Sample records for ground waters annual

  1. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  2. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    USGS Publications Warehouse

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  3. Ground Water Technical Support Center (GWTSC) Annual ...

    EPA Pesticide Factsheets

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo

  4. Regression method for estimating long-term mean annual ground-water recharge rates from base flow in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370

  5. Aquifer-test results, direction of ground-water flow, and 1984-90 annual ground-water pumpage for irrigation, lower Big Lost River Valley, Idaho

    USGS Publications Warehouse

    Bassick, M.D.; Jones, M.L.

    1992-01-01

    The study area (see index map of Idaho), part of the Big Lost River drainage basin, is at the northern side of the eastern Snake River Plain. The lower Big Lost River Valley extends from the confluence of Antelope Creek and the Big Lost River to about 4 mi south of Arco and encompasses about 145 mi2 (see map showing water-level contours). The study area is about 18 mi long and, at its narrowest, 4 mi wide. Arco, Butte City, and Moore, with populations of 1,016, 59, and 190, respectively, in 1990, are the only incorporated towns. The entire study area, except the extreme northwestern part, is in Butte City. The study area boundary is where alluvium and colluvium pinch out and abut against the White Knob Mountains (chiefly undifferentiated sedimentary rock with lesser amounts of volcanic rock) on the west and the Lost River Range (chiefly sedimentary rock) on the east. Gravel and sand in the valley fill compose the main aquifer. The southern boundary is approximately where Big Lost River valley fill intercalates with or abuts against basalt of the Snake River Group. Spring ground-water levels and flow in the Big Lost River depend primarily on temperature and the amount and timing of precipitation within the entire drainage basin. Periods of abundant water supply and water shortages are, therefore, related to the amount of annual precipitation. Surface reservoir capacity in the valley (Mackay Reservoir, about 20 mi northwest of Moore) is only 20 percent of the average annual flow of the Big Lost River (Crosthwaite and others, 1970, p. 3). Stored surface water is generally unavailable for carryover from years of abundant water supply to help relieve drought conditions in subsequent years. Many farmers have drilled irrigation wells to supplement surface-water supplies and to increase irrigated acreage. Average annual flow of the Big Lost River below Mackay Reservoir near Mackay (gaging station 13127000, not shown) in water years 1905, 1913-14, and 1920-90 was about 224

  6. Ground-water conditions in Georgia, 1997

    USGS Publications Warehouse

    Cressler, A.M.

    1998-01-01

    Ground-water conditions in Georgia during 1997 and for the period of record were evaluated using data from ground-water-level and ground-water-quality monitoring networks. Data for 1997 included in this report are from continuous water-level records from 71 wells and chloride analyses from 14 wells. In 1997, annual mean ground-water levels in Georgia ranged from 6.2 feet (ft) lower to 5.6 ft higher than in 1996. Of the 71 wells summarized in this report, 23 wells had annual mean water levels that were higher, 35 wells had annual mean water levels that were lower, and 11 wells had annual mean water levels that were about the same in 1997 as during 1996. Data for two wells are incomplete because data collection was discontinued at one well, and the equipment was vandalized at one well. Record-low daily mean water levels were recorded in six wells tapping the Upper Floridan aquifer, one well tapping the Caliborne aquifer, two wells tapping the Clayton aquifer, and three wells tapping Cretaceous aquifers. These record lows were from 0.2 to 5.6 ft lower than previous record lows. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standard. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water

  7. Hydrology and simulation of ground-water flow in the Tooele Valley ground-water basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  8. Surface-water/ground-water relations in the Lemhi River Basin, east-central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    1998-01-01

    This report summarizes work carried out in cooperation with the Bureau of Reclamation to provide hydrologic information to help Federal, State, and local agencies meet the goals of the Lemhi River Model Watershed Project. The primary goal of the project is to maintain, enhance, and restore anadromous and resident fish habitat in the Lemhi River, while maintaining a balance between resource protection and established water uses. The main objectives of the study were to carry out seepage measurements to determine seasonal distributed gains and losses in the Lemhi River and to estimate annual ground-water underflow from the basin to the Salmon River. In 1997, seepage measurements were made during and after the irrigation season along a 60-mile reach of the Lemhi River between Leadore and Salmon. Except for one 4-mile reach that lost 1.3 cubic feet per second per mile, the river gained from ground water in early August when ground-water levels were high. Highest flows in the Lemhi River in early August were about 400 cubic feet per second. In October, when ground-water levels were low, river losses to ground water were about 1 to 16 cubic feet per second per mile. In October, highest flows in the Lemhi River were about 500 cubic feet per second, near the river's mouth. Annual ground-water underflow from the Lemhi River Basin to the Salmon River was estimated by using a simplified water budget and by using Darcy's equation. The water-budget method contained large uncertainties associated with estimating precipitation and evapotranspiration. Results of both methods indicate that the quantity of ground water leaving the basin as underflow is small, probably less than 2 percent of the basin's total annual water yield.

  9. Water Resources Data, North Dakota, Water Year 1998. Volume 2. Ground Water

    USGS Publications Warehouse

    Harkness, R.E.; Wald, J.D.

    2000-01-01

    This edition of the annual hydrologic data report of North Dakota is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by Federal, State, local agencies, and the private sector for developing and managing land and water resources in North Dakota. 

  10. Water Resources Data, North Dakota, Water Year 2000. Volume 2. Ground Water

    USGS Publications Warehouse

    Harkness, R.E.; Wald, J.D.

    2001-01-01

    This edition of the annual hydrologic data report of North Dakota is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by Federal, State, local agencies, and the private sector for developing and managing land and water resources in North Dakota. 

  11. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  12. Synopsis of ground-water and surface-water resources of North Dakota

    USGS Publications Warehouse

    Winter, T.C.; Benson, R.D.; Engberg, R.A.; Wiche, G.J.; Emerson, D.G.; Crosby, O.A.; Miller, J.E.

    1984-01-01

    This report describes the surface- and ground-water resources of North Dakota and the limitations of our understanding of these resources. Ground water and surface water are actually one resource, because they are often hydraulically interconnected. They are discussed separately for convenience. In general, the surface-water resources of the mainstem of the Missouri river are abundant and suitable for most uses. Other rivers may be important locally as water-supply sources, but the quantities of flow are small, quite variable in time, and generally of an unsuitable quality for most uses. Streamflow characteristics of North Dakota reflect its arid to semiarid climate (annual precipitation varies from 13 to 20 inches from west to east across the State), cold winters (usually including a significant snowpack available for spring snowmelt runoff), and the seasonal distribution of annual precipitation (almost 50 percent falls from Nky to July).Significant volumes of shallow ground water, of variable quality are found in the glacial-drift aquifers in parts of central, northern, and eastern North Dakota. Existing information provides only a limited capability to assess the long-term reliability of these scattered aquifers. There are significant indications, however, of water-quality problems related to sustained production of wells if long-term utilization of these aquifers is planned. A summary of the general suitability for use of surface water and ground water is given in Table E1.

  13. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  14. Precipitation; ground-water age; ground-water nitrate concentrations, 1995-2002; and ground-water levels, 2002-03 in Eastern Bernalillo County, New Mexico

    USGS Publications Warehouse

    Blanchard, Paul J.

    2004-01-01

    The eastern Bernalillo County study area consists of about 150 square miles and includes all of Bernalillo County east of the crests of the Sandia and Manzanita Mountains. Soil and unconsolidated alluvial deposits overlie fractured and solution-channeled limestone in most of the study area. North of Interstate Highway 40 and east of New Mexico Highway 14, the uppermost consolidated geologic units are fractured sandstones and shales. Average annual precipitation at three long-term National Oceanic and Atmospheric Administration precipitation and snowfall data-collection sites was 14.94 inches at approximately 6,300 feet (Sandia Ranger Station), 19.06 inches at about 7,020 feet (Sandia Park), and 23.07 inches at approximately 10,680 feet (Sandia Crest). The periods of record at these sites are 1933-74, 1939-2001, and 1953-79, respectively. Average annual snowfall during these same periods of record was 27.7 inches at Sandia Ranger Station, 60.8 inches at Sandia Park, and 115.5 inches at Sandia Crest. Seven precipitation data-collection sites were established during December 2000-March 2001. Precipitation during 2001-03 at three U.S. Geological Survey sites ranged from 66 to 94 percent of period-of-record average annual precipitation at corresponding National Oceanic and Atmospheric Administration long-term sites in 2001, from 51 to 75 percent in 2002, and from 34 to 81 percent during January through September 2003. Missing precipitation records for one site resulted in the 34-percent value in 2003. Analyses of concentrations of chlorofluorocarbons CFC-11, CFC-12, and CFC-113 in ground-water samples from nine wells and one spring were used to estimate when the sampled water entered the ground-water system. Apparent ages of ground water ranged from as young as about 10 to 16 years to as old as about 20 to 26 years. Concentrations of dissolved nitrates in samples collected from 24 wells during 2001-02 were similar to concentrations in samples collected from the same

  15. Annual summary of ground-water conditions in Arizona, spring 1982 to spring 1983

    USGS Publications Warehouse

    ,

    1984-01-01

    The withdrawal of ground water was slightly less than 4.2 million acre-feet in Arizona in 1982, which is about 1.2 million acre-feet less than the amount withdrawn in 1981. Most of the decrease in 1982 was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Through 1982, slightly more than 193 million acre-feet of ground water had been withdrawn from the ground-water reservoirs in Arizona. The report contains three small-scale maps that show ground-water pumpage by areas, the status of the ground-water inventory and observation-well program, and the ground-water quality sampling program. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1983, and change in water level in selected wells from 1978 to 1983. A brief text summarizes the current ground-water conditions in the State. (USGS)

  16. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    USGS Publications Warehouse

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  17. Annual summary of ground-water conditions in Arizona, Spring 1981 to Spring 1982

    USGS Publications Warehouse

    ,

    1982-01-01

    The withdrawal of ground water was about 5.4 million acre-feet in Arizona in 1981, which is about 800,000 acre-feet more than the amount withdrawn in 1980. Most of the increase in 1981 was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Through 1981, slightly more than 189 million acre-feet of ground water had been withdrawn from the ground-water reservoirs in Arizona. The report contains two small-scale maps that show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1982, and change in water level in selected wells from 1977 to 1982. A brief text summarizes the current ground-water conditions in the State. (USGS)

  18. Quantifying Ground-Water and Surface-Water Discharge from Evapotranspiration Processes in 12 Hydrographic Areas of the Colorado Regional Ground-Water Flow System, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    DeMeo, Guy A.; Smith, J. LaRue; Damar, Nancy A.; Darnell, Jon

    2008-01-01

    Rapid population growth in southern Nevada has increased the demand for additional water supplies from rural areas of northern Clark and southern Lincoln counties to meet projected water-supply needs. Springs and rivers in these undeveloped areas sustain fragile riparian habitat and may be susceptible to ground-water withdrawals. Most natural ground-water and surface-water discharge from these basins occurs by evapotranspiration (ET) along narrow riparian corridors that encompassed about 45,000 acres or about 1 percent of the study area. This report presents estimates of ground- and surface-water discharge from ET across 3.5 million acres in 12 hydrographic areas of the Colorado Regional Ground-Water Flow System. Ground-and surface-water discharge from ET were determined by identifying areas of ground- and surface-water ET, delineating areas of similar vegetation and soil conditions (ET units), and computing ET rates for each of these ET units. Eight ET units were identified using spectral-reflectance characteristics determined from 2003 satellite imagery, high-resolution aerial photography, and land classification cover. These ET units are dense meadowland vegetation (200 acres), dense woodland vegetation (7,200 acres), moderate woodland vegetation (6,100 acres), dense shrubland vegetation (5,800 acres), moderate shrubland vegetation (22,600 acres), agricultural fields (3,100 acres), non-phreatophytic areas (3,400,000 acres), and open water (300 acres). ET from diffuse ground-water and channelized surface-water is expressed as ETgs and is equal to the difference between total annual ET and precipitation. Total annual ET rates were calculated by the Bowen ratio and eddy covariance methods using micrometeorological data collected from four sites and estimated at 3.9 ft at a dense woodland site (February 2003 to March 2005), 3.6 ft at a moderate woodland site (July 2003 to October 2006), 2.8 ft at a dense shrubland site (June 2005 to October 2006), and 1.5 ft at a

  19. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  20. Ground water in the Verdigris River basin, Kansas and Oklahoma

    USGS Publications Warehouse

    Fader, Stuart Wesley; Morton, Robert B.

    1975-01-01

    Ground water in the Verdigris River basin occurs in consolidated rocks and unconsolidated deposits ranging in age from Mississippian to Quaternary. Water for municipal, industrial, and irrigation supplies generally can be obtained in limited quantities from the alluvial deposits in the stream valleys. Except for water in the alluvial deposits in the stream valleys and in the outcrop areas of the bedrock aquifers, the groundwater is generally of poor chemical quality. Owing to the generally poor chemical quality of water and low yields to wells, an increase in the use of ground water from the consolidated rocks is improbable. The unconsolidated rocks in the Verdigris River basin receive about 166,000 acre-feet of recharge annually, and about 1 million acre-fee of water is in temporary storage in the deposits. In 1968 about 4,200 acre-feet of ground was withdrawn for all uses. About 800 acre-feet of ground and 5,000 acre-feet of surface water were pumped for irrigation of 5,300 acres of cropland. The total annual withdrawal of ground water for irrigation may be 2,000 acre-feet by the year 2000.

  1. Ground-water pumpage and artificial recharge estimates for calendar year 2000 and average annual natural recharge and interbasin flow by hydrographic area, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Evetts, David M.

    2004-01-01

    Nevada's reliance on ground-water resources has increased because of increased development and surface-water resources being fully appropriated. The need to accurately quantify Nevada's water resources and water use is more critical than ever to meet future demands. Estimated ground-water pumpage, artificial and natural recharge, and interbasin flow can be used to help evaluate stresses on aquifer systems. In this report, estimates of ground-water pumpage and artificial recharge during calendar year 2000 were made using data from a variety of sources, such as reported estimates and estimates made using Landsat satellite imagery. Average annual natural recharge and interbasin flow were compiled from published reports. An estimated 1,427,100 acre-feet of ground water was pumped in Nevada during calendar year 2000. This total was calculated by summing six categories of ground-water pumpage, based on water use. Total artificial recharge during 2000 was about 145,970 acre-feet. At least one estimate of natural recharge was available for 209 of the 232 hydrographic areas (HAs). Natural recharge for the 209 HAs ranges from 1,793,420 to 2,583,150 acre-feet. Estimates of interbasin flow were available for 151 HAs. The categories and their percentage of the total ground-water pumpage are irrigation and stock watering (47 percent), mining (26 percent), water systems (14 percent), geothermal production (8 percent), self-supplied domestic (4 percent), and miscellaneous (less than 1 percent). Pumpage in the top 10 HAs accounted for about 49 percent of the total ground-water pumpage. The most ground-water pumpage in an HA was due to mining in Pumpernickel Valley (HA 65), Boulder Flat (HA 61), and Lower Reese River Valley (HA 59). Pumpage by water systems in Las Vegas Valley (HA 212) and Truckee Meadows (HA 87) were the fourth and fifth highest pumpage in 2000, respectively. Irrigation and stock watering pumpage accounted for most ground-water withdrawals in the HAs with the sixth

  2. Annual summary of ground-water conditions in Arizona, spring 1977 to spring 1978

    USGS Publications Warehouse

    ,

    1978-01-01

    The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1977. About 4.7 million acre-feet of ground water was used for the irrigation of crops in 1977. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1973-77, ground-water withdrawal in the two areas was about 8.1 and 5.1 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, scale 1:500 ,000, shows potential well production, depth to water in selected wells in spring 1978, and change in water level in selected wells from 1973 to 1978. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. (Woodard-USGS)

  3. Ground-water conditions in Utah, spring of 1997

    USGS Publications Warehouse

    Gerner, S.J.; Steiger, J.I.; Sory, J.D.; Burden, Carole B.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1997-01-01

    This is the thirty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep aware of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1996. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  4. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  5. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for

  6. Annual summary of ground-water conditions in Arizona, spring 1979 to spring 1980

    USGS Publications Warehouse

    ,

    1981-01-01

    Withdrawal of ground water, about 4.0 million acre-feet in Arizona in 1979, is about 200,000 acre-feet less than the amount withdrawn in 1978. The withdrawals in 1978 and 1979 are the smallest since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. The large amount of water in storage in the surface-water reservoirs, release of water from the reservoirs, floods, and conservation practices contributed to the decrease in ground-water use and caused water-level rises in the Salt River Valley, Gila Bend basin, and Gila River drainage from Painted Rock Dam to Texas Hill. Two small-scale maps show ground-water pumpage by areas and the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1980, and change in water level in selected wells from 1975 to 1980. A brief text summarizes the current ground-water conditions in the State. (USGS)

  7. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2015

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management ...

  8. Ground-water conditions in Utah, spring of 1995

    USGS Publications Warehouse

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  9. Annual summary of ground-water conditions in Arizona, spring 1975 to spring 1976

    USGS Publications Warehouse

    Babcock, H.M.

    1977-01-01

    Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. A larger map of the State at a scale of 1:500,000 shows potential well production, depth to water in selected wells in spring 1976, and change in water level in selected wells from 1971 to 1976. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. The withdrawal of ground water in Arizona was about 5.6 million acre-feet in 1975, of which about 4.7 million acre-feet was used for the irrigation of crops. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1971-75, ground-water withdrawal in the two areas was about 8.3 and 4.7 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused large water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. (Woodard-USGS)

  10. Annual summary of ground-water conditions in Arizona, spring 1976 to spring 1977

    USGS Publications Warehouse

    Babcock, H.M.

    1977-01-01

    Two small-scale maps of Arizona show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth of water in selected wells in spring 1977, and change in water level in selected wells from 1972 to 1977. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. The withdrawal of ground water was about 5.5 million acre-feet in Arizona in 1976 of which about 4.7 million acre-feet was used for the irrigation. The Salt River Valley and the lower Santa Cruz basin are the largest agricultural areas in the State. For 1972-76, ground-water withdrawal in the two areas was about 8.2 to 4.9 million acre-feet, respectively, and, in general, water levels are declining. Other areas in which ground-water withdrawals have caused large water-level declines are the Willcox, San Simon, upper Santa Cruz, Avra Valley, Gila Bend, Harquahala Plains, and McMullen Valley areas. (Woodard-USGS)

  11. Ground-water conditions in Utah, spring of 2002

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  12. Ground-water conditions in Utah, spring of 1999

    USGS Publications Warehouse

    Burden, Carole B.; Spangler, L.E.; Sory, J.D.; Eacret, Robert J.; Kenney, T.A.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    1999-01-01

    This is the thirty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1998. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  13. Ground-water conditions in Utah, spring of 2001

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2001-01-01

    This is the thirty-eighth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2000. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  14. Ground-water conditions in Utah, spring of 2003

    USGS Publications Warehouse

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  15. Ground-water conditions in Utah, spring of 2000

    USGS Publications Warehouse

    Burden, Carole B.; Sory, J.D.; Danner, M.R.; Johnson, K.K.; Kenny, T.A.; Brockner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2000-01-01

    This is the thirty-seventh in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1999. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  16. Ground-water conditions in Utah, spring of 2004

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2004-01-01

    This is the forty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2003. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  17. Annual summary of ground-water conditions in Arizona, spring 1978 to spring 1979

    USGS Publications Warehouse

    ,

    1980-01-01

    In 1978 the withdrawal of ground water was about 4.2 million acre-feet in Arizona, and slightly more than 3.4 million acre-feet of ground water was used for the irrigation of crops. The amount of ground water withdrawn in 1978 decreased more than 1.2 million acre-feet from the amount withdrawn in 1977 and is the smallest amount withdrawn since the mid-1950 's except in 1966. Nearly all the decrease was in the amount of ground water used for irrigation in the Basin and Range lowlands province. Possible causes for the decrease include above-average precipitation, greater availability of surface water, and some comparatively new conservation practices. The Salt River Valley and the lower Santa Cruz area are the largest agricultural areas in the State; the amount of ground water withdrawn for agricultural use in the Salt River Valley and the lower Santa Cruz area decreased nearly 613,000 and 291,000 acre-feet, respectively, between 1977 and 1978. The report contains two small-scale maps of Arizona that show (1) pumpage of ground water by areas and (2) the status of the ground-water inventory in the State. The main map, which is at a scale of 1:500,000, shows potential well production, depth to water in selected wells in spring 1979, and change in water level in selected wells from 1974 to 1979. The brief text that accompanies the maps summarizes the current ground-water conditions in the State. (USGS)

  18. Ground-water conditions in Utah, spring of 1998

    USGS Publications Warehouse

    Susong, David D.; Burden, Carole B.; Sory, J.D.; Eacret, Robert J.; Johnson, K.K.; Loving, B.L.; Brockner, S.J.; Danner, M.R.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Herbert, L.R.

    1998-01-01

    This is the thirty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1997. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  19. Ground-water data for Georgia, 1983

    USGS Publications Warehouse

    Clarke, J.S.; Peck, M.F.; Longsworth, S.A.; McFadden, K.W.

    1984-01-01

    Continuous water-level records from 134 wells and more than 700 water-level measurements made in Georgia during 1983 provide the basic data for this report. Selected wells illustrate the effects that changes in recharge and pumping have had on the various ground-water resources in the State. Daily mean water levels are shown in hydrographs for 1983. Monthly means are shown for the 10-year period 1974-83. Mean annual water levels ranged from 9 feet higher to 6 feet lower in 1983 than in 1982. Water-quality samples are collected periodically throughout Georgia and analyzed as part of areal and regional ground-water studies. Along the coast, chloride concentrations in the upper and lower water-bearing zones of the Floridan aquifer system generally remained steady in the Brunswick and Hilton Head Island areas. (USGS)

  20. Ground water recharge and discharge in the central Everglades

    USGS Publications Warehouse

    Harvey, Judson W.; Krupa, Steven L.; Krest, James M.

    2004-01-01

    Rates of ground water recharge and discharge are not well known in the central Everglades. Here we report estimates of ground water recharge and discharge at 15 sites in the Everglades Nutrient Removal Project and in Water Conservation Area 2A (WCA-2A), along with measurements of hydraulic properties of peat at 11 sites. A simple hydrogeologic simulation was used to assess how specific factors have influenced recharge and discharge. Simulations and measurements agreed that the highest values of recharge and discharge occur within 600 m of levees, the result of ground water flow beneath levees. There was disagreement in the interior wetlands of WCA-2A (located > 1000 m from levees) where measurements of recharge and discharge were substantially higher than simulated fluxes. A five-year time series (1997 to 2002) of measured fluxes indicated that recharge and discharge underwent reversals in direction on weekly, monthly, and annual timescales at interior sites in WCA-2A. Ground water discharge tended to occur during average to moderately dry conditions when local surface water levels were decreasing. Recharge tended to occur during moderately wet periods or during very dry periods just as water levels began to increase following precipitation or in response to a pulse of surface water released from water-control structures by water managers. Discharge also tended to occur at sites in the wetland interior for ∼1 week preceding the arrival of the surface water pulse. We conclude that ground water recharge and discharge vary cyclically in the interior wetlands of the central Everglades, driven by the differential responses of surface water and ground water to annual, seasonal, and weekly trends in precipitation and operation of water-control structures.

  1. Ground-water conditions in Utah, spring of 1994

    USGS Publications Warehouse

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  2. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  3. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    USGS Publications Warehouse

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  4. Ground-water conditions in Utah, spring of 2005

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2005-01-01

    This is the forty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2004. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources. This report is available online at http://www.waterrights.utah.gov/techinfo/ wwwpub/gw2005.pdf and http://ut.water.usgs.gov/publications/GW2005.pdf.

  5. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  6. Regional estimation of base recharge to ground water using water balance and a base-flow index.

    PubMed

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2003-01-01

    Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.

  7. Developing a state water plan: Ground-water conditions in Utah, spring of 1978

    USGS Publications Warehouse

    Gates, Joseph S.; Jibson, W.N.; Herbert, L.R.; Mower, R.W.; Razem, A.C.; Cordova, R.M.; Jensen, V.L.; ReMillard, M.D.; Emett, D.C.; Sumison, C.T.; Carroll, P.A.; DeGrand, M.J.; Sandberg, G.W.

    1978-01-01

    This report is the fifteenth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, prepared cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others (see References, p. 13), contains information on well construction, ground-water withdrawals, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-table configuration are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water withdrawal in the State for the calendar year 1977. Water-level fluctuations, however, are described for the period spring 1977 to spring 1978. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  8. Developing a state water plan: Ground-water conditions in Utah, spring of 1979

    USGS Publications Warehouse

    Price, Don; Jibson, W.N.; Contratto, P. Kay; Mower, R.W.; Steiger, Judy I.; Jensen, V.L.; ReMillard, M.D.; Emett, D.C.; Sumison, C.T.; Carroll, P.A.; Neff, L.J.; Sandberg, G.W.; Herbert, L.R.

    1979-01-01

    This report is the sixteenth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, prepared cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawals, water-level changes, and related changes in precipitation and streamflow. Supplementary data such as graphs showing chemical quality of water and maps showing water-table configuration are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected major areas of ground-water withdrawal in the State for the calendar year 1978. Water-level fluctuations, however, are described for the period spring 1978 to spring 1979. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Division of Water Rights, Utah Department of Natural Resources.

  9. Ground-water conditions in Utah, spring of 2007

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  10. Ground-water conditions in Utah, spring of 2006

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Wilberg, D.E.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2006-01-01

    This is the forty-third in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2005. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/techinfo/wwwpub/gw2006.pdf and http://ut.water.usgs. gov/publications/GW2006.pdf.

  11. Ground-water conditions in Utah, spring of 2008

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  12. Ground-water conditions in Utah, spring of 2009

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  13. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide

  14. Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98

    USGS Publications Warehouse

    Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

    2003-01-01

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  15. Simulation of ground-water flow and evaluation of water-management alternatives in the Assabet River Basin, Eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.

    2004-01-01

    Water-supply withdrawals and wastewater disposal in the Assabet River Basin in eastern Massachusetts alter the flow and water quality in the basin. Wastewater discharges and stream-flow depletion from ground-water withdrawals adversely affect water quality in the Assabet River, especially during low-flow months (late summer) and in headwater areas. Streamflow depletion also contributes to loss of aquatic habitat in tributaries to the river. In 19972001, water-supply withdrawals averaged 9.9 million gallons per day (Mgal/d). Wastewater discharges to the Assabet River averaged 11 Mgal/d and included about 5.4 Mgal/d that originated from sources outside of the basin. The effects of current (2004) and future withdrawals and discharges on water resources in the basin were investigated in this study. Steady-state and transient ground-water-flow models were developed, by using MODFLOW-2000, to simulate flow in the surficial glacial deposits and underlying crystalline bedrock in the basin. The transient model simulated the average annual cycle at dynamic equilibrium in monthly intervals. The models were calibrated to 19972001 conditions of water withdrawals, wastewater discharges, water levels, and nonstorm streamflow (base flow plus wastewater discharges). Total flow through the simulated hydrologic system averaged 195 Mgal/d annually. Recharge from precipitation and ground-water discharge to streams were the dominant inflow and outflow, respectively. Evapotranspiration of ground water from wetlands and non-wetland areas also were important losses from the hydrologic system. Water-supply withdrawals and infiltration to sewers averaged 5 and 1.3 percent, respectively, of total annual out-flows and were larger components (12 percent in September) of the hydrologic system during low-flow months. Water budgets for individual tributary and main stem subbasins identified areas, such as the Fort Meadow Brook and the Assabet Main Stem Upper subbasins, where flows resulting from

  16. Occurrence and quality of surface water and ground water within the Yavapai-Prescott Indian Reservation, central Arizona, 1994-98

    USGS Publications Warehouse

    Littin, Gregory R.; Truini, Margot; Pierce, Herbert A.; Baum, Brad M.

    2000-01-01

    The Yavapai-Prescott Indian Reservation encompasses about 1,395 acres in central Arizona adjacent to the city of Prescott. From October 1994 to September 1997, the annual average rainfall was 14.9 inches and the total annual streamflow leaving the reservation along Granite Creek was about 430 acre-feet more than the amount of streamflow entering the reservation. The channel-fill and valley-fill sediments within the flood plain of Granite Creek make up the principal aquifer. The only ground-water development is from spring discharge that is being contained for livestock and wildlife use. About 29 acre-feet of ground water leaves the reservation each year after discharging into Granite Creek. Water levels in wells throughout the reservation reflect seasonal variations in rainfall and snowmelt. Surface water and ground water on the reservation are calcium bicarbonate types. Specific-conductance field measurements ranged from 187 to 724 microsiemens per centimeter for surface water and 381 to 990 microsiemens per centimeter for ground water. Fecal streptococcal bacteria and fecal coliform bacteria in the surface water make the water unsuitable for domestic use. Some volatile and semivolatile organic compounds were detected in samples of surface water, ground water, and streambed sediment. The potential for contamination exists from point and nonpoint sources on and off the reservation.

  17. Ground-Water Hydrology of the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Morgan, David S.; Collins, Charles A.

    2001-01-01

    The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks

  18. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2014 (FY14)

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  19. Ground-water hydrology of the Willamette basin, Oregon

    USGS Publications Warehouse

    Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.

    2005-01-01

    The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple

  20. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  1. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  2. Effects of alternative instream-flow criteria and water-supply demands on ground-water development options in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.

    2005-01-01

    Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant

  3. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.

  4. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  5. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    high flows. Conveyance losses in the Pebble-Topaz reach were greatest, about 283 cubic feet per second, during the spring regulated high flows and were attributed to a hydroelectric project.Comparison of water levels in 30 wells in the Portneuf Valley during September and October 1968 and 2001 indicated long-term declines since 1968; the median decline was 3.4 feet. September and October were selected for characterizing long-term ground-water-level fluctuations because declines associated with irrigation reach a maximum at the end of the irrigation season. The average annual snowpack in the study area has declined significantly; 1945 85 average annual snowpack was 16.1 inches, whereas 1986 through 2002 average annual snowpack was 11.6 inches. Water-level declines during 1998 2002 may be partially attributable to the extended dry climatic conditions. It is unclear whether the declines could be partially attributed to increases in ground-water withdrawals. Between 1968 and 1980, water rights for ground-water withdrawals nearly doubled from 23,500 to 46,000 acre-feet per year. During this period, ground-water levels were relatively constant and did not exhibit a declining trend that could be related to increased ground-water withdrawal rights. However, ground-water withdrawals are not measured in the valley; thus, the amount of water pumped is not known. Since the 1990s, there have been several years when the Chesterfield Reservoir has not completely refilled, and the water in storage behind the reservoir has been depleted by the middle of the irrigation season. In this situation, surface-water diversions for irrigation were terminated before the end of the irrigation season, and irrigators, who were relying in part on diversions from the Portneuf River, had to rely solely on ground water as an alternate supply. Smaller volumes of water in the Chesterfield Reservoir since the 1990s indicate a growing demand for ground-water supplies.

  6. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per

  7. Ground water resources of southeastern Oakland County, Michigan

    USGS Publications Warehouse

    Ferris, J.G.; Burt, E.M.; Stramel, G.J.; Crosthwaite, E.G.

    1954-01-01

    The area covered by this report comprises a square which measures three townships on a side and enclose 318 square miles in southeastern Oakland County. The investigation of the ground-water resources of this area was made by the U.S. Geological Survey in cooperation with the Detroit Metropolitan Area Regional Planning Commission, the Michigan Department of Conservation, and the Michigan Water Resources Commission.In 1950 the population of this nine-township area exceeded 341,000, or more than 86 percent of the total population of Oakland County. This county ranks third in the state in number of industrial establishments and workers and is fifteenth in agricultural importance. Its numerous lakes and rolling uplands contribute to its top rank in the state in the number of recreational enterprises in rural or suburban areas.The climate is moderately humid. The average annual precipitation is 30 inches and the mean air temperature is 47.2° F. Snowfall averages 38 inches in the November-April interval. The growing season averages 151 days.The regional land surface slopes from northwest to southeast and has a total relief of 360 feet. Pitted outwash plains and morainal hills that are more than 1,000 feet above sea level in the northwest corner of the area give way southeastward to a sequence of terminal moraines and intervening till plains in the middle part. These give way to the broad lake plains that cover the southeastern third of the area.The area lies on the southeast edge of the Michigan Basin and the bedrock is composed of northwest dipping strata of the Devonian and Mississippian systems. The Antrim shale, of Lake Devonian and early Mississippian age, is the oldest formation cropping out beneath the mantle of glacial Berea sandstone, and Sunbury shale overlie the Antrim and are overlain by the Coldwater shale, their areas of outcrop beneath the drift lying successively farther northwest. These formations are of early Mississippian age.Throughout the area the

  8. Ground-water and surface-water flow and estimated water budget for Lake Seminole, southwestern Georgia and northwestern Florida

    USGS Publications Warehouse

    Dalton, Melinda S.; Aulenbach, Brent T.; Torak, Lynn J.

    2004-01-01

    , and about 2 percent lake evaporation. Measurement error and uncertainty in flux calculations cause a flow imbalance of about 4 percent between inflow and outflow water-budget components. Most of this error can be attributed to errors in estimating ground-water discharge from the lake, which was calculated using a ground-water model calibrated to October 1986 conditions for the entire Apalachicola?Chattahoochee?Flint River Basin and not just the area around Lake Seminole. Evaporation rates were determined using the preferred, but mathematically complex, energy budget and five empirical equations: Priestley-Taylor, Penman, DeBruin-Keijman, Papadakis, and the Priestley-Taylor used by the Georgia Automated Environmental Monitoring Network. Empirical equations require a significant amount of data but are relatively easy to calculate and compare well to long-term average annual (April 2000?March 2001) pan evaporation, which is 65 inches. Calculated annual lake evaporation, for the study period, using the energy-budget method was 67.2 inches, which overestimated long-term average annual pan evaporation by 2.2 inches. The empirical equations did not compare well with the energy-budget method during the 18-month study period, with average differences in computed evaporation using each equation ranging from 8 to 26 percent. The empirical equations also compared poorly with long-term average annual pan evaporation, with average differences in evaporation ranging from 3 to 23 percent. Energy budget and long-term average annual pan evaporation estimates did compare well, with only a 3-percent difference between estimates. Monthly evaporation estimates using all methods ranged from 0.7 to 9.5 inches and were lowest during December 2000 and highest during May 2000. Although the energy budget is generally the preferred method, the dominance of surface water in the Lake Seminole water budget makes the method inaccurate and difficult to use, because surface water makes up m

  9. Ground-water recharge from streamflow data, NW Florida

    USGS Publications Warehouse

    Vecchioli, John; Bridges, W.C.; Rumenik, Roger P.; Grubbs, J.W.

    1991-01-01

    Annual base flows of streams draining Okaloosa County and adjacent areas in northwest Florida were determined through hydrograph separation and correlation techniques for purposes of evaluating variations in ground-water recharge rates. Base flows were least in the northern part of the county and greatest in the southern part. Topographic and soils data were then superimposed on the distribution of base flow by subbasin to produce a map showing distribution of ground-water recharge throughout the county. The highest recharge rate occurs in the southern part of the county where relatively flat upland areas underlain by excessively drained sandy soils result in minimal storm runoff and evapotranspiration.

  10. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to

  11. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  12. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-06-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions

  13. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    USGS Publications Warehouse

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  14. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  15. Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Sold, L.; Huss, M.; Eichler, A.; Schwikowski, M.; Hoelzle, M.

    2015-05-01

    The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons (IRHs) in helicopter-borne ground-penetrating radar (GPR) data. For each individual GPR measurement, the signal travel time is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR repeat measurements are available in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRHs correspond to density maxima, but not exclusively to former summer glacier surfaces. Along GPR profile sections from across the accumulation area we obtain the water equivalent (w.e.) of several annual firn layers. Because deeper IRHs could be tracked over shorter distances, the total length of analysed profile sections varies from 7.3 km for the uppermost accumulation layer (2011) to 0.1 km for the deepest (i.e. oldest) layer (2006). According to model results, refreezing accounts for 10% of the density increase over time and depth, and for 2% of the water equivalent. The strongest limitation to our method is the dependence on layer chronology assumptions. We show that GPR can be used not only to complement existing mass balance monitoring programmes on temperate glaciers but also to retrospectively extend newly initiated time series.

  16. National water summary 1986; Hydrologic events and ground-water quality

    USGS Publications Warehouse

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  17. Use of Microgravity to Assess the Effects of El Nino on Ground-Water Storage in Southern Arizona

    USGS Publications Warehouse

    Parker, John T.C.; Pool, Donald R.

    1998-01-01

    The availability of ground water is of extreme importance in areas, such as southern Arizona, where it is the main supply for agricultural, industrial, or domestic purposes. Where ground-water use exceeds recharge, monitoring is critical for managing water supplies. Typically, monitoring has been done by measuring water levels in wells; however, this technique only partially describes ground-water conditions in a basin. A new application of geophysical technology is enabling U.S. Geological Survey (USGS) scientists to measure changes in the amount of water in an aquifer using a network of microgravity stations. This technique enables a direct measurement of ground-water depletion and recharge. In Tucson, Arizona, residents have relied solely upon ground water for most of their needs since the 19th century. Water levels in some wells in the Tucson area have declined more than 200 ft in the past 50 years. Similar drops in water levels have occurred elsewhere in Arizona. In response to the overdrafting of ground water, the State of Arizona passed legislation designed to attain 'safe yield,' which is defined as a balance between ground-water withdrawals and annual recharge of aquifers. To monitor progress in complying with the legislation, ground-water withdrawals are measured and estimated, and annual recharge is estimated. The Tucson Basin and Avra Valley are two ground-water basins that form the Tucson Active Management Area (TAMA), which by State statute must attain 'safe yield' by the year 2025.

  18. Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range

    USGS Publications Warehouse

    Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.

    2003-01-01

    Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.

  19. Statistical summaries of ground-water level data collected in the Suwannee River Water Management District, 1948 to 1994

    USGS Publications Warehouse

    Collins, J.J.; Freeman, L.D.

    1996-01-01

    Since 1948, ground-water level data have beensystematically collected from selected wells in theSuwannee River Water Management District (SRWMD) by the U.S. Geological Survey (USGS),the SRWMD, and other agencies. Records of waterlevels in the SRWMD (fig. 1), collected by the USGS and SRWMD through 1990, and by the SRWMD from 1990 to 1994, have been published for many years in the USGS annual report series "Water Resources Data for Florida." However, no systematic statistical summaries of water levels in the SRWMD have been previously published. The need for such statistical summary data forevaluations of drought severity, ground-water supplyavailability, and minimum water levels for regulatory purposes increases daily as demands for ground-water usage increase. Also, much of the base flow of the Suwannee River is dependent upon ground water. As the population and demand for ground water for drinking water and irrigation purposes increase, the ability to quickly and easily predict trends in ground-water availability will become paramount. In response to this need, the USGS, in cooperation with the SRWMD, compiled this report. Ground-water sta tistics for 136 sites are presented as well as figures showing water levels that were measured in wells from 1948 through September 1994. In 1994, the SRWMD and the USGS began a long- term program of cooperative studies designed tobetter understand minimum and maximum streamflows and ground-water levels in the SRWMD. Minimum and maximum flows and levels are needed by the district to manage the surface- and ground-water resources of the SRWMD and to maintain or improve the various ecosystems. Data evaluation was a necessary first step in the long- term SRWMD ground-water investigations program, because basic statistics for ground-water levels are not included in the USGS annual data reports such as "Water Resources Data for Florida, Water Year 1994" (Fran klin and others, 1995). Statistics included in this report were generated

  20. Ground-water resources of Cambodia

    USGS Publications Warehouse

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    Cambodia (now the Khmer Republic), in tropical, humid southeast Asia, has an area of 175,630 km and a population of about 5 million. The Mekong River, one of the world's largest rivers, flows through Cambodia. Also, the Tonle Sap (Grand Lac), a highly productive fresh-water lake, functions as a huge off-channel storage reservoir for flood flow of the Mekong River. Surfacewater discharge in streams and rivers of Cambodia is abundant during the wet season, mid-May through mid-November, when 85 percent of the precipitation falls, but is frequently deficient during the remainder of the year. Annual rainfall ranges from 1,370 mm in the central lowlands to more than 5,000 mm in the mountainous highlands. The mean annual temperature for the country is 27.5?C and the evaporation rate is high. During 1960-63, 1,103 holes were drilled in 16 of the 18 khets (provinces), of which 795 or approximately 72 percent, were productive wells at rates ranging from 1.1 to 2,967 l/min. The productive wells ranged in depth from 2 to 209.4 m and were 23.2 m deep on the average. Mr. Rasmussen ' studied the subsurface geology of Cambodia in considerable detail by examining drillers' logs and constructing nine geologic cross sections. The principal aquifer tapped by drilled wells in Cambodia is the Old Alluvium. In many places, however, dug wells and a few shallow drilled wells obtain water from the Young Alluvium. Sandstone of the Indosinias Formation yields moderate to small quantities of water to wells in a number of places. Also, wells tapping water-bearing basalt have a small to moderate yield. The quality of water is recorded in only a few analyses. The dissolved solids concentrations appear to be generally low so that the water is usable for most purposes without treatment. Some well waters, however, are high in iron and would have to be aerated and filtered before use. In this report, well records are tabulated, and the geology and hydrology is discussed by khets. The bulk of the

  1. Use of tree-ring chemistry to document historical ground-water contamination events

    USGS Publications Warehouse

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  2. Potential for using the Upper Coachella Valley ground-water basin, California, for storage of artificially recharged water

    USGS Publications Warehouse

    Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.

    1980-01-01

    This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)

  3. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    of wet and dry seasons, and provided evidence for ground-water inflow generated from the upper basin. Annual water budgets showed how differences in timing of rainfall and pumping stresses affected lake stage and lake ground-water interactions. Lake evaporation measurements made during the study suggest that, on average, annual lake evaporation exceeds annual precipitation in the basin. Rainfall was close to the long-term average of 51.99 inches per year for the 2 years of the study (50.68 and 54.04 inches, respectively). Lake evaporation was 57.08 and 55.88 inches per year for the same 2 years, making net precipitation (rainfall minus evaporation) negative during both years. If net precipitation to seepage lakes in this area is negative over the long-term, then the ability to generate net ground-water inflow from the surrounding basin plays an important role in sustaining lake levels. Evaporation exceeded rainfall by a similar amount for both years of the study, but net ground-water flow differed substantially between the 2 years. The basin contributed net ground-water inflow to the lake in both years, however, net ground-water inflow was not sufficient to make up for the negative net precipitation during the first year, and the lake fell 4.9 inches. During the second year, net ground-water inflow exceeded the difference between evaporation and rainfall and the lake rose by 12.7 inches. The additional net ground-water inflow in the second year was due to both an increase in the amount of gross ground-water inflow and a decrease in lake leakage (ground-water outflow). Ground-water inflow was greater during the second year because more rain fell during the winter, when evaporative losses were low, resulting in greater ground-water recharge. However, decreased lake leakage during this year was probably at least as important as increased ground-water inflow in explaining the difference in net ground-water flow to the lake between the 2 years. Estimates of lake leakage

  4. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  5. Ground-Water Storage Change and Land Subsidence in Tucson Basin and Avra Valley, Southeastern Arizona, 1998-2002

    USGS Publications Warehouse

    Pool, Donald R.; Anderson, Mark T.

    2008-01-01

    Gravity and land subsidence were measured annually at wells and benchmarks within two networks in Tucson Basin and Avra Valley from 1998 to 2002. Both networks are within the Tucson Active Management Area. Annual estimates of ground-water storage change, ground-water budgets, and land subsidence were made based on the data. Additionally, estimates of specific yield were made at wells within the monitored region. Increases in gravity and water-level rises followed above-average natural recharge during winter 1998 in Tucson Basin. Overall declining gravity and water-level trends from 1999 to 2002 in Tucson Basin reflected general declining ground-water storage conditions and redistribution of the recent recharge throughout a larger region of the aquifer. The volume of stored ground-water in the monitored portion of Tucson Basin increased 200,000 acre-feet from December 1997 to February 1999; however, thereafter an imbalance in ground-water pumpage in excess of recharge led to a net storage loss for the monitoring period by February 2002. Ground-water storage in Avra Valley increased 70,000 acre-feet during the monitoring period, largely as a result of artificial and incidental recharge in the monitored region. The water-budget for the combined monitored regions of Tucson Basin and Avra Valley was dominated by about 460,000 acre-feet of recharge during 1998 followed by an average-annual recharge rate of about 80,000 acre-feet per year from 1999 to 2002. Above-average recharge during winter 1998, followed by average-annual deficit conditions, resulted in an overall balanced water budget for the monitored period. Monitored variations in storage compared well with simulated average-annual conditions, except for above-average recharge from 1998 to 1999. The difference in observed and simulated conditions indicate that ground-water flow models can be improved by including climate-related variations in recharge rates rather than invariable rates of average-annual recharge

  6. Evaluation of the ground-water flow model for northern Utah Valley, Utah, updated to conditions through 2002

    USGS Publications Warehouse

    Thiros, Susan A.

