Study of Fluid Experiment System (FES)/CAST/Holographic Ground System (HGS)
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Cummings, Rick; Jones, Brian
1992-01-01
The use of holographic and schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The HGS facility at MSFC has been primary resource in researching this capability. Consequently, scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS Crystal Growth and the casting and solidification technology (CAST) experiments that were flown on the International Microgravity Laboratory (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment worked in space. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.
COMSOL based Simulation on the Effect of Electric Field changes due to Lightning on Ground
NASA Astrophysics Data System (ADS)
Premlet, B.; Joby, N. E.; Sabu, S.
2017-12-01
The phenomenon of lightning is accompanied by localised changes in atmospheric electric fields. In cloud-to-ground strike locations, changes in atmospheric electric fields can even be observed at the ground a few minutes prior to a strike. A lot of research has been done already on the electrostatic changes prior to lightning in the region above ground. Through this work, we investigate into the effects of lightning electric fields on/under ground with the aid of simulations done in COMSOL Multiphysics. Horizontal and vertical profiles of voltage gradient, electric field, polarisation etc. are investigated. Simulation experiments were conducted using a general model of lightning electric fields formed using data recorded by the Electric Field Mills(EFMs) from three diverse parts of the world- Kennedy Space Centre (KSC),Florida (Using GHRC datasets),Sonnblick Observatory, Austria and National Centre for Earth Science Studies Trivandrum (NCESS),India. COMSOL models of the global electric circuit were developed using Sandstone as the base model for ground. Similar works in literature have only dealt with lightning electric fields above the ground. This work is the first step towards a high-level simulation on the effects of atmospheric electric field on/below ground. The results of this simulation work can aid lightning forecasting and preparedness by opening new doors for voltage based prediction methods at ground. It is also a tool to understand phenomena such as fulgurites, corona effect etc. It also helps in the design of buried cables and improved grounding systems. This work can also be a first step towards understanding localised potential variations at the ground during lightning.
Dendritic growth and structure of undercooled nickel base alloys
NASA Technical Reports Server (NTRS)
Flemings, M. C.; Shiohara, Y.
1988-01-01
The principal objectives of this overall investigation are to: study means for obtaining high undercooling in levitation melted droplets, and study structures produced upon the solidification of these undercooled specimens. Thermal measurements are made of the undercooling, and of the rapid recalescence, to develop an understanding of the solidification mechanism. Comparison of results is made with the modeling studies. Characterization and metallographic work is done to gain an understanding of the relationship between rapid solidification variables and the structures so produced. In ground based work to date, solidification of undercooled Ni-25 wt percent Sn alloy was observed by high-speed cinematography and the results compared with optical temperature measurements. Also in ground based work, high-speed optical temperature measurements were made of the solidification behavior of levitated metal samples within a transparent glass medium. Two undercooled Ni-Sn alloys were examined. Measurements were carried out on samples at undercoolings up to 330 K. Microstructures of samples produced in ground based work were determined by optical metallography and by SEM, and microsegregation by electron microprobe measurements. A series of flight tests were planned to conduct experiments similar to the ground based experiments. The Space Shuttle Columbia carried an alloy undercooled experiment in the STS 61-C mission in January 1986. A sample of Ni-32.5 wt percent Sn eutectic was melted and solidified under microgravity conditions.
Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign
NASA Technical Reports Server (NTRS)
Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent
2008-01-01
The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite observations. The multiple-lidar data during the CATZ campaign is expected to provide additional information on regional aerosol and cloud dynamics for give overpass, and enable a more realistic assessment of ground-to-satellite correlations. Future work is anticipated to finalize calibrated lidar backscatter profiles and utilization of wind trajectory information to further enable comparisons to CALIPS data.
Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina
2018-01-16
The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.
Frontal Polymerization in Microgravity Summary of Research
NASA Technical Reports Server (NTRS)
Pojman, John A.
2002-01-01
The project began with frontal polymerization (FP). We studied many aspects of FP on the ground and performed two successful weeks of flying on the KC-135. The project evolved into the current flight investigation, Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS), as we recognized that an essential question could best be studied using a non-frontal approach. We present detailed results from our ground-based work on FP, KC-135 results and the background, justification and numerical work for the TIPMPS project.
GPR application on construction foundation study
NASA Astrophysics Data System (ADS)
Amran, T. S. T.; Ismail, M. P.; Ismail, M. A.; Amin, M. S. M.; Ahmad, M. R.; Basri, N. S. M.
2017-11-01
Extensive researches and studies have been carried on radar system for commercialisation of ground penetrating radar (GPR) technology pioneered in construction, and thus claimed its rightful place in the vision of future. The application of ground penetrating radar in construction study is briefly reviewed. Based on previous experimentation and studies, this paper is focus on reinforcement bar (rebar) investigation on construction. The various data through previous references used to discuss and analyse the capability of ground penetrating radar for further improvement in construction projects especially in rebar placement in works.
NASA Astrophysics Data System (ADS)
Nowotarski, Piotr; Paslawski, Jerzy; Wysocki, Bartosz
2017-12-01
Ground works are one of the first processes connected with erecting structures. Based on ground conditions like the type of soil or level of underground water different types and solutions for foundations are designed. Foundations are the base for the buildings, and their proper design and execution is the key for the long and faultless use of the whole construction and might influence on the future costs of the eventual repairs (especially when ground water level is high, and there is no proper water insulation made). Article presents the introduction of chosen Lean Management tools for quality improvement of the process of ground works based on the analysis made on the construction site of vehicle control station located in Poznan, Poland. Processes assessment is made from different perspectives taking into account that 3 main groups of workers were directly involved in the process: blue collar-workers, site manager and site engineers. What is more comparison is made on the 3 points of view to the problems that might occur during this type of works, with details analysis on the causes of such situation? Authors presents also the change of approach of workers directly involved in the mentioned processes regarding introduction of Lean Management methodology, which illustrates the problem of scepticism for new ideas of the people used to perform works and actions in traditional way. Using Lean Management philosophy in construction is a good idea to streamline processes in company, get rid of constantly recurring problems, and in this way improve the productivity and quality of executed activities. Performed analysis showed that different groups of people have very different idea and opinion on the problems connected with executing the same process - ground works and only having full picture of the situation (especially in construction processes) management can take proper problems-preventing actions that consequently can influence on the amount of waste generated on the construction cite which positively influence on the external environment.
