Sample records for ground-based microgravity simulation

  1. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology.

    PubMed

    Herranz, Raul; Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C M; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J A; Lebert, Michael; Medina, F Javier; Vagt, Nicole; Ullrich, Oliver; van Loon, Jack J W A; Hemmersbach, Ruth

    2013-01-01

    Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature.

  2. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology

    PubMed Central

    Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C.M.; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J.A.; Lebert, Michael; Medina, F. Javier; Vagt, Nicole; Ullrich, Oliver

    2013-01-01

    Abstract Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature. Key Words: 2-D clinostat—3-D clinostat—Gravity—Magnetic levitation—Random positioning machine—Simulated microgravity—Space biology. Astrobiology 13, 1–17. PMID:23252378

  3. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells. © 2015 International Federation for Cell Biology.

  4. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor

    NASA Technical Reports Server (NTRS)

    Sytkowski, A. J.; Davis, K. L.

    2001-01-01

    Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1 x g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1 x g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1 x g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.

  5. The Use of Microgravity To Emulate Three-Dimensional Tissue Interactions in Colorectal Cancer Metastasis

    NASA Technical Reports Server (NTRS)

    Jessup, J. Milburn

    1997-01-01

    The hypothesis of this ground-based project was that simulated microgravity may be used to recreate with high fidelity the in vivo environment in tissue culture. The objectives were to determine whether: (1) simulated microgravity induces differentiation within poorly differentiated human colon carcinoma cells that are similar to that observed in experimental metastases in vivo in nude mice; and (2) the use of simulated microgravity helps define the experimental metastatic potential of human colorectal carcinoma.

  6. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  7. The Use of Microgravity Simulators for Space Research

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Richards, Stephanie E.; Richards, Jeffrey T.; Levine, Howard G.

    2016-01-01

    The spaceflight environment is known to influence biological processes ranging from stimulation of cellular metabolism to possible impacts on cellular damage repair, suppression of immune functions, and bone loss in astronauts. Microgravity is one of the most significant stress factors experienced by living organisms during spaceflight, and therefore, understanding cellular responses to altered gravity at the physiological and molecular level is critical for expanding our knowledge of life in space. Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogues have been widely used in space biology ground studies. Even though simulated microgravity conditions have produced some, but not all of the biological effects observed in the true microgravity environment, they provide test beds that are effective, affordable, and readily available to facilitate microgravity research. Kennedy Space Center (KSC) provides ground microgravity simulator support to offer a variety of microgravity simulators and platforms for Space Biology investigators. Assistance will be provided by both KSC and external experts in molecular biology, microgravity simulation, and engineering. Comparisons between the physical differences in microgravity simulators, examples of experiments using the simulators, and scientific questions regarding the use of microgravity simulators will be discussed.

  8. Microgravity

    NASA Image and Video Library

    1981-03-30

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  9. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions.

    PubMed

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Slumstrup, Lasse; Wehland, Markus; Infanger, Manfred; Grimm, Daniela

    2016-10-01

    Scaffold-free tissue formation in microgravity is a new method in regenerative medicine and an important topic in Space Medicine. In this MiniReview, we focus on recent findings in the field of tissue engineering that were observed by exposing cells to real microgravity in space or to devices simulating to at least some extent microgravity conditions on Earth (ground-based facilities). Under both conditions - real and simulated microgravity - a part of the cultured cells of various populations detaches from the bottom of a culture flask. The cells form three-dimensional (3D) aggregates resembling the organs from which the cells have been derived. As spaceflights are rare and extremely expensive, cell culture under simulated microgravity allows more comprehensive and frequent studies on the scaffold-free 3D tissue formation in some aspects, as a number of publications have proven during the last two decades. In this MiniReview, we summarize data from our own studies and work from various researchers about tissue engineering of multi-cellular spheroids formed by cancer cells, tube formation by endothelial cells and cartilage formation by exposing the cells to ground-based facilities such as the 3D Random Positioning Machine (RPM), the 2D Fast-Rotating Clinostat (FRC) or the Rotating Wall Vessel (RWV). Subsequently, we investigated self-organization of 3D aggregates without scaffolds pursuing to enhance the frequency of 3D formation and to enlarge the size of the organ-like aggregates. The density of the monolayer exposed to real or simulated microgravity as well as the composition of the culture media revealed an impact on the results. Genomic and proteomic alterations were induced by simulated microgravity. Under microgravity conditions, adherent cells expressed other genes than cells grown in spheroids. In this MiniReview, the recent improvements in scaffold-free tissue formation are summarized and relationships between phenotypic and molecular appearance are highlighted. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Bacillus thuringiensis Conjugation in Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  11. Bacillus thuringiensis conjugation in simulated microgravity.

    PubMed

    Beuls, Elise; Van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0 g position (simulated microgravity) were compared to those obtained under 1 g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  12. Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture.

    PubMed

    Wuest, Simon L; Richard, Stéphane; Kopp, Sascha; Grimm, Daniela; Egli, Marcel

    2015-01-01

    Random Positioning Machines (RPMs) have been used since many years as a ground-based model to simulate microgravity. In this review we discuss several aspects of the RPM. Recent technological development has expanded the operative range of the RPM substantially. New possibilities of live cell imaging and partial gravity simulations, for example, are of particular interest. For obtaining valuable and reliable results from RPM experiments, the appropriate use of the RPM is of utmost importance. The simulation of microgravity requires that the RPM's rotation is faster than the biological process under study, but not so fast that undesired side effects appear. It remains a legitimate question, however, whether the RPM can accurately and reliably simulate microgravity conditions comparable to real microgravity in space. We attempt to answer this question by mathematically analyzing the forces working on the samples while they are mounted on the operating RPM and by comparing data obtained under real microgravity in space and simulated microgravity on the RPM. In conclusion and after taking the mentioned constraints into consideration, we are convinced that simulated microgravity experiments on the RPM are a valid alternative for conducting examinations on the influence of the force of gravity in a fast and straightforward approach.

  13. Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture

    PubMed Central

    Wuest, Simon L.; Richard, Stéphane; Kopp, Sascha

    2015-01-01

    Random Positioning Machines (RPMs) have been used since many years as a ground-based model to simulate microgravity. In this review we discuss several aspects of the RPM. Recent technological development has expanded the operative range of the RPM substantially. New possibilities of live cell imaging and partial gravity simulations, for example, are of particular interest. For obtaining valuable and reliable results from RPM experiments, the appropriate use of the RPM is of utmost importance. The simulation of microgravity requires that the RPM's rotation is faster than the biological process under study, but not so fast that undesired side effects appear. It remains a legitimate question, however, whether the RPM can accurately and reliably simulate microgravity conditions comparable to real microgravity in space. We attempt to answer this question by mathematically analyzing the forces working on the samples while they are mounted on the operating RPM and by comparing data obtained under real microgravity in space and simulated microgravity on the RPM. In conclusion and after taking the mentioned constraints into consideration, we are convinced that simulated microgravity experiments on the RPM are a valid alternative for conducting examinations on the influence of the force of gravity in a fast and straightforward approach. PMID:25649075

  14. Low Gravity Freefall Facilities

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Composite of Marshall Space Flight Center's Low-Gravity Free Fall Facilities.These facilities include a 100-meter drop tower and a 100-meter drop tube. The drop tower simulates in-flight microgravity conditions for up to 4.2 seconds for containerless processing experiments, immiscible fluids and materials research, pre-flight hardware design test and flight experiment simulation. The drop tube simulates in-flight microgravity conditions for up to 4.6 seconds and is used extensively for ground-based microgravity convection research in which extremely small samples are studied. The facility can provide deep undercooling for containerless processing experiments that require materials to remain in a liquid phase when cooled below the normal solidification temperature.

  15. Gene Expression and Structural Skeletal Responses to Long-Duration Simulated Microgravity in Rats

    NASA Technical Reports Server (NTRS)

    Shirazi-Fard, Yasaman; Rael, Victoria E.; Torres, Samantha; Steczina, Sonette; Bryant, Sheenah; Tahimic, Candice; Globus, Ruth K.

    2017-01-01

    In this study, we aim to examine skeletal responses to simulated long-duration spaceflight (90 days) and weight-bearing recovery on bone loss using the ground-based hindlimb unloading (HU) model in adolescent (3-month old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative defense genes and pro-bone resorption factors, where there is a progression and eventual plateau; furthermore, early transient changes in these pathways precede skeletal adaptations.

  16. Development of life sciences equipment for microgravity and hypergravity simulation

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Evans, J.; Vasques, M.; Gundo, D. P.; Griffith, J. B.; Harper, J.; Skundberg, T.

    1994-01-01

    The mission of the Life Science Division at the NASA Ames Research Center is to investigate the effects of gravity on living systems in the spectrum from cells to humans. The range of these investigations is from microgravity, as experienced in space, to Earth's gravity, and hypergravity. Exposure to microgravity causes many physiological changes in humans and other mammals including a headward shift of body fluids, atrophy of muscles - especially the large muscles of the legs - and changes in bone and mineral metabolism. The high cost and limited opportunity for research experiments in space create a need to perform ground based simulation experiments on Earth. Models that simulate microgravity are used to help identify and quantify these changes, to investigate the mechanisms causing these changes and, in some cases, to develop countermeasures.

  17. Analogs of microgravity: head-down tilt and water immersion.

    PubMed

    Watenpaugh, Donald E

    2016-04-15

    This article briefly reviews the fidelity of ground-based methods used to simulate human existence in weightlessness (spaceflight). These methods include horizontal bed rest (BR), head-down tilt bed rest (HDT), head-out water immersion (WI), and head-out dry immersion (DI; immersion with an impermeable elastic cloth barrier between subject and water). Among these, HDT has become by far the most commonly used method, especially for longer studies. DI is less common but well accepted for long-duration studies. Very few studies exist that attempt to validate a specific simulation mode against actual microgravity. Many fundamental physical, and thus physiological, differences exist between microgravity and our methods to simulate it, and between the different methods. Also, although weightlessness is the salient feature of spaceflight, several ancillary factors of space travel complicate Earth-based simulation. In spite of these discrepancies and complications, the analogs duplicate many responses to 0 G reasonably well. As we learn more about responses to microgravity and spaceflight, investigators will continue to fine-tune simulation methods to optimize accuracy and applicability. Copyright © 2016 the American Physiological Society.

  18. Microgravity science and applications: Apparatus and facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA support apparatus and facilities for microgravity research are summarized in fact sheets. The facilities are ground-based simulation environments for short-term experiments, and the shuttle orbiter environment for long duration experiments. The 17 items of the microgravitational experimental apparatus are described. Electronic materials, alloys, biotechnology, fluid dynamics and transport phenomena, glasses and ceramics, and combustion science are among the topics covered.

  19. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    2013-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  20. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    1980-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  1. The Use of Microgravity Simulators for Space Research

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Richards, Stephanie E.; Wade, Randall I.; Richards, Jeffrey T.; Fritsche, Ralph F.; Levine, Howard G.

    2016-01-01

    The spaceflight environment is known to influence biological processes ranging from stimulation of cellular metabolism to possible impacts on cellular damage repair, suppression of immune functions, and bone loss in astronauts. Microgravity is one of the most significant stress factors experienced by living organisms during spaceflight, and therefore, understanding cellular responses to altered gravity at the physiological and molecular level is critical for expanding our knowledge of life in space. Since opportunities to conduct experiments in space are scarce, various microgravity simulators and analogues have been widely used in space biology ground studies. Even though simulated microgravity conditions have produced some, but not all of the biological effects observed in the true microgravity environment, they provide test beds that are effective, affordable, and readily available to facilitate microgravity research. A Micro-g Simulator Center is being developed at Kennedy Space Center (KSC) to offer a variety of microgravity simulators and platforms for Space Biology investigators. Assistance will be provided by both KSC and external experts in molecular biology, microgravity simulation, and engineering. Comparisons between the physical differences in microgravity simulators, examples of experiments using the simulators, and scientific questions regarding the use of microgravity simulators will be discussed.

  2. Responds of Bone Cells to Microgravity: Ground-Based Research

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng

    2015-11-01

    Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.

  3. Spaceflight and Simulated Microgravity Increases Virulence of the Known Bacterial Pathogen S. Marcescens

    NASA Technical Reports Server (NTRS)

    Clemens-Grisham, Rachel Andrea; Bhattacharya, Sharmila; Wade, William

    2016-01-01

    After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.

  4. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    PubMed

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  5. Gravitational Role in Liquid Phase Sintering

    NASA Technical Reports Server (NTRS)

    Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.

    1998-01-01

    To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.

  6. Jumping in simulated and true microgravity: response to maximal efforts with three landing types

    NASA Technical Reports Server (NTRS)

    D'Andrea, Susan E.; Perusek, Gail P.; Rajulu, Sudhakar; Perry, Julie; Davis, Brian L.

    2005-01-01

    BACKGROUND: Exercise is a promising countermeasure to the physiological deconditioning experienced in microgravity, but has not proven effective in eliminating the ongoing loss of bone mineral, most likely due to the lack of high-impact forces and loading rates during in-flight activity. We wanted to determine lower-extremity response to high-impact jumping exercises in true and simulated microgravity and establish if 1-G force magnitudes can be achieved in a weightless environment. METHODS: Jumping experiments were performed in a ground-based zero-gravity simulator (ZGS) in 1 G, and during parabolic flight with a gravity-replacement system. There were 12 subjects who participated in the study, with 4 subjects common to both conditions. Force, loading rates, jump height, and kinematics were analyzed during jumps with three distinct landings: two-footed toe-heel, one-footed toe-heel, and flat-footed. Gravity replacement loads of 45%, 60%, 75%, and 100% bodyweight were used in the ZGS; because of time constraints, these loads were limited to 60% and 75% bodyweight in parabolic flight. RESULTS: Average peak ground-reaction forces during landing ranged between 1902+/-607 and 2631+/-663 N in the ZGS and between 1683+/-807 and 2683+/-1174 N in the KC-135. No significant differences were found between the simulated and true microgravity conditions, but neither condition achieved the magnitudes found in 1 G. CONCLUSION: Data support the hypothesis that jumping exercises can impart high-impact forces during weightlessness and that the custom-designed ZGS will replicate what is experienced in true microgravity.

  7. Numerical simulation of controlled directional solidification under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Holl, S.; Roos, D.; Wein, J.

    The computer-assisted simulation of solidification processes influenced by gravity has gained increased importance during the previous years regarding ground-based as well as microgravity research. Depending on the specific needs of the investigator, the simulation model ideally covers a broad spectrum of applications. These primarily include the optimization of furnace design in interaction with selected process parameters to meet the desired crystallization conditions. Different approaches concerning the complexity of the simulation models as well as their dedicated applications will be discussed in this paper. Special emphasis will be put on the potential of software tools to increase the scientific quality and cost-efficiency of microgravity experimentation. The results gained so far in the context of TEXUS, FSLP, D-1 and D-2 (preparatory program) experiments, highlighting their simulation-supported preparation and evaluation will be discussed. An outlook will then be given on the possibilities to enhance the efficiency of pre-industrial research in the Columbus era through the incorporation of suitable simulation methods and tools.

  8. Single and compound effects of radiation and microgravity responses in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Sun, Yeqing; Xu, Dan; Yang, Jun; Luo, Yajing

    2016-07-01

    Space radiation and microgravity are main factors of spaceflight which could cause effects on organism. However, studies on the combined effects of microgravity and radiation have had conflicting results. For further elucidate the single factor effects of radiation or microgravity and the compound factor effects of them, the wild-type strain (Bristol N2) and muscle repair defective strain (dys-1) of Caenorhabditis elegansin dauer larvae were treated by ground simulated radiation in different doses (0.2Gy,2Gy) and/or 16.5-day simulated microgravity. The locomotory capacity assay and proteomic analysis were processed after the recovery of dauer larvae to adult. Locomotory capacity assay showed that the N2 nematodes were susceptible to simulated microgravity while dys-1 nematodes were susceptible to simulation radiation especially in high dose radiation (2Gy). The compound factor of microgravity and radiation has different influences to different strains. Proteomic results indicated that a wide range but different biological processes were involved in responding to radiation and/or microgravity.

  9. The simulation of microgravity conditions on the ground.

    PubMed

    Albrecht-Buehler, G

    1992-10-01

    This chapter defines weightlessness as the condition where the acceleration of an object is independent of its mass. Applying this definition to the clinostat, it argues that the clinostat is very limited as a simulator of microgravity because it (a) generates centrifugal forces, (b) generates particle oscillations with mass-dependent amplitudes of speed and phase shifts relative to the clinorotation, (c) is unable to remove globally the scalar effects of gravity such as hydrostatic pressure, which are independent of the direction of gravity in the first place, and, (d) generates more convective mixing of the gaseous or liquid environment of the test object, rather than eliminating it, as would true weightlessness. It is proposed that attempts to simulate microgravity must accept the simulation of one aspect of microgravity at a time, and urges that the suppression of convective currents be a major feature of experimental methods that simulate microgravity.

  10. Upregulation of erythropoietin receptor in UT-7/EPO cells inhibits simulated microgravity-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2011-07-01

    Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% ( p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO-EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.

  11. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    The purpose of this study was to investigate in ground-based experiments, the effect of microgravity on in vitro erythroid differentiation triggered by the hematopoietic growth factor erythropoietin (Epo) and to begin to determine whether this is associated with the anemia of space flight. We chose to use a model cell culture system with which we have had a long and successful experience. These cells, designated Rauscher murine erythroleukemia, grow independently in suspension culture. We first compared the growth rate of Rauscher cells under conditions of simulated microgravity with that of cells grown at 1XG in standard tissue culture flasks. Therefore, since there were fewer cells in the RWV at each specified time, glucose consumption per cell was increased in simulated microgravity. We next began to study the effect of simulated microgravity on erythropoietin induced differentiation of these cells. In another experiment, we allow the cells to grown in flasks or in the RWV for 24 hours prior to the addition of Epo. We initiated studies of c-myb, a proto-oncogene the down-regulation of which is necessary for erythroid differentiation. These preliminary results suggest that simulated microgravity interferes with the signal to c-myb. This may be part of the mechanism that blocks differentiation. A flight experiment is planned within the next 18- 24 months.

  12. Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Cubano, L. A.; Lewis, M. L.

    2000-01-01

    Human lymphocytes flown on the Space Shuttle respond poorly to mitogen stimulation and populations of the lymphoblastoid T cell line, Jurkat, manifest growth arrest, increase in apoptosis and time- and microgravity-dependent increases in the soluble form of the cell death factor, Fas/APO-1 (sFas). The potential role of apoptosis in population dynamics of space-flown lymphocytes has not been investigated previously. We flew Jurkat cells on Space Transportation System (STS)-80 and STS-95 to determine whether apoptosis and the apparent microgravity-related release of sFas are characteristic of lymphocytes in microgravity. The effects of spaceflight and ground-based tests simulating spaceflight experimental conditions, including high cell density and low serum concentration, were assessed. Immunofluorescence microscopy showed increased cell associated Fas in flown cells. Results of STS-80 and STS-95 confirmed increase in apoptosis during spaceflight and the release of sFas as a repeatable, time-dependent and microgravity-related response. Ground-based tests showed that holding cells at 1.5 million/ml in medium containing 2% serum before launch did not increase sFas. Reports of increased Fas in cells of the elderly and the increases in spaceflown cells suggest possible similarities between aging and spaceflight effects on lymphocytes.

  13. RWPV bioreactor mass transport: earth-based and in microgravity

    NASA Technical Reports Server (NTRS)

    Begley, Cynthia M.; Kleis, Stanley J.

    2002-01-01

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels. 2002 Wiley Periodicals, Inc.

  14. RWPV bioreactor mass transport: earth-based and in microgravity.

    PubMed

    Begley, Cynthia M; Kleis, Stanley J

    2002-11-20

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels. 2002 Wiley Periodicals, Inc.

  15. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival

    PubMed Central

    Quintens, Roel; Samari, Nada; de Saint-Georges, Louis; van Oostveldt, Patrick; Baatout, Sarah; Benotmane, Mohammed Abderrafi

    2016-01-01

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight. PMID:27203085

  16. Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat.

    PubMed

    Yamazaki, Takashi; Yoshimoto, Maki; Nishiyama, Yayoi; Okubo, Yoichiro; Makimura, Koichi

    2012-07-01

    The living and working environments of spacecraft become progressively contaminated by a number of microorganisms. A large number of microorganisms, including pathogenic microorganisms, some of which are fungi, have been found in the cabins of space stations. However, it is not known how the characteristics of microorganisms change in the space environment. To predict how a microgravity environment might affect fungi, and thus how their characteristics could change on board spacecraft, strains of the pathogenic fungi Aspergillus niger and Candida albicans were subjected to on-ground tests in a simulated microgravity environment produced by a three-dimensional (3D) clinostat. These fungi were incubated and cultured in a 3D clinostat in a simulated microgravity environment. No positive or negative differences in morphology, asexual reproductive capability, or susceptibility to antifungal agents were observed in cultures grown under simulated microgravity compared to those grown in normal earth gravity (1 G). These results strongly suggest that a microgravity environment, such as that on board spacecraft, allows growth of potentially pathogenic fungi that can contaminate the living environment for astronauts in spacecraft in the same way as they contaminate residential areas on earth. They also suggest that these organisms pose a similar risk of opportunistic infections or allergies in astronauts as they do in people with compromised immunity on the ground and that treatment of fungal infections in space could be the same as on earth. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  17. Combined Effects of Microgravity, Radiation and Psychological Stress on Immune System Cells

    NASA Technical Reports Server (NTRS)

    Moreno-Villanueva, Maria

    2017-01-01

    The aim of this project was to investigate the combined effects of microgravity, radiation and psychological stress on DNA damage response. In order to mimic the combined conditions of space environment and psychological stress, cells were stimulated with isoproterenol (an epinephrine analogue compound) and exposed to radiation in a bioreactor that simulates microgravity conditions on the ground.

  18. Ontogenesis of mammals in microgravity

    NASA Technical Reports Server (NTRS)

    Gazenko, O. G. (Editor)

    1993-01-01

    This report is an English translation of a Russian report prepared by a group of authors from the USSR, Bulgaria, Hungary, the GDR, Poland, Czechoslovakia, France, and the USA. It presents results of the first microgravity experiment on mammalian embryology performed during the flight of the biosatellite Cosmos-1514 and in ground-based simulation studies. An overview is provided of the data available about the role of gravity in animal growth and development, and future studies into this problem are discussed. A new introduction has been provided for the English version.

  19. Responses of Microcrustaceans to Simulated Microgravity (2D-Clinorotation) - Preliminary Assessments for the Development of Bioregenerative Life Support Systems (BLSS)

    NASA Astrophysics Data System (ADS)

    Fischer, Jessica; Schoppmann, Kathrin; Knie, Miriam; Laforsch, Christian

    2016-06-01

    Bioregenerative Life Support Systems (BLSS) are an endeavor to create environments able to maintain human life e.g. on future long-duration space missions like flights to Mars. Based on cyclic biological processes, these systems will be independent from material resupply (such as food, water and oxygen). Due to their central role in limnic ecosystems, herbivorous microcrustaceans could act as key player in aquatic BLSS as they link oxygen liberating, autotrophic producers like algae to higher trophic levels, such as fish. However, before such BLSS can be utilized in space, organisms inhabiting these systems have to be studied thoroughly to disclose the gravitational impact on the biological processes. This is possible in real microgravity, but requires high financial resources, is opportunity-limited or periods of microgravity are very short. Yet, cost-effective and almost permanently accessible tools for gravitational research are ground-based facilities (GBFs), providing simulated microgravity. Among those GBFs is the so called 2D-clinostat. In the present study we demonstrate, that rotation of clinostat tubes does not generate acceleration in form of (predator resembling) small scale turbulence, which can be perceived by Daphnia cucullata. Additionally, embryonal development is not disturbed in subitaneous eggs of Daphnia magna and resting eggs of the ostracod Heterocypris incongruens (besides through restrictions in space within the narrow clinostat tubes), just as subsequent hatching from the respective eggs. Hence, our results indicate that clinorotation is a suitable method to simulate microgravity for microcrustaceans.

  20. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding

    2017-02-01

    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths yielded basically similar results, but the data gained by weighing were more distinct. Overall, our results clearly support the concept that the environmental gravity vector regulates fish otolith growth in terms of the pendulum model of otolith test masses, and that wall vessel rotation is a valuable means to provide functional weightlessness from the perspective of developing Zebrafish. We recommend that Zebrafish embryos staged 7 dpf (or possibly slightly elder) are rotated at 15 rpm in a Rotating-Wall Vessel as used in the present study for further experiments designed to elucidate the mechanisms underlying (altered gravity affected) otolith growth.

  1. Thyroid Cells Exposed to Simulated Microgravity Conditions - Comparison of the Fast Rotating Clinostat and the Random Positioning Machine

    NASA Astrophysics Data System (ADS)

    Warnke, Elisabeth; Kopp, Sascha; Wehland, Markus; Hemmersbach, Ruth; Bauer, Johann; Pietsch, Jessica; Infanger, Manfred; Grimm, Daniela

    2016-06-01

    The ground-based facilities 2D clinostat (CN) and Random Positioning Machine (RPM) were designed to simulate microgravity conditions on Earth. With support of the CORA-ESA-GBF program we could use both facilities to investigate the impact of simulated microgravity on normal and malignant thyroid cells. In this review we report about the current knowledge of thyroid cancer cells and normal thyrocytes grown under altered gravity conditions with a special focus on growth behaviour, changes in the gene expression pattern and protein content, as well as on altered secretion behaviour of the cells. We reviewed data obtained from normal thyrocytes and cell lines (two poorly differentiated follicular thyroid cancer cell lines FTC-133 and ML-1, as well as the normal thyroid cell lines Nthy-ori 3-1 and HTU-5). Thyroid cells cultured under conditions of simulated microgravity (RPM and CN) and in Space showed similar changes with respect to spheroid formation. In static 1 g control cultures no spheroids were detectable. Changes in the regulation of cytokines are discussed to be involved in MCS (multicellular spheroids) formation. The ESA-GBF program helps the scientists to prepare future spaceflight experiments and furthermore, it might help to identify targets for drug therapy against thyroid cancer.

  2. Fluid-structural dynamics of ground-based and microgravity caloric tests

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Oas, J. G.; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  3. Fluid-structural dynamics of ground-based and microgravity caloric tests.

    PubMed

    Kassemi, M; Oas, J G; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  4. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu

    2012-07-01

    RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground. This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground.

  5. Early use of Space Station Freedom for NASA's Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    Rhome, Robert C.; O'Malley, Terence F.

    1992-01-01

    The paper describes microgravity science opportunities inherent to the restructured Space Station and presents a synopsis of the scientific utilization plan for the first two years of ground-tended operations. In the ground-tended utilization mode the Space Station is a large free-flyer providing a continuous microgravity environment unmatched by any other platform within any existing U.S. program. It is pointed out that the importance of this period of early Space Station mixed-mode utilization between crew-tended and ground-tended approaches is of such magnitude that Station-based microgravity science experiments many become benchmarks to the disciplines involved. The traffic model that is currently being pursued is designed to maximize this opportunity for the U.S. microgravity science community.

  6. Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity

    NASA Technical Reports Server (NTRS)

    Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.

    2002-01-01

    Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.

  7. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  8. Creating Simulated Microgravity Patient Models

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  9. Detection of the quantity of kinesin and microgravity-sensitive kinesin genes in rat bone marrow stromal cells grown in a simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Ni, Chengzhi; Wang, Chunyan; Li, Yuan; Li, Yinghui; Dai, Zhongquan; Zhao, Dongming; Sun, Hongyi; Wu, Bin

    2011-06-01

    Kinesin and kinesin-like proteins (KLPs) constitute a superfamily of microtubule motor proteins found in all eukaryotic organisms. Members of the kinesin superfamily are known to play important roles in many fundamental cellular and developmental processes. To date, few published studies have reported on the effects of microgravity on kinesin expression. In this paper, we describe the expression pattern and microgravity-sensitive genes of kinesin in rat bone marrow stromal cells cultured in a ground-based rotating bioreactor. The quantity of kinesin under the clinorotation condition was examined by immunoblot analysis with anti-kinesin. Furthermore, the distribution of kinesin at various times during clinorotation was determined by dual immunostaining, using anti-kinesin monoclonal antibody or anti-β-tubulin monoclonal antibody. In terms of kinesin quantity, we found that the ratios of the amounts of clinorotated/stationary KLPs decreased from clinorotation day 5 to day 10, although it increased on days 2 and 3. Immunofluorescence analysis revealed that kinesin in the nucleus was the first to be affected by simulated microgravity, following the kinesin at the periphery that was affected at various times during clinorotation. Real-time RT-PCR analysis of kinesin mRNA expression was performed and led to the identification of 3 microgravity-sensitive kinesin genes: KIF9, KIFC1, and KIF21A. Our results suggest that kinesin has a distinct expression pattern, and the identification of microgravity-sensitive kinesin genes offers insight into fundamental cell biology.

  10. Aortic baroreflex control of heart rate after 15 days of simulated microgravity exposure

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Engelke, Keith A.; Convertino, Victor A.; Raven, Peter B.

    1994-01-01

    To determine the effects of simulated microgravity on aortic baroreflex control of heart rate, we exposed seven male subjects to 15 days of bed rest in the 6 deg head-down position. The sensitivity of the aortic-cardiac baroreflex was determined during a steady-state phenylephrine-induced increase in mean arterial pressure combined with lower body negative pressure to counteract central venous pressure increases and neck pressure to offset the increased carotid sinus transmural pressure. The aortic-cardiac baroreflex gain was assessed by determining the ratio of the change in heart rate to the change in mean arterial pressure between baseline conditions and aortic baroreceptor-isolated conditions (i.e., phenylephrine + lower body negative pressure + neck pressure stage). Fifteen days of head-down tilt increased the gain of the aortic-cardiac baroreflex. Reductions in blood volume and/or maximal aerobic capacity may represent the underlying mechanism(s) responsible for increased aortic baroreflex responsiveness after exposure to a ground-based analogue of microgravity.

  11. Effects of Simulated Microgravity on a Host-Pathogen System

    NASA Technical Reports Server (NTRS)

    Gilbert, Rachel; Lo, Rachel; Bhattacharya, Sharmila

    2017-01-01

    While it has been shown that decades of astronauts and cosmonauts can suffer from illnesses both during and after spaceflight, the underlying causes are still poorly understood, due in part to the fact that there are so many variables to consider when investigating the human immune system in a complex environment. Invertebrates have become popular models for studying human disease because they are cheap, highly amenable to experimental manipulation, and have innate immune systems with a high genetic similarity to humans. Fruit flies (Drosophila melanogaster) have been shown to experience a dramatic shift in immune gene expression following spaceflight, but are still able to fight off infections when exposed to bacteria. However, the common bacterial pathogen Serratia marcescens was shown to become more lethal to fruit flies after being cultured in space, suggesting that not only do we need to consider host changes in susceptibility, but also changes in the pathogen itself after spaceflight conditions. Being able to simulate spaceflight conditions in a controlled environment on the ground gives us the ability to not only evaluate the effects of microgravity on the host immune system, but also how the microorganisms that cause immune disorders are being affected by these drastic environmental shifts. In this study, I use a ground-based simulated microgravity environment to examine the genetic changes associated with increased S. marcescens virulence in order to understand how microgravity is affecting this pathogen, as well as how these genetic changes influence and interact with the host immune system. This study will provide us with more directed approaches to studying the effects of spaceflight on human beings, with the ultimate goal of being able to counteract immune dysfunction in future space exploration.

  12. Physiological adaptations and countermeasures associated with long-duration spaceflights.

    PubMed

    Tipton, C M; Hargens, A

    1996-08-01

    Since 1961, there have been more than 165 flights involving several hundred individuals who have remained in a space environment from 15 min to more than a year. In addition, plans exist for humans to explore, colonize, and remain in microgravity for 1000 d or more. This symposium will address the current state of knowledge in select aspects associated with the cardiovascular, fluid and electrolytes, musculoskeletal, and the neuroendocrine and immune systems. The authors will focus on responses, mechanisms, and the appropriate countermeasures to minimize or prevent the physiological and biochemical consequences of a microgravity environment. Since exercise is frequently cited as a generic countermeasure, this topic will be covered in greater detail. Models for simulated microgravity conditions will be discussed in subsequent manuscripts, as will future directions for ground-based research.

  13. Physiological adaptations and countermeasures associated with long-duration spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, C. M.; Hargens, A.

    1996-01-01

    Since 1961, there have been more than 165 flights involving several hundred individuals who have remained in a space environment from 15 min to more than a year. In addition, plans exist for humans to explore, colonize, and remain in microgravity for 1000 d or more. This symposium will address the current state of knowledge in select aspects associated with the cardiovascular, fluid and electrolytes, musculoskeletal, and the neuroendocrine and immune systems. The authors will focus on responses, mechanisms, and the appropriate countermeasures to minimize or prevent the physiological and biochemical consequences of a microgravity environment. Since exercise is frequently cited as a generic countermeasure, this topic will be covered in greater detail. Models for simulated microgravity conditions will be discussed in subsequent manuscripts, as will future directions for ground-based research.

  14. Application of Acute Maximal Exercise to Enhance Mechanisms Underlying Blood Pressure Regulation and Orthostatic Tolerance After Exposure to Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Doerr, D. F.

    1999-01-01

    Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.

  15. ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities

    NASA Astrophysics Data System (ADS)

    Schüler, Oliver; Krause, Lars; Görög, Mark; Hauslage, Jens; Kesseler, Leona; Böhmer, Maik; Hemmersbach, Ruth

    2016-06-01

    Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.

  16. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism.

    PubMed

    Huang, Bing; Li, Dian-Geng; Huang, Ying; Liu, Chang-Ting

    2018-05-14

    Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.

  17. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    PubMed Central

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  18. Microgravity Research: A Retrospective of Accomplishments

    NASA Astrophysics Data System (ADS)

    Voorhees, Peter

    2005-03-01

    During the early days of human spaceflight U.S. National Aeronautics and Space Administration (NASA) began giving researchers the ability to perform experiments under extremely low gravity conditions (microgravity). Early microgravity experiments were rudimentary and discovery driven. The limitations of such an approach were clear and in the early 1990s, NASA broadened its program significantly beyond those experiments that were destined to be flown to include a ground- based program that contained both experimental and theoretical investigations. The ground-based program provided a source of carefully designed microgravity experiments. This led to the program in the Physical Sciences Division that involved research in, for example, fluids, materials and low temperature physics. The impact of the microgravity research program has been the focus of a recent National Research Council report titled “Assessment of Directions in Microgravity and Physical Sciences Research at NASA.” We found that there have been numerous high impact ground-based and flight investigations. For example, NASA funding has been instrumental in elucidating the nature of surface-tension-driven fluid flows, dendritic crystal growth and the thermodynamics of phase transitions near critical points. Using this report as a basis, a discussion of the impact of microgravity research on the fields in which it is a part will be given.

  19. Microgravity research in NASA ground-based facilities

    NASA Technical Reports Server (NTRS)

    Lekan, Jack

    1989-01-01

    An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.

  20. Signaling in Human and Murine Lymphocytes in Microgravity: Parallels and Contrasts

    NASA Technical Reports Server (NTRS)

    Neal, Pellis; Alamelu, Sundaresan; Kulkarni, A. D.; Yamauchi, K.

    2006-01-01

    Immune function in space undergoes dramatic changes, some of which are detrimental to lymphocyte function. These changes may lead to significant immune suppression. Studies with human lymphocytes both in space flight and with ground-based models (NASA in vitro ground-based microgravity analog) indicate that T cell activation is inhibited in microgravity. Other lymphocyte functions, such as locomotion, are also inhibited. There is about an 80 percent homology in the immune response of mice to that of humans. A murine model was investigated because of its ability to parallel some microgravity using hind limb suspension. In in vivo antiorthostatically (AOS)-suspended mice, T cell activation is greatly suppressed, with the majority of activation related cytokines being inhibited. PHA activation in lymphocytes derived from AOS mice (in vivo ground-based microgravity analog) is also suppressed. Calcium ionophore studies in human lymphocytes exposed to modeled microgravity indicate that the calcium pathways are probably unaffected in microgravity. IP3 (inositol triphosphate) receptor expression in both human and mouse lymphocytes cultured in modeled microgravity indicate no suppression of calcium signaling. In the human system, microgravity seems to inhibit signaling cascades either at the level of, or up-stream of, Protein Kinase C (PKC). In particular, a membrane event, such as phospholipase C gamma 1 activity in human lymphocytes is affected, with its direct upstream effector, LAT, being deficiently expressed. In the mouse pathway, LAT is undiminished while another critical intermediate, SLP-76, is diminished significantly. This study identifies critical stages in the human and mouse immune systems and in lymphocytes as a function of microgravity.

  1. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model.

    PubMed

    Shi, Junxiu; Wang, Yifan; He, Jian; Li, Pingping; Jin, Rong; Wang, Ke; Xu, Xi; Hao, Jie; Zhang, Yan; Liu, Hongju; Chen, Xiaoping; Wu, Hounan; Ge, Qing

    2017-08-01

    Exposure to microgravity leads to alterations in multiple systems, but microgravity-related changes in the gastrointestinal tract and its clinical significance have not been well studied. We used the hindlimb unloading (HU) mouse model to simulate a microgravity condition and investigated the changes in intestinal microbiota and colonic epithelial cells. Compared with ground-based controls (Ctrls), HU affected fecal microbiota composition with a profile that was characterized by the expansion of Firmicutes and decrease of Bacteroidetes. The colon epithelium of HU mice showed decreased goblet cell numbers, reduced epithelial cell turnover, and decreased expression of genes that are involved in defense and inflammatory responses. As a result, increased susceptibility to dextran sulfate sodium-induced epithelial injury was observed in HU mice. Cohousing of Ctrl mice with HU mice resulted in HU-like epithelial changes in Ctrl mice. Transplantation of feces from Ctrl to HU mice alleviated these epithelial changes in HU mice. Results indicate that HU changes intestinal microbiota, which leads to altered colonic epithelial cell homeostasis, impaired barrier function, and increased susceptibility to colitis. We further demonstrate that alteration in gastrointestinal motility may contribute to HU-associated dysbiosis. These animal results emphasize the necessity of evaluating astronauts' intestinal homeostasis during distant space travel.-Shi, J., Wang, Y., He, J., Li, P., Jin, R., Wang, K., Xu, X., Hao, J., Zhang, Y., Liu, H., Chen, X., Wu, H., Ge, Q. Intestinal microbiota contributes to colonic epithelial changes in simulated microgravity mouse model. © FASEB.

  2. Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures

    NASA Astrophysics Data System (ADS)

    Kamal, Khaled Y.; Herranz, Raúl; van Loon, Jack J. W. A.; Christianen, Peter C. M.; Medina, F. Javier

    2016-06-01

    Ground-Based Facilities (GBF) are essetial tools to understand the physical and biological effects of the absence of gravity and they are necessary to prepare and complement space experiments. It has been shown previously that a real microgravity environment induces the dissociation of cell proliferation from cell growth in seedling root meristems, which are limited populations of proliferating cells. Plant cell cultures are large and homogeneous populations of proliferating cells, so that they are a convenient model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of the Arabidopsis thaliana cell line MM2d were exposed to four altered gravity and magnetic field environments in a magnetic levitation facility for 3 hours, including two simulated microgravity and Mars-like gravity levels obtained with different magnetic field intensities. Samples were processed either by quick freezing, to be used in flow cytometry for cell cycle studies, or by chemical fixation for microscopy techniques to measure parameters of the nucleolus. Although the trend of the results was the same as those obtained in real microgravity on meristems (increased cell proliferation and decreased cell growth), we provide a technical discussion in the context of validation of proper conditions to achieve true cell levitation inside a levitating droplet. We conclude that the use of magnetic levitation as a simulated microgravity GBF for cell suspension cultures is not recommended.

  3. Simulation of fluid flows during growth of organic crystals in microgravity

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Sutter, James K.; Balasubramaniam, R.; Fowlis, William K.; Radcliffe, M. D.; Drake, M. C.

    1987-01-01

    Several counter diffusion type crystal growth experiments were conducted in space. Improvements in crystal size and quality are attributed to reduced natural convection in the microgravity environment. One series of experiments called DMOS (Diffusive Mixing of Organic Solutions) was designed and conducted by researchers at the 3M Corporation and flown by NASA on the space shuttle. Since only limited information about the mixing process is available from the space experiments, a series of ground based experiments was conducted to further investigate the fluid dynamics within the DMOS crystal growth cell. Solutions with density differences in the range of 10 to the -7 to 10 to the -4 power g/cc were used to simulate microgravity conditions. The small density differences were obtained by mixing D2O and H2O. Methylene blue dye was used to enhance flow visualization. The extent of mixing was measured photometrically using the 662 nm absorbance peak of the dye. Results indicate that extensive mixing by natural convection can occur even under microgravity conditions. This is qualitatively consistent with results of a simple scaling analysis. Quantitave results are in close agreement with ongoing computational modeling analysis.

  4. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  5. Analysis of Arterial Mechanics During Head-down Tilt Bed Rest

    NASA Technical Reports Server (NTRS)

    Elliot, Morgan; Martin, David S.; Westby, Christian M.; Stenger, Michael B.; Platts, Steve

    2014-01-01

    Arterial health may be affected by microgravity or ground based analogs of spaceflight, as shown by an increase in thoracic aorta stiffness1. Head-down tilt bed rest (HDTBR) is often used as a ground-based simulation of spaceflight because it induces physiological changes similar to those that occur in space2, 3. This abstract details an analysis of arterial stiffness (a subclinical measure of atherosclerosis), the distensibility coefficient (DC), and the pressure-strain elastic modulus (PSE) of the arterial walls during HDTBR. This project may help determine how spaceflight differentially affects arterial function in the upper vs. lower body.

  6. Simulated microgravity induce apoptosis and down-regulation of erythropoietin receptor of UT-7/EPO cells

    NASA Astrophysics Data System (ADS)

    Zou, Li-xue; Cui, Shao-yan; Zhong, Jian; Yi, Zong-chun; Sun, Yan; Fan, Yu-bo; Zhuang, Feng-yuan

    2010-11-01

    Hematopoietic progenitor cell proliferation can be alternated on either spaceflight or under simulated microgravity experiments on the ground; however, the underlying mechanism remains largely unknown. In the present study, we have demonstrated that exposure of human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO cells to conditions of simulated microgravity with a rotary culture instrument significantly inhibited the cellular proliferation rate. Adding higher concentrations of EPO to the culture medium failed to improve the inhibitory status. Cell apoptosis was detected by fluorescence staining of cell nuclei and a flow cytometry assay using Annexin V/PI double staining. This microgravity-induced apoptosis in UT-7/EPO cells could be blocked by a pancaspase inhibitor Z-VAD-FMK. Immunoblotting demonstrated that rotary culture resulted in a reduction of the expression of Bcl-xL, an anti-apoptotic protein, and the cleavage of caspase-3. Furthermore, rotary culture reduced surface localization and protein content, as well as the mRNA expression of erythropoietin receptor (EPOR) of UT-7/EPO. Take together, the findings indicated that simulated microgravity may induce mitochondrial related apoptosis of UT-7/EPO cell through depressing the EPO-EPOR pathway.

  7. Change of growth promotion and disease resistant of wheat seedling by application of biocontrol bacterium Pseudochrobactrum kiredjianiae A4 under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Fu, Yuming; Gao, Han; Li, Hongyan; Qin, Youcai; Tang, Wen; Lu, Jinying; Li, Ming; Shao, Lingzhi; Liu, Hong

    2017-10-01

    Plant disease control and prevention in microgravity are critical for space plant cultivation. This study investigated the effects of a biocontrol bacterium Pseudochrobactrum kiredjianiae A4 on growth development and antifungal potential of wheat seedlings under simulated microgravity. The growth, antioxidant status and plant immune hormone of both non-infected and infected wheat seedlings were detected before and after inoculation of A4 strains under simulated microgravity condition (μG) and ground condition (1G). Our results showed that bacteria A4 promoted wheat growth by increasing root length and biomass accumulation and meanwhile enhancing fungal disease resistance through improving the antioxidant enzyme activities and plant hormone secretion. Moreover, A4 exhibited a weaker promotion ability on wheat biomass accumulation and disease resistance under μG condition compared to that under 1G. These results not only expand our understanding of the impact of microgravity on plant-microbe interaction, but also provide valuable insights into using plant beneficial microbes for plant cultivation and crop protection in space.

  8. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  9. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1996-01-01

    Plasma volume is reduced by 10-20% within 24-48 h of exposure to simulated or actual microgravity. The clinical importance of microgravity induced hypovolemia is manifested by its relationship with orthostatic intolerance and reduced maximal oxygen uptake (VO2max) after return to one gravity (1G). Since there is no evidence to suggest that plasma volume reduction during microgravity is associated with thirst or renal dysfunctions, a diuresis induced by an immediate blood volume shift to the central circulation appears responsible for microgravity-induced hypovolemia. Since most astronauts choose to restrict their fluid intake before a space mission, absence of increased urine output during actual space flight may be explained by low central venous pressure (CVP) which accompanies dehydration. Compelling evidence suggests that prolonged reduction in CVP during exposure to microgravity reflects a "resetting" to a lower operating point, which acts to limit plasma volume expansion during attempts to increase fluid intake. In ground based and space flight experiments, successful restoration and maintenance of plasma volume prior to returning to an upright posture may depend upon development of treatments that can return CVP to its baseline IG operating point. Fluid-loading and lower body negative pressure (LBNP) have not proved completely effective in restoring plasma volume, suggesting that they may not provide the stimulus to elevate the CVP operating point. On the other hand, exercise, which can chronically increase CVP, has been effective in expanding plasma volume when combined with adequate dietary intake of fluid and electrolytes. The success of designing experiments to understand the physiological mechanisms of and development of effective counter measures for the control of plasma volume in microgravity and during return to IG will depend upon testing that can be conducted under standardized controlled baseline conditions during both ground-based and space flight investigations.

  10. Gravitational force and the cardiovascular system

    NASA Technical Reports Server (NTRS)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    1991-01-01

    Ground-based simulation studies have been conducted to clarify the problems of the cardiovascular adaptation to alterations in gravitational force. Simulated microgravity experiments resulted in increases in cardiac stretch, urine flow, and sodium excretion, which were accompanied by lower plasma renin, aldosterone, and ADH. There appears to be a decrease in plasma volume as well as in sympathetic tone after 2-3 days of 0 Gz. Complete adjustment to 0 Gz is found within 8 h without a decrease in plasma volume, when subjects are allowed to dehydrate mildly.

  11. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  12. Bone Biomarkers on the Pathway to Effective Spaceflight Countermeasures

    NASA Technical Reports Server (NTRS)

    Spatz, Jordan

    2009-01-01

    Osteocyte cells are the most abundant yet least understood bone cell type in the human body. However, recent discovers in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating the bone remodeling process. Thus, we propose the first ever in vitro gene expression evaluation of osteocytes exposed to simulated microgravity to determine mechanistic pathways of their gravity sensing ability. Improved understanding of the fundamental mechanisms at the osteocyte cellular level may lead to improved treatment options to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth. Aim 1: Characterize the gene expression patterns and protein levels following exposure of murine osteocytelike cell line (MLO-Y4) to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. We propose to investigate the genetic regulation of the mechanism of the MLO-Y4 cell in the NASA Bioreactor as it is the accepted ground-based analog for simulating vector averaged microgravity.

  13. Bulk Growth of 2-6 Crystals in the Microgravity Environment of USML-1

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Lehoczky, Sandor L.; Szofran, Frank R.; Larson, David J.; Su, Ching-Hua; Sha, Yi-Gao; Alexander, Helga A.

    1993-01-01

    The first United States Microgravity Laboratory Mission (USML- 1) flew in June 1992 on the Space Shuttle Columbia. An important part of this SpaceLab mission was the debut of the Crystal Growth Furnace (CGF). Of the seven samples grown in the furnace, three were bulk grown 2-6 compounds, two of a cadmium zinc telluride alloy, and one of a mercury zinc telluride alloy. Ground based results are presented, together with the results of computer simulated growths of these experimental conditions. Preliminary characterization results for the three USML-1 growth runs are also presented and the flight sample characteristics are compared to the equivalent ground truth samples. Of particular interest are the effect of the containment vessel on surface features, and especially on the nucleation, and the effect of the gravity vector on radial and axial compositional variations and stress and defect levels.