    2006-01-01

    This report evaluates the performance of a numerical model of the ground-water system in northern Utah Valley, Utah, that originally simulated ground-water conditions during 1947-1980 and was updated to include conditions estimated for 1981-2002. Estimates of annual recharge to the ground-water system and discharge from wells in the area were added to the original ground-water flow model of the area.The files used in the original transient-state model of the ground-water flow system in northern Utah Valley were imported into MODFLOW-96, an updated version of MODFLOW. The main model input files modified as part of this effort were the well and recharge files. Discharge from pumping wells in northern Utah Valley was estimated on an annual basis for 1981-2002. Although the amount of average annual withdrawals from wells has not changed much since the previous study, there have been changes in the distribution of well discharge in the area. Discharge estimates for flowing wells during 1981-2002 were assumed to be the same as those used in the last stress period of the original model because of a lack of new data. Variations in annual recharge were assumed to be proportional to changes in total surface-water inflow to northern Utah Valley. Recharge specified in the model during the additional stress periods varied from 255,000 acre-feet in 1986 to 137,000 acre-feet in 1992.The ability of the updated transient-state model to match hydrologic conditions determined for 1981-2002 was evaluated by comparing water-level changes measured in wells to those computed by the model. Water-level measurements made in February, March, or April were available for 39 wells in the modeled area during all or part of 1981-2003. In most cases, the magnitude and direction of annual water-level change from 1981 to 2002 simulated by the updated model reasonably matched the measured change. The greater-than-normal precipitation that occurred during 1982-84 resulted in period-of-record high

  7. Ground Water Technical Support Center (GWTSC) Annual Report FY 2012: October 2011 – September 2012

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  8. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    USGS Publications Warehouse

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  9. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  10. Ground water hydrology of the Elizabethtown area, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Lyverse, M.A.

    1984-01-01

    The principal aquifer in a 52 square mile karst area in north central Kentucky is the St. Louis Limestone of Mississippian age. Unconsolidated residuum and surficial deposits of slumped material may store water and recharge the underlying limestone aquifer. Precipitation averages 49 inches annually; 6 inches recharges ground-water reservoirs. The shallow ground-water velocity ranged from 0.30 to 1.40 feet per second. Flow net analysis indicates that about 2 million gallons of water per day flows through a 1.8 mile wide section of the aquifer. A water-level contour map indicates that the hydraulic gradient averages 40 feet per mile and that the water levels near the city supply wells have not lowered in 10 years. The effects of three faults on the ground-water flow system is shown as ponding on the upthrown side of the faults. Caliper logs suggest that shallow ground-water flow occurs in sheet-like openings within 100 feet of land surface. The openings range in height from 1 inch or less to 6 feet. A test well penetrated 5 zones of horizontal openings. The specific capacity ranged from 11.5 to 12.1 gallons per minute per foot of drawdown after 12 and 72 hours of pumping at 280 to 510 gallons per minute. Water in 28 wells and springs meets most drinking water standards and generally is a very hard calcium bicarbonate type. Heavily pumped industrial and public-supply wells tend to yield water with high values of specific conductance and sulfate. Coliform bacteria varied widely in rural wells and the city springs. Seven wells had no coliform bacteria. (USGS)

  11. Ground-water data collected in the Missouri River Basin units in Kansas during 1949

    USGS Publications Warehouse

    Berry, Delmar W.

    1950-01-01

    Ground-water studies in the Missouri River Basin were begun by the United States Geological Survey during the fall of 1945 as a part of the program for development of the resources of the basin by the U.S. Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the Basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the Federal Geological Survey and the State Geological Survey of Kansas with the cooperation of the Division of Sanitation of the Kansas State Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture. Areas in which ground-water data have been collected under the Missouri Basin program include the Almena Unit in Norton and Phillips Counties; the Bostwick Unit in Jewell, Republic, and Cloud Counties; the Cedar Bluff Unit in Ellis, Rush, and Trego Counties; the Glen Elder Unit in Mitchell County; the Webster Unit in Osborne County; and the Wilson Unit in Lincoln County. Most of the ground-water data presented in this report were collected during 1949. Most of the data collected in these areas prior to the end of 1947 were presented in a report that was mimeographed in September 1948 and most of the data collected during 1948 were presented in a report that was mimeographed in November 1949. This report is the third of a series of annual reports on ground-water data collected in the Missouri Basin units in Kansas. These annual reports are a means of more promptly releasing for administrative use the data collected each year. Data that are included in the annual reports for a given area will be assembled later in a report on the geology and hydrology of that area. An index of the data collected and presented in the 1947, 1948, and 1949 reports is given in table 1.

  12. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  13. Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Conger, Randall W.; Ulrich, James E.; Asmussen, Michael P.

    2005-01-01

    This study, completed by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (T&GS), provides estimates of ground-water recharge for watersheds throughout Pennsylvania computed by use of two automated streamflow-hydrograph-analysis methods--PART and RORA. The PART computer program uses a hydrograph-separation technique to divide the streamflow hydrograph into components of direct runoff and base flow. Base flow can be a useful approximation of recharge if losses and interbasin transfers of ground water are minimal. The RORA computer program uses a recession-curve displacement technique to estimate ground-water recharge from each storm period indicated on the streamflow hydrograph. Recharge estimates were made using streamflow records collected during 1885-2001 from 197 active and inactive streamflow-gaging stations in Pennsylvania where streamflow is relatively unaffected by regulation. Estimates of mean-annual recharge in Pennsylvania computed by the use of PART ranged from 5.8 to 26.6 inches; estimates from RORA ranged from 7.7 to 29.3 inches. Estimates from the RORA program were about 2 inches greater than those derived from the PART program. Mean-monthly recharge was computed from the RORA program and was reported as a percentage of mean-annual recharge. On the basis of this analysis, the major ground-water recharge period in Pennsylvania typically is November through May; the greatest monthly recharge typically occurs in March.

  14. Developing a state water plan: Ground-water conditions in Utah, spring of 1964

    USGS Publications Warehouse

    Arnow, Ted; Butler, R.G.; Mower, R.W.; Gates, Joseph S.; Cordova, R.M.; Carpenter, C.H.; Bjorklund, L.J.; Feltis, R.D.; Robinson, G.B. Jr.; Sandberg, G.W.

    1964-01-01

    This report is the first in a series of annual reports which will describe ground-water conditions in Utah. It was prepared cooperatively by the U.S. Geological Survey and the Utah Water and Power Board and was designed to provide the data for interested parties, such as legislators, administrators, and planners to keep abreast of changing ground-water conditions in the state. Because this report is the first of the series, it necessarily includes certain background and descriptive information which gives a broad general picture of ground-water conditions. Subsequent reports will discuss only changes that have taken place during the previous year.Many of the data used in the preparation of the report were collected by the Geological Survey in cooperation with the Utah State Engineer during past and continuing programs. The well-location map and some statistical information about numbers of wells in the State were prepared by digital computer from the Utah Resources Information System, University of Utah, utilizing records which were compiled largely from the files of the Utah State Engineer. R.E. Marsell, geological consultant to the Utah Water and Power Board, first suggested that this report be prepared.

  15. Origin and recharge rates of alluvial ground waters, Eastern Desert, Egypt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultan, M.; Gheith, H.; Sturchio, N. C.

    2002-04-12

    Stable isotope and tritium analyses of shallow ground waters in the Eastern Desert of Egypt showed that the waters were derived largely by evaporation of regional precipitation and at least partly from precipitation in the past 45 y. To estimate the ground water recharge rate, we developed an integrated hydrologic model based on satellite data, geologic maps, infiltration parameters, and spatial rainfall distribution. Modeling indicated that during a severe 1994 storm, recharge through transmission loss in Wadi El-Tarfa was 21% of the precipitation volume. From archival precipitation data, we estimate that the annual recharge rate for the El-Tarfa alluvial aquifermore » is 4.7 x 10{sup 6} m{sup 3}. Implications for the use of renewable ground waters in arid areas of Egypt and in neighboring countries are clear.« less

  16. Heat, chloride, and specific conductance as ground water tracers near streams

    USGS Publications Warehouse

    Cox, M.H.; Su, G.W.; Constantz, J.

    2007-01-01

    Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.

  17. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  18. Estimating the probability of elevated nitrate (NO2+NO3-N) concentrations in ground water in the Columbia Basin Ground Water Management Area, Washington

    USGS Publications Warehouse

    Frans, Lonna M.

    2000-01-01

    Logistic regression was used to relate anthropogenic (man-made) and natural factors to the occurrence of elevated concentrations of nitrite plus nitrate as nitrogen in ground water in the Columbia Basin Ground Water Management Area, eastern Washington. Variables that were analyzed included well depth, depth of well casing, ground-water recharge rates, presence of canals, fertilizer application amounts, soils, surficial geology, and land-use types. The variables that best explain the occurrence of nitrate concentrations above 3 milligrams per liter in wells were the amount of fertilizer applied annually within a 2-kilometer radius of a well and the depth of the well casing; the variables that best explain the occurrence of nitrate above 10 milligrams per liter included the amount of fertilizer applied annually within a 3-kilometer radius of a well, the depth of the well casing, and the mean soil hydrologic group, which is a measure of soil infiltration rate. Based on the relations between these variables and elevated nitrate concentrations, models were developed using logistic regression that predict the probability that ground water will exceed a nitrate concentration of either 3 milligrams per liter or 10 milligrams per liter. Maps were produced that illustrate the predicted probability that ground-water nitrate concentrations will exceed 3 milligrams per liter or 10 milligrams per liter for wells cased to 78 feet below land surface (median casing depth) and the predicted depth to which wells would need to be cased in order to have an 80-percent probability of drawing water with a nitrate concentration below either 3 milligrams per liter or 10 milligrams per liter. Maps showing the predicted probability for the occurrence of elevated nitrate concentrations indicate that the irrigated agricultural regions are most at risk. The predicted depths to which wells need to be cased in order to have an 80-percent chance of obtaining low nitrate ground water exceed 600 feet

  19. Human interactions with ground-water

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily

  20. Herbicide loading to shallow ground water beneath Nebraska's Management Systems Evaluation Area.

    PubMed

    Spalding, Roy F; Watts, Darrell G; Snow, Daniel D; Cassada, David A; Exner, Mary E; Schepers, James S

    2003-01-01

    Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.

  1. Overview of ground-water recharge study sites

    USGS Publications Warehouse

    Constantz, Jim; Adams, Kelsey S.; Stonestrom, David A.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Multiyear studies were done to examine meteorologic and hydrogeologic controls on ephemeral streamflow and focused ground-water recharge at eight sites across the arid and semiarid southwestern United States. Campaigns of intensive data collection were conducted in the Great Basin, Mojave Desert, Sonoran Desert, Rio Grande Rift, and Colorado Plateau physiographic areas. During the study period (1997 to 2002), the southwestern region went from wetter than normal conditions associated with a strong El Niño climatic pattern (1997–1998) to drier than normal conditions associated with a La Niña climatic pattern marked by unprecedented warmth in the western tropical Pacific and Indian Oceans (1998–2002). The strong El Niño conditions roughly doubled precipitation at the Great Basin, Mojave Desert, and Colorado Plateau study sites. Precipitation at all sites trended generally lower, producing moderate- to severe-drought conditions by the end of the study. Streamflow in regional rivers indicated diminishing ground-water recharge conditions, with annual-flow volumes declining to 10–46 percent of their respective long-term averages by 2002. Local streamflows showed higher variability, reflecting smaller scales of integration (in time and space) of the study-site watersheds. By the end of the study, extended periods (9–15 months) of zero or negligible flow were observed at half the sites. Summer monsoonal rains generated the majority of streamflow and associated recharge in the Sonoran Desert sites and the more southerly Rio Grande Rift site, whereas winter storms and spring snowmelt dominated the northern and westernmost sites. Proximity to moisture sources (primarily the Pacific Ocean and Gulf of California) and meteorologic fluctuations, in concert with orography, largely control the generation of focused ground-water recharge from ephemeral streamflow, although other factors (geology, soil, and vegetation) also are important. Watershed area correlated weakly

  2. Ground-water levels and quality data for Georgia

    USGS Publications Warehouse

    ,

    1979-01-01

    This report begins a publication format that will present annually both water-level and water-quality data in Georgia. In this format the information is presented in two-page units: the left page includes text which summarizes the information for an area or subject and the right page consists of one or more illustrations. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations for the monthly mean water level the previous 10 years for selected observation wells. The well data best illustrate the effects of changes in recharge and discharge in the various ground-water reservoirs in the State. A short narrative explains fluctuations and trends in each hydrograph. (Woodard-USGS)

  3. Questa baseline and pre-mining ground-water quality investigation. 21. Hydrology and water balance of the Red River basin, New Mexico 1930-2004

    USGS Publications Warehouse

    Naus, Cheryl A.; McAda, Douglas P.; Myers, Nathan C.

    2006-01-01

    A study of the hydrology of the Red River Basin of northern New Mexico, including development of a pre- mining water balance, contributes to a greater understanding of processes affecting the flow and chemistry of water in the Red River and its alluvial aquifer. Estimates of mean annual precipitation for the Red River Basin ranged from 22.32 to 25.19 inches. Estimates of evapotranspiration for the Red River Basin ranged from 15.02 to 22.45 inches or 63.23 to 94.49 percent of mean annual precipitation. Mean annual yield from the Red River Basin estimated using regression equations ranged from 45.26 to 51.57 cubic feet per second. Mean annual yield from the Red River Basin estimated by subtracting evapotranspiration from mean annual precipitation ranged from 55.58 to 93.15 cubic feet per second. In comparison, naturalized 1930-2004 mean annual streamflow at the Red River near Questa gage was 48.9 cubic feet per second. Although estimates developed using regression equations appear to be a good representation of yield from the Red River Basin as a whole, the methods that consider evapotranspiration may more accurately represent yield from smaller basins that have a substantial amount of sparsely vegetated scar area. Hydrograph separation using the HYSEP computer program indicated that subsurface flow for 1930-2004 ranged from 76 to 94 percent of streamflow for individual years with a mean of 87 percent of streamflow. By using a chloride mass-balance method, ground-water recharge was estimated to range from 7 to 17 percent of mean annual precipitation for water samples from wells in Capulin Canyon and the Hansen, Hottentot, La Bobita, and Straight Creek Basins and was 21 percent of mean annual precipitation for water samples from the Red River. Comparisons of mean annual basin yield and measured streamflow indicate that streamflow does not consistently increase as cumulative estimated mean annual basin yield increases. Comparisons of estimated mean annual yield and

  4. Analysis of Streamflow Trends, Ground-Water and Surface-Water Interactions, and Water Quality in the Upper Carson River Basin, Nevada and California

    USGS Publications Warehouse

    Maurer, Douglas K.; Paul, Angela P.; Berger, David L.; Mayers, C. Justin

    2008-01-01

    Changes in land and water use and increasing development of water resources in the Carson River basin may affect flow of the river and, in turn, affect downstream water users dependent on sustained river flows to Lahontan Reservoir. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, Churchill County, and the Truckee-Carson Irrigation District, began a study in April 2006 to compile data on changes in land and water use, ground-water levels and pumping, streamflow, and water quality, and to make preliminary analyses of ground-water and surface-water interactions in the Carson River basin upstream of Lahontan Reservoir. The part of the basin upstream of Lahontan Reservoir is called the upper Carson River basin in this report. In 2005, irrigated agricultural land covered about 39,000 acres in Carson Valley, 3,100 acres in Dayton Valley, and 1,200 acres in Churchill Valley. Changes in land use in Carson Valley from the 1970s to 2005 included the development of about 2,700 acres of native phreatophytes, the development of 2,200 acres of irrigated land, 900 acres of land irrigated in the 1970s that appeared fallow in 2005, and the irrigation of about 2,100 acres of new agricultural land. In Dayton and Churchill Valleys, about 1,000 acres of phreatophytes and 900 acres of irrigated land were developed, about 140 acres of phreatophytes were replaced by irrigation, and about 600 acres of land irrigated in the 1970s were not irrigated in 2006. Ground-water pumping in the upper Carson River basin increases during dry years to supplement surface-water irrigation. Total annual pumping exceeded 20,000 acre-ft in the dry year of 1976, exceeded 30,000 acre-ft in the dry years from 1987 to 1992, and increased rapidly during the dry years from 1999 to 2004, and exceeded 50,000 acre-ft in 2004. As many as 67 public supply wells and 46 irrigation wells have been drilled within 0.5 mile of the Carson River. Pumping from these

  5. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, J. LaRue; Nylund, W.E.

    1999-01-01

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  6. Ground-water use, locations of production wells, and areas irrigated using ground water in 1998, middle Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2003-01-01

    In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994

  7. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  8. Annual ground-water discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; DeMeo, Guy A.

    2006-01-01

    Flow from major springs and seeps along the eastern margin of Death Valley serves as the primary local water supply and sustains much of the unique habitat in Death Valley National Park. Together, these major spring complexes constitute the terminus of the Death Valley Regional Ground-Water Flow System--one of the larger flow systems in the Southwestern United States. The Grapevine Springs complex is the least exploited for water supply and consequently contains the largest area of undisturbed riparian habitat in the park. Because few estimates exist that quantify ground-water discharge from these spring complexes, a study was initiated to better estimate the amount of ground water being discharged annually from these sensitive, spring-fed riparian areas. Results of this study can be used to establish a basis for estimating water rights and as a baseline from which to assess any future changes in ground-water discharge in the park. Evapotranspiration (ET) is estimated volumetrically as the product of ET-unit (general vegetation type) acreage and a representative ET rate. ET-unit acreage is determined from high-resolution multi-spectral imagery; and a representative ET rate is computed from data collected in the Grapevine Springs area using the Bowen-ratio solution to the energy budget, or from rates given in other ET studies in the Death Valley area. The ground-water component of ET is computed by removing the local precipitation component from the ET rate. Two different procedures, a modified soil-adjusted vegetation index using the percent reflectance of the red and near-infrared wavelengths and land-cover classification using multi-spectral imagery were used to delineate the ET units within each major spring-discharge area. On the basis of the more accurate procedure that uses the vegetation index, ET-unit acreage for the Grapevine Springs discharge area totaled about 192 acres--of which 80 acres were moderate-density vegetation and 112 acres were high

  9. Distribution of Elevated Nitrate Concentrations in Ground Water in Washington State

    USGS Publications Warehouse

    Frans, Lonna

    2008-01-01

    More than 60 percent of the population of Washington State uses ground water for their drinking and cooking needs. Nitrate concentrations in ground water are elevated in parts of the State as a result of various land-use practices, including fertilizer application, dairy operations and ranching, and septic-system use. Shallow wells generally are more vulnerable to nitrate contamination than deeper wells (Williamson and others, 1998; Ebbert and others, 2000). In order to protect public health, the Washington State Department of Health requires that public water systems regularly measure nitrate in their wells. Public water systems serving more than 25 people collect water samples at least annually; systems serving from 2 to 14 people collect water samples at least every 3 years. Private well owners serving one residence may be required to sample when the well is first drilled, but are unregulated after that. As a result, limited information is available to citizens and public health officials about potential exposure to elevated nitrate concentrations for people whose primary drinking-water sources are private wells. The U.S. Geological Survey and Washington State Department of Health collaborated to examine water-quality data from public water systems and develop models that calculate the probability of detecting elevated nitrate concentrations in ground water. Maps were then developed to estimate ground water vulnerability to nitrate in areas where limited data are available.

  10. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  11. Land-subsidence and ground-water storage monitoring in the Tucson Active Management Area, Arizona

    USGS Publications Warehouse

    Pool, Don R.; Winster, Daniel; Cole, K.C.

    2000-01-01

    The Tucson Active Management Area (TAMA) comprises two basins--Tucson Basin and Avra Valley. The TAMA has been directed by Arizona ground-water law to attain an annual balance between groundwater withdrawals and recharge by the year 2025. This balance is defined by the statute as "safe yield." Current ground-water withdrawals exceed recharge, resulting in conditions of ground-water overdraft, which causes removal of water from ground-water storage and subsidence of the land surface. Depletion of storage and associated land subsidence will not be halted until all discharge from the system, both natural and human induced, is balanced by recharge. The amount of the ground-water overdraft has been difficult to estimate until recently because it could not be directly measured. Overdraft has been estimated using indirect water-budget methods that rely on uncertain estimates of recharge. As a result, the status of the ground-water budget could not be known with great certainty. Gravity methods offer a means to directly measure ground-water overdraft through measurement of changes in the gravitational field of the Earth that are caused by changes in the amount of water stored in the subsurface. Changes in vertical position also affect the measured gravity value and thus subsidence also must be monitored. The combination of periodic observations of gravity and vertical positions provide direct measures of changes in stored ground water and land subsidence.

  12. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; La Marche, Jonathan L.; Fisher, Bruce J.; Polette, Danial J.

    2007-01-01

    The upper Klamath Basin spans the California-Oregon border from the flank of the Cascade Range eastward to the Basin and Range Province, and encompasses the Klamath River drainage basin above Iron Gate Dam. Most of the basin is semiarid, but the Cascade Range and uplands in the interior and eastern parts of the basin receive on average more than 30 inches of precipitation per year. The basin has several perennial streams with mean annual discharges of hundreds of cubic feet per second, and the Klamath River at Iron Gate Dam, which represents drainage from the entire upper basin, has a mean annual discharge of about 2,100 cubic feet per second. The basin once contained three large lakes: Upper and Lower Klamath Lakes and Tule Lake, each of which covered areas of 100 to 150 square miles, including extensive marginal wetlands. Lower Klamath Lake and Tule Lake have been mostly drained, and the former lake beds are now cultivated. Upper Klamath Lake remains, and is an important source of irrigation water. Much of the wetland surrounding Upper Klamath Lake has been diked and drained, although efforts are underway to restore large areas. Upper Klamath Lake and the remaining parts of Lower Klamath and Tule Lakes provide important wildlife habitat, and parts of each are included in the Klamath Basin National Wildlife Refuges Complex. The upper Klamath Basin has a substantial regional ground-water flow system. The late Tertiary to Quaternary volcanic rocks that underlie the region are generally permeable, with transmissivity estimates ranging from 1,000 to 100,000 feet squared per day, and compose a system of variously interconnected aquifers. Interbedded with the volcanic rocks are late Tertiary sedimentary rocks composed primarily of fine-grained lake sediments and basin-filling deposits. These sedimentary deposits have generally low permeability, are not good aquifers, and probably restrict ground-water movement in some areas. The regional ground-water system is underlain

  13. Ground-water resources of the Cahaba River basin in Alabama - Subarea 7 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa river basins

    USGS Publications Warehouse

    Mooty, Will S.; Kidd, Robert E.

    1997-01-01

    seasonally. The regional flow regime probably approximates steady-state conditions and discharges chiefly to major drains such as the Cahaba River. Ground-water discharge to major drains originates from all flow regimes. Mean-annual ground-water discharge to streams (baseflow) is considered to approximate the long-term, average recharge to ground water. The mean-annual baseflow was estimated using an atuomated hydrograph-separation method, and represents discharge from the local, intermediate, and regional flow regimes of the ground-water flow system. Mean-annual baseflow in Georgia was estimated to be 763 cubic feet per second at Centreville, Ala., where the Cahaba River exits Subarea 7 into Subarea 8. Mean-annual baseflow represented about 48 percent of total mean-annual stream discharge for the period of record. Stream discharge for selected sites on the Cahaba River and its tributaries were compiled for the years 1941, 1954, and 1986, during which sustained droughts occurred throughout most of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River basin area. Stream discharges were assumed to be sustained entirely by baseflow during the latter periods of these droughts. Estimated baseflow near the end of these droughts averaged about 21 percent of the estimated mean-annual baseflow in Subarea 7 (ranged from about 16 to 25 percent for individual drought years). The potential exists for the development of ground-water resources on a regional scale throughout Subarea 7. Estimated ground-water use in 1990 was about 2 percent of the estimated mean-annual baseflow, and 9.7 percent of the average drought baseflow near the end of the droughts of 1941, 1954, and 1986. Because ground- water use in Subarea 7 represents a relatively minor percentage of ground- water recharge, even a large increase in ground-water use in Subarea 7 is likely to have little effect on ground-water and surface-water occurrernce in Alabama. Indications of long-term ground-water dec

  14. Water Resources Data, Georgia, 2001, Volume 2: Continuous ground-water level data, and periodic surface-water- and ground-water-quality data, Calendar Year 2001

    USGS Publications Warehouse

    Coffin, Robert; Grams, Susan C.; Cressler, Alan M.; Leeth, David C.

    2001-01-01

    Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins. To obtain a copy of the CD version of this report, you may call the U.S. Geological Survey office in Atlanta at (770) 903-9100, or send e-mail to request the publication. Please include your name and mailing address in your e-mail.

  15. Regional analysis of ground-water recharge: Chapter B in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    processes. The average climate for all 194 basins ranged from hyperarid to humid, with arid and semiarid basins predominating (fig. 6, chapter A, this volume). Four of the 194 basins had an aridity index of dry subhumid; two of the basins were humid. Of the eight recharge-study sites, six were in semiarid basins, and two were in arid basins. Average-annual potential evapotranspiration showed a regional gradient from less than 1 m/yr in the northeastern part of the study area to more than 2 m/yr in the southwestern part of the study area. Average-annual precipitation was lowest in the two arid-site basins and highest in the two study-site basins in southern Arizona. The relative amount of runoff to in-place recharge varied throughout the study area, reflecting differences primarily in soil water-holding capacity, saturated hydraulic conductivity of subsoil materials, and snowpack dynamics. Climatic forcing expressed in El Niño and Pacific Decadal Oscillation indices strongly influenced the generation of precipitation throughout the study area. Positive values of both indices correlated with the highest amounts of runoff and ground-water recharge.

  16. Ground-water levels in observation wells in Oklahoma, 1969-70

    USGS Publications Warehouse

    Moore, R.L.

    1972-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. In addition to the water-supply papers, the U.S. Geological Survey, cooperation with the Oklahoma Water Resources Board, has published the following informal reports on water levels in Oklahoma. Ground-water levels in observations wells in Oklahoma, 1956-60 Ground-water levels in observations wells in Oklahoma, 1961-62 Ground-water levels in observations wells in Oklahoma, 1963-64 Ground-water levels in observations wells in Oklahoma, 1965-66 Ground-water levels in observations wells in Oklahoma, 1967-68 Records of water-level measurements in wells in the Oklahoma Panhandle, 1966-70 Records of water-level measurements in wells in the Oklahoma Panhandle, 1971-72 The basic observation-well network in Oklahoma during the period 1969-70 included the following counties: Alfalfa, Beaver, Beckham, Caddo, Cimarron

  17. Electrical-analog analysis of ground-water depletion in central Arizona

    USGS Publications Warehouse

    Anderson, T.W.

    1968-01-01

    The Salt River Valley and the lower Santa Cruz River basin are the two largest agricultural areas in Arizona. The extensive use of ground water for irrigation has resulted in the need for a thorough appraisal of the present and future ground-water resources. The ground-water reservoir provides 80 percent (3.2 million acre-feet) of the total annual water supply. The amount of water pumped greatly exceeds the rate at which the ground-water supply is being replenished and has resulted in water-level declines of as much as 20 feet per year in some places. The depletion problem is of economic importance because ground water will become more expensive as pumping lifts increase and well yields decrease. The use of electrical-analog modeling techniques has made it possible to predict future ground-water levels under conditions of continued withdrawal in excess of the rate of replenishment. The electrical system is a representation of the hydrologic system: resistors and capacitors represent transmissibility and storage coefficients. The analogy between the two systems is accepted when the data obtained from the model closely match the field data in this instance, measured water-level change since 1923. The prediction of future water-table conditions is accomplished by a simple extension of the pumping trends to determine the resultant effect on the regional water levels. The results of this study indicate the probable depths to water in central Arizona in 1974 and 1984 if the aquifer characteristics are accurately modeled and if withdrawal of ground water continues at the same rate and under the tame areal distribution as existed between 1958 and 1964. The greatest depths to water in 1984 will be more than 700 feet near Stanfield and more than 650 feet in Deer Valley and northeast of Gilbert. South of Eloy and northwest of Litchfield Park, a static water level of more than 550 feet is predicted. The total water-level decline in the 20-year period 1964-84 at the deepest

  18. Annual summary of ground-water conditions in Arizona, spring 1984 to spring 1985

    USGS Publications Warehouse

    ,

    1986-01-01

    In arid and semiarid regions such as Arizona, the availability of adequate water supplies has a significant influence on the type and extent of economic development. About two-thirds of the water used in the State is groundwater. The nature and extent of the groundwater reservoirs must be known for proper management of this valuable resource. The U.S. Geological Survey, in cooperation with the State of Arizona, has conducted a program of groundwater studies in Arizona since 1939. The primary purposes of these studies are to define the amount, location, and quality of the groundwater resources of Arizona and to monitor the effects of large-scale development of the groundwater supplies. The program includes the collection, compilation, and analysis of the geologic and hydrologic data necessary to evaluate the groundwater resources of the State. The basic hydrologic data are in computer storage and are available to the public. Since 1974, a major thrust of the program has been to inventory the groundwater conditions in the 68 groundwater areas of the State. Several selected groundwater areas are studied each year; water levels are measured annually in a statewide observation well network, many groundwater samples are collected and analyzed annually, and groundwater pumpage is computed for most of the areas. As of July 1985, reports had been published for 56 of the 68 groundwater areas. Data collected in the groundwater areas include information on selected wells, water level measurements, and water samples for chemical analysis. The data for each of the selected groundwater areas are analyzed, and the results are published in map form. Typically, the maps show depth to water; change in water levels; altitude of the water level; and quality of water data, such as specific conductance, dissolved solids, and fluoride. (Lantz-PTT)

  19. Evaluation of the effects of precipitation on ground-water levels from wells in selected alluvial aquifers in Utah and Arizona, 1936-2005

    USGS Publications Warehouse

    Gardner, Philip M.; Heilweil, Victor M.

    2009-01-01

    Increased withdrawals from alluvial aquifers of the southwestern United States during the last half-century have intensified the effects of drought on ground-water levels in valleys where withdrawal for irrigation is greatest. Furthermore, during wet periods, reduced withdrawals coupled with increased natural recharge cause rising ground-water levels. In order to manage water resources more effectively, analysis of ground-water levels under the influence of natural and anthropogenic stresses is useful. This report evaluates the effects of precipitation patterns on ground-water levels in areas of Utah and Arizona that have experienced different amounts of ground-water withdrawal. This includes a comparison of water-level records from basins that are hydrogeologically and climatologically similar but have contrasting levels of ground-water development. Hydrologic data, including records of ground-water levels, basin-wide annual ground-water withdrawals, and precipitation were examined from two basins in Utah (Milford and central Sevier) and three in Arizona (Aravaipa Canyon, Willcox, and Douglas). Most water-level records examined in this study from basins experiencing substantial ground-water development (Milford, Douglas, and Willcox) showed strong trends of declining water levels. Other water-level records, generally from the less-developed basins (central Sevier and Aravaipa Canyon) exhibited trends of increasing water levels. These trends are likely the result of accumulating infiltration of unconsumed irrigation water. Water-level records that had significant trends were detrended by subtraction of a low-order polynomial in an attempt to eliminate the variation in the water-level records that resulted from ground-water withdrawal or the application of water for irrigation. After detrending, water-level residuals were correlated with 2- to 10-year moving averages of annual precipitation from representative stations for the individual basins. The water

  20. Ground-water resources of Cumberland County, New Jersey

    USGS Publications Warehouse

    Rooney, James G.

    1971-01-01

    Water use in Cumberland County varies and is highly seasonal, mainly because of increasing requirements for irrigation and the food processing industries in the county. In 1964 seasonal use ranged from 27 mgd in March to 145 mgd in August. This is much higher than withdrawals in neighboring Salem and Cape May Counties. In 1964 withdrawals in Cumberland County averaged about 51 mgd; almost all of this, 49.4 mgd, was from ground-water supplies. The total annual water use in 1964 according to type of use was: for public supply, 10.6 mgd; for industrial uses, 19.0 mgd; irrigation, 15.4 mgd; suburban, rural, residential, institutional, farm, and commercial, 5.9 mgd. 

  1. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  2. Geology and ground-water resources of the Ahtanum Valley, Yakima County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1962-01-01

    , variations in the flow of irrigation ditches and in rates of water application, variations in local precipitation, and seasonal differences in withdrawals from wells. Annual fluctuations of levels generally are less than 10 feet except in localities of heavy pumping. Periodic measurements of water levels in two observation wells in the area indicate, locally at least, a persistent decline in artesian pressures in confined basalt aquifers, although the record is too short to show whether withdrawal by pumping has reached, or is nearing, an optimum balance with recharge. The aquifers are recharged by precipitation, by infiltration from streams, and by ground-water underflow into the area. Ground water is discharged by seepage to streams, by evapotranspiration, by springs and seeps at the land surface, and, artificially, by withdrawal from wells. It is estimated that the seepage discharge to the Yakima River from the area studied may range from about 20,000 to 25,000 acre-feet per year. The consumptive waste of ground water by phreatophytes probably exceeds 4,000 acre-feet per year and may represent a large reclaimable source of water in the area. The annual withdrawal of ground water from wells in the area for domestic, industrial, irrigation, public, and stock supplies is estimated to be 6,300 acre-feet. The chemical quality of the ground water generally is satisfactory for most purposes, although the water from many wells is harder than is desirable for domestic use.

  3. Estimates of ground-water pumpage from the Yakima River Basin aquifer system, Washington, 1960-2000

    USGS Publications Warehouse

    Vaccaro, J.J.; Sumioka, S.S.

    2006-01-01

    Ground-water pumpage in the Yakima River Basin, Washington, was estimated for eight categories of use for 1960-2000 as part of an investigation to assess groundwater availability in the basin. Methods used, pumpage estimates, reliability of the estimates, and a comparison with appropriated quantities are described. The eight categories of pumpage were public water supply, self-supplied domestic (exempt wells), irrigation, frost protection, livestock and dairy operations, industrial and commercial, fish and wildlife propagation, and ground-water claims. Pumpage estimates were based on methods that varied by the category and primarily represent pumpage for groundwater rights. Washington State Department of Ecology’s digital database has 2,874 active ground-water rights in the basin that can withdraw an annual quantity of about 529,231 acre-feet during dry years. Irrigation rights are for irrigation of about 129,570 acres. All but 220 of the rights were associated with well drillers’ logs, allowing for a spatial representation of the pumpage. Five-hundred and sixty of the irrigation rights were estimated to be standby/reserve rights. During this study, another 30 rights were identified that were not in the digital database. These rights can withdraw an annual quantity of about 20,969 acre-feet; about 6,700 acre-feet of these rights are near but outside the basin. In 1960, total annual pumpage in the basin, excluding standby/reserve pumpage, was about 115,776 acre-feet. By 2000, total annual pumpage was estimated to be 395,096 acre-feet, and excluding the standby/reserve rights, the total was 312,284 acre-feet. Irrigation accounts for about 60 percent of the pumpage, followed by public water supply at about 12 percent. The smallest category of pumpage was for livestock use with pumpage estimated to be 6,726 acre-feet. Total annual pumpage in 2000 was about 430 cubic feet per second, which is about 11 percent of the surface-water demand. Maximum pumpage is in July

  4. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  5. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  6. Ground-water resources of Snohomish County, Washington

    USGS Publications Warehouse

    Newcomb, Reuben Clair

    1952-01-01

    Snohomish County comprises an east-west strip, six townships wide, extending 60 miles from the eastern shore of Puget Sound to the drainage divide of the Cascade Mountains. Topographically, the eastern two-thirds of the county varies frown hills and low mountain spurs at the west to the continuous high, maturely carved mountains of the Cascade Range at the east. The western third of the county lies in the Puget Sound lowland section: it is made up largely of unconsolidated deposits, as contrasted with the hard rocks of the mountain section. High-level deposits of glacial debris in some places form a transitional ramp from the lowlands to the mountain topography; in other places the transition is abrupt. The principal rivers--the Snohomish, Skykomish, Stillaguamish, and Sauk--drain westward and northwestward to Puget Sound. The Puget Sound lowland, with its extensions up the river valleys, is economically the important part. of the county. Within that part., ground-water development is of particular importance. The climate is equable and dominantly oceanic, with an average of about 32 h. of rainfall annually, but with a pronounced dry season from June to September. A mean annual temperature of 52 F, a growing season of more than 200 days, and a variety of good soils form a setting in which supplemental irrigation can at least double the average crop production. Within the coastal lowland, plateau segments 200 to 600 ft or more in altitude are separated by flat-bottomed, alluviated river gorges. The river flats in some eases represent the surface of as much as 500 to 600 ft of glacial and alluvial deposits backfilled into canyonlike arms of the aneestral drainage system. The plateau segments are formed of the till-smoothed remnants of bedrock or the tabular segments of Pleistocene deposits. The Pleistocene deposits consist, above sea level, of about 200 ft of Admiralty clay and as much as 1,000 ft of deposits of the Vashon glaciation. The latter include as much as

  7. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, Through December 1992

    USGS Publications Warehouse

    La Camera, Richard J.; Westenburg, Craig L.

    1994-01-01

    Tne U.S. Geological Survey. in support of the U.S. Department of Energy, Yucca Mountain Site- Characterization Project, collects, compiles, and summarizes water-resource data in the Yucca Mountain region. The data are collected to document the historical and current condition of ground-water resources, to detect and document changes in those resources through time, and to allow assessments of ground-water resources during investigations to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground- water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Fiat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies or as part of other programs are included to further indicate variations through time. A statistical summary of ground-water levels and median annual ground-water withdrawals in Jackass Flats is presented. The statistical summary includes the number of measurements, the maximum, minimum, and median water-level altitudes, and the average deviation of a11 water-level altitudes for selected baseline periods and for calendar year 1992. Data on ground-water quality are compared to established, proposed, or tentative primary and secondary drinking-water standards, and measures which exceeded those standards are listed for 18 sites. Detected organic compounds for which established, proposed, or tentative drinking-water standards exist also are listed.

  8. Ground-Water Geology and Hydrology of the Kern River Alluvial-Fan Area, California

    USGS Publications Warehouse

    Dale, R.H.; French, James J.; Gordon, G.V.

    1966-01-01

    specific yield about 5 percent. For the fine sand to clay unit the permeability ranges between 0.0001 and 100 with about 10 percent specific yield. The gravel to medium sand unit has permeabilities between 100 and 10,000, and specific yield is about 15 percent. For the period 1955-59 the annual gross surface-water supply was estimated at 421,000 acre-feet and pumpage was 664,000 acre-feet, giving a rounded total supply of 1,100,000 acre-feet. Annual consumptive use was estimated at 750,000 acre-feet and annual infiltration at 350,000 acre-feet. The approximate 300,000 acre-feet difference between 664,000 acre-feet pumped and 350,000 acre-feet infiltrated has caused an annual decline in water levels of up to 7 feet. Ground water occurs under both unconfined and confined conditions within the report area. In general, the gravel to medium sand unit contains unconfined water, and the other two units contain confined water. Pumping is less intense in the Kern River fan area than in the adjoining areas to the north or south. This fact, plus infiltration from the Kern River, results in ground-water movement being principally out of the area. There is a ground-water divide that approximately underlies the Kern River. South of the river the flow spreads out semicircularly from the river, and north of the river the flow is linear to the northwest. Based on chemical quality the ground water has been divided areally into (1) east side, (2) west side, and (3) axial water. With the exception of two areas of comparable size northwest of Bakersfield and a much smaller area southeast of that city where ground water is somewhat saline, east-side ground water is generally of the calcium bicarbonate and calcium sodium bicarbonate type of low to medium salinity. The chemical character of east-side ground water is necessarily related to that of Kern River water, the principal source of recharge, and water of intermittent streams which drain the dissected upland

  9. STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.

    USGS Publications Warehouse

    Burton, James S.; ,

    1985-01-01

    This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.

  10. Ground water investigations in Oklahoma

    USGS Publications Warehouse

    Davis, Leon V.

    1955-01-01

    Prior to 1937, ground-water work in Oklahoma consisted of broad scale early-day reconnaissance and a few brief investigations of local areas. The reconnaissance is distinguished by C. N. Gould's "Geology and Water Resources of Oklahoma" (Water-Supply Paper 148, 1905), which covers about half of the present State of Oklahoma. Among the shorter reports are two by Schwennesen for areas near Enid and Oklahoma City, one by Renick for Enid, and one by Thompson on irrigation possibilities near Gage. These reports are now inadequate by modern standards.Cooperative ground-water work in Oklahoma by the United States Geological Survey began in 1937, with the Oklahoma Geological Survey as cooperating agency. With the passage of the new ground-water law by the State Legislature in 1949, the need for more information on available ground waters and the safe yield of the various aquifers became very pressing. Accordingly, the Division of Water Resources of the Oklahoma Planning and Resources Board, to which was delegated the responsibility of administering the Ground-Water Law, entered into a cooperative agreement with the U.S. Geological Survey, providing for an expansion of ground-water investigations. Both cooperators have consistently given full and enthusiastic cooperation, often beyond the requirements of the cooperative program.The first cooperative investigation was an evaluation of ground-water supplies available for irrigation in the Panhandle. In 1937 the Panhandle was still very much in the dust bowl, and it was hoped that irrigation would alleviate the drought. A bulletin on Texas County was published in 1939, and one on Cimarron County in 1943. Ground-water investigations during the World War II were restricted to the demands of Army and Navy installations, and to defense industries. Ground-water investigations since 1945 have included both country-wide and aquifer-type investigations. In Oklahoma it has been the policy for the State cooperator to publish the results

  11. Ground-water, surface-water, and water-chemistry data, Black Mesa area, Northeastern Arizona: 1999

    USGS Publications Warehouse

    Thomas, Blakemore E.; Truini, Margot

    2000-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and a precipitation of only about 6 to 12 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 1999, total ground-water withdrawals were 7,110 acre-feet, industrial use was 4,210 acre-feet, and municipal use was 2,900 acre-feet. From 1998 to 1999, total withdrawals increased by 0.7 percent, industrial use increased by 4 percent, and municipal use decreased by 4 percent. From 1998 to 1999, water levels declined in 11 of 15 wells in the unconfined part of the aquifer, and the median decline was 0.7 foot. Water levels declined in 14 of 16 wells in the confined part of the aquifer, and the median decline was 1.2 feet. From the prestress period (prior to 1965) to 1999, the median water-level decline in 31 wells was 10.6 feet. Median water-level changes were 0.0 foot for 15 wells in the unconfined part of the aquifer and a decline of 45.5 feet in 16 wells in the confined part. From 1998 to 1999, discharges were measured annually at four springs. Discharges declined 30 percent and 3 percent at 2 springs, did not change at 1 spring, and increased by 11 percent at 1 spring. For the past 10 years, discharges from the four springs have fluctuated; however, an increasing or decreasing trend was not observed. Continuous records of surface-water discharge have been collected from July 1976 to 1999 at Moenkopi Wash, July 1996 to 1999 at Laguna Creek, June 1993 to 1999 at Dinnebito Wash, and April

  12. Ground-water data collected in the Missouri River Basin units in Kansas during 1948

    USGS Publications Warehouse

    Berry, Delmar W.

    1950-01-01

    Ground-water studies in the Missouri River Basin were begun by the U.S. Geological Survey during the fall of 1945 as a part of the program for development of the resources of the basin by the U.S. Bureau of Reclamation and other Federal agencies. The studies of the ground-water resources in the part of Kansas that lies within the basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the Federal Geological Survey and the Kansas State Geological Survey with the cooperation of the Division of Sanitation of the Kansas State Board of health and the Division of Water Resources of the Kansas State Board of Agriculture.Areas in which ground-water data have been collected under the Missouri Basin program include the Almena Unit in Norton and Phillips Counties; the Bostwick Unit in Jewell, Republic, and Cloud Counties; the Cedar Bluff Unit in Ellis and Trego Counties; the Glen Elder Unit in Mitchell County; the Kanopolis Unit in McPherson and Saline Counties; the Kirwin Unit in Phillips, Smith, and Osborne Counties; the St. Francis Unit in Cheyenne County; the Webster Unit in Osborne County; and the Wilson Unit in Lincoln County.Most of the ground-water data presented in this report were collected during 1948. Most of the data collected in these areas prior to the end of 1947 were presented in a report mimeographed in September 1948. This report and the previous report are the first two of a series of annual reports on ground-water studies in the Missouri Basin units in Kansas. These reports are a means of more promptly releasing for administrative use the data collected each year. Data for a given area that are included in the annual reports will be assembled later in a report on the geology and hydrology of that area.

  13. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  14. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  15. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications in Connecticut. It is a polygon Shapefile that includes polygons for GA, GAA, GAAs, GB, GC and other related ground water quality classes. Each polygon is assigned a ground water quality class, which is s...