NASA Technical Reports Server (NTRS)
Flynn-Evans, Erin; Gregory, Kevin; Arsintescu, Lucia; Whitmire, Alexandra
2016-01-01
Sleep loss, circadian desynchronization, and work overload occur to some extent for ground and flight crews, prior to and during spaceflight missions. Ground evidence indicates that such risk factors may lead to performance decrements and adverse health outcomes, which could potentially compromise mission objectives. Efforts are needed to identify the environmental and mission conditions that interfere with sleep and circadian alignment, as well as individual differences in vulnerability and resiliency to sleep loss and circadian desynchronization. Specifically, this report highlights a collection of new evidence to better characterize the risk and reveals new gaps in this risk as follows: Sleep loss is apparent during spaceflight. Astronauts consistently average less sleep during spaceflight relative to on the ground. The causes of this sleep loss remain unknown, however ground-based evidence suggests that the sleep duration of astronauts is likely to lead to performance impairment and short and long-term health consequences. Further research is needed in this area in order to develop screening tools to assess individual astronaut sleep need in order to quantify the magnitude of sleep loss during spaceflight; current and planned efforts in BHP's research portfolio address this need. In addition, it is still unclear whether the conditions of spaceflight environment lead to sleep loss or whether other factors, such as work overload lead to the reduced sleep duration. Future data mining efforts and continued data collection on the ISS will help to further characterize factors contributing to sleep loss. Sleep inertia has not been evaluated during spaceflight. Ground-based studies confirm that it takes two to four hours to achieve optimal performance after waking from a sleep episode. Sleep inertia has been associated with increased accidents and reduced performance in operational environments. Sleep inertia poses considerable risk during spaceflight when emergency situations necessitate that crewmembers wake from sleep and make quick decisions. A recently completed BHP investigation assesses the effects of sleep inertia upon abrupt awakening, with and without hypnotics currently used in spaceflight; results from this investigation will help to inform strategies relative to sleep inertia effects on performance. Circadian desynchrony has been observed during spaceflight. Circadian desynchrony during spaceflight develops due to schedule constraints requiring non-24 operations or 'slam-shifts' and due to insufficient or mis-timed light exposure. In addition, circadian misalignment has been associated with reduced sleep duration and increased medication use. In ground-based studies, circadian desynchrony has been associated with significant performance impairment and increased risk of accidents when operations coincide with the circadian nadir. There is a great deal of information available on how to manage circadian misalignment, however, there are currently no easily collected biomarkers that can be used during spaceflight to determine circadian phase. Current research efforts are addressing this gap. Work overload has been documented during current spaceflight operations. NASA has established work hour guidelines that limit shift duration, however, schedule creep, where duty requirements necessitate working beyond scheduled work hours, has been reported. This observation warrants the documentation of actual work hours in order to improve planning and in order to ensure that astronauts receive adequate down time. In addition to concerns about work overload, ground based evidence suggests that work underload may be a concern during deep space missions, where torpor may develop and physically demanding workload will be exchanged for monitoring of autonomous systems. Given that increased automation is anticipated for exploration vehicles, fatigue effects in the context of such systems needs to be further understood. Performance metrics are needed to evaluate fitness-for-duty during spaceflight. Although ground-based evidence supports the notion that sleep loss, circadian desynchronization and work overload lead to performance impairment, inconsistency in the measures used to evaluate performance during spaceflight make it difficult to evaluate the magnitude of performance impairment during spaceflight. Work is underway to standardize measures of performance evaluation during spaceflight. Once established, such performance indicators need to be correlated with operational performance. Individual differences in sleep need and circadian preference, phase shifting ability and period have been documented in ground-based studies. Individual differences in response to sleep loss and circadian misalignment have also been documented and are presumed to be associated with genetic polymorphisms. No studies have systematically reported individual differences in sleep or circadian-related outcomes during spaceflight. More work is needed in this area in order to identify genetic or phenotypic biomarkers that predict resilience or vulnerability to sleep loss in order to personalize countermeasure strategies and mitigate performance impairment during spaceflight. Two laboratory and field investigations specific to this topic are currently ongoing; additional efforts, including an effort to mine existing biological data from spaceflight relative to sleep and circadian outcomes, are planned. Sex differences in sleep need and circadian period and phase have been reported in ground-based studies. The impact of these sex differences on performance is unclear. Sex differences in sleep need and circadian rhythms have not been systematically studied during spaceflight, presumably due to the small number of women that have flown in space. More research is needed in this area to evaluate whether any of the observed sex differences in physiology lead to altered performance in spaceflight and on the ground.
Comparison of High-Frequency Solar Irradiance: Ground Measured vs. Satellite-Derived
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew; Weekley, Andrew
2016-11-21
High-frequency solar variability is an important to grid integration studies, but ground measurements are scarce. The high resolution irradiance algorithm (HRIA) has the ability to produce 4-sceond resolution global horizontal irradiance (GHI) samples, at locations across North America. However, the HRIA has not been extensively validated. In this work, we evaluate the HRIA against a database of 10 high-frequency ground-based measurements of irradiance. The evaluation focuses on variability-based metrics. This results in a greater understanding of the errors in the HRIA as well as suggestions for improvement to the HRIA.
Collection, quality control and delivery of ground-based magnetic data during ESA's Swarm mission
NASA Astrophysics Data System (ADS)
Macmillan, Susan; Humphries, Thomas; Flower, Simon; Swan, Anthony
2016-04-01
Ground-based magnetic data are used in a variety of ways when analysing satellite data. Selecting satellite data often involves the use of magnetic disturbance indices derived from ground-based stations and inverting satellite magnetic data for models of fields from various sources often requires ground-based data. Ground-based data can also be valuable independent data for validation purposes. We summarise data collection and quality control procedures in place at the British Geological Survey for global ground-based observatory and repeat station data. Whilst ongoing participation in the ICSU World Data System and INTERMAGNET facilitates this work, additional procedures have been specially developed for the Swarm mission. We describe these in detail.
Participative Leadership: Perspectives of Community College Presidents
ERIC Educational Resources Information Center
Grasmick, Lauren; Davies, Timothy Gray; Harbour, Clifford P.
2012-01-01
This grounded theory study addressed the issue of how community college presidents foster active, broad-based participation in campus decision-making processes. This study was based on in-depth interviews with nationally recognized community college presidents selected on the basis of their work in implementing participative governance within…
Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin
2015-02-19
For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.
Exercise-training protocols for astronauts in microgravity
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Bulbulian, R.; Bernauer, E. M.; Haskell, W. L.; Moore, T.
1989-01-01
Based on physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100 percent of ground-based levels. The other assumes that maximal aerobic power in flight can be reduced by 10 percent of the ground-based level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Matthew; Constable, Steve; Ing, Christopher
2014-06-21
We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψ{sub T}, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen formore » cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 − 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.« less
Summary of Sessions: Ionosphere - Thermosphere - Mesosphere Working Group
NASA Technical Reports Server (NTRS)
Spann, J. F.; Bhattacharyya, A.
2006-01-01
The topics covered by the sessions under the working group on Ionosphere-Thermosphere-Mesosphere dealt with various aspects of the response of the ionosphere-thermosphere coupled system and the middle atmosphere to solar variability. There were four plenary talks related to the theme of this working group, thirteen oral presentations in three sessions and six poster presentations. A number of issues related to effects of solar variability on the ionosphere-thermosphere, observed using satellite and ground-based data including ground magnetometer observations, radio beacon studies of equatorial spread F, and modeling of some of these effects, were discussed. Radar observations of the mesosphere-lower thermosphere region and a future mission to study the coupling of thunderstorm processes to this region, the ionosphere, and magnetosphere were also presented.
2005-08-01
the Office of the Secretary of Defense chartered the Joint Architecture for Unmanned Ground Systems ( JAUGS ) Working Group to address these concerns...The JAUGS Working Group was tasked with developing an initial standard for interoperable unmanned ground systems. In 2002, the charter of the... JAUGS Working Group was 1 2 modified such that their efforts would extend to all unmanned systems, not only ground systems. The standard was
The Internet and Academics' Workload and Work-Family Balance
ERIC Educational Resources Information Center
Heijstra, Thamar M.; Rafnsdottir, Gudbjorg Linda
2010-01-01
The aim of this article is to analyse whether the Internet and other ICT technologies support a work-family balance amongst academics. The study is based on 20 in-depth interviews with academics in Iceland and analysed according to the Grounded Theory Approach. This study challenges the notion that the Internet, as part of ICT technology, makes it…
Calibrations and Comparisons of Aerosol Spectrometers linking Ground and Airborne Measurements
NASA Astrophysics Data System (ADS)
Williamson, C.; Brock, C. A.; Erdesz, F.