  14. The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.

  15. Convection Effects During Bulk Transparent Alloy Solidification in DECLIC-DSI and Phase-Field Simulations in Diffusive Conditions

    NASA Astrophysics Data System (ADS)

    Mota, F. L.; Song, Y.; Pereda, J.; Billia, B.; Tourret, D.; Debierre, J.-M.; Trivedi, R.; Karma, A.; Bergeon, N.

    2017-08-01

    To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.

  16. Skeletal responses to spaceflight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.; Arnaud, Sara B.

    1991-01-01

    The effect of gravity on the skeletal development and on the bone composition and its regulation in vertebrates is discussed. Results are presented from spaceflight and ground studies in both man and rat on the effect of microgravity on the bone-mineral metabolism (in both species) and on bone maturation and growth (in rats). Special attention is given to a ground-based flight-simulation rat model developed at NASA's Ames Research Center for studies of bone structure at the molecular, organ, and whole-body levels and to comparisons of estimated results with spaceflight data.

  17. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media

    NASA Astrophysics Data System (ADS)

    Tee, Ling Fei; Neoh, Hui-min; Then, Sue Mian; Murad, Nor Azian; Asillam, Mohd Fairos; Hashim, Mohd Helmy; Nathan, Sheila; Jamal, Rahman

    2017-11-01

    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity lead to higher expression of non-coding RNA genes, which may play an epigenetic role in the worms during longer terms of microgravity exposure.

  18. Default network connectivity decodes brain states with simulated microgravity.

    PubMed

    Zeng, Ling-Li; Liao, Yang; Zhou, Zongtan; Shen, Hui; Liu, Yadong; Liu, Xufeng; Hu, Dewen

    2016-04-01

    With great progress of space navigation technology, it becomes possible to travel beyond Earth's gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day -6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity.

  19. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  20. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  1. Effects of microgravity on osteoblast growth

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V.

    1998-01-01

    Studies from space flights over the past two decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. Recently analyzed data from the 1973-1974 Skylabs disclose that there is a rise in the systemic hormone, cortisol, which may play a role in bone loss in flight. In two flights where bone growth was measured (Skylabs 3 and 4), the crew members had a significant loss of calcium accompanied by a rise in 24 hour urinary cortisol during the entire flight period. In ground-based work on osteoblasts, we have demonstrated that equivalent amounts of glucocorticoids can inhibit osteoblast cell growth. In addition, this laboratory has recently studied gene growth and activation of mouse osteoblasts (MC3T3-E1) during spaceflight. Osteoblast cells were grown on glass coverslips, loaded in the Biorack plunger boxes 18 hours before launch and activated 19 hours after launch in the Biorack incubator under microgravity conditions. The osteoblasts were launched in a serum deprived state, activated and collected in microgravity. Samples were collected at 29 hours after sera activation (0-g, n=4; 1-g, n=4). The osteoblasts were examined for changes in gene expression and cell morphology. Approximately one day after growth activation, remarkable differences were observed in gene expression in 0-g and 1-g flight samples. The 0-g activated cells had increased c-fos mRNA when compared to flight 1-g controls. The message of immediate early growth gene, cox-2 was decreased in the microgravity activated cells when compared to ground or 1-g flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of actin mRNA between the 0-g and 1-g samples. These data indicate that quiescent osteoblasts are slower to enter the cell cycle in microgravity, suggesting that the force of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-g. Here we examine ground-based and space flown data on osteoblast growth in ground-based experiments mimicking space flight conditions and in microgravity to simulate lack of gravity stress to help us understand the mechanism of bone loss by experiments.

  2. Countermeasure for space flight effects on immune system: nutritional nucleotides

    NASA Technical Reports Server (NTRS)

    Kulkarni, A. D.; Yamauchi, K.; Sundaresan, A.; Ramesh, G. T.; Pellis, N. R.

    2005-01-01

    Microgravity and its environment have adverse effects on the immune system. Abnormal immune responses observed in microgravity may pose serious consequences, especially for the recent directions of NASA for long-term space missions to Moon, Mars and deep Space exploration. The study of space flight immunology is limited due to relative inaccessibility, difficulty of performing experiments in space, and inadequate provisions in this area in the United States and Russian space programs (Taylor 1993). Microgravity and stress experienced during space flights results in immune system aberration (Taylor 1993). In ground-based mouse models for some of the microgravity effects on the human body, hindlimb unloading (HU) has been reported to cause abnormal cell proliferation and cytokine production (Armstrong et al., 1993, Chapes et al. 1993). In this report, we document that a nutritional nucleotide supplementation as studied in ground-based microgravity analogs, has potential to serve as a countermeasure for the immune dysfunction observed in space travel.

  3. Center for Macromolecular Crystallography, University of Alabama in Birmingham

    NASA Technical Reports Server (NTRS)

    Navia, Manuel A.

    1991-01-01

    Porcine pancreatic elastase (PPE) crystals grown under microgravity conditions on mission STS-26 of the Space Shuttle Discovery were shown to diffract to considerably higher resolution than the best PPE crystals grown by us on the ground. We have now independently refined both the microgravity and ground-based data. Preliminary results of these refinements are summarized. These results show nearly a doubling of experimental diffraction data for this structure, exceeding 1.3 A resolution. Improved phase information derived from the refined structure of PPE based on this microgravity data has allowed us to interpret previously-uninterpretable electron density obtained from ground-based crystals of a complex of PPE with a chemically-reactive inhibitor. Intermediate stages in the enzyme-inhibitor reaction mechanism in the crystal can now be directly observed. Further refinement of PPE structures is in progress.

  4. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity

    PubMed Central

    Kidder, Louis S.; Williams, Philip C.; Xu, Wayne Wenzhong

    2009-01-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed. PMID:20052306

  5. Pneumatic Regolith Transfer Systems for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Mueller, R. P.; Townsend, I. I.; Mantovani, J. G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This slide presentation reviews the testing of a pneumatic system for transfering regolith, to be used for In Situ Resource Utilization (ISRU). Using both the simulated microgravity of parabolic flight and ground testing, the tests demonstrated that lunar regolith can be conveyed pneumatically into a simulated ISRU oxygen production plant reactor. The ground testing also demonstrated that the regolith can be expelled from the ISRU reactor for disposal or for other resource processing.

  6. Tissue Engineering of Cartilage on Ground-Based Facilities

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Bauer, Johann; Hemmersbach, Ruth; Egli, Marcel; Wehland, Markus; Grimm, Daniela

    2016-06-01

    Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

  7. Simulated microgravity allows to demonstrate cell-to-cell communication in bacteria

    NASA Astrophysics Data System (ADS)

    Mastroleo, Felice; van Houdt, Rob; Mergeay, Max; Hendrickx, Larissa; Wattiez, Ruddy; Leys, Natalie

    Through the MELiSSA project, the European Space Agency aims to develop a closed life support system for oxygen, water and food production to support human life in space in forth-coming long term space exploration missions. This production is based on the recycling of the missions organic waste, including CO2 and minerals. The photosynthetic bacterium Rhodospir-illum rubrum S1H is used in MELiSSA to degrade organics with light energy and is the first MELiSSA organism that has been studied in space related environmental conditions (Mastroleo et al., 2009). It was tested in actual space flight to the International Space Station (ISS) as well as in ground simulations of ISS-like ionizing radiation and microgravity. In the present study, R. rubrum S1H was cultured in liquid medium in 2 devices simulating microgravity conditions, i.e. the Rotating Wall Vessel (RWV) and the Random Positioning Machine (RPM). The re-sponse of the bacterium was evaluated at both the transcriptomic and proteomic levels using respectively a dedicated whole-genome microarray and high-throughput gel-free quantitative proteomics. Both at transcriptomic and proteomic level, the bacterium showed a significant response to cultivation in simulated microgravity. The response to low fluid shear modeled microgravity in RWV was different than to randomized microgravity in RPM. Nevertheless, both tests pointed out a change in and a likely interrelation between cell-to-cell communica-tion (i.e. quorum sensing) and cell pigmentation (i.e. photosynthesis) for R. rubrum S1H in microgravity conditions. A new type of cell-to-cell communication molecule in R. rubrum S1H was discovered and characterized. It is hypothised that the lack of convection currents and the fluid quiescence in (simulated) microgravity limits communications molecules to be spread throughout the medium. Cultivation in this new artificial environment of simulated micro-gravity has showed new properties of this well know bacterium. Understanding how cell-to-cell communication regulates photosynthesis and potentially cell aggregation may be an unique tool to understand, characterize and then optimize biodegradation processes in photobioreactors, in space or on Earth. Mastroleo F., Van Houdt R., Leroy B., Benotmane M. A., Janssen A., Mergeay M., Vanhavere F., Hendrickx L., Wattiez R. and Leys N. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J 2009;3:1402-1419. The presented work was financially supported by the European Space Agency (ESA-PRODEX), the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 No 90094) and the SCK•CEN PhD AWM grant of F. Mastroleo. We are grateful to C. Lasseur and C. Paillé, both from ESTEC/ESA, for their constant support and advice.

  8. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion.

    PubMed

    Shanmugarajan, Srinivasan; Zhang, Ye; Moreno-Villanueva, Maria; Clanton, Ryan; Rohde, Larry H; Ramesh, Govindarajan T; Sibonga, Jean D; Wu, Honglu

    2017-11-18

    The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase ( Trap ) and dendritic cell-specific transmembrane protein ( Dcstamp ). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein ( Ocstamp ) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the synthesis of adhesion molecules as much as microgravity.

  9. Ground based ISS payload microgravity disturbance assessments.

    PubMed

    McNelis, Anne M; Heese, John A; Samorezov, Sergey; Moss, Larry A; Just, Marcus L

    2005-01-01

    In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification. Published by Elsevier Ltd.

  10. Height increase, neuromuscular function, and back pain during 6 degrees head-down tilt with traction

    NASA Technical Reports Server (NTRS)

    Styf, J. R.; Ballard, R. E.; Fechner, K.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1997-01-01

    BACKGROUND: Spinal lengthening and back pain are commonly experienced by astronauts exposed to microgravity. METHODS: To develop a ground-based simulation for spinal adaptation to microgravity, we investigated height increase, neuromuscular function and back pain in 6 subjects all of whom underwent two forms of bed rest for 3 d. One form consisted of 6 degrees of head-down tilt (HDT) with balanced traction, while the other was horizontal bed rest (HBR). Subjects had a 2-week recovery period in between the studies. RESULTS: Total body and spinal length increased significantly more and the subjects had significantly more back pain during HDT with balanced traction compared to HBR. The distance between the lower endplate of L4 and upper endplate of S1, as measured by ultrasonography, increased significantly in both treatments to the same degree. Intramuscular pressures in the erector spinae muscles and ankle torque measurements during plantarflexion and dorsiflexion did not change significantly during either treatment. CONCLUSION: Compared to HBR, HDT with balanced traction may be a better method to simulate changes of total body and spinal lengths, as well as back pain seen in microgravity.

  11. Comparative studies on gravisensitive protists on ground (2D and 3D clinostats) and in microgravity

    NASA Astrophysics Data System (ADS)

    Hemmersbach, Ruth; Strauch, Sebastian M.; Seibt, Dieter; Schuber, Marianne

    2006-09-01

    In order to prepare and support space experiments, 2D and 3D clinostats are widely applied to study the influence of simulated weightlessness on biological systems. In order to evaluate the results a comparison between the data obtained in simulation experiments and in real microgravity is necessary. We are currently analyzing the gravity-dependent behavior of the protists Paramecium biaurelia (ciliate) and Euglena gracilis (photosynthetic flagellate) on these different experimental platforms. So far, first results are presented concerning the behaviour of Euglena on a 2D fast rotating clinostat and a 3D clinostat as well as under real microgravity conditions (TEXUS sounding rocket flight), of Paramecium on a 2D clinostat and in microgravity. Our data show similar results during 2D and 3D clinorotation compared to real microgravity with respect to loss of orientation (gravitaxis) of Paramecium and Euglena and a decrease of linearity of the cell tracks of Euglena. However, the increase of the mean swimming velocities, especially during 3D clinorotation (Euglena) and 2D clinorotation of Paramecium might indicate a persisting mechanostimulation of the cells. Further studies including long-term 2D and 3D clinostat exposition will enable us to demonstrate the qualification of the applied simulation methods.

  12. Depression, mood state, and back pain during microgravity simulated by bed rest

    NASA Technical Reports Server (NTRS)

    Styf, J. R.; Hutchinson, K.; Carlsson, S. G.; Hargens, A. R.

    2001-01-01

    OBJECTIVE: The objective of this study was to develop a ground-based model for spinal adaptation to microgravity and to study the effects of spinal adaptation on depression, mood state, and pain intensity. METHODS: We investigated back pain, mood state, and depression in six subjects, all of whom were exposed to microgravity, simulated by two forms of bed rest, for 3 days. One form consisted of bed rest with 6 degrees of head-down tilt and balanced traction, and the other consisted of horizontal bed rest. Subjects had a 2-week period of recovery between the studies. The effects of bed rest on pain intensity in the lower back, depression, and mood state were investigated. RESULTS: Subjects experienced significantly more intense lower back pain, lower hemisphere abdominal pain, headache, and leg pain during head-down tilt bed rest. They had higher scores on the Beck Depression Inventory (ie, were more depressed) and significantly lower scores on the activity scale of the Bond-Lader questionnaire. CONCLUSIONS: Bed rest with 6 degrees of head-down tilt may be a better experimental model than horizontal bed rest for inducing the pain and psychosomatic reactions experienced in microgravity. Head-down tilt with balanced traction may be a useful method to induce low back pain, mood changes, and altered self-rated activity level in bed rest studies.

  13. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    PubMed

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  14. Cardiovascular Deconditioning and Venous Air Embolism in Simulated Microgravity in the Rat

    NASA Technical Reports Server (NTRS)

    Robinson, R. R.; Doursout, M.-F.; Chelly, J. E.; Powell, M. R.; Little, T. M.; Butler,B. D.

    1996-01-01

    Astronauts conducting extravehicular activities undergo decompression to a lower ambient pressure, potentially resulting in gas bubble formation within the tissues and venous circulation. Additionally, exposure to microgravity produces fluid shifts within the body leading to cardiovascular deconditioning. A lower incidence of decompression illness in actual spaceflight compared with that in ground-based altitude chamber flights suggests that there is a possible interaction between microgravity exposure and decompression illness. The purpose of this study was to evaluate the cardiovascular and pulmonary effects of simulated hypobaric decompression stress using a tail suspension (head-down tilt) model of microgravity to produce the fluid shifts associated with weightlessness in conscious, chronically instrumented rats. Venous bubble formation resulting from altitude decompression illness was simulated by a 3-h intravenous air infusion. Cardiovascular deconditioning was simulated by 96 h of head-down tilt. Heart rate, mean arterial blood pressure, central venous pressure, left ventricular wall thickening and cardiac output were continuously recorded. Lung studies were performed to evaluate edema formation and compliance measurement. Blood and pleural fluid were examined for changes in white cell counts and protein concentration. Our data demonstrated that in tail-suspended rats subjected to venous air infusions, there was a reduction in pulmonary edema formation and less of a decrease in cardiac output than occurred following venous air infusion alone. Mean arterial blood pressure and myocardial wall thickening fractions were unchanged with either tail-suspension or venous air infusion. Heart rate decreased in both conditions while systemic vascular resistance increased. These differences may be due in part to a change or redistribution of pulmonary blood flow or to a diminished cellular response to the microvascular insult of the venous air embolization.

  15. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer

    PubMed Central

    Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.

    2016-01-01

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10−4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726

  16. Exercise-training protocols for astronauts in microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bulbulian, R.; Bernauer, E. M.; Haskell, W. L.; Moore, T.

    1989-01-01

    Based on physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100 percent of ground-based levels. The other assumes that maximal aerobic power in flight can be reduced by 10 percent of the ground-based level.

  17. A surgical support system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Campbell, M. R.; Billica, R. D.; Johnston, S. L.

    1992-01-01

    Surgical techniques in microgravity are being developed for the Health Maintenance Facility (HMF) on Space Station Freedom (SSF). This will be a presentation of the proposed surgical capabilities and ongoing hardware and procedural investigations. Methods: Procedures and prototype hardware, which include a medical restraint system, a surgical overhead isolation canopy, a suction device, and a regional laminar flow device were evaluated. This was accomplished by realistic sterile surgical simulations involving both mannequins and animals during KC-135 parabolic flight and in a high fidelity ground based HMF mockup. Results: Animal surgery in the environment of microgravity allowed the observation of unique arterial and venous bleeding characteristics for the first time. The ability to control bleeding and to prevent cabin atmosphere contamination was also demonstrated. Conclusions: The procedures and prototype hardware tested provided valuable information and should be investigated and developed further. The use of standard surgical techniques are possible in microgravity if the principles of personnel and supply restraint and operative field containment are adhered to.

  18. Human Factors Research Under Ground-Based and Space Conditions. Part 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP2 includes short reports concerning: (1) Human Factors Engineering of the International space Station Human Research Facility; (2) Structured Methods for Identifying and Correcting Potential Human Errors in Space operation; (3) An Improved Procedure for Selecting Astronauts for Extended Space Missions; (4) The NASA Performance Assessment Workstation: Cognitive Performance During Head-Down Bedrest; (5) Cognitive Performance Aboard the Life and Microgravity Spacelab; and (6) Psychophysiological Reactivity Under MIR-Simulation and Real Micro-G.

  19. Relief from glucose interference in microcin B17 biosynthesis by growth in a rotating-wall bioreactor

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.; Peirson, D. L. (Principal Investigator)

    2000-01-01

    Glucose interference in production of microcin B17 by Escherichia coli ZK650 was decreased sevenfold by growth in a ground-based rotating-wall bioreactor operated in the simulated microgravity mode as compared with growth in flasks. When cells were grown in the bioreactor in the normal gravity mode, relief from glucose interference was even more dramatic, amounting to a decrease in glucose interference of over 100-fold.

  20. Second Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program information on NASA's ground-based and space-based flight research facilities. An international forum offered participants an opportunity to hear from French, German, and Russian speakers about the microgravity research programs in their respective countries. Two keynote speakers provided broad technical overviews on multiphase flow and complex fluids research. Presenters briefed their peers on the scientific results of their ground-based and flight research. Fifty-eight of the sixty-two technical papers are included here.

  1. Cytotoxic activity of natural killer cells in vitro under microgravity

    NASA Astrophysics Data System (ADS)

    Grigorieva, O. V.; Buravkova, L. B.; Rykova, M. P.

    2005-08-01

    Changes in the immune response during space flight are close relation to functions of NK lymphocytes and their ability to interact with target cells. The aim of this research was to study NK cells cytotoxic activity and their ability to produce cytokines under microgravity in vitro. The modification of the method to study NK cells cytotoxic activity with the use of human peripheral blood mononuclear cells and myeloblasts K-562 (as target cells) proved highly effective (Buravkova et al., 2004). The flight experiment "Cell-to-cell interaction" with the use of the special device "Fibroblast-1" was carried out by Russian cosmonauts within the first two days after the docking when a new crew was taking over on International Space Station (ISS 8 - 10). The data collected on board ISS revealed that NK lymphocytes cytotoxic activity in vitro can increase under microgravity. The ground-based simulation experiments showed that long-term changes in gravity vector direction clinorotation resulted in a smaller increase of NK cells cytotoxic activity than it did in microgravity. As lymphocytes produce cytokines while interacting with target cells, the levels of TNF-α, IL-1α, IL- 2, IL-6 in cell-conditioned medium were assessed. The data showed that microgravity has varied effects on cytokines production level.

  2. Locomotion in simulated microgravity: gravity replacement loads

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Baron, Heidi A.; Balkin, Sandy; Cavanagh, Peter R.

    2002-01-01

    BACKGROUND: When an astronaut walks or runs on a treadmill in microgravity, a subject load device (SLD) is used to return him or her back to the treadmill belt. The gravity replacement load (GRL) in the SLD is transferred, via a harness, to the pelvis and/or the shoulders. This research compared comfort and ground reaction forces during treadmill running in a microgravity locomotion simulator at GRLs of 60%, 80%, and 100% of body weight (BW). Two harness designs (shoulder springs only (SSO) and waist and shoulder springs (WSS)) were used. HYPOTHESES: 1) The 100% BW gravity replacement load conditions would be comfortably tolerated and would result in larger ground reaction forces and loading rates than the lower load conditions, and 2) the WSS harness would be more comfortable than the SSO harness. METHODS: Using the Penn State Zero Gravity Locomotion Simulator (ZLS), 8 subjects ran at 2.0 m x s(-1) (4.5 mph) for 3 min at each GRL setting in each harness. Subjective ratings of harness comfort, ground reaction forces, and GRL data were collected during the final minute of exercise. RESULTS: The 100% BW loading conditions were comfortably tolerated (2.3 on a scale of 0-10), although discomfort increased as the GRL increased. There were no overall differences in perceived comfort between the two harnesses. The loading rates (27.1, 33.8, 39.1 BW x s(-1)) and the magnitudes of the first (1.0, 1.4, 1.6 BW) and second (1.3, 1.7, 1.9 BW) peaks of the ground reaction force increased with increasing levels (60, 80, 100% BW respectively) of GRL. CONCLUSIONS: Subjects were able to tolerate a GRL of 100% BW well. The magnitude of the ground reaction force peaks and the loading rate is directly related to the magnitude of the GRL.

  3. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  4. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  5. Comprehensive Study of the Influence of Altered Gravity on the Oxidative Burst of Mussel ( Mytilus edulis) Hemocytes

    NASA Astrophysics Data System (ADS)

    Unruh, E.; Brungs, S.; Langer, S.; Bornemann, G.; Frett, T.; Hansen, P.-D.

    2016-06-01

    Microgravity induces alterations in the functioning of immune cell; however, the underlying mechanisms have not yet been identified. In this study, hemocytes (blood cells) of the blue mussel Mytilus edulis were investigated under altered gravity conditions. The study was conducted on the ground in preparation for the BIOLAB TripleLux-B experiment, which will be performed on the International Space Station (ISS). On-line kinetic measurements of reactive oxygen species (ROS) production during the oxidative burst and thus cellular activity of isolated hemocytes were performed in a photomultiplier (PMT)-clinostat (simulated microgravity) and in the 1 g operation mode of the clinostat in hypergravity on the Short-Arm Human Centrifuge (SAHC) as well as during parabolic flights. In addition to studies with isolated hemocytes, the effect of altered gravity conditions on whole animals was investigated. For this purpose, whole mussels were exposed to hypergravity (1.8 g) on a multi-sample incubator centrifuge (MuSIC) or to simulated microgravity in a submersed clinostat. After exposure for 48 h, hemocytes were taken from the mussels and ROS production was measured under 1 g conditions. The results from the parabolic flights and clinostat studies indicate that mussel hemocytes respond to altered gravity in a fast and reversible manner. Hemocytes (after cryo-conservation) exposed to simulated microgravity ( μ g), as well as fresh hemocytes from clinorotated animals, showed a decrease in ROS production. Measurements during a permanent exposure of hemocytes to hypergravity (SAHC) show a decrease in ROS production. Hemocytes of mussels measured after the centrifugation of whole mussels did not show an influence to the ROS response at all. Hypergravity during parabolic flights led to a decrease but also to an increase in ROS production in isolated hemocytes, whereas the centrifugation of whole mussels did not influence the ROS response at all. This study is a good example how ground-based facility experiments can be used to prepare for an upcoming ISS experiment, in this case the TRIPLE LUX B experiment.

  6. Solidification Using the Baffle in Sealed Ampoules

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A.; Marin, C.; Churilov, A.; Volz, M. P.; Bonner, W. A.; Spivey, R. A.; Smith, G.

    2003-01-01

    Solidification Using a Baffle in Sealed Ampoules (SUBSA) is the first investigation conducted in the Microgravity Science Glovebox (MSG) Facility at the International Space Station (ISS) Alpha. In July, August and September of 2002, 8 single crystals of InSb, doped with Te and Zn, were directionally solidified in microgravity. Ground based tests, related numerical modeling and images of the growth process obtained in microgravity are presented.

  7. Mineralization and growth of cultured embryonic skeletal tissue in microgravity

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1999-01-01

    Microgravity provides a unique environment in which to study normal and pathological phenomenon. Very few studies have been done to examine the effects of microgravity on developing skeletal tissue such as growth plate formation and maintenance, elongation of bone primordia, or the mineralization of growth plate cartilage. Embryonic mouse premetatarsal triads were cultured on three space shuttle flights to study cartilage growth, differentiation, and mineralization, in a microgravity environment. The premetatarsal triads that were cultured in microgravity all formed cartilage rods and grew in length. However, the premetatarsal cartilage rods cultured in microgravity grew less in length than the ground control cartilage rods. Terminal chondrocyte differentiation also occurred during culture in microgravity, as well as in the ground controls, and the matrix around the hypertrophied chondrocytes was capable of mineralizing in both groups. The same percentage of premetatarsals mineralized in the microgravity cultures as mineralized in the ground control cultures. In addition, the sizes of the mineralized areas between the two groups were very similar. However, the amount of 45Ca incorporated into the mineralized areas was significantly lower in the microgravity cultures, suggesting that the composition or density of the mineralized regions was compromised in microgravity. There was no significant difference in the amount of 45Ca liberated from prelabeled explants in microgravity or in the ground controls.

  8. A comparison between protein crystals grown with vapor diffusion methods in microgravity and protein crystals using a gel liquid-liquid diffusion ground-based method

    NASA Technical Reports Server (NTRS)

    Miller, Teresa Y.; He, Xiao-Min; Carter, Daniel C.

    1992-01-01

    Crystals of human serum albumin have been successfully grown in a variety of gels using crystallization conditions otherwise equivalent to those utilized in the popular hanging-drop vapor-equilibrium method. Preliminary comparisons of gel grown crystals with crystals grown by the vapor diffusion method via both ground-based and microgravity methods indicate that crystals superior in size and quality may be grown by limiting solutal convection. Preliminary X-ray diffraction statistics are presented.

  9. Renal Function of Rats in Response to 37 Days of Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Wang, Tommy J.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Spaceflight induces changes in human renal function, suggesting similar changes may occur in rats. Since rats continue to be the prime mammalian model for study in space, the effects of chronic microgravity on rat renal function should be clarified. Acute studies in rats using the ground-based microgravity simulation model, head-down tilt (HDT), have shown increases in glomerular filtration rate (GFR), electrolyte excretion, and a diuresis. However, long term effects of HDT have not been studied extensively. This study was performed to elucidate rat renal function following long-term simulated microgravity. Chronic exposure to HDT will cause an increase in GFR and electrolyte excretion in rats, similar to acute exposures, and lead to a decrease in the fractional excretion of filtered electrolytes. Experimental animals (HDT, n=10) were tail-suspended for 37 days and renal function compared to ambulatory controls (AMB, n=10). On day 37 of HDT, GFR, osmolal clearance, and electrolyte excretion were decreased, while plasma osmolality and free water clearance were increased. Urine output remained similar between groups. The fractional excretion of the filtered electrolytes was unchanged except for a decrease in the percentage of filtered calcium excreted. Chronic exposure to HDT results in decreased GFR and electrolyte excretion, but the fractional excretion of filtered electrolytes remained primarily unaffected.

  10. Impact of a High Magnetic Field on the Orientation of Gravitactic Unicellular Organisms—A Critical Consideration about the Application of Magnetic Fields to Mimic Functional Weightlessness

    PubMed Central

    Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C.M.; Albers, Peter W.; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-01-01

    Abstract The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. Key Words: Levitation—Microgravity—Gravitaxis—Gravikinesis—Gravity. Astrobiology 14, 205–215. PMID:24621307

  11. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  12. To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?

    PubMed

    Goulard, Roman; Vercher, Jean-Louis; Viollet, Stéphane

    2016-08-15

    Insects' aptitude to perform hovering, automatic landing and tracking tasks involves accurately controlling their head and body roll and pitch movements, but how this attitude control depends on an internal estimation of gravity orientation is still an open question. Gravity perception in flying insects has mainly been studied in terms of grounded animals' tactile orientation responses, but it has not yet been established whether hoverflies use gravity perception cues to detect a nearly weightless state at an early stage. Ground-based microgravity simulators provide biologists with useful tools for studying the effects of changes in gravity. However, in view of the cost and the complexity of these set-ups, an alternative Earth-based free-fall procedure was developed with which flying insects can be briefly exposed to microgravity under various visual conditions. Hoverflies frequently initiated wingbeats in response to an imposed free fall in all the conditions tested, but managed to avoid crashing only in variably structured visual environments, and only episodically in darkness. Our results reveal that the crash-avoidance performance of these insects in various visual environments suggests the existence of a multisensory control system based mainly on vision rather than gravity perception. © 2016. Published by The Company of Biologists Ltd.

  13. Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.

    2017-04-01

    Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.

  14. Discussion of Priorities

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Microgravity Science Division identifies four priority ratings for microgravity research and technology issues: 1) Critical; 2) Severely Limiting; 3) Enhancements; 4) Communication. Reduced gravity instabilities are critical, while severely limiting issues include phase separation, phase change, and flow through components. Enhancements are listed for passive phase separation and phase change. This viewgraph presentation also classifies microgravity issues as spaceflight, ground-based, or other for the time periods 2003-2008, 2009-2015, and beyond.

  15. Finite Element Analysis of Osteocytes Mechanosensitivity Under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Sun, Lian-Wen; Du, Cheng-Fei; Wu, Xin-Tong; Fan, Yu-Bo

    2018-04-01

    It was found that the mechanosensitivity of osteocytes could be altered under simulated microgravity. However, how the mechanical stimuli as the biomechanical origins cause the bioresponse in osteocytes under microgravity is unclear yet. Computational studies may help us to explore the mechanical deformation changes of osteocytes under microgravity. Here in this paper, we intend to use the computational simulation to investigate the mechanical behavior of osteocytes under simulated microgravity. In order to obtain the shape information of osteocytes, the biological experiment was conducted under simulated microgravity prior to the numerical simulation The cells were rotated by a clinostat for 6 hours or 5 days and fixed, the cytoskeleton and the nucleus were immunofluorescence stained and scanned, and the cell shape and the fluorescent intensity were measured from fluorescent images to get the dimension information of osteocytes The 3D finite element (FE) cell models were then established based on the scanned image stacks. Several components such as the actin cortex, the cytoplasm, the nucleus, the cytoskeleton of F-actin and microtubules were considered in the model. The cell models in both 6 hours and 5 days groups were then imposed by three magnitudes (0.5, 10 and 15 Pa) of simulating fluid shear stress, with cell total displacement and the internal discrete components deformation calculated. The results showed that under the simulated microgravity: (1) the nuclear area and height statistically significantly increased, which made the ratio of membrane-cortex height to nucleus height statistically significantly decreased; (2) the fluid shear stress-induced maximum displacements and average displacements in the whole cell decreased, with the deformation decreasing amplitude was largest when exposed to 1.5Pa of fluid shear stress; (3) the fluid shear stress-induced deformation of cell membrane-cortex and cytoskeleton decreased, while the fluid shear stress-induced deformation of nucleus increased. The results suggested the mechanical behavior of whole osteocyte cell body was suppressed by simulated microgravity, and this decrement was enlarged with either the increasing amplitude of fluid shear stress or the duration of simulated microgravity. What's more, the mechanical behavior of membrane-cortex and cytoskeleton was suppressed by the simulated microgravity, which indicated the mechanotransduction process in the cell body may be further inhibited. On the contrary, the cell nucleus deformation increased under simulated microgravity, which may be related to either the decreased amount of cytoskeleton or the increased volume occupied proportion of nucleus in whole cell under the simulated microgravity. The numerical results supported our previous biological experiments, and showed particularly affected cellular components under the simulated microgravity. The computational study here may help us to better understand the mechanism of mechanosensitivity changes in osteocytes under simulated microgravity, and further to explore the mechanism of the bone loss in space flight.

  16. Microgravity

    NASA Image and Video Library

    1998-09-30

    The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.

  17. Studying the Effect of Radiation in the Context of Deep Space Travel

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Gilbert, Rachel R.; Lo, Rachel

    2017-01-01

    While it has been shown that decades of astronauts and cosmonauts can suffer from illnesses both during and after spaceflight, the underlying causes are still poorly understood, due in part to the fact that there are so many variables to consider when investigating the human immune system in a complex environment. Invertebrates have become popular models for studying human disease because they are cheap, highly amenable to experimental manipulation, and have innate immune systems with a high genetic similarity to humans. Fruit flies (Drosophila melanogaster) have been shown to experience a dramatic shift in immune gene expression following spaceflight, but are still able to fight off infections when exposed to bacteria. However, the common bacterial pathogen Serratia marcescens was shown to become more lethal to fruit flies after being cultured in space, suggesting that not only do we need to consider host changes in susceptibility, but also changes in the pathogen itself after spaceflight conditions. Being able to simulate spaceflight conditions in a controlled environment on the ground gives us the ability to not only evaluate the effects of microgravity on the host immune system, but also how the microorganisms that cause immune disorders are being affected by these drastic environmental shifts. In this study, I use a ground-based simulated microgravity environment to examine the genetic changes associated with increased S. marcescens virulence in order to understand how microgravity is affecting this pathogen, as well as how these genetic changes influence and interact with the host immune system. This study will provide us with more directed approaches to studying the effects of spaceflight on human beings, with the ultimate goal of being able to counteract immune dysfunction in future space exploration.

  18. Electron microscopic analysis of gravisensing Chara rhizoids developed under microgravity conditions.

    PubMed

    Braun, M; Buchen, B; Sievers, A

    1999-01-01

    Tip-growing, unicellular Chara rhizoids that react gravitropically on Earth developed in microgravity. In microgravity, they grew out from the nodes of the green thallus in random orientation. Development and morphogenesis followed an endogenous program that is not affected by the gravitational field. The cell shape, the polar cytoplasmic organization, and the polar distribution of cell organelles, except for the statoliths, were not different from controls that had grown on earth (ground controls). The ultrastructure of the organelles and the microtubules were well preserved. Microtubules were excluded from the apical zone in both ground controls as well as microgravity-grown rhizoids. The statoliths (vesicles containing BaSO4 crystals in a matrix) in microgravity-grown rhizoids were spread over a larger area (up to 50 microm basal to the tip) than the statoliths of ground controls (10-30 microm). Some statoliths were even located in the subapical zone close to microtubules, which was not observed in ground controls. The crystals in statoliths from microgravity-grown rhizoids appeared more loosely arranged in the vesicle matrix compared with ground controls. The chemical composition of the crystals was identified as BaSO4 by X-ray microanalysis. There is evidence that the amount of BaSO4 in statoliths of rhizoids developed in microgravity is lower than in ground controls, indicating that the gravisensitivity of microgravity-developed rhizoids might be reduced compared with ground controls. Lack of gravity, however, does not affect the process of tip growth and does not inhibit the development of the structures needed for the gravity-sensing machinery.

  19. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    PubMed Central

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  20. Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration.

    PubMed

    Monje, O; Stutte, G; Chapman, D

    2005-10-01

    Plant stand gas exchange was measured nondestructively in microgravity during the Photosynthesis Experiment Subsystem Testing and Operations experiment conducted onboard the International Space Station. Rates of evapotranspiration and photosynthesis measured in space were compared with ground controls to determine if microgravity directly affects whole-stand gas exchange of Triticum aestivum. During six 21-day experiment cycles, evapotranspiration was determined continuously from water addition rates to the nutrient delivery system, and photosynthesis was determined from the amount of CO2 added to maintain the chamber CO2 concentration setpoint. Plant stand evapotranspiration, net photosynthesis, and water use efficiency were not altered by microgravity. Although leaf area was significantly reduced in microgravity-grown plants compared to ground control plants, leaf area distribution was not affected enough to cause significant differences in the amounts of light absorbed by the flight and ground control plant stands. Microgravity also did not affect the response of evapotranspiration to changes in chamber vapor pressure difference of 12-day-old wheat plant stands. These results suggest that gravity naïve plants grown at moderate light levels (300 micromol m(-2) s(-1)) behave the same as ground control plants. This implies that future plant-based regenerative life support systems can be sized using 1 g data because water purification and food production rates operate at nearly the same rates as in 1 g at moderate light levels. However, it remains to be verified whether the present results are reproducible in plants grown under stronger light levels.

  1. Development of a Simulation Capability for the Space Station Active Rack Isolation System

    NASA Technical Reports Server (NTRS)

    Johnson, Terry L.; Tolson, Robert H.

    1998-01-01

    To realize quality microgravity science on the International Space Station, many microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation capabilities for ARIS will be needed to predict the microgravity environment. This paper discusses the development of a simulation model for use in predicting the performance of the ARIS in attenuating disturbances with frequency content between 0.01 Hz and 10 Hz. The derivation of the model utilizes an energy-based approach. The complete simulation includes the dynamic model of the ISPR integrated with the model for the ARIS controller so that the entire closed-loop system is simulated. Preliminary performance predictions are made for the ARIS in attenuating both off-board disturbances as well as disturbances from hardware mounted onboard the microgravity facility. These predictions suggest that the ARIS does eliminate resonant behavior detrimental to microgravity experimentation. A limited comparison is made between the simulation predictions of ARIS attenuation of off-board disturbances and results from the ARIS flight test. These comparisons show promise, but further tuning of the simulation is needed.

  2. NASA Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1999-01-01

    The Fiscal Year 1998 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1998 and highlights of the ground- and-flight-based research are provided.

  3. Cytoskeleton disorder and cell cycle arrest may be associated with the alteration of protein CEP135 by microgravity

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Liu, Zhiyuan

    In the past decades, alterations in the morphology, cytoskeleton and cell cycle have been observed in cells in vitro under microgravity conditions. But the underlying mechanisms are not absolutely identified yet. Our previous study on proteomic and microRNA expression profiles of zebrafish embryos exposed to simulated-microgravity has demonstrated a serial of microgravity-sensitive molecules. Centrosomal protein of 135 kDa (CEP135) was found down-regulated, but the mRNA expression level of it was up-regulated in zebrafish embryos after simulated-microgravity. However, the functional study on CEP135 is very limited and it has not been cloned in zebrafish till now. In this study, we try to determine whether the cytoskeleton disorder and cell cycle arrest is associated with the alteration of CEP135 by microgravity. Full-length cDNA of cep135 gene was firstly cloned from mitosis phase of ZF4. The sequence was analyzed and the phylogenetic tree was constructed based on the similarity to other species. Zebrafish embryonic cell line ZF4 were exposed to simulated microgravity for 24 and 48 hours, using a rotary cell culture system (RCCS) designed by NASA. Quantitative analysis by western blot showed that CEP135 expression level was significantly decreased two times after 24 hour simulated microgravity. Cell cycle detection by flow cytometer indicated ZF4 cells were blocked in G1 phase after 24 and 48 hour simulated microgravity. Moreover, double immunostained ZF4 cells with anti-tubulin and anti-CEP135antibodies demonstrated simulated microgravity could lead to cytoskeleton disorder and CEP135 abnormality. Further investigations are currently being carried out to determine whether knockdown and over-expression of CEP135 will modulate cytoskeleton and cell cycle. In vitro data in combination within vivo results might, at least in part, explain the dramatic effects of microgravity. Key Words: microgravity; CEP135; Cytoskeleton disorder; G1 arrest; ZF4 cell line

  4. Numerical simulation of gender differences in a long-term microgravity exposure

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    The objective of this work is to analyse and simulate gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairment which may put in jeopardy a long-term mission is also evaluated. Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numerical Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular architecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electricallike model of this control system, using inexpensive software development frameworks, and has been tested and validated with the available experimental data. Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobical exercise, and also thermal stress simulating an extra-vehicular activity. Results show that significant differences appear between men and women physiological response after long-term exposure (more than three months) to microgravity. Risk evaluation for every gender, and specific risk thresholds are provided. Initial results are compatible with the existing data, and provide unique information regarding different patterns of microgravity exposure. We conclude that computer-based models such us NELME are a promising line of work to predict health risks in long-term missions. More experimental work is needed to adjust some parameters of the model. This work may be seen as another contribution to a better understanding of the underlying processes involved for both women in man adaptation to long-term microgravity.

  5. Body Fluid Regulation and Hemopoiesis in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA2, the discussion focuses on the following topics: Bodymass and Fluid Distribution During Longterm Spaceflight with and without Countermeasures; Plasma Volume, Extracellular Fluid Volume, and Regulatory Hormones During Long-Term Space Flight; Effect of Microgravity and its Ground-Based Models on Fluid Volumes and Hemocirculatory Volumes; Seventeen Weeks of Horizontal Bed Rest, Lower Body Negative Pressure Testing, and the Associated Plasma Volume Response; Evaporative Waterloss in Space Theoretical and Experimental Studies; Erythropoietin Under Real and Simulated Micro-G Conditions in Humans; and Vertebral Bone Marrow Changes Following Space Flight.

  6. Effects of Promethazine on Performance During Simulated Shuttle Landings

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Putcha, L.; Sekula, B. K.; Berens, K. L.

    1999-01-01

    Promethazine (PMZ) is the antimotion sickness drug of choice in the U.S. Space Shuttle program; however, virtually nothing is known about the bioavailability and performance effects of this drug in the microgravity environment. PMZ has detrimental side effects on human performance on Earth that could affect Shuttle operations. In a recent ground-based study we examined: 1) the effects of promethazine (PMZ) on Shuttle landing performance using the portable inflight landing operations trainer (PILOT), and 2) saliva and urine samples to determine the pharmacokinetics of PMZ. The PILOT performance data is presented here.

  7. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system.

    PubMed

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  8. Studies of chondrogenesis in rotating systems

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Daane, E. L.; Montufar-Solis, D.

    1993-01-01

    A great deal of energy has been exerted over the years researching methods for regenerating and repairing bone and cartilage. Several techniques, especially bone implants and grafts, show great promise for providing a remedy for many skeletal disorders and chondrodystrophies. The bioreactor (rotating-wall vessel, RWV) is a cell culture system that creates a nurturing environment conducive to cell aggregation. Chondrocyte cultures have been studied as implants for repair and replacement of damaged and missing bone and cartilage since 1965 [Chesterman and Smith, J Bone Joint Surg 50B:184-197, 1965]. The ability to use large, tissue-like cartilage aggregates grown in the RWV would be of great clinical significance in treating skeletal disorders. In addition, the RWV may provide a superior method for studying chondrogenesis and chondrogenic mutations. Because the RWV is also reported to simulate many of the conditions of microgravity it is a very useful ground-based tool for studying how cell systems will react to microgravity.

  9. Microgravity

    NASA Image and Video Library

    2001-01-24

    Dr. Alexander Chernov, of the Universities Space Research Association (USRA) and based at Marshall Space Flight Center, is investigating why protein crystals grown in space are, in about 20 percent of cases, better-ordered than those grown on the ground. They are testing the idea that the amount of impurities trapped by space-grown crystals may be different than the amount trapped by crystals grown on Earth because convection is negligible in microgravity. The concentrations or impurities in many space-grown crystals turned out to be several times lower than that in the terrestrial ones, sometimes below the detection limit. The ground-based experiment also showed that the amount of impurities per unit volume of the crystals was usually higher than the amount per unit volume of the solution. This means that a growing crystal actually purifies the solution in its immediate vicinity. Here, an impurity depletion zone is created around apoferritin crystals grown in gel, imitating microgravity conditions.

  10. Microgravity experiments on the effect of internal flow on solidification of Fe-Cr-Ni stainless steels.

    PubMed

    Hanlon, Alaina B; Matson, Douglas M; Hyers, Robert W

    2006-09-01

    A new hypothesis has been developed to explain the effect of internal fluid flow on the lifetime of a metastable phase in solidifying Fe-Cr-Ni alloys. The hypothesis shows excellent agreement with available experimental results, but microgravity experiments are required for complete validation. Certain Fe-Cr-Ni stainless steel alloys solidify from an undercooled melt by a two-step process in which the metastable ferrite phase forms first followed by the stable austenite phase. Recent experiments using containerless processing techniques have shown that the lifetime of the metastable phase is strongly influenced by flow within the molten sample. Simulations using a commercial computational fluid dynamics (CFD) package, FIDAP, were performed to determine the time required for collision of dendrites and compared to experimental delay time. If the convective velocities are strong enough to bend the primary arms, then the secondary arms of adjacent dendrites can touch. The points of collision form low-angle boundaries and result in high-energy sites that can serve as nuclei for the transformation to the stable phase. It has been determined that the convective velocities in electrostatic levitation (ESL) are not strong enough to cause collision. However, in ground-based electromagnetic levitation (EML), the convective velocities are strong enough to cause the dendrites to deflect so that the secondary arms of adjacent dendrites collide. There is quantitative agreement between the numerically determined time to collision and the experimentally observed delay time in EML. The strong internal velocity due to convection within the EML samples is the reason for the observed difference in delay times between ESL and EML. Microgravity testing is essential because the significant change in nucleation behavior occurs between the ranges accessible by ground-based ESL and EML. Testing in microgravity using EML will permit a large range of internal convective velocities including those that are inaccessible in 1 g.

  11. New findings and instrumentation from the NASA Lewis microgravity facilities

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Greenberg, Paul S.

    1990-01-01

    The study of fundamental combustion and fluid physics in a microgravity environment is a relatively new scientific endeavor. The microgravity environment enables a new range of experiments to be performed since: buoyancy-induced flows are nearly eliminated; normally obscured forces and flows may be isolated; gravitational settling or sedimentation is nearly eliminated; and larger time or length scales in experiments become permissible. Unexpected phenomena have been observed, with surprising frequency, in microgravity experiments, raising questions about the degree of accuracy and completeness of the classical understanding. An overview is provided of some new phenomena found through ground-based, microgravity research, the instrumentation used in this research, and plans for new instrumentation.

  12. Advanced user support programme—TEMPUS IML-2

    NASA Astrophysics Data System (ADS)

    Diefenbach, A.; Kratz, M.; Uffelmann, D.; Willnecker, R.

    1995-05-01

    The DLR Microgravity User Support Centre (MUSC) in Cologne has supported microgravity experiments in the field of materials and life sciences since 1979. In the beginning of user support activities, MUSC tasks comprised the basic ground and mission support, whereas present programmes are expanded on, for example, powerful telescience and advanced real time data acquisition capabilities for efficient experiment operation and monitoring. In view of the Space Station era, user support functions will increase further. Additional tasks and growing responsibilities must be covered, e.g. extended science support as well as experiment and facility operations. The user support for TEMPUS IML-2, under contract of the German Space Agency DARA, represents a further step towards the required new-generation of future ground programme. TEMPUS is a new highly sophisticated Spacelab multi-user facility for containerless processing of metallic samples. Electromagnetic levitation technique is applied and various experiment diagnosis tools are offered. Experiments from eight U.S. and German investigator groups have been selected for flight on the second International Microgravity Laboratory Mission IML-2 in 1994. Based on the experience gained in the research programme of the DLR Institute for Space Simulation since 1984, MUSC is performing a comprehensive experiment preparation programme in close collaboration with the investigator teams. Complex laboratory equipment has been built up for technology and experiment preparation development. New experiment techniques have been developed for experiment verification tests. The MUSC programme includes thorough analysis and testing of scientific requirements of every proposed experiment with respect to the facility hard- and software capabilities. In addition, studies on the experiment-specific operation requirements have been performed and suitable telescience scenarios were analysed. The present paper will give a survey of the TEMPUS user support tasks emphasizing the advanced science support activities, which are considered significant for future ground programmes.

  13. Modeling and simulation for space medicine operations: preliminary requirements considered

    NASA Technical Reports Server (NTRS)

    Dawson, D. L.; Billica, R. D.; McDonald, P. V.

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  14. Requirements for Modeling and Simulation for Space Medicine Operations: Preliminary Considerations

    NASA Technical Reports Server (NTRS)

    Dawson, David L.; Billica, Roger D.; Logan, James; McDonald, P. Vernon

    2001-01-01

    The NASA Space Medicine program is now developing plans for more extensive use of high-fidelity medical Simulation systems. The use of simulation is seen as means to more effectively use the limited time available for astronaut medical training. Training systems should be adaptable for use in a variety of training environments, including classrooms or laboratories, space vehicle mockups, analog environments, and in microgravity. Modeling and simulation can also provide the space medicine development program a mechanism for evaluation of other medical technologies under operationally realistic conditions. Systems and procedures need preflight verification with ground-based testing. Traditionally, component testing has been accomplished, but practical means for "human in the loop" verification of patient care systems have been lacking. Medical modeling and simulation technology offer potential means to accomplish such validation work. Initial considerations in the development of functional requirements and design standards for simulation systems for space medicine are discussed.

  15. Investigation of the Influence of Microgravity on Transport Mechanisms in a Virtual Spaceflight Chamber: A Ground Based Program

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Rangel, Roger; Witherow, William; Rogers, Jan; Lal, Ravindra B.

    1999-01-01

    In January 1992, the IML-1 FES experiment produced a set of classic experimental data and a 40 hour holographic "movie" of an ensemble of spheres in a fluid in microgravity. Because the data are in the form of holograms, we can study the three-dimensional distribution of particles with unprecedented detail by a variety of methods and for a wide variety of interests. The possession of the holographic movie is tantamount to having a complex experiment in space while working in an easily accessible laboratory on earth. The movie contains a vast amount of useful data, including residual g, g-jitter, convection and transport data, and particle fluid interaction data. The information content in the movie is so great that we have scarcely begun to tap into the data that is actually available in the more than 1000 holograms, each containing as much as 1000 megabytes of information. This ground-based project is exploiting this data and the concept of holographic storage of spaceflight data to provide an understanding of the effects of microgravity in materials processing. This paper provides the foundation, objectives, and status of the ground based project. The primary objective of this project is to advance the understanding of microgravity effects on crystal growth, convection in materials processing in the space environment, and complex transport phenomena at low Reynolds numbers. This objective is being achieved both experimentally and theoretically. Experiments are making use of existing holographic data recorded during the IML- I spaceflight. A parallel theoretical effort is providing the models for understanding the particle fields and their physics in the microgravity environment.

  16. Rocket seedling production on the international space station: Growth and nutritional properties

    NASA Astrophysics Data System (ADS)

    Colla, Giuseppe; Battistelli, Alberto; Proietti, Simona; Moscatello, Stefano; Rouphael, Youssef; Cardarelli, Mariateresa; Casucci, Marco

    2007-09-01

    Producing sprouts directly during space missions may represent an interesting opportunity to offer high-quality fresh ready to eat food to the astronauts. The goal of this work was to compare, in terms of growth and nutritional quality, rocket (Eruca sativa Mill.) seedlings grown in the International Space Station during the ENEIDE mission with those grown in a ground-based experiment (in presence and absence of clinorotation). The rocket seedlings obtained from the space-experiment were thinner and more elongated than those obtained in the ground-based experiment. Cotyledons were often closed in the seedlings grown in the space experiment. Quantitative (germination, fresh and dry weight) and qualitative (glucose, fructose, sucrose and starch) traits of rocket seedling were negatively affected by micrograv-ity, especially those recorded on seedlings grown under real microgravity conditions The total chlorophyll, and carotenoids of seedlings obtained in the space experiment were strongly reduced in comparison to those obtained in the ground-based experiment (presence and absence of clinorotation). The results showed that it is possible to produce rocket seedlings in the ISS; however, further studies are needed to define the optimal environmental conditions for producing rocket seedlings with high nutritional value

  17. Ground Based Studies of Gas-Liquid Flows in Microgravity Using Learjet Trajectories

    NASA Technical Reports Server (NTRS)

    Bousman, W. S.; Dukler, A. E.

    1994-01-01

    A 1.27 cm diameter two phase gas-liquid flow experiment has been developed with the NASA Lewis Research Center to study two-phase flows in microgravity. The experiment allows for the measurement of void fraction, pressure drop, film thickness and bubble and wave velocities as well as for high speed photography. Three liquids were used to study the effects of liquid viscosity and surface tension, and flow pattern maps are presented for each. The experimental results are used to develop mechanistically based models to predict void fraction, bubble velocity, pressure drop and flow pattern transitions in microgravity.

  18. Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

    NASA Technical Reports Server (NTRS)

    Hazen-Bosveld, April; Lipert, Robert J.; Nordling, John; Shih, Chien-Ju; Siperko, Lorraine; Porter, Marc D.; Gazda, Daniel B.; Rutz, Jeff A.; Straub, John E.; Schultz, John R.; hide

    2007-01-01

    Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples. The ground and flight results showed excellent agreement, demonstrating that manual manipulation is an effective means for collecting bubble-free water samples in microgravity.

  19. Microgravity

    NASA Image and Video Library

    2004-04-15

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  20. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Mills, W. Ronald

    2003-01-01

    The effect of microgravity on living organisms during space flight has been a topic of interest for some time, and a substantial body of knowledge on the subject has accumulated. Despite this, comparatively little information is available regarding the influence of microgravity on algae, even though it has been suggested for long duration flight or occupancy in space that plant growth systems, including both higher plants and algae, are likely to be necessary for bioregenerative life support systems. High-Aspect-Ratio Rotating-Wall Vessel or HARV bioreactors developed at Johnson Space Center provide a laboratory-based approach to investigating the effects of microgravity on cellular reactions. In this study, the HARV bioreactor was used to examine the influence of simulated microgravity on the growth and metabolism of the green alga, Chlorella pyrenoidosa. After the first 2 days of culture, cell numbers increased more slowly in simulated microgravity than in the HARV gravity control; after 7 days, growth in simulated microgravity was just over half (58%) that of the gravity control and at 14 days it was less than half (42%). Chlorophyll and protein were also followed as indices of cell competence and function; as with growth, after 2-3 days, protein and chlorophyll levels were reduced in modeled microgravity compared to gravity controls. Photosynthesis is a sensitive biochemical index of the fitness of photosynthetic organisms; thus, CO2-dependent O2 evolution was tested as a measure of photosynthetic capacity of cells grown in simulated microgravity. When data were expressed with respect to cell number, modeled microgravity appeared to have little effect on CO2 fixation. Thus, even though the overall growth rate was lower for cells cultured in microgravity, the photosynthetic capacity of the cells appears to be unaffected. Cells grown in simulated microgravity formed loose clumps or aggregates within about 2 days of culture, with aggregation increasing over time. Presently, the basis for, or significance of, the cell aggregation is unknown. The results from this study suggest that cell growth and morphological characteristics of green algae may be altered by culture in simulated microgravity. The data obtained to date should provide a solid basis for additional experimentation regarding the influence of modeled microgravity on cell morphology, physiological activity, protein production and possibly gene expression in algal and plant cell systems. The final aim of the study is to provide useful information to elucidate the underlying mechanism for the biological effects of microgravity on cells.

  1. Microgravity and Cellular Consequences in Lymphocyte Function

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Sundaresan, Alamelu

    2004-01-01

    Mammalian cells adapt to the environment of low gravity and express a series of responses, some possibly from direct effects on cells and others based on environmental conditions created by microgravity. Human lymphocytes in microgravity culture are functionally diminished in activation and locomotion. Both processes are integral to optimal immune response to fight pathogens. The NASA Rotating-wall vessel (RWV) is a well-accepted analog for microgravity culture on the ground. Gene array experiments and immunoblotting identified upstream events in human lymphocytes adapting to microgravity analog culture. Microgravity induces selective changes, many of which are cell membrane related. Results showed that upstream of PKC in the T cell activation cascade, PLC-gamma and LAT are significantly diminished. ZAP 70 which controls LAT activation is also down regulated in modeled microgravity. Thus events governing cell shape might warrant attention in microgravity conditions. The goal of this study is to delineate response suites that are consequential, direct or indirect effects of the microgravity environment and which of these are essential to lymphocytes

  2. Spinal Elongation and its Effects on Seated Height in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Young, Karen

    2009-01-01

    Objectives: 1. To collect spinal elongation induced seated height data for subjects exposed to microgravity environments. 2. To provide information relating to the seated height rate of change over time for astronauts subjected to microgravity. We will collect: Seated Height measurement (ground & flight) and digital still photograph (ground and flight).

  3. Investigating the Effect of Impurities on Macromolecule Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Judge, Russell A.; Crawford, Lisa; Forsythe, Elizabeth L.; Pusey, Marc L.; Sportiello, Michael; Todd, Paul; Bellamy, Henry; Lovelace, Jeff; Cassanto, John M.; hide

    2001-01-01

    Chicken egg-white lysozyme (CEWL) crystals were grown in microgravity and on the ground in the presence of various amounts of a naturally occurring lysozyme dimer impurity. No significant favorable differences in impurity incorporation between microgravity and ground crystal samples were observed. At low impurity concentration the microgravity crystals preferentially incorporated the dimer. The presence of the dimer in the crystallization solutions in microgravity reduced crystal size, increased mosaicity and reduced the signal to noise ratio of the X-ray data. Microgravity samples proved more sensitive to impurity. Accurate indexing of the reflections proved critical to the X-ray analysis. The largest crystals with the best X-ray diffraction properties were grown from pure solution in microgravity.

  4. Study of FES/CAST/HGS

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Cummings, Rick; Jones, Brian

    1992-01-01

    The microgravity materials processing program has been instrumental in providing the crystal growth community with an experimental environment to better understand the phenomena associated with the growing of crystals. In many applications one may pursue the growth of large single crystals which cannot be grown on earth due to convective driven flows. A microgravity environment is characterized by neither convection of buoyancy. Consequently superior crystals are able to be grown in space. On the other hand, since neither convection nor buoyancy dominates the fluid flow in a microgravity environment, then lesser dominating phenomena can affect crystal growth, such as surface driven flows or diffusion limited solidification. In the case of experiments that are to be flown in space using the Fluid Experiments System (FES), diffusion limited growth should be the dominating phenomenon. The use of holographic and Schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The Holographic Ground System (HGS) facility at MSFC has been a primary resource in researching this capability. Consequently scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS (triglycine sulfate) Crystal Growth and the Casting and Solidification Technology (CAST) experiments that were flown on the International Microgravity Lab (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment in space worked. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.

  5. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.

    2007-01-01

    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a pneumatic subject load device to apply a near constant gravity-replacement load to the test subject during exercise, and is currently used in conjunction with the General Clinical Research Center for evaluating exercise protocols using a bedrest analog. The enhanced ZLS (eZLS) at NASA Glenn Research Center features an offloaded treadmill that floats on a thin film of air and interfaces to a force reaction frame via variably-compliant isolators, or vibration isolation system. The isolators can be configured to simulate compliant interfaces to the vehicle, which affects mechanical loading to crewmembers during exercise, and has been used to validate system dynamic models for new countermeasures equipment designs, such as the second International Space Station treadmill slated for use in 2010. In the eZLS, the test subject and exercise device can be pitched at the appropriate angle for partial gravity simulations, such as lunar gravity (1/6th earth gravity). On both the eZLS and the NASA-Johnson Space Center standalone ZLS installed at the University of Texas Medical Branch in Galveston, Texas, USA, the subject's body weight relative to the treadmill is controlled via a linear motor subject load device (LM-SLD). The LM-SLD employs a force-feedback closed-loop control system to provide a relatively constant force to the test subject during locomotion, and is set and verified for subject safety prior to each session. Locomotion data were collected during parabolic flight and on the eZLS. The purpose was to determine the similarities and differences between locomotion in actual and simulated microgravity. Subjects attained greater amounts of hip flexion during walking and running during parabolic flight. During running, subjects had greater hip range of motion. Trunk motion was significantly less on the eZLS than during parabolic flight. Peak impact forces, loading rate, and impulse were greater on the eZLS than during parabolic while walking with a low external load (EL) and rning with a high EL. Activation timing differences existed between locations in all muscles except for the rectus femoris. The tibialis anterior and gluteus maximus were active for longer durations on the eZLS than in parabolic flight during walking. Ground reaction forces were greater with the LM-SLD than with bungees during eZLS locomotion. While the eZLS serves as a ground-based analog, researchers should be aware that subtle, but measurable, differences in kinematics and leg musculature activities exist between the environments. Aside from space applications, zero-gravity locomotion simulators may help medical researchers in the future with development of rehabilitative or therapeutic protocols for injured or ill patients. Zero-gravity locomotion simulators may be used as a ground-based test bed to support future missions for space exploration, and eventually may be used to simulate planetary locomotion in partial gravity environments, including the Moon and Mars. Figure: Zero-gravity Locomotion Simulator at the Cleveland Clinic, Cleveland, Ohio, USA

  6. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  7. Ground-Based Gas-Liquid Flow Research in Microgravity Conditions: State of Knowledge

    NASA Technical Reports Server (NTRS)

    McQuillen, J.; Colin, C.; Fabre, J.

    1999-01-01

    During the last decade, ground-based microgravity facilities have been utilized in order to obtain predictions for spacecraft system designers and further the fundamental understanding of two-phase flow. Although flow regime, pressure drop and heat transfer coefficient data has been obtained for straight tubes and a limited number of fittings, measurements of the void fraction, film thickness, wall shear stress, local velocity and void information are also required in order to develop general mechanistic models that can be utilized to ascertain the effects of fluid properties, tube geometry and acceleration levels. A review of this research is presented and includes both empirical data and mechanistic models of the flow behavior.

  8. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation

    PubMed Central

    Martinez, Emily M.; Yoshida, Miya C.; Candelario, Tara Lynne T.

    2015-01-01

    Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders. PMID:25568077

  9. Spaceflight and simulated microgravity cause a significant reduction of key gene expression in early T-cell activation.

    PubMed

    Martinez, Emily M; Yoshida, Miya C; Candelario, Tara Lynne T; Hughes-Fulford, Millie

    2015-03-15

    Healthy immune function depends on precise regulation of lymphocyte activation. During the National Aeronautics and Space Administration (NASA) Apollo and Shuttle eras, multiple spaceflight studies showed depressed lymphocyte activity under microgravity (μg) conditions. Scientists on the ground use two models of simulated μg (sμg): 1) the rotating wall vessel (RWV) and 2) the random positioning machine (RPM), to study the effects of altered gravity on cell function before advancing research to the true μg when spaceflight opportunities become available on the International Space Station (ISS). The objective of this study is to compare the effects of true μg and sμg on the expression of key early T-cell activation genes in mouse splenocytes from spaceflight and ground animals. For the first time, we compared all three conditions of microgravity spaceflight, RPM, and RWV during immune gene activation of Il2, Il2rα, Ifnγ, and Tagap; moreover, we confirm two new early T-cell activation genes, Iigp1 and Slamf1. Gene expression for all samples was analyzed using quantitative real-time PCR (qRT-PCR). Our results demonstrate significantly increased gene expression in activated ground samples with suppression of mouse immune function in spaceflight, RPM, and RWV samples. These findings indicate that sμg models provide an excellent test bed for scientists to develop baseline studies and augment true μg in spaceflight experiments. Ultimately, sμg and spaceflight studies in lymphocytes may provide insight into novel regulatory pathways, benefiting both future astronauts and those here on earth suffering from immune disorders.

  10. Using space-based investigations to inform cancer research on Earth.

    PubMed

    Becker, Jeanne L; Souza, Glauco R

    2013-05-01

    Experiments conducted in the microgravity environment of space are not typically at the forefront of the mind of a cancer biologist. However, space provides physical conditions that are not achievable on Earth, as well as conditions that can be exploited to study mechanisms and pathways that control cell growth and function. Over the past four decades, studies have shown how exposure to microgravity alters biological processes that may be relevant to cancer. In this Review, we explore the influence of microgravity on cell biology, focusing on tumour cells grown in space together with work carried out using models in ground-based investigations.

  11. Responses, applications, and analysis of microgravity effects on bacteria

    NASA Astrophysics Data System (ADS)

    Benoit, Michael Robert

    Spaceflight causes many changes to the growth and behavior of bacteria, most likely because of microgravity. However, we do not fully understand the gravity-dependent mechanisms that alter bacterial cell physiology. Furthermore, the literature consists of many contradictory results, creating controversy over the mechanisms by which spaceflight affects bacterial cultures. The research described in this dissertation combines empirical, analytical, and numerical modeling techniques aimed at characterizing the various gravity-dependent phenomena that act on bacteria. While reviewing the literature, I identified an interesting trend in prior experimental results regarding bacterial motility. With this information, we can begin to explain some of the seemingly contradictory findings. This discovery should help to resolve several controversial theories in the field of space microbiology. Chapter 3 describes a microbial antibiotic production experiment conducted onboard the International Space Station. The results corroborated earlier findings of increased antibiotic production for samples taken during the first two weeks of spaceflight. For later samples, however, a reversal occurred, showing decreased production in the spaceflight samples. This insight highlights the benefit of conducting long duration experiments in space to fully evaluate biological responses. Chapter 4 describes a novel technique for preventing bacterial cell sedimentation to partially simulate microgravity in ground-based experiments. The results of this study showed a correlation between cell sedimentation and bacterial growth. As documented in Chapter 5, I investigated the use of digital holographic interferometry to measure extracellular fluid density changes caused by bacterial metabolism. The results showed that fluid density changes surrounding individual bacteria were too small to measure directly. Therefore, I used mathematical analyses and numerical model simulations (described in Chapter 6) to evaluate changes in extracellular fluid density on convective mass transport. From the theoretical analysis results, I predicted convective and diffusive transport regimes for bacteria grown under microgravity, 1 g, and hyper-gravity conditions. Finally, using a numerical model, I successfully simulated an experimentally observed phenomenon of buoyancy-driven convection created by cellular metabolism.

  12. Melt Stabilization of PbSnTe in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, William J.; Rosch, William; Chait, Arnon; Yao, Minwu; Szofran, Frank R.

    1999-01-01

    Both the experimental observation and numerical simulation indicate that the Bridgman growth of PbSnTe under the microgravity environment in space is still greatly influenced by buoyancy-induced convection. The application of a magnetic field during the semiconductor growth can dampen the convective flow in the metal-like melt. However, for Bridgman growth of PbSnTe on earth (with either vertical or horizontal configuration), both experimental observation and numerical modeling suggest that even with a strong magnetic furnace (5-Tesla constant axial magnetic field), the convective flow in the melt still cannot be sufficiently suppressed to reach the diffusion-controlled level. In order to completely dampen the buoyancy-induced convection on earth, estimates based on scaling analysis indicate that for common experimental conditions, an extremely high magnetic field is required, far beyond the capacity of the experimental apparatus currently available. Therefore, it is proposed that only the combination of microgravity environment and magnetic damping will produce the desired diffusion-controlled growth state for this particular material. The primary objectives of this study are to provide a quantitative understanding of the complex transport phenomena during solidification of non-dilute binarys, to furnish a numerical tool for furnace design and growth condition optimization, to provide estimates of the required magnetic field strength for low gravity growth, and to assess the role of magnetic damping for space and earth control of the double-diffusive convection. As an integral part of a NASA research program, our numerical simulation supports both the flight and ground-based experiments in an effort to bring together a complete picture of the complex physical phenomena involved in the crystal growth process. For Bridgman growth of PbSnTe under microgravity (with both vertical and horizontal configurations), the simulations suggest that a moderate axial magnetic field of only a few kilo-Gauss in strength could effectively eliminate buoyancy-induced convection in the melt and control solute segregation. Therefore, this work confirms the idea that the combination of microgravity environment and the magnetic damping will indeed be sufficient to produce the desired diffusion-controlled growth state for PbSnTe.

  13. Microgravity particle reduction system

    NASA Technical Reports Server (NTRS)

    Brandon, Vanessa; Joslin, Michelle; Mateo, Lili; Tubbs, Tracey

    1988-01-01

    The Controlled Ecological Life Support System (CELSS) project, sponsored by NASA, is assembling the knowledge required to design, construct, and operate a system which will grow and process higher plants in space for the consumption by crew members of a space station on a long term space mission. The problem of processing dry granular organic materials in microgravity is discussed. For the purpose of research and testing, wheat was chosen as the granular material to be ground into flour. Possible systems which were devised to transport wheat grains into the food processor, mill the wheat into flour, and transport the flour to the food preparation system are described. The systems were analyzed and compared and two satisfactory systems were chosen. Prototypes of the two preferred systems are to be fabricated next semester. They will be tested under simulated microgravity conditions and revised for maximum effectiveness.

  14. Secondary metabolism in simulated microgravity: beta-lactam production by Streptomyces clavuligerus

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    Rotating bioreactors designed at NASA's Johnson Space Center were used to simulate a microgravity environment in which to study secondary metabolism. The system examined was beta-lactam antibiotic production by Streptomyces clavuligerus. Both growth and beta-lactam production occurred in simulated microgravity. Stimulatory effects of phosphate and L-lysine, previously detected in normal gravity, also occurred in simulated microgravity. The degree of beta-lactam antibiotic production was markedly inhibited by simulated microgravity.

  15. Salivary Pharmacodynamics and Bioavailability of Promethazine in Human Subjects

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Harm, Deborah L.; Nimmagudda, Ram; Berens, Kurt L.; Bourne, David W. A.

    1999-01-01

    The acute effects of exposure to microgravity include the development of space motion sickness which usually requires therapeutic intervention. The current drug of choice, promethazine (PMZ), has side effects which include nausea, drowsiness, dizziness, sedation and impaired psychomotor performance. In a ground-based study with commercial airline pilots and shuttle simulator trainers, we measured sleep and psychomotor performance variables, and physiological variables such as blood pressure and heart rate, as a function of circulating drug concentrations in the body. We evaluated a non-invasive sampling method (saliva) as a means of assessing pharmacodynamics following a single intramuscular (IM) dose of PMZ.

  16. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  17. Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis

    PubMed Central

    2013-01-01

    Background Previous experiments have shown that the reduced gravity aboard the International Space Station (ISS) causes important alterations in Drosophila gene expression. These changes were shown to be intimately linked to environmental space-flight related constraints. Results Here, we use an array of different techniques for ground-based simulation of microgravity effects to assess the effect of suboptimal environmental conditions on the gene expression of Drosophila in reduced gravity. A global and integrative analysis, using “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices. Although the genes that are affected are different in each simulation technique, we find that the same gene ontology groups, including at least one large multigene family related with behavior, stress response or organogenesis, are over represented in each case. Conclusions These results suggest that the transcriptome as a whole can be finely tuned to gravity force. In optimum environmental conditions, the alteration of gravity has only mild effects on gene expression but when environmental conditions are far from optimal, the gene expression must be tuned greatly and effects become more robust, probably linked to the lack of experience of organisms exposed to evolutionary novel environments such as a gravitational free one. PMID:23806134

  18. Ground-based experiments complement microgravity flight opportunities in the investigation of the effects of space flight on the immune response: is protein kinase C gravity sensitive?

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Woods, K. M.; Armstrong, J. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    This manuscript briefly reviews ground-based and flight experiments, discusses how those experiments complement each other, and details how those experiments lead us to speculate about the gravity-sensitive nature of protein kinase C.

  19. MOBI: Microgravity Observations of Bubble Interactions

    NASA Technical Reports Server (NTRS)

    Koch, Donald L.; Sangani, Ashok

    2004-01-01

    One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.

  20. Gramicidin S production by Bacillus brevis in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Koenig, D. W.; Demain, A. L.

    1997-01-01

    In a continuing study of microbial secondary metabolism in simulated microgravity, we have examined gramicidin S (GS) production by Bacillus brevis strain Nagano in NASA High Aspect Rotating Vessels (HARVs), which are designed to simulate some aspects of microgravity. Growth and GS production were found to occur under simulated microgravity. When performance under simulated microgravity was compared with that under normal gravity conditions in the bioreactors, GS production was found to be unaffected by simulated microgravity. The repressive effect of glycerol in flask fermentations was not observed in the HARV. Thus the negative effect of glycerol on specific GS formation is dependent on shear and/or vessel geometry, not gravity.

  1. Clinostats and centrifuges: Their use, value, and limitations in gravitational biological research; Symposium, Washington, Oct. 19, 1991, Report

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor); Todd, Paul (Editor); Powers, Janet V. (Editor)

    1992-01-01

    The present volume addresses physical phenomena and effects associated with clinostat and centrifuge operations as well as their physiological effects. Particular attention is given to the simulation of the gravity conditions on the ground, the internal dynamics of slowly rotating biological systems, and qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. Also discussed are the development and use of centrifuges in gravitational biology, the use of centrifuges in plant gravitational biology and a comparison of ground-based and flight experiment results, the ability of clinostat to mimic the effect of microgravity on plant cells and organs, and the impact of altered gravity conditions on early EGF-induced signal transduction in human epidermal A431 cells.

  2. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  3. Analysis by NASA's VESGEN Software of Vascular Branching in the Human Retina with a Ground-Based Microgravity Analog

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vyas, Ruchi J.; Raghunandan, Sneha; Vu, Amanda C.; Zanello, Susana B.; Ploutz-Snyder, Robert; Taibbi, Giovanni; Vizzeri, Gianmarco

    2016-01-01

    Significant risks for visual impairment were discovered recently in astronauts following spaceflight, especially after long-duration missions.1 We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal vasculature that precede visual and other ocular impairments. We therefore are analyzing retinal vessels in healthy subjects with NASA's VESsel GENeration Analysis (VESGEN) software2 before and after head-down tilt (HDT), a ground-based microgravity analog For our preliminary study of masked images, two groups of venous trees with and without small veins (G=7) were clearly identified by VESGEN analysis. Upon completing all images and unmasking the subject status of pre- and post- HDT, we will determine whether differences in the presence or absence of small veins are important correlates, and perhaps reliable predictors, of other ocular and physiological adaptations to prolonged HDT and microgravity. Greater peripapillary retinal thickening was measured following 70-day HDT bed rest than 14-day HDT bed rest, suggesting that time of HDT may increase the amount of optic disc swelling.3 Spectralis OCT detected retinal nerve fiber layer thickening post HDT, without clinical signs of optic disc edema. Such changes may have resulted from HDT-induced cephalad fluid shifts. Clinical methods for examining adaptive microvascular remodeling in the retina to microgravity space flight are currently not established.

  4. Ground Reaction Forces During Locomotion in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Davis, B. L.; Cavanagh, Peter R.; Sommer, H. J., III; Wu, G.

    1996-01-01

    Significant losses in bone density and mineral, primarily in the lower extremities have been reported following exposure to weightlessness. Recent investigations suggest that mechanical influences such as bone deformation and strain rate may be critically important in stimulating new bone formation. It was hypothesized that velocity, cadence and harness design would significantly affect lower limb impact forces during treadmill exercise in simulated zero gravity (0G). A ground-based hypogravity simulator was used to investigate which factors affect limb loading during tethered treadmill exercise. A fractional factorial design was used and 12 subjects were studied. The results showed that running on active and passive treadmills in the simulator with a tethering force close to the maximum comfortable level produced similar magnitudes for the peak ground reaction force. It was also found that these maximum forces were significantly lower than those obtained during overground trials, even when the speeds of locomotion in the simulator were 66 % greater than those in 1 G. Cadence had no effect on any of the response variables. The maximum rate of force application (DFDT-Max) was similar for overground running and exercise in simulated 0G, provided that the "weightless subjects ran on a motorized treadmill. These findings have implications for the use of treadmill exercise as a countermeasure for hypokinetic osteoporosis. As the relationship between mechanical factors and osteogenesis becomes better understood, results from human experiments in 0G simulators will help to design in-flight exercise programs that are more closely targeted to generate appropriate mechanical stimuli.

  5. The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line

    NASA Technical Reports Server (NTRS)

    Smiley, S. A.; Gillock, E. T.; Black, M. C.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1997-01-01

    The hybridoma cell line, 3G10G5, producing a monoclonal antibody to the major capsid protein VP1 from the avian polyomavirus budgerigar fledgling disease virus, was produced from a Balb/C mouse. This cell line was used to test the effects of microgravity on cellular processes, specifically protein synthesis. A time course study utilizing incorporation of [35S]methionine into newly synthesized monoclonal antibody was performed on STS-77. After 5.5 days, it was observed that cell counts for the samples exposed to microgravity were lower than those of ground-based samples. However, radiolabel incorporation of the synthesized monoclonal antibody was similar in both orbiter and ground control samples. Overall, microgravity does not seem to have an effect on this cell line's ability to synthesize IgG protein.

  6. Monitoring the Microgravity Environment Quality On-board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.

    2002-01-01

    This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  7. Physical Sciences Research Priorities and Plans in OBPR

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  8. Small Particle Response to Fluid Motion Using Tethered Particles to Simulate Microgravity

    NASA Technical Reports Server (NTRS)

    Trolinger, James; L'Esperance, Drew; Rangel, Roger; Coimbra, Carlos; Witherow, William K.; Rogers, Jan; Lal, Ravindra

    2003-01-01

    This paper reports on ground based work conducted to support the Spaceflight Definition project SHIVA (Spaceflight Holography Investigation in a Virtual Apparatus). SHIVA will advance our understanding of the movement of a particle in a fluid. Gravity usually dominates the equations of motion, but in microgravity as well as on earth other terms can become important. Through an innovative application of fractional differential equations, two members of our team produced the first analytical solution of a fundamental equation of motion, which had only been solved numerically or by approximation before. The general solution predicts that the usually neglected history term becomes important in particle response to a sinusoidal fluid movement when the characteristic viscous time is in the same order as the fluid oscillation period and peaks when the two times are equal. In this case three force terms, the Stokes drag, the added mass, and the history drag must all be included in predicting particle movement. We have developed diagnostic recording methods using holography to save all of the particle field data, allowing the experiment to essentially be transferred from space back to earth in what we call the virtual apparatus for on-earth microgravity experimentation. We can quantify precisely the three-dimensional motion of sets of particles, allowing us to test and apply the new analytical solutions. We are examining the response of particles up to 2 mm radius to fluid oscillation at frequencies up to 80 Hz with amplitudes up to 200 microns. Ground studies to support the flight development program have employed various schemes to simulate microgravity. One of the most reliable and meaningful methods uses spheres tethered to a fine hair suspended in the fluid. We have also investigated particles with nearly neutral buoyancy. Recordings are made at the peak amplitudes of vibration of the cell providing a measure of the ratio of fluid to particle amplitude. The experiment requires precise location of the particle to within microns during recording, and techniques for achieving this are one of the project challenges. Focused microscopic images and diffraction patterns are used. To make the experiment more versatile, the spaceflight system will record holograms both on film and electronically. A cross correlation procedure enables sub pixel accuracies for electronic recordings, partially accommodating the lower spatial resolution of CCDs. The electronic holograms can be down linked providing real time data. Results of the ground experiments, the flight experiment design, and data analysis procedures are reported.

  9. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  10. Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

    2013-01-01

    The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

  11. Third Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program, present and future areas of emphasis, information on NASA's ground-based and space-based flight research facilities-especially use of the International Space Station, and the process by which future investigators enter the program. An international forum offered participants an opportunity to hear from Russian speakers about their microgravity research programs. Three keynote speakers provided broad technical overviews on the history and future development of the moon and on multiphase flow and complex fluids research. One keynote paper and an extended abstract are included in the proceedings. One hundred and thirty-two technical papers were presented in 28 sessions. Presenters briefed their peers on the scientific results of their ground-based and flight research. One hundred and twenty-two papers are included here.

  12. Formation of Carbon Nanotubes in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2001-01-01

    Even though nanotube science has become one of the worlds most rapidly advancing areas of research, very little is known about the processes involved in nanotube synthesis. To study the formation of carbon nanotubes in an environment unhindered by the buoyancy induced flows generated by the high temperatures necessary to vaporize carbon and grow nanotubes, we have designed a miniature carbon arc apparatus that can produce carbon nanotubes under microgravity conditions. During the first phase of this project, we designed, built, and successfully tested the mini carbon arc in both 1g and 2.2 sec drop tower microgravity conditions. We have demonstrated that microgravity can eliminate the strong convective flows from the carbon arc and we have successfully produced single-walled carbon nanotubes in microgravity. We believe that microgravity processing will allow us to better understand the nanotube formation process and eventually allow us to grow nanotubes that are superior to ground-based production.

  13. 14 CFR 1275.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., social sciences, statistics, and biological and physical research (ground based and microgravity...

  14. Protein Crystal Growth With the Aid of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark

    2003-01-01

    Protein crystallography is one of three well-known methods to obtain the structure of proteins. A major rate limiting step in protein crystallography is protein crystal nucleation and growth, which is still largely a process conducted by trial-and-error methods. Many attempts have been made to improve protein crystal growth by performing growth in microgravity. Although the use of microgravity appears to improve crystal quality in some attempts, this method has been inefficient because several reasons: we lack a fundamental understanding of macromolecular crystal growth in general and of the influence of microgravity in particular, we have to start with crystal growth conditions in microgravity based on conditions on the ground and finally the hardware does not allow for experimental iteration without reloading samples on the ground. To partially accommodate the disadvantages of the current hardware, we have used microfluidic technology (Lab-on-a-Chip devices) to design the concept of a more efficient crystallization device, suitable for use on the International Space Station and in high-throughput applications on the ground. The concept and properties of microfluidics, the application design process, and the advances in protein crystal growth hardware will be discussed in this presentation. Some examples of proteins crystallized in the new hardware will be discussed, including the differences between conventional crystallization versus crystallization in microfluidics.

  15. Microbial responses to microgravity and other low-shear environments.

    PubMed

    Nickerson, Cheryl A; Ott, C Mark; Wilson, James W; Ramamurthy, Rajee; Pierson, Duane L

    2004-06-01

    Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.

  16. Microbial Responses to Microgravity and Other Low-Shear Environments

    NASA Technical Reports Server (NTRS)

    Nickerson, Cheryl A.; Ott, C. Mark; Wilson, James W.; Ramamurthy, Rajee; Pierson, Duane L.

    2004-01-01

    Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.

  17. Thermal design and turbidity sensor for autonomous bacterial growth measurements in spaceflight.

    PubMed

    van Benthem, Roel; Krooneman, Janneke; de Grave, Wubbo; Hammenga-Dorenbos, Hilma

    2009-04-01

    For application of biological air filters in manned spacecraft, research on bacterial growth is carried out under microgravity conditions. For the BIOFILTER experiment, flown in 2005 on FOTON M2, eight turbidity sensors to measure the growth rate of the bacterium Xanthobacter autotrophicus GJ10 were used. Also thermal management provisions were implemented to control the internal temperature. The design and performance of the BIOFILTER equipment as well as results of the biological ground reference experiments performed in 2006 are discussed. High-performance thermal (vacuum) insulation (lambda= 0.7 mW/mK) and phase change material were implemented, keeping the BIOFILTER internal temperature below 16 degrees C during the 4-day integration period between transport and launch. After launch, in microgravity, the growth of X. autotrophicus GJ10 was successfully triggered by a temperature increase by using an internal heater to 26 degrees C. Although the operation of the sensor electronics was not fully satisfying, the bacterial growth was measured with the sensors, revealing growth rates between 0.046 and 0.077 h(-1) in microgravity, that is, approximately 1.5-2.5 times slower than routinely measured on Earth under optimal laboratory conditions. For the ground-reference experiments the equipment box, containing the eight sensors, was placed on a random positioning machine performing random rotations at 0.5 degrees /min (settling compensation) and 90 degrees /min (microgravity simulation) while the environment was controlled, accurately repeating the BIOFILTER internal temperature profile. Despite the rotation speed differences, growth rates of 0.115 h(-1) were confirmed by both the ground reference experiments. Biological interpretation of the measurements is, however, compromised owing to poor mixing and other unknown physical and biological phenomena that need to be addressed for further space experiments using these kinds of systems.

  18. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment.

    PubMed

    Link, B M; Cosgrove, D J

    1999-12-01

    In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.

  19. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Cosgrove, D. J.

    1999-01-01

    In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.

  20. Simulated microgravity facilitates cell migration and neuroprotection after bone marrow stromal cell transplantation in spinal cord injury

    PubMed Central

    2013-01-01

    Introduction Recently, cell-based therapy has gained significant attention for the treatment of central nervous system diseases. Although bone marrow stromal cells (BMSCs) are considered to have good engraftment potential, challenges due to in vitro culturing, such as a decline in their functional potency, have been reported. Here, we investigated the efficacy of rat BMSCs (rBMSCs) cultured under simulated microgravity conditions, for transplantation into a rat model of spinal cord injury (SCI). Methods rBMSCs were cultured under two different conditions: standard gravity (1G) and simulated microgravity attained by using the 3D-clinostat. After 7 days of culture, the rBMSCs were analyzed morphologically, with RT-PCR and immunostaining, and were used for grafting. Adult rats were used for constructing SCI models by using a weight-dropping method and were grouped into three experimental groups for comparison. rBMSCs cultured under 1 g and simulated microgravity were transplanted intravenously immediately after SCI. We evaluated the hindlimb functional improvement for 3 weeks. Tissue repair after SCI was examined by calculating the cavity area ratio and immunohistochemistry. Results rBMSCs cultured under simulated microgravity expressed Oct-4 and CXCR4, in contrast to those cultured under 1 g conditions. Therefore, rBMSCs cultured under simulated microgravity were considered to be in an undifferentiated state and thus to possess high migration ability. After transplantation, grafted rBMSCs cultured under microgravity exhibited greater survival at the periphery of the lesion, and the motor functions of the rats that received these grafts improved significantly compared with the rats that received rBMSCs cultured in 1 g. In addition, rBMSCs cultured under microgravity were thought to have greater trophic effects on reestablishment and survival of host spinal neural tissues because cavity formations were reduced, and apoptosis-inhibiting factor expression was high at the periphery of the SCI lesion. Conclusions Here we show that transplantation of rBMSCs cultured under simulated microgravity facilitates functional recovery from SCI rather than those cultured under 1 g conditions. PMID:23548163

  1. Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Xu, Zheyao; Qi, Naiming; Chen, Yukun

    2015-12-01

    Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.

  2. Smoke-Point Properties of Non-Buoyant Round Laminar Jet Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity, the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and non-buoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smoke-point flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity.

  3. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.; Ross, H. D. (Technical Monitor)

    2000-01-01

    The laminar smoke-point properties of non-buoyant round laminar jet diffusion flames were studied emphasizing results from long-duration (100-230 s) experiments at microgravity carried out in orbit aboard the space shuttle Columbia. Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, pressures of 35-130 kPa, jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-690 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. Contrary to the normal-gravity laminar smoke point, in microgravity the onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with soot emissions along the flame axis and open-tip flames with soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip: nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than non-buoyant flames in earlier tests using ground-based microgravity facilities and than buoyant flames at normal gravity, as a result of reduced effects of unsteadiness, flame disturbances, and buoyant motion. For example, present measurements of laminar smokepoint flame lengths at comparable conditions were up to 2.3 times shorter than ground-based microgravity measurements and up to 6.4 times shorter than buoyant flame measurements. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure to a degree that is a somewhat smaller than observed during earlier tests both at microgravity (using ground-based facilities) and at normal gravity,

  4. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  5. [Hormonal regulation of metabolism in the human body in microgravity and during simulation of its physiological effects].

    PubMed

    Larina, I M

    2003-01-01

    The paper presents results of investigations into the effects of space flight and simulation experiments of various length on the hormonal regulation of metabolism in the human body. Microgravity was shown to instigate shifts on different levels of the hormonal regulation and consequent adjustment of metabolism to this new environment. For instance, adaptation occurs on the level of basal secretory activity resulting in altered metabolism and formation of a pool of hormones. Metabolism readaptation to the Earth's gravity is dependent on polymorphic processes in the system of hormonal regulation developing in the course of time. Trends in the hormonal regulation of water-electrolyte metabolism during early adaptation point to inequality of contributions of the antidiuretic hormone, natriuretic peptide, and the renin-angiotensin-aldosterone system. In the ground-based simulations responses of the hormonal regulation of water-electrolyte metabolism differ in intensity and types of hormones involved. Temperature variation can modify reactions of the comosis and volume regulating hormones at the beginning of adaptation. Physical-chemical regulation of calcium homeostasis in microgravity reveals itself by a rapid decline of the calcium-binding ability of blood buffers and, later on, degradation of the relative ability of extraplasmic structures to bind calcium. Qualitative and quantitative changes in the diurnal rhythm of the suprarenal steroidogenesis are indicative of modification of intensity of reactions of the main biosynthetic sequences. Countermeasures used by test-subjects in these investigations loosened significantly the aldosterone-secreting biosynthetic sequences but were favorable to the synthesis of testosterone and hydrocortisone. Some of the highly variable processes of hormonal regulation were mute to the diurnal rhythms in the pre-flight and preexperimental periods.

  6. Microgravity inhibition of lipopolysaccharide-induced tumor necrosis factor-α expression in macrophage cells.

    PubMed

    Wang, Chongzhen; Luo, Haiying; Zhu, Linnan; Yang, Fan; Chu, Zhulang; Tian, Hongling; Feng, Meifu; Zhao, Yong; Shang, Peng

    2014-01-01

    Microgravity environments in space can cause major abnormalities in human physiology, including decreased immunity. The underlying mechanisms of microgravity-induced inflammatory defects in macrophages are unclear. RAW264.7 cells and primary mouse macrophages were used in the present study. Lipopolysaccharide (LPS)-induced cytokine expression in mouse macrophages was detected under either simulated microgravity or 1g control. Freshly isolated primary mouse macrophages and RAW264.7 cells were cultured in a standard simulated microgravity situation using a rotary cell culture system (RCCS-1) and 1g control conditions. The cytokine expression was determined by real-time PCR and ELISA assays. Western blots were used to investigate the related intracellular signals. LPS-induced tumor necrosis factor-α (TNF-α) expression, but not interleukin-1β expression, in mouse macrophages was significantly suppressed under simulated microgravity. The molecular mechanism studies showed that LPS-induced intracellular signal transduction including phosphorylation of IKK and JNK and nuclear translocation of NF-κB in macrophages was identical under normal gravity and simulated microgravity. Furthermore, TNF-α mRNA stability did not decrease under simulated microgravity. Finally, we found that heat shock factor-1 (HSF1), a known repressor of TNF-α promoter, was markedly activated under simulated microgravity. Short-term treatment with microgravity caused significantly decreased TNF-α production. Microgravity-activated HSF1 may contribute to the decreased TNF-α expression in macrophages directly caused by microgravity, while the LPS-induced NF-κB pathway is resistant to microgravity.

  7. 14 CFR § 1275.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., psychology, social sciences, statistics, and biological and physical research (ground based and microgravity...

  8. Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings

    PubMed Central

    Mortley, Desmond G.; Bonsi, Conrad K.; Hill, Walter A.; Morris, Carlton E.; Williams, Carol S.; Davis, Ceyla F.; Williams, John W.; Levine, Lanfang H.; Petersen, Barbara V.; Wheeler, Raymond M.

    2009-01-01

    Because sweetpotato [Ipomoea batatas (L.) Lam.] stem cuttings regenerate very easily and quickly, a study of their early growth and development in microgravity could be useful to an understanding of morphological changes that might occur under such conditions for crops that are propagated vegetatively. An experiment was conducted aboard a U.S. Space Shuttle to investigate the impact of microgravity on root growth, distribution of amyloplasts in the root cells, and on the concentration of soluble sugars and starch in the stems of sweetpotatoes. Twelve stem cuttings of ‘Whatley/Loretan’ sweetpotato (5 cm long) with three to four nodes were grown in each of two plant growth units filled with a nutrient agarose medium impregnated with a half-strength Hoagland solution. One plant growth unit was flown on Space Shuttle Colombia for 5 days, whereas the other remained on the ground as a control. The cuttings were received within 2 h postflight and, along with ground controls, processed in ≈45 min. Adventitious roots were counted, measured, and fixed for electron microscopy and stems frozen for starch and sugar assays. Air samples were collected from the headspace of each plant growth unit for postflight determination of carbon dioxide, oxygen, and ethylene levels. All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. Amyloplasts in root cap cells of ground-based controls were evenly sedimented toward one end compared with a more random distribution in the flight samples. The concentration of soluble sugars, glucose, fructose, and sucrose and total starch concentration were all substantially greater in the stems of flight samples than those found in the ground-based samples. Carbon dioxide levels were 50% greater and oxygen marginally lower in the flight plants, whereas ethylene levels were similar and averaged less than 10 nL·L −1. Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications. PMID:20186286

  9. Overall Genomic Effects of the exposure to real and simulated gravity during Drosophila melanogaster metamorphosis

    NASA Astrophysics Data System (ADS)

    Marco, Roberto; Herranz, Raul; Lavan, David; Villa, Aida; Medina, Francisco Javier; van Loon, Jack W. A.

    The availability of genomic information and of high through-put analysis techniques makes possible to investigate and understand the genetic basis of ecologically important traits, traits that could increase the fitness of the different organisms towards the different characteristics of the environment in which they are normally living and therefore are adapted. As recently discussed (1), it is not an easy task to identify among the global transcription response, the probably smaller group of genes with discernible relevance to the particular perturbation analyzed. The issue whether the challenge experienced by the biological systems is "familiar" or "evolutionary novel" is relevant to our experiments. Combining/modifying the type of environmental challenges and looking for the correlation among the genes responses is one way to substantiate the relevance of the results. Nevertheless, the more relevant genes involved in a particular response may not show the more important changes in expression levels as has been shown for hubs with high connectivity in interaction networks. To integrate the findings from gene expression changes with the experiments performed with more direct experimental approaches is a challenge for the immediate future. When we started our analysis, we were expecting to detect a relatively small group of gravity responding genes. On the other hand, we think now that the overall genome is responding to the evolutionary novel environment. The experiments on which we base our analysis are: a) experiments in the International Space Station, b) experiments performed on ground microgravity simulating equipment, mainly on the Random Position Machine and experiments under hypergravity, namely at 10g, well above the acceleration felt by the organisms during the launch of the space shifts that are used in the orbital experiments. The actual developmental process studied is the Drosophila metamorphosis. The pupae at the end of the developmental period where the adult flies are formed, starting from the larvae, provides an appropriated system where to answer the question, how general is the transcriptional response of a high organism such as Drosophila when exposed at unusual conditions such as those prevalent in Space and reproduced on the ground with more or less fidelity. Space experiments are always associated to strict experimental constraints caused by the specific requirements linked to this highly unusual environment. These constraints were partially introduced to make possible the fixation of our pupae in Space. The required levels of containment had the consequence of providing a limited amount of oxygen to the pupae inside the hermetic Type I container. Furthermore, it was necessary to cool down the early pupae to make possible that the majority of the pupal development occurred in Space. The compatibility of these constraints with the pupal development was tested. Furthermore, the ground control simulations could be run with or without the constraints. The results that will be reviewed in the presentation: metricconverterProductID1. A1. A large proportion of the genes responded to the Space conditions, very likely mostly to microgravity. 2. The constraints actually reinforced the gene response produced by the exposure to microgravity, making easier to detect the positive effect. 3. The Space results could be almost exactly reproduced on the ground simulation conditions. 5. Hypergravity although triggering a much less conspicuous response than microgravity, interestingly, changed the gene expression in an opposite directions to the one triggered by microgravity. The significance of these effects in long-term multigenerational experiments could provide the genetic basis for the adaptation to the new environmental parameters and indicate the way evolution could proceed. Manned space missions and the development of life support systems should take these findings into account. 1) Koonin, E. V. Chance and necessity in cellular response to challenge. Molecular Systems Biology (2007), 3

  10. T cell regulation in microgravity - The current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities

    NASA Astrophysics Data System (ADS)

    Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice; Thiel, Cora S.; Layer, Liliana E.; Ullrich, Oliver

    2014-11-01

    Dating back to the Apollo and Skylab missions, it has been reported that astronauts suffered from bacterial and viral infections during space flight or after returning to Earth. Blood analyses revealed strongly reduced capability of human lymphocytes to become active upon mitogenic stimulation. Since then, a large number of in vitro studies on human immune cells have been conducted in space, in parabolic flights, and in ground-based facilities. It became obvious that microgravity affects cell morphology and important cellular functions. Observed changes include cell proliferation, the cytoskeleton, signal transduction and gene expression. This review gives an overview of the current knowledge of T cell regulation under altered gravity conditions obtained by in vitro studies with special emphasis on the cell culture conditions used. We propose that future in vitro experiments should follow rigorous standardized cell culture conditions, which allows better comparison of the results obtained in different flight- and ground-based experiment platforms.

  11. The Response of wnt/ ß-Catenin Signaling Pathway in Osteocytes Under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Sun, Lian-Wen; Liang, Meng; Wang, Xiao-Nan; Fan, Yu-Bo

    2015-11-01

    Osteocytes were considered as potential sensors of mechanical loading and orchestrate the bone remodeling adapted to mechanical loading. On the other hand, osteocytes are also considered as the unloading sensors in vivo. Previous studies showed that the mechanosensation and mechanotransduction of osteocytes may play an essential role in mediating bone response to microgravity, and one of the most important molecular signaling pathway involved in the mechanotransduction is the Wnt/ ß-catenin signaling pathway. In order to investigate the effect of simulated microgravity on the Wnt/ ß-catenin signaling pathway in osteocytes, MLO-Y4 cells (an osteocyte-like cell line) were cultured under controlled rotation to simulate microgravity for 5 days. The cytoskeleton and ß-catenin nuclear translocation of MLO-Y4 cells were detected by laser scanning confocal microscope and the fluorescence intensity was quantified; the mRNA expressions of upstream and downstream key components in Wnt canonical signaling were detected with RT-PCR. Two regulators of the Wnt/ ß-catenin pathway, NMP4/CIZ and Smads, were also investigated by RT-PCR; finally the expression of Wnt target genes and Sost protein level were detected with the absence or presence of the Sclerostin antibody (Scl-AbI) under simulated microgravity. The results showed that under simulated microgravity, (1) F-actin filaments were disassembled and some short dendritic processes appeared at the cell periphery; (2) the gene expression of Wnt3a, Wnt5a, DKK1, CyclinD1, LEF-1 and CX43 in the simulated microgravity group were significantly lower whereas Wnt1 and Sost in the simulated microgravity group were significantly higher than the control group; (3) the gene and protein level of ß-catenin were reduced, and no ß-catenin nuclear translocation observed; (4) the gene expression of Smad1, Smad4 and Smad7 were significantly lower whereas NMP4/CIZ and Smad3 in the simulated microgravity were significantly higher than the control group; (5) Scl-AbI partially inhibited the down-regulation of simulated microgravity to Wnt target gene expression and Sclerostin protein expression. The results suggested that firstly the cytoskeleton was disturbed in MLO-Y4 by simulated microgravity; secondly the activity of Wnt/ ß-catenin signaling pathway was depressed, with the nuclear translocation of ß-catenin suppressed by simulated microgravity; thirdly the Wnt/ ß-catenin signaling pathway positive regulators (Smads) were decreased, while the negative regulator (NMP4/CIZ) was increased under simulated microgravity; finally Scl-AbI could partially restore the adverse effect of simulated microgravity to Wnt signaling. This study may help us to understand the mechanotransduction alteration of Wnt/ ß-catenin signaling pathway in osteocytes under simulated microgravity, and further may partly clarify the mechanism of microgravity-induced osteoporosis.

  12. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  13. Microgravity Apparatus And Ground-Based Study Of The Flame Propagation And Quenching In Metal Dust Suspensions

    NASA Technical Reports Server (NTRS)

    Goroshin, Sam; Kolbe, Massimilliano; Bellerose, Julie; Lee, John

    2003-01-01

    Due to particle sedimentation and relatively low laminar flame speeds in dust suspensions, microgravity environment is essential for the observation of laminar dust flames in a wide range of particle sizes and fuel concentrations [1]. The capability of a reduced-gravity environment to facilitate study of dust combustion was realized by researchers long before current microgravity programs were established by the various national Space Agencies. Thus, several experimentalists even built their own, albeit very short-duration, drop tower facilities to study flames in particle and droplet suspensions [2,3]. About ten years ago, authors of the present paper started their dust combustion reduced gravity research with the investigation of the constant volume dust flames in a spherical-bomb on board a parabolic flight aircraft [4]. However it was soon realized that direct observation of the constant-pressure flame might be more beneficial. Thus, microgravity apparatus, permitting examination of the freely propagating flames in open-end tubes, was tested in parabolic flights three years later [5]. The improved design of the newlyconstructed apparatus for the experiments on board the NASA KC-135 aircraft is also based on the observation of the dust flame propagating in semi-opened tubes with free expansion of the combustion products that are continuously vented overboard. The apparatus design and results of its extensive ground-based testing are presented below.

  14. On the role of numerical simulations in studies of reduced gravity-induced physiological effects in humans. Results from NELME.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra-vehicular activity. Results show that significant differences appear between men and women physiological response after long-term exposure (more than three months) to microgravity. Risk evaluation for every gender, and specific risk thresholds are provided. Different scenarios like a long-term mission to Moon or Mars are evaluated, including countermeasures such as aerobic exercise. Initial results are compatible with the existing data, and provide useful insights regarding different patterns of microgravity exposure. We conclude that computer-based models such us NELME are a promising line of work to predict health risks in long-term missions.

  15. Changes in gene expression and signal transduction in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    2001-01-01

    Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.

  16. New technique for simulation of microgravity and variable gravity conditions

    NASA Astrophysics Data System (ADS)

    de la Rosa, R.; Alonso, A.; Abasolo, D. E.; Hornero, R.; Abasolo, D. E.

    2005-08-01

    This paper suggests a microgravity or variable gravity conditions simulator based on a Neuromuscular Control System (NCS), working as a man-machine interface. The subject under training lies on an active platform that counteracts his weight. And a Virtual Reality (VR) system displays a simulated environment, where the subject can interact a number of settings: extravehicular activity (EVA), walking on the Moon or training the limb response faced with variable acceleration scenes. Results related to real-time voluntary control have been achieved with neuromuscular interfaces at the Bioengineering Group in the University of Valladolid. It has been employed a custom real-time system to train arm movements. This paper outlines a more complex design that can complement other training facilities, like the buoyancy pool, in the task of microgravity simulation.

  17. Sleep and vestibular adaptation: implications for function in microgravity

    NASA Technical Reports Server (NTRS)

    Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.

    1998-01-01

    Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.

  18. Effects of altered gravity on the swimming behaviour of fish

    NASA Astrophysics Data System (ADS)

    Hilbig, R.; Anken, R. H.; Sonntag, G.; Höhne, S.; Henneberg, J.; Kretschmer, N.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0g to 2g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs.

  19. Microgravity Investigation of Crew Reactions in 0-G (MICR0-G): Ground-Based Development Effort

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    2002-01-01

    This report describes the technology development of an advanced load sensor ground-based prototype and details the preliminary tests in microgravity during parabolic flights. The research effort is entitled, the Microgravity Investigation and Crew Reactions in 0-G (MICR0-G), a ground-based research effort funded by the National Aeronautics and Space Administration (NASA). The MICR0-G project was a follow-on to the Enhanced Dynamic Load Sensors (EDLS) spaceflight experiment flown on the Russian Space Station Mir. The technology development of the advanced load sensor prototype has been carried out by the Massachusetts Institute of Technology (MIT), with collaboration from Politecnico di Milano University and the Italian Space Agency (ASI). The key hardware of the advanced sensor prototype is a set of two types of load sensors - a hand-hold and foot restraints - similar in appearance to the mobility aids found in the Space Shuttle orbiter to assist the crew in moving inside the spacecraft, but able to measure the applied forces and moments about the x-, y-, and z- axes. The aim of Chapter 1 is to give a brief overview of the report contents. The first section summarizes the previous research efforts on astronaut-induced loads in microgravity. The second section provides information on the MICR0-G research project and the technology development work conducted at MIT. Section 1.3 details the motivation for designing a new generation of load sensors and describes the main enhancements and contributions of the MICR0-G advanced load sensors system compared to the EDLS system. Finally, the last section presents the outline of the report.

  20. Acute effects of Dry Immersion on kinematic characteristics of postural corrective responses

    NASA Astrophysics Data System (ADS)

    Sayenko, D. G.; Miller, T. F.; Melnik, K. A.; Netreba, A. I.; Khusnutdinova, D. R.; Kitov, V. V.; Tomilovskaya, E. S.; Reschke, M. F.; Gerasimenko, Y. P.; Kozlovskaya, I. B.

    2016-04-01

    Impairments in balance control are inevitable following exposure to microgravity. However, the role of particular sensory system in postural disorders at different stages of the exposure to microgravity still remains unknown. We used a method called Dry Immersion (DI), as a ground-based model of microgravity, to elucidate the effects of 6-h of load-related afferent inputs on kinematic characteristics of postural corrective responses evoked by pushes to the chest of different intensities during upright standing. The structure of postural corrective responses was altered following exposure to DI, which was manifested by: (1) an increase of the ankle and knee flexion during perturbations of medium intensity, (2) the lack of the compensatory hip extension, as well as diminished knee and ankle flexion with a further increase of the perturbation intensity to submaximal level. We suggest that the lack of weight-bearing increases the reactivity of the balance control system, whereas the ability to scale the responses proportionally to the perturbation intensity decreases. Disrupted neuromuscular coordination of postural corrective responses following DI can be attributed to adaptive neural modifications on the spinal and cortical levels. The present study provides evidence that even a short-term lack of load-related afferent inputs alters kinematic patterns of postural corrective responses, and can result in decreased balance control. Because vestibular input is not primarily affected during the DI exposure, our results indicate that activity and the state of the load-related afferents play critical roles in balance control following real or simulated microgravity.

  1. Two-Fluid Models and Interfacial Area Transport in Microgravity Condition

    NASA Technical Reports Server (NTRS)

    Ishii, Mamoru; Sun, Xiao-Dong; Vasavada, Shilp

    2004-01-01

    The objective of the present study is to develop a two-fluid model formulation with interfacial area transport equation applicable for microgravity conditions. The new model is expected to make a leapfrog improvement by furnishing the constitutive relations for the interfacial interaction terms with the interfacial area transport equation, which can dynamically model the changes of the interfacial structures. In the first year of this three-year project supported by the U.S. NASA, Office of Biological and Physics Research, the primary focus is to design and construct a ground-based, microgravity two-phase flow simulation facility, in which two immiscible fluids with close density will be used. In predicting the two-phase flow behaviors in any two-phase flow system, the interfacial transfer terms are among the most essential factors in the modeling. These interfacial transfer terms in a two-fluid model specify the rate of phase change, momentum exchange, and energy transfer at the interface between the two phases. For the two-phase flow under the microgravity condition, the stability of the fluid particle interface and the interfacial structures are quite different from those under normal gravity condition. The flow structure may not reach an equilibrium condition and the two fluids may be loosely coupled such that the inertia terms of each fluid should be considered separately by use of the two-fluid model. Previous studies indicated that, unless phase-interaction terms are accurately modeled in the two-fluid model, the complex modeling does not necessarily warrant an accurate solution.

  2. Analyses of plasma for metabolic and hormonal changes in rats flown aboard Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Merrill, Alfred H., Jr.; Wang, Elaine; Mullins, Richard E.; Grindeland, Richard E.; Popova, Irina A.

    1992-01-01

    Plasmas samples from rats flown aboard Cosmos 2044 were analyzed for the levels of key metabolites, electrolytes, enzymes, and hormones. The major differences between the flight group and the synchronous control were elevations in glucose, cholesterol, phosphate, creatinine, blood urea nitrogen, lactate dehydrogenase, and aspartate aminotransferase and decreased levels of thyroxine. Most of these differences were not mimicked by tail suspension of ground-based rats; however, both flight and suspended rats exhibited inhibited testosterone secretion. Corticosterone, immunoreactive growth hormone, and prolactin showed inconsistent differences from the various control groups, suggesting that the levels of these hormones were not due to actual or simulated microgravity.

  3. Analysis of Arterial Mechanics During Head-Down-Tilt Bed Rest

    NASA Technical Reports Server (NTRS)

    Elliott, Morgan B.; Martin, David S.; Westby, Christian M.; Stenger, Michael B.; Platts, Steven H.

    2014-01-01

    Carotid, brachial, and tibial arteries reacted differently to HDTBR. Previous studies have not analyzed the mechanical properties of the human brachial or anterior tibial arteries. After slight variations during bed-rest, arterial mechanical properties and IMT returned to pre-bed rest values, with the exception of tibial stiffness and PSE, which continued to be reduced post-bed rest while the DC remained elevated. The tibial artery remodeling was probably due to decreased pressure and volume. Resulting implications for longer duration spaceflight are unclear. Arterial health may be affected by microgravity, as shown by increased thoracic aorta stiffness in other ground based simulations (Aubert).

  4. The Implications of Reduced Ground Reaction Forces During Space Flight for Bone Strains

    NASA Technical Reports Server (NTRS)

    Peterman, Marc M.; Hamel, Andrew J.; Sharkey, Neil A.; Piazza, Stephen J.; Cavanagh, Peter R.

    1998-01-01

    The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. During space flight, bone loss such as that reported by LeBlanc et al. may result from failure to effectively load the skeleton and generate sufficient localized bone strains. In microgravity, a gravity replacement system can be used to tether an exercising subject to a treadmill. It follows that the ability to prevent bone loss is critically dependent upon the external ground reaction forces (GRFs) and skeletal loads imparted by the tethering system. To our knowledge, the loads during orbital flight have been measured only once (on STS 81). Based on these data and data from ground based experiments, it appears likely that interventions designed to prevent bone loss in micro-gravity generate GRFs substantially less than body weight. It is unknown to what degree reductions in external GRFs will affect internal bone strain and thus the bone maintenance response. To better predict the efficacy of treadmill exercise in micro-gravity we used a unique cadaver model to measure localized bone strains under conditions representative of those that might be produced by a gravity replacement system in space.

  5. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  6. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells.

    PubMed

    Valbuena, Miguel A; Manzano, Aránzazu; Vandenbrink, Joshua P; Pereda-Loth, Veronica; Carnero-Diaz, Eugénie; Edelmann, Richard E; Kiss, John Z; Herranz, Raúl; Medina, F Javier

    2018-06-08

    Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.

  7. Skeletal Responses to Long-Duration Simulated Weightlessness in Rats

    NASA Technical Reports Server (NTRS)

    Adams, Julia; Torres, Samantha; Schreurs, Ann-Sofie; Alwood, Joshua S.; Shirazi-Fard, Yasaman; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Damaging effects due to spaceflight and long-duration weightlessness are seen in the musculoskeletal system, specifically with regards to bone loss, bone resorption, and changes in overall bone structure. These adverse effects are all seen with indicators of oxidative stress and a variation in the levels of oxidative gene expression. Once gravity is restored, however, the recovery is slow and incomplete. Despite this, few reports have investigated the correlation between oxidative damage and general modifications within the bone. In this project, we will make use of a ground-based model of simulated weightlessness (hindlimb unloading, HU) in order to observe skeletal changes in response to induced microgravity due to changes in oxidative pressures. With this model we will analyze samples at 14-day and 90-day time points following HU for the determination of acute and chronic effects, each with corresponding controls. We hypothesize that simulated microgravity will lead to skeletal adaptations including time-dependent activation of pro-oxidative processes and pro-osteoclastogenic signals related to the progression, plateau, and recovery of the bone. Microcomputed tomography techniques will be utilized to measure skeletal changes in response to HU. With the results of this study, we hope to further the understanding of skeletal affects as a result of long-duration weightlessness and develop countermeasures to combat bone loss in spaceflight and osteoporosis on Earth.

  8. Protein PSMD8 may mediate microgravity-induced cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning

    Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line

  9. Growth in microgravity increases susceptibility of soybean to a fungal pathogen

    NASA Technical Reports Server (NTRS)

    Ryba-White, M.; Nedukha, O.; Hilaire, E.; Guikema, J. A.; Kordyum, E.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    2001-01-01

    The influence of microgravity on the susceptibility of soybean roots to Phytophthora sojae was studied during the Space Shuttle Mission STS-87. Seedlings of soybean cultivar Williams 82 grown in spaceflight or at unit gravity were untreated or inoculated with the soybean root rot pathogen P. sojae. At 3, 6 and 7 d after launch while still in microgravity, seedlings were photographed and then fixed for subsequent microscopic analysis. Post-landing analysis of the seedlings revealed that at harvest day 7 the length of untreated roots did not differ between flight and ground samples. However, the flight-grown roots infected with P. sojae showed more disease symptoms (percentage of brown and macerated areas) and the root tissues were more extensively colonized relative to the ground controls exposed to the fungus. Ethylene levels were higher in spaceflight when compared to ground samples. These data suggest that soybean seedlings grown in microgravity are more susceptible to colonization by a fungal pathogen relative to ground controls.

  10. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  11. Behavior of Shape Memory Epoxy Foams in Microgravity: Experimental Results of STS-134 Mission

    NASA Astrophysics Data System (ADS)

    Santo, Loredana; Quadrini, Fabrizio; Squeo, Erica Anna; Dolce, Ferdinando; Mascetti, Gabriele; Bertolotto, Delfina; Villadei, Walter; Ganga, Pier Luigi; Zolesi, Valfredo

    2012-09-01

    Shape memory epoxy foams were used for an experiment on the International Space Station to evaluate the feasibility of their use for building multi-functional composite structures. A small equipment was designed and built to simulate the actuation of simple devices in micro-gravity conditions: three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Two systems were used for the experimentation to avoid damages of the flight model during laboratory tests; however a single ground experiment was performed also on the flight model before the mission. Micro-gravity does not affect the ability of the foams to recover their shape but it poses strong limits for the heating system design because of the difference in heat transfer on earth and in orbit. A full recovery of the foam samples was not achieved due to some limitations in the maximum allowable temperature on ISS for safety reasons: anyway a 70% recovery was also measured at a temperature of 110°C. Ground laboratory experiments showed that 100% recovery could be reached by increasing the maximum temperature to 120°C. Experiment results have provided many useful information for the designing of a new structural composite actuator by using shape memory foams.

  12. The effect of acute microgravity on mechanically-induced membrane damage and membrane-membrane fusion events

    NASA Technical Reports Server (NTRS)

    Clarke, M. S.; Vanderburg, C. R.; Feeback, D. L.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  13. The Effect of Acute Microgravity on Mechanically-Induced Membrane Damage and Membrane-Membrane Fusion Events

    NASA Technical Reports Server (NTRS)

    Clarke, Mark, S. F.; Vanderburg, Charles R.; Feedback, Daniel L.

    2001-01-01

    Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". This response is characterized by both membrane rupture and membrane resealing events mediated by membrane-membrane fusion. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.

  14. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  15. Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work

    NASA Technical Reports Server (NTRS)

    Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.

    1996-01-01

    This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.

  16. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps

    NASA Astrophysics Data System (ADS)

    Radugina, E. A.; Almeida, E. A. C.; Blaber, E.; Poplinskaya, V. A.; Markitantova, Y. V.; Grigoryan, E. N.

    2018-02-01

    Mechanical unloading in microgravity during spaceflight is known to cause muscular atrophy, changes in muscle fiber composition, gene expression, and reduction in regenerative muscle growth. Although some limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time. Here we report on how long-term (30-day long) mechanical unloading in microgravity affects murine muscles of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 microgravity mice, in comparison to habitat (7), and vivarium (14) ground control mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013. Muscle histomorphology from microgravity specimens showed signs of extensive atrophy and regenerative hypoplasia relative to ground controls. Specifically, we observed a two-fold decrease in the number of myonuclei, compared to vivarium and ground controls, and central location of myonuclei, low density of myofibers in the tissue, and of myofibrils within a fiber, as well as fragmentation and swelling of myofibers. Despite obvious atrophy, muscle regeneration nevertheless appeared to have continued after 30 days in microgravity as evidenced by thin and short newly formed myofibers. Many of them, however, showed evidence of apoptotic cells and myofibril degradation, suggesting that long-term unloading in microgravity may affect late stages of myofiber differentiation. Ground asynchronous and vivarium control animals demonstrated normal, well-developed tissue structure with sufficient blood and nerve supply and evidence of regenerative formation of new myofibers free of apoptotic nuclei. Regenerative activity of satellite cells in muscles was observed both in microgravity and ground control groups, using Pax7 and Myogenin immunolocalization, as well as Myogenin expression analysis. In addition, we have detected positive nuclear immunolocalization of c-Jun and c-Myc proteins indicating their sensitivity to changes in gravitational loading in a given model. In summary, long-term spaceflight in microgravity caused significant atrophy and degeneration of the femoral Quadriceps muscle group, and it may interfere with muscle regenerative processes by inducing apoptosis in newly-formed myofibrils during their differentiation phase.

  17. Microgravity

    NASA Image and Video Library

    1998-02-05

    Scarning electron microscope images of the surface of ZBLAN fibers pulled in microgravity (ug) and on Earth (1g) show the crystallization that normally occurs in ground-based processing. The face of each crystal will reflect or refract a portion of the optical signal, thus degrading its quality. NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. ZBLAN is a heavy-metal fluoride glass that shows exdeptional promise for high-throughput communications with infrared lasers. Photo credit: NASA/Marshall Space Flight Center

  18. The effect of simulated microgravity on bacteria from the mir space station

    NASA Astrophysics Data System (ADS)

    Baker, Paul W.; Leff, Laura

    2004-03-01

    The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.

  19. The effect of simulated microgravity on bacteria from the Mir space station.

    PubMed

    Baker, Paul W; Leff, Laura

    2004-01-01

    The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.

  20. The effect of simulated microgravity on bacteria from the Mir space station

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Leff, Laura

    2004-01-01

    The effects of simulated microgravity on two bacterial isolates, Sphingobacterium thalpophilium and Ralstonia pickettii (formerly Burkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions. S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, for R. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, when R. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.

  1. Microgravity science and applications. Program tasks and bibliography for FY 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground-based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. ATD (Advanced Technology Development) program task descriptions are also included. The bibliography cites the related PI (Principal Investigator) publications and presentations for these program tasks in FY 1994. Three appendices include Table of Acronyms, Guest Investigator Index, and Principal Investigator Index.

  2. Microgravity science & applications. Program tasks and bibliography for FY 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This annual report includes research projects funded by the Office of Life and Microgravity Sciences and Applications, Microgravity Science and Applications Division, during FY 1994. It is a compilation of program tasks (objective, description, significance, progress, students funded under research, and bibliographic citations) for flight research and ground based research in five major scientific disciplines: benchmark science, biotechnology, combustion science, fluid physics, and materials science. Advanced technology development (ATD) program task descriptions are also included. The bibliography cites the related principle investigator (PI) publications and presentations for these program tasks in FY 1994. Three appendices include a Table of Acronyms, a Guest Investigator index and a Principle Investigator index.

  3. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.

    PubMed

    Hoson, Takayuki

    2014-05-16

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  4. Integrated Clinical Training for Space Flight Using a High-Fidelity Patient Simulator in a Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Doerr, Harold K.; Polk, J. D.; Schmid, Josef; Parazynksi, Scott; Kelly, Scott

    2007-01-01

    This viewgraph presentation reviews the use of telemedicine in a simulated microgravity environment using a patient simulator. For decades, telemedicine techniques have been used in terrestrial environments by many cohorts with varied clinical experience. The success of these techniques has been recently expanded to include microgravity environments aboard the International Space Station (ISS). In order to investigate how an astronaut crew medical officer will execute medical tasks in a microgravity environment, while being remotely guided by a flight surgeon, the Medical Operation Support Team (MOST) used the simulated microgravity environment provided aboard DC-9 aircraft teams of crew medical officers, and remote flight surgeons performed several tasks on a patient simulator.

  5. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan

    1998-01-01

    This fiscal year (FY) 1997 annual report describes key elements of the NASA Microgravity Research Program (MRP) as conducted by the Microgravity Research Division (MRD) within NASA's Office of Life and Microgravity, Sciences and Applications. The program's goals, approach taken to achieve those goals, and program resources are summarized. All snapshots of the program's status at the end of FY 1997 and a review of highlights and progress in grounds and flights based research are provided. Also described are major space missions that flew during FY 1997, plans for utilization of the research potential of the International Space Station, the Advanced Technology Development (ATD) Program, and various educational/outreach activities. The MRP supports investigators from academia, industry, and government research communities needing a space environment to study phenomena directly or indirectly affected by gravity.

  6. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.

  7. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ming; Wang, Yongchun; Yang, Min

    Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cellmore » cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1.« less

  8. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    NASA Astrophysics Data System (ADS)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  9. Skeletal responses to spaceflight

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Arnaud, Sara B.

    1991-01-01

    The role of gravity in the determination of bone structure is elucidated by observations in adult humans and juvenile animals during spaceflight. The primary response of bone tissue to microgravity is at the interface of the mineral and matrix in the process of biomineralization. This response is manifested by demineralization or retarded growth in some regions of the skeleton and hypermineralization in others. The most pronounced effects are seen in the heelbone and skull, the most distally located bones relative to the heart. Ground based flight simulation models that focus on changes in bone structure at the molecular, organ, and whole body levels are described and compared to flight results. On Earth, the morphologic and compositional changes in the unloaded bones are very similar to changes during flight; however, the ground based changes appear to be more transient. In addition, a redistribution of bone mineral in gravity-dependent bones occurs both in space and during head down positioning on Earth. Longitudinal data provided considerable information on the influence of endocrine and muscular changes on bone structure after unloading.

  10. Microgravity

    NASA Image and Video Library

    2001-01-24

    As a liquefied metal solidifies, particles dispersed in the liquid are either pushed ahead of or engulfed by the moving solidification front. Similar effects can be seen when the ground freezes and pushes large particles out of the soil. The Particle Engulfment and Pushing (PEP) experiment, conducted aboard the fourth U.S. Microgravity Payload (USMP-4) mission in 1997, used a glass and plastic beads suspended in a transparent liquid. The liquid was then frozen, trapping or pushing the particles as the solidifying front moved. This simulated the formation of advanced alloys and composite materials. Such studies help scientists to understand how to improve the processes for making advanced materials on Earth. The principal investigator is Dr. Doru Stefanescu of the University of Alabama. This image is from a video downlink.

  11. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.

  12. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Risin, Diana; Pellis, Neal R.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments. Previous experiments from our laboratory revealed that when lymphocytes (human peripheral blood mononuclear cells [PBMCs]) were first activated with phytohemaglutinin followed by exposure to MMG, locomotory capacity was not affected. In the present study, MMG inhibits lymphocyte locomotion in a manner similar to that observed in microgravity. Phorbol myristate acetate (PMA) treatment of PBMCs restored lost locomotory capacity by a maximum of 87%. Augmentation of cellular calcium flux with ionomycin had no restorative effect. Treatment of lymphocytes with mitomycin C prior to exposure to MMG, followed by PMA, restored locomotion to the same extent as when nonmitomycin C-treated lymphocytes were exposed to MMG (80-87%), suggesting that deoxyribonucleic acid replication is not essential for the restoration of locomotion. Thus, direct activation of protein kinase C (PKC) with PMA was effective in restoring locomotion in MMG comparable to the normal levels seen in Ig cultures. Therefore, in MMG, lymphocyte calcium signaling pathways were functional, with defects occurring at either the level of PKC or upstream of PKC.

  13. Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Zhu, Chongqiang; Xiang, Xiang; Mao, Wuwei

    2015-06-01

    In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles' motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to "escaped", "jumping", and "scattered" particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.

  14. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  15. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity.

  16. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered.

  17. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    PubMed

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  18. Microgravity effects on fine motor skills: tying surgical knots during parabolic flight.

    PubMed

    Rafiq, Azhar; Hummel, Russ; Lavrentyev, Vladimir; Derry, William; Williams, David; Merrell, Ronald C

    2006-08-01

    The health provider on a space exploration mission cannot evacuate a patient to Earth. Contingency plans for medical intervention must be designed for autonomy. This study measured the effect of microgravity on performance of fine motor skills such as basic surgical tasks. Eight subjects, six with medical and two with non-medical backgrounds, were evaluated during parabolic microgravity flights aboard NASA's KC-135. We evaluated their skill in tying surgical knots on simulated skin made of silicone using standard techniques for minimally invasive surgery. LabView software was developed to archive forces applied to the laparoscopic tool handles during knot-tying. Studies were controlled for medication (ScopeDex) and the aircraft environment. All participants completed the tests successfully. The data indicated that increased force was applied to the instruments and knot quality decreased during flight compared with ground control sessions. Specific metrics of surgical task performance are essential in developing education modules for providers of medical care during exploration-class missions.

  19. Simulated microgravity induces an inflammatory response in the common carotid artery of rats.

    PubMed

    Liu, Huan; Wang, Zhong-Chao; Yue, Yuan; Yu, Jin-Wen; Cai, Yue; Bai, Yun-Gang; Zhang, Hai-Jun; Bao, Jun-Xiang; Ren, Xin-Ling; Xie, Man-Jiang; Ma, Jin

    2014-08-01

    Post-spaceflight orthostatic intolerance is one of the most important adverse effects after exposure to space microgravity, and there are still no effective countermeasures. It has been considered that arterial remodeling may play an important role in the occurrence of post-spaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. In this study, we investigated whether an inflammatory response exists in the common carotid artery of rats exposed to simulated microgravity. For this, Sprague-Dawley rats were subjected to 4 weeks of hindlimb unweighting to simulate microgravity. The expression levels of the adhesion molecules E-selectin and vascular cell adhesion molecule-1 (VCAM-1), and the cytokine monocyte chemoattractant protein-1 (MCP-1) in the common carotid artery of simulated microgravity rats were evaluated by immunohistochemical staining, quantitative RT-PCR, and Western blot analyses. The recruitment of monocytes in the common carotid artery of rats exposed to simulated microgravity was investigated by en face immunofluorescence staining and monocyte binding assays. Our results provided convincing evidence that there is an inflammatory response in the common carotid artery of rats exposed to simulated microgravity. Our work suggests that the inflammatory response may be a novel cellular mechanism that is responsible for the arterial remodeling that occurs during exposure to microgravity.

  20. Cadmium uptake capacity of an indigenous cyanobacterial strain, Nostoc entophytum ISC32: new insight into metal uptake in microgravity-simulating conditions.

    PubMed

    Alidoust, Leila; Soltani, Neda; Modiri, Sima; Haghighi, Omid; Azarivand, Aisan; Khajeh, Khosro; Shahbani Zahiri, Hossein; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2016-02-01

    Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.

  1. Gravity, calcium, and bone - Update, 1989

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Morey-Holton, Emily

    1990-01-01

    Recent results obtained on skeletal adaptation, calcium metabolism, and bone browth during short-term flights and ground simulated-microgravity experiments are presented. Results demonstrate that two principal components of calcium metabolism respond within days to changes in body position and to weightlessness: the calcium endocrine system and bone characteristics. Furthermore, results of recent studies imply that bone biomechanics are more severely affected by spaceflight exposures than is the bone mass.

  2. Microgravity, stem cells, and embryonic development: challenges and opportunities for 3D tissue generation

    NASA Astrophysics Data System (ADS)

    Andreazzoli, Massimiliano; Angeloni, Debora; Broccoli, Vania; Demontis, Gian C.

    2017-04-01

    Space is a challenging environment for the human body, due to the combined effects of reduced gravity (microgravity) and cosmic radiation. Known effects of microgravity range from the blood redistribution that affects the cardiovascular system and the eye to muscle wasting, bone loss, anemia and immune depression. About cosmic radiation, the shielding provided by the spaceship hull is far less efficient than that afforded at ground level by the combined effects of the Earth atmosphere and magnetic field. The eye and its nervous layer (the retina) are affected by both microgravity and heavy ions exposure. Considering the importance of sight for long-term manned flights, visual research aimed at devising measures to protect the eye from environmental conditions of the outer space represents a special challenge to meet. In this review we focus on the impact of microgravity on embryonic development, discussing the roles of mechanical forces in the context of the neutral buoyancy the embryo experiences in the womb. At variance with its adverse effects on the adult human body, simulated microgravity may provide a unique tool for understanding the biomechanical events involved in the development and assembly in vitro of three-dimensional (3D) ocular tissues. Prospective benefits are the development of novel safety measures to protect the human eye from cosmic radiation in microgravity during long-term manned spaceflights in the outer space, as well as the generation of human 3D-retinas with its supporting structures to develop innovative and effective therapeutic options for degenerative eye diseases.

  3. Exercise countermeasures for long-duration spaceflight: muscle- and intensity-specific considerations

    NASA Astrophysics Data System (ADS)

    Trappe, Todd

    2012-07-01

    On-orbit and ground-based microgravity simulation studies have provided a wealth of information regarding the efficacy of exercise countermeasures for protecting skeletal muscle and cardiovascular function during long-duration spaceflights. While it appears that exercise will be the central component to maintaining skeletal muscle and cardiovascular health of astronauts, the current exercise prescription is not completely effective and is time consuming. This lecture will focus on recent exercise physiology studies examining high intensity, low volume exercise in relation to muscle specific and cardiovascular health. These studies provide the basis of the next generation exercise prescription currently being implemented during long-duration space missions on the International Space Station.

  4. Dietary nucleotides prevent decrease in cellular immunity in ground-based microgravity analog

    NASA Technical Reports Server (NTRS)

    Yamauchi, Keiko; Hales, Nathan W.; Robinson, Sandra M.; Niehoff, Michael L.; Ramesh, Vani; Pellis, Neal R.; Kulkarni, Anil D.

    2002-01-01

    Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.

  5. Plant Growth and Development in the ASTROCULTURE(trademark) Space-Based Growth Unit-Ground Based Experiments

    NASA Technical Reports Server (NTRS)

    Bula, R. J.

    1997-01-01

    The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development.

  6. Life and Microgravity Sciences Spacelab Mission: Human Research Pilot Study

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B. (Editor); Walker, Karen R. (Editor); Hargens, Alan (Editor)

    1996-01-01

    The Life Sciences, Microgravity Science and Spacelab Mission contains a number of human experiments directed toward identifying the functional, metabolic and neurological characteristics of muscle weakness and atrophy during space flight. To ensure the successful completion of the flight experiments, a ground-based pilot study, designed to mimic the flight protocols as closely as possible, was carried out in the head-down tilt bed rest model. This report records the rationales, procedures, preliminary results and estimated value of the pilot study, the first of its kind, for 12 of the 13 planned experiments in human research. The bed rest study was conducted in the Human Research Facility at Ames Research Center from July 11 - August 28, 1995. Eight healthy male volunteers performed the experiments before, during and after 17 days bed rest. The immediate purposes of this simulation were to integrate the experiments, provide data in a large enough sample for publication of results, enable investigators to review individual experiments in the framework of a multi-disciplinary study and relay the experience of the pilot study to the mission specialists prior to launch.

  7. Microgravity Simulation Facility (MSF)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Zhang, Ye

    2016-01-01

    The Microgravity Simulator Facility (MSF) at Kennedy Space Center (KSC) was established to support visiting scientists for short duration studies utilizing a variety of microgravity simulator devices that negate the directional influence of the "g" vector (providing simulated conditions of micro or partial gravity). KSC gravity simulators can be accommodated within controlled environment chambers allowing investigators to customize and monitor environmental conditions such as temperature, humidity, CO2, and light exposure.

  8. Proteomic Analysis of Mouse Hypothalamus under Simulated Microgravity

    PubMed Central

    Sarkar, Poonam; Sarkar, Shubhashish; Ramesh, Vani; Kim, Helen; Barnes, Stephen; Kulkarni, Anil; Hall, Joseph C.; Wilson, Bobby L.; Thomas, Renard L.; Pellis, Neal R.

    2009-01-01

    Exposure to altered microgravity during space travel induces changes in the brain and these are reflected in many of the physical behavior seen in the astronauts. The vulnerability of the brain to microgravity stress has been reviewed and reported. Identifying microgravity-induced changes in the brain proteome may aid in understanding the impact of the microgravity environment on brain function. In our previous study we have reported changes in specific proteins under simulated microgravity in the hippocampus using proteomics approach. In the present study the profiling of the hypothalamus region in the brain was studied as a step towards exploring the effect of microgravity in this region of the brain. Hypothalamus is the critical region in the brain that strictly controls the pituitary gland that in turn is responsible for the secretion of important hormones. Here we report a 2-dimensional gel electrophoretic analysis of the mouse hypothalamus in response to simulated microgravity. Lowered glutathione and differences in abundance expression of seven proteins were detected in the hypothalamus of mice exposed to microgravity. These changes included decreased superoxide dismutase-2 (SOD-2) and increased malate dehydrogenase and peroxiredoxin-6, reflecting reduction of the antioxidant system in the hypothalamus. Taken together the results reported here indicate that oxidative imbalance occurred in the hypothalamus in response to simulated microgravity. PMID:18473167

  9. Flocculation and aggregation in a microgravity environment (FAME)

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Suh, Kwang I.

    1994-01-01

    An experiment to study flocculation phenomena in the constrained microgravity environment of a space shuttle or space station is described. The small size and light weight experiment easily fits in a Spacelab Glovebox. Using an integrated fiber optic dynamic light scattering (DLS) system we obtain high precision particle size measurements from dispersions of colloidal particles within seconds, needs no onboard optical alignment, no index matching fluid, and offers sample mixing and shear melting capabilities to study aggregation (flocculation and coagulation) phenomena under both quiescent and controlled agitation conditions. The experimental system can easily be adapted for other microgravity experiments requiring the use of DLS. Preliminary results of ground-based study are reported.

  10. The path to an experiment in space (from concept to flight)

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.

  11. Microgravity

    NASA Image and Video Library

    1994-07-10

    TEMPUS, an electromagnetic levitation facility that allows containerless processing of metallic samples in microgravity, first flew on the IML-2 Spacelab mission. The principle of electromagnetic levitation is used commonly in ground-based experiments to melt and then cool metallic melts below their freezing points without solidification occurring. The TEMPUS operation is controlled by its own microprocessor system; although commands may be sent remotely from the ground and real time adjustments may be made by the crew. Two video cameras, a two-color pyrometer for measuring sample temperatures, and a fast infrared detector for monitoring solidification spikes, will be mounted to the process chamber to facilitate observation and analysis. In addition, a dedicated high-resolution video camera can be attached to the TEMPUS to measure the sample volume precisely.

  12. Fundamental results from microgravity cell experiments with possible commericial applications

    NASA Technical Reports Server (NTRS)

    Winget, Charles M.; Fast, Thomas N.; Hinds, Williams E.; Schaefer, R. L.; Callahan, Paul X.

    1989-01-01

    Some of the major milestones are presented for studies in cell biology that were conducted by the Soviet Union and the United States in the upper layers of the atmosphere and in outer space for more than thirty-five years. The goals have changed as new knowledge is acquired and the priorities for the use of microgravity have shifted toward basic research and commercial applications. Certain details concerning the impact of microgravity on cell systems is presented. However, it needs to be emphasized that in planning and conducting microgravity experiments, there are some important prerequisites not normally taken into account. Apart from the required background knowledge of previous microgravity and ground-based experiments, the investigator should have the understanding of the hardware as a physical unit, the complete knowledge of its operation, the range of its capabilities and the anticipation of problems that may occur. Moreover, if the production of commercial products in space is to be manifested, data obtained from previous microgravity experiments must be used to optimize the design of flight hardware.

  13. Microgravity Effects on Chronoamperometric Ammonia Oxidation Reaction at Platinum Nanoparticles on Modified Mesoporous Carbon Supports

    NASA Astrophysics Data System (ADS)

    Poventud-Estrada, Carlos M.; Acevedo, Raúl; Morales, Camila; Betancourt, Luis; Diaz, Diana C.; Rodriguez, Manuel A.; Larios, Eduardo; José-Yacaman, Miguel; Nicolau, Eduardo; Flynn, Michael; Cabrera, Carlos R.

    2017-10-01

    The effect of microgravity on the electrochemical oxidation of ammonia at platinum nanoparticles supported on modified mesoporous carbons (MPC) with three different pore diameters (64, 100, and 137 Å) was studied via the chronoamperometric technique in a half-cell. The catalysts were prepared by a H2 reductive process of PtCl6^{4-} in presence of the mesoporous carbon support materials. A microgravity environment was obtained with an average gravity of less than 0.02 g created aboard an airplane performing parabolic maneuvers. Results show the chronoamperommetry of the ammonia oxidation reaction in 1.0 M NH4OH at 0.60 V vs. RHE under microgravity conditions. The current density, in all three catalysts, decreased while in microgravity conditions when compared to ground based experiments. Under microgravity, all three catalysts yielded a decrease in ammonia oxidation reaction current density between 25 to 63% versus terrestrial experimental results, in time scales between 1 and 15 s. The Pt catalyst prepared with mesoporous carbon of 137 Å porous showed the smallest changes, between 25 to 48%. Nanostructuring catalyst materials have an effect on the level of current density decrease under microgravity conditions.

  14. Comparison of hindlimb unloading and partial weight suspension models for spaceflight-type condition induced effects on white blood cells

    NASA Astrophysics Data System (ADS)

    Wilson, Jolaine M.; Krigsfeld, Gabriel S.; Sanzari, Jenine K.; Wagner, Erika B.; Mick, Rosemarie; Kennedy, Ann R.

    2012-01-01

    Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.

  15. Research and competition: Best partners

    NASA Technical Reports Server (NTRS)

    Shaw, J. M.

    1986-01-01

    NASA's Microgravity Science and Applications Program is directed toward research in the science and technology of processing materials under conditions of low gravity. The objective is to make a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead ultimately to the development of new materials and processes in Earth-based commercial applications, adding to this nation's technological base. An important resource that U.S. researchers have readily available to them is the new Microgravity Materials Science Laboratory (MMSL) at NASA Lewis Research Center in Cleveland. A typical scenario for a microgravity materials experiment at Lewis would begin by establishing 1-g baseline data in the MMSL and then proceeding, if it is indicated, to a drop tower or to simulated microgravity conditions in a research aircraft to qualify the project for space flight. A major component of Lewis microgravity materials research work involves the study of metal and alloy solidification fundamentals.

  16. Transient Gene and miRNA Expression Profile Changes of Confluent Human Fibroblast Cells in Space

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lu, Tao; Wong, Michael; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Wang, Xiaoyu; Wu, Honglu

    2015-01-01

    Microgravity or an altered gravity environment from the static 1 gravitational constant has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of the cells. Whether non-dividing cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted on the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days for investigations of gene and miRNA (microRNA) expression profile changes in these cells. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly even though they were confluent, as measured by the expression of the protein Ki-67 positive cells, and the cells in space grew slightly faster. Gene and miRNA expression data indicated activation of NF(sub kappa)B (nuclear factor kappa-light-chain-enhancer of activated B cells) and other growth related pathways involving HGF and VEGF in the flown cells. On Day 14 when the cells were mostly non-dividing, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples in respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeleton changes by immunohistochemistry staining of the cells with antibodies for alpha-tubulin showed no difference between the flight and ground samples. Results of our study suggest that in true non-dividing human fibroblast cells, microgravity in space has little effect on the gene and miRNA expression. Gene and miRNA expression changes were observed in cells that were confluent, but still proliferating slowly. The faster growth in the flown cells was associated with the activation of NF(sub kappa)B pathways which triggers the expression of several growth factors and the suppression of the cell cycle checkpoint.

  17. Behavioral health in Antarctica: implications for long-duration space missions

    NASA Technical Reports Server (NTRS)

    Lugg, Desmond J.

    2005-01-01

    Ideally, evidence from long-duration spaceflight should be used to predict likely occurrences of behavioral health events and for planning management strategies for such events. With small numbers of space travelers, and limited long-duration missions of a year or more, Earth analogues and simulations must be used as the evidence base, despite such analogues lacking microgravity, radiation, rapidly altering photoperiodicity, and fidelity to space. Antarctic health data are reviewed and an assessment made of the likely frequency of behavioral health events. Based on the Antarctic evidence, the likelihood of behavioral health problems in space is low. However, such cases may be serious and of high consequence, placing considerable demands on the mission crew and ground support to achieve a successful outcome, given the availability of pharmaceuticals and resources.

  18. Microgravity flame spread over thick solids in low velocity opposed flow

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  19. Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, R. B.; Lin, K.-C.; Dai, Z.; Faeth, G. M.

    2000-01-01

    The laminar smoke-point properties of nonbuoyant round laminar jet diffusion flames were studied emphasizing results from long duration (100-230 s) experiments at microgravity carried -out on- orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-and propane-fueled flames burning in still air at an ambient temperature of 300 K, initial jet exit diameters of 1.6 and 2.7 mm, jet exit velocities of 170-1630 mm/s, jet exit Reynolds numbers of 46-172, characteristic flame residence times of 40-302 ms, and luminous flame lengths of 15-63 mm. The onset of laminar smoke-point conditions involved two flame configurations: closed-tip flames with first soot emissions along the flame axis and open-tip flames with first soot emissions from an annular ring about the flame axis. Open-tip flames were observed at large characteristic flame residence times with the onset of soot emissions associated with radiative quenching near the flame tip; nevertheless, unified correlations of laminar smoke-point properties were obtained that included both flame configurations. Flame lengths at laminar smoke-point conditions were well-correlated in terms of a corrected fuel flow rate suggested by a simplified analysis of flame shape. The present steady and nonbuoyant flames emitted soot more readily than earlier tests of nonbuoyant flames at microgravity using ground-based facilities and of buoyant flames at normal gravity due to reduced effects of unsteadiness, flame disturbances and buoyant motion. For example, laminar smoke-point flame lengths from ground-based microgravity measurements were up to 2.3 times longer and from buoyant flame measurements were up to 6.4 times longer than the present measurements at comparable conditions. Finally, present laminar smoke-point flame lengths were roughly inversely proportional to pressure, which is a somewhat slower variation than observed during earlier tests both at microgravity using ground-based facilities and at normal gravity.

  20. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  1. Apoferritin crystals

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Alexander Chernov, of the Universities Space Research Association (USRA) and based at Marshall Space Flight Center, is investigating why protein crystals grown in space are, in about 20 percent of cases, better-ordered than those grown on the ground. They are testing the idea that the amount of impurities trapped by space-grown crystals may be different than the amount trapped by crystals grown on Earth because convection is negligible in microgravity. The concentrations or impurities in many space-grown crystals turned out to be several times lower than that in the terrestrial ones, sometimes below the detection limit. The ground-based experiment also showed that the amount of impurities per unit volume of the crystals was usually higher than the amount per unit volume of the solution. This means that a growing crystal actually purifies the solution in its immediate vicinity. Here, an impurity depletion zone is created around apoferritin crystals grown in gel, imitating microgravity conditions.

  2. [Cordyceps sinensis enhances lymphocyte proliferation and CD markers expression in simulated microgravity environment].

    PubMed

    Hao, Tong; Li, Jun-Jie; Du, Zhi-Yan; Duan, Cui-Mi; Wang, Yan-Meng; Wang, Chang-Yong; Song, Jing-Ping; Wang, Lin-Jie; Li, Ying-Hui; Wang, Yan

    2012-10-01

    This study was aimed to explore the effect of cordyceps sinensis enhancing lymphocyte proliferation and surface CD marker expression in simulated microgravity environment. The splenic lymphocytes were separated from mice and cultured in the rotary cell culture system simulated microgravity environment. The cells were treated with different concentration of cordyceps sinensis solution (0, 6.25, 12.5, 25 and 50 µg/ml) for 24, 48 and 72 h respectively, then the cells were harvested, and analyzed for cell proliferation and the expression of cell surface markers (CD4 and CD8). The results showed that under simulated microgravity environment, the lymphocyte proliferation was inhibited. When the concentration of cordyceps sinensis was 25 or 50 µg/ml, the lymphocyte proliferation, CD4 and CD8 expressions all increased, but 50 µg/ml cordyceps sinensis could inhibit the proliferation ability with the time prolonging. It is concluded that the suitable concentration of cordyceps sinensis displayed the ability to enhance the lymphocyte proliferation and CD marker expression in simulated microgravity environment. These results may be valuable for screening drugs which can be potentially against immunosuppression under simulated microgravity.

  3. AIAA/AFOSR Workshop on Microgravity Simulation in Ground Validation Testing of Large Space Structures

    DTIC Science & Technology

    1990-10-15

    Hyatt Regency Hotel in Denver, Colorado. Invited participants from the Government, universities and private industry offered state-of-the-art...N1AME O MONITORiNG QROR IZATIVN Engineering Mechanics W (W/tb) Air Force Office of Associates, Inc. Scientific Research ISe. ADCRESS (Ctry. Swot &Ad...AFOSR, is also appreciated. Ms. Ellen Marzulio, Meeting Coordinator for the AIAA, handled the pre-workshop publicity and hotel arrangements, as well as

  4. Research on liquid sloshing performance in vane type tank under microgravity

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Li, Y.; Liu, J. T.; Liang, J. Q.

    2016-05-01

    Propellant management device (PMD) in vane type tank mainly comprises of vane type structure parts, whose performance of restraining liquid sloshing should satisfy spacecraft requirements of high stabilization and fast orbital maneuver. Aiming at liquid sloshing performance in vane type tank under microgravity environment, gas-liquid flow model based on the volume of fluid (VOF) method was put forward, and via numerical simulation liquid sloshing performances of vane type PMD with anti-sloshing baffles and without anti-sloshing baffles in microgravity were analyzed and compared. Simulation results reveal that liquid sloshing performance of vane type PMD with anti-sloshing baffles is markedly superior vane type PMD without anti-sloshing baffles and the baffles make liquid surface become stable fast. Then by comparing between results of microgravity experiments and results of numerical simulations, they are very similar. According to present research, vane type PMD with antisloshing baffles has better effects on restraining liquid sloshing and is able to restrain observably propellant sloshing in tanks in order to satisfy spacecraft requirements of high stabilization and fast orbital maneuver.

  5. The Life Cycle Application of Intelligent Software Modeling for the First Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Rice, Amanda; Parris, Frank; Nerren, Philip

    2000-01-01

    Marshall Space Flight Center (MSFC) has been funding development of intelligent software models to benefit payload ground operations for nearly a decade. Experience gained from simulator development and real-time monitoring and control is being applied to engineering design, testing, and operation of the First Material Science Research Rack (MSRR-1). MSRR-1 is the first rack in a suite of three racks comprising the Materials Science Research Facility (MSRF) which will operate on the International Space Station (ISS). The MSRF will accommodate advanced microgravity investigations in areas such as the fields of solidification of metals and alloys, thermo-physical properties of polymers, crystal growth studies of semiconductor materials, and research in ceramics and glasses. The MSRR-1 is a joint venture between NASA and the European Space Agency (ESA) to study the behavior of different materials during high temperature processing in a low gravity environment. The planned MSRR-1 mission duration is five (5) years on-orbit and the total design life is ten (IO) years. The MSRR-1 launch is scheduled on the third Utilization Flight (UF-3) to ISS, currently in February of 2003). The objective of MSRR-1 is to provide an early capability on the ISS to conduct material science, materials technology, and space product research investigations in microgravity. It will provide a modular, multi-user facility for microgravity research in materials crystal growth and solidification. An intelligent software model of MSRR-1 is under development and will serve multiple purposes to support the engineering analysis, testing, training, and operational phases of the MSRR-1 life cycle development. The G2 real-time expert system software environment developed by Gensym Corporation was selected as the intelligent system shell for this development work based on past experience gained and the effectiveness of the programming environment. Our approach of multi- uses of the simulation model and its intuitive graphics capabilities is providing a concurrent engineering environment for rapid prototyping and development. Operational schematics of the MSRR-1 electrical, thermal control, vacuum access, and gas supply systems, and furnace inserts are represented graphically in the environment. Logic to represent first order engineering calculations is coded into the knowledge base to simulate the operational behavior of the MSRR-1 systems. An example of engineering data provided includes electrical currents, voltages, operational power, temperatures, thermal fluid flow rates. pressures, and component status indications. These type of data are calculated and displayed at appropriate instrumentation points, and the schematics are animated to reflect the simulated operational status of the MSRR-1. The software control functions are also simulated to represent appropriate operational behavior based on automated control and response to commands received by the crew or ground controllers. The first benefit of this simulation environment is being realized in the high fidelity engineering analysis results from the electrical power system G2 model. Secondly, the MSRR-1 simulation model will be embedded with a hardware mock-up of the MSRR-1 to provide crew training on MSRR-1 integrated payload operations. G2 gateway code will output the simulated instrumentation values, termed as telemetry, in a flight-like data stream so that the crew has realistic and accurate simulated MSRR-1 data on the flight displays which will be designed for crew use. The simulation will also respond appropriately to crew or ground initiated commands, which will be part of normal facility operations. A third use of the G2 model is being planned; the MSRR-1 simulation will be integrated with additional software code as part of the test configuration of the primary onboard computer, or Master Controller, for MSRR-1. We will take advantage of the G2 capability to simulate the flight like data stream to test flight software responses and behavior. A fourth use of the G2 model will be to train the Ground Support Personnel that will monitor the MSRR-1 systems and payloads while they are operating aboard the ISS. The intuitive, schematic based environment will provide an excellent foundation for personnel to understand the integrated configuration and operation of the MSRR-1, and the anticipated telemetry feedback based on operational modes of the equipment. Expert monitoring features will be enhanced to provide a smart monitoring environment for the operators. These features include: (1) Animated, intuitive schematic-based displays which reflect telemetry values, (1) Real-time plotting of simulated or incoming sensor values, (3) High/Low exception monitoring for analog data, (4) Expected state monitoring for discrete data, (5) Data trending, (6) Automated malfunction procedure execution to diagnose problems, (7) Look ahead capability to planned MSRR-1 activities in the onboard timeline. And finally, the logic to calculate telemetry values will be deactivated, and the same environment will interface to the incoming data for the real-time telemetry stream to schematically represent the onboard hardware configuration. G2 will be the foundation for the real-time monitoring and control environment. In summary, our MSRR-1 simulation model spans many elements of the life cycle development of this project: Engineering Analysis, Test and Checkout, Training of Crew and Ground Personnel, and Real-time monitoring and control. By utilizing the unique features afforded by an expert system development environment, we have been able to synergize a powerful tool capable of addressing our project needs at every phase of project development.

  6. Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.; deGroh, H. C.

    2001-01-01

    As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.

  7. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  8. Absence of center of mass control for leg abduction in long-term weightlessness in humans.

    PubMed

    Pedrocchi, Alessandra; Baroni, Guido; Mouchnino, Laurence; Ferrigno, Giancarlo; Pedotti, Antonio; Massion, Jean

    2002-02-22

    The present investigation describes for the first time leg lateral abduction performance during long-term microgravity exposure. Two astronauts took part in the experiments, starting 2 weeks into the mission and lasting for 5 months. Results on joint angles kinematics confirm previous investigations on parabolic flights, showing good task fulfillment for both subjects. Special interest was focused on whole body center of mass (CM) positioning. As in short-term microgravity, no initial CM lateral shift toward the 'supporting' leg was observed. In contrast with short-term microgravity and ground-based experiments, no stabilization of the CM medio-lateral position was found but a significant shift of CM toward the moving leg was observed. This suggests that the adaptation to sustained weightlessness might have led to a microgravity-specific motor strategy for leg abduction, which was not focused on CM strategy.

  9. Transcriptome Analysis of Oryza sativa Calli Under Microgravity

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Chen, Haiying; Cai, Weiming

    2015-11-01

    The transcriptome of Oryza sativacalli was analyzed on board the Chinese spaceship "Shenzhou 8" to study the effects of microgravity on plant signal transduction and secondary metabolism (as one of the experiments with SIMBOX on Shenzhou 8). Calli of Oryza sativa were pre-cultured for 4 days on ground and then loaded into the stationary platform or the rotating platform of a biological incubator, called SIMBOX, to grow in space under microgravity conditions or 1g-conditions, respectively. The calli were fixed by RNAlater after grew 324 h under microgravity. After 17 days, Shenzhou 8 returned to Earth carrying SIMBOX. Oryza sativa calli were recovered, and the RNA was extracted for transcriptome analysis. After comparing 1 gspaceflight controls-inflight controls with 1 g-ground controls, 157 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. When comparing spaceflight controls to 1 g-ground controls and to 1 g-inflight controls, 678 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. The fact that the same 678 probe sets were identified in these two comparisons suggests that transcription was affected under microgravity conditions. MapMan analysis was used to classify 627 microgravity responsive (MR) transcripts. The MR transcripts were mainly involved in cell wall structure, the TCA cycle, primary metabolism, transcription, protein modification and degradation, hormone metabolism, calcium regulation, receptor like kinase activity and transport.

  10. Postural changes following sensory reinterpretation as an analog to spaceflight

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Harm, D. L.; Reschke, M. F.; Doxey, D. D.; Skinner, N. C.; Michaud, L. J.; Parker, D. E.

    1990-01-01

    Postural control changes noted in astronauts immediately following spaceflight are thought to be caused by inflight adaptative changes in Central Nervous System (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. In order to elicit these adaptative changes in ground based studies, a Tilt Translation Device (TTD) which causes the CNS of exposed subjects to reinterpret tilt generated sensory inputs from the otolith organs as linear translation of the subject was developed. This device was designed to simulate partially the stimulus rearrangement experienced by astronauts during microgravity. Postural stability is assessed in ten subjects before and after 30 minutes of exposure to TTD. The resulting data suggests that exposure to TTD causes decreases in postural stability and shifts in postflight studies of astronauts. It is concluded that the TTD may be an effective weightlessness simulator, and that the postural changes following TTD exposure may provide a useful dependent measure for evaluation of this apparatus.

  11. Ground-Based Studies of Headward Fluid Shifts Related to Space Flight

    NASA Technical Reports Server (NTRS)

    Petersen, L. G.; Watkins, W.; Hargens, A. R.; Macias, B. R.

    2017-01-01

    Long-term space flight decreases visual acuity in more than 50% of astronauts with some reports of post-flight lumbar opening pressures up to 21 mmHg1. Loss of hydrostatic (gravitational) pressures in microgravity shifts blood, spinal fluid and tissue fluids towards the head, probably causing venous congestion and leading to symptoms compatible with chronically increased intracranial pressure (ICP). This is characterized as the Visual Impairment and Intracranial Pressure (VIIP) syndrome. Simulation of gravitational stress by application of Lower Body Negative Pressure (LBNP) is proposed as a means to reduce ICP and reestablish cerebral health in astronauts during long mission stay in space. We hypothesize that 50 mmHg of lower body negative pressure (LBNP) during supine and simulated intracranial hypertension by 15 deg head-down tilt (HDT) counteracts elevations in ICP and internal jugular vein crosssectional area (IJV CSA).

  12. Theoretical Studies of Liquid He-4 Near the Superfluid Transition

    NASA Technical Reports Server (NTRS)

    Manousakis, Efstratios

    2002-01-01

    We performed theoretical studies of liquid helium by applying state of the art simulation and finite-size scaling techniques. We calculated universal scaling functions for the specific heat and superfluid density for various confining geometries relevant for experiments such as the confined helium experiment and other ground based studies. We also studied microscopically how the substrate imposes a boundary condition on the superfluid order parameter as the superfluid film grows layer by layer. Using path-integral Monte Carlo, a quantum Monte Carlo simulation method, we investigated the rich phase diagram of helium monolayer, bilayer and multilayer on a substrate such as graphite. We find excellent agreement with the experimental results using no free parameters. Finally, we carried out preliminary calculations of transport coefficients such as the thermal conductivity for bulk or confined helium systems and of their scaling properties. All our studies provide theoretical support for various experimental studies in microgravity.

  13. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Cubano, L. A.; Lewis, M. L.

    2001-01-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  14. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat).

    PubMed

    Cubano, L A; Lewis, M L

    2001-05-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  15. Using Simulated Microgravity to Enhance the Effectiveness of Nanodrug Chemotherapy in Breast Cancer

    DTIC Science & Technology

    2010-03-01

    Frangos ) Award Number: W81XWH-09-1-0179 & W81XWH-09-1-0178 Title: "Using Simulated Microgravity to Enhance the Effectiveness of Nanodrug Chemotherapy in...an expert in mouse breast cancer cell lines. Task 2: Establishment of the simulated microgravity model Mr. Barkho was trained by Dr John Frangos

  16. Modeling and Analysis of Realistic Fire Scenarios in Spacecraft

    NASA Technical Reports Server (NTRS)

    Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.

    2015-01-01

    An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).

  17. Adrenergic Receptor Stimulation Prevents Radiation-Induced DNA Strand Breaks, Apoptosis and Gene Expression in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Moreno-Villanueva, Maria; Krieger, Stephanie; Feiveson, Alan; Kovach, Annie Marie; Buerkle, Alexander; Wu, Honglu

    2017-01-01

    Under Earth gravity conditions cellular damage can be counteracted by activation of the physiological defense mechanisms or through medical interventions. The mode of action of both, physiological response and medical interventions can be affected by microgravity leading to failure in repairing the damage. There are many studies reporting the effects of microgravity and/or radiation on cellular functions. However, little is known about the synergistic effects on cellular response to radiation when other endogenous cellular stress-response pathways are previously activated. Here, we investigated whether previous stimulation of the adrenergic receptor, which modulates immune response, affects radiation-induced apoptosis in immune cells under simulated microgravity conditions. Peripheral blood mononuclear cells (PBMCs) were stimulated with isoproterenol (a sympathomimetic drug) and exposed to 0.8 or 2Gy gamma-radiation in simulated microgravity versus Earth gravity. Expression of genes involved in adrenergic receptor pathways, DNA repair and apoptosis as well as the number of apoptotic cells and DNA strand breaks were determined. Our results showed that, under simulated microgravity conditions, previous treatment with isoproterenol prevented radiation-induced i) gene down regulation, ii) DNA strand breaks formation and iii) apoptosis induction. Interestedly, we found a radiation-induced increase of adrenergic receptor gene expression, which was also abolished in simulated microgravity. Understanding the mechanisms of isoproterenol-mediated radioprotection in simulated microgravity can help to develop countermeasures for space-associated health risks as well as radio-sensitizers for cancer therapy.

  18. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Edelmann, R. E.; Wood, P. C.

    1999-01-01

    The major purpose of this spaceflight project was to investigate the starch-statolith hypothesis for gravity perception, and a secondary goal was to study plant growth and development under spaceflight conditions. This research was based on our ground studies of gravity perception in the wild type and three starch-deficient (one starchless and two reduced starch) mutants of Arabidopsis thaliana (L.) Heynh. Dark-grown seedlings that developed in microgravity were given one of several (30 min, 60 min, or 90 min) 1-g stimuli by an on-board centrifuge, and additional controls for seedling development also were performed. These latter control experiments included a morphological study of plants that developed in space in microgravity (F microg), in space on a centrifuge (F 1g), on the ground (G 1g), and on a rotating clinostat on the ground. Since elevated levels of ethylene were reported in the spacecraft atmosphere, additional controls for morphology and gravitropism with added ethylene also were performed. While exogenous ethylene reduced the absolute magnitude of the response in all four strains of Arabidopsis, this gas did not appear to change the relative graviresponsiveness among the strains. The relative response of hypocotyls of microgravity-grown seedlings to the stimuli provided by the in-flight centrifuge was: wild type > starch-deficient mutants. Although the protoplast pressure model for gravity perception cannot be excluded, these results are consistent with a statolith-based model for perception in plants.

  19. Direct observation of spatially isothermal equiaxed solidification of an Al-Cu alloy in microgravity on board the MASER 13 sounding rocket

    NASA Astrophysics Data System (ADS)

    Murphy, A. G.; Mathiesen, R. H.; Houltz, Y.; Li, J.; Lockowandt, C.; Henriksson, K.; Melville, N.; Browne, D. J.

    2016-11-01

    For the first time, isothermal equiaxed solidification of a metallic alloy has been observed in situ in space, providing unique benchmark experimental data. The experiment was completed on board the MASER 13 sounding rocket, launched in December 2015, using a newly developed isothermal solidification furnace. A grain-refined Al-20 wt%Cu sample was fully melted and solidified during 360 s of microgravity and the solidification sequence was recorded using time-resolved X-radiography. Equiaxed nucleation, dendritic growth, solutal impingement, and eutectic transformation were thus observed in a gravity-free environment. Equiaxed nucleation was promoted through application of a controlled cooling rate of -0.05 K/s producing a 1D grain density of 6.5 mm-1, uniformly distributed throughout the field of view (FOV). Primary growth slowed to a visually imperceptible level at an estimated undercooling of 7 K, after which the cooling rate was increased to -1.0 K/s for the remainder of solidification and eutectic transformation, ensuring the sample was fully solidified inside the microgravity time window. The eutectic transformation commenced at the centre of the FOV proceeding radially outwards covering the entire FOV in 3 s Microgravity-based solidification is compared to an identical pre-flight ground-based experiment using the same sample and experiment timeline. The ground experiment was designed to minimise gravity effects, by choice of a horizontal orientation for the sample, so that any differences would be subtle. The first equiaxed nucleation occurred at an apparent undercooling of 0.6 K less than the equivalent event during microgravity. During primary equiaxed solidification, as expected, no buoyant grain motion was observed during microgravity, compared to modest grain rotation and reorientation observed during terrestrial-based solidification. However, when the cooling rate was increased from -0.05 K/s to -1.0 K/s during the latter stages of solidification, in both 1g and micro-g environments, some grain movement was apparent due to liquid feeding and mechanical impingement of neighbouring grains.

  20. Function of actin cytoskeleton in gravisensing during spaceflight

    NASA Astrophysics Data System (ADS)

    Hughes-Fulford, M.

    Since astronauts and cosmonauts have significant bone loss in microgravity, we hypothesized that there would be physiological changes in cellular bone growth in the absence of gravity. Our first experiments on STS-56 demonstrated that quiescent osteoblasts activated by sera under microgravity conditions had a significant 60% reduction in growth (p<0.001) and a paradoxical 2 fold increase in release of autocrine PGE2 when compared to ground controls. In addition, there was a significant collapse of the actin cytoskeleton and loss of focal adhesions after 4 days of growth in microgravity. Other investigators have made similar observations of cytoskeletal modifications in microgravity. Later studies in Biorack on STS-76, 81 and 84 confirmed the increased release of PGE2 and collapse of the cytoskeleton in cells grown in microgravity conditions, however flown cells under 1g conditions maintained normal actin cytoskeleton and fibronectin matrix. We do not think that the changes seen in the cytoskeleton are due to alterations in fibronectin message or protein synthesis since no differences were found between microgravity, 1g or ground conditions. The nuclear structure was noticeably different in the flown 0g cells with elongation of the nucleus after 24 hours of microgravity, this alteration in nuclear structure was not seen in the 1g flown or ground control cells. Further examination of total RNA in the cells showed no significant changes between the three gravity conditions suggesting specific not general physiological changes in microgravity. When osteoblast mRNA was analyzed, the immediate early genes, c-myc and cox-2 and the autocrine growth factor FGFb were down-regulated in microgravity. The inability of the 0g grown osteoblast to respond to sera activation suggests that there is a major alteration in anabolic signal transduction under microgravity conditions, most probably through the growth factor receptors and/or the associated kinase pathways. It is still unclear whether these changes in signal transduction are related to the alterations in the cytoskeleton under microgravity conditions and this possibility is under study.

  1. Suppression of Antigen-Specific Lymphocyte Activation in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cooper, David; Pride, Michael W.; Brown, Eric L.; Risin, Diana; Pellis, Neal R.

    1999-01-01

    Various parameters of immune suppression are observed in astronauts during and after spaceflight, and in isolated immune cells in true and simulated microgravity. Specifically, polyclonal activation of T cells is severely suppressed in true and simulated microgravity. These recent findings with various polyclonal activators suggests a suppression of oligoclonal lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction (MLR), as a model for a primary immune response; a tetanus toxoid (TT) response and a B. burgdorferi (Bb) response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.

  2. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    NASA Technical Reports Server (NTRS)

    Sastry, Jagannadha K.

    1998-01-01

    We conducted a series of experiments using mouse immune-precursor cells, and observed that bioreactor culturing results in the loss of antigen-specific cytotoxic T lymphocyte (CTL) function. The reason for the abrogation of CTL function is microgravity conditions in the bioreactor, but not the antigen per se or its MHC restriction. Similarly, we observed that allostimulation of human PBMC in the bioreactor, but not in the T flask, resulted in the blunting of both allo-CTL function and the NK activity, indicating that the microgravity-associated functional defects are not unique to the mouse system. These results provide further confirmation to the microgravity-associated immune dysfunction, and constitute ground-based confirmatory data for those related to space-travel.

  3. Crucible de-wetting during bridgman growth of semiconductors in microgravity

    NASA Astrophysics Data System (ADS)

    Duffar, T.; Paret-Harter, I.; Dusserre, P.

    1990-02-01

    After a literature survey and observations made during a space experiment, the phenomenon of crucible de-wetting by the crystal during Bridgman solidification in microgravity is explained by a model involving composite wetting of the crucible by the liquid, crystal angle of growth and interface advance. A ground experiment was run in order to validate this model which also explains why a crystal detaches from the crucible surface when a sand blasted crucible is used in Bridgman solidification on the ground. It is shown that de-wetting leads to enhanced quality of the crystal produced and that capillary-induced convection effects are not to be feared in this case. Consequently, it is highly advisable to use rough-surface crucibles for crystal growth both in microgravity and on the ground.

  4. Numerical simulation of aerobic exercise as a countermeasure in human spaceflight

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    The objective of this work is to analyse the efficacy of long-term regular exercise on relevant cardiovascular parameters when the human body is also exposed to microgravity. Computer simulations are an important tool which may be used to predict and analyse these possible effects, and compare them with in-flight experiments. We based our study on a electrical-like computer model (NELME: Numerical Evaluation of Long-term Microgravity Effects) which was developed in our laboratory and validated with the available data, focusing on the cardiovascu-lar parameters affected by changes in gravity exposure. NELME is based on an electrical-like control system model of the physiological changes, that are known to take place when grav-ity changes are applied. The computer implementation has a modular architecture. Hence, different output parameters, potential effects, organs and countermeasures can be easily imple-mented and evaluated. We added to the previous cardiovascular system module a perturbation module to evaluate the effect of regular exercise on the output parameters previously studied. Therefore, we simulated a well-known countermeasure with different protocols of exercising, as a pattern of input electric-like perturbations on the basic module. Different scenarios have been numerically simulated for both men and women, in different patterns of microgravity, reduced gravity and time exposure. Also EVAs were simulated as perturbations to the system. Results show slight differences in gender, with more risk reduction for women than for men after following an aerobic exercise pattern during a simulated mission. Also, risk reduction of a cardiovascular malfunction is evaluated, with a ceiling effect found in all scenarios. A turning point in vascular resistance for a long-term exposure of microgravity below 0.4g has been found of particular interest. In conclusion, we show that computer simulations are a valuable tool to analyse different effects of long-term microgravity exposure on the human body. Potential countermeasures such as physical exercise can also be evaluated as an induced perturbation into the system. Relevant results are compatible with existing data, and are of valuable interest as an assessment of the efficacy of aerobic exercise as a countermeasure in future missions to Mars.

  5. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab

    NASA Astrophysics Data System (ADS)

    Shen, Yunze; Guo, Shuangsheng; Zhao, Pisheng; Wang, Longji; Wang, Xiaoxia; Li, Jian; Bian, Qiang

    2018-03-01

    Lettuce was grown in a space vegetable cultivation facility onboard the Tiangong Ⅱ Spacelab during October 18 to November 15, 2016, in order to testify the key cultivating technology in CELSS under spaceflight microgravity condition. Potable water was used for irrigation of rooting substrate and the SRF (slowly released fertilizer) offered mineral nutrition for plant growth. Water content and electric conductivity in rooting substrate were measured based on FDR(frequency domain reflectometry) principle applied first in spaceflight. Lettuce germinated with comparative growth vigor as the ground control, showing that the plants appeared to be not stressed by the spaceflight environment. Under microgravity, lettuce grew taller and showed deeper green color than the ground control. In addition, the phototropism of the on-orbit plants was more remarkable. The nearly 30-d spaceflight test verified the seed fixation technology and water& nutrition management technology, which manifests the feasibility of FDR being used for measuring moisture content and electric conductivity in rooting zone under microgravity. Furthermore, the edibility of the space-grown vegetable was proved, providing theoretical support for astronaut to consume the space vegetable in future manned spaceflight.

  6. Effect of Simulated Microgravity on the Activity of Regulatory Enzymes of Glycolysis and Gluconeogenesis in Mice Liver

    NASA Astrophysics Data System (ADS)

    Ramirez, Joaquin; Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Ramesh, Govindarajan T.; Sharma, S. Chidananda

    2014-02-01

    Gravity supports all the life activities present on earth. Microgravity environments have effect on the biological functions and physiological status of an individual. The present study was undertaken to investigate the effect of simulated microgravity on important regulatory enzymes of carbohydrate metabolism in liver using HLS mice model. Following hind limb unloading of mice for 11 days the animal's average body weights were found to be not different, while the liver weights were decreased and found to be significantly different ( p < 0.05) from control mice. Further, in liver the specific activity of hexokinase enzyme was reduced ( p < 0.02) and the phosphoenolpyruvate carboxykinase activity was significantly increased in simulated microgravity subjected mice compared to control ( p < 0.003). Immunoblot analysis show decreased phosphofructokinase-2 activity in HLS mice compared to control. Liver lactate dehydrogenase activity significantly reduced in simulated microgravity subjected mice ( p < 0.005). Thus in our study the rodents have adapted to simulated microgravity conditions, with decreased glycolysis and increased gluconeogenesis in liver and reciprocally regulated.

  7. Computational Material Processing in Microgravity

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.

  8. Microbial Cellulose Assembly in Microgravity

    NASA Technical Reports Server (NTRS)

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  9. Evaluation of upper body muscle activity during cardiopulmonary resuscitation performance in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Waye, A. B.; Krygiel, R. G.; Susin, T. B.; Baptista, R.; Rehnberg, L.; Heidner, G. S.; de Campos, F.; Falcão, F. P.; Russomano, T.

    2013-09-01

    Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2-4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts-Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40-50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.

  10. Fish Inner Ear Otolith Growth Under Real Microgravity (Spaceflight) and Clinorotation

    NASA Astrophysics Data System (ADS)

    Anken, Ralf; Brungs, Sonja; Grimm, Dennis; Knie, Miriam; Hilbig, Reinhard

    2016-06-01

    Using late larval stages of cichlid fish ( Oreochromis mossambicus) we have shown earlier that the biomineralization of otoliths is adjusted towards gravity by means of a neurally guided feedback loop. Centrifuge experiments, e.g., revealed that increased gravity slows down otolith growth. Microgravity thus should yield an opposite effect, i.e., larger than normal otoliths. Consequently, late larval cichlids (stage 14, vestibular system operational) were subjected to real microgravity during the 12 days FOTON-M3 spaceflight mission (OMEGAHAB-hardware). Controls were kept at 1 g on ground within an identical hardware. Animals of another batch were subsequently clinorotated within a submersed fast-rotating clinostat with one axis of rotation (2d-clinostat), a device regarded to simulate microgravity. Temperature and light conditions were provided in analogy to the spaceflight experiment. Controls were maintained at 1 g within the same aquarium. After all experiments, animals had reached late stage 21 (fish can swim freely). Maintenance under real microgravity during spaceflight resulted in significantly larger than normal otoliths (both lapilli and sagittae, involved in sensing gravity and the hearing process, respectively). This result is fully in line with an earlier spaceflight study in the course of which otoliths from late-staged swordtails Xiphophorus helleri were analyzed. Clinorotation resulted in larger than 1 g sagittae. However, no effect on lapilli was obtained. Possibly, an effect was present but too light to be measurable. Overall, spaceflight obviously induces an adaptation of otolith growth, whereas clinorotation does not fully mimic conditions of microgravity regarding late larval cichlids.

  11. The NASA Microgravity Fluid Physics Program: Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.

    2003-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.

  12. A Dust Aggregation and Concentration System (DACS) for the Microgravity Space Environment

    NASA Technical Reports Server (NTRS)

    Giovane, F. J.; Blum, J.

    1999-01-01

    The Dust Aggregation and Concentration System, DACS, Project is an international effort intended to complete the preliminary definition of a system for suspending and concentrating dust particles in a microgravity environment for extended periods of time. The DACS design concept is based on extensive ground, drop tower, and parabolic flight tests. During the present proposed work, the DACS design will be completed, and a Science Requirements Document generated. At the end of the proposed 2 year project, DACS will be positioned to enter the advanced definition phase.

  13. JAXA protein crystallization in space: ongoing improvements for growing high-quality crystals

    PubMed Central

    Takahashi, Sachiko; Ohta, Kazunori; Furubayashi, Naoki; Yan, Bin; Koga, Misako; Wada, Yoshio; Yamada, Mitsugu; Inaka, Koji; Tanaka, Hiroaki; Miyoshi, Hiroshi; Kobayashi, Tomoyuki; Kamigaichi, Shigeki

    2013-01-01

    The Japan Aerospace Exploration Agency (JAXA) started a high-quality protein crystal growth project, now called JAXA PCG, on the International Space Station (ISS) in 2002. Using the counter-diffusion technique, 14 sessions of experiments have been performed as of 2012 with 580 proteins crystallized in total. Over the course of these experiments, a user-friendly interface framework for high accessibility has been constructed and crystallization techniques improved; devices to maximize the use of the microgravity environment have been designed, resulting in some high-resolution crystal growth. If crystallization conditions were carefully fixed in ground-based experiments, high-quality protein crystals grew in microgravity in many experiments on the ISS, especially when a highly homogeneous protein sample and a viscous crystallization solution were employed. In this article, the current status of JAXA PCG is discussed, and a rational approach to high-quality protein crystal growth in microgravity based on numerical analyses is explained. PMID:24121350

  14. Impact of simulated microgravity on the normal developmental time line of an animal-bacteria symbiosis

    PubMed Central

    Foster, Jamie S.; Khodadad, Christina L. M.; Ahrendt, Steven R.; Parrish, Mirina L.

    2013-01-01

    The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome. PMID:23439280

  15. Gravity independence of seed-to-seed cycling in Brassica rapa

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.; Kuang, A.; Xiao, Y.; Stout, S. C.; Bingham, G. E.; Briarty, L. G.; Levenskikh, M. A.; Sychev, V. N.; Podolski, I. G.

    2000-01-01

    Growth of higher plants in the microgravity environment of orbital platforms has been problematic. Plants typically developed more slowly in space and often failed at the reproductive phase. Short-duration experiments on the Space Shuttle showed that early stages in the reproductive process could occur normally in microgravity, so we sought a long-duration opportunity to test gravity's role throughout the complete life cycle. During a 122-d opportunity on the Mir space station, full life cycles were completed in microgravity with Brassica rapa L. in a series of three experiments in the Svet greenhouse. Plant material was preserved in space by chemical fixation, freezing, and drying, and then compared to material preserved in the same way during a high-fidelity ground control. At sampling times 13 d after planting, plants on Mir were the same size and had the same number of flower buds as ground control plants. Following hand-pollination of the flowers by the astronaut, siliques formed. In microgravity, siliques ripened basipetally and contained smaller seeds with less than 20% of the cotyledon cells found in the seeds harvested from the ground control. Cytochemical localization of storage reserves in the mature embryos showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in the ground control seeds. While these successful seed-to-seed cycles show that gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  16. Experimental study on line-of-sight (LOS) attitude control using control moment gyros under micro-gravity environment

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Hiraiwa, Kana; Yoshimura, Yasuhiro

    2018-02-01

    This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity environment generated by parabolic flight. The W-Z parameters are used to describe the spacecraft attitude. In order to stabilize the current LOS to the target LOS, backstepping-based feedback control is considered using the W-Z parameters. Numerical simulations and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed control methods.

  17. Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure.

    PubMed

    Cheng, Xingqun; Xu, Xin; Chen, Jing; Zhou, Xuedong; Cheng, Lei; Li, Mingyun; Li, Jiyao; Wang, Renke; Jia, Wenxiang; Li, Yu-Qing

    2014-10-01

    Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.

  19. Effect of microgravity and hypergravity on embryo axis alignment during postencystment embryogenesis in Artemia franciscana (Anostraca)

    NASA Technical Reports Server (NTRS)

    Rosowski, J. R.; Gouthro, M. A.; Schmidt, K. K.; Klement, B. J.; Spooner, B. S.

    1995-01-01

    Cysts of brine shrimp attached with a liquid adhesive to 12-mm diameter glass coverslips in a syringe-type fluid processing apparatus were flown aboard the NASA space shuttle Discovery, flight STS-60, from 3-11 February 1994, and were allowed to undergo postencystment embryogenesis and to hatch in microgravity. The shuttle flight and the ground-based control coverslips with attached cysts were parallel to the earth's surface during incubation in salt water. Based on the position of the cyst shell crack in the attached cyst population, the ground-control nauplii emerged mostly upward. On the shuttle in microgravity, although our method of detection of orientation would not reveal emergence toward the coverslip, the ratio of the position of the cyst shell crack in the population after hatching best fit the predicted values of a random direction for nauplii emergence. Centrifugation on earth was then used to create hypergravity forces of up to 73 g during postencystment embryogenesis and hatching. The upward orientation of emerging nauplii showed a high degree of correlation (r(2) =98.8%) with a linear relationship to the log of g, with 78.2% of the total hatching upward at 1 g and 91.0% hatching upward at 73 g.

  20. Increased beta-adrenergic responsiveness induced by 14 days exposure to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Polet, J. L.; Engelke, K. A.; Hoffler, G. W.; Lane, L. D.; Blomqvist, C. G.

    1995-01-01

    Increased sensitivity of end-organ responses to neuroendocrine stimuli as a result of prolonged exposure to the relative inactivity of microgravity has recently been hypothesized. This notion is based on the inverse relationship between circulating norepinephrine and beta-adrenoreceptor sensitivity. The beta-adrenoreceptor activity is reduced in individuals who have elevated plasma norepinephrine as a result of regular exposure to upright posture and physical exercise. In contrast, adrenoreceptor hypersensitivity has been reported in patients with dysautonomias in which circulating catecholamines are absent or reduced. Taken together, these studies and the observation that circulating plasma norepinephrine has been reduced during spaceflight and in groundbased simulations of microgravity prompt the suggestion that adrenoreceptor hypersensitivity may be a consequence of the adaptation to spaceflight. We conducted an experiment designed to measure cardiovascular responses to adrenoreceptor agonists in human subjects before and after prolonged exposure to 6 deg head-down tilt (HDT) to test the hypothesis that adaptation to microgravity increases adrenoreceptor responsiveness, and that this adaptation is associated with reduced levels of circulating norepinephrine.

  1. The SCD - Stem Cell Differentiation ESA Project: Preparatory Work for the Spaceflight Mission

    NASA Astrophysics Data System (ADS)

    Versari, Silvia; Barenghi, Livia; van Loon, Jack; Bradamante, Silvia

    2016-04-01

    Due to spaceflight, astronauts experience serious, weightlessness-induced bone loss because of an unbalanced process of bone remodeling that involves bone marrow mesenchymal stem cells (BMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of BMSCs. Previous researches indicated that human BMSCs cultured in simulated microgravity (sim-μg) alter their proliferation and differentiation. The spaceflight opportunities for biomedical experiments are rare and suffer from a number of operative constraints that could bias the validity of the experiment itself, but remain a unique opportunity to confirm and explain the effects due to microgravity, that are only partially activated/detectable in simulated conditions. For this reason, we carefully prepared the SCD - STEM CELLS DIFFERENTIATION experiment, selected by the European Space Agency (ESA) and now on the International Space Station (ISS). Here we present the preparatory studies performed on ground to adapt the project to the spaceflight constraints in terms of culture conditions, fixation and storage of human BMSCs in space aiming at satisfying the biological requirements mandatory to retrieve suitable samples for post-flight analyses. We expect to understand better the molecular mechanisms governing human BMSC growth and differentiation hoping to outline new countermeasures against astronaut bone loss.

  2. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  3. Combustion Of Interacting Droplet Arrays In Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.

    2003-01-01

    Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.

  4. Zero-Boil-Off Tank (ZBOT) Experiment: Ground-Based Validation of Self-Pressurization and Pressure Control Two-Phase CFD Model

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga

    2017-01-01

    Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.

  5. Pituitary oxytocin and vasopressin content of rats flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Keil, L.; Evans, J.; Grindeland, R.; Krasnov, I.

    1992-01-01

    Preliminary studies in rats (COSMOS 1887) suggested that levels of posterior pituitary hormones were reduced by exposure to spaceflight. To confirm these preliminary findings, pituitary tissue from rats flown for 14 days on Cosmos 2044 is obtained. Posterior pituitary content of oxytocin (OT) and vasopressin (VP) were measured in these tissues as well as those from ground-based controls. The synchronous control group had feeding and lighting schedules synchronized to those in the spacecraft and were maintained in flight-type cages. Another group was housed in vivarium cages; a third group was tail suspended (T), a method used to simulate microgravity. Flight rats showed an average reduction of 27 in pituitary OT and VP compared with the three control groups. When hormone content was expressed in terms of pituitary protein (microg hormone/mg protein), the average decrease in OT and VP for the flight animals ranged from 20 to 33 percent compared with the various control groups. Reduced levels of pituitary OT and VP were similar to preliminary measurements from the Cosmos 1887 mission and appear to result from exposure to spaceflight. These data suggest that changes in the rate of hormone secretion or synthesis may have occurred during exposure to microgravity.

  6. Suspension cell culture in microgravity and development of a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1987-01-01

    NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.

  7. The Effect of Simulated Microgravity Environment of RWV Bioreactors on Surface Reactions and Adsorption of Serum Proteins on Bone-bioactive Microcarriers

    NASA Technical Reports Server (NTRS)

    Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.

    2003-01-01

    Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.

  8. Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Roark, Walt; Cockrell, Dave; Coker, Cindy; Baugher, Charles

    2001-01-01

    The Microgravity Science Glovebox (MSG) is a versatile research facility designed to permit the flexibility of crew manipulated investigations on the International Space Station (ISS). The MSG configuration has been planned around the concept of an experimental workstation where a variety of experiments can be installed and operated in a fashion very similar to their operation in a ground-based laboratory. The approach has been to provide a large working volume with a significant set of power, data and imaging resources, all enclosed, but accessible by the crew through sealed glove ports. This arrangement allows the advantage of interactive experimentation without unduly compromising the experiment design with restrictions imposed by protective and containment challenges that normally arise in manned space-flight laboratories. In addition, the data and imaging resources allow cooperative monitoring of experiment progress between the crew and ground-based scientists. As ISS utilization evolves, the MSG is scheduled to become a major pathfinder for developing and exploiting the scientific advantages of truly enabling the coupling of experimentation in space with an evaluative response from the crew and investigators.

  9. Progress toward studies of bubble-geometry Bose-Einstein condensates in microgravity with a ground-based prototype of NASA CAL

    NASA Astrophysics Data System (ADS)

    Lundblad, Nathan; Jarvis, Thomas; Paseltiner, Daniel; Lannert, Courtney

    2016-05-01

    We have proposed using NASA's Cold Atom Laboratory (CAL, launching to the International Space Station in 2017) to generate bubble-geometry Bose-Einstein condensates through radiofrequency dressing of an atom-chip magnetic trap. This geometry has not been truly realized terrestrially due to the perturbing influence of gravity, making it an ideal candidate for microgravity investigation aboard CAL. We report progress in the construction of a functional prototype of the orbital BEC apparatus: a compact atom-chip machine loaded by a 2D+MOT source, conventional 3D MOT, quadrupole trap, and transfer coil. We also present preliminary modeling of the dressed trap uniformity, which will crucially inform the geometric closure of the BEC shell surface as atom number, bubble radius, and bubble aspect ratio are varied. Finally, we discuss plans for experimental sequences to be run aboard CAL guided by intuition from ground-based prototype operation. JPL 1502172.

  10. In vitro modeling of human tibial strains during exercise in micro-gravity

    NASA Technical Reports Server (NTRS)

    Peterman, M. M.; Hamel, A. J.; Cavanagh, P. R.; Piazza, S. J.; Sharkey, N. A.

    2001-01-01

    Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al., Journal of Bone Mineral Research 11 (1996) S323) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation; yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R(2)>0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as the greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.

  11. Microgravity

    NASA Image and Video Library

    2004-04-15

    Researcher Dr. Yi Li developed a technique to manipulate certain characteristics of plant growth such as anit-senescence. For example, the tobacco leaf was clipped from a transgenic plant (right), and a wildtype plant (left). During ground-based laboratory studies, both leaves were left in a darkened area for 4 months. When retrieved, the wildtype plant leaf was dried-out and the transgenic leaf remained fresh and green. A variation of this technology that involves manipulating plant hormones has been conducted in space-based studies on tomato plants through BioServe Space Technologies. The transport and distribution of auxin, an important plant hormone has shown to be influenced by microgravity, which could lead to improving the quality of fruits and vegetables grown on Earth.

  12. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  13. Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.

    2002-01-01

    The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.

  14. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  15. Gravity in mammalian organ development: differentiation of cultured lung and pancreas rudiments during spaceflight

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Hardman, P.; Paulsen, A.

    1994-01-01

    Organ culture of embryonic mouse lung and pancreas rudiments has been used to investigate development and differentiation, and to assess the effects of microgravity on culture differentiation, during orbital spaceflight of the shuttle Endeavour (mission STS-54). Lung rudiments continue to grow and branch during spaceflight, an initial result that should allow future detailed study of lung morphogenesis in microgravity. Cultured embryonic pancreas undergoes characteristic exocrine acinar tissue and endocrine islet tissue differentiation during spaceflight, and in ground controls. The rudiments developing in the microgravity environment of spaceflight appear to grow larger than their ground counterparts, and they may have differentiated more rapidly than controls, as judged by exocrine zymogen granule presence.

  16. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  17. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  18. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    NASA Astrophysics Data System (ADS)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.

  19. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.

    PubMed

    Stout, S C; Porterfield, D M; Briarty, L G; Kuang, A; Musgrave, M E

    2001-03-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur in response to root zone oxygen deprivation. These results indicate that root zone hypoxia is a persistent challenge in spaceflight plant growth experiments and may be caused by microgravity-induced changes in fluid and gas distribution.

  20. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity

    NASA Technical Reports Server (NTRS)

    Stout, S. C.; Porterfield, D. M.; Briarty, L. G.; Kuang, A.; Musgrave, M. E.

    2001-01-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur in response to root zone oxygen deprivation. These results indicate that root zone hypoxia is a persistent challenge in spaceflight plant growth experiments and may be caused by microgravity-induced changes in fluid and gas distribution.

  1. Microgravity

    NASA Image and Video Library

    2004-04-15

    Comparison of ground-based (left) and Skylab (right) electron beam welds in pure tantalum (Ta) (10X magnification). Residual votices left behind in the ground-based sample after the electron beam passed were frozen into the grain structure. These occurred because of the rapid cooling rate at the high temperature. Although the thermal characteristics and electron beam travel speeds were comparable for the skylab sample, the residual vortices were erased in the grain structure. This may have been due to the fact that final grain size of the solidified material was smaller in the Skylab sample compared to the ground-based sample. The Skylab sample was processed in the M512 Materials Processing Facility (MPF) during Skylab SL-2 Mission. Principal Investigator was Richard Poorman.

  2. Design and Testing of a Lyophilizer for Water Recovery from Solid Waste

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Fisher, John; Flynn, Michael

    2005-01-01

    Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.

  3. Collagen in organ development

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1992-01-01

    It is important to know whether microgravity will adversely affect developmental processes. Collagens are macromolecular structural components of the extracellular matrix (ECM) which may be altered by perturbations in gravity. Interstitial collagens have been shown to be necessary for normal growth and morphogenesis in some embryonic organs, and in the mouse salivary gland, the biosynthetic pattern of these molecules changes during development. Determination of the effects of microgravity on epithelial organ development must be preceded by crucial ground-based studies. These will define control of normal synthesis, secretion, and deposition of ECM macromolecules and the relationship of these processes to morphogenesis.

  4. Change in Mouse Bone Turnover in Response to Microgravity on RR-1

    NASA Technical Reports Server (NTRS)

    Cheng-Campbell, Margareth A.; Blaber, Elizabeth A.; Almeida, Eduardo A. C.

    2016-01-01

    Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.

  5. Changes in Mouse Bone Turnover in Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Cheng-Campbell, M.; Blaber, E.; Almeida, E.

    2016-01-01

    Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1a/p21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23% decrease in bone fraction (p=0.005) and 11.91% decrease in bone thickness (p=0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl/6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n=10) and vivarium controls (n=10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.

  6. Design and testing of a unique randomized gravity, continuous flow bioreactor

    NASA Technical Reports Server (NTRS)

    Lassiter, Carroll B.

    1993-01-01

    A rotating, null gravity simulator, or Couette bioreactor was successfully used for the culture of mammalian cells in a simulated microgravity environment. Two limited studies using Lipomyces starkeyi and Streptomyces clavuligerus were also conducted under conditions of simulated weightlessness. Although these studies with microorganisms showed promising preliminary results, oxygen limitations presented significant limitations in studying the biochemical and cultural characteristics of these cell types. Microbial cell systems such as bacteria and yeast promise significant potential as investigative models to study the effects of microgravity on membrane transport, as well as substrate induction of inactive enzyme systems. Additionally, the smaller size of the microorganisms should further reduce the gravity induced oscillatory particle motion and thereby improve the microgravity simulation on earth. Focus is on the unique conceptual design, and subsequent development of a rotating bioreactor that is compatible with the culture and investigation of microgravity effects on microbial systems. The new reactor design will allow testing of highly aerobic cell types under simulated microgravity conditions. The described reactor affords a mechanism for investigating the long term effects of reduced gravity on cellular respiration, membrane transfer, ion exchange, and substrate conversions. It offers the capability of dynamically altering nutrients, oxygenation, pH, carbon dioxide, and substrate concentration without disturbing the microgravity simulation, or Couette flow, of the reactor. All progeny of the original cell inoculum may be acclimated to the simulated microgravity in the absence of a substrate or nutrient. The reactor has the promise of allowing scientists to probe the long term effects of weightlessness on cell interactions in plants, bacteria, yeast, and fungi. The reactor is designed to have a flow field growth chamber with uniform shear stress, yet transfer high concentrations of oxygen into the culture medium. The system described allows for continuous, on line sampling for production of product without disturbing fluid and particle dynamics in the reaction chamber. It provides for the introduction of substrate, or control substances after cell adaptation to simulated microgravity has been accomplished. The reactor system provides for the nondisruptive, continuous flow replacement of nutrient and removal of product. On line monitoring and control of growth conditions such as pH and nutrient status are provided. A rotating distribution valve allows cessation of growth chamber rotation, thereby preserving the simulated microgravity conditions over longer periods of time.

  7. Microgravity

    NASA Image and Video Library

    1997-01-01

    Image taken during a ground based investigation of a methane-fueled laminar flame surrounded by co-flowing air. The flame was enclosed in a chamber, and the pressure reduced. As the pressure decreased, the velocity of the flow increased, causing the flame to change from a stabilized condition to near blow-out or extinction.

  8. Gravitropism and Autotropism in Cress Roots

    NASA Technical Reports Server (NTRS)

    Sack, Fred D.

    1998-01-01

    The overall purpose of this experiment was to study how cress roots respond to a withdrawal of a gravity stimulus i.e. when and how much the roots straighten (autotropism) after curving (gravitropism). This question was studied both in extensive ground-based research and in microgravity on BioRack.

  9. Effect of microgravity simulation using 3D clinostat on cavendish banana (Musa acuminata AAA Group) ripening process

    NASA Astrophysics Data System (ADS)

    Dwivany, Fenny Martha; Esyanti, Rizkita R.; Prapaisie, Adeline; Puspa Kirana, Listya; Latief, Chunaeni; Ginaldi, Ari

    2016-11-01

    The objective of the research was to determine the effect of microgravity simulation by 3D clinostat on Cavendish banana (Musa acuminata AAA group) ripening process. In this study, physical, physiological changes as well as genes expression were analysed. The result showed that in microgravity simulation condition ripening process in banana was delayed and the MaACOl, MaACSl and MaACS5 gene expression were affected.

  10. Analysis of biological effects in human endothelial cells after stimulated microgravity

    NASA Astrophysics Data System (ADS)

    Min, Zhang; Sun, Yeqing; Xu, Dan

    Space environment is characterized by strong radiation, ultra-high vacuum, weak magnetic field and microgravity. Among them, microgravity (10-4-10-6g) in space is different from gravity (1g) on earth, possibly causing visual disorders, muscle alterations, bone loss and dysfunction of cardiovascular systems. To study about microgravity environment, the most advanced rotary cell culture system (RCCS-1) was used to do stimulated microgravity (SMG) experiments in the ground. Up to now, most of studies focus on the biological effects under stimulated microgravity, but it is less known about the cellular response after stimulated microgravity. In the present study, we explored the subsequent effects of stimulated microgravity on human endothelial cells (HUVEC-C) after these cells were cultured on RCCS-1 for 48 hours. We co-cultured HUVEC-C cells with Hillex-microcarriers in 60-mm culture dishes for 24h, followed by transferring them to RCCS-1 so that cells remain to be the state of SMG. In parallel, HUVEC-C cells were co-cultured with microcarriers in the ground condition. We found that stimulated microgravity induced cytoskeleton remodeling, cell cycle G2/M arrest and cellular senescence, consistent with previous reports. To study the subsequent effects of stimulated microgravity, we make cells detach from microcarriers and observed various effects including cell growth, cell adhesion, cytoskeleton, cell cycle, apoptosis and senescence. The results showed that those cells undergoing stimulated microgravity appeared obvious growth inhibition, a transition from the decrease in cell adhesion ability and cytoskeleton remodeling within 24h to induction of apoptosis and senescence-like phenotype in the later time with slight changes in cell cycle. Analysis of protein expression in western blot demonstrated that apoptosis-related protein PTEN was up-regulated on the time-dependent pattern after stimulated microgravity, indicating that PTEN-PI3K-Akt pathway might play an important role in apoptosis. Our study suggests that stimulated microgravity has the subsequent biological effects of HUVEC-C, providing new insight of understanding the global effect of microgravity on cellular response in human endothelial cells.

  11. Changes in gravitational force induce alterations in gene expression that can be monitored in the live, developing zebrafish heart

    NASA Astrophysics Data System (ADS)

    Gillette-Ferguson, I.; Ferguson, D. G.; Poss, K. D.; Moorman, S. J.

    2003-10-01

    Little is known about the effect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart. Zebrafish embryos, at the 18-20 somite-stage, were exposed to simulated-microgravity for 24 hours. The intensity of GFP fluorescence associated with the heart was then determined using fluorescence microscopy. Our measurements indicated that simulated-microgravity induced a 23.9% increase in GFP-associated fluorescence in the heart. In contrast, the caudal notochord showed a 17.5% increase and the embryo as a whole showed only an 8.5% increase in GFP-associated fluorescence. This suggests that there are specific effects on the heart causing the more dramatic increase. These studies indicate that microgravity can influence gene expression and demonstrate the usefulness of this in vivo model of "reporter-gene" expression for studying the effects of microgravity.

  12. Microgravity effects on water flow and distribution in unsaturated porous media: Analyses of flight experiments

    NASA Astrophysics Data System (ADS)

    Jones, Scott B.; Or, Dani

    1999-04-01

    Plants grown in porous media are part of a bioregenerative life support system designed for long-duration space missions. Reduced gravity conditions of orbiting spacecraft (microgravity) alter several aspects of liquid flow and distribution within partially saturated porous media. The objectives of this study were to evaluate the suitability of conventional capillary flow theory in simulating water distribution in porous media measured in a microgravity environment. Data from experiments aboard the Russian space station Mir and a U.S. space shuttle were simulated by elimination of the gravitational term from the Richards equation. Qualitative comparisons with media hydraulic parameters measured on Earth suggest narrower pore size distributions and inactive or nonparticipating large pores in microgravity. Evidence of accentuated hysteresis, altered soil-water characteristic, and reduced unsaturated hydraulic conductivity from microgravity simulations may be attributable to a number of proposed secondary mechanisms. These are likely spawned by enhanced and modified paths of interfacial flows and an altered force ratio of capillary to body forces in microgravity.

  13. Development of the dynamic motion simulator of 3D micro-gravity with a combined passive/active suspension system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi

    1994-01-01

    The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.

  14. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  15. Spectral indices of cardiovascular adaptations to short-term simulated microgravity exposure

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Evans, J. M.; Berk, M.; Grande, K. J.; Charles, J. B.; Knapp, C. F.

    1995-01-01

    We investigated the effects of exposure to microgravity on the baseline autonomic balance in cardiovascular regulation using spectral analysis of cardiovascular variables measured during supine rest. Heart rate, arterial pressure, radial flow, thoracic fluid impedance and central venous pressure were recorded from nine volunteers before and after simulated microgravity, produced by 20 hours of 6 degrees head down bedrest plus furosemide. Spectral powers increased after simulated microgravity in the low frequency region (centered at about 0.03 Hz) in arterial pressure, heart rate and radial flow, and decreased in the respiratory frequency region (centered at about 0.25 Hz) in heart rate. Reduced heart rate power in the respiratory frequency region indicates reduced parasympathetic influence on the heart. A concurrent increase in the low frequency power in arterial pressure, heart rate, and radial flow indicates increased sympathetic influence. These results suggest that the baseline autonomic balance in cardiovascular regulation is shifted towards increased sympathetic and decreased parasympathetic influence after exposure to short-term simulated microgravity.

  16. Physical Vapor Transport of Mercurous Chloride Crystals: Design of a Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Duval, W, M. B.; Singh, N. B.; Glicksman, M. E.

    1997-01-01

    Flow field characteristics predicted from a computational model show that the dynamical state of the flow, for practical crystal growth conditions of mercurous chloride, can range from steady to unsteady. Evidence that the flow field can be strongly dominated by convection for ground-based conditions is provided by the prediction of asymmetric velocity profiles bv the model which show reasonable agreement with laser Doppler velocimetry experiments in both magnitude and planform. Unsteady flow is shown to be correlated with a degradation of crystal quality as quantified by light scattering pattern measurements, A microgravity experiment is designed to show that an experiment performed with parameters which yield an unsteady flow becomes steady (diffusive-advective) in a microgravity environment of 10(exp -3) g(sub 0) as predicted by the model, and hence yields crystals with optimal quality.

  17. Cardiovascular adaptation to spaceflight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Watenpaugh, D. E.

    1996-01-01

    This article reviews recent flight and ground-based studies of cardiovascular adaptation to spaceflight. Prominent features of microgravity exposure include loss of gravitational pressures, relatively low venous pressures, headward fluid shifts, plasma volume loss, and postflight orthostatic intolerance and reduced exercise capacity. Many of these short-term responses to microgravity extend themselves during long-duration microgravity exposure and may be explained by altered pressures (blood and tissue) and fluid balance in local tissues nourished by the cardiovascular system. In this regard, it is particularly noteworthy that tissues of the lower body (e.g., foot) are well adapted to local hypertension on Earth, whereas tissues of the upper body (e.g., head) are not as well adapted to increase in local blood pressure. For these and other reasons, countermeasures for long-duration flight should include reestablishment of higher, Earth-like blood pressures in the lower body.

  18. Growth and photosynthesis of Japanese flowering cherry under simulated microgravity conditions

    NASA Technical Reports Server (NTRS)

    Sugano, Mami; Ino, Yoshio; Nakamura, Teruko

    2002-01-01

    The photosynthetic rate, the leaf characteristics related to photosynthesis, such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata, the leaf area and the dry weight in seedlings of Japanese flowering cherry grown under normal gravity and simulated microgravity conditions were examined. No significant differences were found in the photosynthetic rates between the two conditions. Moreover, leaf characteristics such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata in the seedlings grown under the simulated microgravity condition were not affected. However, the photosynthetic product of the whole seedling under the simulated microgravity condition increased compared with the control due to its leaf area increase. The results suggest that dynamic gravitational stimulus controls the partitioning of the products of photosynthesis.

  19. Microgravity Investigation of Crew Reactions in 0-G (MICRO-G)

    NASA Technical Reports Server (NTRS)

    Newman, Dava; Coleman, Charles; Metaxas, Dimitri

    2004-01-01

    There is a need for a human factors, technology-based bioastronautics research effort to develop an integrated system that reduces risk and provides scientific knowledge of astronaut-induced loads and motions during long-duration missions on the International Space Station (ISS), which will lead to appropriate countermeasures. The primary objectives of the Microgravity Investigation of Crew Reactions in 0-G (MICRO-GI research effort are to quantify astronaut adaptation and movement as well as to model motor strategies for differing gravity environments. The overall goal of this research program is to improve astronaut performance and efficiency through the use of rigorous quantitative dynamic analysis, simulation and experimentation. The MICRO-G research effort provides a modular, kinetic and kinematic capability for the ISS. The collection and evaluation of kinematics (whole-body motion) and dynamics (reacting forces and torques) of astronauts within the ISS will allow for quantification of human motion and performance in weightlessness, gathering fundamental human factors information for design, scientific investigation in the field of dynamics and motor control, technological assessment of microgravity disturbances, and the design of miniaturized, real-time space systems. The proposed research effort builds on a strong foundation of successful microgravity experiments, namely, the EDLS (Enhanced Dynamics Load Sensors) flown aboard the Russian Mir space station (19961998) and the DLS (Dynamic Load Sensors) flown on Space Shuttle Mission STS-62. In addition, previously funded NASA ground-based research into sensor technology development and development of algorithms to produce three-dimensional (3-0) kinematics from video images have come to fruition and these efforts culminate in the proposed collaborative MICRO-G flight experiment. The required technology and hardware capitalize on previous sensor design, fabrication, and testing and can be flight qualified for a fraction of the cost of an initial spaceflight experiment. Four dynamic load sensors/restraints are envisioned for measurement of astronaut forces and torques. Two standard ISS video cameras record typical astronaut operations and prescribed IVA motions for 3-D kinematics. Forces and kinematics are combined for dynamic analysis of astronaut motion, exploiting the results of the detailed dynamic modeling effort for the quantitative verification of astronaut IVA performance, induced-loads, and adaptive control strategies for crewmember whole-body motion in microgravity. This comprehensive effort, provides an enhanced human factors approach based on physics-based modeling to identify adaptive performance during long-duration spaceflight, which is critically important for astronaut training as well as providing a spaceflight database to drive countermeasure design.

  20. Interfacial Surgery Determination of Succinonitrile and Succinonitrile-Acetone Alloy Using Surface Light Scattering Spectrometer

    NASA Technical Reports Server (NTRS)

    Tin, Padetha; Frate, David T.; deGroh, Henry C., III

    2001-01-01

    The objectives of this ground based research is to measure the liquid/vapor interfacial surface energies of succinonitrile (SCN) and alloys of succinonitrile and acetone using Surface Light Scattering Spectrometer. Liquid/vapor interfacial energy measurements will be made near and above the melting point and are the primary goal of this proposal. A measurement of viscosity also results from the Surface Light Scattering technique employed. Interfacial free energies between the phases enters into many analysis of phase transformation and flow, including nucleation, dendritic growth, interface stability, Ostwald ripening, and Marangoni flow. Succirionitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Succinonitrile has been and is being used extensively in NASAs Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE) due to Glicksman and coworkers and subsequently in several theoretical and numerical studies of dendritic growth. Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. We believe the data sought through this proposal have significant basic physical property data value and thus the work proposed will provide needed data in support of NASAs Microgravity program research.

  1. Adaptations of young adult rat cortical bone to 14 days of spaceflight

    NASA Technical Reports Server (NTRS)

    Vailas, A. C.; Vanderby, R., Jr.; Martinez, D. A.; Ashman, R. B.; Ulm, M. J.; Grindeland, R. E.; Durnova, G. N.; Kaplanskii, A.

    1992-01-01

    To determine whether mature humeral cortical bone would be modified significantly by an acute exposure to weightlessness, adult rats (110 days old) were subjected to 14 days of microgravity on the COSMOS 2044 biosatellite. There were no significant changes in peak force, stiffness, energy to failure, and displacement at failure in the flight rats compared with ground-based controls. Concentrations and contents of hydroxyproline, calcium, and mature stable hydroxylysylpyridinoline and lysylpyridinoline collagen cross-links remained unchanged after spaceflight. Bone lengths, cortical and endosteal areas, and regionl thicknesses showed no significant differences between flight animals and ground controls. The findings suggest that responsiveness of cortical bone to microgravity is less pronounced in adult rats than in previous spaceflight experiments in which young growing animals were used. It is hypothesized that 14 days of spaceflight may not be sufficient to impact the biochemical and biomechanical properties of cortical bone in the mature rat skeleton.

  2. Increase of larger-sized islets in C57/black mice during the long-term space flight.

    NASA Astrophysics Data System (ADS)

    Proshchina, Alexandra; Krivova, Yulia

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. Metabolic studies during simulated microgravity and true microgravity in flight have shown changes in blood glucose and in insulin and glucagon concentrations. It was suggested that endocrine pancreas undergoes subclinical diabetogenic changes such as alterations in insulin secretion, insulin sensitivity, glucose tolerance in microgravity conditions. In this study, we analyzed pancreata of the C57 black mice in order to estimate the effects of the long-term space flight. 5 mice, which were flown on the “Bion-M1” satellite for 30 days, were served for this study (flight group). Five animals were used as the vivarium ground control and five mice as the delayed synchronous ground control. The mice from synchronous control were put into container, similar to that one of the flight group for 30 days. Interestingly, the mean body weight of researched animals was higher in the flight group than in two control groups. Body weight in synchronous ground control group was higher than in vivarium control. From each mouse, the splenic part of the pancreas was removed and immediately fixed in 4% formaldehyde. Samples were embedded in paraffin, and 10 mcm serial sections were prepared. Double immunohistochemical staining with anti-insulin(Sigma,USA) and anti-glucagon (Thermo Fisher Scientific, USA) antibodies were performed. Signals were visualized using the MultiVision Polymer Detection System (Thermo Fisher Scientific, USA). Stained sections were photographed, using a 10 x objective and morphometrical parameters were examined. The size of each islet in ten non-overlapping observation fields in pancreatic sections of each mouse was measured using Image J software and analyzed. A software statistical package was used (Statistica 6.0, Statsoft Inc., Tusla, USA). A nonparametric tests (Kruskal -Wallis and Mann-Whitney tests) were used, because the islets number in the examined groups are of unequal size. The P-value was considered significant if less than 0.05. The islets in all three groups have a typical for murine pancreas architecture. The insulin-containing cells occupied the central position in pancreatic islets and the glucagon-containing cells were localized at the periphery. Histomorphometric analyses revealed significant increase of islets size in flight group compared with vivarium ground control. Moreover, the islets in group of the delayed synchronous ground control were significant larger then in group of vivarium control. No significant differences were found in islet size between flight and delayed synchronous ground control groups, but analyses indicated the increase of larger-sized islets in mice of flight group compared with synchronous control. Thus the mean islets size correlated with the body weight. The literature data indicates that similar changes are also observed in mice under conditions of an increased demand for insulin such as pregnancy, obesity, diabetes etc. According to the literature data, the researches of activity of pancreas have shown the increase of pancreatic hormones (insulin and C-peptide) in blood of astronauts in the early period after completion of space flights of various durations. In our study, the increase of islets size occurred not only in mice from flight group, but also in synchronous ground control. For this group, the live conditions imitated those of flight group without the factors of spaceflight such as microgravity. Therefore, we supposed that the hypokinesia play an important role in alteration of islets size. Thus, our data confirms the hypothesis of association microgravity and its experimental paradigms with manifestations similar to those of physical inactivity and diabetes.

  3. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  4. Microgravity Effects on Transendothelial Transport

    NASA Technical Reports Server (NTRS)

    Tarbell, John M.

    1996-01-01

    The Endothelial Cell (EC) layer which lines blood vessels from the aorta to the capillaries provides the principal barrier to transport of water and solutes between blood and underlying tissue. Endothelial cells are continuously exposed to the mechanical shearing force (shear stress) and normal force (pressure) imposed by flowing blood on their surface, and they are adapted to this mechanical environment. When the cardiovascular system is exposed to microgravity, the mechanical environmental of endothelial cells is perturbed drastically and the transport properties of EC layers are altered in response. We have shown recently that step changes in shear stress have an acute effect on transport properties of EC layers in a cell culture model, and several recent studies in different vessels of live animals have confirmed the shear-dependent transport properties of the endothelium. We hypothesize that alterations in mechanical forces induced by microgravity and their resultant influence on transendothelial transport of water and solutes are, in large measure, responsible for the characteristic cephalad fluid shift observed in humans experiencing microgravity. To study the effects of altered mechanical forces on transendothelial transport and to test pharmacologic agents as counter measures to microgravity induced fluid shifts we have proposed ground-based studies using well defined cell culture models.

  5. Neural and neuroendocrine adaptations to microgravity and ground-based models of microgravity.

    PubMed

    Edgerton, V R; Roy, R R; Recktenwald, M R; Hodgson, J A; Grindeland, R E; Kozlovskaya, I

    2000-12-01

    The functional properties of the motor system of humans and non-human primates are readily responsive to microgravity. There is a growing body of evidence that significant adaptations occur in the spinal cord and muscle in response to prolonged exposure to microgravity. Further, there is evidence that the processing of sensory information from the periphery, particularly that input associated with the function of muscle tendons and joints, is significantly altered as a result of prolonged microgravity. We present evidence that the fundamental neural mechanisms that control the relative activity of the motor pools of a slow and fast extensor muscle is changed such that a slow, postural muscle is less readily activated during locomotion following spaceflight. Another type of change observed in mammals exposed to spaceflight relates to the release of a growth factor, called bioassayable growth hormone, which is thought to be released from the pituitary. When an individual generates a series of isometric plantarflexor contractions, the plasma levels of bioassayable growth hormone increases significantly. This response is suppressed after several days of continuous bedrest or spaceflight. These results suggest a unique neuroendocrine control system and demonstrate its sensitivity to chronic patterns of proprioceptive input associated with load-bearing locomotion.

  6. Real-time studies on microalgae under microgravity

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Li, G. B.; Li, D. H.; Liu, Y. D.; Song, L. R.; Tong, G. H.; Liu, X. M.; Cheng, E. T.

    2004-07-01

    Using remote sensing technique, we investigated real-time Nostoc sphaeroides Kütz (Cyanobacterium) in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. The experiments had 1 g centrifuges in space for control and ground control group experiments were also carried out in the same equipments and under the same controlled condition. The data about the population growth of Nostoc sp. of experiments and temperature changes of system were got from spacecraft every minute. From the data, we can find that population growth of Nostoc sp. in microgravity group was higher than that of other groups in space or on ground, even though both the control 1 g group in space and 1 g group on ground indicated same increasing characteristics in experiments. The growth rate of 1.4 g group (centrifuged group on ground) was also promoted during experiment. The temperature changes of systems are also affected by gravity and light. Some aspects about those differences were discussed. From the discussion of these results during experiment, it can be found that gravity is the major factor to lead to these changes.

  7. Growth of Streptomyces Hygroscopicus in Rotating-Wall Bioreactor Under Simulated Microgravity Inhibits Rapamycin Production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  8. Growth of Steptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Mishra, S. K.; Demain, A. L.

    2000-01-01

    Growth of Streptomyces hygroscopicus under conditions of simulated microgravity in a rotating-wall bioreactor resulted in a pellet form of growth, lowered dry cell weight, and inhibition of rapamycin production. With the addition of Teflon beads to the bioreactor, growth became much less pelleted, dry cell weight increased but rapamycin production was still markedly inhibited. Growth under simulated microgravity favored extracellular production of rapamycin, in contrast to a greater percentage of cell-bound rapamycin observed under normal gravity conditions.

  9. Rewetting of monogroove heat pipe in Space Station radiators

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1993-01-01

    The annual status report for the experimental work in progress regarding the rewetting of a monogroove heat pipe in a microgravity environment is presented. This report is divided into two sections. The first details improvements in the experimental apparatus, and the second reports the ground based and theoretical results.

  10. Vitamin K status in spaceflight and ground-based models of spaceflight

    USDA-ARS?s Scientific Manuscript database

    Bone loss is a well-documented change during and after long-duration spaceflight. Many types of countermeasures to bone loss have been proposed, including vitamin K supplementation. The objective of this series of studies was to measure change in vitamin K status in response to microgravity under a ...

  11. Microgravity Induces Changes in Microsome-Associated Proteins of Arabidopsis Seedlings Grown on Board the International Space Station

    PubMed Central

    Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    The “GENARA A” experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected. PMID:24618597

  12. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station.

    PubMed

    Mazars, Christian; Brière, Christian; Grat, Sabine; Pichereaux, Carole; Rossignol, Michel; Pereda-Loth, Veronica; Eche, Brigitte; Boucheron-Dubuisson, Elodie; Le Disquet, Isabel; Medina, Francisco Javier; Graziana, Annick; Carnero-Diaz, Eugénie

    2014-01-01

    The "GENARA A" experiment was designed to monitor global changes in the proteome of membranes of Arabidopsis thaliana seedlings subjected to microgravity on board the International Space Station (ISS). For this purpose, 12-day-old seedlings were grown either in space, in the European Modular Cultivation System (EMCS) under microgravity or on a 1 g centrifuge, or on the ground. Proteins associated to membranes were selectively extracted from microsomes and identified and quantified through LC-MS-MS using a label-free method. Among the 1484 proteins identified and quantified in the 3 conditions mentioned above, 80 membrane-associated proteins were significantly more abundant in seedlings grown under microgravity in space than under 1 g (space and ground) and 69 were less abundant. Clustering of these proteins according to their predicted function indicates that proteins associated to auxin metabolism and trafficking were depleted in the microsomal fraction in µg space conditions, whereas proteins associated to stress responses, defence and metabolism were more abundant in µg than in 1 g indicating that microgravity is perceived by plants as a stressful environment. These results clearly indicate that a global membrane proteomics approach gives a snapshot of the cell status and its signaling activity in response to microgravity and highlight the major processes affected.

  13. Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC.

    PubMed

    Mellor, Liliana F; Steward, Andrew J; Nordberg, Rachel C; Taylor, Michael A; Loboa, Elizabeth G

    2017-04-01

    Cartilage tissue engineering is a growing field due to the lack of regenerative capacity of native tissue. The use of bioreactors for cartilage tissue engineering is common, but the results are controversial. Some studies suggest that microgravity bioreactors are ideal for chondrogenesis, while others show that mimicking hydrostatic pressure is crucial for cartilage formation. A parallel study comparing the effects of loading and unloading on chondrogenesis has not been performed. The goal of this study was to evaluate chondrogenesis of human adipose-derived stem cells (hASC) under two different mechanical stimuli relative to static culture: microgravity and cyclic hydrostatic pressure (CHP). Pellets of hASC were cultured for 14 d under simulated microgravity using a rotating wall vessel bioreactor or under CHP (7.5 MPa, 1 Hz, 4 h · d-1) using a hydrostatic pressure vessel. We found that CHP increased mRNA expression of Aggrecan, Sox9, and Collagen II, caused a threefold increase in sulfated glycosaminoglycan production, and resulted in stronger vimentin staining intensity and organization relative to microgravity. In addition, Wnt-signaling patterns were altered in a manner that suggests that simulated microgravity decreases chondrogenic differentiation when compared to CHP. Our goal was to compare chondrogenic differentiation of hASC using a microgravity bioreactor and a hydrostatic pressure vessel, two commonly used bioreactors in cartilage tissue engineering. Our results indicate that CHP promotes hASC chondrogenesis and that microgravity may inhibit hASC chondrogenesis. Our findings further suggest that cartilage formation and regeneration might be compromised in space due to the lack of mechanical loading.Mellor LF, Steward AJ, Nordberg RC, Taylor MA, Loboa EG. Comparison of simulated microgravity and hydrostatic pressure for chondrogenesis of hASC. Aerosp Med Hum Perform. 2017; 88(4):377-384.

  14. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2000-01-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  15. Human Modeling Evaluations in Microgravity Workstation and Restraint Development

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Chmielewski, Cynthia; Wheaton, Aneice; Hancock, Lorraine; Beierle, Jason; Bond, Robert L. (Technical Monitor)

    1999-01-01

    The International Space Station (ISS) will provide long-term missions which will enable the astronauts to live and work, as well as, conduct research in a microgravity environment. The dominant factor in space affecting the crew is "weightlessness" which creates a challenge for establishing workstation microgravity design requirements. The crewmembers will work at various workstations such as Human Research Facility (HRF), Microgravity Sciences Glovebox (MSG) and Life Sciences Glovebox (LSG). Since the crew will spend considerable amount of time at these workstations, it is critical that ergonomic design requirements are integral part of design and development effort. In order to achieve this goal, the Space Human Factors Laboratory in the Johnson Space Center Flight Crew Support Division has been tasked to conduct integrated evaluations of workstations and associated crew restraints. Thus, a two-phase approach was used: 1) ground and microgravity evaluations of the physical dimensions and layout of the workstation components, and 2) human modeling analyses of the user interface. Computer-based human modeling evaluations were an important part of the approach throughout the design and development process. Human modeling during the conceptual design phase included crew reach and accessibility of individual equipment, as well as, crew restraint needs. During later design phases, human modeling has been used in conjunction with ground reviews and microgravity evaluations of the mock-ups in order to verify the human factors requirements. (Specific examples will be discussed.) This two-phase approach was the most efficient method to determine ergonomic design characteristics for workstations and restraints. The real-time evaluations provided a hands-on implementation in a microgravity environment. On the other hand, only a limited number of participants could be tested. The human modeling evaluations provided a more detailed analysis of the setup. The issues identified during the real-time testing were investigated in the human modeling analyses. In some cases, the opposite was true where preliminary human modeling analyses provided the design engineers with critical issues that needed to be addressed further. This extensive approach provided an effective means to fully address ergonomic design considerations and accurately identify critical issues.

  16. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  17. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  18. Microgravity

    NASA Image and Video Library

    2001-01-24

    An artist's concept of the Primary Atomic Clock Reference System (PARCS) plarned to fly on the International Space Station (ISS). PARCS will make even more accurate atomic time available to everyone, from physicists testing Einstein's Theory of Relativity, to hikers using the Global Positioning System to find their way. In ground-based atomic clocks, lasers are used to cool and nearly stop atoms of cesium whose vibrations are used as the time base. The microgravity of space will allow the atoms to be suspended in the clock rather than circulated in an atomic fountain, as required on Earth. PARCS is being developed by the Jet Propulsion Laboratory with principal investigators at the National Institutes of Standards and Technology and the University of Colorado, Boulder. See also No. 0103191

  19. A reproducible radiation delivery method for unanesthetized rodents during periods of hind limb unloading

    NASA Astrophysics Data System (ADS)

    Walb, M. C.; Black, P. J.; Payne, V. S.; Munley, M. T.; Willey, J. S.

    2015-07-01

    Exposure to the spaceflight environment has long been known to be a health challenge concerning many body systems. Both microgravity and/or ionizing radiation can cause acute and chronic effects in multiple body systems. The hind limb unloaded (HLU) rodent model is a ground-based analogue for microgravity that can be used to simulate and study the combined biologic effects of reduced loading with spaceflight radiation exposure. However, studies delivering radiation to rodents during periods of HLU are rare. Herein we report the development of an irradiation protocol using a clinical linear accelerator that can be used with hind limb unloaded, unanesthetized rodents that is capable of being performed at most academic medical centers. A 30.5 cm × 30.5 cm × 40.6 cm rectangular chamber was constructed out of polymethyl methacrylate (PMMA) sheets (0.64 cm thickness). Five centimeters of water-equivalent material were placed outside of two PMMA inserts on either side of the rodent that permitted the desired radiation dose buildup (electronic equilibrium) and helped to achieve a flatter dose profile. Perforated aluminum strips permitted the suspension dowel to be placed at varying heights depending on the rodent size. Radiation was delivered using a medical linear accelerator at an accelerating potential of 10 MV. A calibrated PTW Farmer ionization chamber, wrapped in appropriately thick tissue-equivalent bolus material to simulate the volume of the rodent, was used to verify a uniform dose distribution at various regions of the chamber. The dosimetry measurements confirmed variances typically within 3%, with maximum variance <10% indicated through optically stimulated luminescent dosimeter (OSLD) measurements, thus delivering reliable spaceflight-relevant total body doses and ensuring a uniform dose regardless of its location within the chamber. Due to the relative abundance of LINACs at academic medical centers and the reliability of their dosimetry properties, this method may find great utility in the implementation of future ground-based studies that examine the combined spaceflight challenges of reduced loading and radiation while using the HLU rodent model.

  20. ATF4 is involved in the regulation of simulated microgravity induced integrated stress response

    NASA Astrophysics Data System (ADS)

    Li, Yingxian; Li, Qi; Wang, Xiaogang; Sun, Qiao; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Objective: Many important metabolic and signaling pathways have been identified as being affected by microgravity, thereby altering cellular functions such as proliferation, differentiation, maturation and cell survival. It has been demonstrated that microgravity could induce all kinds of stress response such as endoplasmic reticulum stress and oxidative stress et al. ATF4 belongs to the ATF/CREB family of basic region leucine zipper transcription factors. ATF4 is induced by stress signals including anoxia/hypoxia, ER stress, amino acid deprivation and oxidative stress. ATF4 regulates the expression of genes involved in oxidative stress, amino acid synthesis, differentiation, metastasis and angiogenesis. The aim of this study was to examine the changes of ATF4 under microgravity, and to investigate the role of ATF4 in microgravity induced stress. MethodsMEF cells were cultured in clinostat to simulate microgravity. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression under simulated microgravity in MEF cells. ROS levels were measured with the use of the fluorescent signal H2DCF-DA. GFP-XBP1 stably transfected cell lines was used to detect the extent of ER stress under microgravity by the intensity of GFP. Dual luciferase reporter assay was used to detect the activity of ATF4. Co-immunoprecipitation was performed to analyze protein interaction. Results: ATF4 protein levels in MEF cells increased under simulated microgravity. However, ATF4 mRNA levels were consistent. XBP1 splicing can be induced due to ER stress caused by simulated microgravity. At the same time, ROS levels were also increased. Increased ATF4 could promote the expression of CHOP, which is responsible for cell apoptosis. ATF4 also play an important role in cellular anti-oxidant stress. In ATF4 -/-MEF cells, the ROS levels after H2O2 treatment were obviously higher than that of wild type cells. HDAC4 was identified to be ATF4 interaction protein. Under microgravity, HDAC4 levels were also increased. However, the increased HDAC4 could suppress the activity of ATF4. Conclusions: These results indicated that microgravity could induce both ER stress and oxidative stress. ATF4 is involved in the regulation of these processes by activating both pro-apoptosis and pro-survival signaling. The dual role of ATF4 could be coordinated by increased HDAC4 levels under microgravity through their direct interaction.

  1. Effects of simulated microgravity on arterial nitric oxide synthase and nitrate and nitrite content

    NASA Technical Reports Server (NTRS)

    Ma, Jin; Kahwaji, Chadi I.; Ni, Zhenmin; Vaziri, Nosratola D.; Purdy, Ralph E.

    2003-01-01

    The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.

  2. The role of pyridoxine as a countermeasure for in-flight loss of lean body mass

    NASA Technical Reports Server (NTRS)

    Gilbert, Joyce A.

    1992-01-01

    Ground based and in flight research has shown that humans, under conditions of microgravity, sustain a loss of lean body tissue (protein) and changes in several biological processes including, reductions in red blood cell mass, and neurotransmitters. The maintenance of muscle mass, the major component of lean body mass, is required to meet the needs of space station EVAs. Central to the biosynthesis of amino acids, the building blocks of protein, is pyridoxine (vitamin B-6). Muscle mass integrity requires the availability of vitamin B-6 for protein metabolism and neurotransmitter synthesis. Furthermore, the formation of red blood cells require pyridoxine as a cofactor in the biosynthesis of hemoglobin, a protein that carries oxygen to tissues. In its active form, pyridoxal-5'-phosphate (PLP), vitamin B-6 serves as a link between amino acid and carbohydrate metabolism through intermediates of glycolysis and the tricarboxylic acid cycle. In addition to its role in energy metabolism, PLP is involved in the biosynthesis of hemoglobin and neurotransmitter which are necessary for neurological functions. Alterations in pyridoxine metabolism may affect countermeasures designed to overcome some of these biochemical changes. The focus of this research is to determine the effects of microgravity on the metabolic utilization of vitamin B-6, integrating nutrition as an integral component of the countermeasure (exercise) to maintain lean body mass and muscle strength. The objectives are: 1) to determine whether microgravity effects the metabolic utilization of pyridoxine and 2) to quantitate changes in B-6 vitamer distribution in tissue and excreta relative to loss of lean body tissue. The rationale for this study encompasses the unique challenge to control biochemical mechanisms effected during space travel and the significance of pyridoxine to maintain and counter muscle integrity for EVA activities. This experiment will begin to elucidate the importance of biochemical interactions between micronutrients and the homeostasis condition of biological processes in the space environment. To address this research topic a simulated microgravity model has been developed. The experiment uses radioisotopically labelled pyridoxine administered as an oral dose to rats which are maintained by tail suspension to simulate a microgravity environment. At the termination of the study, liver, muscle, blood and urine are collected and analyzed by reverse phase high pressure liquid chromatography to determine the quantity and distribution of the B-6 vitamers in tissue and excreta relative to lean body tissue loss. Earlier studies, published by this investigator, have shown that differences in vitamer distribution among samples from experimental versus control subjects indicate changes in metabolic utilization and storage of vitamin B-6.

  3. Research on ignition and flame spread of solid materials in Japan

    NASA Technical Reports Server (NTRS)

    Ito, Kenichi; Fujita, Osamu

    1995-01-01

    Fire safety is one of the main concerns for crewed missions such as the space station. Materials used in spacecraft may burn even if metalic. There are severe restrictions on the materials used in spacecraft from the view of fire safety. However, such restrictions or safety standards are usually determined based on experimental results under normal gravity, despite large differences between the phenomena under normal and microgravity. To evaluate the appropriateness of materials for use in space, large amount of microgravity fire-safety combustion data is urgently needed. Solid material combustion under microgravity, such as ignition and flame spread, is a relatively new research field in Japan. As the other reports in this workshop describe, most of microgravity combustion research in Japan is droplet combustion as well as some research on gas phase combustion. Since JAMIC, the Japan Microgravity Center, (which offers 10 seconds microgravity time) opened in 1992, microgravity combustion research is robust, and many drop tests relating to solid combustion (paper combustion, cotton string combustion, metal combustion with Aluminium or Magnesium) have been performed. These tests proved that the 10 seconds of microgravity time at JAMIC is useful for solid combustion research. Some experiments were performed before JAMIC opened. For example, latticed paper was burned under microgravity by using a 50 m drop tower to simulate porous material combustion under microgravity. A 50 m tower provides only 2 seconds microgravity time however, and it was not long enough to investigate the solid combustion phenomena.

  4. Fecundity of Quail in Spacelab Microgravity

    NASA Technical Reports Server (NTRS)

    Wentworth, B. C.; Wentworth, A. L.

    1996-01-01

    Flight experiments in which fertilized Japanese quail eggs were allowed to develop to various ages in space, and the results of the following laboratory tests are described. Laboratory-based experiments concerned with the embryonic development of Japanese quail in gravity using simulated vibrations and G-force are reported. Effect of turning and ambient temperature at various days of incubation on the development of Japanese quail, and method to feed and water adult and newly hatched Japanese quail in microgravity using a gelatin-based diet as a solid water supply, are also described.

  5. Technologies For Maintaining Animals In Space: Lighting, Air Quality, Noise, Food And Water

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Skidmore, M. G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1995-01-01

    In the terrestrial environment multiple time cues exist. Zeitgebers have been identified and studied for their ability to convey temporal information to various physiological systems. In the microgravity experiment it is necessary to define time cues within the flight hardware prior to flight. During flight if changes in the Circadian System (e.g., mean, phase angle, period) occur this would indicate that the gravity vector is important relative to biological timing. This presentation is concerned with the environmental parameter: to support rodent experiments in microgravity. The Animal Enclosure Module (AEM) provides solid food bars and water via lixits and ad libitum. Flight animals (Sprague-Dawley rats, 60 - 300g) when compared to ground controls show similar growth (mean growth per day g, plus or minus SD; flight 5.4 plus or minus 2.0, ground 5.9 plus or minus 2.1). Current AEMs use incandescent lighting (approx. 5 Lux). Light emitting diode (LED) arrays are being developed that provide a similar light environment as cool-white fluorescent sources (40 Lux). In ground based tests (12L:12D), these arrays show normal circadian entrainment (Tau = 24.0) with respect to the behavioral responses, measured (drinking, eating, gross locomotor activity). A newly developed ultra high efficiency filter system can entrap all feces, urine and odors from 6 rats for 24 days. Maximum sound level exposure limits (per octave band 22 Hz - 179 kHz) have been established. The AEM will effectively support animal experiments in microgravity.

  6. Technologies for Maintaining Animals in Space: Lighting, Air Quality, Noise, Food and Water

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Skidmore, M. G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1995-01-01

    In the terrestrial environment multiple time cues exist. Zeitgebers have been identified and studied for their ability to convey temporal information to various physiological systems, In the microgravity experiment it is necessary to define time cues within the flight hardware prior to flight. During flight if changes in the Circadian System (e.g., mean, phase angle, period) occur this would indicate that the gravity vector is important relative to biological timing. This presentation is concerned with the environmental parameters to support rodent experiments in microgravity. The Animal Enclosure Module (AEM) provides solid food bars and water via lixits ad libitum. Flight animals (Sprague-Dawley rats, 60 - 300g) when compared to ground controls show similar growth (mean growth per day, g +/- SD; flight 5.4 +/- 2.0, ground 5.9 +/- 2.1). Current AEMs use incandescent lighting (approx. 5 Lux). Light emitting diode (LED) arrays are being developed that provide a similar light environment as cool-white fluorescent sources (40 Lux). In ground based tests (12L:12D), these arrays show normal circadian entrainment (Tau = 24.0) with respect to the behavioral responses. measured (drinking, eating, gross locomotor activity). A newly developed ultra high efficiency filter system can entrap all feces, urine and odors from 6 rats for 24 days. Maximum sound level exposure limits (per octave band 22 Hz - 179 kHz) have been established. The AEM will effectively support animal experiments in microgravity.

  7. Suppressed PHA Activation of T Lymphocytes in Simulated Microgravity Is Restored by Direct Activation of Protein Kinase C with Phorbol Ester

    NASA Technical Reports Server (NTRS)

    Cooper, David; Pellis, Neal R.

    1997-01-01

    Various aspects of spaceflight, including microgravity, cosmic radiation, and physiological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. We utilized clinostatic RWV bioreactors that simulate aspects of microgravity to analyze the response of human PBMC to polyclonal activation. PHA responsiveness in the RWV was almost completely diminished. IL-2 and IFN-gamma secretion was reduced whereas IL- 1 beta and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions did not suppress PHA activation. Furthermore, increasing cell density and, therefore, cell-cell interactions in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, submitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  8. STS-55 Pilot Henricks with baroreflex collar in SL-D2 module onboard OV-102

    NASA Image and Video Library

    1993-05-06

    STS055-233-019 (26 April-6 May 1993) --- Terence T. (Tom) Henricks, STS-55 pilot, wears a special collar for a space adaptation experiment in the science module onboard the Earth-orbiting Space Shuttle Columbia. The Baroreflex (BA) experiment is designed to investigate the theory that light-headedness and a reduction in blood pressures upon standing after landing may arise because the normal reflex system regulating blood pressure behaves differently after having adapted to a microgravity environment. These space-based measurements of the baroreflex will be compared to ground measurements to determine if microgravity affects the reflex.

  9. Microgravity science and applications bibliography, 1989 revision

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes, or with ground based activities that provide supported research. It encompasses literature published but not cited in the 1988 Revision and that literature which has been published in the past year. Subdivisions of the Bibliography include: electronic materials, metals, alloys, and composites; fluids, interfaces, and transport; glasses and ceramics; biotechnology; combustion science; experimental technology, facilities, and instrumentation. Also included are publications from the European, Soviet, and Japanese programs.

  10. Microgravity science and applications bibliography, 1990 revision

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low gravity environment to elucidate and control various processes, or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1989 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include: electronic materials; metals, alloys, and composites; fluids, interfaces, and transport; glasses and ceramics; biotechnology; combustion science; and experimental technology, facilities, and instrumentation. Also included are publications from the European, Soviet, and Japanese programs.

  11. Microgravity science and applications bibliography, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments using a low gravity environment to elucidate and control various processes, or with ground based activities that provide supporting research. It encompasses literature published but not cited in the 1990 Revision and that literature which has been published in the past year. Subdivisions of the bibliography include: Electronic materials; Metals, alloys, and composites; Fluids, interfaces and transport; Glasses and ceramics; Biotechnology; Combustion science; and Experimental technology, instrumentation, and facilities. Also included are a limited number of publications from the European, Soviet, and Japanese programs.

  12. Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2000-01-01

    Mixing of two fluids generated by steady and particularly g-jitter acceleration is fundamental towards the understanding of transport phenomena in a microgravity environment. We propose to carry out flight and ground-based experiments to quantify flow fields due to g-jitter type of accelerations using Stereo Imaging Velocimetry (SIV), and measure the concentration field using laser fluorescence. The understanding of the effects of g-jitter on transport phenomena is of great practical interest to the microgravity community and impacts the design of experiments for the Space Shuttle as well as the International Space Station. The aim of our proposed research is to provide quantitative data to the community on the effects of g-jitter on flow fields due to mixing induced by buoyancy forces. The fundamental phenomenon of mixing occurs in a broad range of materials processing encompassing the growth of opto-electronic materials and semiconductors, (by directional freezing and physical vapor transport), to solution and protein crystal growth. In materials processing of these systems, crystal homogeneity, which is affected by the solutal field distribution, is one of the major issues. The understanding of fluid mixing driven by buoyancy forces, besides its importance as a topic in fundamental science, can contribute towards the understanding of how solutal fields behave under various body forces. The body forces of interest are steady acceleration and g-jitter acceleration as in a Space Shuttle environment or the International Space Station. Since control of the body force is important, the flight experiment will be carried out on a tunable microgravity vibration isolation mount, which will permit us to precisely input the desired forcing function to simulate a range of body forces. To that end, we propose to design a flight experiment that can only be carried out under microgravity conditions to fully exploit the effects of various body forces on fluid mixing. Recent flight experiments, by the P.I. through collaboration with the Canadian Space Agency (STS-85, August 1997), aimed at determining the stability of the interface between two miscible liquids inside an enclosure show that a long liquid column (5 cm) under microgravity isolation conditions can be stable, i.e. the interface remains sharp and vertical over a short time scale; thus transport occurs by molecular mass diffusion. On the other hand, when the two liquids were excited from a controlled vibration source (Microgravity Vibration Isolation Mount) two to four mode large amplitude quasi-stationary waves were observed. The data was limited to CCD recording of the dynamics of the interface between the two fluids. We propose to carry out flight experiments to quantify the dynamics of the flow field using Stereo Imaging Velocimetry and measure the concentration field using laser fluorescence. The results will serve as a basis to understand effects of g-jitter on transport phenomena, in this case mass diffusion. As the measurement of the kinematics of the flow field will shed light on the instability mechanism. The research will allow measurement of the flow field in microgravity environment to prove two hypotheses: (1) Maxwell's hypothesis: finite convection always exists in diffusing systems, and (2) Quasi-stationary waves inside a bounded enclosure in a microgravity environment is generated by Kelvin-Helmholtz instability; resonance of the interface which produces incipient mixing is due to Rayleigh-Taylor instability. The first hypothesis can be used as a benchmark experiment to illustrate diffusive mixing. The second hypothesis will lead to the understanding of g-jitter effects on buoyancy driven flow fields which occur in many situations involving materials processing, and other basic fluid physics phenomena. In addition, the second hypothesis will also provide insight in how Rayleigh-Taylor and Kelvin-Helmholtz instabilities propagate concentration fronts during mixing. Measurement of the flow field using SIV is important because it is the flow field which causes instability at the interface between the two fluids. Mixing driven by buoyancy induced flow fields will be addressed both experimentally and computationally. The experimental effort will address the kinematics of mixing: stretching, transport and chaos. Quantification of the mechanisms of mixing will consists of measuring the flow field using the SIV system at Glenn and capturing the dynamics of the interface, to measure mass transport, using a CCD camera. These experiments will be carried out within the framework of Earth's gravity and g-jitter microgravity acceleration as in a Space Shuttle environment or the International Space Station. The g-jitter will be induced and controlled using a tunable vibration isolation platform to isolate against vibration as well as input periodic and random vibration to the system. The parametric range of the microgravity experiment will be extended from the experiments on STS-85 to investigate higher mode quasi-stationary waves (8 to 12), as well as resonance regions which leads to chaos and turbulence. Ground-based experiments will focus on effects of vibration on stably stratified fluid layers in order to scale for possible scenarios in a microgravity environment. These vibrations will be subjected perpendicular to the concentration field on the ground since the parallel case can only be carried out in a microgravity environment. The concept of dynamical similarity will be applied to tune the experiments as closely as possible to a Space Shuttle environment or the International Space Station. The computational effort will take advantage of the Computational Laboratory at Glenn to corroborate the experimental findings with predictions of the dynamics of the flow field using the codes FLUENT (finite difference based) and FIDAP (finite element based). We will investigate two important cases, single-fluid model to address dilute systems with negligible jump in viscosity and the more general two-fluid model which accounts for finite jump in viscosity. Apart from its microgravity relevance, this experiment is well suited to study dynamics in nonlinear systems.

  13. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Guisinger, M. M.; Kiss, J. Z.

    1999-01-01

    The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.

  14. Bioprocessing in Microgravity: Applications of Continuous Flow Electrophoresis to Rat Anterior Pituitary Particles

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Salada, T.; Cenci, R.; Krishnan, K.; Seaman, G. V. F.; Snyder, R.; Matsumiya, H.; Nagaoka, S.

    1996-01-01

    In this report we describe the results of a continuous flow electrophoresis (CFE) experiment done on STS-65 in which we tested the idea that intracellular growth hormone (GH) particles contained in a cell lysate prepared from cultured rat anterior pituitary cells in microgravity might have different electrophoretic mobilities from those in a synchronous ground control cell lysate. Collectively, the results suggested that CFE processing in microgravity was better than on earth; more samples could be processed at a time (6 x) and more variant forms of GH molecules could be resolved as well. We had also hoped to carry out a pituitary cell CFE experiment, but failure of the hardware required that the actual cell electrophoresis trials be done on earth shortly after Shuttle landing. Data from these experiments showed that space-flown cells possessed a higher electrophoretic mobility than ground control cells, thereby offering evidence for the idea that exposure of cultured cells to microgravity can change their net surface charge-density especially when the cells are fed. Collectively, the results from this pituitary cell experiment document the advantage of using coupled cell culture and CFE techniques in the microgravity environment.

  15. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  16. NASA Microgravity Science and Applications Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.

  17. Use of microgravity to improve the efficiency and power output of Nd-doped laser glasses

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.

    1992-01-01

    The objectives of this research are to: (1) obtain further evidence and understand the science for the reported improvement in chemical homogeneity in glasses prepared in microgravity; and (2) study the feasibility of improving the optical and fluorescence properties, particularly, the limit for Nd(+3) concentration quenching and threshold energy for laser action for laser glasses prepared in microgravity. Attention was directed to ground based investigation whose primary purpose was to determine the suitability and conditions for processing these laser glasses in space. This report describes that the scientific and technical information required for planning flight experiments for these glasses have been obtained, and the preparation for handling and analyzing post flight samples have also been taken. Instruments required for measuring the fluorescence properties of interest have been constructed. The optical and fluorescence properties for the glasses have been measured and made available for comparative property analysis.

  18. Ultrasound in space

    NASA Technical Reports Server (NTRS)

    Martin, David S.; South, Donna A.; Garcia, Kathleen M.; Arbeille, Philippe

    2003-01-01

    Physiology of the human body in space has been a major concern for space-faring nations since the beginning of the space era. Ultrasound (US) is one of the most cost effective and versatile forms of medical imaging. As such, its use in characterizing microgravity-induced changes in physiology is being realized. In addition to the use of US in related ground-based studies, equipment has also been modified to fly in space. This involves alteration to handle the stresses of launch and different power and cooling requirements. Study protocols also have been altered to accommodate the microgravity environment. Ultrasound studies to date have shown a pattern of adaptation to microgravity that includes changes in cardiac chamber sizes and vertebral spacing. Ultrasound has been and will continue to be an important component in the investigation of physiological and, possibly, pathologic changes occurring in space or as a result of spaceflight.

  19. Laminar and Turbulent Gaseous Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent measurements and predictions of the properties of homogeneous (gaseous) laminar and turbulent non-premixed (diffusion) flames are discussed, emphasizing results from both ground- and space-based studies at microgravity conditions. Initial considerations show that effects of buoyancy not only complicate the interpretation of observations of diffusion flames but at times mislead when such results are applied to the non-buoyant diffusion flame conditions of greatest practical interest. This behavior motivates consideration of experiments where effects of buoyancy are minimized; therefore, methods of controlling the intrusion of buoyancy during observations of non-premixed flames are described, considering approaches suitable for both normal laboratory conditions as well as classical microgravity techniques. Studies of laminar flames at low-gravity and microgravity conditions are emphasized in view of the computational tractability of such flames for developing methods of predicting flame structure as well as the relevance of such flames to more practical turbulent flames by exploiting laminar flamelet concepts.

  20. Preparation for microgravity: The role of the microgravity materials science laboratory

    NASA Technical Reports Server (NTRS)

    Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.

    1988-01-01

    A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.

  1. Baroreflex dysfunction induced by microgravity: potential relevance to postflight orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Ertl, A. C.; Diedrich, A.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    2000-01-01

    Microgravity imposes adaptive changes in the human body. This review focuses on the changes in baroreflex function produced by actual spaceflight, or by experimental models that simulate microgravity, e.g., bed rest. We will analyze separately studies involving baroreflexes arising from carotid sinus and aortic arch afferents ("high-pressure baroreceptors"), and cardiopulmonary afferents ("low-pressure receptors"). Studies from unrelated laboratories using different techniques have concluded that actual or simulated exposure to microgravity reduces baroreflex function arising from carotid sinus afferents ("carotic-cardiac baroreflex"). The techniques used to study the carotid-cardiac baroreflex, using neck suction and compression to simulate changes in blood pressure, have been extensively validated. In contrast, it is more difficult to selectively study aortic arch or cardiopulmonary baroreceptors. Nonetheless, studies that have examined these baroreceptors suggest that microgravity produces the opposite effect, ie, an increase in the gain of aortic arch and cardiopulmonary baroreflexes. Furthermore, most studies have focus on instantaneous changes in heart rate, which almost exclusively examines the vagal limb of the baroreflex. In comparison, there is limited information about the effect of microgravity on sympathetic function. A substantial proportion of subjects exposed to microgravity develop transient orthostatic intolerance. It has been proposed that alterations in baroreflex function play a role in the orthostatic intolerance induced by microgravity. The evidence in favor and against this hypothesis is reviewed.

  2. The Effects of Benzofuran-2-Carboxylic Acid Derivatives as Countermeasures in Immune Modulation and Cancer Cell Inhibition

    NASA Astrophysics Data System (ADS)

    Sundaresan, A.; Marriott, K.; Mao, J.; Bhuiyan, S.; Denkins, P.

    2015-06-01

    Microgravity and radiation exposure experienced during space flights result in immune system suppression. In long-term spaceflight, the crew is exposed to space radiation, microgravity, infectious agents from other crew members, and microbial contamination, all of which have a significant impact on the body's immune system and may contribute to the development of autoimmune diseases, allergic reactions, and/or cancer initiation. Many studies have revealed strong effects of microgravity on immune cell function, and microgravity is now considered as one of the major causes of immune dysfunction during space flight (Sundaresan, Int. J. Transp. Phenom. 12(1-2), 93-100, 2011; Martinelli et al., IEEE Eng. Biol. Med. 28(4), 85-90, 2009). We screened two newly synthetized derivatives of benzofuran 2-carboxylic acid, KMEG and KM12. The former KMEG was assessed for lymphoproliferative activities while the latter, KM12, was used in an array of cancer cell lines for testing its cancer inhibiting effects. For ground-based studies, synthetic benzofuran-2-carboxylic acid derivatives were assessed for biological effects in several scenarios, which involved exposure to modeled microgravity and radiation, as well as their immune enhancement and anti-cancer effects. Initial findings indicate that the benzofuran-2-carboxylic acid derivatives possibly have immune enhancing and anti-tumor properties in human lymphocytes and cancer cells exposed to analog spaceflight conditions modeled microgravity and γ-radiation).

  3. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep disruption in microgravity is not the result of respiratory factors.

  4. Frontal Polymerization in Microgravity Summary of Research

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    2002-01-01

    The project began with frontal polymerization (FP). We studied many aspects of FP on the ground and performed two successful weeks of flying on the KC-135. The project evolved into the current flight investigation, Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS), as we recognized that an essential question could best be studied using a non-frontal approach. We present detailed results from our ground-based work on FP, KC-135 results and the background, justification and numerical work for the TIPMPS project.

  5. Plant reproduction systems in microgravity: experimental data and hypotheses

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.

    Elucidation of the possibilities for higher plants to realize complete ontogenesis, from seed to seed, and to propagate by seeds in microgravity, is a fundamental task of space biology connected with the working of the CELSS program. At present, there are results of only 6 spaceflight experiments with Arabidopsis thaliana, an ephemeral plant which will flower and fruit in orbit. Morphogenesis of generative organs occurs normally in microgravity, but unlike the ground control, buds and flowers mainly contain sterile elements of the androecium and gynoecium which degenerate at different stages of development in microgravity. Cytological peculiarities of male and female sterility in microgravity are similar to those occurring naturally during sexual differentiation. Many of the seed formed in microgravity are: 1) nutritional deficiency, 2) insufficient light, 3) intensification of the influence of the above-mentioned factors by microgravity, 4) disturbances of a hormonal nature, and 5) the absence of pollination and fertilization. Possible ways for testing these hypotheses and obtaining viable seeds in microgravity are discussed.

  6. Mechano-biological Coupling of Cellular Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan

    2015-11-01

    Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.

  7. Utilization of Microgravity Bioreactor for Differentiation and Growth of Human Vascular Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Chen, Chu-Huang; Pellis, Neal R.

    1997-01-01

    The goal was to delineate mechanisms of genetic responses to angiogenic stimulation of human coronary arterial and dermal microvascular endothelial cells during exposure to microgravity. The NASA-designed rotating-wall vessel was used to create a three-dimensional culture environment with low shear-stress and microgravity simulating that in space. The primary specific aim was to determine whether simulated microgravity enhances endothelial cell growth and whether the growth enhancement is associated by augmented expression of Basic Fibroblast Growth Factor (BFGF) and c-fos, an immediate early gene and component of the transcription factor AP-1.

  8. NASA's Microgravity Research Program

    NASA Technical Reports Server (NTRS)

    Woodard, Dan R. (Editor); Henderson, Robin N. (Technical Monitor)

    2000-01-01

    The Fiscal Year 1999 Annual Report describes key elements of the NASA Microgravity Research Program. The Program's goals, approach taken to achieve those goals, and program resources are summarized. A review of the Program's status at the end of FY1999 and highlights of the ground-and-flight research are provided.

  9. Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation

    NASA Astrophysics Data System (ADS)

    Sambandam, Yuvaraj; Baird, Kelsey L.; Stroebel, Maxwell; Kowal, Emily; Balasubramanian, Sundaravadivel; Reddy, Sakamuri V.

    2016-05-01

    Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.

  10. The USML-1 wire insulation flammability glovebox experiment

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi

    1995-01-01

    Flame spreading tests have been conducted using thin fuels in microgravity where buoyant convection is suppressed. In spacecraft experiments flames were ignited in quiescent atmospheres with an elevated oxygen content, demonstrating that diffusional mechanisms can be sufficient alone to sustain flame spreading. In ground-based facilities (i.e. drop towers and parabolic aircraft) low-speed convection sustains flames at much lower concentrations of atmospheric oxygen than in quiescent microgravity. Ground-based experiments are limited to very thin fuels (e.g., tissue paper); practical fuels, which are thicker, require more test time than is available. The Glovebox Facility provided for the USML 1 mission provided an opportunity to obtain flame spreading data for thicker fuel Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility. This experiment explored the heating, ignition and burning of 0.65 mm thick polyethylene wire insulation in low-speed flows in a reduced gravity environment. Four tests were conducted, two each in concurrent flow (WIF A and C) and opposed flow (WIF B and D), providing the first demonstration of flame spreading in controlled forced convection conducted in space.

  11. Effect of gravity on the caloric stimulation of the inner ear

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Deserranno, Dimitri; Oas, John G.

    2004-01-01

    Robert Barany won the 1914 Nobel Prize in medicine for his convection hypothesis for caloric stimulation. Microgravity caloric tests aboard the 1983 SpaceLab 1 mission produced nystagmus results that contradicted the basic premise of Barany's convection theory. In this paper, we present a fluid structural analysis of the caloric stimulation of the lateral semicircular canal. Direct numerical simulations indicate that on earth, natural convection is the dominant mechanism for endolymphatic flow. However, in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, an expansive convection becomes the sole mechanism for producing endolymph motion and cupular displacement. Transient 1 g and microgravity case studies are presented to delineate the different dynamic behaviors of the 1 g and microgravity endolymphatic flows. The associated fluid-structural interactions are also analyzed based on the time evolution of cupular displacements.

  12. The United Nations Human Space Technology Initiative

    NASA Astrophysics Data System (ADS)

    Balogh, Werner; Miyoshi, Takanori

    2016-07-01

    The United Nations Office for Outer Space Affairs (OOSA) launched the Human Space Technology Initiative (HSTI) in 2010 within the United Nations Programme on Space Applications, based on relevant recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III). The activities of HSTI are characterized by the following "Three Pillars": International Cooperation, Outreach, and Capacity-building. For International Cooperation, OOSA and the Japan Aerospace Exploration Agency (JAXA) jointly launched a new programme entitled "KiboCUBE". KiboCUBE aims to provide educational or research institutions located in developing countries with opportunities to deploy cube satellites of their own design and manufacture from Japanese Experiment Module "Kibo" on-board the International Space Station (ISS). The Announcement of Opportunity was released on 8 September 2015 and the selected institution is to be announced by 1 August 2016. OOSA is also collaborating with WHO and with the COPUOS Expert Group on Space and Global Health to promote space technologies and ground- and space-based research activities that can contribute to improving global health. For Outreach, OOSA and the government of Costa Rica are jointly organising the United Nations/Costa Rica Workshop on Human Space Technology from 7 to 11 March 2016. Participants will exchange information on achievements in human space programmes and discuss how to promote international cooperation by further facilitating the participation of developing countries in human space exploration-related activities. Also, it will address the role of space industries in human space exploration and its related activities, considering that they have become significant stakeholders in this field. For Capacity-building, OOSA has been carrying out two activities: the Zero-Gravity Instrument Project (ZGIP) and the Drop Tower Experiment Series (DropTES). In ZGIP, OOSA has annually distributed clinostats (microgravity simulation instruments) worldwide. ZGIP has been providing students and teachers with the opportunity to study gravitational effects on samples such as plant seeds in a simulated microgravity condition. Currently, second and third cycles are on-going. DropTES is a fellowship programme, in which OOSA and the Centre of Applied Space Technology and Microgravity (ZARM) jointly provide one student team annually with the opportunity to conduct their own microgravity experiment at the Bremen Drop Tower, Germany. In 2015, in the DropTES second cycle, Universidad Católica Boliviana "San Pablo" was given the fellowship. DropTES has been extended to the third cycle for 2016.

  13. Microgravity

    NASA Image and Video Library

    2001-01-24

    Typical metal sample that was processed by TEMPUS (Tiegelfreies Elektromagnetisches Prozessieren Unter Schwerelosigkeit), an electromagnetic levitation facility developed by German researchers and flown on the IML-2 and MSL-1 and 1R Spacelab missions. Electromagnetic levitation is used commonly in ground-based experiments to melt and then cool metallic melts below their freezing points without solidification occurring. Sample size is limited in ground-based experiments. Research with TEMPUS aboard Spacelab allowed scientists to study the viscosity, surface tension, and other properties of several metals and alloys while undercooled (i.e., cooled below their normal solidification points). The sample is about 1 cm (2/5 inch) in diameter.

  14. Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.; deGroh, H. C., III

    1999-01-01

    As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.

  15. Materials science research in microgravity

    NASA Technical Reports Server (NTRS)

    Perepezko, John H.

    1992-01-01

    There are several important attributes of an extended duration microgravity environment that offer a new dimension in the control of the microstructure, processing, and properties of materials. First, when gravitational effects are minimized, buoyancy driven convection flows are also minimized. The flows due to density differences, brought about either by composition or temperature gradients will then be reduced or eliminated to permit a more precise control of the temperature and the composition of a melt which is critical in achieving high quality crystal growth of electronic materials or alloy structures. Secondly, body force effects such as sedimentation, hydrostatic pressure, and deformation are similarly reduced. These effects may interfere with attempts to produce uniformly dispersed or aligned second phases during melt solidification. Thirdly, operating in a microgravity environment will facilitate the containerless processing of melts to eliminate the limitations of containment for reactive melts. The noncontacting forces such as those developed from electromagnet, electrostatic, or acoustic fields can be used to position samples. With this mode of operation, contamination can be minimized to enable the study of reactive melts and to eliminate extraneous crystal nucleation so that novel crystalline structures and new glass compositions may be produced. In order to take advantage of the microgravity environment for materials research, it has become clear that reliable processing models based on a sound ground based experimental experience and an established thermophysical property data base are essential.

  16. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  17. Proteomic Assessment of Fluid Shifts and Association with Visual Impairment and Intracranial Pressure in Twin Astronauts

    NASA Technical Reports Server (NTRS)

    Rana, Brinda K.; Stenger, Michael B.; Lee, Stuart M. C.; Macias, Brandon R.; Siamwala, Jamila; Piening, Brian Donald; Hook, Vivian; Ebert, Doug; Patel, Hemal; Smith, Scott; hide

    2016-01-01

    BACKGROUND: Astronauts participating in long duration space missions are at an increased risk of physiological disruptions. The development of visual impairment and intracranial pressure (VIIP) syndrome is one of the leading health concerns for crew members on long-duration space missions; microgravity-induced fluid shifts and chronic elevated cabin CO2 may be contributing factors. By studying physiological and molecular changes in one identical twin during his 1-year ISS mission and his ground-based co-twin, this work extends a current NASA-funded investigation to assess space flight induced "Fluid Shifts" in association with the development of VIIP. This twin study uniquely integrates physiological and -omic signatures to further our understanding of the molecular mechanisms underlying space flight-induced VIIP. We are: (i) conducting longitudinal proteomic assessments of plasma to identify fluid regulation-related molecular pathways altered by long-term space flight; and (ii) integrating physiological and proteomic data with genomic data to understand the genomic mechanism by which these proteomic signatures are regulated. PURPOSE: We are exploring proteomic signatures and genomic mechanisms underlying space flight-induced VIIP symptoms with the future goal of developing early biomarkers to detect and monitor the progression of VIIP. This study is first to employ a male monozygous twin pair to systematically determine the impact of fluid distribution in microgravity, integrating a comprehensive set of structural and functional measures with proteomic, metabolomic and genomic data. This project has a broader impact on Earth-based clinical areas, such as traumatic brain injury-induced elevations of intracranial pressure, hydrocephalus, and glaucoma. HYPOTHESIS: We predict that the space-flown twin will experience a space flight-induced alteration in proteins and peptides related to fluid balance, fluid control and brain injury as compared to his pre-flight protein/peptide signatures. Conversely, the trajectory of these protein signatures will remain relatively constant in his ground based co-twin. METHODS: We are using proteomic and standard immunoelectrophoresis techniques to delineate the change in protein signatures throughout the course of a long duration space flight in relation to the development of VIIP. We are also applying a novel cell-based metaboloic organ system assay ("Organs on a Plate") to address how these circulating biomarkers affect physiological processes at the cellular and organ level which could result in VIIP symptoms. These molecular data will be correlated with physiological measures (eg. extra and intracellular fluid volume, vascular filling/flow patterns, MRI, and Optic Coherence Tomography. DISCUSSION: Pre- and in-flight data collection is in progress for the space-flown twin, and similar data have been obtained from the ground-based twin. Biosamples will be batch processed when received from ISS after the conclusion of the 1-year mission. Omic and Physiological measures from the twin astronauts will be compared to similar data being collected on twin subjects who participated in simulated microgravity study. bed rest study.

  18. Evaluation of a novel basic life support method in simulated microgravity.

    PubMed

    Rehnberg, Lucas; Russomano, Thaws; Falcão, Felipe; Campos, Fabio; Everts, Simon N

    2011-02-01

    If a cardiac arrest occurs in microgravity, current emergency protocols aim to treat patients via a medical restraint system within 2-4 min. It is vital that crewmembers have the ability to perform single-person cardiopulmonary resuscitation (CPR) during this period, allowing time for advanced life support to be deployed. The efficacy of the Evetts-Russomano (ER) method has been tested in 22 s of microgravity in a parabolic flight and has shown that external chest compressions (ECC) and mouth-to-mouth ventilation are possible. There were 21 male subjects who performed both the ER method in simulated microgravity via full body suspension and at +1 Gz. The CPR mannequin was modified to provide accurate readings for ECC depth and a metronome to set the rate at 100 bpm. Heart rate, rate of perceived exertion, and angle of arm flexion were measured with an ECG, elbow electrogoniometers, and Borg scale, respectively. The mean (+/- SD) depth of ECC in simulated microgravity was lower in each of the 3 min compared to +1 G2. The ECC depth (45.7 +/- 2.7 mm, 42.3 +/- 5.5 mm, and 41.4 +/- 5.9 mm) and rate (104.5 +/- 5.2, 105.2 +/- 4.5, and 102.4 +/- 6.6 compressions/min), however, remained within CPR guidelines during simulated microgravity over the 3-min period. Heart rate, perceived exertion, and elbow flexion of both arms increased using the ER method. The ER method can provide adequate depth and rate of ECC in simulated microgravity for 3 min to allow time to deploy a medical restraint system. There is, however, a physiological cost associated with it and a need to use the flexion of the arms to compensate for the lack of weight.

  19. Estimating the center of mass of a free-floating body in microgravity.

    PubMed

    Lejeune, L; Casellato, C; Pattyn, N; Neyt, X; Migeotte, P-F

    2013-01-01

    This paper addresses the issue of estimating the position of the center of mass (CoM) of a free-floating object of unknown mass distribution in microgravity using a stereoscopic imaging system. The method presented here is applied to an object of known mass distribution for validation purposes. In the context of a study of 3-dimensional ballistocardiography in microgravity, and the elaboration of a physical model of the cardiovascular adaptation to weightlessness, the hypothesis that the fluid shift towards the head of astronauts induces a significant shift of their CoM needs to be tested. The experiments were conducted during the 57th parabolic flight campaign of the European Space Agency (ESA). At the beginning of the microgravity phase, the object was given an initial translational and rotational velocity. A 3D point cloud corresponding to the object was then generated, to which a motion-based method inspired by rigid body physics was applied. Through simulations, the effects of the centroid-to-CoM distance and the number of frames of the sequence are investigated. In experimental conditions, considering the important residual accelerations of the airplane during the microgravity phases, CoM estimation errors (16 to 76 mm) were consistent with simulations. Overall, our results suggest that the method has a good potential for its later generalization to a free-floating human body in a weightless environment.

  20. Analysis of Statoliths Displacement in Chara Rhizoids for Validating the Microgravity-Simulation Quality of Clinorotation Modes

    NASA Astrophysics Data System (ADS)

    Krause, Lars; Braun, Markus; Hauslage, Jens; Hemmersbach, Ruth

    2018-05-01

    In single-celled rhizoids of the green algae Chara, positively gravitropic growth is governed by statoliths kept in a dynamically stable position 10-25 μ m above the cell tip by a complex interaction of gravity and actomyosin forces. Any deviation of the tube-like cells from the tip-downward orientation causes statoliths to sediment onto the gravisensitive subapical cell flank which initiates a gravitropic curvature response. Microgravity experiments have shown that abolishing the net tip-directed gravity force results in an actomyosin-mediated axial displacement of statoliths away from the cell tip. The present study was performed to critically assess the quality of microgravity simulation provided by different operational modes of a Random Positioning Machine (RPM) running with one axis (2D mode) or two axes (3D mode) and different rotational speeds (2D), speed ranges and directions (3D). The effects of 2D and 3D rotation were compared with data from experiments in real microgravity conditions (MAXUS sounding rocket missions). Rotational speeds in the range of 60-85 rpm in 2D and 3D modes resulted in a similar kinetics of statolith displacement as compared to real microgravity data, while slower clinorotation (2-11 rpm) caused a reduced axial displacement and a more dispersed arrangement of statoliths closer to the cell tip. Increasing the complexity of rotation by adding a second rotation axis in case of 3D clinorotation did not increase the quality of microgravity simulation, however, increased side effects such as the level of vibrations resulting in a more dispersed arrangement of statoliths. In conclusion, fast 2D clinorotation provides the most appropriate microgravity simulation for investigating the graviperception mechanism in Chara rhizoids, whereas slower clinorotation speeds and rotating samples around two axes do not improve the quality of microgravity simulation.

  1. Effect of Actual and Simulated Microgravity on Cardiac Mass and Function in the Rat

    NASA Technical Reports Server (NTRS)

    Ray, Chester H.; Vasques, Marilyn; Miller, Todd H.; Wilkerson, M. Keith; Delp, Michael D.; Dalton, Bonnie (Technical Monitor)

    2001-01-01

    The purpose of this study was to test the hypothesis that exposure to actual or simulated microgravity induces cardiac atrophy in male Sprague-Dawley rats. For the microgravity study, rats were subdivided into four groups: Preflight (PF, n = 12); Flight (FL, n = 7); Flight Cage Simulation (SIM, n = 6), and Vivarium Control (VIV, n = 7). Animals in the FL group were exposed to 7 days of microgravity during the Spacelab 3 mission. Animals in the simulated microgravity study were subdivided into three groups: Control (CON, n = 20); 7 day hindlimb unloaded (7HU, n = 10); and 28 day unloaded (28HU, n = 19). In a subset of CON (n = 7) and 28HU (n = 6) rats, a catheter was advanced into the left ventricle to measure the rate of rise in ventricular pressure (+dP/dt) during standing as an estimate of cardiac contractility. After completion of their respective treatments, hearts were removed and weighed. Animals in the PF group were sacrificed 24 hr prior to launch while the FL group was sacrificed 11- 17 hr after landing. The SM and VIV groups were sacrificed 48 and 96 hr after the FL group, respectively. Heart mass was unchanged in adult animals exposed to 7 days of actual microgravity (PF 1.33 +/- .03 g; FL 1.32 +/- 0.02 g; SIM 1.28 +/- 0.04 g; VIV 1.35 +/- 0.04 g). Similarly, heart mass was unaltered with hinlimb unloading (CON 1.40 +/- 0.04 g; 7HU 1.35 +/- 0.06 g; 28HU 1.42 +/- 0.03 g). Hindlimb unloading also had no effect on myocardial contractility (CON 8055 +/- 385 mmHg/sec; 28HU 8545 +/- 755 mmHg/sec). These data suggest that cardiac atrophy does not occur following short-term exposure to microgravity, and that neither short- nor long-term simulated microgravity alter cardiac mass or function.

  2. Analysis of Statoliths Displacement in Chara Rhizoids for Validating the Microgravity-Simulation Quality of Clinorotation Modes

    NASA Astrophysics Data System (ADS)

    Krause, Lars; Braun, Markus; Hauslage, Jens; Hemmersbach, Ruth

    2018-01-01

    In single-celled rhizoids of the green algae Chara, positively gravitropic growth is governed by statoliths kept in a dynamically stable position 10-25 μ m above the cell tip by a complex interaction of gravity and actomyosin forces. Any deviation of the tube-like cells from the tip-downward orientation causes statoliths to sediment onto the gravisensitive subapical cell flank which initiates a gravitropic curvature response. Microgravity experiments have shown that abolishing the net tip-directed gravity force results in an actomyosin-mediated axial displacement of statoliths away from the cell tip. The present study was performed to critically assess the quality of microgravity simulation provided by different operational modes of a Random Positioning Machine (RPM) running with one axis (2D mode) or two axes (3D mode) and different rotational speeds (2D), speed ranges and directions (3D). The effects of 2D and 3D rotation were compared with data from experiments in real microgravity conditions (MAXUS sounding rocket missions). Rotational speeds in the range of 60-85 rpm in 2D and 3D modes resulted in a similar kinetics of statolith displacement as compared to real microgravity data, while slower clinorotation (2-11 rpm) caused a reduced axial displacement and a more dispersed arrangement of statoliths closer to the cell tip. Increasing the complexity of rotation by adding a second rotation axis in case of 3D clinorotation did not increase the quality of microgravity simulation, however, increased side effects such as the level of vibrations resulting in a more dispersed arrangement of statoliths. In conclusion, fast 2D clinorotation provides the most appropriate microgravity simulation for investigating the graviperception mechanism in Chara rhizoids, whereas slower clinorotation speeds and rotating samples around two axes do not improve the quality of microgravity simulation.

  3. Studying longterm effects of micro gravity on basic immune functions - The development of an application based on the measuring of phagocytosis activity of Blue Mussel hemocytes

    NASA Astrophysics Data System (ADS)

    Unruh, Eckehardt

    The immunsystem of astronauts exposed to microgravity is declining. Whether this effect is caused by microgravity or in combination with cosmic radiation is so far not clear. The immune system of vertebrates has several defence strategies but the basic immune response (Phagocytosis) is present as well in invertebrates. Phagocytotic cells are drawn by chemotaxis to the origin of an infection. By adhesion, ingestion and phagosome formation foreign particles, bacteria etc are transported inside of a cell were they are destroyed by native powerful biocides. Related to this biocide production is the formation of Reactive Oxygen Species (ROS). ROS can be measured by luminescence. The effects of microgravity will be simultaneously tested by exposure of phagocytotic hemocytes on orbit under microgravity, artificial gravity and, on ground under natural gravity. To address this purpose defined pools of Blue Mussel (Mytilus edulis) hemocytes will be launched frozen to the ISS. References for all batches will stay on ground. Shortly after arrival and then in three-month intervals batches of the same pool will be thawed and reconstituted. The phagocytosis related production of ROS will be stimulated with opsonized Zymosan. Luminescence will be measured and the data will be sent to ground. The experiment is scheduled for the Columbus Biolab early 2009. In preparation of this flight experiments the following procedures were investigated and the results will be presented: - a protocol for the cryoconservation and reconstituton of blue mussel hemocytes. - preliminary results of phagocytosis activity by reconstituted hemocytes after cryo-conservation and hemocytes without cryo-conservation treatment. The TRIPLELUX-B Experiment contributes to risk assessment concerning longterm immunotoxicity under space flight conditions. The immune system of invertebrates has not been studied so far in space. The choice of the phagocytes from invertebrates is justified by the claim to study the universal validity of innate immune responses.

  4. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to optimize crystallization hardware so that destructive flows are minimized both on the ground and in microgravity.

  5. Microgravity

    NASA Image and Video Library

    1989-10-17

    Ground shaking triggered liquefaction in a subsurface layer of water-saturated sand, producing differential lateral and vertical movement in a overlying carapace of unliquified sand and slit, which moved from right to left towards the Pajaro River. This mode of ground failure, termed lateral spreading, is a principal cause of liquefaction-related earthquake damage caused by the Oct. 17, 1989, Loma Prieta earthquake. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Credit: S.D. Ellen, U.S. Geological Survey

  6. Interplay of space radiation and microgravity in DNA damage and DNA damage response.

    PubMed

    Moreno-Villanueva, María; Wong, Michael; Lu, Tao; Zhang, Ye; Wu, Honglu

    2017-01-01

    In space, multiple unique environmental factors, particularly microgravity and space radiation, pose constant threat to the DNA integrity of living organisms. Specifically, space radiation can cause damage to DNA directly, through the interaction of charged particles with the DNA molecules themselves, or indirectly through the production of free radicals. Although organisms have evolved strategies on Earth to confront such damage, space environmental conditions, especially microgravity, can impact DNA repair resulting in accumulation of severe DNA lesions. Ultimately these lesions, namely double strand breaks, chromosome aberrations, micronucleus formation, or mutations, can increase the risk for adverse health effects, such as cancer. How spaceflight factors affect DNA damage and the DNA damage response has been investigated since the early days of the human space program. Over the years, these experiments have been conducted either in space or using ground-based analogs. This review summarizes the evidence for DNA damage induction by space radiation and/or microgravity as well as spaceflight-related impacts on the DNA damage response. The review also discusses the conflicting results from studies aimed at addressing the question of potential synergies between microgravity and radiation with regard to DNA damage and cellular repair processes. We conclude that further experiments need to be performed in the true space environment in order to address this critical question.

  7. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  8. Partial gravity simulation using a pneumatic actuator with closed loop mechanical amplification

    NASA Technical Reports Server (NTRS)

    Ray, David M.

    1994-01-01

    To support future manned missions to the surface of the Moon and Mars or missions requiring manipulation of payloads and locomotion in space, a training device is required to simulate the conditions of both partial and microgravity as compared to the gravity on Earth. The focus of this paper is to present the development, construction, and testing of a partial gravity simulator which uses a pneumatic actuator with closed loop mechanical amplification. Results of the testing show that this type of simulator maintains a constant partial gravity simulation with a variation of the simulated body force between 2.2 percent and 10 percent, depending on the type of locomotion inputs. The data collected using the simulator show that mean stride frequencies at running speeds at lunar and Martian gravity levels are 12 percent less than those at Earth gravity. The data also show that foot/ground reaction forces at lunar and Martian gravity are, respectively, 62 percent and 51 percent less than those on Earth.

  9. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    NASA Astrophysics Data System (ADS)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  10. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    NASA Astrophysics Data System (ADS)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (p<0.001), whereas there were no significant changes in the ambulatory study. Plasma noradrenaline decreased in the adaptation period but not during the intervention. During microgravity thrombocyte noradrenaline increased in four cosmonauts and the percentage changes were significantly different in cosmonauts and in subjects participating in the head down tilted bed rest study (170± 29% (Mean± SEM) vs. 57± 7%, respectively; p<0.001). The elevated sympathetic nervous system activity is most likely a regulatory response to combined effects of a reduced plasma volume and an increased vascular capacity in flight.

  11. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging.

    PubMed

    Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing

    2016-09-27

    The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

  12. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Yuda, T.; Shimazu, T.; Ueda, J.

    Effects of simulated microgravity and hypergravity on the senescence of oat leaf segments excised from the primary leaves of 8-d-old green seedlings were studied using a 3-dimensional (D) clinostat as a simulator of weightlessness and a centrifuge, respectively. During the incubation with water under 1-g conditions at 25 °C in the dark, the loss of chlorophyll of the segments was found dramatically immediately after leaf excision, and leaf color completely turned to yellow after 3-d to 4-d incubation. In this case kinetin (10 μM) was effective in retarding senescence. The application of simulated microgravity conditions on a 3-D clinostat enhanced chlorophyll loss in the presence or absence of kinetin. The loss of chlorophyll was also enhanced by hypergravity conditions (ca. 8 to 16 g), but the effect was smaller than that of simulated microgravity conditions on the clinostat. Jasmonates (JAs) and abscisic acid (ABA) promoted senescence under simulated microgravity conditions on the clinostat as well as under 1-g conditions. After 2-d incubation with water or 5-d incubation with kinetin, the endogenous levels of JAs and ABA of the segments kept under simulated microgravity conditions on the clinostat remained higher than those kept under 1-g conditions. These findings suggest that physiological processes of leaf senescence and the dynamics of endogenous plant hormone levels are substantially affected by gravity.

  13. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Edwards, Christopher; Wu, Honglu

    2011-01-01

    This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulation of cells in response to antineoplastic agents, we cultured LNCaP cells for 96 hr either in a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as a control. 24 hr after the culture started, mitoxantrone was introduced to the cells at a final concentration of 1 M. The mitoxantrone treatment lasted 72 hr and then the cells were collected for various measurements. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not show significant differences in cell viability, growth rate, or cell cycle distribution. However, in response to mitoxantrone (1uM), a significant proportion of bioreactor cultured cells (30%) was arrested at G2 phase and a significant number of these cells were apoptotic in comparison to their static controls. The expressions of 84 oxidative stress related genes were analyzed using Qiagen PCR array to identify the possible mechanism underlying the altered responses of bioreactor culture cells to mitoxantrone. Nine out of 84 genes showed higher expression at four hour post mitoxantrone treatment in cells cultured at rotating condition compared to those at static. Taken together, the results reported here indicate that simulated microgravity may alter the responses of LNCaP cells to mitoxantrone treatment. The alteration of oxidative stress pathways in cells cultured under simulated microgravity conditions may be one of the mechanisms to cause such changes of sensitivity of LNCaP cells to mitoxantrone treatment.

  14. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  15. Simulated microgravity influenced the expression of DNA damage repair genes

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  16. Effects of Spaceflight on the Attachment of Muscle to the Tibia, Fibula and Calcaneus

    NASA Technical Reports Server (NTRS)

    Johnson, R. B.; Tsao, A. K.; St.John, K. R.; Betcher, R. A.; Tucci, M. A.; Parsell, D. E.; Dai, X.; Zardiackas, L. D.; Benghuzzi, H. A.

    1999-01-01

    Microgravity significantly reduces transmission of ground-reaction forces to bones, promoting atrophy. There is little information available concerning the effects of microgravity on bones at sites where anti-gravity muscles are attached (tendon-bone junctions). This study evaluates the effects of microgravity on the origin and insertion sites of anti-gravity muscles on the rat tibia, fibula and calcaneus. Changes in the strength of those tendon-bone junctions could predispose the animal to injury following spaceflight.

  17. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  18. A Fast and Self-Acting Release-Caging-Mechanism for Actively Driven Drop Tower Systems

    NASA Astrophysics Data System (ADS)

    Gierse, Andreas; Kaczmarczik, Ulrich; Greif, Andreas; Selig, Hanns; von Kampen, Peter; Könemann, Thorben; Lämmerzahl, Claus

    2017-10-01

    Today's and future scientific research programs ask for high quality microgravity conditions of 10-6 g on ground combined with high repetition rates of 100 flights per day or more. Accordingly, a new type of drop tower, the GraviTower Bremen, (GTB), has been suggested and is currently under development. As a first stage of development, a GTB-Prototype (GTB-Pro) has been designed which uses an active rope drive to accelerate a slider/drag shield and an experiment therein on a vertical parabola. During the free fall phase, the experiment is decoupled from the slider by a self-acting Release-Caging-Mechanism (RCM). Our prototype will provide 2.5 s of microgravity for experiments of up to 500 kg for at least 100 times per day. In this article, the final concept of the engineering of the active rope drive and the RCM are presented in detail. Based on extensive simulations aiming at an optimization of the whole system we developed a hydraulic rope drive system with minimized vibrational amplitude and low number of eigenfrequencies. The RCM achieves a very fast (≤ 0.1 s) self-acting release of the experiment from the slider by making use of the dynamics of the hydraulic rope drive. Furthermore, passive hydraulic stop dampers in the RCM build a passive and self-acting recoupling mechanism. This system is optimized for a fast decoupling to compensate for the time limitation posed by the chosen drive technology. The simulations included a comparison of different drive technologies, physical effects like the Coriolis force, and the dynamics of the RCM system itself.

  19. Role for Lower Extremity Interstitial Fluid Volume Changes in the Development of Orthostasis after Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Summers, Richard L.; Martin, David S.; Meck, Janice V.; Coleman, Thomas G.

    2007-01-01

    Reentry orthostasis after exposure to the conditions of spaceflight is a persistent problem among astronauts. In a previous study, a computer model systems analysis was used to examine the physiologic mechanisms involved in this phenomenon. In this analysis, it was determined that an augmented capacitance of lower extremity veins due to a fluid volume contracture of the surrounding interstitial spaces during spaceflight results in an increase in sequestered blood volume upon standing and appears to be the initiating mechanism responsible for reentry orthostasis. In this study, we attempt to validate the central premise of this hypothesis using a ground-based spaceflight analog. 10 healthy subjects were placed at bed rest in a 6 head down tilt position for 60 days of bed rest. The impact of adaptations in interstitial fluid volume and venous capacitance in the lower extremities were then observed during a standard tilt test protocol performed before and after the confinement period. The interstitial thickness superficial to the calcaneous immediately below the lateral malleolus was measured using ultrasound with a 17-5 MHz linear array transducer. Measurements of the changes in anterior tibial vein diameter during tilt were obtained by similar methods. The measurements were taken while the subjects were supine and then during upright tilt (80') for thirty minutes, or until the subject had signs of presyncope. Additional measurements of the superficial left tibia interstitial thickness and stroke volume by standard echocardiographic methods were also recorded. In addition, calf compliance was measured over a pressure range of 10-60 mmHg, using plethysmography, in a subset of these subjects (n = 5). There was a average of 6% diminution in the size of the lower extremity interstitial space as compared to measurements acquired prior to bed rest. This contracture of the interstitial space coincided with a subsequent relative increase in the percentage change in tibial vein diameter and stroke volume upon tilting in contrast to the observations made before bed rest (54 vs 23% respectively). Compliance in the calf increased by an average of 36% by day 27 of bedrest. A systems analysis using a computer model of cardiovascular physiology suggests that microgravity induced interstitial volume depletion results in an accentuation of venous blood volume sequestration and is the initiating event in reentry orthostasis. This hypothesis was tested in volunteer subjects using a ground-based spaceflight analog model that simulated the body fluid redistribution induced by microgravity exposure. Measurements of changes in the interstitial spaces and observed responses of the anterior tibial vein with tilt, together with the increase in calf compliance, were consistent with our proposed mechanism for the initiation of postflight orthostasis often seen in astronauts.

  20. Surface oscillation of levitated liquid droplets under microgravity

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahito; Hibiya, Taketoshi; Ozawa, Shumpei; Mizuno, Akitoshi

    2012-07-01

    Microgravity conditions have advantages of measurement of surface tension and viscosity of metallic liquids by the oscillating drop method with an electromagnetic levitation (EML) device. Thus, we are now planning the thermophysical properties, the surface tension, viscosity, density and etc., measurements of liquid alloys using the electromagnetic levitator named MSL-EML (Materials Science Laboratory Electromagnetic Levitator), which ahs been developed by the European Space Agency (ESA), installed in the International Space Station (ISS). The surface tension and the viscosity of liquid samples by the oscillating drop method are obtained from the surface oscillation frequency and damping time of surface oscillation respectively. However, analysis of oscillating drop method in EML must be improved even in the microgravity conditions, because on the EML conditions the electromagnetic force (EMF) cannot generate the surface oscillation with discretely oscillation mode. Since under microgravity the levitated droplet shape is completely spherical, the surface oscillation frequency with different oscillation modes degenerates into the single frequency. Therefore, surface tension will be not affected the EML condition under microgravity, but viscosity will be affected on the different oscillation mode of surface oscillations. Because dumping time of surface oscillation of liquid droplets depends on the oscillation modes, the case of surface oscillation including multi oscillation modes the viscosity values obtained from dumping time will be modified from the correct viscosity. Therefore, we investigate the dumping time of surface oscillation of levitated droplets with different oscillation modes and also with including multi oscillation modes using the electrostatic levitation (ESL) on ground and EML under microgravity conditions by the parabolic flight of airplane. The ESL can discretely generate the surface oscillation with different oscillation modes by the change of generation frequency of surface oscillation, so we can obtain dumping time of surface oscillation with discrete oscillation mode. We repot the results of the damping time of the surface oscillation of levitated liquid droplet by ESL and EML experiment with numerical simulation of the damped oscillation model.

  1. Patient Simulators Train Emergency Caregivers

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Johnson Space Center teamed up with Sarasota, Florida-based METI (now CAE Healthcare) through the STTR program to ruggedize the company’s patient simulators for training astronauts in microgravity environments. The design modifications were implemented in future patient simulators that are now used to train first responders in the US military as well as fire departments and other agencies that work in disaster zones.

  2. Microgravity effects on electrodeposition of metals and metal-cermet mixtures

    NASA Technical Reports Server (NTRS)

    Maybee, George W.; Riley, Clyde; Coble, H. Dwain

    1987-01-01

    An experimental system, designed to investigate the potential advantages of electrodeposition in microgravity, is being developed by the McDonnell Douglas Astronautics Company-Huntsville Division and the University of Alabama in Huntsville. It is intended to fly as an Orbiter payload when NASA resumes STS operations. The system will provide power, thermal conditioning, command and control for the production of electrodeposits; system performance data will be recorded for post-flight analysis. Plated metal surfaces will be created using simple electrolytic cells with pure metal electrodes immersed in aqueous electrolytic solutions. Crystalline structure and other properties will be analyzed to identify differences between samples produced in flight and those obtained from ground-based operations.

  3. Microgravity science and applications bibliography, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This edition of the Microgravity Science and Applications (MSA) Bibliography is a compilation of Government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or ground-based activities providing supporting research. It encompasses literature published in FY-86 and part of FY-87 but not cited in the 1985 Revision, pending publications, and those submitted for publication during this time period. Subdivisions of the bibliography include six major categories: Electronic Materials, Metals, Alloys, and Combustion Science. Other categories include Experimental Technology and General Studies. Included are publications from the European and Soviet programs. In addition, there is a list of patents and a cross reference index.

  4. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight.

    PubMed

    Tahimic, Candice G T; Globus, Ruth K

    2017-10-16

    Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.

  5. Development of Multiple Antibiotic Resistance in Bacillus subtilis Cells Exposed to Microgravity: the BRIC-18 Experiment to the International Space Station

    NASA Astrophysics Data System (ADS)

    Fajardo-Cavazos, Patricia; Moeller, Ralf; Nicholson, Wayne; Narvel, Raed

    Increased pathogenicity of opportunistic bacteria during long-term spaceflight is considered an astronaut risk. Because only a limited pharmacy can be carried on long-duration missions, the development of resistance to multiple antibiotics is a concern for mission planning. In support of the BRIC-18 experiment to the ISS, we have performed ground-based experiments to address the question whether simulated microgravity affects the frequency of resistance to the model antibiotics rifampicin (RFM) and trimethoprim (TMP). In these experiments, the model bacteria Bacillus subtilis and Staphylococcus epidermidis were cultivated for 6 days at ISS ambient temperature in 10-ml High Aspect Ratio Vessels (HARVs) on two 4-place clinostats (Synthecon) oriented either vertically (V) or horizontally (H). Cells were harvested, enumerated and plated onto medium containing RFM (5 micrograms/ml). The frequency of mutation to RFM resistance was calculated, and RFM-resistant mutants were plated onto medium containing the second antibiotic, TMP (5 micrograms/ml) to determine the frequency of mutation to double (RFM+TMP) resistance. After 6 days of cultivation, V-cultures showed higher cell densities and than H-cultures for both bacteria. However, only in B. subtilis did V-cultures show higher frequencies of mutation to RFM resistance than H-cultures. Launch of BRIC-18 to the ISS is currently scheduled for March 16, 2014 and return 30 days later. Results from both the spaceflight and ground control experiments will be presented. Supported by NASA-SAIP fellowship to R.N. and NASA grant (NNX12AN70G) to P.F.-C., R.M., and W.L.N.

  6. Firsthand Perspective on the Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Thomas, Donald A.

    1998-01-01

    Extended periods of microgravity simply cannot be created on Earth and rely on orbiting spacecraft in low earth orbit. These low microgravity levels are one of the most critical resources for most experiments being conducted aboard the space shuttle and those proposed for the International Space Station. A second critical resource for successfully conducting many of these experiments in space is the presence of human beings. Trained mission specialists and payload specialists become the eyes and ears of the scientists on the ground. In their function as in-flight technicians and "observers" they are important for reporting first hand the progress of the experiments, as well as being on call to trouble shoot malfunctioning equipment and, make necessary repairs. Unfortunately, as important as astronauts are to the successful performance of many experiments, they can be in conflict with the first goal of achieving as pristine a microgravity environment as possible. A simple astronaut sneeze has been calculated to induce a perturbation of 10(exp -5) g which may adversely affect some of the more sensitive experiments. A first hand perspective of what it is like to work in this environment and ways crewmembers can work more effectively to minimize disturbances will be discussed as well as ways that the ground can assist crewmembers to protect the microgravity environment.

  7. Bone culture research

    NASA Technical Reports Server (NTRS)

    Partridge, Nicola C.

    1993-01-01

    The experiments described are aimed at exploring PTH regulation of production of collagenase and protein inhibitors of collagenase (tissue inhibitors of metalloproteases, TIMP-1 and -2) by osteoblast-like osteosarcoma cells under conditions of weightlessness. The results of this work will contribute to information as to whether a microgravity environment alters the functions and responsiveness of the osteoblast. The objectives of the Bone Culture Research (BCR) experiment are: to observe the effects of microgravity on the morphology, rate of proliferation, and behavior of the osteoblastic cells, UMR 106-01; to determine whether microgravy affects the hormonal sensitivity of osteroblastic cells; and to measure the secretion of collagenase and its inhibitors into the medium under conditions of microgravity. The methods employed will consist of the following: the osteoblast-like cells, UMR-106-01, will be cultured in four NASDA cell culture chambers; two chambers will be subjected to microgravity on SL-J; two chambers will remain on the ground at KSC as ground controls but subjected to an identical set of culture conditions as on the shuttle; media will be changed four times; twice the cells will receive the hormone parathyroid hormone-related protein (PTHrP) and media collected; cells will be photographed under conditions of microgravity; and media and photographs will be analyzed upon return to determine whether functions of the cells changed.

  8. Containerless solidification of BiFeO3 oxide under microgravity

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  9. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  10. Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin

    1999-01-01

    Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.

  11. An innovative approach to the development of a portable unit for analytical flame characterization in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker

    1995-01-01

    The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.

  12. Effects of Microgravity On Oxidative and Antioxidant Enzymes In Mouse Hindlimb Muscle

    NASA Technical Reports Server (NTRS)

    Girten, B.; Hoopes, R.; Steele, M.; Morony, S.; Bateman, T. A.; Sun, S. (Technical Monitor)

    2002-01-01

    Gastrocnemius muscle of mice were analyzed in order to examine the effects of 12 days of microgravity on the oxidative enzyme climate synthase (CS) and the antioxidant enzyme superoxide dismutase (SOD). The female C57BL/6J mice utilized for this study were part of the Commercial Biomedical Testing Module (CBTM) payload that flew aboard STS-108. Mice were housed in Animal Enclosure Modules (AEMs) provided by NASA Ames. The flight (FLT) group and the ground control (CON) group each had 12 mice per group. The AEMs that held the CON group operated on a 48-hour delay from the FLT group and were located inside the Orbital Environmental Simulator (OES) at Kennedy Space Center. The temperature, CO2 and relative humidity inside the OES was regulated based on downlinked information from the shuttle middeck. Student T tests were used to compare groups and a p < 0.05 was used to determine statistical significance. Results indicated that CS levels for the FLT group were significantly lower than the CON group while the SOD levels were significantly higher. The CS FLT mean was 19% lower and the SOD FLT mean was 17% higher than the respective CON group means. Although these findings are among the first muscle enzyme values reported for mice from a shuttle mission, these results are similar to some results previously reported for rats exposed to microgravity or hindlimb suspension. The changes seen during the CBTM payload are reflective of the deconditioning that takes place with disuse of the hindlimbs and indicate that muscle enzyme changes induced by disuse deconditioning are similar in both rodent species.

  13. Microgravity Emissions Laboratory Testing of the Light Microscopy Module Control Box Fan

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Samorezov, Sergey; Haecker, Anthony H.

    2003-01-01

    The Microgravity Emissions Laboratory (MEL) was developed at the NASA Glenn Research Center for the characterization, simulation, and verification of the International Space Station (ISS) microgravity environment. This Glenn lab was developed in support of the Fluids and Combustion Facility (FCF). The MEL is a six-degrees-of-freedom inertial measurement system that can characterize the inertial response forces (emissions) of components, subrack payloads, or rack-level payloads down to 10 7g. The inertial force output data generated from the steady-state or transient operations of the test article are used with finite element analysis, statistical energy analysis, and other analysis tools to predict the on-orbit environment at specific science or rack interface locations. Customers of the MEL have used benefits in isolation performance testing in defining available attenuation during the engineering hardware design phase of their experiment s development. The Light Microscopy Module (LMM) Control Box (LCB) fan was tested in the MEL in June and July of 2002. The LMM is planned as a remotely controllable on-orbit microscope subrack facility that will be accommodated in an FCF Fluids Integrated Rack on the ISS. The disturbances measured in the MEL test resulted from operation of the air-circulation fan within the LCB. The objectives of the testing were (1) to identify an isolator to be added to the LCB fan assembly to reduce fan-speed harmonics and (2) to identify the fan-disturbance forcing functions for use in rack-response analysis of the LMM and Fluids Integrated Rack facility. This report describes the MEL, the testing process, and the results from ground-based MEL LCB fan testing.

  14. Development of neuronal and sensorimotor systems in the absence of gravity: Neurobiological research on four soyuz taxi flights to the international space station

    NASA Astrophysics Data System (ADS)

    Horn, Eberhard R.; Dournon, Christian; Frippiat, Jean-Pol; Marco, Roberto; Böser, Sybille; Kirschnick, Uta

    2007-09-01

    Neurobiological experiments on 4 animal species (Xenopus laevis, Pleurodeles waltl, Drosophila melanogaster, Acheta domesticus) were performed to study effects of microgravity on development and aging of neuronal, sensory and motor systems. Animal models were selected according to their suitability to answer questions concerning μg-effects on neuroanatomy, neuronal activity, and behaviour. The studies were performed on the Soyuz Taxi flights Andromède, Cervantes, Eneide and LDM-TMA8/TMA7. Observations from these flights include: (1) In tadpoles and cricket larvae, morphological features of sensory cells and neurons are rarely affected by microgravity. (2) In crickets, in-flight fertilization was successful; after landing, flight larvae hatched earlier than ground reared siblings. (3) In crickets, proliferation of peptidergic neurons and their projection patterns within the nervous system were not affected by microgravity. (4) During aging, the impact of microgravity on peptidergic neurons of male Drosophila was limited to the size of cell body. (5) In Xenopus, neurophysiological features of the spinal motor system during fictive swimming were partially modified. (6) In Xenopus tadpoles, the vestibuloocular reflex was affected in an age-related manner. Modifications were also related to the occurrence of a tail lordosis induced by microgravity. It is concluded that adaptation to microgravity during development and aging is mainly based on physiological mechanisms within the central nervous system while structural modifications of the sensory and neuronal system contribute less.

  15. Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium

    NASA Technical Reports Server (NTRS)

    Fang, A.; Pierson, D. L.; Koenig, D. W.; Mishra, S. K.; Demain, A. L.

    1997-01-01

    Production of the antibacterial polypeptide microcin B17 (MccB17) by Escherichia coli ZK650 was inhibited by simulated microgravity. The site of MccB17 accumulation was found to be different, depending on whether the organism was grown in shaking flasks or in rotating bioreactors designed to establish a simulated microgravity environment. In flasks, the accumulation was cellular, but in the reactors, virtually all the microcin was found in the medium. The change from a cellular site to an extracellular one was apparently not a function of gravity, since extracellular production occurred in these bioreactors, irrespective of whether they were operated in the simulated microgravity or normal gravity mode. More probably, excretion is due to the much lower degree of shear stress in the bioreactors. Addition of even a single glass bead to the 50-ml medium volume in the bioreactor created enough shear to change the site of MccB17 accumulation from the medium to the cells.

  16. Effect of microgravity on spatial orientation and posture regulation during Coriolis stimulation.

    PubMed

    Takahashi, Masahiro; Sekine, Motoki; Ikeda, Takuo; Watanuki, Koichi; Hakuta, Shuzo; Takeoka, Hajime

    2004-05-01

    To elucidate spatial orientation and posture regulation under conditions of microgravity. Coriolis stimulation was done with five normal subjects on the ground (1 g) and onboard an aircraft (under conditions of microgravity during parabolic flight). Subjects were asked to tilt their heads forward during rotation at speeds of 0, 50, 100 and 150 degrees/s on the ground and 100 degrees/s during flight. Body sway was recorded using a 3D linear accelerometer and eye movements using an infrared charge-coupled device video camera. Flight experiments were performed on 5 consecutive days, and 11-16 parabolic maneuvers were done during each flight. Two subjects boarded each flight and were examined alternately at least five times. Coriolis stimulation at 1 g caused body sway, nystagmus and a movement sensation in accordance with inertial inputs at 1 g. Neither body sway, excepting a minute sway due to the Coriolis force, nor a movement sensation occurred in microgravity, but nystagmus was recorded. Posture, eye movement and sensation at 1 g are controlled with reference to spatial coordinates that represent the external world in the brain. Normal spatial coordinates are not relevant in microgravity because there is no Z-axis, and the posture regulation and sensation that depend on them collapse. The discrepancy in responses between posture and eye movement under conditions of microgravity may be caused by a different constitution of the effectors which adjust posture and gaze.

  17. Desert Rats 2011 Mission Simulation: Effects of Microgravity Operational Modes on Fields Geology Capabilities

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.

    2012-01-01

    Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.

  18. Nineteenth International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard (Compiler)

    2000-01-01

    The Microgravity Measurements Group meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The 19th MGMG meeting was held 11-13 July 2000 at the Sheraton Airport Hotel in Cleveland, Ohio. The 44 attendees represented NASA, other space agencies, universities, and commercial companies; 8 of the attendees were international representatives from Japan, Italy, Canada, Russia, and Germany. Twenty-seven presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, vehicle characterization, and microgravity outreach and education. The meeting participants also toured three microgravity-related facilities at the NASA Glenn Research Center. Contained within the minutes is the conference agenda, which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation, which indicate the authors' name(s) and affiliation. In some cases, a separate written report was submitted and has been Included here

  19. Electromyography-based analysis of human upper limbs during 45-day head-down bed-rest

    NASA Astrophysics Data System (ADS)

    Fu, Anshuang; Wang, Chunhui; Qi, Hongzhi; Li, Fan; Wang, Zheng; He, Feng; Zhou, Peng; Chen, Shanguang; Ming, Dong

    2016-03-01

    Muscle deconditioning occurs in response to simulated or actual microgravity. In spaceflight, astronauts become monkey-like for mainly using their upper limbs to control the operating system and to complete corresponding tasks. The changes of upper limbs' athletic ability will directly affect astronauts' working performance. This study investigated the variation trend of surface electromyography (sEMG) during prolonged simulated microgravity. Eight healthy males participating in this study performed strict 45-day head-down bed-rest (HDBR). On the 5th day of pre-HDBR, and the 15th, the 30th and the 45th days of HDBR, the subjects performed maximum pushing task and maximum pulling task, and sEMG was collected from upper limbs synchronously. Each subject's maximum volunteer contractions of both the tasks during these days were compared, showing no significant change. However, changes were detected by sEMG-based analysis. It was found that integrated EMG, root mean square, mean frequency, fuzzy entropy of deltoid, and fuzzy entropy of triceps brachii changed significantly when comparing pre-HDBR with HDBR. The variation trend showed a recovery tendency after significant decline, which is inconsistent with the monotonic variation of lower limbs that was proved by previous research. These findings suggest that EMG changes in upper limbs during prolonged simulated microgravity, but has different variation trend from lower limbs.

  20. Hormone purification by isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1982-01-01

    The performance of a ground-prototype of an apparatus for recycling isoelectric focusing was evaluated in an effort to provide technology for large scale purification of peptide hormones, proteins, and other biologicals. Special emphasis was given to the effects of gravity on the function of the apparatus and to the determination of potential advantages deriveable from its use in a microgravity environment. A theoretical model of isoelectric focusing sing chemically defined buffer systems for the establishment of the pH gradients was developed. The model was transformed to a form suitable for computer simulations and was used extensively for the design of experimental buffers.

  1. Molecular Basis of Mechano-Signal Transduction in Vascular Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Jo, Hanjoong

    2004-01-01

    Simulated microgravity studies using a random positioning machine (RPM). One RPM machine has been built for us by Fokker Science in Netherland. Using the device, we have developed an in vitro system to examine the effect of simulated microgravity on osteoblastic bone cells. Using this system, we have carried out gene chip studies to determine the gene expression profiles of osteoblasts cultured under simulated microgravity conditions in comparison to static controls. From this study, we have identified numerous genes, some of which are expected ones inducing bone loss, but many of which are unexpected and unknown. These findings are being prepared for publications.

  2. Insulin

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.

  3. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.

    PubMed

    Wong, Julielynn Y; Pfahnl, Andreas C

    2016-09-01

    The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.

  4. Condensation of cosmic analog material in microgravity conditions - Preliminary analysis of a first set of flights

    NASA Technical Reports Server (NTRS)

    Mancini, D.; Bussoletti, E.; Mennella, V.; Vittone, A. A.; Colangeli, L.; Mirra, C.; Stephens, J.; Nuth, J.; Lilleleht, L.; Furgeson, F.

    1992-01-01

    The first results of the STARDUST project, aimed at producing and analyzing cosmic-dust analog materials in microgravity conditions, are summarized. The discussion covers the purpose of the investigation, cosmic-dust formation and properties, previous simulations of cosmic-dust formation, the current approach, the microgravity experimental apparatus, and potential advantages of studying dust formation under microgravity conditions.

  5. Cultured High-Fidelity Three-Dimensional Human Urogenital Tract Carcinomas and Process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    1998-01-01

    Artificial high-fidelity three-dimensional human urogenital tract carcinomas are propagated under in vitro-microgravity conditions from carcinoma cells. Artificial high-fidelity three-dimensional human urogenital tract carcinomas are also propagated from a coculture of normal urogenital tract cells inoculated with carcinoma cells. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  6. Determination of specific yield and water-table changes using temporal microgravity surveys collected during the second injection, storage, and recovery test at Lancaster, Antelope Valley, California, November 1996 through April 1997

    USGS Publications Warehouse

    Howle, James F.; Phillips, Steven P.; Denlinger, Roger P.; Metzger, Loren F.

    2003-01-01

    To evaluate the feasibility of artificially recharging the ground-water system in the Lancaster area of the Antelope Valley, California, the U.S. Geological Survey, in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency, conducted a series of injection, storage, and recovery tests between September 1995 and September 1998. A key component of this study was to measure the response of the water table to injection, which was difficult because the water table averaged 300 feet below land surface. Rather than install many expensive piezometers, microgravity surveys were conducted to determine specific yield and to measure the development of a ground-water mound during the injection of about 1,050 acre-feet of fresh water into an alluvial-aquifer system. The surveys were done prior to, during, and near the end of a 5-month injection period (November 12, 1996, to April 17, 1997). Results of the surveys indicate increases in gravity of as much as 66 microgals between a bedrock reference station and 20 gravity stations within a 1-square-mile area surrounding the injection site. The changes were assumed to have been caused by changes in the ground-water elevation. Gravity and ground-water levels were measured simultaneously at an existing well (7N/12W-34B1). The coupled measurements were used to calculate a specific yield of 0.13 for the alluvial aquifer near the well. To determine the gravitational effect of the injection mound on the gravity measurements made near well 7N/12W-34B1, a two-dimensional gravity model was used. Results of the model simulation show that the effect on gravity associated with the mass of the injection mound was minor and thus had a negligible effect on the calculation of specific yield. The specific yield of 0.13, therefore, was used to infer water-level changes at other gravity stations within the study area. The gravity-derived water-level changes were compared with simulated water-table changes.

  7. Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui

    Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in microgravity. This showed that the horizontal narrow channel can restrict natural convection effectively. In the vertical narrow channel, flame spread became slower as the forced gas flow speed increased. In low speed gas flows, flame spread was not near quench limit. Instead, the spread rate got its maximum value. This was entirely different from the result of microgravity and showed that the vertical narrow channel can not restrict natural convection. For the horizontal narrow channel, when the channel height lowered to 1 cm (The Grashof number was 149 using the half height as a characteristic length), the natural convection was restricted. For vertical narrow channel, a lower height was needed to restrict natural convection. References 1. NASA Technical Standard, "Flammability, Odor, Offgassing, and Compatibility Require-ments and Test Procedures for Materials in Environments That Support Combustion", NASA STD-6001, 1998. 2. Ivanov, A. V., Balashov, Ye. V., Andreeva, T. V., and et al., "Experimental Verification of Material Flammability in Space", NASA CR-1999-209405, 1999. 3. Melikhov, A. S., Bolodyan, I. A., Potyakin, V. I., and et al., "The study of polymer material combustion in simulated microgravity by physical modeling method", In: Sacksteder K, ed, "Fifth Int Microgravity Comb Workshop", NASA CP-1999-208917, 1999, 361. 4. T'ien, J. S., Shih, H.-Y., Jiang, C.-B., and et al., "Mechanisms of flame spread and smol-der wave propagation", In: Ross, H. D., ed, "Microgravity Combustion: Fire in Free Fall", Academic Press, 2001. 299. 5. Olson, S. L., Comb Sci Tech, 76, 233, 1991.

  8. The effects of simulated microgravity on cultured chicken embryonic chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, X. B.; Yang, S. Z.; Li, S. G.; Jiang, P. D.; Lin, Z. H.

    2003-10-01

    Using the cultured chicken embryonic chondrocytes as a model, the effects of simulated microgravity on the microtubular system of the cellular skeleton, extracellular matrix, alkaline phosphatase activity, intracellular free calcium concentration and mitochondrial ATP synthase activity with its oligomycin inhibition rate were studied with a clinostat. The microtubular content was measured by a flow cytometer. The decrease of microtubular content showed the impairment of the cellular skeleton system. Observation on the extracellualr matrix by the scanning electron microscopy showed that it decreased significantly after rotating, and the fibers in the extracellular matrix were more tiny and disorderly than that of the control group. It can be concluded that the simulated microgravity can affect the secreting and assembly of the extracellular matrix. In contrast to the control, there was a time course decrease in alkaline phosphatase activity of chondrocytes, a marker of matrix mineralization. Meanwhile a significant drop in the intracellular calcium concentration happened at the beginning of rotation. These results indicate that simulated microgravity can suppress matrix calcification of cultured chondrocytes, and intracellular free calcium may be involved in the regulation of matrix calcification as the second signal transmitter. No significant changes happened in the mitochondrial ATP synthase activity and its oligomycin inhibition rate. Perhaps the energy metabolism wasn't affected by the simulated microgravity. The possible mechanisms about them were discussed.

  9. Pollination and embryo development in Brassica rapa L. in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; Xiao, Y.; Musgrave, M. E.

    2000-01-01

    Plant reproduction under spaceflight conditions has been problematic in the past. In order to determine what aspect of reproductive development is affected by microgravity, we studied pollination and embryo development in Brassica rapa L. during 16 d in microgravity on the space shuttle (STS-87). Brassica is self-incompatible and requires mechanical transfer of pollen. Short-duration access to microgravity during parabolic flights on the KC-135A aircraft was used initially to confirm that equal numbers of pollen grains could be collected and transferred in the absence of gravity. Brassica was grown in the Plant Growth Facility flight hardware as follows. Three chambers each contained six plants that were 13 d old at launch. As these plants flowered, thin colored tape was used to indicate the date of hand pollination, resulting in silique populations aged 8-15 d postpollination at the end of the 16-d mission. The remaining three chambers contained dry seeds that germinated on orbit to produce 14-d-old plants just beginning to flower at the time of landing. Pollen produced by these plants had comparable viability (93%) with that produced in the 2-d-delayed ground control. Matched-age siliques yielded embryos of equivalent developmental stage in the spaceflight and ground control treatments. Carbohydrate and protein storage reserves in the embryos, assessed by cytochemical localization, were also comparable. In the spaceflight material, growth and development by embryos rescued from siliques 15 d after pollination lagged behind the ground controls by 12 d; however, in the subsequent generation, no differences between the two treatments were found. The results demonstrate that while no stage of reproductive development in Brassica is absolutely dependent upon gravity, lower embryo quality may result following development in microgravity.

  10. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.

  11. Interactions of light and gravity on growth, orientation, and lignin biosynthesis in mung beans

    NASA Technical Reports Server (NTRS)

    Jahns, G. C.

    1984-01-01

    Mung beans (Vigna radiata L.) seedlings grown on the third Space Transport Mission (STS-3) showed marked orientation problems (some of the stems elongated horizontally and many of the roots were growing upward) and had a lower lignin content than the ground based controls. This research was initiated to determine if the atypical growth characteristics of mung beans grown in microgravity could be simulated using horizontal clinostats. Most of the effort focused on the design, construction and testing of the clinostats. In order to closely approximate the growth conditions of the plants grown in the plant growth unit on STS-3, cylindrical lexan minichambers were constructed. Results showed that plants grown using these clinostats in the horizontal position exhibit similar growth characteristics to the plants grown on STS-3 (disorientation of both stems and roots), while the vertical stationary and vertical rotating controls exhibit normal growth.

  12. Adrenomedullin is a key Protein Mediating Rotary Cell Culture System that Induces the Effects of Simulated Microgravity on Human Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Chen, Li; Yang, Xi; Cui, Xiang; Jiang, Minmin; Gui, Yu; Zhang, Yanni; Luo, Xiangdong

    2015-11-01

    Microgravity or simulated microgravity promotes stem cell proliferation and inhibits differentiation. But, researchers have not yet been able to understand the underlying mechanism through which microgravity or simulated microgravity brings about stem cell proliferation and inhibition of differentiation. In this study, we investigated the effect of simulated microgravity (SMG) on MDA-MB-231 and MCF-7 human breast cancer cells using rotary cell culture system (RCCS). SMG induced a significant accumulation of these cancer cells in S phase of the cell cycle. But, compared with the static group, there was no effect on the overall growth rate of cells in the RCCS group. Furthermore, the expression of cyclin D1 was inhibited in the RCCS group, indicating that RCCS induced cell cycle arrest. In addition, RCCS also induced glycolytic metabolism by increasing the expression of adrenomedullin (ADM), but not HIF1 a. The addition of ADM further enhanced the effects of SMG, which was induced by RCCS. But, the addition of adrenomedullin antagonist (AMA) reversed these effects of SMG. Finally, our results proved that RCCS, which induced cells cycle arrest of breast cancer cells, enhanced glycolysis and upregulated the expression of ADM. But, this did not lead to an increase in hypoxia-inducible factor-1 a (HIF1 a) expression. Thus, we have uncovered a new mechanism for understanding the Warburg effect in breast cancer cells, this mechanism is not the same as hypoxia induced glycolysis.

  13. Proteomic analysis of zebrafish embryos exposed to simulated-microgravity

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing

    Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics

  14. The impact of simulated microgravity on purinergic signaling in an endothelial and smooth muscle cell co-culture model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Hemmersbach, Ruth; Lau, Patrick; Pansky, Andreas; Kassack, Matthias; Tobiasch, Edda

    Astronauts suffer from cardiovascular deconditioning when they are exposed to microgravity conditions during space missions. Thus, current research focuses on the identification of the underlying mechanism also with respect to therapy and countermeasures. Endothelial cells (ECs) and smooth muscle cells (SMCs) play a key role in a variety of vascular functions. Gene expression, cytoskeleton morphology and apoptosis in both, ECs and SMCs, have shown alterations under simulated and real microgravity condition. However, all these data were observed during single culturing of either ECs or SMCs under microgravity conditions, which is different from the in vivo situation. Purinergic 2 (P2) receptors bind extracellular nucleotides and can regulate the vascular tone and vascular cell proliferation, migration and apoptosis. In this study primary ECs and SMCs were obtained from bovine aorta and characterized using specific markers. Here we show for the first time that the P2-receptor expressions pattern in ECs and in SMCs is altered after 24h in simulated microgravity. Specific receptors are down- or up-regulated on the gene and protein level. In addition the supernatant of ECs during culture was used as conditioned medium for SMCs and vice visa to investigate the influence of either cell type on the other. ECs and SMCs secret cytokines which induce pathogenic proliferation and an altered migration behavior under simulated microgravity conditions. Interestingly, co-culturing with condition medium could compensate this change. In detail, P2X7 was down-regulated in ECs after 24h clinorotation but recovered to the 1 g level when cultured with conditioned medium from SMCs collected under normal gravity. In conclusion, our data indicate that the paracrine effect between ECs and SMCs is an important regulator of cell behavior, also under altered gravity conditions. P2-receptor gene and protein expression were altered during microgravity. Since several P2-receptor artificial ligands are already established as drugs, P2-receptors might be a reasonable candidate for drug development for astronaut treatment of vascular deconditioning in the future. Keywords: simulated microgravity, purinergic signaling, endothelial cells, smooth muscle cells, co-culture, clinostat

  15. Zeolite Crystal Growth in Microgravity and on Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  16. Delta L: An Apparatus for Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Strongly diffracting high quality macromolecule crystals of suitable volume are keenly sought for X-ray diffraction analysis so that high-resolution molecular structure data can be obtained. Such data is of tremendous value to medical research, agriculture and commercial biotechnology. In previous studies by many investigators microgravity has been reported in some instances to improve biological macromolecule X-ray crystal quality while little or no improvement was observed in other cases. A better understanding of processes effecting crystal quality improvement in microgravity will therefore be of great benefit in optimizing crystallization success in microgravity. In ground based research with the protein lysozyme we have previously shown that a population of crystals grown under the same solution conditions, exhibit a variation in X-ray diffraction properties (Judge et al., 1999). We have also observed that under the same solution conditions, individual crystals will grow at slightly different growth rates. This phenomenon is called growth rate dispersion. For small molecule materials growth rate dispersion has been directly related to crystal quality (Cunningham et al., 1991; Ristic et al., 1991). We therefore postulate that microgravity may act to improve crystal quality by reducing growth rate dispersion. If this is the case then as different, Materials exhibit different degrees of growth rate dispersion on the ground then growth rate dispersion could be used to screen which materials may benefit the most from microgravity crystallization. In order to assess this theory the Delta L hardware is being developed so that macromolecule crystal growth rates can be measured in microgravity. Crystal growth rate is defined as the change or delta in crystal size (defined as a characteristic length, L) over time; hence the name of the hardware. Delta L will consist of an optics, a fluids, and a data acquisition sub-assemblies. The optics assembly will consist of a video microscope camera mounted on three axis computer controlled translation stages. The fluids assembly consists of macromolecule and precipitant reservoirs, a temperature controlled growth cell and waste container, The data acquisition is achieved by using a frame-gabber, with images being stored on a hard drive. In operation, macromolecule and precipitant solution will be injected into the temperature controlled growth cell. As macromolecule crystals grow, the video microscope camera controlled by the translation stages, will be used to locate and record images of individual crystals, returning to the same crystals at specific time intervals. The images will be stored on the hard drive and used to calculate the crystal growth rate. To prevent vibrations interfering in the crystal growth rate measurements (Snell et al., 1997) Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS).

  17. Simulated Microgravity Influences Bovine Oocyte In Vitro Fertilization and Preimplantation Embryo Development

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to investigate whether in vitro fertilization and preimplantation embryos exposed to a simulated microgravity environment in vitro would improve, or be deleterious to, their fertilization and embryonic development. A Rotating Cell Culture System™ (RCCS) bioreactor with a Hi...

  18. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  19. Simulation of Cardiovascular Response to the Head-Up/Head-Down Tilt at Different Angles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lu, Hong-Bing; Jiao, Chun; Zhang, Li-Fan

    2008-06-01

    The disappearance of hydrostatic pressure is the original factor that causes the changes of cardiovascular system under microgravity. The hydrostatical changes can be simulated by postural changes. Especially the head-down position can be used to simulate the effects of microgravity. The goal of this investigation was to develop a mathematical model for simulation of the human cardiovascular responses to acute and prolonged exposure under microgravity environment. We were particularly interested in the redistribution of transmural pressures, flows, blood volume, and the consequent alterations in local hemodynamics in different cardiovascular compartments during acute exposure and chronic adjustments. As a preliminary study, we first developed a multi-element, distributed hemodynamic model of human cardiovascular system, and verified the model to simulate cardiovascular changes during head up/down tilt at various angles.

  20. Formation of pseudo-microgravity environment for dusty plasmas in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Sakakibara, Noritaka; Matsubayashi, Yasuhito; Ito, Tsuyohito; Terashima, Kazuo

    2018-01-01

    We realized a pseudo-microgravity environment for dusty plasmas in a ground-based experiment, using the field-emitting regime of a surface dielectric barrier discharge in high-pressure carbon dioxide (CO2) including supercritical conditions. Using the high and adjustable density of high-pressure CO2, the balance between gravitational force and buoyancy was controlled. When changing the density of CO2 in the range of 0.234 g/cm3 to 0.668 g/cm3, i.e., smaller and larger than that of the particles (0.5 g/cm3), a particle arrangement in the direction of the gravitational force was formed only when the density of CO2 was in the range of ±0.17 g/cm3 with respect to that of the particles. This experimentally demonstrates that the pseudo-microgravity that emerges due to the buoyancy from the high-pressure CO2 contributes to the particle arrangement in the gravitational direction, and hence, it compensates the gravity-induced anisotropy.

  1. Preflight Adaptation Training for Spatial Orientation and Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Parker, Donald E.

    1994-01-01

    Two part-task preflight adaptation trainers (PATs) are being developed at the NASA Johnson Space Center to preadapt astronauts to novel sensory stimulus conditions similar to those present in microgravity to facilitate adaptation to microgravity and readaptation to Earth. This activity is a major component of a general effort to develop countermeasures aimed at minimizing sensory and sensorimotor disturbances and Space Motion Sickness (SMS) associated with adaptation to microgravity and readaptation to Earth. Design principles for the development of the two trainers are discussed, along with a detailed description of both devices. In addition, a summary of four ground-based investigations using one of the trainers to determine the extent to which various novel sensory stimulus conditions produce changes in compensatory eye movement responses, postural equilibrium, motion sickness symptoms, and electrogastric responses are presented. Finally, a brief description of the general concept of dual-adopted states that underly the development of the PATs, and ongoing and future operational and basic research activities are presented.

  2. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  3. Observational study: microgravity testing of a phase-change reference on the International Space Station

    PubMed Central

    Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre

    2015-01-01

    Background: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Aims: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. Methods: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. Results: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. Conclusions: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed. PMID:28725713

  4. Observational study: microgravity testing of a phase-change reference on the International Space Station.

    PubMed

    Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre

    2015-01-01

    Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Improvement of orbital temperature measurements for long duration earth observing and remote sensing. To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.

  5. Microgravity

    NASA Image and Video Library

    1998-10-10

    Breast tissue specimens in traditional sample dishes. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.

  6. Microgravity

    NASA Image and Video Library

    1998-10-10

    Time-lapse exposure depicts Bioreactor rotation. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.

  7. Differences In Early T-Cell Signaling In Cultures Grown In a Rotating Clinostat vs. Static Controls

    NASA Technical Reports Server (NTRS)

    Alexamder. M.; Nelman-Gonzales, M.; Penkala, J.; Sams, C.

    1999-01-01

    Altered gravity has previously been demonstrated to be a stress that can influence components of the immune system. Specifically, T-cell activation has been shown to be affected by changes in gravity, exhibiting a decrease in proliferative response to in vitro stimulation in microgravity. Subsequent ground based studies utilizing a rotating clinostat to model some of the effects of microgravity have been consistent with earlier flight based experiments. These ground and flight experiments have examined T-cell activation by measuring various responses including production of cytokines, DNA synthesis and the production of various cell surface activation markers. These indicators of T-cell activation were measured anywhere from 4 to 72 hours after stimulation. Prior to the work described here, the initial signaling events in T-cell activation had not been directly examined. The goal of this project was to determine how the process of early signal transduction was affected by growth in a rotating clinostat. Here we directly show a defect in signaling from TCR to MAPK in purified peripheral T-cells activated in the clinostat by OKT3/antiCD28 coated microbeads as compared to static controls.

  8. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  9. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.

    PubMed

    Fejtek, M; Souza, K; Neff, A; Wassersug, R

    1998-06-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  10. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity

    NASA Technical Reports Server (NTRS)

    Fejtek, M.; Souza, K.; Neff, A.; Wassersug, R.

    1998-01-01

    We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return to 1 g. The tadpoles raised in true microgravity exhibited a significantly lower tailbeat frequency than onboard 1 g centrifuge controls on the day of landing (day0), but this behaviour normalized within 9 days. The two groups did not differ significantly in buccal pumping rates. Altered buoyancy in the space-flight microgravity tadpoles was indicated by an increased swimming angle on the day after landing (day1). Tadpoles raised in simulated microgravity differed to a greater extent in swimming behaviours from their 1 g controls. The tadpoles raised in hypergravity showed no substantive effects on the development of swimming or respiratory behaviours, except swimming angle. Together, these results show that microgravity has a transient effect on the development of locomotion in X. laevis tadpoles, most notably on swimming angle, indicative of stunted lung development. On the basis of the behaviours we studied, there is no indication of neuromuscular retardation in amphibians associated with embryogenesis in microgravity.

  11. Proteomic Analysis of Rat Hippocampus under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin

    It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling

  12. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  13. Polymethylmethacrylate combustion in a narrow channel apparatus simulating a microgravity environment

    NASA Astrophysics Data System (ADS)

    Bornand, Garrett Randall

    Fire safety is an important part of engineering when human lives are at stake. From everyday homes to spacecraft that can cost hundreds of millions of dollars. The research in this thesis attempts to provide scientific evidence that the apparatus in question successfully simulates microgravity and can possibly replace NASA's current test method for spacecraft fire safety. Flame spread tests were conducted with thermally thick and thermally thin polymethylmethacrylate (PMMA) samples to study flame spread behavior in response to environmental changes. The tests were conducted using the San Diego State University Narrow Channel Apparatus (SDSU NCA) as well as within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS). The SDSU NCA can suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression attained in the NCA allows tests to be conducted in a simulated microgravity environment-a characteristic that NASA's Test 1 lacks since flames present in Test 1 are driven by buoyant flows. The SDSU NCA allows for tests to be conducted at various opposed flow oxidizer velocities, oxygen percent by volume, and total pressure to mimic various spacecraft and habitat atmospheres. Tests were conducted at 1 atm pressure, thin fuel thickness of 50 and 75 microns, thick fuel thickness ranging from 3 mm to 5.6 mm, opposed oxidizer velocity ranging from 10 to 25 cm/s, and oxygen concentration by volume at 21, 30, and 50 percent. The simulated microgravity flame spread results were then compared to true microgravity experiments including; testing conducted on the International Space Station (ISS) under the Burning and Suppression of Solids (BASS) research, NASA's 5.2 second Drop Tower, and Micro-Gravity Laboratory's (MGLAB) 4.5 second Drop Tower. Data was also compared to results found by Michigan State University's NCA. Flame spread results from the SDSU NCA compare closely to that of the other experimental techniques. Additionally, an infrared camera and species concentration sensors were added to the SDSU NCA and initial results are provided. Fire Dynamics Simulator (FDS) was used to model the combustion of PMMA within the SDSU NCA. Both thin and thick fuel beds were simulated and the numerical results were compared to experimental data. The simulation was then used to determine various results that cannot easily be found with experimentation, including how effectively the NCA simulates microgravity under certain environmental conditions, gas and fuel bed temperatures, heat fluxes, species concentrations, pyrolysis rate, and other various data. The simulation was found to give reasonable results and overall flame spread trends, but could be improved upon with further detailed kinetic parameter studies.

  14. Cytoskeletal proteins and stem cell markers gene expression in human bone marrow mesenchymal stromal cells after different periods of simulated microgravity

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovich, J. G.; Zhambalova, A. P.; Romanov, Yu. A.; Buravkova, L. B.

    2012-01-01

    Mesenchymal stem (stromal) cells (MSCs) are present in a variety of tissues during prenatal and postnatal human development. In adult organism, they are prevalent in bone marrow and supposed to be involved in space-flight induced osteopenia. We studied expression of various genes in human bone marrow MSCs after different terms of simulated microgravity (SMG) provided by Random Positioning Machine. Simulated microgravity induced transient changes in expression level of genes associated with actin cytoskeleton, especially after 48 h of SMG. However, after 120 h exposure in SMG partial restoration of gene expression levels (relative to the control) was found. Similar results were obtained with bmMSCs subjected to 24 h readaptation in static state after 24 h in SMG. Analysis of 84 genes related to identification, growth and differentiation of stem cells revealed that expression of nine genes was changed slightly after 48 h in SMG. More pronounced changes in gene expression of "stem cells markers" were observed after 120 h of simulated microgravity. Among 84 investigated genes, 30 were up-regulated and 24 were down-regulated. Finally, MSCs osteogenesis induced by long-term (10-20 days) simulation of microgravity was accompanied by down-regulation of gene expression of the main osteogenic differentiation markers ( ALPL, OMD) and master transcription osteogenic factor of MSCs ( Runx2). Thus, our study demonstrated that changes in expression level of some genes associated with actin cytoskeleton and stem cell markers are supposed to be one of the mechanisms, which contribute to precursor's cellular adaptation to the microgravity conditions. These results can clarify genomic mechanisms through which SMG reduces osteogenic differentiation of bmMSCs.

  15. Simulated microgravity increases heavy ion radiation-induced apoptosis in human B lymphoblasts.

    PubMed

    Dang, Bingrong; Yang, Yuping; Zhang, Erdong; Li, Wenjian; Mi, Xiangquan; Meng, Yue; Yan, Siqi; Wang, Zhuanzi; Wei, Wei; Shao, Chunlin; Xing, Rui; Lin, Changjun

    2014-03-03

    Microgravity and radiation, common in space, are the main factors influencing astronauts' health in space flight, but their combined effects on immune cells are extremely limited. Therefore, the effect of simulated microgravity on heavy ion radiation-induced apoptosis, and reactive oxygen species (ROS)-sensitive apoptosis signaling were investigated in human B lymphoblast HMy2.CIR cells. Simulated microgravity was achieved using a Rotating Wall Vessel Bioreactor at 37°C for 30 min. Heavy carbon-ion irradiation was carried out at 300 MeV/u, with a linear energy transfer (LET) value of 30 keV/μm and a dose rate of 1Gy/min. Cell survival was evaluated using the Trypan blue exclusion assay. Apoptosis was indicated by Annexin V/propidium iodide staining. ROS production was assessed by cytometry with a fluorescent probe dichlorofluorescein. Malondialdehyde was detected using a kit. Extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase phosphatase-1 (MKP-1) and caspase-3 activation were measured by immunoblotting. Simulated microgravity decreased heavy ion radiation-induced cell survival and increased apoptosis in HMy2.CIR cells. It also amplified heavy ion radiation-elicited intracellular ROS generation, which induced ROS-sensitive ERK/MKP-1/caspase-3 activation in HMy2.CIR cells. The above phenomena could be reversed by the antioxidants N-acetyl cysteine (NAC) and quercetin. These results illustrated that simulated microgravity increased heavy ion radiation-induced cell apoptosis, mediated by a ROS-sensitive signal pathway in human B lymphoblasts. Further, the antioxidants NAC and quercetin, especially NAC, might be good candidate drugs for protecting astronauts' and space travelers' health and safety. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The Effect of Gravity Fields on Cellular Gene Expression

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1999-01-01

    Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24 hours exposure to microgravity. We did, however, find significant changes in osteoblast gene expression of IEGs, c-fos and cox-2 in microgravity exposure as compared to ground and in-flight 1-G controls. Subsequent ground studies suggest that the molecular mechanism underlying these changes may involve prostaglandin c-AMP receptors (EPs) and/or subsequent alteration of intracellular signaling in the absence of gravity.

  17. Air-Bearing-Piston Suspension System

    NASA Technical Reports Server (NTRS)

    Mullen, Donald; Bishop, Stephen J.

    1992-01-01

    Suspension system based on air-bearing piston holds up steel ball against gravitation while allowing ball to translate vertically and rotate freely. System designed to simulate effect of microgravity on ball. Applicable to suppression of vibrations and delicate machining processes.

  18. Health maintenance facility: Dental equipment requirements

    NASA Technical Reports Server (NTRS)

    Young, John; Gosbee, John; Billica, Roger

    1991-01-01

    The objectives were to test the effectiveness of the Health Maintenance Facility (HMF) dental suction/particle containment system, which controls fluids and debris generated during simulated dental treatment, in microgravity; to test the effectiveness of fiber optic intraoral lighting systems in microgravity, while simulating dental treatment; and to evaluate the operation and function of off-the-shelf dental handheld instruments, namely a portable dental hand drill and temporary filling material, in microgravity. A description of test procedures, including test set-up, flight equipment, and the data acquisition system, is given.

  19. The Effect of Micro-Gravity on in vitro Calcification

    NASA Technical Reports Server (NTRS)

    Boskey; Stiner; Binderman; Mendelsohn; Doty, S. B.

    1997-01-01

    The experiment focuses on mineral deposition or calcification of cartilage. The experiments were used to compare the mineral formed in the microgravity of space with that formed on earth. Results of these experiments were anticipated to provide direct insight into how calcification in cartridge and bone may be controlled in space. In the C-2 experiment (STS 66), we found that mineralization started later in the cartridges (both on the ground and in hypo-gravity) than in plastic, and that mineralization appeared to be retarded in hypo-gravity. The flight experiments also showed that the cells differentiated normally, but more slowly than the ground controls, and that the matrix produced was not different from that made on the ground. The purpose of the C-5 experiment was to confirm these findings. The C-5 experiment was flown on STS-72. Because of a computer problem, cells received no gases and no nutrition. The C-7 was flown on STS-77. Ground controls were repeated a week later, however, because there was a problem with the temperature control during the flight, the concurrent ground controls were performed at a different temperature. Despite these problems, the results of the C-2 experiment were confirmed. The cells in the flight cultures did not mature, formed few cartilage nodules, and showed no evidence of mineral deposition up to a culture age of 28 days. Ground controls showed the presence of mineral (based on chemical, spectroscopic, and histochemical analyses) by 21 days. The mineral in these cultures was analogous to that found in calcifying cartilage of young chicks.

  20. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubelka-Lange, André, E-mail: andre.kubelka@zarm.uni-bremen.de; Herrmann, Sven; Grosse, Jens

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10{supmore » 5} {sup 87}Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.« less

  1. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket.

    PubMed

    Kubelka-Lange, André; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus; Rasel, Ernst M; Braxmaier, Claus

    2016-06-01

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10(5) (87)Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.

  2. Cell-to-cell interactions in changed gravity: Ground-based and flight experiments

    NASA Astrophysics Data System (ADS)

    Buravkova, L.; Romanov, Yu.; Rykova, M.; Grigorieva, O.; Merzlikina, N.

    2005-07-01

    Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.

  3. Microgravity science and applications bibliography, 1988 revision

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Microgravity Science and Applications (MSA) Bibliography is a compilation of government reports, contractor reports, conference proceedings, and journal articles dealing with flight experiments utilizing a low-gravity environment to elucidate and control various processes or with ground-based activities that provide supporting research. It encompasses literature published but not cited in the 1984 Revision and the literature which was published in the past year. Subdivisions of the bibliography include: electronic materials; metals, alloys, and composites; fluid dynamics and transports; biotechnology; glass and ceramics; and combustion. Also included are publications from the European, Soviet, and Japanese MSA programs. In addition, there is a list of patents and appendices providing a compilation of anonymously authored collections of reports and a cross reference index.

  4. Experiment facilities for life science experiments in space.

    PubMed

    Uchida, Satoko

    2004-11-01

    To perform experiments in microgravity environment, there should be many difficulties compared with the experiments on ground. JAXA (Japan Aerospace Exploration Agency) has developed various experiment facilities to perform life science experiments in space, such as Cell Culture Kit, Thermo Electric Incubator, Free Flow Electrophoresis Unit, Aquatic Animal Experiment Unit, and so on. The first experiment facilities were flown on Spacelab-J mission in 1992, and they were improved and modified for the 2nd International Microgravity Laboratory (IML-2) mission in 1994. Based on these experiences, some of them were further improved and flown on another missions. These facilities are continuously being improved for the International Space Station use, where high level functions and automatic operations will be required.

  5. Microgravity science and applications program tasks, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.

  6. Microgravity effect on endophytic bacteria communities of Triticum aestivum

    NASA Astrophysics Data System (ADS)

    Qin, Youcai; Fu, Yuming; Chen, Huiwen; Liu, Hong; Sun, Yi

    2018-02-01

    Under normal gravity conditions, endophytic bacteria, one of the key bacterial community that inhabit in plant tissues, are well-known in promoting the plant growth and health, which are essential for long-term and long-distance manned microgravity space exploration. Here, we report how the Triticum aestivum endophytic bacterial communities behave differently under the simulated microgravity conditions. We demonstrate that, under simulated microgravity conditions, the microbial diversity in wheat seedling leaf increases while that in root decreases, compared to that cultivated under normal gravity conditions. We found that the dominant bacteria genus such as Pseudomonas, Paenibacillus and Bacillus significantly changes with gravity. The findings of this study provide important insight for space research, especially in terms of the Triticum aestivum cultivation in space.

  7. Plant and Animal Gravitational Biology. Part 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.

  8. Lung volumes during sustained microgravity on Spacelab SLS-1

    NASA Technical Reports Server (NTRS)

    Elliott, Ann R.; Prisk, Gordon Kim; Guy, Harold J. B.; West, John B.

    1994-01-01

    Gravity is known to influence the topographical gradients of pulmonary ventilation, perfusion, and pleural pressures. The effect of sustained microgravity on lung volumes has not previously been investigated. Pulmonary function tests were performed by four subjects before, during, and after 9 days of microgravity exposure. Ground measurements were made in standing and supine postures. Tests were performed using a bag-in-box and flowmeter system and a respiratory mass spectrometer. Measurements of tidal volume (V(sub T)), expiratory reserve volume (ERV), inspiratory and expiratory vital capacities (IVC, EVC), functional residual capacity (FRC), and residual volume (RV) were made. During microgravity, V(sub T) decreased by 15%. IVC and EVC were slightly reduced during the first 24 hrs of microgravity and returned to 1 g standing values within 72 hrs after the onset of microgravity. FRC was reduced by 15% and ERV decreased by 10-20%. RV was significantly reduced by 18%. The reductions in FRC, ERV, and V(sub T) during microgravity are probably due to the cranial shift of the diaphragm and an increase in intrathoracic blood volume.

  9. Proceedings of the Twentieth International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard (Compiler)

    2001-01-01

    The International Microgravity Measurements Group annual meetings provide a forum for an exchange of information and ideas about various aspects of microgravity acceleration research in international microgravity research programs. These meetings are sponsored by the PI Microgravity Services (PIMS) project at the NASA Glenn Research Center. The twentieth MGMG meeting was held 7-9 August 2001 at the Hilton Garden Inn Hotel in Cleveland, Ohio. The 35 attendees represented NASA, other space agencies, universities, and commercial companies; eight of the attendees were international representatives from Canada, Germany, Italy, Japan, and Russia. Seventeen presentations were made on a variety of microgravity environment topics including the International Space Station (ISS), acceleration measurement and analysis results, science effects from microgravity accelerations, vibration isolation, free flyer satellites, ground testing, and microgravity outreach. Two working sessions were included in which a demonstration of ISS acceleration data processing and analyses were performed with audience participation. Contained within the minutes is the conference agenda which indicates each speaker, the title of their presentation, and the actual time of their presentation. The minutes also include the charts for each presentation which indicate the author's name(s) and affiliation. In some cases, a separate written report was submitted and has been included here.

  10. Abnormal pituitary-gonadal axis may be responsible for rat decreased testicular function under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tan, Xin; Zhu, Bao-an; Qi, Meng-di; Ding, Su-ling

    Space flight and simulated microgravity lead to suppression of mammalian spermatogenesis and decreased plasma testosterone level. In order to explain the mechanism behind the depression, we used rat tail-suspended model to simulate weightless conditions. To prevent cryptorchidism caused by tail-suspension, some experimental animals received inguinal canal ligation. The results showed that mass of testis decreased significantly and seminiferous tubules became atrophied in rats after tail-suspension. The levels of plasma testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in tail-suspended rats with or without inguinal canal ligation decreased significantly compared with controls, and an increased level of plasma estradiol (E) was revealed in tail-suspended rats. The results indicate that besides the direct influence of fluid shift upon testis under short-term simulated microgravity, the pituitary function is also disturbed as a result of either immobilization stress or weight loss during tail-suspension treatment, which is responsible to some extent for the decreased testosterone secretion level and the atrophia of testis. The conversion of testosterone into E under simulated microgravity is another possible cause for the decline of plasma testosterone.

  11. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    Utilizing clinostatic rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity, we found phytohemagglutinin (PHA) responsiveness to be almost completely diminished. Activation marker expression was significantly reduced in RWV cultures. Furthermore, cytokine secretion profiles suggested that monocytes are not as adversely affected by simulated microgravity as T cells. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness because placing peripheral blood mononuclear cells (PBMC) within small collagen beads did partially restore PHA responsiveness. However, activation of purified T cells with cross-linked CD2/CD28 and CD3/CD28 antibody pairs was completely suppressed in the RWV, suggesting a defect in signal transduction. Activation of purified T cells with PMA and ionomycin was unaffected by RWV culture. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  12. Gravity, an Regulation Factor in BMSCs Differentiation to osteoblasts

    NASA Astrophysics Data System (ADS)

    Yan, Huang; Yinghui, Li; Fen, Yang; Zhongquan, Dai

    PURPOSE Most studies of regulatory mechanisms of adult stem cell differentiation are concentrated in chemical factors but few efforts are put into physical factors Recent space life science studies indicate mechanical factors participate in the differentiation of cells The aim of this study is to investigate the effects of simulated microgravity or hypergravity on the osteogenic differentiation of rat bone marrow mesenchymal stem cells BMSCs METHODOLOGY The BMSCs at day 7 were added osteogenic inducer 10nM dexamethasone 10mM beta -glycerophosphate and 50 mu M asorbic acid-2-phosphate for 7 days and cultured under simulated microgravity or hypergravity 2g for 1 day 3 days 5 days or 7 days RESULTS After treating BMSCs with osteogenic inducer and hypergravity the cells expressed more ColIA1 Cbfa1 and ALP than in single steogenic inducer treatment Reversely the cells treated with osteogenic inducer and simulated microgravity expressed less ColIA1 Cbfa1 and ALP CONCLUSIONS Our study suggests that hypergravity promotes the osteogenic differentiation of BMSCs and simulated microgravity inhibits this process Gravity is an important regulation factor in BMSCs differentiation to osteoblasts

  13. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    NASA Technical Reports Server (NTRS)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  14. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    NASA Technical Reports Server (NTRS)

    Svetlik, Randall G.; Moore, Cherice; Williams, Antony

    2017-01-01

    National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the human body. Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, including challenges in simulating microgravity environments for testing and limits on time available for life cycle testing, the textiles and wire ropes have contributed significantly to on-orbit planned and unplanned maintenance time. As a result, continued ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. This paper will present a review of the development and failure history of textile and wire ropes for four exercise countermeasure systems-the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the Advanced Resistive Exercise Device (ARED)-to identify lessons learned in order to improve future systems. These lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time and up-mass for future space missions.

  15. Effects of restraint and cabin environment on skin temperature, sleep-wake, feeding and drinking circadian rhythms in Macaca mulatta during spacelab flight simulation.

    PubMed

    Demaria-Pesce, V H; Balzamo, E

    1994-05-01

    Exposure to a weightless environment such as in spaceflight, leads to a number of physiological responses to assure the survival of an organism in this new environment. However, the real effect of microgravity itself has not been clearly established yet. Considering the environmental and operational characteristics of a spaceflight, and as it has been shown in previous flights, the use of animals, and more particularly the non-human primates, takes on importance in understanding the mechanisms and factors involved in the adaptation to changes in gravitational loading. The SLS-3 flight of the American shuttle, scheduled for launch in early 1996, will be the first flight of the Rhesus project, a joint program of C.N.E.S. and N.A.S.A. which will carry out experiments in various physiological disciplines using the Rhesus monkey as a human surrogate. This 16 day orbital flight will be the longest flight accomplished by the shuttle to date. A number of feasibility studies have already been conducted on Macaca mulatta in order to simulate flight conditions to obtain ground data and to test the technical characteristics of the Rhesus Research Facility which have been described elsewhere. Microgravity might be the main factor inducing the physiological changes observed during spaceflights. However, these responses could also be influenced by other factors related to the spaceflight environment such as the life support systems of the spacecraft. Thus, the main purpose of the present study was to determine the impact of specific restraint and cabin environment on the circadian rhythms of body temperature, feeding, drinking, and sleep-waking in order to separate them from the real impact of microgravity.

  16. Computational Models of the Cardiovascular System and Its Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Kamm, Roger D.

    1999-01-01

    Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a JAVA version of the simulator which will be distributed amongst the cardiovascular team members. Future work on this project involves modifications of the model to represent a rodent (rat) model, further evaluation of the bedrest astronaut and animal data, and systematic investigation of specific countermeasures.

  17. Adaptation of Motility Analysis Apparatus for Space Science and Microgravity Ground-Based Experiments

    NASA Technical Reports Server (NTRS)

    Johnson, Jacqueline U.

    1996-01-01

    Previous space flight studies have described unfavorable effects of microgravity on testicular morphology and spermatogenesis (Cosmos 1887 Biosputnik flight, 9/29/87 - 10/12/87). The flight animals demonstrated small reductions in testicular and epididymal size, the phenomenon explained as resulting water loss. Yet, light microscopic histological preparations revealed few spermatozoa in the rete testis of the flight males compared to control animals. The cause for this finding was subjectively assessed to be due to "the anatomical dislocation of the organs... and a disturbance in testicular blood supply". Unfortunately, the reported effects of microgravity on the reproductive processes (particularly within males) are few and divergent. If habitation in space is a futuristic goal, more objective testing (of male and female gametes) in a microgravity environment will provide insight to the developmental potential of these reproductive cells. As part of the Marshall Space Flight Centers' Summer Faculty Fellowship Program within the Biophysics Branch, a key component of the research investigation was to develop a test to evaluate individual cell motility and orientation in varying gravitational environments, using computerized assessment of sperm cell concentration, morphology and motility to provide objective, quantitative experimental control. In previous work performed jointly by the author and a NASA colleague, it has been shown that macroscopic motile aggregates of spermatozoa were not altered by the absence of microgravity. Variations in the number of normal versus abnormal sperm due to microgravity influences have yet to be established. It is therefore of interest to monitor the cytoskeletal matrix (microtubulin) of these organisms as a possible indicator of cell viability and/or function.

  18. Overview of Microgravity Combustion Research at NASA Lewis Research Center and its Potential Commercial Impact

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie; Friedman, Robert

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

  19. Microgravity: A New Tool for Basic and Applied Research in Space

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.

  20. Potential Commercial Applications from Combustion and Fire Research in Space

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Lyons, Valerie J.

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding - the focus to date of the NASA microgravity-combustion program - has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

Top