  16. Geohydrology of the French Creek basin and simulated effects of droughtand ground-water withdrawals, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2004-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a

  17. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    San Gorgonio Pass area. The water-bearing deposits were divided into three aquifers: (1) the perched aquifer, (2) the upper aquifer, and (3) the lower aquifer based on lithologic and downhole geophysical logs. Natural recharge in the San Gorgonio Pass area was estimated using INFILv3, a deterministic distributed- parameter precipitation-runoff model. The INFILv3 model simulated that the potential recharge of precipitation and runoff in the Beaumont and Banning storage units was about 3,710 acre-feet per year and that the potential recharge in 28 sub-drainage basins upstream of the storage units was about 6,180 acre-feet per year. The water supply for the Beaumont and Banning storage units is supplied by pumping ground water from wells in the Canyon (Edgar and Banning Canyons), Banning Bench, Beaumont, and Banning storage units. Total annual pumpage from the Beaumont and Banning storage units ranged from about 1,630 acre-feet in 1936 to about 20,000 acre-feet in 2003. Ground-water levels declined by as much as 100 feet in the Beaumont storage unit from 1926-2003 in response to ground-water pumping of about 450,160 acre-feet during this period. Since ground-water development began in the San Gorgonio Pass area, there have been several sources of artificial recharge to the basin including return flow from applied water on crops, golf courses, and landscape; septic-tank seepage; and infiltration of storm runoff diversions and imported water into recharge ponds. Return flow from applied water and septic-tank seepage was estimated to reach a maximum of about 8,100 acre-feet per year in 2003. Owing to the great depth of water in much of study area (in excess of 150 feet), the return flow and septic-tank seepage takes years to decades to reach the water table. Stable-isotope data indicate that the source of ground-water recharge was precipitation from storms passing through the San Gorgonio Pass as opposed to runoff from the higher altitudes of the San Bernar

  18. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  19. Ground-water conditions and studies in Georgia, 2001

    USGS Publications Warehouse

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  20. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  1. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  2. Temporal trends in nitrate and selected pesticides in Mid-Atlantic ground water.

    PubMed

    Debrewer, Linda M; Ator, Scott W; Denver, Judith M

    2008-01-01

    Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with changing land and chemical uses when interpreting trends in regional ground-water quality.

  3. Ground-Water Recharge in Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Falteisek, J.D.

    2007-01-01

    'Ground-water recharge' broadly describes the addition of water to the ground-water system. Most water recharging the ground-water system moves relatively rapidly to surface-water bodies and sustains streamflow, lake levels, and wetlands. Over the long term, recharge is generally balanced by discharge to surface waters, to plants, and to deeper parts of the ground-water system. However, this balance can be altered locally as a result of pumping, impervious surfaces, land use, or climate changes that could result in increased or decreased recharge. * Recharge rates to unconfined aquifers in Minnesota typically are about 20-25 percent of precipitation. * Ground-water recharge is least (0-2 inches per year) in the western and northwestern parts of the State and increases to greater than 6 inches per year in the central and eastern parts of the State. * Water-level measurement frequency is important in estimating recharge. Measurements made less frequently than about once per week resulted in as much as a 48 percent underestimation of recharge compared with estimates based on an hourly measurement frequency. * High-quality, long-term, continuous hydrologic and climatic data are important in estimating recharge rates.

  4. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  5. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget R.; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard F.; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  6. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  7. Ground-water as a nuisance

    NASA Astrophysics Data System (ADS)

    Straskraba, V.

    1984-03-01

    In certain circumstances, ground-water causes geotechnical problems and can be considered a nuisance rather than a blessing. The cases where ground-water creates considerable complications include construction, tunnelling, mining, landslides, and land subsidence. The development of hydrogeology as a science has proved over the years to substantially reduce the severe problems and disasterous problems caused by ground-water.

  8. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2005

    USGS Publications Warehouse

    Locke, Glenn L.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, collected, compiled, and summarized hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data were collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data collected from January through December 2005 are provided for ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert. Ground-water level, discharge, and withdrawal data collected by other agencies, or as part of other programs, are provided. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for 1992-2005 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements; maximum, minimum, and median water-level altitudes; and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At seven boreholes in Jackass Flats, median water levels for 2005 were slightly higher (0.4-2.7 feet) than the median water levels for 1992-93.

  9. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona-2005-06

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2007-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area averages about 6 to 14 inches per year. The water monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2005 to September 2006. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2005, ground-water withdrawals in the Black Mesa area totaled 7,330 acre-feet, including ground-water withdrawals for industrial (4,480 acre-feet) and municipal (2,850 acre-feet) uses. From 2004 to 2005, total withdrawals increased by less than 2 percent, industrial withdrawals increased by approximately 3 percent, and total municipal withdrawals increased by 0.35 percent. From 2005 to 2006, annually measured water levels in the Black Mesa area declined in 10 of 13 wells in the unconfined areas of the N aquifer, and the median change was -0.5 foot. Measurements indicated that water levels declined in 12 of 15 wells in the confined area of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2006, the median water-level change for 29 wells was -8.5 feet. Median water-level changes were -0.2 foot for 13 wells in the unconfined areas and -46.6 feet for 16 wells in the confined area. Ground-water discharges were measured once in 2005 and once in 2006 at Moenkopi School Spring and Burro

  10. Validation of a Ground-Water Flow Model of the Mississippi River Valley Alluvial Aquifer Using Water-Level and Water-Use Data for 1998-2005 and Evaluation of Water-Use Scenarios

    USGS Publications Warehouse

    Gillip, Jonathan A.; Czarnecki, John B.

    2009-01-01

    A ground-water flow model of the Mississippi River Valley alluvial aquifer in eastern Arkansas, developed in 2003 to simulate the period of 1918-98, was validated with the addition of water-level and water-use data that extended the observation period to 2005. The original model (2003) was calibrated using water-level observations from 1972, 1982, 1992, and 1998, and water-use data through 1997. The original model subsequently was used to simulate water levels from 1999 to 2049 and showed that simulation of continued pumping at the 1997 water-use rate could not be sustained indefinitely without causing dry cells in the model. After publication of the original ground-water flow model, a total of 3,616 water-level observations from 698 locations measured during the period of 1998 to 2005 became available. Additionally, water-use data were compiled and used for the same period, totaling 290,005 discrete water-use values from 43,440 wells with as many as 39,169 wells pumping in any one year. Total pumping (which is primarily agricultural) for this 8-year period was about 2.3 trillion cubic feet of water and was distributed over approximately 10,340 square miles within the model area. An updated version of the original ground-water flow model was used to simulate the period of 1998-2005 with the additional water-level and water-use data. Water-level observations for 1998-2005 ranged from 74 to 293 feet above National Geodetic Vertical Datum of 1929 across the model area. The maximum water-level residual (observed minus simulated water-level values) for the 3,616 water-level observations was 52 feet, the minimum water-level residual was 60 feet, the average annual root mean squared error was 8.2 feet, and the annual average absolute residual was 6.0 feet. A correlation coefficient value of 0.96 was calculated for the line of best fit for observed to simulated water levels for the combined 1998-2005 dataset, indicating a good fit to the data and an acceptable validation

  11. Estimating nitrogen loading to ground water and assessing vulnerability to nitrate contamination in a large karstic springs Basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; Sepulveda, A.A.; Verdi, R.J.

    2009-01-01

    A nitrogen (N) mass-balance budget was developed to assess the sources of N affecting increasing ground-water nitrate concentrations in the 960-km 2 karstic Ichetucknee Springs basin. This budget included direct measurements of N species in rainfall, ground water, and spring waters, along with estimates of N loading from fertilizers, septic tanks, animal wastes, and the land application of treated municipal wastewater and residual solids. Based on a range of N leaching estimates, N loads to ground water ranged from 262,000 to 1.3 million kg/year; and were similar to N export from the basin in spring waters (266,000 kg/year) when 80-90% N losses were assumed. Fertilizers applied to cropland, lawns, and pine stands contributed about 51% of the estimated total annual N load to ground water in the basin. Other sources contributed the following percentages of total N load to ground water: animal wastes, 27%; septic tanks, 12%; atmospheric deposition, 8%; and the land application of treated wastewater and biosolids, 2%. Due to below normal rainfall (97.3 cm) during the 12-month rainfall collection period, N inputs from rainfall likely were about 30% lower than estimates for normal annual rainfall (136 cm). Low N-isotope values for six spring waters (??15N-NO3 = 3.3 to 6.3???) and elevated potassium concentrations in ground water and spring waters were consistent with the large N contribution from fertilizers. Given ground-water residence times on the order of decades for spring waters, possible sinks for excess N inputs to the basin include N storage in the unsaturated zone and parts of the aquifer with relatively sluggish ground-water movement and denitrification. A geographical-based model of spatial loading from fertilizers indicated that areas most vulnerable to nitrate contamination were located in closed depressions containing sinkholes and other dissolution features in the southern half of the basin. ?? 2009 American Water Resources Association.

  12. Simulation and particle-tracking analysis of ground-water flow near the Savannah River site, Georgia and South Carolina, 2002, and for selected ground-water management scenarios, 2002 and 2020

    USGS Publications Warehouse

    Cherry, Gregory S.

    2006-01-01

    Ground-water flow under 2002 hydrologic conditions was evaluated in an eight-county area in Georgia and South Carolina near the Savannah River Site (SRS), by updating boundary conditions and pumping rates in an existing U.S. Geological Survey (USGS) ground-water model. The original ground-water model, developed to simulate hydrologic conditions during 1987-92, used the quasi-three-dimensional approach by dividing the Floridan, Dublin, and Midville aquifer systems into seven aquifers. The hydrogeologic system was modeled using six active layers (A2-A7) that were separated by confining units with an overlying source-sink layer to simulate the unconfined Upper Three Runs aquifer (layer A1). Potentiometric- surface maps depicting September 2002 for major aquifers were used to update, evaluate, and modify boundary conditions used by the earlier ground-water flow model. The model was updated using the USGS finite-difference code MODFLOW-2000 for mean-annual conditions during 1987-92 and 2002. The specified heads in the source-sink layer A1 were lowered to reflect observed water-level declines during the 1998-2002 drought. These declines resulted in a decrease of 12.1 million gallons per day (Mgal/d) in simulated recharge or vertical inflow to the uppermost confined aquifer (Gordon, layer A2). Although ground-water pumpage in the study area has increased by 32 Mgal/d since 1995, most of this increase (17.5 Mgal/d) was from the unconfined Upper Three Runs aquifer (source-sink layer A1) with the remaining 14.5 Mgal/d assigned to the active layers within the model (A2-A7). The simulated water budget for 2002 shows a decrease from the 1987-92 model from 1,040 Mgal/d to 1,035 Mgal/d. The decreased ground-water inflows and increased ground-water withdrawal rates reduced the simulated ground-water outflow to river cells in the active layers of the model by 43 Mgal/d. The calibration statistics for all layers of the 2002 simulation resulted in a decrease in the root mean square

  13. Hydrogeology, ground-water use, and ground-water levels in the Mill Creek Valley near Evendale, Ohio

    USGS Publications Warehouse

    Schalk, Charles; Schumann, Thomas

    2002-01-01

    Withdrawals of ground water in the central Mill Creek Valley near Evendale, Ohio, caused water-level declines of more than 100 feet by the 1950s. Since the 1950s, management practices have changed to reduce the withdrawals of ground water, and recovery of water levels in long-term monitoring wells in the valley has been documented. Changing conditions such as these prompted a survey of water use, streamflow conditions, and water levels in several aquifers in the central Mill Creek Valley, Hamilton and Butler Counties, Ohio. Geohydrologic information, water use, and water levels were compiled from historical records and collected during the regional survey. Data collected during the survey are presented in terms of updated geohydrologic information, water use in the study area, water levels in the aquifers, and interactions between ground water and surface water. Some of the data are concentrated at former Air Force Plant 36 (AFP36), which is collocated with the General Electric Aircraft Engines (GEAE) plant, and these data are used to describe geohydrology and water levels on a more local scale at and near the plant. A comparison of past and current ground-water use and levels indicates that the demand for ground water is decreasing and water levels are rising. Before 1955, most of the major industrial ground-water users had their own wells, ground water was mined from a confined surficial (lower) aquifer, and water levels were more than 100 feet below their predevelopment level. Since 1955, however, these users have been purchasing their water from the city of Cincinnati or a private water purveyor. The cities of Reading and Lockland, both producers of municipal ground-water supplies in the area, shut down their well fields within their city limits. Because the demand for ground-water supplies in the valley has lessened greatly since the 1950s, withdrawals have decreased, and, consequently, water levels in the lower aquifer are 65 to 105 feet higher than they were

  14. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  15. Hydrogeology of, and simulation of ground-water flow in a mantled carbonate-rock system, Cumberland Valley, Pennsylvania

    USGS Publications Warehouse

    Chichester, D.C.

    1996-01-01

    The U.S. Geological Survey conducted a study in a highly productive and complex regolith-mantled carbonate valley in the northeastern part of the Cumberland Valley, Pa., as part of its Appalachian Valleys and Piedmont Regional Aquifer-system Analysis program. The study was designed to quantify the hydrogeologic characteristics and understand the ground-water flow system of a highly productive and complex thickly mantled carbonate valley. The Cumberland Valley is characterized by complexly folded and faulted carbonate bedrock in the valley bottom, by shale and graywacke to the north, and by red-sedimentary and diabase rocks in the east-southeast. Near the southern valley hillslope, the carbonate rock is overlain by wedge-shaped deposit of regolith, up to 450 feet thick, that is composed of residual material, alluvium, and colluvium. Locally, saturated regolith is greater than 200 feet thick. Seepage-run data indicate that stream reaches, near valley walls, are losing water from the stream, through the regolith, to the ground-water system. Results of hydrograph-separation analyses indicate that base flow in stream basins dominated by regolith-mantled carbonate rock, carbonate rock, and carbonate rock and shale are 81.6, 93.0, and 67.7 percent of total streamflow, respectively. The relative high percentage for the regolith-mantled carbonate-rock basin indicates that the regolith stores precipitation and slowly, steadily releases this water to the carbonate-rock aquifer and to streams as base flow. Anomalies in water-table gradients and configuration are a result of topography and differences in the character and distribution of overburden material, permeability, rock type, and geologic structure. Most ground-water flow is local, and ground water discharges to nearby springs and streams. Regional flow is northeastward to the Susquehanna River. Average-annual water budgets were calculated for the period of record from two continuous streamflow-gaging stations. Average-annual

  16. Ground Water Atlas of the United States: Segment 1, California, Nevada

    USGS Publications Warehouse

    Planert, Michael; Williams, John S.

    1995-01-01

    California and Nevada compose Segment 1 of the Ground Water Atlas of the United States. Segment 1 is a region of pronounced physiographic and climatic contrasts. From the Cascade Mountains and the Sierra Nevada of northern California, where precipitation is abundant, to the Great Basin in Nevada and the deserts of southern California, which have the most arid environments in the United States, few regions exhibit such a diversity of topography or environment. Since the discovery of gold in the mid-1800's, California has experienced a population, industrial, and agricultural boom unrivaled by that of any other State. Water needs in California are very large, and the State leads the United States in agricultural and municipal water use. The demand for water exceeds the natural water supply in many agricultural and nearly all urban areas. As a result, water is impounded by reservoirs in areas of surplus and transported to areas of scarcity by an extensive network of aqueducts. Unlike California, which has a relative abundance of water, development in Nevada has been limited by a scarcity of recoverable freshwater. The Truckee, the Carson, the Walker, the Humboldt, and the Colorado Rivers are the only perennial streams of significance in the State. The individual basin-fill aquifers, which together compose the largest known ground-water reserves, receive little annual recharge and are easily depleted. Nevada is sparsely populated, except for the Las Vegas, the Reno-Sparks, and the Carson City areas, which rely heavily on imported water for public supplies. Although important to the economy of Nevada, agriculture has not been developed to the same degree as in California due, in large part, to a scarcity of water. Some additional ground-water development might be possible in Nevada through prudent management of the basin-fill aquifers and increased utilization of ground water in the little-developed carbonate-rock aquifers that underlie the eastern one-half of the State

  17. Assessment of Ground-Water Resources in the Seacoast Region of New Hampshire

    USGS Publications Warehouse

    Mack, Thomas J.

    2009-01-01

    Numerical ground-water-flow models were developed for a 160-square-mile area of coastal New Hampshire to provide insight into the recharge, discharge, and availability of ground water. Population growth and increasing water use prompted concern for the sustainability of the region's ground-water resources. Previously, the regional hydraulic characteristics of the fractured bedrock aquifer in the Seacoast region of New Hampshire were not well known. In the current study, the ground-water-flow system was assessed by using two different models developed and calibrated under steady-state seasonal low-flow and transient monthly conditions to ground-water heads and base-flow discharges. The models were, (1) a steady-state model representing current (2003-04) seasonal low-flow conditions used to simulate current and future projected water use during low-flow conditions; and (2) a transient model representing current average and estimated future monthly conditions over a 2-year period used to simulate current and future projected climate-change conditions. The analysis by the ground-water-flow models indicates that the Seacoast aquifer system is a transient flow system with seasonal variations in ground-water flow. A pseudosteady- state condition exists in the fall when the steady-state model was calibrated. The average annual recharge during the period analyzed, 2000-04, was approximately 51 percent of the annual precipitation. The average net monthly recharge rate between 2003 and 2004 varied from 5.5 inches per month in March, to zero in July, and to about 0.3 inches per month in August and September. Recharge normally increases to about 2 inches per month in late fall and early winter (November through December) and declines to about 1.5 inches per month in late winter (January and February). About 50 percent of the annual recharge coincides with snowmelt in the spring (March and April), and 20 percent occurs in the late fall and early winter (November through February

  18. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  19. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona--2004-05

    USGS Publications Warehouse

    Truini, Margot; Macy, J.P.

    2006-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in the Black Mesa area has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2004, total ground-water withdrawals were 7,210 acre-feet, industrial withdrawals were 4,370 acre-feet, and municipal withdrawals were 2,840 acre-feet. From 2003 to 2004, total withdrawals decreased by less than 1 percent, industrial withdrawals decreased by 2 percent, and municipal withdrawals increased by 2 percent. From 2004 to 2005, annually measured water levels declined in 6 of 13 wells in the unconfined areas of the aquifer, and the median change was -0.1 foot. Water levels declined in 8 of 12 wells in the confined area of the aquifer, and the median change was -1.2 feet. From the prestress period (prior to 1965) to 2005, the median water-level change for 33 wells was -9.0 feet. Median water-level changes were -0.6 foot for 16 wells in the unconfined areas and -32.0 feet for 17 wells in the confined area. Discharges were measured once in 2004 and once in 2005 at four springs. Discharge increased by 8 percent at Pasture Canyon Spring, decreased by 5 percent at Moenkopi School Spring, increased by 71 percent at an unnamed spring near Dennehotso, and stayed the same at Burro Spring. For the period of record at each spring, discharges from the four springs have fluctuated; however, an increasing or decreasing trend is not apparent

  20. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  1. Ground-water program in Alabama

    USGS Publications Warehouse

    LaMoreaux, P.E.

    1955-01-01

    Several recent years of drought have emphasized the importance of Alabama's ground-water supplies, a matter of concern to us all.  So far we have been blessed in Alabama with ample ground-water, although a combination of increased use, waste, pollution, and drought has brought about critical local water shortages.  These problems serve as a fair warning of what lies ahead if we do not take the necessary steps to obtan adequate knowledge of our ground-water resources.

  2. Ground-water conditions in Georgia, 1999

    USGS Publications Warehouse

    Cressler, Alan M.

    2000-01-01

    Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water investigations conducted by the U.S. Geological Survey (USGS), in cooperation with the State of Georgia and city and county governments, a Statewide water-level-measurement program was started in 1938. Initially, this program consisted of an observation-well network in the coastal area of Georgia to monitor variations in ground-water storage and quality. Additional wells were later included in areas where data could be used to aid in water resources development and management. During 1999, periodic water-level measurements were made in 46 wells, and continuous water-level measurements were obtained from 165 wells. Continuous water-level records were obtained using analog (pen and chart

  3. Ground-water resources of Greeley and Wichita counties, Western Kansas

    USGS Publications Warehouse

    Slagle, Steven E.; Weakly, Edward C.

    1975-01-01

    Unconsolidated deposits of sand, silt, clay, and gravel compose the principal aquifer in Greeley and Wichita Counties. The deposits are as much as 300 feet (91 m) 2/ thick, of which as much as 145 feet (44 m) is saturated.In 1972, there were about 1,040 large-capacity wells--yielding 100 gallons per minute (6.3 1/s) or more--in the counties, mostly for irrigation supplies. The wells yield as much as 2,000 gallons per minute (130 1/s). Withdrawals of ground water average about 220,000 acre-feet (270 hm3) annually.Water levels have declined in parts of the area where large-capacity wells are concentrated, resulting in as much as 60-percent reduction in saturated thickness. Water-level declines during 1948-72 ranged from less than 10 to about 55 feet (3-17 m). The largest decline, about 55 feet (17 m), has occurred near Leoti, in central Wichita County. As of January 1972, about 5 million acre-feet (6,000 hm) of ground water were in storage in Greeley and Wichita Counties; however, only about 70 percent of this amount is considered to be available for pumping.The water from the unconsolidated aquifer is a mixed chemical type in which calcium, sodium, and bicarbonate are the principal constituents. Generally, the water is suitable for all common domestic, stock, and irrigation uses.Price increases for grain in 1973 and absence of acreage controls probably will encourage additional development of ground water for irrigation. Increased withdrawals will, however, accelerate the rate of water-level decline and reduction in ground-water storage. Increased water-level declines will be accompanied in most of the area by noticeable decreases in well yields. Any additional increase in the rate of withdrawal in areas where saturated thickness has declined about 40 percent or more may significantly shorten the economic life of the aquifer. Additional development in these areas should be considered with regard to increasing pumping costs and decreasing well yields. Development of

  4. Effects of Irrigation, Drought, and Ground-Water Withdrawals on Ground-Water Levels in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2006-01-01

    A numerical ground-water-flow model was used to investigate the effects of irrigation on ground-water levels in the southern Lihue Basin, Kauai, Hawaii, and the relation between declining ground-water levels observed in the basin in the 1990s and early 2000s and concurrent drought, irrigation reduction, and changes in ground-water withdrawal. Results of steady-state model simulations indicate that changing from pre-development to 1981 irrigation and ground-water-withdrawal conditions could, given enough time for steady state to be achieved, raise ground-water levels in some areas of the southern Lihue Basin by as much as 200 feet, and that changing from 1981 to 1998 irrigation and ground-water-withdrawal conditions could lower ground-water levels in some areas by as much as 100 feet. Transient simulations combining drought, irrigation reduction, and changes in ground-water withdrawal show trends that correspond with those observed in measured water levels. Results of this study indicate that irrigation reduction was the primary cause of the observed decline in ground-water-levels. In contrast, ground-water withdrawal had a long-duration but small-magnitude effect, and drought had a widespread, high-magnitude but short-duration effect. Inasmuch as irrigation in the future is unlikely to return to the same levels as during the period of peak sugarcane agriculture, the decline in ground-water levels resulting from the reduction and ultimate end of sugarcane irrigation can be considered permanent. Assuming that irrigation does not return to the southern Lihue Basin and that, on average, normal rainfall persists and ground-water withdrawal remains at 1998 rates, model projections indicate that average ground-water levels in the Kilohana-Puhi area will continue to recover from the drought of 1998-2002 and eventually rise to within about 4 feet of the pre-drought conditions. Long-term climate trends, increases in ground-water withdrawal, or other factors not simulated in

  5. Simulation of ground-water discharge to Biscayne Bay, southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian David

    2001-01-01

    -dimensional, regional-scale model was calibrated to ground-water heads, canal baseflow, and the general position of the saltwater interface for nearly a 10-year period from 1989 to 1998. The mean absolute error between observed and simulated head values is 0.15 meter. The mean absolute error between observed and simulated baseflow is 3 x 105 cubic meters per day. The position of the simulated saltwater interface generally matches the position observed in the field, except for areas north of the Miami Canal where the simulated saltwater interface is located about 5 kilometers inland of the observed saltwater interface. Results from the regional-scale model suggest that the average rate of fresh ground-water discharge to Biscayne Bay for the 10-year period (1989-98) is about 2 x 105 cubic meters per day for 100 kilometers of coastline. This simulated discharge rate is about 6 percent of the measured surface-water discharge to Biscayne Bay for the same period. The model also suggests that nearly 100 percent of the fresh ground-water discharge is to the northern half of Biscayne Bay, north of the Cutler Drain Canal. South of the Cutler Drain Canal, coastal lowlands prevent the water table from rising high enough to drive measurable quantities of ground water to Biscayne Bay. Annual variations in sea-level elevation, which can be as large as 0.3 meter, have a substantial effect on rates of ground-water discharge. During 1989-98, simulated rates of ground-water discharge to Biscayne Bay generally are highest when sea level is relatively low.

  6. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    , indicating that the water is capable of dissolving calcite in the underlying limestone aquifer. Annual and monthly ground-water outflow (lake leakage) was significantly higher at Round Lake than at the non-augmented lakes for the 3-year study period. Minimum estimates of the total annual ground-water inflow and outflow were made from monthly net ground-water flow values. Based on these estimates, total annual groundwater outflow from Round Lake was more than 10 times higher than for the non-augmented lakes. Local ground-water pumping, augmentation, and hydrogeologic factors are responsible for the high net ground-water outflow at Round Lake. Localized ground-water pumping causes the head difference between the lake and the Upper Floridan aquifer to increase, which increases lake leakage and results in lower lake levels. Augmenting the lake further increases the head difference between the lake, the water table, and the Upper Floridan aquifer, which results in an increase in lateral and vertical lake leakage. The lack of confinement or breaches in the intermediate confining unit facilitates the downward movement of this augmented lake water back into the Upper Floridan aquifer. The increase in ground-water circulation in the leakage-dominated hydrogeologic setting at Round Lake has made the basin more susceptible to karst activity (limestone dissolution, subsidence, and sinkhole formation)

  7. Temporal trends in nitrate and selected pesticides in mid-atlantic ground water

    USGS Publications Warehouse

    Debrewer, L.M.; Ator, S.W.; Denver, J.M.

    2008-01-01

    Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with, changing land and chemical uses when interpreting trends in regional ground-water quality. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Water rights in areas of ground-water mining

    USGS Publications Warehouse

    Thomas, Harold E.

    1955-01-01

    Ground-water mining, the progressive depletion of storage in a ground-water reservoir, has been going on for several years in some areas, chiefly in the Southwestern States. In some of these States a water right is based on ownership of land overlying the ground-water reservoir and does not depend upon putting the water to use; in some States a right is based upon priority of appropriation and use and may be forfeited if the water is allowed to go unused for a specified period, but ownership of land is not essential; and in several States both these doctrines or modifications thereof are accepted, and each applies to certain classes of water or to certain conditions of development.Experience to date indicates that a cure for ground-water mining does not necessarily depend upon the water-rights doctrine that is accepted in the area. Indeed, some recent court decisions have incorporated both the areal factor of the landownership doctrines and the time factor of the appropriation doctrine. Overdraft can be eliminated if water is available from another source to replace some of the water taken from the affected aquifer. In areas where no alternate source of supply is available at reasonable cost, public opinion so far appears to favor treating ground water as a nonrenewable resource comparable to petroleum and metals, and mining it until the supply is exhausted, rather than curbing the withdrawals at an earlier date.

  9. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  10. Ground-water levels in Wyoming, 1975

    USGS Publications Warehouse

    Ballance, Wilbur C.; Freudenthal, Pamela B.

    1976-01-01

    Ground-water levels are measured periodically in a network of about 260 observation wells in Wyoming to record changes in ground-water storage. The areas of water-level observation are mostly where ground water is used in large quantities for irrigation or municipal purposes. This report contains maps showing location of observation wells and water-level changes from 1975 to 1976. Well history, highest and lowest water levels , and hydrographs for most wells also are included in this report.The program of ground-water observation is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the city of Cheyenne.

  11. Water resources and potential effects of ground-water development in Maggie, Marys, and Susie Creek basins, Elko and Eureka counties, Nevada

    USGS Publications Warehouse

    Plume, R.W.

    1995-01-01

    The basins of Maggie, Marys, and Susie Creeks in northeastern Nevada are along the Carline trend, an area of large, low-grade gold deposits. Pumping of ground water, mostly for pit dewatering at one of the mines, will reach maximum rates of about 70,000 acre-ft/yr (acre-feet per year) around the year 2000. This pumping is expected to affect ground-water levels, streamflow, and possibly the flow of Carlin spring, which is the water supply for the town of Carlin, Nev. Ground water in the upper Maggie Creek Basin moves from recharge areas in mountain ranges toward the basin axis and discharges as evapotranspiration and as inflow to the stream channel. Ground water in the lower Maggie, Marys, and Susie Creek Basins moves southward from recharge areas in mountain ranges and along the channel of lower Maggie Creek to the discharge area along the Humboldt River. Ground-water underflow between basins is through permeable bedrock of Schroeder Mountain from the upper Maggie Creek Basin to the lower Maggie Creek Basin and through permeable volcanic rocks from lower Maggie Creek to Carlin spring in the Marys Creek Basin. The only source of water to the combined area of the three basins is an estimated 420,000 acre-ft/yr of precipitation. Water leaves as runoff (38,000 acre-ft/yr) and evapotranspiration of soil moisture and ground water (380,000 acre-ft/yr). A small part of annual precipitation (about 25,000 acre-ft/yr) infiltrates the soil zone and becomes ground-water recharge. This ground water eventually is discharged as evapotranspiration (11,000 acre-ft/yr) and as inflow to the Humboldt River channel and nearby springflow (7,000 acre-ft/yr). Total discharge is estimated to be 18,000 acre-ft/yr.

  12. Selected Ground-Water Data for Yucca Mountain Region, Southern Nevada and Eastern California, January-December 2004

    USGS Publications Warehouse

    La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.

    2006-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.

  13. Texas ground-water quality

    USGS Publications Warehouse

    Strause, Jeffrey L.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  14. Minnesota ground-water quality

    USGS Publications Warehouse

    Albin, D.R.; Bruemmer, L.B.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  15. An appraisal of ground water for irrigation in the Appleton area, west-central Minnesota

    USGS Publications Warehouse

    Larson, Steven P.

    1976-01-01

    Mathematical models of a part of the aquifer were made to evaluate the effects of 20 successive years of ground-water withdrawal for three irrigation-development patterns. It was estimated that the present annual withdrawal rate of 1,410 acre-ft (1.74 hm3) would result in water-level declines of less than 3 feet (0.9 m). However, annual withdrawals of 8,450 acre-ft (10.4 hm3) would cause aquifer dewatering and decreased well yields in some places. After a new state of equilibrium was established in response to withdrawals, most of the withdrawal would be supplied by diverted base flow from the Pomme de Terre River.

  16. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  17. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  18. Ground water in Pavant Valley

    USGS Publications Warehouse

    Dennis, P. E.; Maxey, G.B.; Thomas, H.E.

    1946-01-01

    The users of wells for irrigation in Pavant Valley, particularly in the Flowell district, have long been cognizant of their utter dependency upon ground water for livelihood, and were among the first in the State to make an organized effort to conserve supplies by prevention of waste. Since passage of the State ground-water law in 1935, the State Engineer has not approved applications for new wells in the areas of most concentrated development, and has deferred adjudication of existing water rights until adequate data concerning the ground-water resources become available. The investigation of ground-water resources in Pavant Valley was suggested by the State Engineer and constitutes one of a series that are being made in the important groundwater basins of Utah by the Federal Geological Survey in cooperation with the State Engineer. The investigation was under the general supervision of Oscar E. Meinzer, geologist in charge of the ground-water division of the Federal Geological Survey. H. E. Thomas, in charge of groundwater investigations in Utah, returned from military service overseas in time to assist in the completion of the manuscript, and edited the report.

  19. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  20. Hydrogeology and ground-water resources of Ngatik Island, Sapwuahfik Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Ngatik Island contains about 509 million gallons of potable water. Recharge to the freshwater lens is estimated to be 990,000 gallons per day on the basis of an estimated mean annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 280,000 gallons per day. The estimated demand for water is about 30,000 gallons per day. Shallow-vertical-tube-wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Ngatik can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking and ground water can be used for sanitary purposes. When rainwater- catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  1. Hydrogeology and ground-water resources of Pingelap Island, Pingelap Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Pingelap Island, Pingelap Atoll contains about 384 million gallons of potable water. Recharge to the freshwater lens is estimated to be 230,000 gallons per day on the basis of an average annual rainfall of 160 inches. The long-term average sustainable yield is estimated to be about 69,000 gallons per day. The estimated demand for water is about 50,000 gallons per day. Shallow-vertical-tube wells or horizontal-infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow-water-table wells and deep driven wells. The ground-water resource on Pingelap can be used in conjunction with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  2. Hydrogeology and ground-water resources of Kahlap Island, Mwoakilloa Atoll, State of Pohnpei, Federated States of Micronesia

    USGS Publications Warehouse

    Anthony, S.S.

    1996-01-01

    The lens of fresh ground water on Kahlap Island contains about 21.3 million gallons of potable water. Recharge to the freshwater lens is estimated to be 125,000 gallons per day on the basis of a mean annual rainfall of 120 inches. The long-term average sustainable yield is estimated to be about 17,300 gallons per day. The estimated demand for water is about 13,500 gallons per day. Shallow-vertical-tube wells or horizontal- infiltration wells could be used to develop the freshwater lens. The effect of development on the lens can be determined by monitoring the chloride concentration of water from a network of shallow- water-table and deep driven wells. The ground- water resource on Kahlap can be used in conjunc- tion with individual rainwater-catchment systems: rainwater can be used for drinking and cooking, and ground water can be used for sanitary uses. When rainwater-catchment systems fail during extended dry periods, ground water would be available to meet the total demand.

  3. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  4. Ground-water flow and ground- and surface-water interaction at McBaine Bottoms, Columbia, Missouri--2000-02

    USGS Publications Warehouse

    Smith, Brenda J.

    2003-01-01

    McBaine Bottoms southwest of Columbia, Missouri, is the site of 4,269 acres of the Eagle Bluffs Conservation Area operated by the Missouri Department of Conservation, about 130 acres of the city of Columbia wastewater-treat-ment wetlands, and the city of Columbia munici-pal-supply well field. The city of Columbia wastewater-treatment wetlands supply treated effluent to the Eagle Bluffs Conservation Area. The presence of a sustained ground-water high underlying the Eagle Bluffs Conservation Area has indicated that ground-water flow is toward the municipal well field that supplies drinking water to the city of Columbia. The U.S. Geological Survey, in cooperation with the Missouri Department of Conservation and the city of Columbia, measured the ground-water levels in about 88 monitoring wells and the surface-water elevation at 4 sites monthly during a 27-month period to determine the ground-water flow and the ground- and surface-water interaction at McBaine Bottoms. Lateral ground-water flow was dominated by the presence of a ground-water high that was beneath the Eagle Bluffs Conservation Area and the presence of a cone of depression in the northern part of the study area. The ground-water high was present during all months of the study. Ground-water flow was radially away from the apex of the ground-water high; west and south of the high, flow was toward the Missouri River, east of the high, flow was toward Perche Creek, and north of the high, flow was toward the north toward the city of Columbia well field. The cone of depression was centered around the city of Columbia well field. Another permanent feature on the water-level maps was a ground-water high beneath treatment wetland unit 1. Although the ground-water high beneath the Eagle Bluffs Conservation Area was present throughout the study period, the configuration of the high changed depending on hydrologic conditions. Generally in the spring, the height of the ground-water high began to decrease and hydraulic

  5. Geohydrology and ground-water quality, Big Elk Creek Basin, Chester County, Pennsylvania, and Cecil County, Maryland

    USGS Publications Warehouse

    Sloto, Ronald A.

    2002-01-01

    A study of ground-water quantity and quality was conducted in the Big Elk Creek Basin, a rural area undergoing rapid growth. The 79.4-square mile study area is in the Piedmont Physiographic Province and is underlain almost entirely by crystalline rocks. Most of the basin in Pennsylvania is underlain by Wissahickon Schist, a fractured crystalline- rock aquifer. Yields of wells in the Wissahickon Schist range from 5 to 200 gal/min (gallons per minute); the median yield is 15 gal/min. Specific capacity ranges from 0.03 to 15 (gal/min)/ft (gallons per minute per foot) of drawdown; the median specific capacity is 0.4 (gal/min)/ft.Recharge to the basin occurs by infiltration of precipitation, and ground water discharges locally to streams. The median annual ground-water discharge to streams (base flow) for 1933-99 was 10.79 in. (inches) or 0.518 (Mgal/d)/mi2 (million gallons per day per square mile), which was 63 percent of the median annual streamflow. The median annual ground-water discharge to streams ranged from 5.32 in. or 0.255 (Mgal/d)/mi2 in 1966 to 17.98 in. or 0.863 (Mgal/d)/mi2 in 1972. Estimated ground-water availability ranges from 0.127 to 0.535 (Mgal/d)/mi2, depending on the estimation method used.Annual water budgets were calculated for the Big Elk Creek Basin for 1998-99. The 1998-99 average annual streamflow was 15.38 in., change in ground-water storage was an increase of 1.32 in., ground-water exports were 0.03 in., and estimated evapotranspiration (ET) was 30.5 in. Despite a 12.27-in. difference in precipitation between 1998 and 1999, the percentage of precipitation as ET (65.6 and 64 percent, respectively) is similar. Estimated average annual recharge for 1998-99 was 12.12 in. [0.580 (Mgal/d)/mi2].For this study, water samples from 20 wells in the Big Elk Creek Basin were collected for analysis for inorganic constituents and pesticides. In addition, data were available from 44 additional wells. Major ions, in order of decreasing concentration, based

  6. Ground-water-recharge rates in Nassau and Suffolk counties, New York

    USGS Publications Warehouse

    Peterson, D.S.

    1987-01-01

    Groundwater is the sole source of freshwater in Nassau and Suffolk Counties on Long Island; therefore, the rate at which precipitation replenishes the groundwater system may affect future water supplies in some areas. Annual precipitation on Long Island averages 45 inches per year, but less than 23 inches , or 50%, recharges the ground-water system. (Recharge is precipitation that percolates to the ground-water system naturally; it does not include water from stormwater basins or injection wells.) The rate of recharge varies locally and ranges from 29% to 57% of precipitation, depending on land use, season, and amount of storm sewering in the area. Recharge was calculated by subtracting evapotranspiration and direct runoff values from known precipitation values. Evapotranspiration was calculated by the Thornwaite and Mather method, and direct runoff rates to streams were calculated from streamflow records and size of known storm-sewer service areas. This report includes maps that depict precipitation, evapotranspiration, and rates of natural recharge in Nassau and Suffolk Counties for use in future hydrologic studies on Long Island. (Author 's abstract)

  7. Ground water for irrigation in the Snake River Basin in Idaho

    USGS Publications Warehouse

    Mundorff, Maurice John; Crosthwaite, E.G.; Kilburn, Chabot

    1964-01-01

    The Snake River basin, in southern Idaho, upstream from the mouth of the Powder River in Oregon, includes more than 50 percent of the land area and 65 percent of the total population of the State. More than 2.5 million acres of land is irrigated ; irrigation agriculture and industry allied with agriculture are the basis of the economy of the basin. Most of the easily developed sources of surface water are fully utilized, and few storage sites remain where water could be made available to irrigate lands under present economic conditions. Because surface-water supplies have be come more difficult to obtain, use of ground water has increased greatly. At the present time (1959), about 600,000 acres of land is irrigated with ground water. Ground-water development has been concentrated in areas where large amounts of water are available beneath or adjacent to tracts of arable land and where the depth to water is not excessive under the current economy. Under these criteria, many of the most favorable areas already have been developed; however, tremendous volumes of water are still available for development. In some places, water occurs at depths considered near or beyond the limit for economic recovery, whereas in some other places, water is reasonably close to the surface but no arable land is available in the vicinity. In other parts of the basin large tracts of arable land are without available water supply. Thus the chief tasks in development of the ground-water resources include not only locating and evaluating ground-water supplies but also the planning necessary to bring the water to the land. Irrigation began in the 1860's ; at the present time more than 10 million acre feet of surface water, some of which is recirculated water, is diverted annually for irrigation of more than 2.5 million acres. Diversion of this large quantity of water has had a marked effect on the ground-water regimen. In some areas, the water table has risen more than 100 feet and the

  8. Hydrogeology, water quality, and simulated effects of ground-water withdrawals from the Floridan aquifer system, Seminole County and vicinity, Florida

    USGS Publications Warehouse

    Spechler, Rick M.; Halford, Keith J.

    2001-01-01

    The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been

  9. Ground-water recharge in humid areas of the United States: A summary of Ground-Water Resources Program studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  10. Response of the Rio Grande and shallow ground water in the Mesilla Bolson to irrigation, climate stress, and pumping

    USGS Publications Warehouse

    Walton, J.; Ohlmacher, G.; Utz, D.; Kutianawala, M.

    1999-01-01

    The El Paso-Ciudad Juarez metropolitan area obtains its water from the Rio Grande and intermontane-basin aquifers. Shallow ground water in this region is in close communications with the surface water system. A major problem with both systems is salinity. Upstream usage of the water in the Rio Grande for irrigation and municipalities has led to concentration of soluble salts to the point where the surface water commonly exceeds drinking water standards. Shallow ground water is recharged by surface water (primarily irrigation canals and agricultural fields) and discharges to surface water (agricultural drains) and deeper ground water. The source of water entering the Rio Grande varies seasonally. During the irrigation season, water is released from reservoirs and mixes with the return flow from irrigation drains. During the non-irrigation season (winter), flow is from irrigation drains and river water quality is indicative of shallow ground water. The annual cycle can be ascertained from the inverse correlation between ion concentrations and discharge in the river. Water-quality data indicate that the salinity of shallow ground water increases each year during a drought. Water-management strategies in the region can affect water quality. Increasing the pumping rate of water-supply wells will cause shallow ground water to flow into the deeper aquifers and degrade the water quality. Lining the canals in the irrigation system to stop water leakage will lead to water quality degradation in shallow ground water and, eventually, deep ground water by removing a major source of high quality recharge that currently lowers the salinity of the shallow ground water.

  11. Ground Water Rule - Boil Water Advisory - Public Notification Template

    EPA Pesticide Factsheets

    The Ground Water Rule - Boil Water Advisory - Public Notification Template can be use to issue a Tier 1 Public Notification when it has been determined that source ground water is contaminated with E. Coli bacteria.

  12. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    EPA Science Inventory

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  13. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  14. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  15. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  16. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...

  17. Geology and ground-water resources of Washington County, Colorado

    USGS Publications Warehouse

    McGovern, Harold E.

    1964-01-01

    to the thickness of saturated material. Development of ground water for irrigation has been generally restricted to the South Platte, Arikaree, and Beaver valleys. There were 134 irrigation wells, 3 industrial wells, and 10 municipal wells in the county in 1959. The annual ground-water pumpage from Washington County is estimated to be 18,000 acre-ft; about 10,000 acre-ft is from the High Plains ground-water province. Although some ground water enters the county as underflow, most of the recharge to ground-water reservoirs is from precipitation on the land surface. Recharge to the Ogallala Formation in the county is assumed to be approximately equal to the natural discharge from the county by underflow because ground-water withdrawals are from storage, and no other significant amount of natural discharge is apparent. Undertow in the Ogallala was calculated to be 83,000 acre-ft per year and the rate of recharge from precipitation to be about 0.95 inch per year. Neither recharge nor discharge was calculated for that part of the county in the South Platte River basin. All ground water in Washington County has a high proportion of carbonate and is classed as hard to very hard. The sodium-adsorption-ratio for all samples analyzed was below the limit recommended for irrigation water. All the water from the Ogallala Formation and most of the water from the Chadron Formation is suitable for domestic use. Some water from the alluvial deposits overlying the Pierre Shale was exceptionally high in calcium, magnesium, and sodium sulfates. Ground water has been heavily developed for irrigation in the South Platte valley and in some parts of the Beaver and Arikaree valleys. Some additional areas, however, could be developed in the latter two valleys. Large quantities of ground water in the Ogallala Formation are available for future development. The quantity of water in storage in the High Plains ground-water province in Washington County is about 6.5 million acre-f

  18. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  19. Hydrogeology and quality of ground water in Orange County, Florida

    USGS Publications Warehouse

    Adamski, James C.; German, Edward R.

    2004-01-01

    Ground water is the main source of water supply in central Florida and is critical for aquatic habitats and human consumption. To provide a better understanding for the conservation, development, and management of the water resources of Orange County, Florida, a study of the hydrogeologic framework, water budget, and ground-water quality characteristics was conducted from 1998 through 2002. The study also included extensive analyses of the surface-water resources, published as a separate report. An increase in population from about 264,000 in 1960 to 896,000 in 2000 and subsequent urban growth throughout this region has been accompanied by a substantial increase in water use. Total ground-water use in Orange County increased from about 82 million gallons per day in 1965 to about 287 million gallons per day in 2000. The hydrogeology of Orange County consists of three major hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. Data were compiled from 634 sites to construct hydrogeologic maps and sections of Orange County. Water-level elevations measured in 23 wells tapping the surficial aquifer system ranged from about 10.6 feet in eastern Orange County to 123.8 feet above NGVD 29 in northwestern Orange County from March 2000 through September 2001. Water levels also were measured in 14 wells tapping the Upper Floridan aquifer. Water levels fluctuate over time from seasonal and annual variations in rainfall; however, water levels in a number of wells tapping the Upper Floridan aquifer have declined over time. Withdrawal of ground water from the aquifers by pumping probably is causing the declines because the average annual precipitation rate has not changed substantially in central Florida since the 1930s, although yearly rates can vary. A generalized water budget was computed for Orange County from 1991 to 2000. Average rates for the 10-year period for the following budget components were computed based

  20. Geology and Ground-Water Resources of the Roswell Artesian Basin, New Mexico

    USGS Publications Warehouse

    Fiedler, Albert George; Nye, Selden Spencer

    1933-01-01

    The Roswell artesian basin is in the Pecos Valley in southeastern New Mexico. The investigation, which covered a period of three years, 1925 to 1928, was made for the purpose of determining the available supply of artesian and other ground water within the area. The geologic formations of the region are of the Carboniferous (Permian series) and Quaternary systems. The Permian rocks consist of three units-an upper unit composed chiefly of clay, shale, and sand; a middle unit composed chiefly of limestone; and a lower unit composed chiefly of red beds, gypsum, and anhydrite. Most of the artesian water is obtained from the limestone beds of the middle unit, which has been designated the Picacho limestone. Originally the area of artesian flow comprised 663 square miles; but largely on account of heavy draft upon the artesian reservoir, it decreased to 499 square miles in 1916 and to 425 square miles in 1925. The area irrigated by water derived directly or indirectly from the reservoir amounts to about 60,000 acres. The annual quantity of water derived from wells is about 200,000 acre-feet, and the total discharge at the surface from all sources is about 250,000 acre-feet. Recharge to the reservoir is derived from precipitation that falls on a catchment area of 4,000 square miles west of the artesian area. In 1927 a law was passed by the State of New Mexico declaring underground waters to be public waters and subject to appropriation. This law was declared invalid because of a technicality, and in 1931 a new law was enacted, which furnishes a definite basis for the future regulation of ground waters in the area. The investigation leads to the conclusion that no new land should be placed under irrigation with artesian water, but that the development of shallow ground water should be encouraged. The present decline of the artesian head is slight in comparison with that in earlier years, and there is ample evidence to show that the reservoir annually receives large

  1. FUNDAMENTALS OF GROUND-WATER MODELING

    EPA Science Inventory

    Ground-water flow and contaminant transport modeling has been used at many hazardous waste sites with varying degrees of success. odels may be used throughout all phases of the site investigation and remediation processes. eveloping a better understanding of ground-water modeling...

  2. COMPILATION OF GROUND-WATER MODELS

    EPA Science Inventory

    Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...

  3. Pollution of ground water in Europe

    PubMed Central

    Buchan, S.; Key, A.

    1956-01-01

    This paper discusses pollution of ground water in 20 countries of the European region, giving for each an account of the geology and hydrogeology, water supplies, the extent and nature of ground water pollution, and the legal, administrative, and technical means of controlling that pollution. For the countries not considered in the preceding article on surface water pollution, an account is also given of the superficial physical features, rainfall, population, and industries. A general discussion follows of such questions as the ways in which ground water pollution may occur, the factors mitigating or aggravating pollution, and ways of protection against pollution. The authors consider that the problem of ground water pollution in Europe may well be more serious than it would appear to be on the evidence so far obtained. PMID:13374533

  4. International borders, ground water flow, and hydroschizophrenia.

    PubMed

    Jarvis, Todd; Giordano, Mark; Puri, Shammy; Matsumoto, Kyoko; Wolf, Aaron

    2005-01-01

    A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?

  5. Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.; Paybins, Katherine S.; Pierce, Herbert A.

    2007-01-01

    avenues of ground-water flow. Prior to this investigation, the conceptual model of ground-water flow for the region focused primarily on bedding planes and strike-parallel faults and joints as controls on ground-water flow but did not recognize the importance of cross-strike faults and fracture zones that allow ground water to flow downgradient across or through less permeable geologic formations. Results of the ground-water flow simulation indicate that current operations at the Center do not substantially affect either streamflow (less than a 5-percent reduction in annual streamflow) or ground-water levels in the Leetown area under normal climatic conditions but potentially could have greater effects on streamflow during long-term drought (reduction in streamflow of approximately 14 percent). On the basis of simulation results, ground-water withdrawals based on the anticipated need for an additional 150 to 200 gal/min (gallons per minute) of water at the Center also would not seriously affect streamflow (less than 8 to 9 percent reduction in streamflow) or ground-water levels in the area during normal climatic conditions. During drought conditions, however, the effects of current ground-water withdrawals and anticipated additional withdrawals of 150 to 200 gal/min to augment existing supplies result in moderate to substantial declines in water levels of 0.5-1.2 feet (ft) in the vicinity of the Center's springs and production wells. Streamflow was predicted to be reduced locally by approximately 21 percent. Such withdrawals during a drought or prolonged period of below normal ground-water levels would result in substantial declines in the flow of the Center's springs and likely would not be sustainable for more than a few months. The drought simulated in this model was roughly equivalent to the more than 1-year drought that affected the region from November 1998 through February 2000. The potential reduction in streamflow is a result of capture of ground water tha

  6. Modeled ground water age distributions

    USGS Publications Warehouse

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  7. Areas contributing ground water to the Peconic Estuary, and ground-water budgets for the north and south forks and Shelter Island, eastern Suffolk County, New York

    USGS Publications Warehouse

    Schubert, C.E.

    1998-01-01

    Fork, 11 x 106 ft3/d from the South Fork, and 1.7 x 106 ft3/d from Shelter Island. The total contribution to the estuary from these areas is about 16 x 106 ft3/d?roughly twice the total contribution from the main body of Long Island. In contrast to the freshwater contribution from the main body of Long Island, which is concentrated near the head of the estuary, the contributions from the North and South Forks and Shelter Island are distributed along the east-west length of the estuary. Changes in water-table altitude and the resulting changes in total discharge to the Peconic Estuary were estimated from the relative changes in annual mean water level at observation wells. The 1985-95 interval included 7 years (1985-88, 1991- 92, 1995) of generally below-average water-table altitudes that presumably caused similar decreases in ground-water discharge to the estuary; intense Brown Tide blooms coincided with six of these years (1985-88, 1991, 1995), and localized blooms coincided with the remaining year (1992). Watertable altitudes in the remaining 4 years of the 1985-95 interval (1989-90, 1993-94) were nearly average or above average, and presumably produced comparably near-average or increased amounts of ground-water discharge to the estuary; none of these years saw any widespread Brown Tide blooms. Fluctuations in the amounts of ground-water discharge to the estuary appear to affect the occurrence of Brown Tide blooms, although the factors that trigger the blooms have not been determined.

  8. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    USGS Publications Warehouse

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, Ronald C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  9. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    EPA Science Inventory

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  10. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1979-01-01

    The Wasatch Plateau-Book Cliffs%area as used in this report consists of about 8,000 square miles in east-central Utah. The major geographic features included in the area are the Wasatch Plateau, Book Cliffs, San Rafael Swell, Price River basin, and a small part of the Green River basin (pl. 1). The area is defined by approximate drainage-divide boundaries in the Wasatch Plateau and Book Cliffs, by an arbitrary boundary on the south, and by the Utah-Colorado State line on the east.The Wasatch Plateau-Book Cliffs area includes all the operating coal mines in Utah in 1978. Annual coal production in the area is expected to increase from the current (1978) rate of about 8 million tons to as much as 30 million tons within the next 10 years (J. W. Moffitt, U.S. Geological Survey, oral commun., 1978). Ground water is an important source of water supply in the area. As mining increases and mining-related municipalities grow, many sources of ground-water supply may be subjected to increased demands and possibly degradation of chemical quality.Waddell, Vickers, Upton, and Contratto (1978) reported some ground- water data after a reconnaissance of part of the area. The purpose of this report, which was prepared in cooperation with the U.S. Bureau of Land Management, is to present a more detailed compilation of ground-water-related data that were collected and compiled during October 1976 to March 1978. The report is designed to make the data available in an orderly and usable form for local and regional water managers and other users of water data.

  11. Geology and ground-water resources of Fillmore County, Nebraska

    USGS Publications Warehouse

    Keech, Charles Franklin; Dreeszen, V.H.

    1968-01-01

    Fillmore County, an area 24 miles square, lies in the eastern part of the Nebraska loess plain. Although tributaries of the Big Blue River have eroded valleys into this plain, much of the original surface is intact. Broad flats and numerous shallow undrained depressions characterize the plain. The county is underlain by unconsolidated deposits of Quaternary age to depths ranging from about 80 to 450 feet. The upper part of this depositional sequence consists largely of wind-deposited clayey silt, and the lower part of stream-deposited sand and gravel. In part of the county, deposits of glacial till also are included. The Quaternary deposits mantle an eroded surface of marine-deposited strata of Cretaceous age. The lower deposits of Quaternary age are saturated and constitute a highly productive aquifer throughout much of the county. The saturated zone ranges from about 20 to 350 feet in thickness. Replenishment to this aquifer, derived principally from precipitation, is believed to average about 1.4 inches per year. Because the quantity of ground water pumped per year exceeds the average annual quantity of recharge, some of the water used for irrigation is from storage. Consequently, water levels in wells .are declining. This trend is likely to continue. The ground water is of the calcium bicarbonate type and is hard, but it is chemically suitable for irrigation use on most soils in the county.

  12. Ground Water Atlas of the United States: Segment 9, Iowa, Michigan, Minnesota, Wisconsin

    USGS Publications Warehouse

    Olcott, Perry G.

    1992-01-01

    Segment 9, which consists of Minnesota, Iowa, Wisconsin, and Michigan, abuts the Canadian border in the upper Midwest and lies adjacent to or surrounds four of the Great Lakes-Superior, Michigan, Huron, and Erie. Thousands of small to large lakes similar to the one shown in figure 1 dot the landscape, which is drained by numerous rivers and streams tributary primarily to the Mississippi River in the west and to the Great Lakes-St. Lawrence River system in the east. These abundant surface-water sources represent an ample supply of water to large users, such as the cities of Milwaukee, Wis., and Detroit, Mich. However, water stored in unconsolidated and consolidated sedimentary-rock aquifers that underlie the four States also is in abundant supply and is an economical source that can be used for nearly any purpose, usually with little or no treatment. In more than 95 percent of the four-State area, these aquifers supply water to a broad spectrum of consumers-from individual households to cities, such as St. Paul, Minn., Madison, Wis., and Lansing, Mich. These aquifers are the subject of this chapter. The geology and the hydrology of each of the principal aquifers are illustrated and discussed insofar as information was available from the literature. Hydrogeology, ground-water flow, availability and quality of water, and freshwater withdrawals from each of the aquifers are the principal subjects of discussion. Population in the four States is concentrated in the cities and is thinly dispersed in the broad agricultural areas of the States (fig. 2). Minneapolis-St. Paul, Minn., Des Moines, Iowa, Milwaukee and Madison, Wis., and Detroit and Lansing, Mich., are a few of the principal cities. Many of these cities and other large population centers represent areas of concentrated ground-water withdrawals. Precipitation is the source of all water in Segment 9. Average annual precipitation ranges from about 20 to 40 inches across the segment and generally increases from

  13. Determination of natural radioactivity by gross alpha and beta measurements in ground water samples.

    PubMed

    Turhan, S; Ozçitak, E; Taşkin, H; Varinlioğlu, A

    2013-06-01

    In this study, the activity concentrations of the gross α and β in ground water samples collected from the different drilled wells in Nevşehir province were measured to assess annual effective dose due to the ingestion of the water samples. Nevşehir province is one of the major cities of Cappadocia Region which is a popular tourist destination as it has many areas with unique geological, historic, and cultural features. Sampling and measurements were carried out in the autumn of 2011 and the spring of 2012. The values of the activity concentrations of the gross α and β measured in the water samples ranged from 80 to 380 mBq L(-1) with a mean of 192 mBq L(-1) and 120-3470 mBq L(-1) with a mean of 579 mBq L(-1) respectively. All values of the gross α were lower than the limit value of 500 mBq L(-1) while two ground water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). Therefore two water samples were the subject of further radioisotope-specific analysis. The obtained result indicated that the elevated activity concentrations of the gross β in these water samples are dominated by (40)K activity. Annual effective doses ranged from 0.04 to 0.20 mSv y(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Ground Water Modeling Research

    EPA Pesticide Factsheets

    EPA is supporting region, state, and tribal partners at Superfund sites and brownfields to develop new methods to better characterize, monitor, and treat ground water contamination; in order to protect drinking water, surface water, and indoor air.

  15. Ground water in the Pullman area, Whitman County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Washburn, R.L.

    1963-01-01

    Pullman. The area receives about 21 inches of precipitation annually, about two-thirds of it from October through March. 0nly a fraction of the precipitation reaches the aquifers; the remainder is returned to the atmosphere by evapotranspiration or leaves the area as surface runoff. The basalt is recharged mainly by infiltration from streams and downward percolation from the overlying loess. The ground water moves generally westward. However, most water in the artesian aquifers tapped by wells in the vicinity of Pullman may move toward the city of Pullman, which is the center of major pumping. The rate of movement ranges from extremely slow in the loess and the massive basalt to very rapid in the permeable zones of basalt. The principal modes of discharge from the artesian aquifers are seepage to streams and pumpage from wells. The amount of natural discharge is unknown, but the pumpage ranged from about 340 to 870 million gallons per year, and during 1949-59 it averaged about 800 million gallons (2,500 ac-ft) per year. For about the last 25 years at least, the piezometric surface of the artesian zones has declined each year, indicating that the annual ground-water discharge from the artesian aquifers (including pumpage and natural discharge) has exceeded the recharge in the Pullman area. An analysis of the relation of pumpage to the decline in artesian level indicates that during 1952-59 an average of about 65 million gallons per year was removed from storage. Although the decline in artesian pressures has resulted in an increase in the recharge to the aquifers, the present rate of pumping may be equal to or even exceed the perennial yield of the artesian aquifer in the report area under natural conditions. Geologic and hydrologic conditions seem favorable for the existence of potentially good aquifers below those which are now extensively developed. The deep aquifers seem to have only a slight hydraulic connection with the overlying artesian basalt

  16. Ground-water hydrology and glacial geology of the Kalamazoo area, Michigan

    USGS Publications Warehouse

    Deutsch, Morris; Vanlier, K.E.; Giroux, P.R.

    1960-01-01

    along the Kalamazoo River and Portage Creek are recharged in part from these streams. Locally, however, recharge from the streams is impeded, as their bottoms have become partly sealed by silt and solid waste matter. Water levels fluctuate with seasonal and annual changes in precipitation and in response to pumping. Pumpage by the city of Kalamazoo increased from about 300 million gallons in 1880 to 4.6 billion gallons in 1957. Despite the fact that billions of gallons are pumped annually from well fields in the Axtell Creek area, water levels in this vicinity have declined only a few feet, as the discharge from the fields is approximately compensated by recharge from precipitation and surface water. Pumpage of ground water by industry in 1948 was estimated at about 14 billion gallons, but the use of ground water for industrial purposes has since declined. Aquifer tests indicate that the coefficient of transmissibility of aquifers in the area ranges from as little as 18,000 to as high as 300,000 gpd (gallons per day) per foot, and that ground water occurs under watertable and artesian conditions. The ground water is of the calcium magnesium bicarbonate type. It is generally hard to very hard and commonly contains objectionable amounts of iron. Locally, the water contains appreciable amounts of sulfate. Study of the chemical analyses of waters from the area show that all of the tributaries to the Kalamazoo River are fed primarily by ground-water discharge.

  17. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  18. The role of ground water in the national water situation: With state summaries based on reports by District Offices of Ground Water Branch

    USGS Publications Warehouse

    McGuinness, Charles Lee

    1963-01-01

    This report outlines briefly the principles of water occurrence and describes the water situation in the United States as of 1960-61, with emphasis on the occurrence of ground water and the status of development and accompanying problems. The Nation has been divided into 10 major ground-water regions by H. E. Thomas (1952a). The report summarizes the occurrence and development of ground water in each of Thomas' regions. In a large terminal section it also describes the occurrence and development of water, again with emphasis on ground water, in each of the 50 States and in certain other areas. The main text ends with a discussion of the water situation and prospects of the Nation.

  19. Ground-water monitoring in the Albuquerque area

    USGS Publications Warehouse

    Thorn, Condé R.

    1996-01-01

    At present (1996), all drinking water for Albuquerque residents comes from ground-water reserves. The Albuquerque area is the largest population center in the State and the largest consumer of ground water. Recent reports concerning the water resources of the Albuquerque area suggest that the Albuquerque Basin may soon face serious water-availability and water-quality problems due to anticipated ground-water development. Recent studies completed by the U.S. Geological Survey (USGS) have improved the understanding of the ground-water resources in the Albuquerque Basin. These studies have indicated that the more permeable units within the aquifer system--the upper Santa Fe Group--are less extensive than previously thought, and that water-levels have declined as much as 160 feet.

  20. Ground Water Atlas of the United States: Segment 7, Idaho, Oregon, Washington

    USGS Publications Warehouse

    Whitehead, R.L.

    1994-01-01

    , generally in areas of privately owned land (fig. 1). In many places, deeper wells produce water from underlying volcanic rocks, usually basalt. Most irrigation (fig. 2) is on lowlands next to streams and on adjacent terraces. Generally, lowlands within a few miles of a main stream are irrigated with surface water diverted by gravity flow from the main stream or a reservoir and distributed through a system of canals and ditches. In some areas, water is pumped to irrigate lands farther from the stream at a higher altitude. Along the Snake and Columbia Rivers, large pumping systems withdraw billions of gallons of water per day from the rivers to irrigate adjacent uplands that are more than 500 feet higher than the rivers. Elsewhere, irrigation water is obtained from large-capacity wells, where depth to water might exceed 500 feet below land surface. Aquifers in Idaho, Oregon, and Washington, as in most other States, differ considerably in thickness and permeability, and well yields differ accordingly. Ground-water levels in a few areas have declined as a result of withdrawals by wells. State governments have taken steps to alleviate declines in some areas by enacting programs that either limit the number of additional wells that can be completed in a particular aquifer (Ground-Water Management Area) or prevent further ground-water development (Critical Ground-Water Area). Segment 7 includes some of the driest parts of the Nation, as well as some of the wettest. Average annual precipitation (1951-80) ranges from less than 10 inches in arid parts of Idaho, Oregon, and Washington to more than 80 inches in the western parts of Oregon and Washington (fig. 3). Most storms generally move eastward through the area. The eastward-moving air absorbs the moisture that evaporates from the Pacific Ocean. As this air encounters the fronts of mountain ranges, it rises, cools, and condenses. Accordingly, the western sides of the mountain ranges receive the most precipitation. Much of the

  1. Use of Landsat imagery to estimate ground-water pumpage for irrigation on the Columbia Plateau in eastern Washington, 1985

    USGS Publications Warehouse

    Van Metre, P.C.; Seevers, Paul

    1991-01-01

    A method for estimating ground-water pumpage for irrigation was developed for the Columbia Plateau in eastern Washington. The method combines water-application rates estimated from pumpage data with acreage of irrigated crops that was mapped by using Landsat imagery. The study area consisted of Grant, Lincoln, Adams, and Franklin Counties, an area of approximately 8,900 square miles, and accounts for approximately three-fourths of the ground-water pumpage in the Columbia Plateau in eastern Washington. Data from two passes of Landsat's multispectral scanner were analyzed by using a spectral band ratioing procedure to map irrigated crops for the study area. Data from one pass of Landsat's thematic mapper, covering approximately two-thirds of the study area, also were analyzed for determining irrigated crops in the area resulting in a 6-percent improvement in accuracy over the multispectral scanner analysis. A total of 576 annual water-application rates associated with particular crops, for the 1982 through 1985 seasons, were calculated. A regression equation was developed for estimating annual water-application rates as a function of crop type, annual precipitation, irrigation system type, and available water capacity of the soil. Crops were grouped into three water-use categories: (1) small grains, primarily wheat and barley; (2) high water-use crops consisting of corn, alfalfa, and potatoes; and (3) miscellaneous vegetable and row crops. Annual water-application rates, expressed as a depth of water, then were multiplied by irrigated area determined by Landsat to estimate a volume of water pumped for irrigation for 1985-620,000 acre-feet. An assessment of accuracy for estimating pumpage for 28 of the sites showed that total predicted pumpage was within 4 percent of the total observed pumpage.

  2. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  3. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  4. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  5. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 258.51... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...

  6. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  7. Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    DTIC Science & Technology

    2001-02-01

    Development Ground Water Issue Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites National Risk Management Research... Phytoremediation , the use of plants in remediation, is one such technology. This issue paper focuses on the processes and applications of phytoremediation ...of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is

  8. Mississippi Embayment Regional Ground Water Study

    EPA Science Inventory

    Increased water usage in the southeastern United States in the tri-state area of Tennessee, Mississippi and Arkansas poses a dilemma to ensuring long-term sustainability of the quantity and quality of ground-water resources that underlie the region. Demand for ground water by ag...

  9. Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000

    USGS Publications Warehouse

    Susong, D.D.

    2005-01-01

    Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.

  10. Guide to North Dakota's ground-water resources

    USGS Publications Warehouse

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  11. Maps showing ground-water conditions in the Hopi area, Coconino and Navajo counties, Arizona; 1977

    USGS Publications Warehouse

    Farrar, C.D.

    1980-01-01

    The Hop·; area includes about 3,200 mi2 in northeastern Arizona ~nd is mostly in the Navajo and Hopi Indian Reservations; about 400 mi of the area is south of the Navajo Indian Reservation boundary . Ground water occurs in several aquifers that are made up of one or more formations; the composite stratigraphic column indicates the relative position of the formations. The main sources of ground water are the Coconino aquifer, the Chinle Formation. the N and D aquifers, the Toreva and Bidahochi Formations, and the alluvium. The aquifers are separated by fine-grained rock units that inhibit the vertical movement of ground water.Ground-water development has been slight, and the water is used mainly for public, domestic, and livestock supplies. In 1977 about 425 acre-ft of ground water was withdrawn in the Hopi area. The amount of ground water withdrawn annually is small compared to the potential recharge from precipitation; therefore, water levels generally are not affected by pumping from wells.Because the ground-water system in the Hopi area has not been changed greatly by development, a large number of water-level measurements and water-quality data collected prior to 1977 are used in this report to show conditions in 1977. A few water-level measurements were made south of the Navajo Indian Reservation boundary in 1977. The hydrologic data on which these maps are based are available, fo~ the most part, ·in computer-printout form and may be consulted at.the Arizona Water Commission, 222 North Central Avenue, Suite 850, Phoenix, and at U.S. Geological Survey offices in: Federal Building, 301 West Congress Street, Tucson; Valley Center, Suite 1880, Phoenix; and 2255 North Gemini Drive, Building 3, Flagstaff. Material from which copies can be made at private expense is available at the Tucson, Phoenix, and Flagstaff offices of the U.S . Geological Survey.

  12. North Dakota ground-water quality

    USGS Publications Warehouse

    Garklavs, George; Nelson, Rick

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  13. Factors influencing ground-water recharge in the eastern United States

    USGS Publications Warehouse

    Nolan, B.T.; Healy, R.W.; Taber, P.E.; Perkins, K.; Hitt, K.J.; Wolock, D.M.

    2007-01-01

    Ground-water recharge estimates for selected locations in the eastern half of the United States were obtained by Darcian and chloride-tracer methods and compared using statistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone (RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and 16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian estimates are a nonlinear function of moisture content and also reflect the uncertainty of pedotransfer functions used to estimate hydraulic parameters. Significance level is 0.3. Estimates of RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aquifers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. Westernmost portions of the study area have low recharge, receive somewhat less precipitation, and contain fine-grained sediment. The NLR model simulates water input to the land surface followed by transport to ground water, depending on factors that either promote or inhibit water infiltration. The model explains a moderate amount of variation in the data set (coefficient of determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temperature, and precipitation, and an index of ground-water exfiltration potential most influence estimates of recharge at sampled sites in the region. Soil characteristics and land use have less influence on the recharge estimates, but nonetheless are significant in the NLR model. ?? 2006 Elsevier B.V. All rights reserved.

  14. Climate, interseasonal storage of soil water, and the annual water balance

    USGS Publications Warehouse

    Milly, P.C.D.

    1994-01-01

    The effects of annual totals and seasonal variations of precipitation and potential evaporation on the annual water balance are explored. It is assumed that the only other factor of significance to annual water balance is a simple process of water storage, and that the relevant storage capacity is the plant-available water-holding capacity of the soil. Under the assumption that precipitation and potential evaporation vary sinusoidally through the year, it is possible to derive an analytic solution of the storage problem, and this yields an expression for the fraction of precipitation that evaporates (and the fraction that runs off) as a function of three dimensionless numbers: the ratio of annual potential evaporation to annual precipitation (index of dryness); an index of the seasonality of the difference between precipitation and potential evaporation; and the ratio of plant-available water-holding capacity to annual precipitation. The solution is applied to the area of the United States east of 105??W, using published information on precipitation, potential evaporation, and plant-available water-holding capacity as inputs, and using an independent analysis of observed river runoff for model evaluation. The model generates an areal mean annual runoff of only 187 mm, which is about 30% less than the observed runoff (263 mm). The discrepancy is suggestive of the importance of runoff-generating mechanisms neglected in the model. These include intraseasonal variability (storminess) of precipitation, spatial variability of storage capacity, and finite infiltration capacity of land. ?? 1994.

  15. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS - WELLS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications for public supply wells in Connecticut. It is a polygon Shapefile that includes GAA areas for public water supply wells. Each polygon is assigned a GAA ground water quality class, which is stored in the d...

  16. Hydrogeologic framework refinement, ground-water flow and storage, water-chemistry analyses, and water-budget components of the Yuma area, southwestern Arizona and southeastern California

    USGS Publications Warehouse

    Dickinson, Jesse; Land, Michael; Faunt, Claudia C.; Leake, S.A.; Reichard, Eric G.; Fleming, John B.; Pool, D.R.

    2006-01-01

    is nearly the same as the previous conceptual hydrogeologic model definition (Olmsted and others, 1973), except for a minor westward extension from the city of Yuma. Clay B is extended to the southerly international boundary and increased in areal extent by about two-thirds of the original extent (Olmsted and others, 1973). The other hydrogeologic units generally are the same as in the previous conceptual hydrogeologic model. Before development, the Colorado and Gila Rivers were the sources of nearly all the ground water in the Yuma area through direct infiltration of water from river channels and annual overbank flooding. After construction of upstream reservoirs and clearing and irrigation of the floodplains, the rivers now act as drains for the ground water. Ground-water levels in most of the Yuma area are higher now than they were in predevelopment time. A general gradient of ground-water flow toward the natural discharge area south of the Yuma area still exists, but many other changes in flow are evident. Ground water in Yuma Valley once flowed away from the Colorado River, but now has a component of flow towards the river and Mexicali Valley. A ground-water mound has formed under Yuma Mesa from long-term surface-water irrigation; about 600,000 to 800,000 acre-ft of water are stored in the mound. Ground-water withdrawals adjacent to the southerly international boundary have resulted in water-level declines in that area. The reviewed and documented water budget includes the following components: (1) recharge in irrigated areas, (2) evapotranspiration by irrigated crops and phreatophytes, (3) ground-water return flow to the Colorado River, and (4) ground-water withdrawals (including those in Mexicali Valley). Recharge components were calculated by subtracting the amount of water used by crops from the amount of water delivered. Evapotranspiration rates were calculated on the basis of established methods, thus were appropriate for input to the ground-wate

  17. Selected Ground-Water Data of Yucca Mountain Region, Southern Nevada and Eastern California, January 2000-December 2002

    USGS Publications Warehouse

    Locke, Glenn L.; La Camera, Richard J.

    2003-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 wells and a fissure (Devils Hole), ground-water discharge at 5 springs and a flowing well, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January 2000 through December 2002. Historical data on water levels, discharges, and withdrawals are graphically presented to indicate variations through time. A statistical summary of ground-water levels at seven wells in Jackass Flats is presented for 1992-2002 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to selected baseline periods. Baseline periods varied for 1985-93. At six of the seven wells in Jackass Flats, the median water levels for 2002 were slightly higher (0.3-2.4 feet) than for their respective baseline periods. At the remaining well, data for 2002 was not summarized statistically but median water-level altitude in 2001 was 0.7 foot higher than that in its baseline period.

  18. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  19. Focused ground-water recharge in the Amargosa Desert basin: Chapter E in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Walvoord, Michelle Ann; Abraham, Jared D.; Stewart-Deaker, Amy E.; Glancy, Patrick A.; Constantz, Jim; Laczniak, Randell J.; Andraski, Brian J.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    The Amargosa River is an approximately 300-kilometer long regional drainage connecting the northern highlands on the Nevada Test Site in Nye County, Nev., to the floor of Death Valley in Inyo County, Calif. Streamflow analysis indicates that the Amargosa Desert portion of the river is dry more than 98 percent of the time. Infiltration losses during ephemeral flows of the Amargosa River and Fortymile Wash provide the main sources of ground-water recharge on the desert-basin floor. The primary use of ground water is for irrigated agriculture. The current study examined ground-water recharge from ephemeral flows in the Amargosa River by using streamflow data and environmental tracers. The USGS streamflow-gaging station at Beatty, Nev., provided high-frequency data on base flow and storm runoff entering the basin during water years 1998–2001. Discharge into the basin during the four-year period totaled 3.03 million cubic meters, three quarters of which was base flow. Streambed temperature anomalies indicated the distribution of ephemeral flows and infiltration losses within the basin. Major storms that produced regional flow during the four-year period occurred in February 1998, during a strong El Niño that more than doubled annual precipitation, and in July 1999. The study also quantified recharge beneath undisturbed native vegetation and irrigation return flow beneath irrigated fields. Vertical profiles of water potential and environmental tracers in the unsaturated zone provided estimates of recharge beneath the river channel (0.04–0.09 meter per year) and irrigated fields (0.1–0.5 meter per year). Chloride mass-balance estimates indicate that 12–15 percent of channel infiltration becomes ground-water recharge, together with 9–22 percent of infiltrated irrigation. Profiles of potential and chloride beneath the dominant desert-shrub vegetation suggest that ground-water recharge has been negligible throughout most of the basin since at least the early

  20. Water resources data-Maine, water year 2003

    USGS Publications Warehouse

    Stewart, G.J.; Caldwell, J.M.; Cloutier, A.R.

    2004-01-01

    This volume of the annual hydrologic data report of Maine is one of a series of annual reports that document data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  1. Water Resources Data: New Jersey, Water Year 1998, Volume 1, Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; Centinaro, G.L.; Dudek, J.F.; Corcino, V.; Stekroadt, G.C.; McTigure, R.C.

    1999-01-01

    This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  2. Characterization of seasonal and inter-annual variability in global water bodies using annual MODIS water maps 2000 - 2016

    NASA Astrophysics Data System (ADS)

    Hubbard, A. B.; Carroll, M.

    2017-12-01

    Accurate maps of surface water resources are critical for long-term resource management, characterization of extreme events, and integration into various science products. Unfortunately, most of the currently available surface water products do not adequately represent inter- and intra-annual variation in water extent, resulting from both natural fluctuations in the hydrologic cycle and human activities. To capture this variability, annual water maps were generated from Terra MODIS data at 250 m resolution for the years 2000 through 2016, using the same algorithm employed to generate the previously released MOD44W Collection 5 static water mask (Carroll et al., 2009). Following efforts to verify the data and remove false positives, the final maps were submitted to the Land Processes DAAC for publication as MOD44W Collection 6.1. Analysis of these maps indicate that only about two thirds of inland water pixels were persistent throughout all 16 years of data, meaning that roughly one third of the surface water detected in this period displayed some degree of inter-annual variation. In addition to the annual datasets, water observations were aggregated by quarter for each year from 2003 through 2016 using the same algorithm and observations from both Terra and Aqua. Analysis of these seasonal maps is ongoing, but preliminary investigation indicates they capture dramatic intra-annual fluctuations of water extent in many regions. In cloudy regions, it is difficult or impossible to consistently measure this intra-annual variation without the twice-daily temporal resolution of the MODIS sensors. While the moderate spatial resolution of MODIS is a constraint, these datasets are suitable for studying such fluctuations in medium to large water bodies, or at regional to global scales. These maps also provide a baseline record of historical surface water resources, against which future change can be compared. Finally, comparisons with the MOD44W Collection 5 static water mask

  3. Hanford Site ground-water monitoring for 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less

  4. Ground-Water Data for Indian Wells Valley, Kern, Inyo, and San Bernardino Counties, California, 1977-84

    USGS Publications Warehouse

    Berenbrock, Charles

    1987-01-01

    Ground water is the sole source of water in Indian Wells Valley. Since 1966, annual ground-water pumpage has exceeded estimates of mean annual recharge, and continued and increased stresses on the aquifer system of the valley are expected. In 1981 the U.S. Geological Survey began a 10-year program to develop a data base that could be used in evaluating future water-management alternatives for the valley. This report tabulates existing water-level and water-quality data in order to provide a basis for the design of a ground-water monitoring network for Indian Wells Valley. Water-levels were measured in 131 wells during 1977-84. About 62 percent of the wells that have water-level measurements spanning at least 3 years during the period 1977-84 show a net water-level decline; the decline in 23 percent of the wells is greater than 5 feet. Water-quality samples from 85 wells were analyzed for major dissolved constituents. At selected wells water samples were also analyzed for nutrients and trace metals. Seventy-nine of the wells sampled contained water with concentrations of one or more dissolved constituents that equaled or exceeded U.S. Environmental Protection Agency primary or secondary maximum contaminant levels for drinking water. Dissolved-solids concentrations, which ranged from 190 to 67,000 milligrams per liter, equaled or exceeded 500 milligrams per liter (the Environmental Protection Agency secondary maximum contaminant level) in 85 percent of the sampled wells and 1,000 milligrams per liter in 59 percent. Water samples collected in 1984 from eight wells near the industrial-waste ponds of the China Lake Naval Weapons Center were analyzed for the presence of organic compounds designated 'priority pollutants' by the U.S. Environmental Protection Agency. Priority pollutants were detected in three wells. Trichloroethylene, methylene chloride, vinyl chloride, and chloroform were identified; concentrations were less than 10 micrograms per liter except for

  5. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  6. The Virginia Beach shallow ground-water study

    USGS Publications Warehouse

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  7. Ground-water levels in observation wells in Oklahoma, 1963-64

    USGS Publications Warehouse

    Wood, P.R.

    1965-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1963-64), is the third of a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period of (1956-60). The second report, published in 1964, contains water-level records for the 2-year period (1961-62.) (available as photostat copy only)

  8. Georgia's Ground-Water Resources and Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.

    2006-01-01

    The U.S. Geological Survey (USGS) ground-water network for Georgia currently consists of 170 wells in which ground-water levels are continuously monitored. Most of the wells are locatedin the Coastal Plain in the southern part of the State where ground-water pumping stress is high. In particular, there are large concentrations of wells in coastal and southwestern Georgia areas, where there are issues related to ground-water pumping, saltwater intrusion along the coast, and diminished streamflow in southwestern Georgia due to irrigation pumping. The map at right shows the USGS ground-water monitoring network for Georgia. Ground-water levels are monitored in 170 wells statewide, of which 19 transmit data in real time via satellite and posted on the World Wide Web at http://waterdata.usgs.gov/ga/nwis/current/?type=gw . A greater concentration of wells occurs in the Coastal Plain where there are several layers of aquifers and in coastal and southwestern Georgia areas, which are areas with specific ground-water issues.

  9. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  10. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    USGS Publications Warehouse

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  11. Ground-water resources of the Coosa River basin in Georgia and Alabama; Subarea 6 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa river basins

    USGS Publications Warehouse

    Robinson, James L.; Journey, Celeste A.; Atkins, J. Brian

    1997-01-01

    predominate in the carbonate rocks of Paleozoic age. The Coastal Plain is underlain by southward-dipping, poorly consolidated deposits of sand, gravel, and clay of fluvial and marine origin. The conceptual model described for this study qualitatively subdivides the ground-water flow system into local (shallow), intermediate, and regional (deep) flow regimes. Ground-water discharge to tributaries mainly is from local and intermediate flow regimes and varies seasonally. The regional flow regime probably approximates steady-state conditions and discharges chiefly to major drains such as the Coosa River, and in upstream areas, to the Etowah and Oostanaula Rivers. Ground-water discharge to major drains originates from all flow regimes. Mean-annual ground-water discharge to streams (baseflow) is considered to approximate the long-term, average recharge to ground water. The mean-annual baseflow was estimated using an automated hydrograph-separation method, and represents discharge from the local, intermediate, and regional flow regimes of the ground-water flow system. Mean-annual baseflow in Georgia was estimated to be about 4,000 cubic feet per second (ft3/s) (from the headwaters to the Georgia-Alabama State Line), 5,360 ft3/s in Alabama, and 9,960 ft3/s for all of Subarea 6 (at the Subarea 7-Subarea 8 boundary). Mean annual baseflow represented about 60 percent of total mean-annual stream discharge for the period of record. Stream discharge for selected sites on the Coosa River and its tributaries were compiled for the years 1941, 1954, and 1986, during which sustained droughts occurred throughout most of the ACF-ACT area. Stream discharges were assumed to be sustained entirely by baseflow during the latter periods of these droughts. Estimated baseflow near the end of the individual drought years ranged from about 11 to 27 percent of the estimated mean-annual baseflow in Subarea 6. The potential exists for the development of ground-water resources on a regional scale throughout Su

  12. Geochemical analyses of ground-water ages, recharge rates, and hydraulic conductivity of the N aquifer, Black Mesa area, Arizona

    USGS Publications Warehouse

    Lopes, Thomas J.; Hoffmann, John P.

    1997-01-01

    isotopes of oxygen and hydrogen indicate that more than 90 percent of the water in the confined part of the N aquifer is older than 10,000 years and was recharged during glacial periods. Estimates of recharge rates made on the basis of ground-water ages, aquifer thicknesses, and assumed porosities indicate that the annual average recharge rate in the northwestern part of the study area during the glacial periods was about four times the average annual rate of the past 10,000 years, and that recharge rates for the past 10,000 years are less than modern recharge rates assumed in a previous study. Estimates of horizontal hydraulic conductivity were 0.95 and 1.16 feet per day for the northeast and southwest flow paths, respectively. These values are within the range of hydraulic conductivities calculated from aquifer tests, which ranged from 0.05 to 2.1 feet per day and averaged 0.65 foot per day.

  13. Ground-water levels in observation wells in Oklahoma, 1956-1960

    USGS Publications Warehouse

    Hart, D.L.

    1963-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect on a systematic basis records of water levels in selected observation wells. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; and (5) provide long-time continuous records of fluctuations of water levels in representative wells, These selected records also serve as a framework to which other types of hydrologic data may be related.Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey (table 1). Beginning with the 1956 calendar year, however, Federal water-level reports will contain only records of a selected network of observation wells, and will be published by the U.S. Geological Survey at 5-year intervals. The first of this series, for the 1956-59 period has recently been published.This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in Water-Supply Papers since 1955. This report, which contains water-level records for the 5-year period (1956-60), is the first of a series presenting water-level records for all permanent observation wells in Oklahoma. It is planned that future water-level reports will be published at 2-year intervals.

  14. Ground-water levels in observation wells in Oklahoma, 1961-62

    USGS Publications Warehouse

    Wood, P.R.; Moeller, M.D.

    1964-01-01

    The investigation of the ground-water resources of Oklahoma by the U. S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-term continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data may be related.Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U. S. Geological Survey (table 1). Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period, was published in 1962.This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in Water-Supply Papers since 1955. This report, which contains water-level records for the 2-year period (1961-62), is the second of a series presenting water-level records for all permanent observation wells in Oklahoma. The first report, published in 1963, contains water-level records for the 5-year period (1956-60).

  15. U.S. Geological Survey ground-water studies in Utah

    USGS Publications Warehouse

    Gates, Joseph S.

    1988-01-01

    Ground water is an important natural resource in Utah. In the basins west of the Wasatch Front, and in many other parts of Utah, ground water is the primary source of water. In many of the basins of the western desert and in parts of the Colorado Plateau, ground water is the only reliable source of water. Along the Wasatch Front to the north and south of Salt Lake City, in the Uinta Basin, and in the Sevier River drainage, surface water is the primary source of water. Ground-water sources supply about 20 percent of all water used in Utah and about 63 percent of the water for public supply. Of the total amount of ground water used, 44 percent is for irrigation, 35 percent is for public supply, 11 percent is for industry, 5 percent is for rural domestic supplies, and 5 percent is for livestock. The major issues related to ground water in Utah are: -Development of additional ground-water supplies while protecting existing water rights and minimizing effects on water levels, water quality, and streamflow, and-Protection of ground-water resources from contamination by pollutants from various types of land-use and waste-disposal practices.

  16. Ground water in the San Joaquin Valley, California

    USGS Publications Warehouse

    Kunkel, Fred; Hofman, Walter

    1966-01-01

    Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the San Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the San Joaquin Valley was "Ground Water in the San Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the San Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the San Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of

  17. Estimating ground water yield in small research basins

    Treesearch

    Elon S. Verry

    2003-01-01

    An analysis of ground water recharge in 32 small research watersheds shows the average flow of ground water out of the watershed (deep seepage) is 45% of streamflow and ranges from 8 to 350 mm/year when apportioned over the watershed area. It is time to meld ground water and small watershed science. The use of we11 networks and the evaluation of ground water well...

  18. Hydrogeology and water quality of the Pepacton Reservoir Watershed in Southeastern New York. Part 2. Hydrogeology, stream base flow, and ground-water recharge

    USGS Publications Warehouse

    Reynolds, R.J.

    2004-01-01

    The hydrogeology of the 372-square-mile Pepacton Reservoir watershed (herein called the East Branch Delaware River Basin) in the southwestern Catskill Mountain region of Southeastern New York is described and depicted in a detailed surficial geologic map and two geologic sections. An analysis of stream discharge records and estimates of mean annual ground-water recharge and stream base flow for eight subbasins in the basin are included.Analysis of surficial geologic data indicates that the most widespread geologic unit within the basin is till, which occurs as masses of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till covers about 91.5 percent of the Pepacton Reservoir watershed, whereas stratified drift (alluvium, outwash, and ice-contact deposits) accounts for 6.3 percent. The Pepacton Reservoir occupies about 2.3 percent of the basin area. Large outwash and ice-contact deposits occupy the valleys of the upper East Branch Delaware River, the Tremper Kill, the Platte Kill, the Bush Kill, and Dry Brook. These deposits form stratified-drift aquifers that range in thickness from 90 feet in parts of the upper East Branch Delaware River Valley to less than 30 feet in the Dry Brook valley, and average about 50 feet in the main East Branch Delaware River Valley near Margaretville.An analysis of daily mean stream discharge for the six eastern subbasins for 1998–2001, and for two western subbasins for 1945–52, was performed using three computer programs to obtain estimates of mean annual base flow and mean annual ground-water recharge for the eight subbasins. Mean annual base flow ranged from 15.3 inches per year for the Tremper Kill subbasin to 22.3 inches per year for the Mill Brook subbasin; the latter reflects the highest mean annual precipitation of all the subbasins studied. Estimated mean annual ground-water recharge ranged from 24.3 inches per year for Mill Brook to 15.8 inches per year for the Tremper

  19. Occurrence and quality of ground water in southwestern King County, Washington

    USGS Publications Warehouse

    Woodward, D.G.; Packard, F.A.; Dion, N.P.; Sumioka, S.S.

    1995-01-01

    The 250-square mile study area in southwestern King County, Washington is underlain by sediments as much as 2,200 feet thick, deposited during at least four continental glacial/interglacial periods. Published surficial geologic maps and drillers' lithologic logs from about 700 field-located wells were used to prepare 28 geologic sections; these sections were used to delineate 9 hydrogeologic units--5 aquifers, 3 confining beds, and a basal, undifferentiated unit. Two aquifers in these sediments occur at the land surface. Maps depicting the configuration of the tops of three buried aquifers show the extent and the geometry of those aquifers. Maps showing the thickness of two of the three buried aquifers also were prepared. Potentiometric-surface maps for the major aquifers are based on water levels measured in about 400 wells during April 1987. Hydraulic characteristics of the major aquifers are mapped using more than 1,100 specific-capacity calculations and about 240 hydraulic-conductivity determinations from selected wells. Estimates of the average annual recharge to the ground-water system from precipitation for the entire study area were based on relations determined from modeling selected basins. Discharges from the ground-water system were based on estimates of springflow and diffuse seepage from the bluffs surrounding the uplands, and on the quantity of water withdrawn from high-capacity wells. A total of 242 water samples was collected from 217 wells during two mass samplings and analyzed for the presence of common constituents. Samples also were collected and analyzed for heavy metals, boron, detergents, and volatile organic compounds. These analyses indicated there was no widespread degradation of ground-water quality in southwestern King County.

  20. Geology and ground-water conditions in the Wilmington-Reading area, Massachusetts

    USGS Publications Warehouse

    Baker, John Augustus; Healy, H.G.; Hackett, O.M.

    1964-01-01

    The Wilmington-Reading area, as defined for this report, contains the headwaters of the Ipswich River in northeastern Massachusetts. Since World War II the growth of communities in this area and the change in character of some of them from rural to suburban have created new water problems and intensified old ones. The purpose of this report on ground-water conditions is to provide information that will aid in understanding and resolving some of these problems. The regional climate, which is humid and temperate, assures the area an ample natural supply of water. At the current stage of water-resources development a large surplus of water drains from the area by way of the Ipswich River during late autumn, winter, and spring each year and is unavailable for use during summer and early autumn, when during some years there is a general water deficiency. Ground water occurs both in bedrock and in the overlying deposits of glacial drift. The bedrock is a source of small but generally reliable supplies of water throughout the area. Glacial till also is a source of small supplies of water, but wells in till often fail to meet modern demands. Stratified glacial drift, including ice-contact deposits and outwash, yields small to large supplies of water. Stratified glacial drift forms the principal ground-water reservoir. It partly fills a system of preglacial valleys corresponding roughly to the valleys of the present Ipswich River system and is more than 100 feet thick at places. The ice-contact deposits generally are more permeable than the outwash deposits. Ground water occurs basically under water-table conditions. Recharge in the Wilmington-Reading area is derived principally from precipitation on outcrop areas of ice-contact deposits and outwash during late autumn, winter. and spring. It is estimated that the net annual recharge averages about 10 inches and generally ranges from 5 inches during unusually dry years to 15 inches during unusually wet years. Ground water

  1. Geology and ground-water resources of the Big Sandy Creek Valley, Lincoln, Cheyenne, and Kiowa Counties, Colorado; with a section on Chemical quality of the ground water

    USGS Publications Warehouse

    Coffin, Donald L.; Horr, Clarence Albert

    1967-01-01

    This report describes the geology and ground-water resources of that part of the Big Sandy Creek valley from about 6 miles east of Limon, Colo., downstream to the Kiowa County and Prowers County line, an area of about 1,400 square miles. The valley is drained by Big Sandy Creek and its principal tributary, Rush Creek. The land surface ranges from flat to rolling; the most irregular topography is in the sandhills south and west of Big Sandy Creek. Farming and livestock raising are the principal occupations. Irrigated lands constitute only a sin311 part of the project area, but during the last 15 years irrigation has expanded. Exposed rocks range in age from Late Cretaceous to Recent. They comprise the Carlile Shale, Niobrara Formations, Pierre Shale (all Late Cretaceous), upland deposits (Pleistocene), valley-fill deposits (Pleistocene and Recent), and dune sand (Pleistocene and Recent). Because the Upper Cretaceous formations are relatively impermeable and inhibit water movement, they allow ground water to accumul3te in the overlying unconsolidated Pleistocene and Recent deposits. The valley-fill deposits constitute the major aquifer and yield as much as 800 gpm (gallons per mixture) to wells along Big Sandy and Rush Creeks. Transmissibilities average about 45,000 gallons per day per foot. Maximum well yields in the tributary valleys are about 200 gpm and average 5 to 10 gpm. The dune sand and upland deposits generally are drained and yield water to wells in only a few places. The ground-water reservoir is recharged only from direct infiltration of precipitation, which annually averages about 12 inches for the entire basin, and from infiltration of floodwater. Floods in the ephemeral Big Sandy Creek are a major source of recharge to ground-water reservoirs. Observations of a flood near Kit Carson indicated that about 3 acre-feet of runoff percolated into the ground-water reservoir through each acre of the wetted stream channel The downstream decrease in channel and

  2. Records of wells, ground-water levels, and ground-water withdrawals in the lower Goose Creek Basin, Cassia County, Idaho

    USGS Publications Warehouse

    Mower, R.W.

    1954-01-01

    Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is

  3. Ground-water provinces of Brazil

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    As part of a study of the status of investigations and development of ground water in Brazil, made under the auspices of the United States International Cooperation Administration and with the cooperation of the Government of Brazil, the country was divided into seven ground-water provinces. The identification and delineation of the provinces were based on the regional distribution of the dominant geologic units which are known or inferred to have distinctive water-bearing characteristics. Three of the provinces, covering most of the country, are underlain by Precambrian crystalline rocks. Three others coincide in part with four extensive sedimentary basins--the Parnaiba or Maranhfio basin and the contiguous Sao Francisco basin in the northeast and east, the Amazon basin in the north and northwest, and the Paranfi basin in the south and southwest. In addition, the narrow, discontinuous coastal plain is considered as a province. the occurrence of ground water is discussed briefly, and pertinent data are given on the more important aquifers, together with information on some existing wells. Because of the widespread distribution of crystalline rocks of low permeability, it is difficult in many areas to develop large or even adequate ground-water supplies. In general, satisfactory supplies of water are available in most of the rest of the country. Some problems include the relative deficiency of rainfall in the northeast together with the occurrence, in parts of this region, of mineralized water in the crystalline rocks. Also, there is a potential problem of excessive lowering of water levels and interference among wells in the intensively developed area of the city of Sao Paulo.

  4. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  5. Water Resources Data, Florida, Water Year 2003 Volume 2B: South Florida Ground Water

    USGS Publications Warehouse

    Prinos, S.; Irvin, R.; Byrne, M.

    2004-01-01

    Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  6. Calibration of the DRASTIC ground water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, M.G.

    2001-01-01

    Ground water vulnerability maps developed using the DRASTIC method have been produced in many parts of the world. Comparisons of those maps with actual ground water quality data have shown that the DRASTIC method is typically a poor predictor of ground water contamination. This study significantly improved the effectiveness of a modified DRASTIC ground water vulnerability map by calibrating the point rating schemes to actual ground water quality data by using nonparametric statistical techniques and a geographic information system. Calibration was performed by comparing data on nitrite plus nitrate as nitrogen (NO2 + NO3-N) concentrations in ground water to land-use, soils, and depth to first-encountered ground water data. These comparisons showed clear statistical differences between NO2 + NO3-N concentrations and the various categories. Ground water probability point ratings for NO2 + NO3-N contamination were developed from the results of these comparisons, and a probability map was produced. This ground water probability map was then correlated with an independent set of NO2 + NO3-N data to demonstrate its effectiveness in predicting elevated NO2 + NO3-N concentrations in ground water. This correlation demonstrated that the probability map was effective, but a vulnerability map produced with the uncalibrated DRASTIC method in the same area and using the same data layers was not effective. Considerable time and expense have been outlaid to develop ground water vulnerability maps with the DRASTIC method. This study demonstrates a cost-effective method to improve and verify the effectiveness of ground water vulnerability maps.

  7. Geology, ground-water flow, and dissolved-solids concentrations in ground water along hydrogeologic sections through Wisconsin aquifers

    USGS Publications Warehouse

    Kammerer, P.A.

    1998-01-01

    A cooperative project between the U.S. Geological Survey (USGS) and the Wisconsin Department of Natural Resources (DNR) was begun with the objectives of describing water quality and its relation to the hydrology of Wisconsin's principal aquifers and summarizing instances of ground-water contamination and quality problems from information available in DNR files. The first objective was met by a hydrologic investigation done by the USGS, and the second, by preparation of a report by the DNR, for their internal use, that describes the State's water resources and known ground-water quality and contamination problems and makes policy recommendations for ground-water management.The USGS investigation was divided into two phases. The first phase consisted of compiling available water-quality and hydrogeologic data and collecting new data to describe general regional water-quality and hydrogeologic relations within and between Wisconsin aquifers. The second phase began concurrently with the later part of the first phase and consisted of an areal description of water quality and flow in the State's shallow aquifer system (Kammerer, 1995). The overall purpose of this investigation was to provide a regional framework that could serve as a basis for intensive local and site specific ground-water investigations by State and local government agencies.This report presents the results of the first phase of the USGS investigation. Regional hydrogeologic and water-quality relations within and between aquifers are shown along 15 hydrogeologic sections that traverse the State. Maps are used to show surficial geology of bedrock and unconsolidated deposits and horizontal direction of ground-water flow. Interpretations on the maps and hydrogeologic sections are based on data from a variety of sources and provide the basis for the areal appraisal of water quality in the State's shallow aquifer system in the second phase of the investigation.

  8. Geology and ground-water hydrology of the Mokelumne area, California

    USGS Publications Warehouse

    Piper, A.M.; Gale, H.S.; Thomas, H.E.; Robinson, T.W.

    1939-01-01

    ground-water inventory. It is inferred that the rate of seepage loss from the river depends jointly upon river discharge, stage in the Woodbridge Reservoir, and groundwater pumpage. The foregoing inferences lead to the following conclusions with respect to ground-water replenishment by seepage loss from the river in the intensively cultivated district about Lodi: (1) The annual replenishment has tended to increase for at least two decades, owing to the gradual increase in head between surface water and ground water as ground-water levels have been lowered progressively by pumping; (2) annual replenishment has tended to increase, especially in recent years, owing to gradually prolonged use of the Woodbridge Reservoir, for thereby a relatively large wetted area and great differential head have been maintained for an increasing term; (3) the rate of replenishment tends to be greater under regulation than under the so-called natural regimen, to the extent that regulation has maintained a moderately large wetted area and stage in the river through the later part ·of each pumping season, whi1e the ground-water levels have been lowest. Moreover, for any particular yearly run-off below the Mehrten dam site, the replenishment by seepage would tend to be greater under the regulated regimen to the extent that fluctuations in discharge were suppressed, for the greatest yearly mean stage and mean wetted area would be afforded by constant discharge. -Thus, diverting water out of the Mokelumne River Basin at the Pardee Dam does not necessari1y-entail a diminution in ground-water replenishment by seepage loss along the lower reach of the stream, at least in the replenishment beneath the Victor plain above the gaging station at Woodbridge. Rather. the Pardee Dam affords a means for so regulating the discharge as to effect a maximum ground-water replenishment with-a given run-off in the natural channel. Bodies of ground water perched above the regional water table are common in the

  9. Ground-Water Age and its Water-Management Implications, Cook Inlet Basin, Alaska

    USGS Publications Warehouse

    Glass, Roy L.

    2002-01-01

    The Cook Inlet Basin encompasses 39,325 square miles in south-central Alaska. Approximately 350,000 people, more than half of Alaska?s population, reside in the basin, mostly in the Anchorage area. However, rapid growth is occurring in the Matanuska?Susitna and Kenai Peninsula Boroughs to the north and south of Anchorage. Ground-water resources provide about one-third of the water used for domestic, commercial and industrial purposes in the Anchorage metropolitan area and are the sole sources of water for industries and residents outside Anchorage. In 1997, a study of the Cook Inlet Basin was begun as part of the U.S. Geological Survey?s National Water-Quality Assessment Program. Samples of ground water were collected from 35 existing wells in unconsolidated glacial and alluvial aquifers during 1999 to determine the regional quality of ground water beneath about 790 mi2 of developed land and to gain a better understanding of the natural and human factors that affect the water quality (Glass, 2001). Of the 35 wells sampled, 31 had water analyzed for atmospherically derived substances to determine the ground water?s travel time from its point of recharge to its point of use or discharge?also known as ground-water age. Ground water moves slowly from its point of recharge to its point of use or discharge. This water starts as rain and melting snow that soak into the ground as recharge. In the Matanuska?Susitna, Anchorage, and Kenai Peninsula areas, ground water generally moves from near the mountain fronts toward Cook Inlet or the major rivers. Much of the water pumped by domestic and public-supply wells may have traveled less than 10 miles, and the trip may have taken as short a time as a few days or as long as several decades. This ground water is vulnerable to contamination from the land surface, and many contaminants in the water would follow the same paths and have similar travel times from recharge areas to points of use as the chemical substances analyzed in

  10. Update to the Ground-Water Withdrawals Database for the Death Valley Regional Ground-Water Flow System, Nevada and California, 1913-2003

    USGS Publications Warehouse

    Moreo, Michael T.; Justet, Leigh

    2008-01-01

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  11. Behavior of energetic materials in ground water at an anti-tank range.

    PubMed

    Martel, Richard; Mailloux, Michel; Gabriel, Uta; Lefebvre, René; Thiboutot, Sonia; Ampleman, Guy

    2009-01-01

    An environmental issue has arisen with M-72 malfunction on anti-tank ranges because many of these rockets break into pieces without exploding on impact, dispersing their energetic materials content on the ground surface and exposing them to transport by infiltration of rainfall and snowmelt. A case study (1998--2005) at Arnhem Anti-Tank Range (Garrison Valcartier, Canada, in operation since the 1970s) revealed octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) contamination and traces of 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in ground water at varying concentrations, with all detected HMX concentrations below the USEPA guideline for drinking water of 400 microg L(-1). An HMX mass balance on a transect perpendicular to ground water flow, about 300 m downgradient of the impact area, indicated an HMX flux of about 3 g d(-1) (0.7-1 kg yr(-1), 2005). The HMX mass in the impact area on the sand terrace was estimated at 7 to 10 kg (in 2005). The annual dissolved HMX flux represents about 10% of the source. The dissolved HMX plume in ground water consisted of a series of slugs, generated at each significant infiltration event. HMX is weakly retarded by sorption and is neither biotransformed nor mineralized under the aerobic conditions of the aquifer. TNT and RDX exceeded the USEPA guideline (2 microg L(-1) RDX and 1 microg L(-1) TNT) in three and two samples, respectively. The TNT plume was discontinuous because this compound was not always present at the ground surface. TNT is biotransformed, weakly sorbed, and not mineralized. In two wells, perchlorate associated with the propellant was found at concentrations above the Health Canada preliminary guideline of 6 microg L(-1) near the firing position.

  12. Field Techniques for Estimating Water Fluxes Between Surface Water and Ground Water

    USGS Publications Warehouse

    Rosenberry, Donald O.; LaBaugh, James W.

    2008-01-01

    This report focuses on measuring the flow of water across the interface between surface water and ground water, rather than the hydrogeological or geochemical processes that occur at or near this interface. The methods, however, that use hydrogeological and geochemical evidence to quantify water fluxes are described herein. This material is presented as a guide for those who have to examine the interaction of surface water and ground water. The intent here is that both the overview of the many available methods and the in-depth presentation of specific methods will enable the reader to choose those study approaches that will best meet the requirements of the environments and processes they are investigating, as well as to recognize the merits of using more than one approach. This report is designed to make the reader aware of the breadth of approaches available for the study of the exchange between surface and ground water. To accomplish this, the report is divided into four chapters. Chapter 1 describes many well-documented approaches for defining the flow between surface and ground waters. Subsequent chapters provide an in-depth presentation of particular methods. Chapter 2 focuses on three of the most commonly used methods to either calculate or directly measure flow of water between surface-water bodies and the ground-water domain: (1) measurement of water levels in well networks in combination with measurement of water level in nearby surface water to determine water-level gradients and flow; (2) use of portable piezometers (wells) or hydraulic potentiomanometers to measure hydraulic gradients; and (3) use of seepage meters to measure flow directly. Chapter 3 focuses on describing the techniques involved in conducting water-tracer tests using fluorescent dyes, a method commonly used in the hydrogeologic investigation and characterization of karst aquifers, and in the study of water fluxes in karst terranes. Chapter 4 focuses on heat as a tracer in hydrological

  13. Development of Ground Water in the Houston District, Texas, 1970-1974

    USGS Publications Warehouse

    Gabrysch, R.K.

    1980-01-01

    Total withdrawals of ground water in the Houston district increased 9 percent from about 488 million gallons per day (21.4 cubic meters per second) in 1970 to about 532 million gallons per day (23.3 cubic meters per second) in 1974. The average annual rate of increase from 1960 to 1969 was about 6.3 percent. During 1970-74, increases in pumpage occurred in the Houston, Katy, and NASA areas; decreases occurred in the Pasadena and Alta Lorna areas; and the pumpage in the Baytown-La Porte and Texas City areas remained almost constant.

  14. Water Resources Data for Oregon, Water Year 2002

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2003-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  15. Water Resources Data for Oregon, Water Year 2003

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2004-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  16. Ground-water quality in selected areas of Wisconsin

    USGS Publications Warehouse

    Hindall, S.M.

    1979-01-01

    Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)

  17. Ground-water provinces of southern Rhodesia

    USGS Publications Warehouse

    Dennis, Philip Eldon; Hindson, L.L.

    1964-01-01

    Ground-water development, utilization, and occurrence in nine ground-water provinces of Southern Rhodesia are summarized in this report. Water obtained from drilled wells for domestic and stock use has played an important part in the social and economic development of Southern Rhodesia from the beginnings of European settlement to the present. Most of the wells obtain water from fractures and weathered zones in crystalline rocks, before recently, there has been an interest in the possibility of obtaining water for irrigation from wells. Studies of the authors indicate that quantities of water sufficient for irrigation can be obtained from alluvial sediments in the S'abi Valley, from Kalahari sands in the western part of the country, are perhaps from aquifers in other areas. The ground-water provinces fall into two groups--those in the crystalline rocks and those in the noncrystalline rocks. Historically, the wells in crystalline rocks, especially the Gold belts province and the Intrusive granites province, have played a major role in supplying water for the needs of man. These provinces, together with two other less important crystalline rock provinces, form the broad arch which constitutes the central core of the country. The noncrystalline rocks overlie and flank the crystalline rocks to the southeast, northwest, and north. The noncrystalline rock provinces, especially the Alluvium-Kalahari province, contain the most productive or potentially productive ground-water reservoirs in Southern Rhodesia and offer promise of supplying water for irrigation and for other purposes.

  18. Where this occurs: Ground Water and Drinking Water

    EPA Pesticide Factsheets

    As ground water works its way through the soil, it can pick up excess nutrients and transport them to the water table. When polluted groundwater reaches drinking water systems it can pose serious public health threats.

  19. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  20. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  1. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  2. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  3. 40 CFR 144.87 - How does the identification of ground water protection areas and other sensitive ground water...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false How does the identification of ground water protection areas and other sensitive ground water areas affect me? 144.87 Section 144.87 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Requirements for...

  4. Summary appraisals of the Nation's ground-water resources; Alaska

    USGS Publications Warehouse

    Zenone, Chester; Anderson, Gary S.

    1978-01-01

    Present deficiencies in the ground-water information base are obvious limiting factors to ground-water development in Alaska. There is a need to extend the ground-water data-collection network and to pursue special research into the quantitative aspects of ground-water hydrology in cold regions, particularly the continuous permafrost zone.

  5. Estimates of Ground-Water Recharge in Wadis of Arid, Mountainous Areas Using the Chloride Mass-Balance Approach

    NASA Astrophysics Data System (ADS)

    Wood, W. W.; Wood, W. W.

    2001-05-01

    Evaluation of ground-water supply in arid areas requires estimation of annual recharge. Traditional physical-based hydrologic estimates of ground-water recharge result in large uncertainties when applied in arid, mountainous environments because of infrequent, intense rainfall events, destruction of water-measuring structures associated with those events, and consequent short periods of hydrologic records. To avoid these problems and reduce the uncertainty of recharge estimates, a chloride mass-balance (CMB) approach was used to provide a time-integrated estimate. Seven basins exhibiting dry-stream beds (wadis) in the Asir and Hijaz Mountains, western Saudi Arabia, were selected to evaluate the method. Precipitation among the basins ranged from less than 70 mm/y to nearly 320 mm/y. Rain collected from 35 locations in these basins averaged 2.0 mg/L chloride. Ground water from 140 locations in the wadi alluvium averaged 200 mg/L chloride. This chloride concentration ratio of precipitation to ground water suggests that on average, approximately 1 percent of the rainfall is recharged, while the remainder is lost to evaporation. Ground-water recharge from precipitation in individual basins ranged from less than 1 to nearly 4 percent and was directly proportional to total precipitation. Independent calculations of recharge using Darcy's Law were consistent with these findings and are within the range typically found in other arid areas of the world. Development of ground water has lowered the water level beneath the wadis and provided more storage thus minimizing chloride loss from the basin by river discharge. Any loss of chloride from the basin results in an overestimate of the recharge flux by the chloride-mass balance approach. In well-constrained systems recharge in arid, mountainous areas where the mass of chloride entering and leaving the basin is known or can be reasonably estimated, the CMB approach provides a rapid, inexpensive method for estimating time

  6. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    USGS Publications Warehouse

    Vogel, Karen L.; Reif, Andrew G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per

  7. Streambed infiltration and ground-water flow from the trout creek drainage, an intermittent tributary to the Humboldt River, north-central Nevada: Chapter K in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Prudic, David E.; Niswonger, Richard G.; Harrill, James R.; Wood, James L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    finer-grained but better sorted gravels and sands are deposited near the foot.All flow in Trout Creek is lost to infiltration in the upper and middle reaches of the channel during years of normal to below-normal precipitation. During years of above-normal precipitation, streamflow extends beyond the piedmont alluvial plain to the lower reaches of the channel, where high rates of infiltration result in rapid stream loss. The frequency and duration of streambed infiltration is sufficient to maintain high water contents and low chloride concentrations, compared with interchannel areas, to depths of at least 6 m beneath the channel. Streamflow, streambed infiltration, and unsaturated-zone thickness are all highly variable along intermittent streams, resulting in recharge that is highly variable as well.Average annual ground-water recharge in the mountainous part of the Trout Creek drainage upstream of Marigold Mine was estimated on the basis of chloride balance to be 5.2 × 105 cubic meters. Combined with an average annual surface runoff exiting the mountains of 3.4 × 105cubic meters, the total annual volume of inflow to alluvial-basin sediments from the mountainous part of the Trout Creek is 8.6 × 105 cubic meters, assuming that all runoff infiltrates the stream channel. This equates to about 7 percent of average annual precipitation, which is about the same percentage estimated for ground-water recharge using the original Maxey-Eakin method.

  8. Spatial Distribution of Ground-Water Recharge Estimated with a Water-Budget Method for the Jordan Creek Watershed, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.

    2008-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Pennsylvania Geological Survey, to illustrate a water-budget method for mapping the spatial distribution of ground-water recharge for a 76-square-mile part of the Jordan Creek watershed, northwest of Allentown, in Lehigh County, Pennsylvania. Recharge was estimated by using the Hydrological Evaluation of Landfill Performance (HELP) water-budget model for 577 landscape units in Jordan Creek watershed, delineated on the basis of their soils, land use/land cover, and mean annual precipitation during 1951-2000. The water-budget model routes precipitation falling on each landscape unit to components of evapotranspiration, surface runoff, storage, and vertical percolation (recharge) for a five-layer soil column on a daily basis. The spatial distribution of mean annual recharge during 1951-2000 for each landscape unit was mapped by the use of a geographic information system. Recharge simulated by the water-budget model in Jordan Creek watershed during 1951-2000 averaged 12.3 inches per year and ranged by landscape unit from 0.11 to 17.05 inches per year. Mean annual recharge during 1951-2000 simulated by the water-budget model was most sensitive to changes to input values for precipitation and runoff-curve number. Mean annual recharge values for the crop, forest, pasture, and low-density urban land-use/land-cover classes were similar (11.2 to 12.2 inches per year) but were substantially less for high-density urban (6.8 inches per year), herbaceous wetlands (2.5 inches per year), and forested wetlands (1.3 inches per year). Recharge rates simulated for the crop, forest, pasture, and low-density urban land-cover classes were similar because those land-use/land-cover classes are represented in the model with parameter values that either did not significantly affect simulated recharge or tended to have offsetting effects on recharge. For example, for landscapes with forest land

  9. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  10. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  11. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 258.51 Section 258.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A...

  12. Feasibility of ground-water features of the alternate plan for the Mountain Home project, Idaho

    USGS Publications Warehouse

    Nace, Raymond L.; West, S.W.; Mowder, R.W.

    1957-01-01

    An early plan of the U. S. Bureau of Reclamation proposed to irrigate 183,000 acres on the arid Snake River Plain south of Boise, Idaho (Mountain Home project) with Boise River water. That water would have been replaced to the Boise Valley with water imported from the Payette River. An alternate plan, proposed in 1953, would divert water from the Boise River to the plain; part of the water would be replaced by pumping ground water in the Boise valley and by importing water from the Snake River. Pumping of ground water in the Boise Valley also would help to drain waterlogged land. The present report evaluates the feasibility of the alternate plan in relation to geology and the occurrence and quality of ground water. The mean annual temperature at Boise is 50.8 ? F and there is an average of 172 days between killing frosts. The annual evaporation rate from open-water surfaces in the area is about 33 inches. Runoff in the Boise River is chiefly from precipitation on mountain slopes at altitudes above 3,000 feet, east of Boise Diversion Dam. The surface-water supply of the Boise Valley is more Than ample for the valley, owing to large upstream storage and regulatory dams and reservoirs. The valley also contains a large volume of ground water in storage, and the perennial rate of recharge is large. The computed consumptive depletion of surface water in the valley is nearly 600,000 acre-feet a year. Apparent depletion, computed from adjusted runoff at Notus, is 1,070,000 acre-feet. The difference of 470,000 acre-feet represents ground-water underflow and ungaged surface outflow from the area east of Notus. After the beginning of irrigation, around the turn of the century, the water table in the Boise Valley rose steadily; the amount of rise at some places was as much as 140 feet. Shallow perched zones of saturation were created locally. More than 100,000 acres of Boise Valley land now is waterlogged or threatened with waterlogging, despite the presence of more than 325

  13. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.

    2005-01-01

    Cedar Valley, located in the eastern part of Iron County in southwestern Utah, is experiencing rapid population growth. Cedar Valley traditionally has supported agriculture, but the growing population needs a larger share of the available water resources. Water withdrawn from the unconsolidated basin fill is the primary source for public supply and is a major source of water for irrigation. Water managers are concerned about increasing demands on the water supply and need hydrologic information to manage this limited water resource and minimize flow of water unsuitable for domestic use toward present and future public-supply sources.Surface water in the study area is derived primarily from snowmelt at higher altitudes east of the study area or from occasional large thunderstorms during the summer. Coal Creek, a perennial stream with an average annual discharge of 24,200 acre-feet per year, is the largest stream in Cedar Valley. Typically, all of the water in Coal Creek is diverted for irrigation during the summer months. All surface water is consumed within the basin by irrigated crops, evapotranspiration, or recharge to the ground-water system.Ground water in Cedar Valley generally moves from primary recharge areas along the eastern margin of the basin where Coal Creek enters, to areas of discharge or subsurface outflow. Recharge to the unconsolidated basin-fill aquifer is by seepage of unconsumed irrigation water, streams, direct precipitation on the unconsolidated basin fill, and subsurface inflow from consolidated rock and Parowan Valley and is estimated to be about 42,000 acre-feet per year. Stable-isotope data indicate that recharge is primarily from winter precipitation. The chloride mass-balance method indicates that recharge may be less than 42,000 acre-feet per year, but is considered a rough approximation because of limited chloride concentration data for precipitation and Coal Creek. Continued declining water levels indicate that recharge is not

  14. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  15. Ground-water levels in observation wells in Oklahoma, 1967-68

    USGS Publications Warehouse

    Bingham, R.H.

    1969-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1967-68), is the fifth in a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 2-year period of (1961-62); the second report, published in 1964, contains water-level records for the 2-year period (1961-62); the third report, published in 1965, contains water-level records for the 2-year period (1963-64); and the fourth report contains water-level records for

  16. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  17. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  18. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  19. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  20. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  1. Ground-water geology of Kordofan Province, Sudan

    USGS Publications Warehouse

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  2. Ground-water resources of the Acu Valley, Rio Grande Norte, Brazil

    USGS Publications Warehouse

    Rodis, Harry G.; de Castro Araujo, Jonas Maria.

    1968-01-01

    The Acu Valley is the lower part of the Rio Piranhas valley in the northwestern part of the State of Rio Grande do Norte, Brazil. It begins where the Rio Piranhas leaves the crystalline Precambrian rocks to flow across the outcrop of sedimentary rocks. The area considered in this report extends northward for about 45 kilometers; it is terminated arbitrarily where encroachment by sea water has contaminated the aquifer and imparted a disagreeable saline taste to the water in it. The boundary was not determined in the field, however, for lack of special equipment. Part of the extensive uplands on either side of the valley are included. This makes the total area approximately 2,500 square kilometers. The largest town, Acu, had a population of about 8,000 in 1960. The area is considered to be part of the Drought Polygon of northeast Brazil because the precipitation, although averaging 448 millimeters annually at Acu, varies widely from year to year and often is deficient for many months. The precipitation has been supplemented by use of irrigation wells, but irrigated agriculture is not yet far advanced, and the quantities of water used in irrigation are small. Geologically, the area consists of basement crystalline rocks (Precambrian), a wedge of sedimentary rocks thickening northward (Cretaceous), and alluvial sediments constituting a narrow band in the bottom of the valley (Alluvium and terrace deposits). The crystalline rocks contain water mainly in fractures and, in general, are impermeable. The sedimentary rocks of Cretaceous age comprise two units: a thick but fine-grained sandstone grading upward into siltstone and shale (Acu Sandstone), and limestone and dolomite with an included shale zone (Jandaira Limestone). The sandstone especially and the limestone to a lesser degree are ground-water reservoirs of large capacity. The limestone has been tapped at several places, but the sandstone and its contained water are practically untested and, hence, imperfectly

  3. Seasonal changes in ground-water quality and ground-water levels and directions of ground-water movement in southern Elmore County, southwestern Idaho, including Mountain Home Air Force Base, 1990-1991

    USGS Publications Warehouse

    Young, H.W.; Parliman, D.J.; Jones, Michael L.

    1992-01-01

    The study area is located in southern Elmore County, southwestern Idaho, and includes the Mountain Home Air Force Base located approximately 10 mi southwest of the city of Mountain Home. Chemical analyzes have been made periodically since the late 1940's on water samples from supply wells on the Air Force Base. These analyses indicate increases in specific conductance and in concentrations of nitrogen compounds, chloride, and sulfate. The purposes of this report, which was prepared in cooperation with the Department of the Air Force, are to describe the seasonal changes in water quality and water levels and to depict the directions of ground-water movement in the regional aquifer system and perched-water zones. Although data presented in this report are from both the regional ground-water system and perched-water zones, the focus is on the regional system. A previous study by the U.S. Geological Survey (Parliman and Young, 1990) describes the areal changes in water quality and water levels during the fall of 1989. During March, July, and October 1990, 141 wells were inventoried and depth to water was measured. Continuous water-level recorders were installed on 5 of the wells and monthly measurements of depth to water were made in 17 of the wells during March 1990 through February 1991. Water samples from 33 wells and 1 spring were collected during the spring and fall of 1990 for chemical analyses. Samples also were collected monthly from 11 of those wells during April to September 1990 (table 1). Selected well-construction and water-use data and measurements of depth to water for 141 wells are given in table 2 (separated sheets in envelope). Directions of ground-water movement and selected hydrographs showing seasonal fluctuations of water levels in the regional ground-water system and perched-water zones are shown on sheet 2. Changes in water levels in the regional ground-water system during March to October 1990 are shown on sheet 2.

  4. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Sanitary surveys for ground water...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401 Sanitary surveys for ground water systems. (a) Ground water systems must provide the State, at the State's...

  5. Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1977-01-01

    The Metropolitan Denver Sewage Disposal District and the City and County of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system included determining the direction of ground-water movement in the area, evaluating the impact of the wastedisposal activities on the chemical quality of local ground water, and evaluating the need for continued water-quality monitoring.Surficial geology of the area consists of two principal units: (1) Alluvium with a maximum thickness of about 25 feet (7.6 meters) deposited along stream channels, and (2) bedrock consisting of undifferentiated Denver and Dawson Formations. Ground water in formations less than 350 feet (110 meters) deep moves to the north, as does surface flow, while ground water in formations between 570 and 1,500 feet (170 and 460 meters) deep moves to the west. Estimates of ground-water velocity were made using assumed values for hydraulic conductivity and porosity, and the observed hydraulic gradient from the study area. Lateral velocities are estimated to be 380 feet (120 meters) per year in alluvium and 27 feet (8.2 meters) per year in the upper part of the bedrock formations. Vertical velocity is estimated to be 0.58 foot (0.18 meter) per year in the upper part of the bedrock formations.Potentiometric head decreases with depth in the bedrock formations indicating a potential for downward movement of ground water. However, waterquality analysis and the rate and direction of ground-water movement suggest that ground-water movement in the area is primarily in the lateral rather than the vertical direction. Five wells perforated in alluvium were found to have markedly degraded water quality. One well was located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others were located downgradient and near sewage-sludge burial areas

  6. Ground-water levels in observation wells in Oklahoma, 1965-66

    USGS Publications Warehouse

    Hart, D.L.

    1967-01-01

    The investigation of the ground-water resources of Oklahoma by the U.S. Geological Survey in cooperation with the Oklahoma Water Resources Board includes a continuing program to collect records of water levels in selected observation wells on a systematic basis. These water-level records: (1) provide an index to available ground-water supplies; (2) facilitate the prediction of trends in water levels that will indicate likely changes in storage; (3) aid in the prediction of the base flow of streams; (4) provide information for use in basic research; (5) provide long-time continuous records of fluctuations of water levels in representative wells; and (6) serve as a framework to which other types of hydrologic data my be related. Prior to 1956, measurements of water levels in observation wells in Oklahoma were included in water-supply papers published annually by the U.S. Geological Survey. Beginning with the 1956 calendar year, however, Geological Survey water-level reports will contain only records of a selected network of observation wells, and will be published at 5-year intervals. The first of this series, for the 1956-59 period was published in 1962. This report has been prepared primarily to present water-level records of wells not included in the Federal network. However, for the sake of completeness it includes water-level records of Federal wells that either have been or will be published in water-supply papers since 1955. This report, which contains water-level records for the 2-year period (1965-66), is the fourth in a series presenting water-level records for all permanent observations wells in Oklahoma. The first report, published in 1963, contains water-level records for the 2-year period of (1961-62); the second report, published in 1964, contains water-level records for the 2-year period (1961-62); and the third report, published in 1965, contains water-level records for the 2-year period (1963-64). (available as photostat copy only)

  7. ECONOMIC ANALYSIS FOR THE GROUND WATER RULE ...

    EPA Pesticide Factsheets

    The Ground Water Rule Economic Analysis provides a description of the need for the rule, consideration of regulatory alternatives, baseline analysis including national ground water system profile and an estimate of pathogen and indicator occurrence (Chapter 4), a risk assessment and benefits analysis (Chapter 5), and a cost analysis ( Chapter 6). Chapters 4, 5 and 6, selected appendices and sections of other chapters will be peer reviewed. The objective of the Economic Analysis Document is to support the final Ground Water Rule.

  8. Relation between ground water and surface water in Brandywine Creek basin, Pennsylvania

    USGS Publications Warehouse

    Olmsted, F.H.; Hely, A.G.

    1962-01-01

    The relation between ground water and surface water was studied in Brandywine Creek basin, an area of 287 square miles in the Piedmont physiographic province in southeastern Pennsylvania. Most of the basin is underlain by crystalline rocks that yield only small to moderate supplies of water to wells, but the creek has an unusually well-sustained base flow. Streamflow records for the Chadds Ford, Pa., gaging station were analyzed; base flow recession curves and hydrographs of base flow were defined for the calendar years 1928-31 and 1952-53. Water budgets calculated for these two periods indicate that about two-thirds of the runoff of Brandywine Creek is base flow--a significantly higher proportion of base flow than in streams draining most other types of consolidated rocks in the region and almost as high as in streams in sandy parts of the Coastal Plain province in New Jersey and Delaware. Ground-water levels in 16 observation wells were compared with the base flow of the creek for 1952-53. The wells are assumed to provide a reasonably good sample of average fluctuations of the water table and its depth below the land surface. Three of the wells having the most suitable records were selected as index wells to use in a more detailed analysis. A direct, linear relation between the monthly average ground-water stage in the index wells and the base flow of the creek in winter months was found. The average ground-water discharge in the basin for 1952-53 was 489 cfs (316 mgd), of which slightly less than one-fourth was estimated to be loss by evapotranspiration. However, the estimated evapotranspiration from ground water, and consequently the estimated total ground-water discharge, may be somewhat high. The average gravity yield (short-term coefficient of storage) of the zone of water-table fluctuation was calculated by two methods. The first method, based on the ratio of change in ground-water storage as calculated from a witner base-flow recession curve is seasonal

  9. Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Fio, John L.

    1997-01-01

    The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all

  10. U.S. Geological Survey Ground-Water Resources Program, 2001

    USGS Publications Warehouse

    Grannemann, Norman G.

    2001-01-01

    Ground water is among the Nation's most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from over use and contamination. Because ground-water systems typically respond slowly to human actions and climate variability, a long-term perspective is needed to manage this valuable resource. The U.S. Geological Survey Ground-Water Resources Program provides regional evaluations, fundamental data, and predictive tools to help assure the sustainability of our Nation's ground-water resources.

  11. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  12. Distinguishing sources of ground water recharge by using δ2H and δ18O

    USGS Publications Warehouse

    Blasch, Kyle W.; Bryson, Jeannie R.

    2007-01-01

    Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined by using a digital elevation model to calculate the total volumetric contribution of water and stable isotope values as a function of elevation within the basins. The results of these precipitation calculations were compared to measured ground water stable isotope values at the major discharge points near the terminus of the basins. Volumetric precipitation contributions to recharge were adjusted to isolate contributing elevations. This procedure provides an improved representation of recharge contributions within the basins over conventional stable isotope methods. Stable isotope values from wells and springs at the terminus of each basin were used to infer the elevations of precipitation important for recharge of the regional ground water flow system. Ancillary climatic, geologic, and stable isotope values were used to further constrain the location where precipitation is entering the ground water flow system.

  13. Summary appraisals of the Nation's ground-water resources; Caribbean region

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Heisel, James E.

    1980-01-01

    Ground-water resources will continue to be important within the region. In order to meet future needs, it is necessary that hydrologic principles be applied in managing the total water resource. Optimal use of the water resources can be accomplished through conjunctive use of surface and ground waters and through conservation practices. Optimal use may involve artificial recharge, ground-water salvage, saline-ground-water mining, use of seawater, desalination of saline ground water, waste-water reuse, and use of underground space for temporary storage of wastes, which could otherwise contaminate valuable water supplies.

  14. Ground-water conditions and geologic reconnaissance of the Upper Sevier River basin, Utah

    USGS Publications Warehouse

    Carpenter, Carl H.; Robinson, Gerald B.; Bjorklund, Louis Jay

    1967-01-01

    streams, springs, flowing wells, and areas of phreatophytes or (3) a combination of these.About 43,000 acre-feet of ground water is now discharged annually by evapotranspiration from phreatophyte areas, and perhaps one-third of this loss, or about 14,000 acre-feet, could be salvaged by eliminating wet areas and phreatophytes. The areas where water could be salvaged are at the downstream ends of Panguitch Valley basin, Circle Valley basin, and Antimony subbasin. Most of the 14,000 acre-feet 'of water could be pumped from large-diameter wells or developed by properly designed drains without greatly affecting stream- flow and with only moderate effect on 'spring discharge. If the wells were properly located, the pumping would lower water levels and dry up wet areas where phreatophytes grow. Conjunctive use of ground water and surface water would facilitate the more efficient use of all water resources in the basin

  15. Hydrogeology and ground-water flow in the carbonate rocks of the Little Lehigh Creek basin, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Cecil, L.D.; Senior, L.A.

    1991-01-01

    The Little Lehigh Creek basin is underlain mainly by a complex assemblage of highly-deformed Cambrian and Ordovician carbonate rocks. The Leithsville Formation, Allentown Dolomite, Beekmantown Group, and Jacksonburg Limestone act as a single hydrologic unit. Ground water moves through fractures and other secondary openings and generally is under water-table conditions. Median annual ground-water discharge (base flow) to Little Lehigh Creek near Allentown (station 01451500) during 1946-86 was 12.97 inches or 82 percent of streamflow. Average annual recharge for 1975-83 was 21.75 inches. Groundwater and surface-water divides do not coincide in the basin. Ground-water underflow from the Little Lehigh Creek basin to the Cedar Creek basin in 1987 was 4 inches per year. A double-mass curve analysis of the relation of cumulative precipitation at Allentown to the flow of Schantz Spring for 1956-84 showed that cessation of quarry pumping and development of ground water for public supply in the Schantz Spring basin did not affect the flow of Schantz Spring. Ground-water flow in the Little Lehigh Creek basin was simulated using a finite-difference, two-dimensional computer model. The geologic units in the modeled area were simulated as a single water-table aquifer. The 134-squaremile area of carbonate rocks between the Lehigh River and Sacony Creek was modeled to include the natural hydrologic boundaries of the ground-water-flow system. The ground-water-flow model was calibrated under steady-state conditions using 1975-83 average recharge, evapotranspiration, and pumping rates. Each geologic unit was assigned a different hydraulic conductivity. Initial aquifer hydraulic conductivity was estimated from specific-capacity data. The average (1975-83) water budget for the Little Lehigh Creek basin was simulated. The simulated base flow from the carbonate rocks of the Little Lehigh Creek basin above gaging station 01451500 is 11.85 inches per year. The simulated ground-water

  16. Geology and ground-water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Cline, Denzel R.

    1965-01-01

    The purpose of the ground-water investigation of Dane County, Wis., was to determine the occurrence, movement, quantity, quality, and availability of ground water in the unconsolidated deposits and the underlying bedrock. The relationships between ground water and surface water were studied in general in Dane County and in detail in the Madison metropolitan area. An analysis was made of the hydrologic system of the Yahara River valley and of the effects of ground-water pumpage on that system.

  17. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    USGS Publications Warehouse

    Whitehead, R.L.

    1996-01-01

    the land is controlled by the Federal Government and withdrawal of ground water is restricted.Average annual precipitation (1951-80) in Segment 8 ranges from less than 8 inches in parts of Montana and Wyoming to more than 40 inches in some of the mountainous areas (fig. 4). Most storms move eastward through Segment 8 and are particularly common during the winter months. Moisture that evaporates from the Pacific Ocean is absorbed by eastward- moving air. As the moisture-laden air masses move eastward, they rise and cool as they encounter mountain ranges and lose some of their moisture to condensation. Consequently, the western sides of mountain ranges receive the most precipitation, much of it as snow during the winter months. In contrast, the eastern sides of some of the higher mountain ranges are in rain shadows and receive little precipitation. East of the Continental Divide, precipitation that falls during many summer storms results from northward-moving, moisture-laden air masses from the Gulf of Mexico. These air masses move northward when the polar front recedes; accordingly, a major part of the annual precipitation falls on the plains during the growing season. Average annual precipitation minus the total of average annual runoff plus evapotranspiration (the combination of evaporation and transpiration by plants) is the amount of water potentially available for recharge to the aquifers.Average annual runoff (1951-80) in the area of Segment 8 varies greatly, and the distribution of runoff (fig. 5) generally parallels that of precipitation. In arid and semiarid areas of the segment, most precipitation replenishes soil moisture, evaporates, or is transpired by vegetation, and only a small part of the precipitation is left to maintain streamflow or recharge aquifers. In wetter areas of the segment, much of the precipitation runs off the land surface directly to perennial streams. Because a smaller percentage of precipitation in wet areas usually is lost to

  18. Ground-water situation in Oregon

    USGS Publications Warehouse

    Newcomb, R.C.

    1951-01-01

    The water that occurs beneath the land surface follows definite and well-known rules of hydraulics, the same as water on the surface. However, ground water must be studied by methods, some of which are unique to that type of water occurrence, in order to evaluate the part it plays in the over-all water scheme.Water that falls on the land surface as rain or snow and water that rests upon the surface may in places pass laterally or downward through the pores of the earth materials. There it may take one or more of a variety of paths before again flowing out on the surface or being expelled to the atmosphere by evaporation and by the transpiration of plants. Water so diverted underground is delayed or diverted from its course toward the sea and that digression results in many services of prime importance to mankind. Underground, the water generally exceeds in total quantity the water present on the land surface at any one time.The discussion of ground water can be clarified somewhat by a description of the major parts or phases of the normal path of water underground.

  19. Ground-water quality protection; why it's important to you

    USGS Publications Warehouse

    Webbers, Ank

    1995-01-01

    Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.

  20. Hydrogeology and Ground-Water Quality of Brunswick County, North Carolina

    USGS Publications Warehouse

    Harden, Stephen L.; Fine, Jason M.; Spruill, Timothy B.

    2003-01-01

    Brunswick County is the southernmost coastal county in North Carolina and lies in the southeastern part of the Coastal Plain physiographic province. In this report, geologic, hydrologic, and chemical data were used to investigate and delineate the hydrogeologic framework and ground-water quality of Brunswick County. The major aquifers and their associated confining units delineated in the Brunswick County study area include, from youngest to oldest, the surficial, Castle Hayne, Peedee, Black Creek, upper Cape Fear, and lower Cape Fear aquifers.All of these aquifers, with the exception of the Castle Hayne aquifer, are located throughout Brunswick County. The Castle Hayne aquifer extends across only the southeastern part of the county. Based on available data, the Castle Hayne and Peedee confining units are missing in some areas of Brunswick County, which allows direct hydraulic contact between the surficial aquifer and underlying Castle Hayne or Peedee aquifers. The confining units for the Black Creek, upper Cape Fear, and lower Cape Fear aquifers appear to be continuous throughout Brunswick County.In examining the conceptual hydrologic system for Brunswick County, a generalized water budget was developed to better understand the natural processes, including precipitation, evapotranspiration, and stream runoff, that influence ground-water recharge to the shallow aquifer system in the county. In the generalized water budget, an estimated 11 inches per year of the average annual precipitation of 55 inches per year in Brunswick County is estimated to infiltrate and recharge the shallow aquifer system. Of the 11 inches per year that recharges the shallow system, about 1 inch per year is estimated to recharge the deeper aquifer system.The surficial aquifer in Brunswick County is an important source of water for domestic supply and irrigation. The Castle Hayne aquifer is the most productive aquifer and serves as the principal ground-water source of municipal supply for

  1. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  2. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  3. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  4. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  5. 40 CFR 257.3-4 - Ground water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  6. Ground water in Tooele Valley, Utah

    USGS Publications Warehouse

    Gates, J.S.; Keller, O.A.

    1970-01-01

    This short report was written by condensing parts of a technical report on the ground water in Tooele Valley, which was prepared as part of a cooperative program between the Utah Department of Natural Resources, Division of Water Rights, and the U. S. Geological Survey to study water in Utah. If you would like to read the more detailed technical report, write for a copy of the Utah State Engineer Technical Publication 12, “Reevaluation of the ground-water resources of Tooele Valley, Utah” by J. S. Gates. Copies can be obtained free of charge from the Division of Water Rights, State Capitol, Salt Lake City, Utah 84114.

  7. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  8. Ground Water in the Southern Lihue Basin, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.; Gingerich, Stephen B.

    1998-01-01

    A multi-phased study of ground-water resources, including well drilling, aquifer tests, analysis of ground-water discharge, and numerical ground-water modeling, indicates that the rocks of the southern Lihue Basin, Kauai, have permeabilities that are much lower than in most other areas of ground-water development in the Hawaiian islands. The regional hydraulic conductivity of the Koloa Volcanics, which dominates fresh ground-water flow in the basin, is about 0.275 foot per day. The Waimea Canyon Basalt which surrounds the basin and underlies the Koloa Volcanics within the basin is intruded by dikes that reduce the bulk hydraulic conductivity of the rocks to about 1.11 feet per day. The low permeabilities result in steeper head gradients compared with other areas in the Hawaiian islands, and a higher proportion of ground-water discharging to streams than to the ocean. Water levels rise from near sea level at the coast to several hundreds of feet above sea level at the center of the basin a few miles inland. The high inland water levels are part of a completely saturated ground-water system. Because of the low regional hydraulic conductivity and high influx of water from recharge in the southern Lihue Basin, the rocks become saturated nearly to the surface and a variably saturated/unsaturated (perched) condition is not likely to exist. Streams incising the upper part of the aquifer drain ground water and keep the water levels just below the surface in most places. Streams thus play an important role in shaping the water table in the southern Lihue Basin. At least 62 percent of the ground water discharging from the aquifer in the southern Lihue Basin seeps to streams; the remainder seeps directly to the ocean or is withdrawn by wells.

  9. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  10. The importance of ground water in the Great Lakes Region

    USGS Publications Warehouse

    Grannemann, N.G.; Hunt, R.J.; Nicholas, J.R.; Reilly, T.E.; Winter, T.C.

    2000-01-01

    Ground water is a major natural resource in the Great Lakes Region that helps link the Great Lakes and their watershed. This linkage needs to be more fully understood and quantified before society can address some of the important water-resources issues in the Great Lakes. The Great Lakes constitute the largest concentration of unfrozen fresh surface water in the western hemisphere—about 5,440 mi3. Because the quantity of water in the lakes is so large, ground water in the Great Lakes Basin is often overlooked when evaluating the hydrology of the region. Ground water, however, is more important to the hydrology of the Great Lakes and to the health of ecosystems in the watershed than is generally recognized.Although more than 1,000 mi3 of ground water are stored in the basin—a volume of water that is approximately equal to that of Lake Michigan—development of the groundwater resource must be carefully planned. Development of the ground-water resource removes water from storage and alters the paths of ground-water flow. Ground water that normally discharges to streams, lakes, and wetlands can be captured by pumping (the most common form of development), which may deplete or reduce inflows to the Great Lakes.Ground water is important to ecosystems in the Great Lakes Region because it is, in effect, a large, subsurface reservoir from which water is released slowly to provide a reliable minimum level of water flow to streams, lakes, and wetlands. Ground-water discharge to streams generally provides good quality water that, in turn, promotes habitat for aquatic animals and sustains aquatic plants during periods of low precipitation. Because of the slow movement of ground water, the effects of surface activities on ground-water flow and quality can take years to manifest themselves. As a result, issues relative to ground water are often seemingly less dire than issues related to surface water alone.Ground water is a major natural resource in the Great Lakes Region

  11. Analytic game—theoretic approach to ground-water extraction

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  12. The role of ground water in water-supply emergency planning

    NASA Astrophysics Data System (ADS)

    Reichard, E. G.; Li, Z.; Hermans, C.

    2008-12-01

    Catastrophic events, such as earthquakes or floods, can result in water-supply disruptions. Such disruptions can cause large economic losses and pose threats to public health. Water managers seek to develop cost- effective strategies for reducing these risks and ensuring water security. In many areas, ground water can play an important role in such water-supply emergency planning. We present a probabilistic framework for estimating the hydraulic impacts and associated costs of using ground water as a backup supply in the event of a disruption in imported-water deliveries. We also estimate the benefits of ground-water management strategies, such as artificial recharge, in terms of reduced costs of responding to water-supply emergencies. The magnitude of these benefits will depend on the expected severity and duration of the imported-water disruption, the functioning of the hydrogeologic system, and economic parameters. We apply the framework to address water-supply emergency planning in the Los Angeles area. A simulation model is used to generate response functions, which relate emergency ground-water pumpage to potential adverse effects, such as increased pumping lifts, subsidence, and seawater intrusion. These response functions are incorporated into a Monte Carlo analysis, along with cost coefficients and information on the probable severity of the disruption. Disruption severity is represented by a probability distribution, which can be elicited from water managers. In the example, the primary emergency-related benefits of artificial recharge are reductions in potential subsidence costs. The framework could be extended to consider additional engineering factors (e.g., well capacities and integrity of local distribution systems), institutional arrangements, and regulatory requirements.

  13. Estimates of nitrogen loads entering Long Island Sound from ground water and streams on Long Island, New York, 1985–96

    USGS Publications Warehouse

    Scorca, Michael P.; Monti, Jack

    2001-01-01

    Fresh ground water that discharges from the northern part of Long Island's aquifer system to Long Island Sound contains elevated concentrations of nitrogen from agricultural fertilizer, domestic waste and fertilizer, and precipitation. The nitrogen contributes to algal blooms, which consume oxygen as the algae die and decompose. The resulting low dissolved oxygen concentrations (hypoxia) adversely affect plant and animal populations in Long Island Sound.The four major streams on the north shore of Long Island that have long-term discharge and water-quality records were selected for analysis of geographic, long-term, and seasonal trends in nitrogen concentration. Nitrogen concentrations generally decrease eastward among three Nassau County streams, then increase again at the easternmost stream, Nissequogue River in Suffolk County. A long-term (1970-96) increase in total nitrogen concentrations in the Nissequogue River also is evident. Seasonal fluctuations in nitrogen concentrations in all four streams reflect chemical reactions and microbial activity in the stream system, so total nitrogen concentrations in the three easternmost streams generally were lowest during summer and highest in winter, whereas those in the westernmost stream (Glen Cove Creek) were highest during summer and lowest in winter.The nitrogen loads discharged to Long Island Sound from each of the four streams for each year during 1985-96 were calculated from the annual mean total nitrogen concentration and the annual mean discharge. Nissequogue River's annual mean discharges were 3 to 6 times larger than those of Glen Cove and Mill Neck Creeks, and produced the largest annual loads of nitrogen--65 to 149 ton/yr (59,000 to 135,000 kg/yr). Cold Spring Brook had the lowest annual mean discharges and annual mean total nitrogen concentrations of the four streams; its annual mean nitrogen load ranged from 1.2 to 2.8 ton/yr (1,100 to 2,500 kg/yr).The nitrogen load carried to Long Island Sound by shallow

  14. Simulated ground-water flow in the Hueco Bolson, an alluvial-basin aquifer system near El Paso, Texas

    USGS Publications Warehouse

    Heywood, Charles E.; Yager, Richard M.

    2003-01-01

    The neighboring cities of El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico, have historically relied on ground-water withdrawals from the Hueco Bolson, an alluvial-aquifer system, to supply water to their growing populations. By 1996, ground-water drawdown exceeded 60 meters in some areas under Ciudad Juarez and El Paso. A simulation of steady-state and transient ground-water flow in the Hueco Bolson in westernmost Texas, south-central New Mexico, and northern Chihuahua, Mexico, was developed using MODFLOW-96. The model is needed by El Paso Water Utilities to evaluate strategies for obtaining the most beneficial use of the Hueco Bolson aquifer system. The transient simulation represents a period of 100 years beginning in 1903 and ending in 2002. The period 1903 through 1968 was represented with 66 annual stress periods, and the period 1969 through 2002 was represented with 408 monthly stress periods. The ground-water flow model was calibrated using MODFLOWP and UCODE. Parameter values representing aquifer properties and boundary conditions were adjusted through nonlinear regression in a transient-state simulation with 96 annual time steps to produce a model that approximated (1) 4,352 water levels measured in 292 wells from 1912 to 1995, (2) three seepage-loss rates from a reach of the Rio Grande during periods from 1979 to 1981, (3) three seepage-loss rates from a reach of the Franklin Canal during periods from 1990 to 1992, and (4) 24 seepage rates into irrigation drains from 1961 to 1983. Once a calibrated model was obtained with MODFLOWP and UCODE, the optimal parameter set was used to create an equivalent MODFLOW-96 simulation with monthly temporal discretization to improve computations of seepage from the Rio Grande and to define the flow field for a chloride-transport simulation. Model boundary conditions were modified at appropriate times during the simulation to represent changes in well pumpage, drainage of agricultural fields, and channel

  15. Hydrology of the Sevier-Sigurd ground-water basin and other ground-water basins, central Sevier Valley, Utah.

    USGS Publications Warehouse

    Lambert, P.M.; Mason, J.L.; Puchta, R.W

    1995-01-01

    The hydrologic system in the central Sevier Valley, and more specifically the Sevier-Sigurd basin, is a complex system in which surface- and ground-water systems are interrelated. Seepage from an extensive irrigation system is the primary source of recharge to the basin-fill aquifer in the Sevier-Sigurd basin.Water-quality data indicate that inflow from streams and subsurface inflow that intersect evaporite deposits in the Arapien Shale does not adversely affect ground-water quality in the Sevier-Sigurd basin. Stable-isotope data indicate that large sulfate concentrations in water from wells are from the dissolution of gypsum within the basin fill rather than inflow from the Arapien Shale.A ground-water-flow model of the basin-fill aquifer in the Sevier-Sigurd basin was calibrated to steady-state conditions and transient conditions using yearly water-level changes from 1957-88 and monthly water-level changes from 1958-59. Predictive simulations were made to test the effects of reduced recharge from irrigation and increased well discharge. To simulate the effects of conversion from flood to sprinkler irrigation, recharge from irrigated fields was reduced by 50 percent. After twenty years, this reduction resulted in water-level declines of 1 to 8 feet in most of the basin, and a reduction in ground-water discharge to the Sevier River of 4,800 acre-ft/yr. Water-level declines of as much as 12 feet and a reduction in recharge to the Sevier River of 4,800 acre-ft/yr were the result of increasing well discharge near Richfield and Monroe by 25,000 acre-ft/yr. 

  16. Ground water in Utah's densely populated Wasatch Front area - The challenge and the choices

    USGS Publications Warehouse

    Price, Don

    1985-01-01

    Utah's Wasatch Front area comprises about 4,000 square miles in the north-central part of the State. I n 1980, the area had a population of more than 1.1 million, or about 77 percent of Utah's total population. It contains several large cities, including Salt Lake City, Ogden, and Provo, and is commonly called Utah's urban corridor.Most of the water supply for the Wasatch Front area comes from streams that originate in the Wasatch Range and nearby Uinta Mountains; however, ground water has played an important role in the economic growth of the area. The principal source of ground water is the unconsolidated fill (sedimentary deposits) in the valleys of the Wasatch Front area northern Juab, Utah, Goshen, and Salt Lake Valleys; the East Shore area (a valley area east of the Great Salt Lake), and the Bear River Bay area. Maximum saturated thickness of the fill in the principal ground-water reservoirs in these valleys exceeds 6,000 feet, and the estimated volume of water that can be withdrawn from just the upper 100 feet of the saturated fill is about 8 million acre-feet. In most places the water is fresh, containing less than 1,000 milligrams per liter of dissolved solids; in much of the Bear River Bay area and most of Goshen Valley (and locally in the other valleys), the water is slightly to moderately saline, with 1,000 to 10,000 milligrams per liter of dissolved solids.The principal ground-water reservoirs receive recharge at an annual rate that is estimated to exceed 1 million acre-feet chiefly as seepage from consolidated rocks in the adjacent mountains from canals, ditches, and irrigated land, directly from precipitation, and from streams. Discharge during 1980 (which was chiefly from springs, seepage to streams, evapotranspiration, and withdrawal by wells) was estimated to be about 1.1 million acre-feet. Withdrawal from wells, which began within a few years after the arrival of the Mormon pioneers in the Salt Lake Valley in 1847, and had increased to about 320

  17. Quality of ground water around Vadnais Lake and in Lambert Creek watershed, and interaction of ground water with Vadnais Lake, Ramsey County, Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1994-01-01

    The results of the seepage analysis and ground-water quality evaluation indicate that the effect of the quality of the surrounding ground water on the quality of Vadnais Lake probably was small. Ground water that discharged to the lake generally had lower concentrations of calcium, magnesium, bicarbonate, and total dissolved solids than the lake. The mixing of ground water with the lake slightly diluted the lake with respect to these constituents.

  18. Ground-Water Resources in Kaloko-Honokohau National Historical Park, Island of Hawaii, and Numerical Simulation of the Effects of Ground-Water Withdrawals

    USGS Publications Warehouse

    Oki, Delwyn S.; Tribble, Gordon W.; Souza, William R.; Bolke, Edward L.

    1999-01-01

    Within the Kaloko-Honokohau National Historical Park, which was established in 1978, the ground-water flow system is composed of brackish water overlying saltwater. Ground-water levels measured in the Park range from about 1 to 2 feet above mean sea level, and fluctuate daily by about 0.5 to 1.5 feet in response to ocean tides. The brackish water is formed by mixing of seaward flowing fresh ground water with underlying saltwater from the ocean. The major source of fresh ground water is from subsurface flow originating from inland areas to the east of the Park. Ground-water recharge from the direct infiltration of precipitation within the Park area, which has land-surface altitudes less than 100 feet, is small because of low rainfall and high rates of evaporation. Brackish water flowing through the Park ultimately discharges to the fishponds in the Park or to the ocean. The ground water, fishponds, and anchialine ponds in the Park are hydrologically connected; thus, the water levels in the ponds mark the local position of the water table. Within the Park, ground water near the water table is brackish; measured chloride concentrations of water samples from three exploratory wells in the Park range from 2,610 to 5,910 milligrams per liter. Chromium and copper were detected in water samples from the three wells in the Park and one well upgradient of the Park at concentrations of 1 to 5 micrograms per liter. One semi-volatile organic compound, phenol, was detected in water samples from the three wells in the Park at concentrations between 4 and 10 micrograms per liter. A regional, two-dimensional (areal), freshwater-saltwater, sharp-interface ground-water flow model was used to simulate the effects of regional withdrawals on ground-water flow within the Park. For average 1978 withdrawal rates, the estimated rate of fresh ground-water discharge to the ocean within the Park is about 6.48 million gallons per day, or about 3 million gallons per day per mile of coastline

  19. Isotopic Discrimination of Perchlorate Sources in Ground Water

    NASA Astrophysics Data System (ADS)

    Bohlke, J.; Hatzinger, P. B.; Sturchio, N. C.; Gu, B.; Jackson, W. A.; Abbene, I. J.

    2007-12-01

    Perchlorate has been detected in ground water and drinking water in many areas of the U.S. during the past decade. Sources of potential perchlorate enrichment in ground water include releases from past military activities, fireworks manufacture and display, fertilizer applications, discarded road flares, and local atmospheric deposition. Here we present analyses of stable isotopes (δ37Cl, δ18O, and Δ17O) of dissolved perchlorate, along with other supporting environmental tracer data, from selected occurrences in ground water in the U.S. The isotope data indicate that both synthetic and natural perchlorate are present in ground water, and that multiple sources are present locally in some areas. The sampled ground waters generally were oxic and the perchlorate isotopes generally were not affected substantially by biodegradation. In some areas, natural perchlorate, with Δ17O = +7 to +10 ‰, can be attributed to agricultural applications of atmospherically derived natural nitrate fertilizer imported from South America (Atacama Desert, Chile). In at least one agricultural area in New York, concentrations of perchlorate increase with depth and ground-water age, possibly because of decreasing application rates of Atacama nitrate fertilizer and(or) decreasing perchlorate concentrations in the imported fertilizer products in recent years.

  20. Water Science and Technology Board annual report 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broadermore » scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.« less

  1. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    USGS Publications Warehouse

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  2. Estimates of ground-water recharge rates for two small basins in central Nevada

    USGS Publications Warehouse

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins. two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. The first model uses a traditional approach to quantify watershed hydrology through a precipitation-runoff modeling system that accounts for the spatial variability of hydrologic inputs, processes, and responses (outputs) using a dailycomputational time step. The second model is based on the conservative nature of the dissolved chloride ion in selected hydrologic environments, and its use as a natural tracer allows the computation of acoupled, water and chloride-ion, mass-balance system of equations to estimate available water (sum ofsurface runoff and groundwater recharge). Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most

  3. Evaluating data worth for ground-water management under uncertainty

    USGS Publications Warehouse

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  4. Ground-water hydrology of the Lower Milliken-Sarco-Tulucay Creeks area, Napa County, California

    USGS Publications Warehouse

    Johnson, Michael J.

    1977-01-01

    Recharge within the area is generally inadequate to marginal under 1975 demand. There is insufficient recharge in the Milliken and Sarco Creeks area to support 1975 pumpage. Long-term changes in the seasonal peak water levels indicate an average decline of 1.5 feet per year (0.5 meter per year). By 1975 annual pumpage was not exceeding recharge in the Tulucay Creek area. Although a downward trend in water levels was noted in the western part of this basin in the late 1940's, the pumping distribution and its stress on the ground-water system have since changed, and no overall downward trend was evident in the Tulucay Creek area in 1975.

  5. Pesticides in ground water: distribution, trends, and governing factors

    USGS Publications Warehouse

    Barbash, Jack; Resek, Elizabeth A.

    1997-01-01

    A comprehensive review of published information on the distribution and behavior of pesticides and their transformation products in ground water indicates that pesticides from every chemical class have been detected in ground waters of the United States. Many of these compounds are commonly present at low concentrations in ground water beneath agricultural land. Little information is available on their occurrence beneath non-agricultural land, although the intensity of their use in such areas (on lawns, golf courses, rights of way, timberlands, etc.) is often comparable to, or greater than agricultural use. Information on pesticides in ground water is not sufficient to provide either a statistically representative view of pesticide occurrence in ground water across the United States, or an indication of long-term trends or changes in the severity or extent of this contamination over the past three decades. This is largely due to wide variations in analytical detection limits, well selection procedures, and other design features among studies conducted in different areas or at different times. Past approaches have not been well suited for distinguishing "point source" from "nonpoint source" pesticide contamination. Among the variety of natural and anthropogenic factors examined, those that appear to be most strongly associated with the intensity of pesticide contamination of ground water are the depth, construction and age of the sampled wells, the amount of recharge (by precipitation or irrigation), and the depth of tillage. Approaches commonly employed for predicting pesticide distributions in the subsurface--including computer simulations, indicator solutes (e.g., nitrate or tritium), and ground-water vulnerability assessments--generally provide unreliable predictions of pesticide occurrence in ground water. Such difficulties may arise largely from a general failure to account for the preferential transport of pesticides in the subsurface. Significant

  6. In-Situ Bioremediation of Contaminated Ground Water

    EPA Pesticide Factsheets

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing ...

  7. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-95, with projections to 2020

    USGS Publications Warehouse

    Kernodle, J.M.

    1998-01-01

    The ground-water-flow model of the Albuquerque Basin (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) was updated to include new information on the hydrogeologic framework (Hawley, J.W., Haase, C.S., and Lozinsky, R.P., 1995, An underground view of the Albuquerque Basin: Proceedings of the 39th Annual New Mexico Water Conference, November 3-4, 1994, p. 37-55). An additional year of ground-water-withdrawal data was appended to the simulation of the historical period and incorporated into the base for future projections to the year 2020. The revised model projects the simulated ground-water levels associated with an aerally enlarged occurrence of the relatively high hydraulic conductivity in the upper part of the Santa Fe Group east and west of the Rio Grande in the Albuquerque area and north to Bernalillo. Although the differences between the two model versions are substantial, the revised model does not contradict any previous conclusions about the effect of City of Albuquerque ground-water withdrawals on flow in the Rio Grande or the net benefits of an effort to conserve ground water. Recent revisions to the hydrogeologic model (Hawley, J.W., Haneberg, W.C., and Whitworth, P.M., in press, Hydrogeologic investigations in the Albuquerque Basin, central New Mexico, 1992-1995: Socorro, New Mexico Bureau of Mines and Mineral Resources Open- File Report 402) of the Albuquerque Basin eventually will require that this model version also be revised and updated.

  8. Ground water in the Piedmont upland of central Maryland

    USGS Publications Warehouse

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  9. Tritium as an indicator of ground-water age in Central Wisconsin

    USGS Publications Warehouse

    Bradbury, Kenneth R.

    1991-01-01

    In regions where ground water is generally younger than about 30 years, developing the tritium input history of an area for comparison with the current tritium content of ground water allows quantitative estimates of minimum ground-water age. The tritium input history for central Wisconsin has been constructed using precipitation tritium measured at Madison, Wisconsin and elsewhere. Weighted tritium inputs to ground water reached a peak of over 2,000 TU in 1964, and have declined since that time to about 20-30 TU at present. In the Buena Vista basin in central Wisconsin, most ground-water samples contained elevated levels of tritium, and estimated minimum ground-water ages in the basin ranged from less than one year to over 33 years. Ground water in mapped recharge areas was generally younger than ground water in discharge areas, and estimated ground-water ages were consistent with flow system interpretations based on other data. Estimated minimum ground-water ages increased with depth in areas of downward ground-water movement. However, water recharging through thick moraine sediments was older than water in other recharge areas, reflecting slower infiltration through the sandy till of the moraine.

  10. Ground-water resources data for Baldwin County, Alabama

    USGS Publications Warehouse

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  11. Identification of Naegleria fowleri in warm ground water aquifers.

    PubMed

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  12. Climate, soil water storage, and the average annual water balance

    USGS Publications Warehouse

    Milly, P.C.D.

    1994-01-01

    This paper describes the development and testing of the hypothesis that the long-term water balance is determined only by the local interaction of fluctuating water supply (precipitation) and demand (potential evapotranspiration), mediated by water storage in the soil. Adoption of this hypothesis, together with idealized representations of relevant input variabilities in time and space, yields a simple model of the water balance of a finite area having a uniform climate. The partitioning of average annual precipitation into evapotranspiration and runoff depends on seven dimensionless numbers: the ratio of average annual potential evapotranspiration to average annual precipitation (index of dryness); the ratio of the spatial average plant-available water-holding capacity of the soil to the annual average precipitation amount; the mean number of precipitation events per year; the shape parameter of the gamma distribution describing spatial variability of storage capacity; and simple measures of the seasonality of mean precipitation intensity, storm arrival rate, and potential evapotranspiration. The hypothesis is tested in an application of the model to the United States east of the Rocky Mountains, with no calibration. Study area averages of runoff and evapotranspiration, based on observations, are 263 mm and 728 mm, respectively; the model yields corresponding estimates of 250 mm and 741 mm, respectively, and explains 88% of the geographical variance of observed runoff within the study region. The differences between modeled and observed runoff can be explained by uncertainties in the model inputs and in the observed runoff. In the humid (index of dryness <1) parts of the study area, the dominant factor producing runoff is the excess of annual precipitation over annual potential evapotranspiration, but runoff caused by variability of supply and demand over time is also significant; in the arid (index of dryness >1) parts, all of the runoff is caused by variability

  13. 78 FR 33700 - Special Local Regulations for Marine Events, Pleasantville Aquatics 15th Annual 5K Open Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ...-AA08 Special Local Regulations for Marine Events, Pleasantville Aquatics 15th Annual 5K Open Water Swim... from operating while a swim event is taking place. This special local regulation is necessary to... Docket Management Facility in Room W12-140 on the ground floor of the Department of Transportation West...

  14. A geographic data model for representing ground water systems.

    PubMed

    Strassberg, Gil; Maidment, David R; Jones, Norm L

    2007-01-01

    The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.

  15. Water resources data for Oregon, water year 2004

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.

  16. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  17. Geochemistry and the understanding of ground-water systems

    USGS Publications Warehouse

    Glynn, Pierre D.; Plummer, Niel

    2005-01-01

    Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems.

  18. Sewage in ground water in the Florida Keys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinn, E.A.

    1995-12-31

    More than 24,000 septic tanks, 5,000 cesspools, and greater than 600 shallow disposal wells introduce sewage effluents into porous and permeable limestone underlying the Florida Keys. To porous and permeable limestone underlying the Florida Keys. To assess the fate of sewage nutrients, 21 2- to 20-m-deep wells were core drilled and completed as water-monitoring wells. The wells were sampled quarterly and analyzed for 17 parameters. including nutrients and bacteria. Nutrients (mainly NH4, - which is 30 to 40 times higher than in surface sea water) were detected in ground water beneath the Keys and offshore coral reefs. Highest levels weremore » beneath reefs 5 to 8 km offshore. Ground waters were generally hypersaline and fecal bacteria (fecal coliform and streptococci) were detected in ground water beneath living coral reefs. Higher sea level on the Florida Bay side of the Keys is proposed as the mechanism for forcing ground water toward offshore coral reefs. Tidal pumping, which is more pronounced near the Keys, causes leakage of ground water where the sediment is thin. Areas lacking sediment cover consist of bare limestone bedrock or permeable coral reefs. These are the areas where coral diseases and algal growth have increased in recent years. Pollutants entering the ground water beneath the Florida Keys are likely to be transported seaward beneath impermeable Holocene sediments and may be upwelling through coral reefs and other hardbottom communities.« less

  19. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    NASA Astrophysics Data System (ADS)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  20. Reagent removal of manganese from ground water

    NASA Astrophysics Data System (ADS)

    Brayalovsky, G.; Migalaty, E.; Naschetnikova, O.

    2017-06-01

    The study is aimed at the technology development of treating drinking water from ground waters with high manganese content and oxidizability. Current technologies, physical/chemical mechanisms and factors affecting in ground treatment efficiency are reviewed. Research has been conducted on manganese compound removal from ground waters with high manganese content (5 ppm) and oxidizability. The studies were carried out on granular sorbent industrial ODM-2F filters (0.7-1.5 mm fraction). It was determined that conventional reagent oxidization technologies followed by filtration do not allow us to obtain the manganese content below 0.1 ppm when treating ground waters with high oxidizability. The innovative oxidation-based manganese removal technology with continuous introduction of reaction catalytic agent is suggested. This technology is effective in alkalization up to pH 8.8-9. Potassium permanganate was used as a catalytic agent, sodium hypochlorite was an oxidizer and cauistic soda served an alkalifying agent.

  1. Compilation of regional ground water monitoring data to investigate 60 years of ground water dynamics in New England

    NASA Astrophysics Data System (ADS)

    Boutt, D. F.; Weider, K. M.

    2010-12-01

    Theory suggests that ground water systems at shallow depths are sensitive to climate system dynamics but respond at differing rates due to primarily hydrogeologic characteristics of the aquifer. These rates are presumably to a first order controlled by the transmissivity and hydrogeologic settings of aquifer systems. Regional scale modeling and understanding of the impact of this behavior is complicated by the fact that aquifer systems in glaciated regions of the North American continent often possess high degrees of heterogeneity as well as disparate hydraulic connections between aquifer systems. In order to investigate these relationships we present the results of a regional compilation of groundwater hydraulic head data across the New England states together with corresponding atmospheric (precipitation and temperature) and streamflow data for a 60 year period (1950-2010). Ground water trends are calculated as normalized anomalies, and analyzed with respect to regional compiled precipitation, temperature, and streamflow. Anomalies in ground water levels are analyzed together with hydrogeologic variables such as aquifer thickness, topographic setting, and distance from coast. The time-series display decadal patterns with ground water levels being highly variable and lagging that of precipitation and streamflow pointing to site specific and non-linear response to changes in climate. Sites with deeper water tables respond slower and with larger anomalies compared to shallow water table sites. Tills consistently respond quicker and have larger anomalies compared to outwash and stratified glacial deposits. The data set suggests that while regional patterns in ground water table response are internally consistent, the magnitude and timing of the response to wet or dry periods is extremely sensitive to hydrogeologic characteristics of the host aquifer.

  2. Michigan Water Year 2005

    USGS Publications Warehouse

    Blumer, S.P.; Whited, C.R.; Ellis, J.M.; Minnerick, R.J.; LeuVoy, R.L.

    2006-01-01

    This volume of the annual hydrologic data report of Michigan is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  3. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1994 through September 1996

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report describes the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1994 through September 1996, with a focus on data from July through September 1996 (third quarter of 1996). A complete database of ground-water withdrawals and chloride-concentration records since 1985 is maintained by the U.S. Geological Survey. Total rainfall for the period July through September 1996 was 8.94 inches, which is 60 percent less than the mean rainfall of 22.23 inches for the period July through September. July and August are part of the annual dry season, while September is the start of the annual wet season. Ground-water withdrawal during July through September 1996 averaged 1,038,300 gallons per day. Withdrawal for the same 3 months in 1995 averaged 888,500 gallons per day. Ground-water withdrawals have steadily increased since about April 1995. At the end of September 1996, the chloride concentration of water from the elevated tanks at Cantonment and Air Operations were 68 and 150 milligrams per liter, respectively. The chloride concentration from all five production areas increased throughout the third quarter of 1996, and started the upward trend in about April 1995. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations also increased throughout the third quarter of 1996, with the largest increases from water in the deepest monitoring wells. Chloride concentrations have not been at this level since the dry season of 1994. A fuel-pipeline leak at Air Operations in May 1991 decreased total islandwide withdrawals by 15 percent. This lost pumping capacity is being offset by increased pumpage at Cantonment. Six wells do not contribute to the water supply because they are being used to hydraulically divert fuel migration away from water-supply wells by a program of ground-water withdrawal and injection.

  4. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  5. Evaluation of Ground Water Near Sidney, Western Nebraska, 2004-05

    USGS Publications Warehouse

    Steele, G.V.; Sibray, S.S.; Quandt, K.A.

    2007-01-01

    During times of drought, ground water in the Lodgepole Creek area around Sidney, western Nebraska, may be insufficient to yield adequate supplies to private and municipal wells. Alternate sources of water exist in the Cheyenne Tablelands north of the city, but these sources are limited in extent. In 2003, the U.S. Geological Survey and the South Platte Natural Resources District began a cooperative study to evaluate the ground water near Sidney. The 122-square-mile study area lies in the south-central part of Cheyenne County, with Lodgepole Creek and Sidney Draw occupying the southern and western parts of the study area and the Cheyenne Tablelands occupying most of the northern part of the study area. Twenty-nine monitoring wells were installed and then sampled in 2004 and 2005 for physical characteristics, nutrients, major ions, and stable isotopes. Some of the 29 sites also were sampled for ground-water age dating. Ground water is limited in extent in the tableland areas. Spring 2005 depths to ground water in the tableland areas ranged from 95 to 188 feet. Ground-water flow in the tableland areas primarily is northeasterly. South of a ground-water divide, ground-water flows southeasterly toward Lodgepole Creek Valley. Water samples from monitoring wells in the Ogallala Group were predominantly a calcium bicarbonate type, and those from monitoring wells in the Brule Formation were a sodium bicarbonate type. Water samples from monitoring wells open to the Brule sand were primarily a calcium bicarbonate type at shallow depths and a sodium bicarbonate type at deeper depths. Ground water in Lodgepole Creek Valley had a strong sodium signature, which likely results from most of the wells being open to the Brule. Concentrations of sodium and nitrate in ground-water samples from the Ogallala were significantly different than in water samples from the Brule and Brule sand. In addition, significant differences were seen in concentrations of calcium between water samples

  6. Evaluation of the ground-water resources of parts of Lancaster and Berks Counties, Pennsylvania

    USGS Publications Warehouse

    Gerhart, J.M.; Lazorchick, G.J.

    1984-01-01

    Secondary openings in bedrock are the avenues for virtually all ground-water flow in a 626-sqare-mile area in Lancaster and Berks Counties, Pennsylvania. The number, size, and interconnection of secondary openings are functions of lithology, depth, and topography. Ground water actively circulates to depths of 150 to 300 feet below land surface. Total average annual ground-water recharge for the area is 388 million gallons per day, most of which discharges to streams from local, unconfined flow systems. A digital ground-water flow model was developed to simulate unconfined flow under several different recharge and withdrawal scenarios. On the basis of lithologic and hydrologic differences, the modeled area was sub-divided into 22 hydrogeologic units. A finite-difference grid with rectangular blocks, each 2,015 by 2,332 feet, was used. The model was calibrated under steady-state and transient conditions. The steady-state calibration was used to determine hydraulic conductivities and stream leakage coefficients and the transient calibration was used to determine specific yields. The 22 hydrogeologic units fall into four general lithologies: Carbonate rocks, metamorphic rocks, Paleozoic sedimentary rocks, and Triassic sedimentary rocks. Average hydraulic conductivity ranges from about 8.8 feet per day in carbonate units to about .5 feet per day in metamorphic units. The Stonehenge Formation (limestone) has the greatest average hydraulic conductivity--85.2 feet per day in carbonate units to about 0.11 feet per day in the greatest gaining-strem leakage coefficient--16.81 feet per day. Specific yield ranges from 0.06 to 0.09 in carbonate units, and is 0.02 to 0.015, and 0.012 in metamorphic, Paleozoic sedimentary, and Triassic sedimentary units, respectively. Transient simulations were made to determine the effects of four different combinations of natural and artificial stresses. Natural aquifer conditions (no ground-water withdrawals) and actual aquifer conditions

  7. ERTS imagery for ground-water investigations

    USGS Publications Warehouse

    Moore, Gerald K.; Deutsch, Morris

    1975-01-01

    ERTS imagery offers the first opportunity to apply moderately high-resolution satellite data to the nationwide study of water resources. This imagery is both a tool and a form of basic data. Like other tools and basic data, it should be considered for use in ground-water investigations. The main advantage of its use will be to reduce the need for field work. In addition, however, broad regional features may be seen easily on ERTS imagery, whereas they would be difficult or impossible to see on the ground or on low-altitude aerial photographs. Some present and potential uses of ERTS imagery are to locate new aquifers, to study aquifer recharge and discharge, to estimate ground-water pumpage for irrigation, to predict the location and type of aquifer management problems, and to locate and monitor strip mines which commonly are sources for acid mine drainage. In many cases, boundaries which are gradational on the ground appear to be sharp on ERTS imagery. Initial results indicate that the accuracy of maps produced from ERTS imagery is completely adequate for some purposes.

  8. Ground-water hydraulics - A summary of lectures presented by John G. Ferris at short courses conducted by the Ground Water Branch, part 1, Theory

    USGS Publications Warehouse

    Knowles, D.B.

    1955-01-01

    The objective of the Ground Water Branch is to evaluate the occurrence, availability, and quality of ground water.  The science of ground-water hydrology is applied toward attaining that goal.  Although many ground-water investigations are of a qualitative nature, quantitative studies are necessarily an integral component of the complete evaluation of occurrence and availability.  The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store, and its ability to transmit water.  Furthermore, quantitative knowledge of these characteristics facilitates measurement of hydrologic entities such as recharge, leakage, evapotranspiration, etc.  It is recognized that these two characteristics, referred to as the coefficients of storage and transmissibility, generally provide the very foundation on which quantitative studies are constructed.  Within the science of ground-water hydrology, ground-water hydraulics methods are applied to determine these constats from field data.

  9. Ground-water resources of Coke County, Texas

    USGS Publications Warehouse

    Wilson, Clyde A.

    1973-01-01

    Coke County, located in semiarid west-central Texas, where large ranches, small farms, and oil production are the main bases of the economy, has a small supply of ground and surface water. Of the approximately 1,900 acre-feet of fresh to moderately saline ground water used in 1968, industry used 880 acre-feet, irrigation used 210 acre-feet, and domestic supply and livestock used 820 acre-feet. All of the water for municipal supply and some of the water for industry is obtained from surface-water reservoirs.

  10. 40 CFR 265.91 - Ground-water monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sufficient to yield ground-water samples that are: (i) Representative of background ground-water quality in... not required provided that provisions for sampling upgradient and downgradient water quality will... perforated, and packed with gravel or sand where necessary, to enable sample collection at depths where...

  11. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    EPA Science Inventory

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  12. Ground-water resources of Camas Prairie, Camas and Elmore Counties, Idaho

    USGS Publications Warehouse

    Walton, William Clarence

    1962-01-01

    Camas Prairie is an eastward-trending intermontane basin along the north flank of the Snake River Plain in southern Idaho. The basin is about 40 miles long and averages about 8 miles wide. It was formed as a structural depression in which a considerable thickness of alluvial and lake deposits accumulated behind basalt flows, which at times blocked the outlet to the east. Intrusive and extrusive rocks of Cretaceous to Quarternary age enclose the basin on the north, west, and east. The enclosing rocks yield small amounts of water to springs and wells from the weathered mantle and fractures. The principal aquifers are sand and gravel in the alluvial fill, and basalt. Water in the shallow deposits is not confined, and the water table generally is less than 10 feet below the surface at most places. Ground water in the deeper deposits occurs chiefly in two horizons that comprise the upper and lower artesian aquifers. Throughout much of the prairie, the pressure is sufficient that water will flow from wells in these aquifers. Recharge to the basin is from direct precipitation and percolation of stream runoff from the bordering mountains. Ground water moves from the higher areas at the base of the encircling mountains toward the center of the basin and the eastern outlet. The artesian aquifers leak by upward percolation through the imperfectly confining beds and help maintain the shallow water table. Basalt, which interfingers with the alluvial deposits, is an important aquifer near the southeast margin of the prairie and at the east end. Annual recharge to the artesian aquifers is estimated to be about 40,000 acre-feet. Discharge from the artesian aquifers is about equally divided between upward leakage to the shallow aquifers and underflow out of the prairie. Most of the underflow discharges into Camas Creek or Magic Reservoir east of the prairie; little of the underflow reaches the Snake River Plain. Wells drilled for irrigation generally yield 500 to 1,200 gallons per

  13. 40 CFR 264.97 - General ground-water monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection of ground-water samples. The annular space (i.e., the space between the bore hole and well casing... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General ground-water monitoring... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements...

  14. Ground-water and water-chemistry data for the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Caldwell, Rodney R.; Truini, Margot

    1997-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the upper Deschutes Basin, Oregon. Data in this report include tabulated information and a location map for more than 1,500 field-located water wells, hydrographs showing water-level fluctuations over various time periods for 102 of the wells, and water-chemistry analyses from 26 wells, 7 springs, and 5 surface-water sites.

  15. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  16. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  17. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  18. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2004-01-01

    Flow-path and time-of-travel results for the Mojave River ground-water basin, southern California, calculated using the ground-water flow model MODFLOW and particle-tracking model MODPATH were similar to flow path and time-of-travel interpretations derived from delta-deuterium and carbon-14 data. Model and isotopic data both show short flow paths and young ground-water ages throughout the floodplain aquifer along most the Mojave River. Longer flow paths and older ground-water ages as great as 10,000 years before present were measured and simulated in the floodplain aquifer near the Mojave Valley. Model and isotopic data also show movement of water between the floodplain and regional aquifer and subsequent discharge of water from the river to dry lakes in some areas. It was not possible to simulate the isotopic composition of ground-water in the regional aquifer away from the front of the San Gabriel and San Bernardino Mountains - because recharge in these areas does not occur under the present-day climatic conditions used for calibration of the model.

  19. EPA waiver of ground water cleanup standards in NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, A.A.

    1995-11-01

    EPA may invoke a technical impracticability (TI) waiver at a site when the Agency determines that it is technically impracticable from an engineering perspective to attain cleanup standards within a reasonable time period. The October 6, 1994 TI waiver of ground water cleanup standards at the G.E./Moreau Superfund Site in New York is the first post-Record of Decision (ROD) TI waiver granted by EPA since issuance of the September 1993 guidance on technical impracticability of ground water restoration. In the 1987 ROD, EPA selected natural gradient flushing and treatment as the ground water remedy and estimated that TCE-contaminated ground watermore » within the unconsolidated aquifer at the Site would be restored to drinking water quality within decades. EPA`s subsequent reevaluation showed that cleanup of the ground water would take 200 years or more, regardless of the remedial technology employed, due to the presence of site-specific physical and chemical factors that limit the effectiveness of ground water remediation technologies. Following public participation activities, EPA issued the TI waiver as an Explanation of Significant Differences (ESD) to the ROD. The ESD revised the time frame expected for ground water restoration but did not reduce or change any of the required cleanup actions.« less

  20. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1992 through September 1994

    USGS Publications Warehouse

    Torikai, J.D.

    1995-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data are presented from January 1992 through September 1994. This report concentrates on data from July through September 1994, and references historic data from 1992 through June 1994. Total rainfall for the first nine months of 1994 was about 77 inches which is 72 percent of the mean annual rainfall of 106 inches. In comparison, total rainfall for the first nine months of 1992 and 1993 was 67 inches and 69 inches, respectively. Annual rainfall totals in 1992 and 1993 were 93 inches and 95 inches, respectively. Ground-water withdrawal during July through September 1994 has averaged 919,400 gallons per day, while annual withdrawals in 1992 and 1993 averaged 935,900 gallons per day and 953,800 gallons per day, respectively. At the end of September 1994, the chloride concentration of the composite water supply was 56 milligrams per liter, well below the 250 milligrams per liter secondary drinking-water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply from July through September 1994 ranged between 51 and 78 milligrams per liter. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations increased in July and August, but have leveled off or decreased in September. There has been a general trend of increasing chloride concentrations in the deeper monitoring wells since the 1992 dry season, which began in March 1992. A fuel leak at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water-supply purposes in April 1992. The remaining six wells are being used to hydraulically contain and divert fuel migration by recirculating 150,000 gallons of water each day.

  1. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  2. Dynamic factor analysis for estimating ground water arsenic trends.

    PubMed

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  3. 40 CFR 141.401 - Sanitary surveys for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Sanitary surveys for ground water systems. 141.401 Section 141.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401 Sanitary surveys for ground water systems. (a)...

  4. Methods of collecting and interpreting ground-water data

    USGS Publications Warehouse

    Bentall, Ray

    1963-01-01

    Because ground water is hidden from view, ancient man could only theorize as to its sources of replenishment and its behavior. His theories held sway until the latter part of the 17th century, which marked the first experimental work to determine the source and movement of ground water. Thus founded, the science of ground-water hydrology grew slowly and not until the 19th century is there substantial evidence of conclusions having been based on observational data. The 20th century has witnessed tremendous advances in the science in the methods of field investigation and interpretation of collected data, in the methods of determining the hydrologic characteristics of water-bearing material, and in the methods of inventorying ground-water supplies. Now, as is true of many other disciplines, the science of ground-water hydrology is characterized by frequent advancement of new ideas and techniques, refinement of old techniques, and an increasing wealth of data awaiting interpretation.So that its widely scattered staff of professional hydrologists could keep abreast of new ideas and advances in the techniques of groundwater investigation, it has been the practice in the U.S. Geological Survey to distribute such information for immediate internal use. As the methods become better established and developed, they are described in formal publications. Six papers pertaining to widely different phases of ground-water investigation comprise this particular contribution. For the sake of clarity and conformity, the original papers have been revised and edited by the compiler.

  5. Ground-water resources of the South Platte River Basin in western Adams and southwestern Weld Counties, Colorado

    USGS Publications Warehouse

    Smith, Rex O.; Schneider, P.A.; Petri, Lester R.

    1964-01-01

    The area described in this report consists of about 970 square miles in western Adams and southwestern Weld Counties in northeastern Colorado. It includes that part of the South Platte River valley between Denver and Kuner, Colo., all of Beebe Draw, and the lower part of the valley of Box Elder Creek. The stream-valley lowlands are separated by rolling uplands. The climate is semiarid, the normal annual precipitation being about 13 inches; thus, irrigation is essential for stable agricultural development. The area contains about 220,000 acres of irrigated land in the stream valleys. Most of the remaining 400,000 acres of land is used for dry farming or grazing because it lacks irrigation water. Most of the lowlands were brought under irrigation with surface water during the early 1900's, and now nearly all the surface water in the area is appropriated for irrigation within and downstream from the area. Because the natural flow of the streams is sometimes less than the demand for water, ground water is used to supplement the surface-water supply. Wells, drilled chiefly since 1930, supply the supplemental water and in some places are the sole supply for irrigation use. Rocks exposed in the area are of sedimentary origin and range in age from Lato Cretaceous to Recent. Those that are consolidated, called 'bedrock' in this report, consist of the Fox Hills sandstone and the Laramie and Arapahoe formations, all of Late Cretaceous age, and the Denver formation and Dawson arkose of Late Cretaceous and Tertiary age. The surface of the bedrock was shaped by ancestral streams, the valleys of which are reflected by the present surface topography. Dune sand, slope wash, and thin upland deposits of Quaternary age mantle the bedrock in the divide areas, and stream deposits ranging in thickness from 0 to about 125 feet partly fill the ancestral valleys. The valley-fill deposits consist of beds and lenses of clay, silt, sand, gravel, cobbles, and boulders. Abundant supplies of

  6. Water Resources Data, Florida, Water Year 2003, Volume 1B: Northeast Florida Ground Water

    USGS Publications Warehouse

    George, H.G.; Nazarian, A.P.; Dickerson, S.M.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  7. Sampling colloids and colloid-associated contaminants in ground water

    USGS Publications Warehouse

    Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.

    1993-01-01

    It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in

  8. Science to Help Understand and Manage Important Ground-Water Resources

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    Throughout California, as pressure on water resources continues to grow, water-supply agencies are looking to the state?s biggest ?reservoir? ? its ground-water basins ? for supply and storage. To better utilize that resource, the Sweetwater Authority and other local partners, including the city of San Diego and Otay Water Districts, are working with the U.S. Geological Survey (USGS) to develop the first comprehensive study of the coastal ground-water resources of southern San Diego County. USGS research is providing the integrated geologic and hydrologic knowledge necessary to help effectively utilize this resource on a coordinated, regional basis. USGS scientists are building a real-time well-monitoring network and gathering information about how the aquifers respond to different pumping and recharge-management strategies. Real-time ground-water levels are recorded every hour and are viewable on a project web site (http://ca.water.usgs.gov/sandiego/index.html). Data from the wells are helping to define the geology and hydrogeology of the area, define ground-water quality, and assess ground-water levels. The wells also are strategi-cally placed and designed to be usable by the local agencies for decades to come to help manage surface-water and ground-water operations. Additionally, the knowledge gained from the USGS study will help local, state, and federal agencies; water purveyors; and USGS scientists to understand the effects of urbanization on the local surface-water, ground-water, and biological resources, and to better critique ideas and opportuni-ties for additional ground-water development in the San Diego area.

  9. Ground-water conditions in the Dutch Flats area, Scotts Bluff and Sioux Counties, Nebraska, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Babcock, H.M.; Visher, F.N.; Durum, W.H.

    1951-01-01

    land irrigated for agriculture, has been identified as being susceptible. Biological data were used to evaluate the reliability of the map. In 12 of DOI's 26 study areas, concentrations of selenium measured in bird eggs were elevated sufficiently to significantly reduce hatchability of the eggs. The GIS map identifies 9 of those 12 areas. Deformed bird embryos having classic symptoms of selenium toxicosis were found in four of the study areas, and the map identifies all four as susceptible to irrigation-induced selenium contamination. The report describes the geography, geology, and ground-water resources of the Dutch Flats area in Scotts Bluff and Sioux Counties, Nebr. The area comprises about 60 square miles and consists predominantly of relatively flat-lying terraces. Farming is the principal occupation in the area. The farm lands are irrigated largely from surface water; ground water is used only as a supplementary supply during drought periods. The climate in the area is semiarid, and the mean annual precipitation is about 16 inches. The rocks exposed in the Dutch Flats area are of Tertiary sad Quaternary age. A map showing the areas of outcrop of the rock formations is included in the report. Sufficient unconfined ground water for irrigation supplies is contained in the deposits of the .third terrace, and wells that yield 1,000 to 2,000 gallons a minute probably could be developed. The depth to water in the area ranges from a few feet to about 80 feet sad averages about 30 feet. The depth to water varies throughout the year; it is least in the late summer when the recharge from irrigation is greatest, sad it is greatest in the early spring before irrigation is begun. A map showing the depth to water in September 1949 is included in the report. The ground-water reservoir is recharged by seepage from irrigation canals and laterals, by seepage from irrigation water applied to the farms, and, to a much lesser extent, by precipitation. In the area b

  10. Trends in nitrogen concentration and nitrogen loads entering the South Shore Estuary Reserve from streams and ground-water discharge in Nassau and Suffolk counties, Long Island, New York, 1952–97

    USGS Publications Warehouse

    Monti, Jack; Scorca, Michael P.

    2003-01-01

    The 13 major south-shore streams in Nassau and Suffolk Counties, Long Island, New York with adequate long-term (1971-97) water-quality records, and 192 south-shore wells with sufficient water-quality data, were selected for analysis of geographic, seasonal, and long-term trends in nitrogen concentration. Annual total nitrogen loads transported to the South Shore Estuary Reserve (SSER) from 11 of these streams were calculated using long-term discharge records. Nitrogen loads from shallow and deep ground water also were calculated using simulated ground-water discharge of 1968-83 hydrologic conditions.Long-term declines in stream discharge occurred in East Meadow Brook, Bellmore Creek and Massapequa Creek in response to extensive sewering in Nassau County. The smallest longterm annual discharge to the SSER was from the westernmost stream, Pines Brook, which is in an area in which the water table has been lowered by sewers since 1952. The three largest average annual discharges to the SSER were from the Connetquot River, Carlls River, and Carmans River in Suffolk County; the discharges from each of these streams were at least twice those of the other streams considered in this study.Total nitrogen concentrations in streams show a geographic trend with a general eastward increase in median total nitrogen concentration in Nassau County and a decreasing trend from Massapequa Creek eastward into Suffolk County. Total nitrogen concentrations in streams generally are lowest during summer and highest in winter as a result of seasonal fluctuations in chemical reactions and biological activity. The greatest seasonal difference in median total nitrogen concentration was at Carlls River with values of 3.4 and 4.2 mg/L (milligrams per liter) as N during summer (April through September) and winter (October through March), respectively. Streams affected by the completion of sewer districts show long-term (1971-97) trends of decreasing total nitrogen concentration and streams

  11. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated. Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons). Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards

  12. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  13. Ground water and small research basins: an historical perspective

    Treesearch

    Elon S. Verry

    2003-01-01

    Scientists have been studying hydrological processes within a watershed context for hundreds of years. Throughout much of that history, little attention was paid to the significance of ground water; in nearly all early studies, ground water was never considered. In many recent studies, ground water fluxes are assumed to be insignificantly small. The following is a...

  14. Ground-water management under the appropriation doctrine. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, D.; Bruhl, E.J.

    The purpose of the research is to better understand the characteristics of ground-water management under the prior-appropriation doctrine in the western United States. The general objective is to summarize the legal and administrative controls on ground-water use in eight western states and to compare the impacts of these controls on ground water systems.

  15. Ground-water flow patterns and water budget of a bottomland forested wetland, Black Swamp, eastern Arkansas

    USGS Publications Warehouse

    Gonthier, G.J.; Kleiss, B.A.

    1996-01-01

    The U.S. Geological Survey, working in cooperation with the U.S. Army Corps of Engineers, Waterways Experiment Station, collected surface-water and ground-water data from 119 wells and 13 staff gages from September 1989 to September 1992 to describe ground-water flow patterns and water budget in the Black Swamp, a bottomland forested wetland in eastern Arkansas. The study area was between two streamflow gaging stations located about 30.5 river miles apart on the Cache River. Ground-water flow was from northwest to southeast with some diversion toward the Cache River. Hydraulic connection between the surface water and the alluvial aquifer is indicated by nearly equal changes in surface-water and ground-water levels near the Cache River. Diurnal fluctuations of hydraulic head ranged from more than 0 to 0.38 feet and were caused by evapotranspiration. Changes in hydraulic head of the alluvial aquifer beneath the wetland lagged behind stage fluctuations and created the potential for changes in ground-water movement. Differences between surface-water levels in the wetland and stage of the Cache River created a frequently occurring local ground-water flow condition in which surface water in the wetland seeped into the upper part of the alluvial aquifer and then seeped into the Cache River. When the Cache River flooded the wetland, ground water consistently seeped to the surface during falling surface-water stage and surface water seeped into the ground during rising surface-water stage. Ground-water flow was a minor component of the water budget, accounting for less than 1 percent of both inflow and outflow. Surface-water drainage from the study area through diversion canals was not accounted for in the water budget and may be the reason for a surplus of water in the budget. Even though ground-water flow volume is small compared to other water budget components, ground-water seepage to the wetland surface may still be vital to some wetland functions.

  16. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 1996

    USGS Publications Warehouse

    Littin, Gregory R.; Monroe, Stephen A.

    1997-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1996, ground-water withdrawals for industrial and municipal use totaled about 7,040 acre-feet, which is less than a 1-percent decrease from 1995. Pumpage from the confined part of the aquifer decreased by about 3 percent to 5,390 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 9 percent to 1,650 acre-feet. Water-level declines in the confined area during 1996 were recorded in 11 of 13 wells, and the median change was a decline of about 2.7 feet as opposed to a decline of 1.8 feet for 1995. Water-level declines in the unconfined area were recorded in 11 of 18 wells, and the median change was a decline of 0.5 foot in 1996 as opposed to a decline of 0.1 foot in 1995. The average low-flow discharge at the Moenkopi streamflow-gaging station was 2.3 cubic feet per second in 1996. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1996. Average low-flow discharge was 2.3 cubic feet per second at Laguna Creek, 0.4 cubic foot per second at Dinnebito Wash, and 0.2 cubic foot per second at Polacca Wash. Discharge was measured at three springs. Discharge from Moenkopi School Spring decreased by about 2 gallons per minute from the measurement in 1995. Discharge from an unnamed spring near Dennehotso decreased by 1.3 gallons per minute from the measurement made in 1995; however

  17. Ground-water recharge to the regolith-fractured crystalline rock aquifer system, Orange County, North Carolina

    USGS Publications Warehouse

    Daniel, C. C.

    1996-01-01

    stations that measure streamflow within or from Orange County were analyzed to produce daily estimates of ground-water recharge in 12 drainage basins and subbasins in the county. The recharge estimates were further analyzed to determine seasonal and long-term recharge rates, as well as recharge duration statistics. Mean annual recharge in the 12 basins and subbasins ranges from 4.15 to 6.40 inches per year, with a mean value of 4.90 inches per year for all basins. In general, recharge rates are highest for basins along a north- south zone extending down the center of the county, and lowest in the western and southeastern parts of the county. Median recharge rates in the 12 basins range from 1.08 inches per year (80.7 gallons per day per acre) to 4.97 inches per year (370 gallons per day per acre), with a median value of 3.06 inches per year (228 gallons per day per acre) for all basins. Recharge estimates for the Morgan Creek Basin upstream from White Cross and upstream from Chapel Hill are higher than any other basin or subbasin in Orange County. Ground water also constitutes a higher percentage of total streamflow in Morgan Creek (44.4 percent upstream from White Cross; 47.9 percent upstream from Chapel Hill) than in any other stream in the county. Greater topographic relief and depth of channel incision may explain the high recharge estimates (base-flow rates) in the Morgan Creek Basin. The presence of large areas of regolith derived from the metaigneous, felsic hydrogeologic unit may magnify the effects of topographic relief and channel incision. Base flow in the New Hope River subbasin, as a percentage of total streamflow, at 32.2 percent, is the lowest of the 12 basins and subbasins. Much of the New Hope River subbasin is underlain by the Triassic sedimentary rock hydrogeologic unit that occurs within a rift basin of Triassic age. These data suggest that in areas underlain by Triassic sedimentary rock, there is less recharge to the ground-water syst

  18. Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1998-01-01

    Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.

  19. Ground-water levels in Huron County, Michigan, 2004-05

    USGS Publications Warehouse

    Weaver, T.L.; Crowley, S.L.; Blumer, S.P.

    2006-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships retained continuous waterlevel recorders, while the wells in Grant and Bingham Townships reverted primarily to periodic or quarterly measurement status. USGS also has provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 25 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 25 periodically or quarterly-measured wells is summarized in an annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998). The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville or Harbor Beach, or both (National Oceanic and Atmospheric Administration, 2003-05), and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration, 2003-05). In March 2003, a new low-water level for the period from 1991 through 2005 was measured in Lake Huron

  20. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    USGS Publications Warehouse

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Results of detailed water-quality analyses, ground-waterage dating, and dissolved-gas analyses indicated the vulnerability of ground water to specific types of contamination, the sequence of contaminant introduction to the aquifer relative to greenfield development, and processes that may mitigate the contamination. Concentrations of chloride and sodium and chloride/bromide weight ratios in sampled water from five wells indicated the vulnerability of the upper aquifer to roaddeicer contamination. Ground-water-age estimates from these wells indicated the onset of upgradient road-deicer use within the previous 25 years. Nitrate in the upper aquifer predates the post-1972 development, based on a ground-water-age date (30 years) and the nitrate concentration (5.12 milligrams per liter as nitrogen) in water from a deep well. Vulnerability of the aquifer to nitrate contamination is limited partially by denitrification. Detection of one to four atrazine transformation products in water samples from the upper aquifer indicated biological and hydrochemical processes that may limit the vulnerability of the ground water to atrazine contamination. Microbial processes also may limit the aquifer vulnerability to small inputs of halogenated aliphatic compounds, as indicated by microbial transformations of trichlorofluoromethane and trichlorotrifluoroethane relative to dichlorodifluoromethane. The vulnerability of ground water to contamination in other parts of the aquifer system also may be mitigated by hydrodynamic dispersion and biologically mediated transformations of nitrate, pesticides, and some organic compounds. Identification of the sequence of contamination and processes affecting the vulnerability of ground water to contamination would have been unlikely with conventional assessment methods.

  1. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1993 through September 1995

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1993 through September 1995, although the report focuses on hydrologic events from July through September 1995. Cumulative rainfall for July through September 1995 was about 15 inches which is 32 percent less than the mean cumulative rainfall of about 22 inches for July through September. July and August are within the annual dry season, while September is the start of the annual wet season. Mean cumulative rainfall is calculated for the fixed base period 1951-90. Ground-water withdrawal during July through September 1995 averaged 888,500 gallons per day. Withdrawal for the same 3 months in 1994 averaged 919,400 gallons per day. Patterns of withdrawal during the third quarter of 1995 did not change significantly since 1993 at all five ground-water production areas. At the end of September 1995, the chloride concentration of the composite water supply was 51 milligrams per liter, well below the 250 milligrams per liter secondary drinking-water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply from July through September 1995 ranged between 42 and 68 milligrams per liter. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations continued to increase since April 1995, with water from the deepest monitoring wells increasing in chloride concentration by as much as 2,000 milligrams per liter. A fuel leak at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water-supply purposes in April 1992. The remaining six wells are being used to hydraulically divert fuel migration away from water-supply wells by recirculating about 150,000 gallons of water each day.

  2. Effects of phosphate mining on the ground water of Anguar, Palau Islands, Trust Territory of the Pacific Islands

    USGS Publications Warehouse

    Arnow, Ted

    1961-01-01

    Mining of phosphate ore on Angaur Island by mechanized methods created large water-table lakes, which became filled with brackish or saline water. A hydrologic investigation was started in 1949 to determine whether the saline water in the lakes would spread to surrounding areas and cause damage to agricultural lands and the water supply. Angaur, which is in the Palau Islands in the southwestern part of Micronesia, is administered as part of the Trust Territory of the Pacific Islands, under a trusteeship granted to the United States by the United Nations. The island has an area of 3.2 square miles and has a maximum altitude of about 150 feet. The climate is tropical oceanic. The average annual temperature is 82 ? F; the average annual rainfall is about 125 inches; and the average relative humidity is about 80 percent. The northwestern third of Angaur (province A) consists topographically of a series of concentric ridges and depressions which are underlain largely by well-cemented coralline limestone of Pliocene, Pleistocene, and Recent ages. The remaining two-thirds of Angaur (province B} is a low plain underlain in the northern and central parts by a low platform of coralline rubble of Pleistocene and Recent age and in the southern part by sandy and rubbly beach deposits of Recent age. Province A contained extensive phosphate deposits of which more than 3 million tons were mined in 1909-55. Weekly water-level measurements at 35 wells, test holes, and lakes indicate that the water table averages about 2 feet above mean sea level in the beach deposits, about half a foot above mean sea level in the rubble deposits, and about 1.35 feet above mean sea level in the coralline limestone. Water samples obtained weekly at the observation sites indicate that the ground water in province A is not of uniform quality, as large variations in salinity occur throughout the area. In contrast, the ground water in province B is of relatively uniform quality, and contains less than 1

  3. Implications of ground water chemistry and flow patterns for earthquake studies

    USGS Publications Warehouse

    Guangcai, W.; Zuochen, Z.; Min, W.; Cravotta, C.A.; Chenglong, L.

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for ??18O, ??D, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57??C to 160??C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas. Copyright ?? 2005 National Ground Water Association.

  4. Effects of Withdrawals on Ground-Water Levels in Southern Maryland and the Adjacent Eastern Shore, 1980-2005

    USGS Publications Warehouse

    Soeder, Daniel J.; Raffensperger, Jeff P.; Nardi, Mark R.

    2007-01-01

    Ground water is the primary source of water supply in most areas of Maryland?s Atlantic Coastal Plain, including Southern Maryland. The counties in this area are experiencing some of the most rapid growth and development in the State, resulting in an increased demand for ground-water production. The cooperative, basic water-data program of the U.S. Geological Survey and the Maryland Geological Survey has collected long-term observations of ground-water levels in Southern Maryland and parts of the Eastern Shore for many decades. Additional water-level observations were made by both agencies beginning in the 1970s, under the Power Plant Research Program of the Maryland Department of Natural Resources. These long-term water levels commonly show significant declines over several decades, which are attributed to ground-water withdrawals. Ground-water-level trends since 1980 in major Coastal Plain aquifers such as the Piney Point-Nanjemoy, Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent were compared to water use and withdrawal data. Potentiometric surface maps show that most of the declines in ground-water levels can be directly related to effects from major pumping centers. There is also evidence that deep drawdowns in some pumped aquifers may be causing declines in adjacent, unpumped aquifers. Water-level hydrographs of many wells in Southern Maryland show linear declines in levels year after year, instead of the gradual leveling-off that would be expected as the aquifers equilibrate with pumping. A continual increase in the volumes of water being withdrawn from the aquifers is one explanation for why they are not reaching equilibrium. Although reported ground-water production in Southern Maryland has increased somewhat over the past several decades, the reported increases are often not large enough to account for the observed water-level declines. Numerical modeling simulations indicate that a steady, annual increase in the number of small wells could

  5. Ground-water field trip, Tucson to Nogales, Arizona

    USGS Publications Warehouse

    Coates, D.R.; Halpenny, L.C.

    1954-01-01

    A field excursion following the route described herein was conducted as a part of the curriculum of the 6th Ground Water Short Course, which was held by the Geological Survey at the University of Arizona in April 1954. The route log and descriptive text were designed to provide a general background of the ground-water situation in the Upper Santa Cruz Basin, a few of the geologic features that affect the occurrence of ground water, and some of the historical highlights of the region. 

  6. Latin hypercube approach to estimate uncertainty in ground water vulnerability

    USGS Publications Warehouse

    Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.

  7. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    USGS Publications Warehouse

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    Valley, flow is from valley margins toward the irrigated area. In northern Diamond Valley, flow appears to remain generally northward to the large discharge area. Subsurface flow through mountain ranges has been identified from Garden Valley (outside the study area) through the Sulphur Springs Range to Diamond Valley and from southeastern Antelope Valley through the Fish Creek Range to Little Smoky Valley (outside the study area). In both cases, the flow is probably through carbonate rocks. Ground-water levels in the Diamond Valley flow system have changed during the past 40 years. These changes are the result of pumpage for irrigation, municipal, domestic, and mining uses, mostly in southern Diamond Valley, and annual and longer-term variations in precipitation in undeveloped parts of the study area. A large area of ground-water decline that underlies an area about 10 miles wide and 20 miles long has developed in the basin-fill aquifer of southern Diamond Valley. Water levels beneath the main part of the irrigated area have declined as much as 90 feet. In undeveloped parts of the study area, annual water-level fluctuations generally have been no more than a few feet.

  8. Effects of unsaturated zone on ground-water mounding

    USGS Publications Warehouse

    Sumner, D.M.; Rolston, D.E.; Marino, M.A.

    1999-01-01

    The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding-an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the dynamic nature of basin infiltration, the finite transmission time of the infiltration front to the water table, or the interception of the basin floor by the capillary fringe.The design of infiltration basins used to dispose of treated wastewater or for aquifer recharge often requires estimation of ground-water mounding beneath the basin. However, the effect that the unsaturated zone has on water-table response to basin infiltration often has been overlooked in this estimation. A comparison was made between two methods used to estimate ground-water mounding - an analytical approach that is limited to the saturated zone and a numerical approach that incorporates both the saturated and the unsaturated zones. Results indicate that the error that is introduced by a method that ignores the effects of the unsaturated zone on ground-water mounding increases as the basin-loading period is shortened; as the depth to the water table increases, with increasing subsurface anisotropy; and with the inclusion of fine-textured strata. Additionally, such a method cannot accommodate the

  9. Handling the decline of ground water using artificial recharge areas

    NASA Astrophysics Data System (ADS)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  10. Pesticides in Ground Water of the Maryland Coastal Plain

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  11. Simulation of Hydrologic-System Responses to Ground-Water Withdrawals in the Hunt-Annaquatucket-Pettaquamscutt Stream-Aquifer System, Rhode Island

    USGS Publications Warehouse

    Barlow, Paul M.; Ostiguy, Lance J.

    2007-01-01

    A numerical-modeling study was done to better understand hydrologic-system responses to ground-water withdrawals in the Hunt-Annaquatucket-Pettaquamscutt (HAP) stream-aquifer system of Rhode Island. System responses were determined by use of steady-state and transient numerical ground-water-flow models. These models were initially developed in the late 1990s as part of a larger study of the stream-aquifer system. The models were modified to incorporate new data made available since the original study and to meet the objectives of this study. Changes made to the models did not result in substantial changes to simulated ground-water levels, hydrologic budgets, or streamflows compared to those calculated by the original steady-state and transient models. Responses of the hydrologic system are described primarily by changes in simulated streamflows and ground-water levels throughout the basin and by changes to flow conditions in the aquifer in three wetland areas immediately east of the Lafayette State Fish Hatchery, which lies within the Annaquatucket River Basin in the town of North Kingstown. Ground water is withdrawn from the HAP aquifer at 14 large-capacity production wells, at an industrial well, and at 3 wells operated by the Rhode Island Department of Environmental Management at the fish hatchery. A fourth well has been proposed for the hatchery and an additional production well is under development by the town of North Kingstown. The primary streams of interest in the study area are the Hunt, Annaquatucket, and Pettaquamscutt Rivers and Queens Fort Brook. Total model-calculated streamflow depletions in these rivers and brook resulting from withdrawals at the production, industrial, and fish-hatchery wells pumping at average annual 2003 rates are about 4.8 cubic feet per second (ft3/s) for the Hunt River, 3.3 ft3/s for the Annaquatucket River, 0.5 ft3/s for the Pettaquamscutt River, and 0.5 ft3/s for Queens Fort Brook. The actual amount of streamflow reduction

  12. GWM-a ground-water management process for the U.S. Geological Survey modular ground-water model (MODFLOW-2000)

    USGS Publications Warehouse

    Ahlfeld, David P.; Barlow, Paul M.; Mulligan, Anne E.

    2005-01-01

    GWM is a Ground?Water Management Process for the U.S. Geological Survey modular three?dimensional ground?water model, MODFLOW?2000. GWM uses a response?matrix approach to solve several types of linear, nonlinear, and mixed?binary linear ground?water management formulations. Each management formulation consists of a set of decision variables, an objective function, and a set of constraints. Three types of decision variables are supported by GWM: flow?rate decision variables, which are withdrawal or injection rates at well sites; external decision variables, which are sources or sinks of water that are external to the flow model and do not directly affect the state variables of the simulated ground?water system (heads, streamflows, and so forth); and binary variables, which have values of 0 or 1 and are used to define the status of flow?rate or external decision variables. Flow?rate decision variables can represent wells that extend over one or more model cells and be active during one or more model stress periods; external variables also can be active during one or more stress periods. A single objective function is supported by GWM, which can be specified to either minimize or maximize the weighted sum of the three types of decision variables. Four types of constraints can be specified in a GWM formulation: upper and lower bounds on the flow?rate and external decision variables; linear summations of the three types of decision variables; hydraulic?head based constraints, including drawdowns, head differences, and head gradients; and streamflow and streamflow?depletion constraints. The Response Matrix Solution (RMS) Package of GWM uses the Ground?Water Flow Process of MODFLOW to calculate the change in head at each constraint location that results from a perturbation of a flow?rate variable; these changes are used to calculate the response coefficients. For linear management formulations, the resulting matrix of response coefficients is then combined with other

  13. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  14. Ground-water levels, water quality, and potential effects of toxic-substance spills or cessation of quarry dewatering near a municipal ground-water supply, southeastern Franklin County, Ohio

    USGS Publications Warehouse

    Sedam, A.C.; Eberts, S.M.; Bair, E.S.

    1989-01-01

    A newly completed municipal ground-water supply that produces from a sand and gravel aquifer in southern Franklin County, Ohio, may be susceptible to potential sources of pollution. Among these are spills of toxic substances that could enter recharge areas of the aquifer or be carried by surface drainage and subsequently enter the aquifer by induced infiltration. Ground water of degraded quality also is present in the vicinity of several landfills located upstream from the municipal supply. Local dewatering by quarrying operations has created a ground-water divide which, at present, prevents direct movement of the degraded ground water to the municipal supply. In addition, the dewatering has held water levels at the largest landfills below the base of the landfill. Should the dewatering cease, concern would be raised regarding the rise of water levels at this landfills and transport of contaminants through the aquifer to the Scioto River and subsequently by the river to the well field. From June 1984 through July 1986, the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, investigated the relations among the ground-water supply and potential sources of contamination by means of an observation-well network and a program of measuring water levels and sampling for water quality. Sample collections included those made to determine the baseline levels of organic chemicals and metals, as well as periodic sampling and analysis for common constituents to evaluate any changes taking place in the system. Finally, a steady-state, three-dimensional numerical model was used to determine ground-water flow directions and average ground-water velocities to asses potential effects of toxic-substance spills. The model also was used to simulate changes in the ground-water flow system that could result if part or all of the quarry dewatering ceased. Few of the organic-chemical and metal constituents analyzed for were present at detectable levels. With respect to

  15. Geology and ground-water resources of Waushara County, Wisconsin

    USGS Publications Warehouse

    Summers, William Kelly

    1965-01-01

    Abundant ground water for irrigation is available in the outwash deposits in western Waushara County, and many more large-capacity wells can be developed in these deposits without seriously lowering the water level. Pumping for irrigation temporarily lowers water levels in the vicinity of the wells but has not lowered regional water levels. Pumpage has probably intercepted and utilized some of the recharge that would have been rapidly discharged from the aquifer. Ground water is continuously being discharged to streams and to the atmosphere by evapotranspiration, but intermittent recharge from precipitation replaces the discharged water. Recharge and discharge are in approximate balance, maintaining about the same amount of ground water in storage. Further recharge to the aquifer is rapidly discharged to streams. The sandstones, till, and glaciolacustrine deposits in Waushara County generally yield small to moderate amounts of water to wells but do not produce enough water for irrigation ; recent alluvium may yield large quantities of water to wells. In general, the ground water is of good quality, except for hardness and local high-iron concentrations.

  16. Water resources and related geology of Dera Ismail Khan district, West Pakistan, with reference to the availability of ground water for development

    USGS Publications Warehouse

    Hood, J.W.; Khan, Lutfe Ali; Jawaid, Khalid

    1970-01-01

    Dera Ismail (D.I.) Khan District contains an area of 3,450 square miles between the right bank of the Indus River and the Sulaiman Range in westcentral West Pakistan. Agriculture is the principal source of income in the District, but only a small part of the arable land is fully utilized. The region is semiarid and has an average annual rainfall of about 9 inches and a potential evapotranspirational rate of eight to nine times the annual rainfall. Thus, rainfall alone is not adequate for high-intensity cropping. Irrigation is practiced near the Indus River; the Paharpur Canal is used, as well as the traditional inundation method. Elsewhere in the District, adequate water is supplied to local areas by karezes, perennial streams from the mountains, and some recently installed tubewells (see 'Glossary'). Further development of ground-water supplies would permit a more effective utilization of most of the presently tilled land and would allow additional land to be farmed. D.I. Khan District is primarily an alluvial plain that slopes from the mountain ranges in the northern and western parts of the District toward the Indus River. Rocks in the bordering mountains are of Paleozoic to early or middle Pleistocene age. The unconsolidated rocks of the plain, of middle (?) Pleistocene to Holocene (Recent) age, consist of piedmont deposits derived from the hills to the north and west and of alluvium laid down by the Indus River. These deposits interfinger in a transitional zone about 8 to 12 miles west of the river. Lithologic and structural features indicate that the unconsolidated rocks possibly may be divided into broad units. The investigations in D.I. Khan District have revealed two main areas of potential ground-water development based on considerations of both permeability and chemical quality of the ground water: 1. A belt about 10 miles wide parallels the Indus River from the Khisor Range southward to the area immediately south of D.I. Khan town. In this belt, the

  17. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment technique...

  18. Ground-water, surface-water, and water-chemistry data, Black Mesa area, northeastern Arizona, 1997

    USGS Publications Warehouse

    Littin, Gregory R.; Baum, Bradley M.; Truini, Margot

    1999-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined parts of the aquifer, (2) ground-water levels in the confined and unconfined parts of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1997, ground-water withdrawals for industrial and municipal use totaled about 7,090 acre-feet, which is less than a 1-percent increase from 1996. Pumpage from the confined part of the aquifer increased by about 2 percent to 5,510 acre-feet, and pumpage from the unconfined part of the aquifer decreased by about 4 percent to 1,580 acre-feet. Water-level declines in the confined part during 1997 were recorded in 5 of 12 wells; however, the median change was a rise of about 0.2 foot as opposed to a decline of 2.8 feet for 1996. Water-level declines in the unconfined part were recorded in 7 of 15 wells, and the median change was 0.0 foot in 1997 as opposed to a decline of 0.5 foot in 1996. The low-flow discharge at the Moenkopi streamflow-gaging station ranged from 1.6 to 2.0 cubic feet per second in 1997. Streamflow-discharge measurements also were made at Laguna Creek, Dinnebito Wash, and Polacca Wash during 1997. The low-flow discharge ranged from 2.3 to 4.2 cubic feet per second at Laguna Creek, 0.44 to 0.48 cubic foot per second at Dinnebito Wash, and 0.15 to 0.26 cubic foot per second at Polacca Wash. Discharge was measured at three springs. Discharge from Moenkopi School Spring increased by about 3 gallons per minute from the measurement in 1996. Discharge from an unnamed spring near Dennehotso increased by 9.9 gallons per minute from the measurement made in

  19. United Nations Environment Programme. Annual Review 1981.

    ERIC Educational Resources Information Center

    United Nations Environment Programme, Nairobi (Kenya).

    This edition of the United Nations Environment Programme (UNEP) annual report is structured in three parts. Part 1 focuses on three contemporary problems (ground water, toxic chemicals and human food chains and environmental economics) and attempts to solve them. Also included is a modified extract of "The Annual State of the Environment…

  20. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    USGS Publications Warehouse

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  1. Ground-water levels in Huron County, Michigan, 2006-07

    USGS Publications Warehouse

    Weaver, T.L.; Blumer, S.P.; Fuller, L.M.

    2008-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS initially operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham (H5r), Fairhaven (H9r), Grant (H2r), and Lake Townships (H25Ar) and summarized the data collected in an annual or bi-annual report (fig. 1). The agreement was altered in 2003, and beginning January 1, 2004, only wells H9r and H25Ar retained continuous water-level recorders, while wells H2r and H5r reverted to quarterly or periodic measurement status due to budget constraints. The decision of which two wells to discontinue was based on an analysis of the intrinsic value to Huron County of data from each well. Well H2r was selected for periodic measurement at that time because it is completed in the glacial aquifer, which is absent in much of Huron County and well H5r, which is completed in the Marshall aquifer, was selected because the water level in the well is often perturbed as a result of pumpage from nearby production wells and does not always reflect baseline conditions within the aquifer. USGS also has provided training for County or Huron Conservation District personnel to measure the water level in 24 of the wells on a quarterly basis. USGS personnel accompany County or Huron Conservation District personnel on a semi-annual basis to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the wells is summarized in an annual or bi-annual report. The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for groundwater levels in Huron County. Figure 2 shows the meanmonthly water-level altitude of Lake Huron, averaged from

  2. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  3. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  4. Ground-water in the Austin area, Lander County, Nevada

    USGS Publications Warehouse

    Phoenix, David A.

    1949-01-01

    The U.S. Geological Survey, in cooperation with the State Engineer of Nevada, made a preliminary survey of ground-water conditions in the Austin area, Nev., during the period July 25 to 28, 1949. The purpose was to evaluate ground-water conditions with special reference to the quantity of ground water that might be available in the area--an adequate water supply has been a constant problem throughout the history of the Austin area. The investigation was made by the writer under the supervision of Thomas W. Robinson, district engineer, Ground Water Branch, U.S. Geological Survey. Material assistance was given in the field by local residents. Frank Bertrand, water commissioner, Thomas Peacock, county assessor, and George McGinnis, county commissioner, guided the writer to springs new utilized by the town of Austin and rendered other valuable field assistance.

  5. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    EPA Science Inventory

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  6. Ground-water resources data for Warren County, Pennsylvania

    USGS Publications Warehouse

    Moore, M.E.; Buckwalter, T.F.

    1996-01-01

    This report presents lithologic, hydrologic, and chemical data collected during a study of the ground-water resources of Warren County, Pa. The study was conducted during 1983-90 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, and the Warren County Commissioners. The data include information on aquifers, water levels, and yields for about 600 wells, and records for 57 springs. Descriptions of aquifer lithology and chemical analyses of water samples collected at well and spring sites are provided. Chemical analyses include major cations, anions, nutrients, and selected trace elements. Also included are data on concentrations of volatile organic compounds, dissolved methane, ethane, propane, and total organic carbon. The report presents a summary of the source and significance of selected chemical constituents in ground water, a listing of Federal drinking water standards, and information on selected methods of removing or reducing concentrations of undesirable chemical constituents from water. Daily ground- water levels for five observation wells are tabulated. Maps of Warren County show the location of townships, boroughs, and 7-1/2-minute quadrangles. Data-collection sites are shown on 18 figures. A glossary is provided for readers unfamiliar with ground-water terminology.

  7. Implications of ground water chemistry and flow patterns for earthquake studies.

    PubMed

    Guangcai, Wang; Zuochen, Zhang; Min, Wang; Cravotta, Charles A; Chenglong, Liu

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for delta18O, deltaD, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57 degrees C to 160 degrees C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas.

  8. Ground-water level fluctuations in Utah, 1936-45: A section in Twenty-fifth biennial report of the State Engineer to the governor of Utah: 1944-1946

    USGS Publications Warehouse

    Thomas, H.E.

    1946-01-01

    Ground-water investigations in Utah by the Geological Survey of the U.S. Department of the Interior have been in progress since 1935, in cooperation with the Utah State Engineer. This cooperative work includes (1) determination of the fluctuations of water level in most of the developed ground-water areas in the state, based upon measurements which are tabulated and published annually by the Geological Survey; and (2) detailed investigations of specific ground-water areas to determine source, movement, disposal, quantity and quality of the ground water, and to show the relation of present development to the maximum economic development of which those areas are capable. Such detailed investigations have been completed during the past decade for areas in Iron, Millard, Salt Lake, Tooele, and Weber Counties, and are referred to in discussion subsequently. Similar investigations are now in progress in other areas in Davis, Iron, and Weber Counties.

  9. Hydrogeologic Setting, Ground-Water Flow, and Ground-Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, 2000-2005

    USGS Publications Warehouse

    Pippin, Charles G.; Chapman, Melinda J.; Huffman, Brad A.; Heller, Matthew J.; Schelgel, Melissa E.

    2008-01-01

    A 6-year intensive field study (2000-2005) of a complex, regolith-fractured bedrock ground-water system was conducted at the Langtree Peninsula research station on the Davidson College Lake Campus in Iredell County, North Carolina. This research station was constructed as part of the Piedmont and Mountains Resource Evaluation Program, a cooperative study being conducted by the North Carolina Department of Environment and Natural Resources and the U.S. Geological Survey. Results of the study characterize the distinction and interaction of a two-component ground-water system in a quartz diorite rock type. The Langtree Peninsula research station includes 17 monitoring wells and 12 piezometers, including 2 well transects along high to low topographic settings, drilled into separate parts of the ground-water-flow system. The location of the research station is representative of a metaigneous intermediate (composition) regional hydrogeologic unit. The primary rock type is mafic quartz diorite that has steeply dipping foliation. Primary and secondary foliations are present in the quartz diorite at the site, and both have an average strike of about N. 12 degree E. and dip about 60 degree in opposite directions to the southeast (primary) and the northwest (secondary). This rock is cut by granitic dikes (intrusions) ranging in thickness from 2 to 50 feet and having an average strike of N. 20 degree W. and an average dip of 66 degree to the southwest. Depth to consolidated bedrock is considered moderate to deep, ranging from about 24 to 76 feet below land surface. The transition zone was delineated and described in each corehole near the well clusters but had a highly variable thickness ranging from about 1 to 20 feet. Thickness of the regolith (23 to 68 feet) and the transition zone do not appear to be related to topographic setting. Delineated bedrock fractures are dominantly low angle (possibly stress relief), which were observed to be open to partially open at depths of

  10. Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the Savannah River Site, Georgia and South Carolina

    USGS Publications Warehouse

    Clarke, John S.; West, Christopher T.

    1998-01-01

    Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is

  11. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  12. Pesticides in Ground Water of Central and Western Maryland

    USGS Publications Warehouse

    Ator, Scott W.; Reyes, Betzaida

    2008-01-01

    Selected pesticides and degradates (products of pesticide degradation) are detectable in ground water in many parts of central and western Maryland, although concentrations are generally less than 0.1 micrograms per liter. Ground-water samples collected recently (1994-2003) from 72 wells in areas of Maryland underlain by consolidated carbonate, crystalline, or siliciclastic aquifers (areas north and west of the Fall Line) were analyzed for selected pesticides and degradates. Pesticides were typically detected in mixtures of multiple compounds in ground water, and degradates were commonly detected, often at greater concentrations than their respective parent compounds. No pesticides were observed at concentrations greater than established standards for drinking water, and nearly all observed concentrations were below other health-based guidelines. Although such standards and guidelines are generally much greater than measured concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of pesticides and degradates in ground water is related to application practices, as well as chemical and environmental factors that affect the fate and movement of individual compounds.

  13. Summary appraisals of the Nation's ground-water resources; Pacific Northwest region

    USGS Publications Warehouse

    Foxworthy, Bruce L.

    1979-01-01

    Management opportunities in the region include: (1) Development of new supplies and additional uses of ground water; (2) protection and enhancement of water quality; (3) reduction of waterlogging; (4) energy development from some ground-water reservoirs; (5) improving access to the ground water; (6) increased use of underground space for storage and disposal; and (7) greater use of advanced management and conservation techniques. Conjunctive use of surface and ground water to provide greater available supplies probably is the most promising water-management opportunity. However, if the full potential of the ground-water resources is to be realized, important constraints, including present water-right structures and serious deficiencies in information, must be overcome.

  14. Water Resources Data for California, 1966, 1967, 1968; Part 3: Ground Water Records

    USGS Publications Warehouse

    1970-01-01

    The water-level records are arranged alphabetically by county, and for each county by valley or ground-water basin. Thus, each group of data pertains to a distinct ground-water area, as indicated by subheadings in the report. Under each subhead, the records are arranged numerically by well number.

  15. Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961-2009)

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; Wada, Yoshihide

    2016-01-01

    The Yellow River Basin (YRB), the second largest river basin of China, has experienced a booming agriculture over the past decades. But data on variability of and trends in water consumption, pollution and scarcity in the YRB are lacking. We estimate, for the first time, the inter- and intra-annual water footprint (WF) of crop production in the YRB for the period 1961-2009 and the variation of monthly scarcity of blue water (ground and surface water) for 1978-2009, by comparing the blue WF of agriculture, industry and households in the basin to the maximum sustainable level. Results show that the average overall green (from rainfall) and blue (from irrigation) WFs of crops in the period 2001-2009 were 14% and 37% larger, respectively, than in the period 1961-1970. The annual nitrogen- and phosphorus-related grey WFs (water required to assimilate pollutants) of crop production grew by factors of 24 and 36, respectively. The green-blue WF per ton of crop reduced significantly due to improved crop yields, while the grey WF increased because of the growing application of fertilizers. The ratio of blue to green WF increased during the study period resulting from the expansion of irrigated agriculture. In the period 1978-2009, the annual total blue WFs related to agriculture, industry and households varied between 19% and 52% of the basin's natural runoff. The blue WF in the YRB generally peaks around May-July, two months earlier than natural peak runoff. On average, the YRB faced moderate to severe blue water scarcity during seven months (January-July) per year. Even in the wettest month in a wet year, about half of the area of the YRB still suffered severe blue water scarcity, especially in the basin's northern part.

  16. Ground water hydrology report: Revision 1, Attachment 3. Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards.

  17. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    USGS Publications Warehouse

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    The lower Pawcatuck River basin in southwestern Rhode Island is an area of about 169 square miles underlain by crystalline bedrock over which lies a relatively thin mantle of glacial till and stratified drift. Stratified drift, consisting dominantly of sand and gravel, occurs in irregularly shaped linear deposits that are generally less than a mile wide and less than 125 feet thick; these deposits are found along the Pawcatuck River, its tributaries, and abandoned preglacial channels. Deposits of stratified sand and gravel constitute the principal aquifer in the lower Pawcatuck basin and the only one capable of sustaining yields of 100 gallons per minute or more to individual wells. Water available for development in this aquifer consists of water in storage--potential ground-water runoff to streams--plus infiltration that can be induced from streams. Minimum annual ground-water runoff from the sand and gravel aquifer is calculated to be at least 1.17 cubic feet per second per square mile, or 0.76 million gallons per day per square mile. Potential recharge by induced infiltration is estimated to range from about 250 to 600 gallons per day per linear foot of streambed for the principal streams. In most areas, induced infiltration from streams constitutes the major source of water potentially available for development by wells. Because subsurface hydraulic connection in the sand and gravel aquifer is poor in several places, the deposits are conveniently divisible into several ground-water reservoirs. The potential yield from five of the most promising ground-water reservoirs is evaluated by means of mathematical models. Results indicate that continuous withdrawals ranging from 1.3 to 10.3 million gallons per day, and totaling 31 million gallons per day, are obtainable from these reservoirs. Larger yields may be recovered by different well placement, spacing, construction and development, pumping practice, and so forth. Withdrawals at the rates indicated will reduce

  18. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records-update

    USGS Publications Warehouse

    Rutledge, A.T.

    1998-01-01

    The computer programs included in this report can be used to develop a mathematical expression for recession of ground-water discharge and estimate mean ground-water recharge and discharge. The programs are intended for analysis of the daily streamflow record of a basin where one can reasonably assume that all, or nearly all, ground water discharges to the stream except for that which is lost to riparian evapotranspiration, and where regulation and diversion of flow can be considered to be negligible. The program RECESS determines the master reces-sion curve of streamflow recession during times when all flow can be considered to be ground-water discharge and when the profile of the ground-water-head distribution is nearly stable. The method uses a repetitive interactive procedure for selecting several periods of continuous recession, and it allows for nonlinearity in the relation between time and the logarithm of flow. The program RORA uses the recession-curve displacement method to estimate the recharge for each peak in the streamflow record. The method is based on the change in the total potential ground-water discharge that is caused by an event. Program RORA is applied to a long period of record to obtain an estimate of the mean rate of ground-water recharge. The program PART uses streamflow partitioning to estimate a daily record of base flow under the streamflow record. The method designates base flow to be equal to streamflow on days that fit a requirement of antecedent recession, linearly interpolates base flow for other days, and is applied to a long period of record to obtain an estimate of the mean rate of ground-water discharge. The results of programs RORA and PART correlate well with each other and compare reasonably with results of the corresponding manual method.

  19. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  20. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  1. Inventory of ground-water resources in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Broshears, Robert E.; Akbari, M. Amin; Chornack, Michael P.; Mueller, David K.; Ruddy, Barbara C.

    2005-01-01

    In 2004, the U.S. Geological Survey began working with engineers at the Afghanistan Geological Survey to provide hydrologic training and equipment and to apply these tools to build an inventory of water wells in the Kabul Basin of Afghanistan. An inventory of 148 wells now includes information on well location, depth, and access. Water-level and water-quality measurements have been made at most of these wells. A water-level elevation map has been constructed, and general directions of ground-water flow have been defined. Ground-water flow in the Kabul Basin is primarily through saturated alluvium and other basin-fill sediments. The water-table surface generally mirrors topography, and ground water generally flows in the directions of surface-water discharge. The quality of ground water in the Kabul Basin varies widely. In some areas, ground-water quality is excellent, with low concentrations of dissolved solids and no problematic constituents. In other areas, however, high concentrations of dissolved solids and the presence of some constituents at concentrations deemed harmful to humans and crops render untreated ground water marginal or unsuitable for public supply and/or agricultural use. Of particular concern are elevated concentrations of nitrate, boron, and dissolved solids, and an indication of fecal pollution in some parts of the basin. As Afghanistan emerges from years of conflict, as institutional capacities rejuvenate and grow, and as the need for wise water-management decisions continues, adequate data and a fuller understanding of the ground-water resource in the Kabul Basin will be imperative. The work described in this report represents only a modest beginning in what will be a long-term data-collection and interpretive effort.

  2. Implications for water use of a shift from annual to perennial crops - A stochastic modelling approach based on a trait meta-analysis

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Brunsell, Nathaniel

    2017-04-01

    The projected population growth and changes in climate and dietary habits will further increase the pressure on water resources globally. Within precision farming, a host of technical solutions has been developed to reduce water consumption for agricultural uses. The next frontier for a more sustainable agriculture is the combination of reduced water requirements with enhanced ecosystem services. Currently, staple grains are obtained from annuals crops. A shift from annual to perennial crops has been suggested as a way to enhance ecosystem services. In fact, perennial plants, with their continuous soil cover and the higher allocation of resources to the below ground, contribute to the reduction of soil erosion and nutrient losses, while enhancing carbon sequestration in the root zone. Nevertheless, the net effect of a shift to perennial crops on water use for agriculture is still unknown, despite its relevance for the sustainability of such a shift. We explore here the implications for water management at the field- to farm-scale of a shift from annual to perennial crops, under rainfed and irrigated agriculture. A probabilistic description of the soil water balance and crop development is employed to quantify water requirements and yields and their inter-annual variability, as a function of rainfall patterns, soil and crop features. Optimal irrigation strategies are thus defined in terms of maximization of yield and minimization of required irrigation volumes and their inter-annual variability. The probabilistic model is parameterized based on an extensive meta-analysis of traits of co-generic annual and perennial species to explore the consequences for water requirements of shifting from annual to perennial crops under current and future climates. We show that the larger and more developed roots of perennial crops may allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species. At the same time, perennial

  3. A technique for estimating ground-water levels at sites in Rhode Island from observation-well data

    USGS Publications Warehouse

    Socolow, Roy S.; Frimpter, Michael H.; Turtora, Michael; Bell, Richard W.

    1994-01-01

    Estimates of future high, median, and low ground- water levels are needed for engineering and architectural design decisions and for appropriate selection of land uses. For example, the failure of individual underground sewage-disposal systems due to high ground-water levels can be prevented if accurate water-level estimates are available. Estimates of extreme or average conditions are needed because short duration preconstruction obser- vations are unlikely to be adequately represen- tative. Water-level records for 40 U.S. Geological Survey observation wells in Rhode Island were used to describe and interpret water-level fluctuations. The maximum annual range of water levels average about 6 feet in sand and gravel and 11 feet in till. These data were used to develop equations for estimating future high, median, and low water levels on the basis of any one measurement at a site and records of water levels at observation wells used as indexes. The estimating technique relies on several assumptions about temporal and spatial variations: (1) Water levels will vary in the future as they have in the past, (2) Water levels fluctuate seasonally (3) Ground-water fluctuations are dependent on site geology, and (4) Water levels throughout Rhode Island are subject to similar precipitation and climate. Comparison of 6,697 estimates of high, median, and low water levels (depth to water level exceeded 95, 50, and 5 percent of the time, respectively) with the actual measured levels exceeded 95, 50, and 5 percent of the time at 14 sites unaffected by pumping and unknown reasons, yielded mean squared errors ranging from 0.34 to 1.53 square feet, 0.30 to 1.22 square feet, and 0.32 to 2.55 square feet, respectively. (USGS)

  4. Using thermal-infrared imagery to delineate ground-water discharge

    USGS Publications Warehouse

    Banks, W.S.L.; Paylor, R.L.; Hughes, W.B.

    1996-01-01

    On March 8 and 9, 1992, a thermal-infrared-multispectral scanner (TIMS) was flown over two military ordnance disposal facilities at the Edgewood Area of Aberdeen Proving Ground, Maryland. The data, collected bythe National Aeronautics and Space Administration, in cooperation with the U.S. Army and the U.S. Geological Survey, were used to locate ground-water discharge zones in surface water. The images from the flight show areas where ground-water discharge is concentrated, as well as areas of diffuse discharge. Concentrated discharge is predominant in isolated or nearly isolated ponds and creeks in the study area. Diffuse dicharge is found near parts of the shoreline where the study area meets the surrounding estuaries of the Chesapeake Bay and the Gunpowder River. The average temperature for surface water, measured directly in the field, and the average temperature, calculated from atmospherically corrected TIMS images, was 10.6??C (Celsius) at the first of two sites. Potentiometric surface maps of both field sites show discharge toward the nontidal marshes, the estuaries which surround the field sites, and creeks which drain into the estuaries. The average measured temperature of ground water at both sites was 10.7??C. The calculated temperature from the TIMS imagery at both sites where ground-water discharge is concentrated within a surface-water body is 10.4??C. In the estuaries which surround the field sites, field measurements of temperature were made resulting in an average temperature of 9.0??C. The average calculated TIMS temperature from the estuaries was 9.3??C. Along the shoreline at the first site and within 40 to 80 meters of the western and southern shores of the second site, water was 1?? to 2??C warmer than water more than 80 meters away. The pattern of warmer water grading to cooler water in an offshore direction could result from diffuse ground-water discharge. Tonal differences in the TIMS imagery could indicate changes in surface-water

  5. An application of thermometry to the study of ground water

    USGS Publications Warehouse

    Schneider, Robert

    1962-01-01

    The precise measurement of fluctuations in ground-water temperature, based on monthly readings in shallow glacial-outwash aquifers (up to about 70 feet deep), is useful in the study of ground-water movement and recharge. In addition to the study of natural phenomena in the hydrologic cycle, thermometry may be used as a tool in making detailed studies of (1) the effects of inducing the infiltration of surface water, (2) artificial recharge, (3) the effects of injecting petroleum products or radioactive or other wastes into the ground, and (4) ground-water movement in mines.

  6. Hydrologic and geochemical approaches for determining ground-water flow components

    USGS Publications Warehouse

    Hjalmarson, H.W.; Robertson, F.N.

    1991-01-01

    Lyman Lake is an irrigation-storage reservoir on the Little Colorado River near St. Johns, Arizona. The main sources of water for the lake are streamflow in the Little Colorado River and ground-water inflow from the underlying Coconino aquifer. Two approaches, a hydrologic analysis and a geochemical analysis, were used to compute the quantity of ground-water flow to and from Lyman Lake. Hydrologic data used to calculate a water budget were precipitation on the lake, evaporation from the lake, transpiration from dense vegetation, seepage through the dam, streamflow in and out of the lake, and changes in lake storage. Geochemical data used to calculate the ground-water flow components were major ions, trace elements, and the stable isotopes of hydrogen and oxygen. During the study, the potentiometric level of the Coconino aquifer was above the lake level at the upstream end of the lake and below the lake level at the downstream end. Hydrologic and geochemical data indicate that about 10 percent and 8 percent, respectively, of the water in the lake is ground-water inflow and that about 35 percent of the water in the Little Colorado River 6 miles downgradient from the lake near Salado Springs is ground water. These independent estimates of ground-water flow derived from each approach are in agreement and support a conceptual model of the water budget.

  7. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  8. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  9. Winter Thaws Can Raise Ground Water Levels in Driftless Area

    Treesearch

    Richard S. Sartz

    1967-01-01

    Springflow and ground water levels both rose with winter thaws, even when the ground was frozen. A high soil water content suggests that water moved to the water table through a continuous column of soil water rather than as a wetting front

  10. Ground-Water Reconnaissance at Pinnacles National Monument, California

    USGS Publications Warehouse

    Evenson, R.E.

    1962-01-01

    Ground-water supplies at Pinnacles National Monument have been obtained from springs that occur in fractures and along bedding planes of volcanic flows and deposits, and from springs discharged from perched water in a sedimentary fanglomerate formation. The spring-water yield is barely adequate to supply existing camp facilities, and therefore a supplemental water supply is necessary before existing campgrounds can be expanded. This supplemental water can be supplied by good-quality ground water obtained from shallow wells drilled in the alluvium of Chalone Creek. The yield of properly constructed wells in this area should exceed 10 gallons per minute.

  11. Ground-water and water-chemistry data for the Willamette basin, Oregon

    USGS Publications Warehouse

    Orzol, Leonard L.; Wozniak, Karl C.; Meissner, Tiffany R.; Lee, Douglas B.

    2000-01-01

    This report presents ground-water data collected and compiled as part of a study of the ground-water resources of the Willamette River Basin, Oregon. The report includes tabulated information and a location map for 1,234 field-located water wells and 6 springs, hydrographs showing water-level fluctuations during various time periods for 265 of the wells, borehole geophysical data for 16 wells, and water-chemistry analyses from 125 wells and 6 springs. These data, as well as data for 4,752 additional fieldlocated wells and 1 spring, are included on a CD-ROM. In addition, the locations of the field-located wells and springs are provided in geographic information system formats on the CD-ROM.

  12. Ground-water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1990-1993

    USGS Publications Warehouse

    Kues, G.E.; Garcia, B.M.

    1995-01-01

    Ground-water-quality and ground-water-level data were collected in four unincorporated areas of Bernalillo County during 1990-93. Twenty wells in the east mountain area of Bernalillo County were sampled approximately monthly between January 1990 and June 1993. The water samples were analyzed for concentrations of chloride and selected nutrient species; many of the samples also were analyzed for concentrations of total organic carbon and dissolved boron and iron. Eleven wells northeast of the city of Albuquerque, 20 wells in the Rio Grande Valley immediately north of Albuquerque, and 30 wells in the Rio Grande Valley immediately south of Albuquerque were sampled once each between December 1992 and September 1993; all water samples were analyzed for chloride and selected nutrient species, and selected samples from wells in the north and south valley areas were also analyzed for major dissolved constituents, iron, manganese, and methylene blue active substances. Samples from 10 of the wells in the north and south valley areas were analyzed for 47 selected pesticides. Field measurements of specific conductance, pH, temperature, and alkalinity were made on most samples at the time of sample collection. Water levels also were measured at the time of sample collection when possible. Results of the monthly water-quality and water-level monitoring in the east mountain area of Bernalillo County are presented in graphical form. Water-quality and water-level data collected from the other areas are presented in tabular form.

  13. Hydrogeologic framework and preliminary simulation of ground-water flow in the Mimbres Basin, southwestern New Mexico

    USGS Publications Warehouse

    Hanson, R.T.; McLean, J.S.; Miller, Ryan S.

    1994-01-01

    The bolson-fill aquifer, the major water-yielding unit in the Mimbres Basin, southwestern New Mexico, ranges in thickness from 0 to about 3,700 feet. Recharge to the bolson-fill aquifer occurs by infiltration of ephemeral streams that cross the basin margin, infiltration from precipitation and streamflow, ground-water underflow from adjacent basins, and infiltration of springflow from adjacent bedrock units within the basin. Ground water generally flows southward from the northern highland areas of the basin. Ground-water discharge consists of pumpage from wells, transpiration by plants, outflow to playas and springs in the Los Muertos Basin in Mexico, discharge to the Mimbres River, and ground-water flow to the Mesilla Basin near Mason Draw. Before 1910, ground-water recharge and discharge were approximately equal; by 1975, however, about 75 percent of the 146,000 acre-feet withdrawn annually was ground water, most of it from aquifer storage. The transmissivity of the bolson-fill aquifer determined from aquifer tests and specific-capacity data ranges from 10 to 50,000 feet squared per day. Hydraulic conductivity, calculated from saturated thickness and transmissivity, ranges from 0.03 to 800 feet per day, with median values of about 18 feet per day in the Deming area and 6 feet per day elsewhere. Reported storage-coefficient values representing confined parts of the aquifer range from 0.00036 to 0.0036, and those representing unconfined parts of the aquifer range from 0.02 to 0.24. Water quality in the north and central parts of the Mimbres Basin is suitable for most uses. Due to its large salinity and alkalinity, some of the ground water in the south and southeastern areas of the bolson-fill aquifer may not be suitable for irrigation or domestic use. A preliminary two-dimensional digital model was constructed to evaluate ground-water flow in the bolson-fill aquifer. The model was divided into zones of uniform hydraulic conductivity corresponding to the major

  14. Transboundary impacts on regional ground water modeling in Texas

    USGS Publications Warehouse

    Rainwater, K.; Stovall, J.; Frailey, S.; Urban, L.

    2005-01-01

    Recent legislation required regional grassroots water resources planning across the entire state of Texas. The Texas Water Development Board (TWDB), the state's primary water resource planning agency, divided the state into 16 planning regions. Each planning group developed plans to manage both ground water and surface water sources and to meet future demands of various combinations of domestic, agricultural, municipal, and industrial water consumers. This presentation describes the challenges in developing a ground water model for the Llano Estacado Regional Water Planning Group (LERWPG), whose region includes 21 counties in the Southern High Plains of Texas. While surface water is supplied to several cities in this region, the vast majority of the regional water use comes from the High Plains aquifer system, often locally referred to as the Ogallala Aquifer. Over 95% of the ground water demand is for irrigated agriculture. The LERWPG had to predict the impact of future TWDB-projected water demands, as provided by the TWDB, on the aquifer for the period 2000 to 2050. If detrimental impacts were noted, alternative management strategies must be proposed. While much effort was spent on evaluating the current status of the ground water reserves, an appropriate numerical model of the aquifer system was necessary to demonstrate future impacts of the predicted withdrawals as well as the effects of the alternative strategies. The modeling effort was completed in the summer of 2000. This presentation concentrates on the political, scientific, and nontechnical issues in this planning process that complicated the modeling effort. Uncertainties in data, most significantly in distribution and intensity of recharge and withdrawals, significantly impacted the calibration and predictive modeling efforts. Four predictive scenarios, including baseline projections, recurrence of the drought of record, precipitation enhancement, and reduced irrigation demand, were simulated to

  15. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1994 through March 1996

    USGS Publications Warehouse

    Torikai, J.D.

    1996-01-01

    This report describes the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1994 through March 1996, with a focus on data from January through March 1996 (first quarter of 1996). A complete database of ground-water withdrawals and chloride-concentration records since 1985 is maintained by the U.S. Geological Survey. Cumulative rainfall for January through March 1996 was about 30 inches, which is 9 percent less than the mean cumulative rainfall of about 33 inches for January through March. The period January through February is the end of the annual wet season, while March marks the start of the annual dry season. Ground-water withdrawal during January through March 1996 averaged 970,300 gallons per day. Withdrawal for the same 3 months in 1995 averaged 894,600 gallons per day. With- drawal patterns during the first quarter of 1996 did not change significantly since 1991, with the Cantonment and Air Operations areas supplying about 99 percent of total islandwide pumpage. At the end of March 1996, the chloride concentration of water from the elevated tanks at Cantonment and Air Operations were 47 and 80 milligrams per liter, respectively. The chloride data from all five production areas showed no significant upward or downward trends throughout the first quarter of 1996. Potable levels of chloride concentrations have been maintained by adjusting individual pumping rates, and also because of the absence of long-term droughts. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations also showed no significant trends throughout the first quarter of 1996. Chloride concentrations have been about the same since the last quarter of 1995. A fuel-pipeline leak at Air Operations in May 1991 decreased total islandwide withdrawals by 15 percent. This lost pumping capacity is being offset by increased pumpage at Cantonment. Six wells do not contribute to the water supply because they

  16. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    USGS Publications Warehouse

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  17. Occurrence of trihalomethanes in the nation's ground water and drinking-water supply wells, 1985-2002

    USGS Publications Warehouse

    Schaap, Bryan D.; Zogorski, John S.

    2006-01-01

    This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples

  18. Hydrogeology, water quality, water budgets, and simulated responses to hydrologic changes in Santa Rosa and San Simeon Creek ground-water basins, San Luis Obispo County, California

    USGS Publications Warehouse

    Yates, Eugene B.; Van Konyenburg, Kathryn M.

    1998-01-01

    Santa Rosa and San Simeon Creeks are underlain by thin, narrow ground-water basins that supply nearly all water used for local agricultural and municipal purposes. The creeks discharge to the Pacific Ocean near the northwestern corner of San Luis Obispo County, California. The basins contain heterogeneous, unconsolidated alluvial deposits and are underlain by relatively impermeable bedrock. Both creeks usually stop flowing during the summer dry season, and most of the pumpage during that time is derived from ground-water storage. Annual pumpage increased substantially during 1956?88 and is now a large fraction of basin storage capacity. Consequently, dry-season water levels are lower and the water supply is more vulnerable to drought. The creeks are the largest source of ground-water recharge, and complete basin recharge can occur within the first few weeks of winter streamflow. Agricultural and municipal pumpages are the largest outflows and cause dry-season water-level declines throughout the San Simeon Basin. Pumping effects are more localized in the Santa Rosa Basin because of subsurface flow obstructions. Even without pumpage, a large quantity of water naturally drains out of storage at the upper ends of the basins during the dry season. Ground water is more saline in areas close to the coast than in inland areas. Although seawater intrusion has occurred in the past, it probably was not the cause of high salinity in 1988?89. Ground water is very hard, and concentrations of dissolved solids, chloride, iron, and manganese exceed drinking-water standards in some locations. Probability distributions of streamflow were estimated indirectly from a 120-year rainfall record because the periods of record for local stream-gaging stations were wetter than average. Dry-season durations with recurrence intervals between 5 and 43 years are likely to dry up some wells but not cause seawater intrusion. A winter with no streamflow is likely to occur about every 32 years and to

  19. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  20. Land subsidence caused by ground water withdrawal in urban areas

    USGS Publications Warehouse

    Holzer, T.L.; Johnson, A.I.

    1985-01-01

    At least eight urban areas in the world have encountered significant economic impact from land subsidence caused by pumping of ground water from unconsolidated sediment. The areas, most of which are coastal, include Bangkok, Houston, Mexico City, Osaka, San Jose, Shanghai, Tokyo, and Venice. Flooding related to decreased ground elevation is the principal adverse effect of the subsidence. Lesser effects include regional tilting, well-casing failures, "rising" buildings, and ground failure or rupture. Subsidence of most of these urban areas began before the phenomenon was discovered and understood. Thus, the subsidence problems were unanticipated. Methods to arrest subsidence typically have included control of ground water pumping and development of surface water to offset the reductions of ground water pumping. Ground water recharge has also been practiced. Areas threatened by flooding have been protected by extensive networks of dikes and sea walls, locks, and pumping stations to remove storm runoff. ?? 1985 D. Reidel Publishing Company.

  1. An imminent human resource crisis in ground water hydrology?

    PubMed

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  2. 18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Ground water withdrawal... DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19 Ground water withdrawal metering, recording, and reporting. (a) Each person, firm, corporation, or other...

  3. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of wells that... at other wells will provide an indication of background ground-water quality that is as...

  4. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the uppermost aquifer (as defined in § 258.2) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may...; or (ii) Sampling at other wells will provide an indication of background ground-water quality that is...

  5. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  6. U.S. Geological Survey Ground-Water Climate Response Network

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey serves the Nation by providing reliable hydrologic information used by others to manage the Nation's water resources. The U.S. Geological Survey (USGS) measures more than 20,000 wells each year for a variety of objectives as part of Federal programs and in cooperation with State and local agencies. Water-level data are collected using consistent data-collection and quality-control methods. A small subset of these wells meets the criteria necessary to be included in a 'Climate Response Network' of wells designed to illustrate the response of the ground-water system to climate variations nationwide. The primary purpose of the Climate Response Network is to portray the effect of climate on ground-water levels in unconfined aquifers or near-surface confined aquifers that are minimally affected by pumping or other anthropogenic stresses. The Climate Response Network Web site (http://groundwaterwatch.usgs.gov/) is the official USGS Web site for illustrating current ground-water conditions in the United States and Puerto Rico. The Climate Response Network Web pages provide information on ground-water conditions at a variety of scales. A national map provides a broad overview of water-table conditions across the Nation. State maps provide a more local picture of ground-water conditions. Site pages provide the details about a specific well.

  7. Summary appraisals of the Nation's ground-water resources; Upper Colorado region

    USGS Publications Warehouse

    Price, Don; Arnow, Ted

    1974-01-01

    Options available for use of ground water in water-resources management·in the·region include conjunctive use with surface water or development of ground water as an independent supply. The latter option could be for & perennial supply or for a time-limited supply (mining ground water), depending on the need and the existing ground-water conditions. All options can be carried out so as to meet the requirements of the Colorado River Compact. The options could be implemented to optimally develop the Upper Colorado River Basin's allocation of Colorado River water while meeting the Compact commitments to the Lower Basin.

  8. Ground-Water Levels in Huron County, Michigan, 2004-05

    USGS Publications Warehouse

    Weaver, T.L.; Crowley, S.L.; Blumer, S.P.

    2006-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships retained continuous waterlevel recorders, while the wells in Grant and Bingham Townships reverted primarily to periodic or quarterly measurement status. USGS also has provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 25 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 25 periodically or quarterly-measured wells is summarized in an annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998).The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville or Harbor Beach, or both (National Oceanic and Atmospheric Administration, 2003-05), and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration, 2003-05). In March 2003, a new low-water level for the period from 1991 through 2005 was measured in Lake Huron

  9. Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia; summary of hydrologic and climatic data, January 1992 through December 1994

    USGS Publications Warehouse

    Torikai, J.D.

    1995-01-01

    This report contains hydrologic and climatic data that describe the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1992 through December 1994. This report concentrates on data from October through December 1994, and references previous data from 1992 through 1994. Cumulative rainfall for October through December 1994 was 55 inches which is higher than the mean cumulative rainfall of about 31 inches for the same 3 months. Total rainfall for 1994 was 131 inches which is 24 percent higher than the mean annual rainfall of 106 inches. In com- parison, total rainfall in 1992 and 1993 were 93 inches and 95 inches, respectively. Ground-water withdrawal during October through December 1994 averaged 903,000 gallons per day, while the annual withdrawal in 1994 was 942,700 gallons per day. Annual withdrawals in 1992 and 1993 averaged 935,900 gallons per day and 953,800 gallons per day, respectively. At the end of December 1994, the chloride concentration of the composite water supply was 28 milligrams per liter, well below the 250 milligrams per liter secondary drinking-water standard established by the U.S. Environmental Protection Agency. Chloride concentrations of the composite water supply from October through December 1994 ranged between 28 and 86 milligrams per liter. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations decreased in November and December, and seems to have leveled off by the end of the year. Although chloride concen- trations have decreased during the fourth quarter of 1994, there has been a general trend of increasing chloride concentrations in the deeper monitoring wells since the 1992 dry season, which began in March 1992. A fuel leak at Air Operations caused the shutdown of ten wells in May 1991. Four of the wells resumed pumping for water-supply purposes in April 1992. The remaining six wells are being used to hydraulically contain and divert fuel

  10. Hydrogeologic setting, ground-water flow, and ground-water quality at the Lake Wheeler Road research station, 2001-03 : North Carolina Piedmont and Mountains Resource Evaluation Program

    USGS Publications Warehouse

    Chapman, Melinda J.; Bolich, Richard E.; Huffman, Brad A.

    2005-01-01

    Results of a 2-year field study of the regolith-fractured bedrock ground-water system at the Lake Wheeler Road research station in Wake County, North Carolina, indicate both disconnection and interaction among components of the ground-water system. The three components of the ground-water system include (1) shallow, porous regolith; (2) a transition zone, including partially weathered rock, having both secondary (fractures) and primary porosity; and (3) deeper, fractured bedrock that has little, if any, primary porosity and is dominated by secondary fractures. The research station includes 15 wells (including a well transect from topographic high to low settings) completed in the three major components of the ground-water-flow system and a surface-water gaging station on an unnamed tributary. The Lake Wheeler Road research station is considered representative of a felsic gneiss hydrogeologic unit having steeply dipping foliation and a relatively thick overlying regolith. Bedrock foliation generally strikes N. 10? E. to N. 30? E. and N. 20? W. to N. 40? W. to a depth of about 400 feet and dips between 70? and 80? SE. and NE., respectively. From 400 to 600 feet, the foliation generally strikes N. 70? E. to N. 80? E., dipping 70? to 80? SE. Depth to bedrock locally ranges from about 67 to 77 feet below land surface. Fractures in the bedrock generally occur in two primary sets: low dip angle, stress relief fractures that cross cut foliation, and steeply dipping fractures parallel to foliation. Findings of this study generally support the conceptual models of ground-water flow from high to low topographic settings developed for the Piedmont and Blue Ridge Provinces in previous investigations, but are considered a refinement of the generalized conceptual model based on a detailed local-scale investigation. Ground water flows toward a surface-water boundary, and hydraulic gradients generally are downward in recharge areas and upward in discharge areas; however, local

  11. Ground-water hydrology of the San Pitch River drainage basin, Sanpete County, Utah

    USGS Publications Warehouse

    Robinson, Gerald B.

    1971-01-01

    The San Pitch River drainage basin in central Utah comprises an area of about 850 square miles; however, the investigation was concerned primarily with the Sanpete and Arapien Valleys, which comprise about 250 square miles and contain the principal ground-water reservoirs in the basin. Sanpete Valley is about 40 miles long and has a maximum width of 13 miles, and Arapien Valley is about 8 miles long and 1 mile wide. The valleys are bordered by mountains and plateaus that range in altitude from 5,200 to 11,000 feet above mean sea level.The average annual precipitation on the valleys is about 12 inches, but precipitation on the surrounding mountains reaches a maximum of about 40 inches per year. Most of the precipitation on the mountains falls as snow, and runoff from snowmelt during the spring and summer is conveyed to the valleys by numerous tributaries of the San Pitch River. Seepage from the tributary channels and underflow beneath the channels are the major sources of recharge to the ground-water reservoir in the valleys.Unconsolidated valley fill constitutes the main ground-water reservoir in Sanpete and Arapien Valleys. The fill, which consists mostly of coalescing alluvial fans and flood deposits of the San Pitch River, ranges in particle size from clay to boulders. Where they are well sorted, these deposits yield large quantities of water to wells.Numerous springs discharge from consolidated rocks in the mountains adjacent to the valleys and along the west margin of Sanpete Valley, which is marked by the Sevier fault. The Green River Formation of Tertiary age and several other consolidated formations yield small to large quantities of water to wells in many parts of Sanpete Valley. Most water in the bedrock underlying the valley is under artesian pressure, and some of this water discharges upward into the overlying valley fill.The water in the valley fill in Sanpete Valley moves toward the center of the valley and thence downstream. The depth to water along

  12. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  13. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is as...

  14. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is as...

  15. Use of RORA for Complex Ground-Water Flow Conditions

    USGS Publications Warehouse

    Rutledge, A.T.

    2004-01-01

    The RORA computer program for estimating recharge is based on a condition in which ground water flows perpendicular to the nearest stream that receives ground-water discharge. The method, therefore, does not explicitly account for the ground-water-flow component that is parallel to the stream. Hypothetical finite-difference simulations are used to demonstrate effects of complex flow conditions that consist of two components: one that is perpendicular to the stream and one that is parallel to the stream. Results of the simulations indicate that the RORA program can be used if certain constraints are applied in the estimation of the recession index, an input variable to the program. These constraints apply to a mathematical formulation based on aquifer properties, recession of ground-water levels, and recession of streamflow.

  16. Ground Water Discharges (EPA's Underground Injection ...

    EPA Pesticide Factsheets

    2017-07-06

    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  17. Ground-water resources of the North Beach Peninsula, Pacific County, Washington

    USGS Publications Warehouse

    Tracy, James V.

    1977-01-01

    The anticipated water demand of 425 million gallons per year for the North Brach Peninsula, Pacific County, Wash., can be met by properly developing the ground-water supplies of the area 's water-table aquifer. Of the approximately 77 inches of annual precipitation on the peninsula, an estimated 23 inches is lost to evapotranspiration, and approximately 36 inches is discharged by the water-table aquifer into the ocean and bay. The remaining water either runs off the surface or is leaked to a deeper aquifer that ultimately discharges to the ocean. At least 12 inches of the water that discharges naturally through the aquifer is available for additional development. This quantity of water is approximately equivalent to 860,000 gallons per day. Wells spaced at least 1,000 feet apart along the major axis of the peninsula and pumped at average rates of no more than 80 gallons per minute could ensure that water-level declines do not exceed 6 feet near the wells and 1 foot at the shoreline, thereby preventing seawater intrusion. Lowering of the water table may be beneficial in reducing waterlogging problems, but care must be taken not to lower the levels near cranberry bogs, which require a shallow water table. Treatment of the otherwise good quality water for iron may be required, as about 75 percent of the well water sampled from the aquifer had iron concentrations in excess of limits recommended by the U.S. Environmental Protection Agency. (Woodard-USGS)

  18. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    USGS Publications Warehouse

    Cowdery, Timothy K.

    2005-01-01

    Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.

  19. Potential effects of climate change on ground water in Lansing, Michigan

    USGS Publications Warehouse

    Croley, T.E.; Luukkonen, C.L.

    2003-01-01

    Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri-County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.

  20. 40 CFR 141.405 - Reporting and recordkeeping for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Reporting and recordkeeping for ground water systems. 141.405 Section 141.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.405 Reporting and recordkeeping for ground...

  1. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin

  2. Nitrate in ground water and spring water near four dairy farms in North Florida, 1990-93

    USGS Publications Warehouse

    Andrews, W.J.

    1994-01-01

    Concentrations of nitrate and other selected water- quality characteristics were analyzed periodically for two years in water from 51 monitoring wells installed at four farms and in water discharging from three nearby springs along the Suwannee River in Lafayette and Suwannee Counties to examine the quality of ground water at these farms and the transport of nutrients in ground water to the nearby spring-fed Suwannee River: Ground water from shallow wells, which were completed in the top ten feet of the saturated zone in a surficial sandy aquifer and in the karstic Upper Floridan aquifer generally had the highest concentrations of nitrate, ranging from <.02 to 130 mg/L as nitrogen. Nitrate concentrations commonly exceeded the primary drinking water standard of 10 mg/L for nitrate as nitrogen in water from shallow wells, which tapped the top ten feet of the uppermost aquifers near waste-disposal areas such as wastewater lagoons and defoliated, intensive-use areas near milking barns. Upgradient from waste-disposal areas, concentrations of nitrate in ground water were commonly less than 1 mg/L as nitrogen. Water samples from deep wells (screened 20 feet deeper than shallow wells in these aquifers) generally had lower concentrations of nitrate (ranging from <0.02 to 84 mg/L) than water from shallow wells. Water samples from the three monitored springs (Blue, Telford, and Convict Springs) had nitrate concentrations ranging from 1.5 to 6.5 mg/L as nitrogen, which were higher than those typically occurring in water from upgradient wells at the monitored dairy farms or from back- ground wells sampled in the region. Analyses of nitrogen isotope ratios in nitrate indicated that leachate from animal wastes was the principal source of nitrate in ground water adjacent to waste-disposal areas at the monitored and unmonitored dairy farms. Leachate from a combi- nation of fertilizers, soils, and animal wastes appeared to be the source of nitrate in ground- water downgradient from

  3. A modification of the finite-difference model for simulation of two dimensional ground-water flow to include surface-ground water relationships

    USGS Publications Warehouse

    Ozbilgin, M.M.; Dickerman, D.C.

    1984-01-01

    The two-dimensional finite-difference model for simulation of groundwater flow was modified to enable simulation of surface-water/groundwater interactions during periods of low streamflow. Changes were made to the program code in order to calculate surface-water heads for, and flow either to or from, contiguous surface-water bodies; and to allow for more convenient data input. Methods of data input and output were modified and entries (RSORT and HDRIVER) were added to the COEF and CHECKI subroutines to calculate surface-water heads. A new subroutine CALC was added to the program which initiates surface-water calculations. If CALC is not specified as a simulation option, the program runs the original version. The subroutines which solve the ground-water flow equations were not changed. Recharge, evapotranspiration, surface-water inflow, number of wells, pumping rate, and pumping duration can be varied for any time period. The Manning formula was used to relate stream depth and discharge in surface-water streams. Interactions between surface water and ground water are represented by the leakage term in the ground-water flow and surface-water mass balance equations. Documentation includes a flow chart, data deck instructions, input data, output summary, and program listing. Numerical results from the modified program are in good agreement with published analytical results. (USGS)

  4. Hydrogeologic setting, hydraulic properties, and ground-water flow at the O-Field area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Banks, W.S.; Smith, B.S.; Donnelly, C.A.

    1996-01-01

    The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.

  5. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    USGS Publications Warehouse

    Harvey, J.W.; Newlin, J.T.; Krupa, S.L.

    2006-01-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d-1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  6. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    NASA Astrophysics Data System (ADS)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  7. Eolian transport of geogenic hexavalent chromium to ground water

    USGS Publications Warehouse

    Wood, W.W.; Clark, D.; Imes, J.L.; Councell, T.B.

    2010-01-01

    A conceptual model of eolian transport is proposed to address the widely distributed, high concentrations of hexavalent chromium (Cr+6) observed in ground water in the Emirate of Abu Dhabi, United Arab Emirates. Concentrations (30 to more than 1000 μg/L Cr+6) extend over thousands of square kilometers of ground water systems. It is hypothesized that the Cr is derived from weathering of chromium-rich pyroxenes and olivines present in ophiolite sequence of the adjacent Oman (Hajar) Mountains. Cr+3 in the minerals is oxidized to Cr+6 by reduction of manganese and is subsequently sorbed on iron and manganese oxide coatings of particles. When the surfaces of these particles are abraded in this arid environment, they release fine, micrometer-sized, coated particles that are easily transported over large distances by wind and subsequently deposited on the surface. During ground water recharge events, the readily soluble Cr+6 is mobilized by rain water and transported by advective flow into the underlying aquifer. Chromium analyses of ground water, rain, dust, and surface (soil) deposits are consistent with this model, as are electron probe analyses of clasts derived from the eroding Oman ophiolite sequence. Ground water recharge flux is proposed to exercise some control over Cr+6 concentration in the aquifer.

  8. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1988-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  9. Ground water and the rural homeowner

    USGS Publications Warehouse

    Waller, Roger M.

    1994-01-01

    As the salesmen sang in the musical The Music Man, "You gotta know the territory." This saying is also true when planning to buy or build a house. Learn as much as possible about the land, the water supply, and the septic system of the house before buying or building. Do not just look at the construction aspects or the beauty of the home and surroundings. Be sure to consider the environmental conditions around and beneath the site as well. Try to visit the site under adverse conditions, such as during heavy rain or meltwater runoff, to observe the drainage characteristics, particularly the condition of the basement. Many of the conditions discussed in this book, such as lowered well-water levels, flooded basements, and contamination from septic systems, are so common that rural families often have to deal with one or more of them. The purpose of this book is to awaken an interest in ground water and an awareness of where it is available, how it moves, how people can adjust to its patterns to avoid problems, and how it can be protected and used wisely. This booklet provides both present and prospective rural homeowners, particularly those in the glaciated northern parts of the United States, with a basic but comprehensive description of ground water. It also presents problems one may expect to encounter with ground water and some solutions or suggestions for help with these problems.

  10. Assessing background ground water chemistry beneath a new unsewered subdivision

    USGS Publications Warehouse

    Wilcox, J.D.; Bradbury, K.R.; Thomas, C.L.; Bahr, J.M.

    2005-01-01

    Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 ??g/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed. Copyright ?? 2005 National Ground Water Association.

  11. Optimization of ground-water withdrawal at the old O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Dillow, Jonathan J.A.

    2001-01-01

    The U.S. Army disposed of chemical agents, laboratory materials, and unexploded ordnance at the Old O-Field landfill at Aberdeen Proving Ground, Maryland, beginning prior to World War II and continuing until at least the 1950?s. Soil, ground water, surface water, and wetland sediments in the Old O-Field area were contaminated by the disposal of these materials. The site is in the Atlantic Coastal Plain, and is characterized by a complex series of Pleistocene and Holocene sediments formed in various fluvial, estuarine, and marine-marginal hydrogeologic environments. A previously constructed transient finite-difference ground-water-flow model was used to simulate ground-water flow and the effects of a pump-and-treat remediation system designed to prevent contaminated ground water from flowing into Watson Creek (a tidal estuary and a tributary to the Gunpowder River). The remediation system consists of 14 extraction wells located between the Old O-Field landfill and Watson Creek.Linear programming techniques were applied to the results of the flow-model simulations to identify optimal pumping strategies for the remediation system. The optimal management objective is to minimize total withdrawal from the water-table aquifer, while adhering to the following constraints: (1) ground-water flow from the landfill should be prevented from reaching Watson Creek, (2) no extraction pump should be operated at a rate that exceeds its capacity, and (3) no extraction pump should be operated at a rate below its minimum capacity, the minimum rate at which an Old O-Field pump can function. Water withdrawal is minimized by varying the rate and frequency of pumping at each of the 14 extraction wells over time. This minimizes the costs of both pumping and water treatment, thus providing the least-cost remediation alternative while simultaneously meeting all operating constraints.The optimal strategy identified using this objective and constraint set involved operating 13 of the 14

  12. Ground-water conditions and effects of mine dewatering in Desert Valley, Humboldt and Pershing Counties, northwestern Nevada, 1962-91

    USGS Publications Warehouse

    Berger, D.L.

    1995-01-01

    Desert Valley is a 1,200-square-mile, north- trending, structural basin, about 30 miles northwest of Winnemucca, Nevada. Unconsolidated basin-fill deposits exceeding 7,000 feet in thickness constitute the primary ground-water reservoir. Dewatering operations at an open-pit mine began in the Spring of 1985 in the northeast part of Desert Valley. Ground-water withdrawal for mine dewatering in 1991 was greater than three times the estimated average annual recharge from precipitation. The mine discharge water has been allowed to flow to areas west of the mine where it has created an artificial wetlands. This report documents the 1991 hydrologic conditions in Desert Valley and the change in conditions since predevelopment (pre-1962). It also summarizes the results of analyzing the simulated effects of open-pit mine dewatering on a basin-wide scale over time. Water-level declines associated with the dewatering have propagated north and south of the mine, but have been attenuated to the west due to the infiltration beneath the artificial wetlands. Maximum water-level declines beneath the open pits at the mine, as of Spring 1991, are about 300 feet. Changes in the hydrologic conditions since predevelopment are observed predominantly near the dewatering operations and the associated discharge lakes. General ground-water chemistry is essentially unchanged since pre- development. On the basis of a ground-water flow model used to simulate mine dewatering, a new equilibrium may slowly be approached only after 100 years of recovery from the time mine dewatering ceases.

  13. Research to More Effectively Manage Critical Ground-Water Basins

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  14. Ground-water resources and water-supply alternatives in the Wawona area of Yosemite National Park, California

    USGS Publications Warehouse

    Borchers, J.W.

    1996-01-01

    Planning efforts to implement the 1980 General Management Plan, which recommends relocating park administrative facilities and employee housing from Yosemite Valley in Yosemite National Park, California, have focused on the availability of water at potential relocation sites within the park. Ground-water resources and water-supply alternatives in the Wawona area, one of several potential relocation sites, were evaluated between June 1991 and October 1993. Ground water flowing from Biledo Spring near the headwaters of Rainier Creek, about 5 miles southeast of Wawona, is probably the most reliable source of good quality ground water for Wawona. A dilute calcium bicarbonate ground water flows from the spring at about 250 gallons per minute. No Giardia was detected in a water sample collected from Biledo Spring in July 1992. The concentration of dissolved 222radon at Biledo Spring was 420 picoCuries per liter, exceeding the primary drinking-water standard of 300 picoCuries per liter proposed by the U.S. Environmental Protection Agency. This concentration, however, was considerably lower than the concentrations of dissolved 222radon measured in ground water at Wawona. The median value for 15 wells sampled at Wawona was 4,500 picoCuries per liter. Water- quality samples from 45 wells indicate that ground water in the South Fork Merced River valley at Wawona is segregated vertically. Shallow wells produce a dilute calcium sodium bicarbonate water that results from chemical dissolution of minerals as water flows through fractured granitic rock from hillside recharge areas toward the valley floor. Tritium concentrations indicate that ground water in the shallow wells originated as precipitation after the 1960's when testing of atmospheric nuclear devices stopped. Ground water from the deep flowing wells in the valley floor is older sodium calcium chloride water. This older water probably originated either as precipitation during a climatically cooler period or as

  15. Hydrogeologic Framework and Occurrence and Movement of Ground Water in the Upper Humboldt River Basin, Northeastern Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2009-01-01

    The upper Humboldt River basin encompasses 4,364 square miles in northeastern Nevada, and it comprises the headwaters area of the Humboldt River. Nearly all flow of the river originates in this area. The upper Humboldt River basin consists of several structural basins, in places greater than 5,000 feet deep, in which basin-fill deposits of Tertiary and Quaternary age and volcanic rocks of Tertiary age have accumulated. The bedrock of each structural basin and adjacent mountains is composed of carbonate and clastic sedimentary rocks of Paleozoic age and crystalline rocks of Paleozoic, Mesozoic and Cenozoic age. The permeability of bedrock generally is very low except for carbonate rocks, which can be very permeable where circulating ground water has widened fractures through geologic time. The principal aquifers in the upper Humboldt River basin occur within the water-bearing strata of the extensive older basin-fill deposits and the thinner, younger basin-fill deposits that underlie stream flood plains. Ground water in these aquifers moves from recharge areas along mountain fronts to discharge areas along stream flood plains, the largest of which is the Humboldt River flood plain. The river gains flow from ground-water seepage to its channel from a few miles west of Wells, Nevada, to the west boundary of the study area. Water levels in the upper Humboldt River basin fluctuate annually in response to the spring snowmelt and to the distribution of streamflow diverted for irrigation of crops and meadows. Water levels also have responded to extended periods (several years) of above or below average precipitation. As a result of infiltration from the South Fork Reservoir during the past 20 years, ground-water levels in basin-fill deposits have risen over an area as much as one mile beyond the reservoir and possibly even farther away in Paleozoic bedrock.

  16. Arsenic in Illinois ground water : community and private supplies

    USGS Publications Warehouse

    Warner, Kelly L.; Martin, Angel; Arnold, Terri L.

    2003-01-01

    Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.

  17. Radon-222 in the ground water of Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units.The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Significant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types.Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  18. Arsenic in ground water of the United States: occurrence and geochemistry

    USGS Publications Warehouse

    Welch, Alan H.; Westjohn, D.B.; Helsel, Dennis R.; Wanty, Richard B.

    2000-01-01

    Concentrations of naturally occurring arsenic in ground water vary regionally due to a combination of climate and geology. Although slightly less than half of 30,000 arsenic analyses of ground water in the United States were 1 μg/L, about 10% exceeded 10 μg/L. At a broad regional scale, arsenic concentrations exceeding 10 μg/L appear to be more frequently observed in the western United States than in the eastern half. Arsenic concentrations in ground water of the Appalachian Highlands and the Atlantic Plain generally are very low ( 1 μg/L). Concentrations are somewhat greater in the Interior Plains and the Rocky Mountain System. Investigations of ground water in New England, Michigan, Minnesota, South Dakota, Oklahoma, and Wisconsin within the last decade suggest that arsenic concentrations exceeding 10 μg/L are more widespread and common than previously recognized.Arsenic release from iron oxide appears to be the most common cause of widespread arsenic concentrations exceeding 10 μg/L in ground water. This can occur in response to different geochemical conditions, including release of arsenic to ground water through reaction of iron oxide with either natural or anthropogenic (i.e., petroleum products) organic carbon. Iron oxide also can release arsenic to alkaline ground water, such as that found in some felsic volcanic rocks and alkaline aquifers of the western United States. Sulfide minerals are both a source and sink for arsenic. Geothermal water and high evaporation rates also are associated with arsenic concentrations 10g/L in ground and surface water, particularly in the west.Arsenic release from iron oxide appears to be the most common cause of widespread arsenic concentrations exceeding 10 µg/L a ground water. This can occur in response to different geochemical conditions, including release of arsenic to ground water through reaction of iron oxide with either natural or anthropogenic (i.e., petroleum products) organic carbon. Iron oxide also can

  19. Arsenic in ground water in Tuscola County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  20. Ground Water and Surface Water in the Haiku Area, East Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The Haiku study area lies on the gently sloping eastern flank of the East Maui Volcano (Haleakala) between the drainage basins of Maliko Gulch to the west and Kakipi Gulch to the east. The study area lies on the northwest rift zone of East Maui Volcano, a geologic feature 3 to 5 miles wide marked by surface expressions such as cinder, spatter, and pumice cones. The study area contains two geologic units, the main shield-building stage Honomanu Basalt and the Kula Volcanics. The hydraulic conductivity of the Honomanu Basalt was estimated to be between 1,000 and 3,600 feet per day on the basis of aquifer tests and 3,300 feet per day on the basis of the regional recharge rate and observed ground-water heads. The hydraulic conductivity of the Kula Volcanics is expected to be several orders of magnitude lower. An estimated 191 million gallons per day of rainfall and 22 million gallons per day of fog drip reach the study area and about 98 million gallons per day enters the ground-water system as recharge. Nearly all of the ground water currently withdrawn in the study area is from well 5520-01 in Maliko Gulch, where historic withdrawal rates have averaged about 2.8 million gallons per day. An additional 18 million gallons per day of ground-water withdrawal is proposed. Flow in Waiohiwi Gulch, a tributary to Maliko Gulch, is perennial between about 2,000 ft and 4,000 ft altitude. At lower altitudes in Maliko Gulch, flow is perennial at only a few spots downstream of springs and near the coast. The Kuiaha and Kaupakulua Gulch systems are usually dry from sea level to an altitude of 350 feet and gain water from about 350 feet to about 900 feet altitude. The two main branches of the Kaupakulua Gulch system alternately gain and lose water as high as 2,400 feet altitude. Kakipi Gulch has perennial flow over much of its length but is often dry near the coast below 400 feet altitude. Fresh ground water occurs in two main forms: (1) as perched high-level water held up by