2015-12-01
The nucleation-mode aerosol size spectrometer (NMASS), a fast-time response instrument measuring aerosol size distributions between 5 and 60nm, is to sample in the boundary layer and free troposphere on NASA's Atmospheric Tomography mission (ATom), providing contiguous data with global coverage in all four seasons. In preparation for this the NMASS is calibrated for the expected flight conditions and compatibility studies are made with ground-based instrumentation. The NMASS is comprised of 5 parallel condensation particle counters (CPCs) using perfluoro-tributylamine as a working fluid. Understanding the variation of CPC counting efficiencies with respect to the chemical composition of the sample is important for accurate data analysis and can be used to give indirect information about sample chemical composition. This variation is strongly dependent on the working fluid. The absolute responses and associated variations of the NMASS to ammonium sulfate and limonene ozonolysis products, compounds pertinent to the composition of particles nucleated in the free troposphere and boundary later, are compared to those of butanol, diethylene-glycol and water based CPCs, which are more commonly used in ground-based measurements. While fast time-response is key to measuring aerosol size distributions on flights, high size-resolution is often prioritized for ground-based measurements, and so a scanning mobility particle sizer (SMPS) is commonly used. Inter-comparison between NMASS and SMPS data is non-trivial because of the different working principles and resolutions of the instruments and yet it is vital, for example, for understanding the sources of particles observed during flights and the global relevance of phenomena observed from field stations and in chambers. We report compatibility studies on inversions of data from the SMPS and NMASS, evaluating temporal and spatial resolution and sources of uncertainty.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Cummings, Rick; Jones, Brian
1992-01-01
The microgravity materials processing program has been instrumental in providing the crystal growth community with an experimental environment to better understand the phenomena associated with the growing of crystals. In many applications one may pursue the growth of large single crystals which cannot be grown on earth due to convective driven flows. A microgravity environment is characterized by neither convection of buoyancy. Consequently superior crystals are able to be grown in space. On the other hand, since neither convection nor buoyancy dominates the fluid flow in a microgravity environment, then lesser dominating phenomena can affect crystal growth, such as surface driven flows or diffusion limited solidification. In the case of experiments that are to be flown in space using the Fluid Experiments System (FES), diffusion limited growth should be the dominating phenomenon. The use of holographic and Schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The Holographic Ground System (HGS) facility at MSFC has been a primary resource in researching this capability. Consequently scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS (triglycine sulfate) Crystal Growth and the Casting and Solidification Technology (CAST) experiments that were flown on the International Microgravity Lab (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment in space worked. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.
NASA Astrophysics Data System (ADS)
Rivera, C.; Stremme, W.; Grutter, M.
2012-04-01
The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.
COMPILATION OF GROUND-WATER MODELS
Ground-water modeling is a computer-based methodology for mathematical analysis of the mechanisms and controls of ground-water systems for the evaluation of policies, action, and designs that may affect such systems. n addition to satisfying scientific interest in the workings of...
Future of Space Astronomy: A Global Road Map for the Next Decades
NASA Technical Reports Server (NTRS)
Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan;
2012-01-01
The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.
Lexén, Annika; Svensson, Bengt
2016-08-01
Despite the lack of evidence for effectiveness of the Flexible Assertive Community Treatment (Flexible ACT), the model is considered feasible and is well received by mental health professionals. No current studies have adequately examined mental health professional experiences of working with Flexible ACT. The aim of this study was to explore mental health professional experiences of working with the Flexible ACT model compared with standard care. The study was guided by grounded theory and based on the interviews with 19 theoretically chosen mental health professionals in Swedish urban areas primarily working with consumers with psychosis, who had worked with the Flexible ACT model for at least 6 months. The analysis resulted in the core category: "Flexible ACT and the shared caseload create a common action space" and three main categories: (1) "Flexible ACT fills the need for a systematic approach to crisis intervention"; (2) "Flexible ACT has advantages in the psychosocial working environment"; and (3) "Flexible ACT increases the quality of care". Mental health professionals may benefit from working with the Flexible ACT model through decreased job-strain and stress, increased feeling of being in control over their work situation, and experiences of providing higher quality of care.
NASA Astrophysics Data System (ADS)
Nakata, Mitsuhiko; Tanimoto, Shunsuke; Ishida, Shuichi; Ohsumi, Michio; Hoshikuma, Jun-ichi
2017-10-01
There is risk of bridge foundations to be damaged by liquefaction-induced lateral spreading of ground. Once bridge foundations have been damaged, it takes a lot of time for restoration. Therefore, it is important to assess the seismic behavior of the foundations on liquefiable ground appropriately. In this study, shaking table tests of models on a scale of 1/10 were conducted at the large scale shaking table in Public Works Research Institute, Japan, to investigate the seismic behavior of pile-supported bridge abutment on liquefiable ground. The shaking table tests were conducted for three types of model. Two are models of existing bridge which was built without design for liquefaction and the other is a model of bridge which was designed based on the current Japanese design specifications for highway bridges. As a result, the bending strains of piles of the abutment which were designed based on the current design specifications were less than those of the existing bridge.
NASA Astrophysics Data System (ADS)
Wang, Wei; Sun, Yeqing; Zhao, Qian; Han, Lu
2016-07-01
Highly ionizing radiation (HZE) in space is considered as main factor causing biological effects. Radiobiological studies during space flights are unrepeatable due to the variable space radiation environment, ground-base ion radiations are usually performed to simulate of the space biological effect. Spaceflights present a low-dose rate (0.1˜~0.3mGy/day) radiation environment inside aerocrafts while ground-base ion radiations present a much higher dose rate (100˜~500mGy/min). Whether ground-base ion radiation can reflect effects of space radiation is worth of evaluation. In this research, we compared the functional proteomic profiles of rice plants between on-ground simulated HZE particle radiation and spaceflight treatments. Three independent ground-base seed ionizing radiation experiments with different cumulative doses (dose range: 2˜~20000mGy) and different liner energy transfer (LET) values (13.3˜~500keV/μμm) and two independent seed spaceflight experiments onboard Chinese 20th satellite and SZ-6 spacecraft were carried out. Alterations in the proteome were analyzed by two-dimensional difference gel electrophoresis (2-D DIGE) with MALDI-TOF/TOF mass spectrometry identifications. 45 and 59 proteins showed significant (p<0.05) and reproducible quantitative differences in ground-base ion radiation and spaceflight experiments respectively. The functions of ground-base radiation and spaceflight proteins were both involved in a wide range of biological processes. Gene Ontology enrichment analysis further revealed that ground-base radiation responsive proteins were mainly involved in removal of superoxide radicals, defense response to stimulus and photosynthesis, while spaceflight responsive proteins mainly participate in nucleoside metabolic process, protein folding and phosphorylation. The results implied that ground-base radiations cannot truly reflect effects of spaceflight radiations, ground-base radiation was a kind of indirect effect to rice causing oxidation and metabolism stresses, but space radiation was a kind of direct effect leading to macromolecule (DNA and protein) damage and signal pathway disorders. This functional proteomic analysis work might provide a new evaluation method for further on-ground simulated HZE radiation experiments.
Kasagi, M; Fujita, K; Tsuji, M; Takewaki, I
2016-02-01
A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency) earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency) and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.
1975-01-01
Studies Program. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of...calculated based on a low altitude mission profile. 2. GROUND RULES AND BASIC ASSUMPTIONS Base Design All aircraft synthesized for this study are...In this study manoeuverability is defined in terms of specific excess power (as shown in Fig. 5) at specified Mach number, altitude,and load
Ground-based solar astrometric measurements during the PICARD mission
NASA Astrophysics Data System (ADS)
Irbah, A.; Meftah, M.; Corbard, T.; Ikhlef, R.; Morand, F.; Assus, P.; Fodil, M.; Lin, M.; Ducourt, E.; Lesueur, P.; Poiet, G.; Renaud, C.; Rouze, M.
2011-11-01
PICARD is a space mission developed mainly to study the geometry of the Sun. The satellite was launched in June 2010. The PICARD mission has a ground program which is based at the Calern Observatory (Observatoire de la C^ote d'Azur). It will allow recording simultaneous solar images from ground. Astrometric observations of the Sun using ground-based telescopes need however an accurate modelling of optical e®ects induced by atmospheric turbulence. Previous works have revealed a dependence of the Sun radius measurements with the observation conditions (Fried's parameter, atmospheric correlation time(s) ...). The ground instruments consist mainly in SODISM II, replica of the PICARD space instrument and MISOLFA, a generalized daytime seeing monitor. They are complemented by standard sun-photometers and a pyranometer for estimating a global sky quality index. MISOLFA is founded on the observation of Angle-of-Arrival (AA) °uctuations and allows us to analyze atmospheric turbulence optical e®ects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried's parameter, size of the isoplanatic patch, the spatial coherence outer scale and atmospheric correlation times). This paper presents an overview of the ground based instruments of PICARD and some results obtained from observations performed at Calern observatory in 2011.
Height Accuracy Based on Different Rtk GPS Method for Ultralight Aircraft Images
NASA Astrophysics Data System (ADS)
Tahar, K. N.
2015-08-01
Height accuracy is one of the important elements in surveying work especially for control point's establishment which requires an accurate measurement. There are many methods can be used to acquire height value such as tacheometry, leveling and Global Positioning System (GPS). This study has investigated the effect on height accuracy based on different observations which are single based and network based GPS methods. The GPS network is acquired from the local network namely Iskandar network. This network has been setup to provide real-time correction data to rover GPS station while the single network is based on the known GPS station. Nine ground control points were established evenly at the study area. Each ground control points were observed about two and ten minutes. It was found that, the height accuracy give the different result for each observation.
Analysis of CPolSK-based FSO system working in space-to-ground channel
NASA Astrophysics Data System (ADS)
Su, Yuwei; Sato, Takuro
2018-03-01
In this article, the transmission performance of a circle polarization shift keying (CPolSK)-based free space optical (FSO) system working in space-to-ground channel is analyzed. Formulas describing the optical polarization distortion caused by the atmospheric turbulence and the communication qualities in terms of signal-to-noise-ratio (SNR), bit-error-ratio (BER) and outage probability of the proposed system are derived. Based on the Stokes parameters data measured by a Japanese optical communication satellite, we evaluate the space-to-ground FSO link and simulate the system performance under a varying regime of turbulence strength. The proposed system provides a more efficient way to compensate scintillation effects in a comparison with the on-off-keying (OOK)-based FSO system. These results are useful to the designing and evaluating of a deep space FSO communication system.
NASA Technical Reports Server (NTRS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-01-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
NASA Astrophysics Data System (ADS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-11-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
How to do a grounded theory study: a worked example of a study of dental practices
2011-01-01
Background Qualitative methodologies are increasingly popular in medical research. Grounded theory is the methodology most-often cited by authors of qualitative studies in medicine, but it has been suggested that many 'grounded theory' studies are not concordant with the methodology. In this paper we provide a worked example of a grounded theory project. Our aim is to provide a model for practice, to connect medical researchers with a useful methodology, and to increase the quality of 'grounded theory' research published in the medical literature. Methods We documented a worked example of using grounded theory methodology in practice. Results We describe our sampling, data collection, data analysis and interpretation. We explain how these steps were consistent with grounded theory methodology, and show how they related to one another. Grounded theory methodology assisted us to develop a detailed model of the process of adapting preventive protocols into dental practice, and to analyse variation in this process in different dental practices. Conclusions By employing grounded theory methodology rigorously, medical researchers can better design and justify their methods, and produce high-quality findings that will be more useful to patients, professionals and the research community. PMID:21902844
How to do a grounded theory study: a worked example of a study of dental practices.
Sbaraini, Alexandra; Carter, Stacy M; Evans, R Wendell; Blinkhorn, Anthony
2011-09-09
Qualitative methodologies are increasingly popular in medical research. Grounded theory is the methodology most-often cited by authors of qualitative studies in medicine, but it has been suggested that many 'grounded theory' studies are not concordant with the methodology. In this paper we provide a worked example of a grounded theory project. Our aim is to provide a model for practice, to connect medical researchers with a useful methodology, and to increase the quality of 'grounded theory' research published in the medical literature. We documented a worked example of using grounded theory methodology in practice. We describe our sampling, data collection, data analysis and interpretation. We explain how these steps were consistent with grounded theory methodology, and show how they related to one another. Grounded theory methodology assisted us to develop a detailed model of the process of adapting preventive protocols into dental practice, and to analyse variation in this process in different dental practices. By employing grounded theory methodology rigorously, medical researchers can better design and justify their methods, and produce high-quality findings that will be more useful to patients, professionals and the research community.
1998-10-10
Breast tissue specimens in traditional sample dishes. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.
1998-10-10
Time-lapse exposure depicts Bioreactor rotation. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.
Optical study of the DAFT/FADA galaxy cluster survey
NASA Astrophysics Data System (ADS)
Martinet, N.; Durret, F.; Clowe, D.; Adami, C.
2013-11-01
DAFT/FADA (Dark energy American French Team) is a large survey of ˜90 high redshift (0.4
Reiter, Herwig
2010-01-01
This article explores young women's orientation to work and motherhood in the post-communist context of radical socio-economic transformation in Europe. Based on a qualitative-explorative study into meanings of work and unemployment among young people in post-Soviet Lithuania, the paper introduces an empirically grounded classification of imagined gender-work arrangements. The single patterns of the classification are based on the three configurations of work and motherhood, work and partnership, and work and provision. The findings inform the reconstruction of the 'landscape' of imagined gendered adulthoods in Europe as well as the analysis of emerging gender relations under conditions of rapid social change.
Ground Motion Prediction Models for Caucasus Region
NASA Astrophysics Data System (ADS)
Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino
2016-04-01
Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.
Paraschiv, Spiru; Constantin, Daniel-Eduard; Paraschiv, Simona-Lizica; Voiculescu, Mirela
2017-11-20
In this work we present the evolution of tropospheric nitrogen dioxide (NO₂) content over several important European cities during 2005-2014 using space observations and ground-based in-situ measurements. The NO₂ content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI), while the NO₂ volume mixing ratio measurements were obtained from the European Environment Agency (EEA) air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E), Berlin (52.51° N, 13.41° E), Bucharest (44.43° N, 26.10° E), Madrid (40.38° N, 3.71° W), Lisbon (38.71° N, 9.13° W), Paris (48.85° N, 2.35° E), Rome (41.9° N, 12.50° E), and Rotterdam (51.91° N, 4.46° E). We show that OMI NO₂ tropospheric column data can be used to assess the evolution of NO₂ over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50) between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80) between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO₂ negative trend for all of locations presented in this study.
Structure and Symmetry of Ground States of Colloidal Clusters
NASA Astrophysics Data System (ADS)
Klein, Ellen D.; Rogers, W. Benjamin; Manoharan, Vinothan N.
We experimentally study colloidal clusters consisting of 6 to 100 spherical particles bound together with short range, DNA-mediated attractions. These clusters are a model system for understanding colloidal self-assembly and dynamics, since the positions and motion of all particles can be observed in real space. For 10 particles and fewer, the ground states are degenerate, and, as shown in previous work, the probabilities of observing specific clusters depend primarily on their rotational entropy, which is determined by symmetry. Thus less symmetric structures are more frequently observed. However, for larger numbers of particles the ground states appear to be subsets of close-packed lattices, which tend to have higher symmetry. To understand how this transition occurs as a function of the number of particles, we coat colloidal particles with complementary DNA strands that induce a short-range, temperature-dependent interparticle attraction. We then assemble and anneal an ensemble of clusters with 10 or more particles. We characterize the number of apparent ground states, their symmetries, and their probabilities as a function of the size of the cluster using confocal microscopy. This work is supported by NSF DMR-1306410. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program.
NASA Astrophysics Data System (ADS)
Colon-Pagan, Ian; Kuo, Ying-Hwa
2008-10-01
In this study, we compare precipitable water vapor (PWV) values from ground-based GPS water vapor sensing and COSMIC radio occultation (RO) measurements over the Caribbean Sea, Gulf of Mexico, and United States regions as well as global analyses from NCEP and ECMWF models. The results show good overall agreement; however, the PWV values estimated by ground-based GPS receivers tend to have a slight dry bias for low PWV values and a slight wet bias for higher PWV values, when compared with GPS RO measurements and global analyses. An application of a student T-test indicates that there is a significant difference between both ground- and space-based GPS measured datasets. The dry bias associated with space-based GPS is attributed to the missing low altitude data, where the concentration of water vapor is large. The close agreements between space-based and global analyses are due to the fact that these global analyses assimilate space-based GPS RO data from COSMIC, and the retrieval of water vapor profiles from space-based technique requires the use of global analyses as the first guess. This work is supported by UCAR SOARS and a grant from the National Oceanic and Atmospheric Administration, Educational Partnership Program under the cooperative agreement NA06OAR4810187.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1991-01-01
This quarterly reports on space communications, radio navigation, radio science, and ground based radio and radar astronomy in connection with the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and in operations. Also included is standards activity at JPL for space data and information systems and DSN work. Specific areas of research are: Tracking and ground based navigation; Spacecraft and ground communications; Station control and system technology; DSN Systems Implementation; and DSN Operations.
2005-03-01
ethnography , grounded theory , phenomenological , case study , and content analysis. As ethnography is based upon a longitudinal study in...a qualitative methodology consisting of a case study strategy is warranted for this research project. Yin (2003) lists five components of research ...systems. Journal of End User Computing, 12(3), 14. Yin, R. K. (2003). Case Study Research : Design and
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
Heads up and camera down: a vision-based tracking modality for mobile mixed reality.
DiVerdi, Stephen; Höllerer, Tobias
2008-01-01
Anywhere Augmentation pursues the goal of lowering the initial investment of time and money necessary to participate in mixed reality work, bridging the gap between researchers in the field and regular computer users. Our paper contributes to this goal by introducing the GroundCam, a cheap tracking modality with no significant setup necessary. By itself, the GroundCam provides high frequency, high resolution relative position information similar to an inertial navigation system, but with significantly less drift. We present the design and implementation of the GroundCam, analyze the impact of several design and run-time factors on tracking accuracy, and consider the implications of extending our GroundCam to different hardware configurations. Motivated by the performance analysis, we developed a hybrid tracker that couples the GroundCam with a wide area tracking modality via a complementary Kalman filter, resulting in a powerful base for indoor and outdoor mobile mixed reality work. To conclude, the performance of the hybrid tracker and its utility within mixed reality applications is discussed.
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Breast tissue specimens in traditional sample dishes. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Time-lapse exposure depicts Bioreactor rotation. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.
ERIC Educational Resources Information Center
Gessler, Michael; Howe, Falk
2015-01-01
The "Riga Conclusions" of the European Ministries of Education of 22 June 2015 for the orientation of vocational education and training in Europe are promoting work-based learning as one of five "medium-term deliverables" for the next five years. But: How should and can work-based teaching and learning be designed? Our approach…
Opting in and opting out: a grounded theory of nursing's contribution to inpatient rehabilitation.
Pryor, Julie; Walker, Annette; O'Connell, Beverly; Worrall-Carter, Linda
2009-12-01
To develop a grounded theory of nursing's contribution to patient rehabilitation from the perspective of nurses working in inpatient rehabilitation. Grounded theory method, informed by the theoretical perspective of symbolic interactionism, was used to guide data collection and analysis, and the development of a grounded theory. Five inpatient rehabilitation units in Australia. Thirty-five registered and 18 enrolled nurses participated in audio-taped interviews and/or were observed during periods of their everyday practice. The analysis revealed a situation whereby nurses made decisions about when to 'opt in' and when to 'opt out' of inpatient rehabilitation. This occurred on two levels: with their interaction with patients and allied health professionals, and when faced with negative system issues that impacted on their ability to contribute to patient rehabilitation. The primary contribution nurses made to inpatient rehabilitation was working directly with patients, enabling them to self-care. Nurses coached patients when their decisions about 'opting in' and 'opting out' were based on assessment of the person in their particular context. In contrast, the nurses mostly distanced themselves from system-based problems, 'opting out' of addressing them. They did this not to make their working lives easier, but more manageable. System-based problems impacted negatively on the nurses' ability to deliver comprehensive rehabilitation care. As a consequence, some nurses felt unable to influence the care and they withdrew professionally to make their work lives more manageable.
Parker, Rachel
2018-06-01
Grounded theory analysis of secondary school staff and pupil perceptions about the barriers to preventative work for adolescent self-harm within the secondary school setting in Wales. Qualitative and grounded theory. Two secondary schools in Wales were purposefully sampled for variation. Four group interviews took place using qualitative research methods (Participatory Rapid Appraisal) with six school-based professionals and six students aged more than 16 years. Three pupil participants had long-term experience themselves of self-harming behaviours; all the remaining participants had encountered pupils who self-harmed. The research interviews were transcribed verbatim, generating school context-dependent information. This was analysed through the logic of abduction using the constant comparative grounded theory method because of its ability to focus on axial coding for context. The ontology that shaped this work was critical realism within a public health paradigm. A theoretical model of stigma resulted from the grounded theory analytical process, specifically in relation to staff and student perceptions about adolescent self-harm within the institutional context. This meant that social-based behaviours in the secondary school setting centred on the topic and behaviour of adolescent self-harm were structured by stigma. The findings of this study offer an explanation on the exclusion of adolescent self-harm from preventative work in secondary schools. The stigma model demonstrates that adolescent self-harm is excluded from the socio-cultural norms of the institutional setting. Applying the UK Equality Act (2010), this is discrimination. Further research on the institutional-level factors impacting adolescent self-harm in the secondary school context in England and Wales is now urgently needed. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Andersen, Erin M.
2017-01-01
This dissertation will broaden the purview of recent scholarship pertaining to socially just writing assessments by making connections among assemblage theory and materialism, studies of ecological and anti-racist assessments, and studies of writing center work, to ground theoretical conversations in everyday practices. Focusing on systemic…
Reinventing the Role of the University Researcher
ERIC Educational Resources Information Center
Nelson, Ingrid A.; London, Rebecca A.; Strobel, Karen R.
2015-01-01
This study examines the structuring of university-community research partnerships that facilitate theoretically grounded research while also generating findings that community partners find actionable. We analyze one partnership that positions university-based researchers as members of a team working to create, maintain, and use a longitudinal…
Study on the Effect of Steel Wheel and Ground on Single Steel Vibratory Roller
NASA Astrophysics Data System (ADS)
Li, Jiabo; You, Guanghui; Qiao, Jiabin; Ye, Min; Guo, Jin; Zhang, Hongyang
2018-03-01
In the compacting operation of single drum vibratory roller, the forces acting on the foundation of drum include the weight of the drum, the weight of the frame, the exciting force and so on. Based on the theoretical study of ground mechanics, this paper analyzes and calculates the forces acting on the steel wheel and the ground, and obtains the distribution of the laminar stress in the ground when the working plane vibrates. Derive the formula of dynamic compressive stress and static compressive stress in the foundation during vibration compaction. Through the compaction test of the soil trough of 20T single drum roller, the compressive stress data of the soil hydraulic field are obtained. The data of the dynamic compressive stress and the static compressive stress of each layer during the third compaction are obtained, and the theoretical research is verified.
NASA Astrophysics Data System (ADS)
Feurer, D.; Le Mouelic, S.; Raucoules, D.; Carnec, C.; Nédellec, J.-L.
2004-06-01
Help of satellite radar interferometry for urban subsidence observation has been demonstrated for several years now. This monitoring tool is able to provide an assessment of the ground motion with a millimetric accuracy and a large spatial coverage. We present here a result of this technique applied to the monitoring of a small area : the
Fouche, Pieter F; Stein, Christopher; Simpson, Paul; Carlson, Jestin N; Zverinova, Kristina M; Doi, Suhail A
2018-01-29
Endotracheal intubation (ETI) is a critical procedure performed by both air medical and ground based emergency medical services (EMS). Previous work has suggested that ETI success rates are greater for air medical providers. However, air medical providers may have greater airway experience, enhanced airway education, and access to alternative ETI options such as rapid sequence intubation (RSI). We sought to analyze the impact of the type of EMS on RSI success. A systematic literature search of Medline, Embase, and the Cochrane Library was conducted and eligibility, data extraction, and assessment of risk of bias were assessed independently by two reviewers. A bias-adjusted meta-analysis using a quality-effects model was conducted for the primary outcomes of overall intubation success and first-pass intubation success. Forty-nine studies were included in the meta-analysis. There was no difference in the overall success between flight and ground based EMS; 97% (95% CI 96-98) vs. 98% (95% CI 91-100), and no difference in first-pass success for flight compared to ground based RSI; 82% (95% CI 73-89) vs. 82% (95% CI 70-93). Compared to flight non-physicians, flight physicians have higher overall success 99% (95% CI 98-100) vs. 96% (95% CI 94-97) and first-pass success 89% (95% CI 77-98) vs. 71% (95% CI 57-84). Ground-based physicians and non-physicians have a similar overall success 98% (95% CI 88-100) vs. 98% (95% CI 95-100), but no analysis for physician ground first pass was possible. Both overall and first-pass success of RSI did not differ between flight and road based EMS. Flight physicians have a higher overall and first-pass success compared to flight non-physicians and all ground based EMS, but no such differences are seen for ground EMS. Our results suggest that ground EMS can use RSI with similar outcomes compared to their flight counterparts.
Ground-based Search of Earth-mass Exoplanets using Transit-Timing Variations
NASA Astrophysics Data System (ADS)
Fernandez, J. M.
2010-10-01
This work presents recent results from a ground-based transit follow-up program of the extrasolar planet XO-2b in order to find Earth-mass companions. It also introduces the future use of the MONET 1m-class robotic telescopes as part of the effort to overcome the difficulties of this kind of project.
A Ground-Based Research Vehicle for Base Drag Studies at Subsonic Speeds
NASA Technical Reports Server (NTRS)
Diebler, Corey; Smith, Mark
2002-01-01
A ground research vehicle (GRV) has been developed to study the base drag on large-scale vehicles at subsonic speeds. Existing models suggest that base drag is dependent upon vehicle forebody drag, and for certain configurations, the total drag of a vehicle can be reduced by increasing its forebody drag. Although these models work well for small projectile shapes, studies have shown that they do not provide accurate predictions when applied to large-scale vehicles. Experiments are underway at the NASA Dryden Flight Research Center to collect data at Reynolds numbers to a maximum of 3 x 10(exp 7), and to formulate a new model for predicting the base drag of trucks, buses, motor homes, reentry vehicles, and other large-scale vehicles. Preliminary tests have shown errors as great as 70 percent compared to Hoerner's two-dimensional base drag prediction. This report describes the GRV and its capabilities, details the studies currently underway at NASA Dryden, and presents preliminary results of both the effort to formulate a new base drag model and the investigation into a method of reducing total drag by manipulating forebody drag.
Taking Root: a grounded theory on evidence-based nursing implementation in China.
Cheng, L; Broome, M E; Feng, S; Hu, Y
2018-06-01
Evidence-based nursing is widely recognized as the critical foundation for quality care. To develop a middle-range theory on the process of evidence-based nursing implementation in Chinese context. A grounded theory study using unstructured in-depth individual interviews was conducted with 56 participants who were involved in 24 evidence-based nursing implementation projects in Mainland China from September 2015 to September 2016. A middle-range grounded theory of 'Taking Root' was developed. The theory describes the evidence implementation process consisting of four components (driving forces, process, outcome, sustainment/regression), three approaches (top-down, bottom-up and outside-in), four implementation strategies (patient-centred, nurses at the heart of change, reaching agreement, collaboration) and two patterns (transformational and adaptive implementation). Certain perspectives may have not been captured, as the retrospective nature of the interviewing technique did not allow for 'real-time' assessment of the actual implementation process. The transferability of the findings requires further exploration as few participants with negative experiences were recruited. This is the first study that explored evidence-based implementation process, strategies, approaches and patterns in the Chinese nursing practice context to inform international nursing and health policymaking. The theory of Taking Root described various approaches to evidence implementation and how the implementation can be transformational for the nurses and the setting in which they work. Nursing educators, managers and researchers should work together to improve nurses' readiness for evidence implementation. Healthcare systems need to optimize internal mechanisms and external collaborations to promote nursing practice in line with evidence and achieve clinical outcomes and sustainability. © 2017 International Council of Nurses.
Voiculescu, Mirela
2017-01-01
In this work we present the evolution of tropospheric nitrogen dioxide (NO2) content over several important European cities during 2005–2014 using space observations and ground-based in-situ measurements. The NO2 content was derived using the daily observations provided by the Ozone Monitoring Instrument (OMI), while the NO2 volume mixing ratio measurements were obtained from the European Environment Agency (EEA) air quality monitoring stations database. The European cities selected are: Athens (37.98° N, 23.72° E), Berlin (52.51° N, 13.41° E), Bucharest (44.43° N, 26.10° E), Madrid (40.38° N, 3.71° W), Lisbon (38.71° N, 9.13° W), Paris (48.85° N, 2.35° E), Rome (41.9° N, 12.50° E), and Rotterdam (51.91° N, 4.46° E). We show that OMI NO2 tropospheric column data can be used to assess the evolution of NO2 over important European cities. According to the statistical analysis, using the seasonal variation, we found good correlations (R > 0.50) between OMI and ground-based in-situ observations for all of the cities presented in this work. Highest correlation coefficients (R > 0.80) between ground-based monitoring stations and OMI observations were calculated for the cities of Berlin, Madrid, and Rome. Both types of observations, in-situ and remote sensing, show an NO2 negative trend for all of locations presented in this study. PMID:29156623
Multi-Spectral Image Analysis for Improved Space Object Characterization
NASA Astrophysics Data System (ADS)
Duggin, M.; Riker, J.; Glass, W.; Bush, K.; Briscoe, D.; Klein, M.; Pugh, M.; Engberg, B.
The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.
1998-10-10
Dr. Robert Richmond extracts breast cell tissue from one of two liquid nitrogen dewars. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.
Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications
NASA Astrophysics Data System (ADS)
Mejia-Aguilar, Abraham
2016-04-01
In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.
Structural properties of lead-lithium alloys
NASA Astrophysics Data System (ADS)
Khambholja, S. G.; Satikunvar, D. D.; Abhishek, Agraj; Thakore, B. Y.
2018-05-01
Lead-Lihtium alloys have found large number of applications as liquid metal coolants in nuclear reactors. Large number of experimental work is reported for this system. However, complete theoretical description is still rare. In this scenario, we in the present work report the study of ground state properties of Lead-Lithium system. The present study is performed using plane wave pseudopotential density functional theory as implemented in Quantum ESPRESSO package. The theoretical findings are in agreement with previously reported experimental data. Some conclusions are drawn based on present study, which will be helpful for a comprehensive study.
NASA Technical Reports Server (NTRS)
1985-01-01
Technology payoffs of representative ground based (Phase 1) and space based (Phase 2) mid lift/drag ratio aeroassisted orbit transfer vehicles (AOTV) were assessed and prioritized. A narrative summary of the cost estimates and work breakdown structure/dictionary for both study phases is presented. Costs were estimated using the Grumman Space Programs Algorithm for Cost Estimating (SPACE) computer program and results are given for four AOTV configurations. The work breakdown structure follows the standard of the joint government/industry Space Systems Cost Analysis Group (SSCAG). A table is provided which shows cost estimates for each work breakdown structure element.
Lawton, Teri; Shelley-Tremblay, John
2017-01-01
The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination ( PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading ( Raz-Kids ( RK )). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.
Lawton, Teri; Shelley-Tremblay, John
2017-01-01
The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:28555097
Towards the development of tamper-resistant, ground-based mobile sensor nodes
NASA Astrophysics Data System (ADS)
Mascarenas, David; Stull, Christopher; Farrar, Charles
2011-11-01
Mobile sensor nodes hold great potential for collecting field data using fewer resources than human operators would require and potentially requiring fewer sensors than a fixed-position sensor array. It would be very beneficial to allow these mobile sensor nodes to operate unattended with a minimum of human intervention. In order to allow mobile sensor nodes to operate unattended in a field environment, it is imperative that they be capable of identifying and responding to external agents that may attempt to tamper with, damage or steal the mobile sensor nodes, while still performing their data collection mission. Potentially hostile external agents could include animals, other mobile sensor nodes, or humans. This work will focus on developing control policies to help enable a mobile sensor node to identify and avoid capture by a hostile un-mounted human. The work is developed in a simulation environment, and demonstrated using a non-holonomic, ground-based mobile sensor node. This work will be a preliminary step toward ensuring the cyber-physical security of ground-based mobile sensor nodes that operate unattended in potentially unfriendly environments.
Issues of Learning Games: From Virtual to Real
ERIC Educational Resources Information Center
Carron, Thibault; Pernelle, Philippe; Talbot, Stéphane
2013-01-01
Our research work deals with the development of new learning environments, and we are particularly interested in studying the different aspects linked to users' collaboration in these environments. We believe that Game-based Learning can significantly enhance learning. That is why we have developed learning environments grounded on graphical…
Assessing Nitrogen Status of Dryland Wheat Using the Canopy Chlorophyll Content Index
USDA-ARS?s Scientific Manuscript database
Ground-based, active light sensing relies upon the Normalized Difference Vegetation Index (NDVI) for assessing crop nitrogen (N) response and applying N fertilizer. However, NDVI may not work well in semiarid environments where biomass and yields depend upon plant water. This study evaluated the C...
Grounding language in action and perception: From cognitive agents to humanoid robots
NASA Astrophysics Data System (ADS)
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition.
NASA Astrophysics Data System (ADS)
Robinson, D. Q.
2001-05-01
Hampton University, a historically black university, is leading the Education and Public Outreach (EPO) portion of the PICASSO-CENA satellite-based research mission. Currently scheduled for launch in 2004, PICASSO-CENA will use LIDAR (LIght Detection and Ranging), to study earth's atmosphere. The PICASSO-CENA Outreach program works with scientists, teachers, and students to better understand the effects of clouds and aerosols on earth's atmosphere. This program actively involves students nationwide in NASA research by having them obtain sun photometer measurements from their schools and homes for comparison with data collected by the PICASSO-CENA mission. Students collect data from their classroom ground observations and report the data via the Internet. Scientists will use the data from the PICASSO-CENA research and the student ground-truthing observations to improve predications about climatic change. The two-band passive remote sensing sun photometer is designed for student use as a stand alone instrument to study atmospheric turbidity or in conjunction with satellite data to provide ground-truthing. The instrument will collect measurements of column optical depth from the ground level. These measurements will not only give the students an appreciation for atmospheric turbidity, but will also provide quantitative correlative information to the PICASSO-CENA mission on ground-level optical depth. Student data obtained in this manner will be sufficiently accurate for scientists to use as ground truthing. Thus, students will have the opportunity to be involved with a NASA satellite-based research mission.
Nanostructure studies of strongly correlated materials.
Wei, Jiang; Natelson, Douglas
2011-09-01
Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Dr. Robert Richmond extracts breast cell tissue from one of two liquid nitrogen dewars. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.
1998-10-10
Dr. Harry Mahtani analyzes the gas content of nutrient media from Bioreactor used in research on human breast cancer. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.
Distribution of eigenfrequencies for oscillations of the ground state in the Thomas-Fermi limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevrekidis, P. G.; Pelinovsky, D. E.
In this work, we present a systematic derivation of the distribution of eigenfrequencies for oscillations of the ground state of a repulsive Bose-Einstein condensate in the semi-classical (Thomas-Fermi) limit. Our calculations are performed in one, two, and three-dimensional settings. Connections with the earlier work of Stringari, with numerical computations, and with theoretical expectations for invariant frequencies based on symmetry principles are also given.
Shahzad, Muhammad I; Nichol, Janet E; Wang, Jun; Campbell, James R; Chan, Pak W
2013-09-01
Hong Kong's surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is estimated using co-incident ground-based lidar, sun photometer visibility meter and MODerate-resolution maging Spectroradiometer (MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar MODIS AOD (aerosol optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.
Multi-spectral image analysis for improved space object characterization
NASA Astrophysics Data System (ADS)
Glass, William; Duggin, Michael J.; Motes, Raymond A.; Bush, Keith A.; Klein, Meiling
2009-08-01
The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground-based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). This information can be used to improve our catalog of space objects and will be helpful in the resolution of satellite anomalies. At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space-Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özdemir, Semra Bayat; Demiralp, Metin
The determination of the energy states is highly studied issue in the quantum mechanics. Based on expectation values dynamics, energy states can be observed. But conditions and calculations vary depending on the created system. In this work, a symmetric exponential anharmonic oscillator is considered and development of a recursive approximation method is studied to find its ground energy state. The use of majorant values facilitates the approximate calculation of expectation values.
Distributed intelligence for ground/space systems
NASA Technical Reports Server (NTRS)
Aarup, Mads; Munch, Klaus Heje; Fuchs, Joachim; Hartmann, Ralf; Baud, Tim
1994-01-01
DI is short for Distributed Intelligence for Ground/Space Systems and the DI Study is one in a series of ESA projects concerned with the development of new concepts and architectures for future autonomous spacecraft systems. The kick-off of DI was in January 1994 and the planned duration is three years. The background of DI is the desire to design future ground/space systems with a higher degree of autonomy than seen in today's missions. The aim of introducing autonomy in spacecraft systems is to: (1) lift the role of the spacecraft operators from routine work and basic troubleshooting to supervision; (2) ease access to and increase availability of spacecraft resources; (3) carry out basic mission planning for users; (4) enable missions which have not yet been feasible due to eg. propagation delays, insufficient ground station coverage etc.; and (5) possibly reduce mission cost. The study serves to identify the feasibility of using state-of-the-art technologies in the area of planning, scheduling, fault detection using model-based diagnosis and knowledge processing to obtain a higher level of autonomy in ground/space systems.
Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.
Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria
2016-09-01
To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.
“Comprehensive emission measurements from prescribed ...
Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, chlorinated dioxins and furans, and PM2.5 and continuous samples for black carbon, particle size, and CO2 were taken. Aerial instruments were lofted using a 5 m diameter, helium-filled aerostat that was maneuvered with two remotely-controlled tethers mounted on all-terrain vehicles. A parallel set of instruments on the ground made simultaneous measurements, allowing for a comparison of ground level versus elevated measurements. Ground instruments were supplemented by additional measurements of polycyclic aromatic hydrocarbons and particle aerosol absorption and light scattering. Raw biomass was also gathered on site and tested in a laboratory combustion facility using the same array of instruments. This work compares emissions derived from aerial and ground sampling as well as field and laboratory results. This abstract will likely be the first ever prescribed burn study to compare laboratory and field emission results with results from aerial and and ground sampling. As such it will inform sampling methods for future events and determine the ability of laboratory simulations to mimic events inthe field.
Automated Platform Management System Scheduling
NASA Technical Reports Server (NTRS)
Hull, Larry G.
1990-01-01
The Platform Management System was established to coordinate the operation of platform systems and instruments. The management functions are split between ground and space components. Since platforms are to be out of contact with the ground more than the manned base, the on-board functions are required to be more autonomous than those of the manned base. Under this concept, automated replanning and rescheduling, including on-board real-time schedule maintenance and schedule repair, are required to effectively and efficiently meet Space Station Freedom mission goals. In a FY88 study, we developed several promising alternatives for automated platform planning and scheduling. We recommended both a specific alternative and a phased approach to automated platform resource scheduling. Our recommended alternative was based upon use of exactly the same scheduling engine in both ground and space components of the platform management system. Our phased approach recommendation was based upon evolutionary development of the platform. In the past year, we developed platform scheduler requirements and implemented a rapid prototype of a baseline platform scheduler. Presently we are rehosting this platform scheduler rapid prototype and integrating the scheduler prototype into two Goddard Space Flight Center testbeds, as the ground scheduler in the Scheduling Concepts, Architectures, and Networks Testbed and as the on-board scheduler in the Platform Management System Testbed. Using these testbeds, we will investigate rescheduling issues, evaluate operational performance and enhance the platform scheduler prototype to demonstrate our evolutionary approach to automated platform scheduling. The work described in this paper was performed prior to Space Station Freedom rephasing, transfer of platform responsibility to Code E, and other recently discussed changes. We neither speculate on these changes nor attempt to predict the impact of the final decisions. As a consequence some of our work and results may be outdated when this paper is published.
Giles, Tracey M; de Lacey, Sheryl; Muir-Cochrane, Eimear
2016-01-01
Grounded theory method has been described extensively in the literature. Yet, the varying processes portrayed can be confusing for novice grounded theorists. This article provides a worked example of the data analysis phase of a constructivist grounded theory study that examined family presence during resuscitation in acute health care settings. Core grounded theory methods are exemplified, including initial and focused coding, constant comparative analysis, memo writing, theoretical sampling, and theoretical saturation. The article traces the construction of the core category "Conditional Permission" from initial and focused codes, subcategories, and properties, through to its position in the final substantive grounded theory.
a Universal De-Noising Algorithm for Ground-Based LIDAR Signal
NASA Astrophysics Data System (ADS)
Ma, Xin; Xiang, Chengzhi; Gong, Wei
2016-06-01
Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.
Ground Based Studies of Thermocapillary Flows in Levitated Drops: Analytical Part
NASA Technical Reports Server (NTRS)
Sadhal, S. S.; Trinh, Eugene H.
1997-01-01
The main objectives of the analytical part of this investigation are to study the fluid flow phenomena together with the thermal effects on drops levitated in an acoustic field. To a large extent, experimentation on ground requires a strong acoustic field that has a significant interference with other thermal-fluid effects. While most of the work has been directed towards particles in strong acoustic fields to overcome gravity, some results for microgravity have been obtained. One of the objectives was to obtain the thermocapillary flow in a spot-heated drop, and set up a model for the prediction of thermophysical properties. In addition, for acoustically levitated particles, a clear understanding of the underlying fluid mechanics was required. Also, the interaction of acoustics with steady and pulsating thermal stimuli was required to be analyzed. The experimental part of the work was funded through JPL, and has been reported separately.
Detection of sea otters in boat-based surveys of Prince William Sound, Alaska
Udevitz, Mark S.; Bodkin, James L.; Costa, Daniel P.
1995-01-01
Boat-based surveys have been commonly used to monitor sea otter populations, but there has been little quantitative work to evaluate detection biases that may affect these surveys. We used ground-based observers to investigate sea otter detection probabilities in a boat-based survey of Prince William Sound, Alaska. We estimated that 30% of the otters present on surveyed transects were not detected by boat crews. Approximately half (53%) of the undetected otters were missed because the otters left the transects, apparently in response to the approaching boat. Unbiased estimates of detection probabilities will be required for obtaining unbiased population estimates from boat-based surveys of sea otters. Therefore, boat-based surveys should include methods to estimate sea otter detection probabilities under the conditions specific to each survey. Unbiased estimation of detection probabilities with ground-based observers requires either that the ground crews detect all of the otters in observed subunits, or that there are no errors in determining which crews saw each detected otter. Ground-based observer methods may be appropriate in areas where nearly all of the sea otter habitat is potentially visible from ground-based vantage points.
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Zhang, Z.; Reitz, M.; Rodell, M.; Sanford, W. E.; Save, H.; Wiese, D. N.; Croteau, M. J.; McGuire, V. L.; Pool, D. R.; Faunt, C. C.; Zell, W.
2017-12-01
Groundwater storage depletion is a critical issue for many of the major aquifers in the U.S., particularly during intense droughts. GRACE (Gravity Recovery and Climate Experiment) satellite-based estimates of groundwater storage changes have attracted considerable media attention in the U.S. and globally and interest in GRACE products continues to increase. For this reason, a Powell Research Group was formed to: (1) Assess variations in groundwater storage using a variety of GRACE products and other storage components (snow, surface water, and soil moisture) for major aquifers in the U.S., (2) Quantify long-term trends in groundwater storage from ground-based monitoring and regional and national modeling, and (3) Use ground-based monitoring and modeling to interpret GRACE water storage changes within the context of extreme droughts and over-exploitation of groundwater. The group now has preliminary estimates from long-term trends and seasonal fluctuations in water storage using different GRACE solutions, including CSR, JPL and GSFC. Approaches to quantifying uncertainties in GRACE data are included. This work also shows how GRACE sees groundwater depletion in unconfined versus confined aquifers, and plans for future work will link GRACE data to regional groundwater models. The wealth of ground-based observations for the U.S. provides a unique opportunity to assess the reliability of GRACE-based estimates of groundwater storage changes.
Koningsveld, Ernst; van der Grinten, Maarten; van der Molen, Henk; Krause, Frank
2005-07-01
Ground surface conditions on construction sites have an important influence on the health and safety of workers and their productivity. The development of an expert-based "working conditions evaluation" system is described, intended to assist site managers in recognising unsatisfactory ground conditions and remedying these. The system was evaluated in the period 2002-2003. The evaluation shows that companies recognize poor soil/ground conditions as problematic, but are not aware of the specific physical workload hazards. The developed methods allow assessment of the ground surface quality and selection of appropriate measures for improvement. However, barriers exist at present to wide implementation of the system across the industry. Most significant of these is that responsibility for a site's condition is not clearly located within contracting arrangements, nor is it a topic of serious negotiation.
A coach's political use of video-based feedback: a case study in elite-level academy soccer.
Booroff, Michael; Nelson, Lee; Potrac, Paul
2016-01-01
This paper examines the video-based pedagogical practices of Terry (pseudonym), a head coach of a professional junior academy squad. Data were collected through 6 in-depth, semi-structured interviews and 10 field observations of Terry's video-based coaching in situ. Three embracing categories were generated from the data. These demonstrated that Terry's video-based coaching was far from apolitical. Rather, Terry strategically used performance analysis technologies to help fulfil various objectives and outcomes that he understood to be expected of him within the club environment. Kelchtermans' micropolitical perspective, Callero's work addressing role and Groom et al.'s grounded theory were primarily utilised to make sense of Terry's perceptions and actions. The findings point to the value of developing contextually grounded understandings of coaches' uses of video-based performance analysis technology. Doing so could better prepare coaches for this aspect of their coaching practice.
Enabling Autonomous Space Mission Operations with Artificial Intelligence
NASA Technical Reports Server (NTRS)
Frank, Jeremy
2017-01-01
For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.
Comparison of crossover and jab step start techniques for base stealing in baseball.
Miyanishi, Tomohisa; Endo, So; Nagahara, Ryu
2017-11-01
Base stealing is an important tactic for increasing the chance of scoring in baseball. This study aimed to compare the crossover step (CS) and jab step (JS) starts for base stealing start performance and to clarify the differences between CS and JS starts in terms of three-dimensional lower extremity joint kinetics. Twelve male baseball players performed CS and JS starts, during which their motion and the force they applied to the ground were simultaneously recorded using a motion-capture system and two force platforms. The results showed that the normalised average forward external power, the average forward-backward force exerted by the left leg, and the forward velocities of the whole body centre of gravity generated by both legs and the left leg were significantly higher for the JS start than for the CS start. Moreover, the positive work done by hip extension during the left leg push-off was two-times greater for the JS start than the CS start. In conclusion, this study has demonstrated that the jab step start may be the better technique for a base stealing start and that greater positive work produced by left hip extension is probably responsible for producing its larger forward ground reaction force.
A Grounded Theory Study of the Relationship between E-Mail and Burnout
ERIC Educational Resources Information Center
Camargo, Marta Rocha
2008-01-01
Introduction: This study consisted of a qualitative investigation into the role of e-mail in work-related burnout among high technology employees working full time and on-site for Internet, hardware, and software companies. Method: Grounded theory methodology was used to provide a systemic approach in categorising, sorting, and analysing data…
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Dr. Harry Mahtani analyzes the gas content of nutrient media from Bioreactor used in research on human breast cancer. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.
Nurses experience of using scientific knowledge in clinical practice: a grounded theory study.
Renolen, Åste; Hjälmhult, Esther
2015-12-01
Guidelines recommend the use of evidence-based practice in nursing. Nurses are expected to give patients care and treatment based on the best knowledge available. They may have knowledge and positive attitudes, but this does not mean that they are basing their work on evidence-based practice. Knowledge is still lacking about what is needed to successfully implement evidence-based practice. The aim of this study was to gain more knowledge about what nurses perceive as the most important challenge in implementing evidence-based practice and to explain how they act to face and overcome this challenge. We used classical grounded theory methodology and collected data through four focus groups and one individual interview in different geographical locations in one large hospital trust in Norway. Fourteen registered clinical practice nurses participated. We analysed the data in accordance with grounded theory, using the constant comparative method. Contextual balancing of knowledge emerged as the core category and explains how the nurses dealt with their main concern, how to determine what types of knowledge they could trust. The nurses' main strategies were an inquiring approach, examining knowledge and maintaining control while taking care of patients. They combined their own experienced-based knowledge and the guidelines of evidence-based practice with a sense of control in the actual situation. The grounded theory contextual balancing of knowledge may help us to understand how nurses detect what types of knowledge they can trust in clinical practice. The nurses needed to rely on what they did, and they seemed to rely on their own experience rather than on research. © 2015 Nordic College of Caring Science.
Adgaba, Nuru; Alghamdi, Ahmed; Sammoud, Rachid; Shenkute, Awraris; