position, sea-level datum, particular lithology, or by chemical character. The ground waters of the Punjab region are characterized by a gradation from calcium magnesium bicarbonate types, near the sources of recharge, to waters containing a dominant proportion of sodium. Water containing from 500 to 1,000 ppm is commonly of the sodium bicarbonate type, or it may be of the mixed type, having about equal proportions of the common anions (bicarbonate, chloride, and sulfate). With increasing mineralization from about 1,000 to 3,000 ppm

  7. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    EPA Science Inventory

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  8. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    USGS Publications Warehouse

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  9. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  10. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  11. Chemistry and movement of ground water, Nevada Test Site

    USGS Publications Warehouse

    Schoff, S.L.; Moore, J.E.

    1964-01-01

    Three chemical types of ground water are distinguished at the Nevada Test Site and vicinity. A sodium-potassium water is related to tuff (in part zeolitized) and to alluvium containing detrital tuff. A calcium-magnesium water is related to limestone and dolomite, or to alluvium containing detritus of these rock types. A mixed chemical type, containing about as much sodium and potassium as calcium and magnesium, may result from the addition of one of the first two types of water to the other; to passage of water first through tuff and then through carbonate rock, or vice versa; and to ion-exchange during water travel. Consideration of the distribution of these water types, together with the distribution of sodium in the water and progressive changes in the dissolved solids, suggests that the ground water in the Nevada Test Site probably moves toward the Amargosa Desert, not into Indian Spring Valley and thence southeastward toward Las Vegas. The low dissolved solids content of ground-water reservoirs in alluvium and tuff of the enclosed basins indicates that recharge is local in origin.

  12. Trace organic chemicals contamination in ground water recharge.

    PubMed

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  13. Ground water in Utah's densely populated Wasatch Front area; the challenge and the choices

    USGS Publications Warehouse

    Price, Don

    1985-01-01

    Utah's Wasatch Front area comprises about 4,000 square miles in the north-central part of the State. In 1980, the area had a population of more than 1.1 million, or about 77 percent of Utah's total population. It contains several large cities, including Salt Lake City, Ogden, and Provo, and is commonly called Utah's urban corridor. Most of the water supply for the Wasatch Front area comes from streams that originate in the Wasatch Range and nearby Uinta Mountains; however, ground water has played an important role in the economic growth of the area. The principal source of ground water is the unconsolidated fill (sedimentary deposits) in the valleys of the Wasatch Front area--northern Juab, Utah, Goshen, and Salt Lake Valleys; the East Shore area (a valley area east of the Great Salt Lake), and the Bear River Bay area. Maximum saturated thickness of the fill in the principal ground-water reservoirs in these valleys exceeds 6,000 feet, and the estimated volume of water that can be withdrawn from just the upper 100 feet of the saturated fill is about 8 million acre-feet. In most places the water is fresh, containing less than 1,000 milligrams per liter of dissolved solids; in much of the Bear River Bay area and most of Goshen Valley (and locally in the other valleys), the water is slightly to moderately saline, with 1,000 to 10,000 milligrams per liter of dissolved solids. The principal ground-water reservoirs receive recharge at an annual rate that is estimated to exceed 1 million acre-feet--chiefly as seepage from consolidated rocks in the adjacent mountains from canals, ditches, and irrigated land, directly from precipitation, and from streams. Discharge during 1980 (which was chiefly from springs, seepage to streams, evapotranspiration, and withdrawal by wells) was estimated to be about 1.1 million acre-feet. Withdrawal from wells, which began within a few years after the arrival of the Mormon pioneers in the Salt Lake Valley in 1847, and had increased to about

  14. Estimating Ground-Water Recharge from Precipitation on Whidbey and Camano Islands, Island County, Washington, Water Years 1998 and 1999

    USGS Publications Warehouse

    Sumioka, S.S.; Bauer, H.H.

    2003-01-01

    Ground-water recharge from precipitation to unconsolidated deposits on Whidbey and Camano Islands, Washington, was estimated for water years 1998-99 using a near-surface water-balance method and a chloride mass-balance method. A daily near-surface water-balance method, the Deep Percolation Model (DPM), was used to simulate water budgets for October 1, 1997 through September 30, 1999 (water years 1998-99) for six small drainage basins?four on Whidbey Island and two on Camano Island. Adjusted parameters from the DPM for each small basin were then used in island-wide DPM simulations. A spatial distribution of annual recharge was simulated for each island, with island averages of 5.71 inches per year for Whidbey Island and 5.98 inches per year for Camano Island. The spatial distribution of simulated annual recharge for each island reflects variations in precipitation amounts and the distribution of surficial materials. DPM results indicate that recharge generally is higher in areas underlain by coarse-grained deposits (outwash) than in areas underlain by fine-grained deposits (till). A chloride mass-balance method was used to estimate combined recharge to unconsolidated deposits on Whidbey and Camano Islands. The average combined recharge for Whidbey and Camano Islands estimated by this method was 2.00 inches per year. The range of chloride concentrations in ground-water samples from selected wells indicates that the average recharge to unconsolidated deposits ranges from 0.78 to 7.81 inches per year. Sources of chloride in ground water other than from the atmosphere would cause recharge estimated by the chloride mass-balance method to be less than the actual recharge, therefore, these estimates may represent lower limits.

  15. Dichlorobenzene in ground water: Evidence for long-term persistence

    USGS Publications Warehouse

    Barber, L.B.

    1988-01-01

    Hydrologic and geochemical evidence were used to establish the long-term persistence of dichlorobenzene in ground water that has been contaminated from 50 years of rapid-infiltration sewage disposal. An extensive plume of dichlorobenzene extends more than 3,500 meters downgradient from the disposal beds, with concentrations of the combined isomers ranging from less than 0.01 to over 1.0 ??g/l. Based on estimates of maximum ground-water flow velocities, a minimum age of 20 years was established for the farthest downgradient zone of dichlorobenzene contamination. Branched-chained, alkylbenzenesulfonic acid surfactants, that were introduced into the ground water prior to 1966, occur along with dichlorobenzene in the downgradient part of the plume, further establish residence of the compounds in the aquifer for at least 20 years. Although dichlorobenzene can be biologically degraded under aerobic conditions, its persistence at this field site is attributed to the dynamics of the ground-water system. Denitrifying conditions, resulting from the degradation of organic compounds in the aquifer near the disposal beds, appear to have enhanced the persistence of dichlorobenzene, which is not degraded by anaerobic bacteria. Biological degradation of dichlorobenzene in the aerobic part of the plume downgradient from the source is probably limited by the paucity of a suitable organic-carbon substrate and the low concentrations of dissolved oxygen in the contaminated ground water.

  16. Remediation of ground water containing volatile organic compounds and tritium

    SciTech Connect

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ``pump-and-treat`` technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations.

  17. Hydrologic significance of carbon monoxide concentrations in ground water

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.

    2007-01-01

    Dissolved carbon monoxide (CO) is present in ground water produced from a variety of aquifer systems at concentrations ranging from 0.2 to 20 nanomoles per liter (0.0056 to 0.56 ??g/L). In two shallow aquifers, one an unconsolidated coastal plain aquifer in Kings Bay, Georgia, and the other a fractured-bedrock aquifer in West Trenton, New Jersey, long-term monitoring showed that CO concentrations varied over time by as much as a factor of 10. Field and laboratory evidence suggests that the delivery of dissolved oxygen to the soil zone and underlying aquifers by periodic recharge events stimulates oxic metabolism and produces transiently high CO concentrations. In between recharge events, the aquifers become anoxic and more substrate limited, CO is consumed as a carbon source, and CO concentrations decrease. According to this model, CO concentrations provide a transient record of oxic metabolism affecting ground water systems after dissolved oxygen has been fully consumed. Because the delivery of oxygen affects the fate and transport of natural and anthropogenic contaminants in ground water, CO concentration changes may be useful for identifying predominantly anoxic ground water systems subject to periodic oxic or microaerophilic conditions. ?? 2007 National Ground Water Association.

  18. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    SciTech Connect

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, J.L.; Nylund, W.E.

    1999-09-30

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. Micrometeorological data were collected for a minimum of 1 year at each site during 1994 through 1997. Evapotranspiration ranged from 0.6 foot per year in a sparse, dry saltgrass environment to 8.6 feet per year over open water. Mean annual ET from the Ash Meadows area is estimated at 21,000 acre-feet. The estimates given for mean annual ground-water discharge range from 18,000 to 21,000 acre-feet. The range presented is only slightly higher than previous estimates of ground-water discharge from the Ash Meadows area based primarily on springflow measurements.

  19. A national look at nitrate contamination of ground water

    USGS Publications Warehouse

    Nolan, Bernard T.; Ruddy, Barbara C.; Hitt, Kerie J.; Helsel, Dennis R.

    1998-01-01

    Knowing where and what type of risks to ground water exist can alert water-resource managers and private users of the need to protect water supplies. Although nitrate generally is not an adult public-health threat, ingestion in drinking water by infants can cause low oxygen levels in the blood, a potentially fatal condition (Spalding and Exner, 1993). For this reason, the U.S. Environmental Protection Agency (EPA) has established a drinking-water standard of 10 milligrams per liter (mg/L) nitrate as nitrogen (U.S. Environmental Protection Agency, 1995). Nitrate concentrations in natural ground waters are usually less than 2 mg/L (Mueller and others, 1995).

  20. Toward implementation of a national ground water monitoring network

    USGS Publications Warehouse

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  1. Temporal trends in nitrate and selected pesticides in mid-atlantic ground water

    USGS Publications Warehouse

    Debrewer, L.M.; Ator, S.W.; Denver, J.M.

    2008-01-01

    Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with, changing land and chemical uses when interpreting trends in regional ground-water quality. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  2. Ground-water aspects of the lower Henrys Fork region, eastern Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.; Mundorff, Maurice John; Walker, Eugene H.

    1970-01-01

    The lower Henrys Fork region in eastern Idaho includes the plains and low benches between Ashton and the junction of Henrys Fork and Snake River. The northwestern and western parts of the area are part of the Snake River basalt plain. The central part of the area is occupied by alluvial plains of the Snake, Teton, and Falls Rivers and of Henrys Fork. The alluvial deposits are underlain by basalt. The southeastern part of the area is a bench (Rexburg Bench), chiefly on silicic and basaltic volcanic rocks, which rises gradually to mountain peaks (Big Hole Mountains) southeast of the area. Irrigation wells open to the basalt under the Snake River Plain and the basalt and sands and gravels under the alluvial plains yield large amounts of water with small drawdowns. Irrigation wells in the silicic volcanic rocks and the interbedded ash, pyroclastics, and sedimentary deposits beneath the Rexburg Bench generally yield much less water. The regional water table slopes southwestward beneath the basalt and alluvial plains. It is recharged by precipitation that infiltrates into the ground in the headwaters of Henrys Fork and Falls, and Teton Rivers and by water that moves downward from an extensive perched water body caused by seepage from stream channels and surface-water irrigation. The perched water in part moves vertically down to the regional water table and in part laterally to the streams. Ground water beneath the Rexburg Bench moves generally northwestward to join the regional ground-water body beneath the alluvia,1 and basalt plain, but this area contributes very little recharge to the main aquifer body. Recharge to the regional water table is estimated to average 725,000 acre-feet annually. The regional water table is below the level of the streams in the area, and ground water in the main aquifer, therefore, is not tributary to the streams. Pumping from the regional ground-water reservoir for irrigation or other uses would have no effect on streamflow or surface-water

  3. Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000

    USGS Publications Warehouse

    Susong, D.D.

    2005-01-01

    Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.

  4. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    San Gorgonio Pass area. The water-bearing deposits were divided into three aquifers: (1) the perched aquifer, (2) the upper aquifer, and (3) the lower aquifer based on lithologic and downhole geophysical logs. Natural recharge in the San Gorgonio Pass area was estimated using INFILv3, a deterministic distributed- parameter precipitation-runoff model. The INFILv3 model simulated that the potential recharge of precipitation and runoff in the Beaumont and Banning storage units was about 3,710 acre-feet per year and that the potential recharge in 28 sub-drainage basins upstream of the storage units was about 6,180 acre-feet per year. The water supply for the Beaumont and Banning storage units is supplied by pumping ground water from wells in the Canyon (Edgar and Banning Canyons), Banning Bench, Beaumont, and Banning storage units. Total annual pumpage from the Beaumont and Banning storage units ranged from about 1,630 acre-feet in 1936 to about 20,000 acre-feet in 2003. Ground-water levels declined by as much as 100 feet in the Beaumont storage unit from 1926-2003 in response to ground-water pumping of about 450,160 acre-feet during this period. Since ground-water development began in the San Gorgonio Pass area, there have been several sources of artificial recharge to the basin including return flow from applied water on crops, golf courses, and landscape; septic-tank seepage; and infiltration of storm runoff diversions and imported water into recharge ponds. Return flow from applied water and septic-tank seepage was estimated to reach a maximum of about 8,100 acre-feet per year in 2003. Owing to the great depth of water in much of study area (in excess of 150 feet), the return flow and septic-tank seepage takes years to decades to reach the water table. Stable-isotope data indicate that the source of ground-water recharge was precipitation from storms passing through the San Gorgonio Pass as opposed to runoff from the higher altitudes of the San Bernar

  5. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    USGS Publications Warehouse

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  6. 1997 annual ground control operating plan for the Waste Isolation Pilot Plant

    SciTech Connect

    1997-02-01

    This plan presents background information and a working guide to assist Mine Operations and Engineering in developing strategies for addressing ground control issues at the Waste Isolation Pilot Plant (WIPP). With the anticipated receipt of waste in late 1997, this document provides additional detail to Panel 1 activities and options. The plan also serves as a foundation document for development and revision of the annual long-term ground control plan. Section 2.0 documents the current status of all underground excavations with respect to location, geology, geometry, age, ground support, operational use, projected life, and physical conditions. Section 3.0 presents the methods used to evaluate ground conditions, including visual observations of the roof, ribs, and floor, inspection of observation holes, and review of instrumentation data. Section 4.0 lists several ground support options and specific applications of each. Section 5.0 discusses remedial ground control measures that have been implemented to date. Section 6.0 presents projections and recommendations for ground control actions based on the information in Sections 2.0 through 5.0 of this plan and on a rating of the critical nature of each specific area. Section 7.0 presents a summary statement, and Section 8.0 includes references. Appendix A provides an overview and critique of ground control systems that have been, or may be, used at the site. Because of the dynamic nature of the underground openings and associated geotechnical activities, this plan will be revised as additional data are incorporated.

  7. Simulation of ground-water discharge to Biscayne Bay, southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian David

    2001-01-01

    -dimensional, regional-scale model was calibrated to ground-water heads, canal baseflow, and the general position of the saltwater interface for nearly a 10-year period from 1989 to 1998. The mean absolute error between observed and simulated head values is 0.15 meter. The mean absolute error between observed and simulated baseflow is 3 x 105 cubic meters per day. The position of the simulated saltwater interface generally matches the position observed in the field, except for areas north of the Miami Canal where the simulated saltwater interface is located about 5 kilometers inland of the observed saltwater interface. Results from the regional-scale model suggest that the average rate of fresh ground-water discharge to Biscayne Bay for the 10-year period (1989-98) is about 2 x 105 cubic meters per day for 100 kilometers of coastline. This simulated discharge rate is about 6 percent of the measured surface-water discharge to Biscayne Bay for the same period. The model also suggests that nearly 100 percent of the fresh ground-water discharge is to the northern half of Biscayne Bay, north of the Cutler Drain Canal. South of the Cutler Drain Canal, coastal lowlands prevent the water table from rising high enough to drive measurable quantities of ground water to Biscayne Bay. Annual variations in sea-level elevation, which can be as large as 0.3 meter, have a substantial effect on rates of ground-water discharge. During 1989-98, simulated rates of ground-water discharge to Biscayne Bay generally are highest when sea level is relatively low.

  8. Geology and ground-water resources of Uvalde County, Texas

    USGS Publications Warehouse

    Welder, F.A.; Reeves, R.D.

    1964-01-01

    Ground-water withdrawals from the Edwards and associated limestones in Uvalde County probably could be maintained indefinitely at a rate of about 200,000 acre-feet per year, provided that withdrawals north and west of the county were not increased. However, continued withdrawals at this rate-would cause wells in structurally high areas to go dry, and underflow into Medina County would cease. Furthermore, saline water might invade the fresh-water part of the

  9. Interregional management of ground and surface water

    USGS Publications Warehouse

    Thomas, H.E.

    1957-01-01

    I feel that there is not a large gap between what we have and what we need for "management" of the people who must give their assent to any program for management of water resources. We need a "generalist" approach in addition to our specialist approach, to achieve a synthesis of the results of the specialist's analysis of specific problems. And as a means of developing these generalists, closer coordination or perhaps "combined operations" of groups of specialists in diverse fields might provide the comprehensive and overall understanding which we need, and which is needed by the general public.

  10. Ground rubber: Sorption media for ground water containing benzene and O-xylene

    SciTech Connect

    Kershaw, D.S.; Pamukcu, S.; Kulik, B.C.

    1997-04-01

    The purpose of the current study is to examine the ability of ground rubber to sorb benzene and O-xylene from water contained with aromatic hydrocarbons. The study consisted of running both batch and packed bed column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground rubber under various contact times when exposed to water contaminated with various amounts of benzene or O-xylene. Initial batch test results indicate that ground rubber can attain equilibrium sorption capacities up to 1.3 or 8.2 mg of benzene or O-xylene, respectively, per gram of tire rubber at solution equilibrium concentrations of 10 mg/L. Packed bed column tests indicate that ground tire rubber has on the average a 40% utilization rate when a hydraulic residence time of 15 min is used. Possible future uses of round rubber as a sorption media could include, but are not limited to, the use of ground rubber as an aggregate in slurry cutoff walls that are in contact with petroleum products. Ground rubber could also be used as a sorption media in pump-and-treat methodologies or as a sorption media in in-situ reactive permeable barriers.

  11. Ground-water hydrology and projected effects of ground-water withdrawals in the Sevier Desert, Utah

    USGS Publications Warehouse

    Holmes, Walter F.

    1984-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mountain areas and from adjoining areas. Discharge is by wells, springs, seepage to the Sevier River, evapotranspiration, and subsurface outflow to adjoining areas.

  12. Drinking water and ground water data within the 305(b) program

    SciTech Connect

    1998-12-31

    The condition of the Nation`s ground water resources is monitored and assessed under Section 106(e) of the Clean Water Act (CWA), which requests that each State monitor ground water quality and report the findings to Congress in their biennial 305(b) State Water Quality Reports. Ground water quality data, reported by States under the CWA, are compiled and maintained in a data base. The purpose of developing and maintaining these data is to develop an accurate representation of the Nation`s ground water quality. The question has been raised whether the 305(b) of the CWA and assesses its appropriateness to support a ground water indicator under the IWI Initiative.

  13. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Fio, John L.

    1997-01-01

    The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all

  14. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  15. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  16. The effect of the earth's rotation on ground water motion.

    PubMed

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  17. Evaluation of soil-venting application. Ground-water issue

    SciTech Connect

    DiGiulio, D.C.

    1992-04-01

    The Regional Superfund Ground-Water Forum is a group of scientists, representing EPA's Regional Superfund Offices, organized to exchange up-to-date information related to ground-water remediation at Superfund sites. One of the major issues of concern to the Forum is the transport and fate of contaminants in soil and ground water as related to subsurface remediation. The ability of soil venting to inexpensively remove large amounts of volatile organic compounds (VOCs) from contaminated soils is well established. However, the time required using venting to remediate soils to low contaminant levels often required by state and federal regulators has not been adequately investigated. Discussion is presented to aid in evaluating the feasibility of venting application. Methods to optimize venting application are also discussed.

  18. Research to More Effectively Manage Critical Ground-Water Basins

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  19. Microbial and Chemical Characterization of Geothermal Ground Water

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Kennedy, John

    Subsurface geothermal sites are commonly colonized by chemolithotrophic bacteria which use rock minerals and CO_2 as sole nutrients. This type of ``life cradle'' may not only be common on Earth but may also be a likely scenario on many other planets. Three geothermal sites in southern New Mexico have been chosen to characterize geothermal waters for microbial diversity and chemical content. All sites of this on-going study are located on or near the Rio Grande Rift and are tapped into fractured reservoir systems of Paleozoic carbonate rocks, Tertiary volcanic rocks or consolidated basin-fill sediments. Geothermal fluids were analyzed for major cations and anions, selected trace elements, TOC, phosphate, fluoride and dissolved gases. The microbial analysis included phospholipid fatty acid (PLFA) analysis and DNA sequencing. Geothermal ground water was high in dissolved solids, had high concentrations of carbon dioxide and was more acidic than adjacent ground water not affected by geothermal activity. Geothermal ground-water samples contained very low amounts of biomass composed of relatively simple microbial communities. Several species of Archaebacteria were detected in some of the ground water that was derived from wells tapping into deep fractured systems. The analysis of denaturing gradient gel electrophoresis (DGGE) images indicated distinct differences of the types of microbes present in geothermal water compared to an adjacent deep non-thermal flow system.

  20. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona-2005-06

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2007-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area averages about 6 to 14 inches per year. The water monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2005 to September 2006. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2005, ground-water withdrawals in the Black Mesa area totaled 7,330 acre-feet, including ground-water withdrawals for industrial (4,480 acre-feet) and municipal (2,850 acre-feet) uses. From 2004 to 2005, total withdrawals increased by less than 2 percent, industrial withdrawals increased by approximately 3 percent, and total municipal withdrawals increased by 0.35 percent. From 2005 to 2006, annually measured water levels in the Black Mesa area declined in 10 of 13 wells in the unconfined areas of the N aquifer, and the median change was -0.5 foot. Measurements indicated that water levels declined in 12 of 15 wells in the confined area of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2006, the median water-level change for 29 wells was -8.5 feet. Median water-level changes were -0.2 foot for 13 wells in the unconfined areas and -46.6 feet for 16 wells in the confined area. Ground-water discharges were measured once in 2005 and once in 2006 at Moenkopi School Spring and Burro

  1. Ground-water quality and geochemistry, Carson Desert, western Nevada

    USGS Publications Warehouse

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  2. An appraisal of ground water for irrigation in the Appleton area, west-central Minnesota

    USGS Publications Warehouse

    Larson, Steven P.

    1976-01-01

    Mathematical models of a part of the aquifer were made to evaluate the effects of 20 successive years of ground-water withdrawal for three irrigation-development patterns. It was estimated that the present annual withdrawal rate of 1,410 acre-ft (1.74 hm3) would result in water-level declines of less than 3 feet (0.9 m). However, annual withdrawals of 8,450 acre-ft (10.4 hm3) would cause aquifer dewatering and decreased well yields in some places. After a new state of equilibrium was established in response to withdrawals, most of the withdrawal would be supplied by diverted base flow from the Pomme de Terre River.

  3. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  4. Montana's Coalbed Methane Ground-Water Monitoring Program: Year One

    NASA Astrophysics Data System (ADS)

    Wheaton, J. R.; Smith, M.; Donato, T. A.; Bobst, A. L.

    2003-12-01

    Tertiary coal seams in the Powder River Basin in southeastern Montana provide three very important resources: ground water, coal, and natural gas. Ground water from springs and wells is essential for the local agricultural economy. Because coal seams in the Fort Union Formation have higher hydraulic conductivity values and are more continuous than the sandstone units, they are the primary aquifers in this region. Coalbed methane (CBM) production is beginning in the Powder River Basin, and requires removal and management of large quantities of water from the coal-seam aquifers. The extensive pumping required to produce the methane is expected to create broad areas of severe potentiometric decline. The Montana CBM ground-water monitoring program, now in place, is based on scientific concepts developed during more than 30 years of coal-mine hydrogeology research. The program includes inventories of ground-water resources and regular monitoring at dedicated wells and selected springs. The program is now providing baseline potentiometric and water-quality data, and will continue to be active through the duration of CBM production and post-production ground-water recovery. An extensive inventory of ground-water resources in the Montana portion of the Powder River Basin has located 300 springs and 21 wells on private land, and 460 springs and 21 wells on U. S. Forest Service and U. S. Bureau of Land Management land, all producing ground water from the methane bearing strata. In southeastern Montana, 134 monitoring wells are currently included in the CBM monitoring program. They are completed either in coal seams, adjacent sandstone units, or alluvium. During the coal boom of the 1970's and 1980's many monitoring wells were drilled, but most have been since unused. Thirty-six of these existing wells have now been returned to service to decrease start-up costs for the CBM program. This network of existing wells has been augmented at key sites with 26 new wells drilled

  5. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1979-01-01

    The Wasatch Plateau-Book Cliffs area in east-central Utah consists of about 8,000 square miles within the upper Colorado River drainage system. Coal production in the area is expected to increase from 8 million tons to as much as 30 million tons annually within the next 10 years. Most sources of water supply will be subjected to possible contamination and increased demands by coal-related municipal and industrial growth in the area. The report presents a compilation of coal-related ground-water data from many unpublished sources for the use of local and regional water planners and users. The report includes generalized stratigraphic sections and hydrologic characteristics of rocks in the Wasatch Plateau-Book Cliffs area , records of selected test holes and water wells, logs of selected test holes and water wells, water levels in selected wells, records of selected springs, records of ground-water discharge from selected mines, and chemical analyses of water from selected test holes, water wells, springs, and mines. (Kosco-USGS)

  6. National water-information clearinghouse activities; ground-water perspective

    USGS Publications Warehouse

    Haupt, C.A.; Jensen, R.A.

    1988-01-01

    The US Geological Survey (USGS) has functioned for many years as an informal clearinghouse for water resources information, enabling users to access groundwater information effectively. Water resources clearinghouse activities of the USGS are conducted through several separate computerized water information programs that are involved in the collection, storage, retrieval, and distribution of different types of water information. The following USGS programs perform water information clearinghouse functions and provide the framework for a formalized National Water-Information Clearinghouse: (1) The National Water Data Exchange--a nationwide confederation of more than 300 Federal, State, local, government, academic, and private water-oriented organizations that work together to improve access to water data; (2) the Water Resources Scientific Information Center--acquires, abstracts, and indexes the major water-resources-related literature of the world, and provides this information to the water resources community; (3) the Information Transfer Program--develops innovative approaches to transfer information and technology developed within the USGS to audiences in the public and private sectors; (4) the Hydrologic Information Unit--provides responses to a variety of requests, both technical and lay-oriented, for water resources information , and helps efforts to conduct water resources research; (5) the Water Data Storage and Retrieval System--maintains accessible computerized files of hydrologic data collected nationwide, by the USGS and other governmental agencies, from stream gaging stations, groundwater observation wells, and surface- and groundwater quality sampling sites; (6) the Office of Water Data Coordination--coordinate the water data acquisition activities of all agencies of the Federal Government, and is responsible for the planning, design, and inter-agency coordination of a national water data and information network; and (7) the Water Resources Research

  7. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  8. The Hydrolysis of Di-Isopropyl Methylphosphonate in Ground Water

    SciTech Connect

    Sega, G.A., Tomkins, B.A., Griest, W.H., Bayne, C.K.

    1997-12-31

    Di-isopropyl methylphosphonate (DIMP) is a byproduct from the manufacture of the nerve agent Sarin. The persistence of DIMP in the ground water is an important question in evaluating the potential environmental impacts of DIMP contamination. The half-life of DIMP in ground water at 10 deg C was estimated to be 500 years with a 95% confidence interval of 447 to 559 years from measurements of the hydrolysis rates at temperatures between 70 to 98 deg C.Extrapolation of the kinetics to 10 deg C used the Arrhenius equation, and calculation of the half-life assumed first-order kinetics. Inorganic phosphate was not detected.

  9. Tritium migration in A/M-Area ground water

    SciTech Connect

    Strom, R.N.; Kaback, D.S.

    1992-01-01

    Volatile organic compounds (VOC`s) have entered aquifers in Cretaceous-aged sediments in the A/M-Area as a result of site operations. Tritium in A/M-Area ground water was investigated as a tracer to determine the movement of ground water in the subsurface and the transport mechanism of VOC`s. The investigation was focused primarily on determining the continuity and integrity of the clay layers in the Ellenton Formation and their effectiveness as aquitards below the aquifers in Tertiary sediments.

  10. Geology and ground water of the Tualatin Valley, Oregon

    USGS Publications Warehouse

    Hart, D.H.; Newcomb, R.C.

    1965-01-01

    The Tualatin Valley proper consists of broad valley plains, ranging in altitude from 100 to 300 feet, and the lower mountain slopes of the drainage basin of the Tualatin River, a tributary of the Willamette River in northwestern Oregon. The valley is almost entirely farmed. Its population is increasing rapidly, partly because of the expansion of metropolitan Portland. Structurally, the bedrock of the basin is a saucer-shaped syncline almost bisected lengthwise by a ridge. The bedrock basin has been partly filled by alluvium, which underlies the valley plains. Ground water occurs in the Columbia River basalt, a lava unit that forms the top several hundred feet of the bedrock, and also in the zones of fine sand in the upper part of the alluvial fill. It occurs under unconfined, confined, and perched conditions. Graphs of the observed water levels in wells show that the ground water is replenished each year by precipitation. The graphs show also that the amount and time of recharge vary in different aquifers and for different modes of ground-water occurrence. The shallower alluvial aquifers are refilled each year to a level where further infiltration recharge is retarded and water drains away as surface runoff. No occurrences of undue depletion of the ground water by pumping are known. The facts indicate that there is a great quantity of additional water available for future development. The ground water is developed for use by some spring works and by thousands of wells, most of which are of small yield. Improvements are now being made in the design of the wells in basalt and in the use of sand or gravel envelopes for wells penetrating the fine-sand aquifers. The ground water in the basalt and the valley fill is in general of good quality, only slightly or moderately hard and of low salinity. Saline and mineralized water is present in the rocks of Tertiary age below the Columbia River basalt. Under certain structural and stratigraphic conditions this water of poor

  11. Salinity of the ground water in western Pinal County, Arizona

    USGS Publications Warehouse

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  12. Availability Of Ground-Water Data For California, Water Year 2003

    USGS Publications Warehouse

    Huff, Julia A.

    2004-01-01

    The U.S. Geological Survey, Water Resources, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the groundwater resources of California each water year (October 1?September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. Beginning with the 1985 water year and continuing through 1993, these data were published in a report series entitled ?Water Resources Data for California, Volume 5. Ground-Water Data.? Prior to the introduction of this series, historical ground-water information was published in U.S. Geological Survey Water-Supply Papers.

  13. Nitrate behavior in ground waters of the southeastern USA

    USGS Publications Warehouse

    Nolan, B.T.

    1999-01-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993 to 1995 to explore potential nitrate- attenuation processes in ground waters of the southeastern USA. Nitrate reduction is an important attenuation process in selected areas of the Southeast. A nitrate-reduction component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen (DO) are inversely related to ammonium, iron, manganese, and dissolved organic carbon (DOC). Additional components extracted by PCA include calcite dissolution (18% of variance explained) and phosphate dissolution (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water- quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Drainage Basin (ALBE) Coastal Plain is <0.05 mg L-1, median DOC concentration is 4.2 mg L-1, and median DO concentration is 2.1 mg L-1, consistent with denitrification. Nitrate reduction does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola- Chattahoochee-Flint River Basin (ACFB) are 6.2 to 7.1 mg L-1, and median nitrate concentrations are 0.61 to 2.2 mg L-1, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain (GAFL) is 6.0 mg L-1 and median nitrate concentration is 5.8 mg L-1.

  14. Mathematical ground-water model of Indian Wells Valley, California

    USGS Publications Warehouse

    Bloyd, R.M.; Robson, S.G.

    1971-01-01

    A mathematical model of the Indian Wells Valley ground-water basin was developed and verified. The alternating-direction implicit method was used to compute the mathematical solution. It was assumed that there are only two aquifers in the valley, one being deep and the other shallow. Where the shallow aquifer occurs, the underlying deep aquifer is confined or artesian. Flow between the aquifers under steady-state conditions is assumed to be in one direction, from deep to shallow. The transmissivity of the deep aquifer ranges from about 250,000 to 22,000 gallons per day per foot and from about 25,000 to 5,000 gallons per day per foot for the shallow aquifer. The storage coefficient for the deep aquifer ranges from 1 x 10 -4 to 0.20. Steady-state recharge and discharge in each aquifer was estimated to be 9,850 acre-feet per year. Ground-water pumping, sewage-effluent recharge, and capture of ground-water discharge occurred under non-steady-state conditions. Most of the ground-water pumpage is near Ridgecrest and Inyokern and in the area between the two towns. By 1968 pumpage in the deep aquifer had caused a reversal in the ground-water gradient south of China Lake and small water-level declines over most of the aquifer. The model for the deep aquifer was verified under steady-state and non-steady-state conditions. The shallow aquifer was verified under steady-state conditions only. The verified model was then used to generate 1983 water-level conditions in the deep aquifer.

  15. Ground Water on Tropical Pacific Islands - Understanding a Vital Resource

    USGS Publications Warehouse

    Tribble, Gordon

    2008-01-01

    To a casual observer, tropical Pacific islands seem idyllic. Closer scrutiny reveals that their generally small size makes them particularly vulnerable to economic and environmental stresses imposed by rapidly growing populations, increasing economic development, and global climate change. On these islands, freshwater is one of the most precious resources. Ground water is the main source of drinking water on many islands, and for quite a few islands, it is the only reliable source of water throughout the year. Faced with a growing demand for this valuable resource, and the potential negative effects on its availability and quality from changes in global climate, increasingly sophisticated management approaches will be needed to ensure a dependable supply of freshwater for the residents of these islands. Much scientific information has been collected by the U.S. Geological Survey (USGS) and other organizations about the ground-water resources of tropical Pacific islands. The aim of this Circular is to give members of the public, policymakers, and other stakeholders knowledge that will help ensure that this information can be used to make informed decisions about the management of these life-giving resources. As the demand for freshwater grows, new monitoring and research efforts will be needed to (1) characterize the extent and sustainability of ground-water resources on different tropical Pacific islands, (2) better understand linkages between ground-water discharge and freshwater and nearshore ecosystems, and (3) prepare for the effects of climate change, which will likely include the loss of habitable land and reduced areas for the accumulation of ground water as a result of rising sea levels.

  16. Nitrate behavior in ground water of the southeastern USA

    SciTech Connect

    Nolan, B.T.

    1999-10-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993 to 1995 to explore potential nitrate-attenuation processes in ground waters of the southeastern USA. Nitrate reduction is an important attenuation process in selected areas of the Southeast. A nitrate-reduction component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen (DO) are inversely related to ammonium, iron, manganese, and dissolved organic carbon (DOC). Additional components extracted by PCA include calcite dissolution (18% of variance explained) and phosphate dissolution (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water-quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Drainage Basin (ALBE) Coastal Plain is {lt}0.05 mg L{sup {minus}1}, median DOC concentration is 4.2 mg L{sup {minus}1}, and median DO concentration is 2.1 mg L{sup {minus}1}, consistent with denitrification. Nitrate reduction does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola-Chattahoochee-Flint River Basin (ACFB) are 6.2 to 7.1 mg L{sup {minus}1}, and median nitrate concentrations are 0.61 to 2.2 mg L{sup {minus}1}, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain (GAFL) is 6.0 mg L{sup {minus}1} and median nitrate concentration is 5.8 mg L{sup {minus}1}.

  17. GWVis: A Tool for Comparative Ground-Water Data Visualization

    SciTech Connect

    Best, Daniel M.; Lewis, Robert R.

    2010-11-01

    The Ground-Water Visualization application (GWVis) presents ground-water data visually in order to educate the public on ground-water issues. It is also intended for presentations to government and other funding agencies. Current three dimensional models of ground-water are overly complex, while the two dimensional representations (i.e., on paper) are neither comprehensive, nor engaging. At present, GWVis operates on water head elevation data over a given time span, together with a matching (fixed) underlying geography. Two elevation scenarios are compared with each other, typically a control data set (actual field data) and a simulation. Scenario comparison can be animated for the time span provided. We developed GWVis using the Python programming language, associated libraries, and pyOpenGL extension packages to improve performance and control of attributes of the mode (such as color, positioning, scale, and interpolation). GWVis bridges the gap between two dimensional and dynamic three dimensional research visualizations by providing an intuitive, interactive design that allows participants to view the model from different perspectives and to infer information about scenarios. By incorporating scientific data in an environment that can be easily understood, GWVis allows the information to be presented to a large audience base.

  18. Hydrogeology, water quality, and ground-water-development alternatives in the upper Wood River ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Dickerman, D.C.; Bell, R.W.

    1993-01-01

    The 72.4-square-mile Upper Wood River study area is in the Pawcatuck River basin in southern Rhode Island. Stratified drift is the only principal geologic unit capable of producing yields greater than 0.5 Mgal/d. Transmissivity of the aquifer ranges from 7,600 to 49,200 sq ft/d. Water-table conditions prevail and the aquifer is in good hydraulic connection with perennial streams and ponds. Groundwater and surface water in the study area are generally suitable for most uses. Water is soft, slightly acidic, and contains less than 150 mg/L dissolved solids. Locally, however, groundwater has been contaminated with nitrate, chloride, and volatile organic compounds. A model of the groundwater-flow system was used to evaluate the effect of alternative schemes of groundwater development on water levels, pond levels, and streamflow. Till contacts were simulated as specified-flux boundaries, drainage divides as no-flow boundaries, and streams as leaky boundaries. The areas most favorable for development of 1 Mgal/d are along the Flat and Wood Rivers. From 50 to 65 percent of the water withdrawn from wells would be derived from induced recharge. Results of simulation of development alternatives indicate that the groundwater reservoir could sustain withdrawals of 6 to 12 Mgal/d from 11 wells under long-term average annual (1942-89) and simulated drought (1963-66) conditions without causing water-level declines of greater than 25 percent of the unstressed saturated thickness of the aquifer. Pumping 12 Mgal/d, however, would reduce flow of the Wood River at the basin outlet by an amount almost equal to the 7-day, 10-yr low flow of 20.4 cu ft/s.

  19. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations

  20. Ground-water and stream-water interaction in the Owl Creek basin, Wyoming

    USGS Publications Warehouse

    Ogle, K.M.

    1996-01-01

    Understanding of the interaction of ground-water and surface-water resources is vital to water management when water availability is limited.Inflow of ground water is the primary source ofwater during stream base flow. The water chemistry of streams may substantially be affected by that inflow of ground water. This report is part of a study to examine ground-water and surface-water interaction in the Owl Creek Basin, Wyoming, completed by the U.S. Geological Survey incooperation with the Northern Arapaho Tribe and the Shoshone Tribe. During a low flow period between November\\x1113 - 17, 1991, streamflowmeasurements and water-quality samples were collected at 16 selected sites along major streams and tributaries in the Owl Creek Basin,Wyoming. The data were used to identify stream reaches receiving ground-water inflow and to examine causes of changes in stream chemistry.Streamflow measurements, radon-222 activity load, and dissolved solids load were used to identified stream reaches receiving ground-water inflow.Streamflow measurements identified three stream reaches receiving ground-water inflow. Analysis of radon-222 activity load identified five stream reaches receiving ground-water inflow. Dissolvedsolids load identified six stream reaches receiving ground-water inflow. When these three methods were combined, stream reaches in two areas, theEmbar Area and the Thermopolis Anticline Area, were identified as receiving ground-water inflow.The Embar Area and the Thermopolis Anticline Area were then evaluated to determine the source of increased chemical load in stream water. Three potential sources were analyzed: tributary inflow, surficial geology, and anticlines. Two sources,tributary inflow and surficial geology, were related to changes in isotopic ratios and chemical load in the Embar Area. In two reaches in the Embar Area, isotopic ratios of 18O/16O, D/H, and 34S/32S indicated that tributary inflow affected stream-water chemistry. Increased chemical load of

  1. The role of ground water in the national water situation: With state summaries based on reports by District Offices of Ground Water Branch

    USGS Publications Warehouse

    McGuinness, Charles Lee

    1963-01-01

    This report outlines briefly the principles of water occurrence and describes the water situation in the United States as of 1960-61, with emphasis on the occurrence of ground water and the status of development and accompanying problems. The Nation has been divided into 10 major ground-water regions by H. E. Thomas (1952a). The report summarizes the occurrence and development of ground water in each of Thomas' regions. In a large terminal section it also describes the occurrence and development of water, again with emphasis on ground water, in each of the 50 States and in certain other areas. The main text ends with a discussion of the water situation and prospects of the Nation.

  2. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action §...

  3. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action §...

  4. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action §...

  5. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used...

  6. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used...

  7. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used...

  8. 40 CFR Appendix Ix to Part 264 - Ground-Water Monitoring List

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-Water Monitoring List IX... Pt. 264, App. IX Appendix IX to Part 264—Ground-Water Monitoring List Ground-Water Monitoring List... species in the ground water that contain this element are included. 3 CAS index names are those used...

  9. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program...

  10. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must include consistent...

  11. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  12. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  13. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  14. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  15. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment...

  16. Water Science and Technology Board Annual Report 2001-2002

    SciTech Connect

    2002-10-01

    This annual report marks the twentieth anniversary of the Water Science and Technology Board (WSTB) (1982-2002). The WSTB oversees studies of water issues. The principal products of studies are written reports. These reports cover a wide range of water resources issues of national concern. The following three recently issued reports illustrate the scope of the WSTB's studies: Envisioning the Agenda for Water Resources Research in the Twenty-first Century. The Missouri River Ecosystem: Exploring the Prospects for Recovery, and Assessing the TMDL Approach to Water Quality Management. The WSTB generally meets three times each year where discussions are held on ongoing projects, strategic planning, and developing new initiatives. The meetings also foster communication within the water resources community. The annual report includes a discussion on current studies, completed studies 2001-2002, and future plans, as well as a listing of published reports (1983-2002).

  17. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007

    USGS Publications Warehouse

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells.

  18. [Ground water improvement in the Ruhr--then and now].

    PubMed

    Schmidt, W D

    1989-05-01

    The waterworks founded during the second half of the last century obtained the raw water exclusively from the Ruhr-valley; they were responsible for the water supply of the industrial area situated on the right of the river Rhine. The rapidly growing water demand, limited possibilities in water catchment, the very bad quality of the Ruhr-water and epidemic typhoid fever required new methods in the water supply. Consequently, the Hygiene-Institute of Gelsenkirchen was founded and a new method of water production developed: the artificial ground water recharge. In 1913 two associations were founded: the Ruhrtalsperrenverein responsible for the provision of water quantity, and the Ruhrverband, responsible for the improvement of water quality. These associations formed the essential base for the rapid development of the so-called "Revier". In spite of the excellent elimination of bacteria by artificial ground water recharge-operating according to the principle of slow sand filtration-a disinfection of drinking water with chlorine became necessary; this disinfection was started in 1910 by the waterworks of the Ruhr. The construction of reservoirs and clarification plants ameliorated temporary the overall situation in water resources management. These improvements were, however, destroyed by consequences arising from the rapid economical growth before the second world war and the following break-down. After this period, great efforts were necessary to enlarge the reservoirs and increase the capacity of sewage plants. The waterworks pre-purified the water from the Ruhr before infiltration into the underground in order to increase the quantity and quality of the recharged water. Downstream, the number of sewage plants increased; a more and more refined method of analysis indicates now the pollution load of the raw ater and signalized trends which lead to further treatment measures or to the change of existing ones like substitution of chlorine by chlorine-dioxide. The

  19. Ground-water contribution classes to characterize watersheds in North Carolina

    USGS Publications Warehouse

    Terziotti, Silvia; Eimers, Jo Leslie

    2001-01-01

    This web site contains the Federal Geographic Data Committee-compliant metadata (documentation) for digital data produced for the North Carolina, Department of Environment and Natural Resources, Public Water Supply Section, Source Water Assessment Program. The metadata are for 11 individual Geographic Information System data sets. An overlay and indexing method was used with the data to derive a rating for unsaturated zone and watershed characteristics for use by the State of North Carolina in assessing more than 11,000 public water-supply wells and approximately 245 public surface-water intakes for susceptibility to contamination. For ground-water supplies, the digital data sets used in the assessment included unsaturated zone rating, vertical series hydraulic conductance, land-surface slope, and land cover. For assessment of public surface-water intakes, the data sets included watershed characteristics rating, average annual precipitation, land-surface slope, land cover, and ground-water contribution. Documentation for the land-use data set applies to both the unsaturated zone and watershed characteristics ratings. Documentation for the estimated depth-to-water map used in the calculation of the vertical series hydraulic conductance also is included.

  20. Quality of ground water around Vadnais Lake and in Lambert Creek watershed, and interaction of ground water with Vadnais Lake, Ramsey County, Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1994-01-01

    The results of the seepage analysis and ground-water quality evaluation indicate that the effect of the quality of the surrounding ground water on the quality of Vadnais Lake probably was small. Ground water that discharged to the lake generally had lower concentrations of calcium, magnesium, bicarbonate, and total dissolved solids than the lake. The mixing of ground water with the lake slightly diluted the lake with respect to these constituents.

  1. Ground water and the law - some selected annotated references

    USGS Publications Warehouse

    Vorhis, Robert C.

    1955-01-01

    The strictly "legal" literature of ground-water use and control -except for a few essays in certain of the law reviews- is quite limited. A larger and more pointful source of information and analysis is the legal-scientific writings of the geologists, hydrologists, meteorologists, engineers and others. When new statutes are to be drafted by legislatures, and new decisions are to be made by courts on this subject, such literature may well be of far greater importance than legal precedents unfounded on scientific fact. This may be demonstrated by the character and scope of the legal-scientific literature of ground water, just one branch of water science, but one which is of major importance to any thoughtful consideration of water use and control.

  2. Distribution of fluoride in ground water of West Virginia

    USGS Publications Warehouse

    Mathes, M.V.; Waldron, M.C.

    1993-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the West Virginia Geological and Economic Survey, to evaluate the distribution of fluoride in ground water of West Virginia. Fluoride is a natural chemical constituent in domestic and public water supplies in West Virginia. Fluoride concentrations of about 1.0 milligram per liter in drinking water are beneficial to dental health. Concentrations greater than 2.0 milligrams per liter, however, could harm teeth and bones. Fluoride concentra- tions in ground water of West Virginia range from less than 0.1 to 12 milligrams per liter. Fluoride concentrations that exceed 2.0 milligrams per liter are found in wells drilled to all depths, wells drilled in all topographic settings, and wells drilled into most geologic units. Most fluoride concentrations that exceed 2.0 milligrams per liter are located at sites clustered in the northwestern part of the State.

  3. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  4. Over-Water Aspects of Ground-Effect Vehicles

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Carter, Arthur W.; Schade, Robert O.

    1960-01-01

    The large thrust augmentation obtainable with annular-jet configurations in ground proximity has led to the serious investigation of ground-effect machines. The basic theoretical work on these phenomena has been done by Chaplin and Boehler. Large thrust-augmentation factors, however, can be obtained only at very low heights, that is, of the order of a few percent of the diameter of the vehicle. To take advantage of this thrust augmentation therefore the vehicle must be either very large or must operate over very smooth terrain. Over-land uses of these vehicles then will probably be rather limited. The water, however, is inherently smooth and those irregularities that do exist, that is waves, are statistically known. It appears therefore that some practical application of ground-effect machines may be made in over-water application.

  5. Geohydrology and ground-water quality of east King County, Washington

    USGS Publications Warehouse

    Turney, G.L.; Kahle, S.C.; Dion, N.P.

    1995-01-01

    East King County is a 250-square-mile area east of Seattle underlain by as much as 1,200 feet of unconsolidated deposits of glacial and nonglacial origin. A surficial geology map and 12 geohydrologic sections were constructed and used to delineate 10 geohydrologic units, 4 of which are major aquifers. Annual precipitation over the study area averages 57 inches, of which 31 inches, or 413,000 acre-feet, enter the ground-water system as recharge. Some 98,500 acre-feet of ground water is estimated to discharge to surface water bodies each year, 9,540 acre-feet is discharged through springs, and 4,270 acre-feet is withdrawn from wells. The chemical quality of the ground water in east King County is typical of that in other areas of western Washington. The median dissolved-solids concen- tration of 124 samples analyzed was 115 milligrams per liter, and 95 percent of the water samples were classified as soft or moderately hard. The median nitrate concentration was 0.07 milligrams per liter, and no widespread nitrate contamination was apparent.

  6. Availability of ground-water data for California, water year 2002

    USGS Publications Warehouse

    Huff, Julia A.

    2003-01-01

    The U.S. Geological Survey, Water Resources, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the ground-water resources of California each water year (October 1?September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to ground-water data for water year 2002. The 2-page report contains a map of California showing the number of wells (by county) with available water-level and waterquality data for water year 2002 and instructions for obtaining this and other ground-water information contained in the databases of the U.S. Geological Survey, Water Resources, California District.

  7. Ground-water level data for North Carolina, 1987

    USGS Publications Warehouse

    Coble, Ronald W.; Strickland, A.G.; Bailey, M. Carl

    1989-01-01

    Continuous and periodic measurements in 54 key wells and water-level measurements emplaced in Coastal Plain aquifers across North Carolina in 193 supplemental wells are presented in this report. Hydrographs of selected wells show changes in ground-water storage in the State. The water table in the shallow aquifers was higher throughout most of the State in 1987 than in 1986, indicating that rain had recharged these aquifers sufficiently to replenish the deficit in ground water storage that accumulated in the western and central parts of the State during 1986. Water levels in the heavily pumped Coastal Plain aquifers show a general downward trend for the year, indicating ground water is being withdrawn from aquifer storage. Record low water levels were measured in 4 of 13 wells in the Castle Hayne aquifer; the greatest decline measured during 1987 was 0.3 ft. Water levels in wells in the Peedee, Black Creek, upper Cape Fear, and lower Cape Fear aquifers generally show downward trends. Record low water levels were measured in 4 of 8 wells in the Peedee aquifer; the maximum decline measured during 1987 was 1.5 ft. All wells in the Black Creek, upper Cape Fear, and lower Cape Fear aquifers had record low water levels for 1987, with maximum measured declines in 1987 of 8.6, 3.1, and 3.1 ft., respectively. Record high water levels were measured in two wells, one each in the Castle Hayne and Peedee aquifers. Potentiometric surface maps show the effects of major centers of pumping for the Castle Hayne, Black Creek, and lower Cape Fear aquifers of the Coastal Plain.

  8. Ground-Water Age and its Water-Management Implications, Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Glass, Roy L.

    2002-01-01

    The Cook Inlet Basin encompasses 39,325 square miles in south-central Alaska. Approximately 350,000 people, more than half of Alaska?s population, reside in the basin, mostly in the Anchorage area. However, rapid growth is occurring in the Matanuska?Susitna and Kenai Peninsula Boroughs to the north and south of Anchorage. Ground-water resources provide about one-third of the water used for domestic, commercial and industrial purposes in the Anchorage metropolitan area and are the sole sources of water for industries and residents outside Anchorage. In 1997, a study of the Cook Inlet Basin was begun as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Samples of ground water were collected from 35 existing wells in unconsolidated glacial and alluvial aquifers during 1999 to determine the regional quality of ground water beneath about 790 mi2 of developed land and to gain a better understanding of the natural and human factors that affect the water quality (Glass, 2001). Of the 35 wells sampled, 31 had water analyzed for atmospherically derived substances to determine the ground water?s travel time from its point of recharge to its point of use or discharge?also known as ground-water age. Ground water moves slowly from its point of recharge to its point of use or discharge. This water starts as rain and melting snow that soak into the ground as recharge. In the Matanuska?Susitna, Anchorage, and Kenai Peninsula areas, ground water generally moves from near the mountain fronts toward Cook Inlet or the major rivers. Much of the water pumped by domestic and public-supply wells may have traveled less than 10 miles, and the trip may have taken as short a time as a few days or as long as several decades. This ground water is vulnerable to contamination from the land surface, and many contaminants in the water would follow the same paths and have similar travel times from recharge areas to points of use as the chemical substances analyzed in

  9. Selected ground-water data, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    1989-01-01

    Hydrologic data for Chester County, Pennsylvania are given for 3,010 wells and 32 springs. Water levels are given for 48 observation wells measured monthly during 1936-86. Chemical analyses of ground water are given for major ions, physical properties, nutrients, metals and other trace constituents, volatile organic compounds, acid organic compounds, base-neutral organic compounds, organochlorine insecticides, polychlorinated biphenyls, polychlorinated napthalenes, organophosphorous insecticides, organic acid herbicides, triazine herbicides, other organic compounds, and radionuclides.

  10. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada

    USGS Publications Warehouse

    Seiler, R.L.; Stollenwerk, K.G.; Garbarino, J.R.

    2005-01-01

    An investigation of a childhood leukemia cluster by US Centers for Disease Control and Prevention revealed that residents of the Carson Desert, Nevada, are exposed to high levels of W and this prompted an investigation of W in aquifers used as drinking water sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water sources in the area ranged from 0.27 to 742 ??g/l. Ground water in which W concentrations exceed 50 ??g/l principally occurs SE of Fallon in a geothermal area. The principal sources of W in ground water are natural and include erosion of W-bearing mineral deposits in the Carson River watershed upstream of Fallon, and, possibly, upwelling geothermal waters. Ground water in the Fallon area is strongly reducing and reductive dissolution of Fe and Mn oxyhydroxides may be releasing W; however, direct evidence that the metal oxides contain W is not available. Although W and Cl concentrations in the Carson River, a lake, and water from many wells, appear to be controlled by evaporative concentration, evaporation alone cannot explain the elevated W concentrations found in water from some of the wells. Concentrations of W exceeding 50 ??g/l are exclusively associated with Na-HCO3 and Na-Cl water types and pH > 8.0; in these waters, geochemical modeling indicates that W exhibits <10% adsorption. Tungsten concentrations are strongly and positively correlated with As, B, F, and P, indicating either common sources or common processes controlling their concentrations. Geochemical modeling indicates W concentrations are consistent with pH-controlled adsorption of W. The geochemical model PHREEQC was used to calculate IAP values, which were compared with published Ksp values for primary W minerals. FeWO4, MnWO4, Na2WO4, and MgWO4 were undersaturated and CaWO4 and SrWO 4 were approaching saturation. These conclusions are tentative because of uncertainty in the thermodynamic data. The similar behavior of As and W observed in

  11. RESEARCH TO SUPPORT RESTORATION OF GROUND WATER CONTAMINATED WITH ARSENIC

    EPA Science Inventory

    A brief programmatic overview will be presented to highlight research and technical support efforts underway at the Ground Water and Ecosystems Restoration Division in Ada, Oklahoma. Details from a case study will be presented to emphasize the technical challenges encountered du...

  12. REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER

    EPA Science Inventory

    Widespread contamination of methyl tert-butyl ether (MTBE) in ground water has raised concerns about the increased cost of remediation of MTBE releases compared to BTEX-only sites. To evaluate these costs, cost information for 311 sites was furnished by U.S. EPA Office of Underg...

  13. Uranium in US surface, ground, and domestic waters. Volume 2

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  14. Uranium in US surface, ground, and domestic waters

    SciTech Connect

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and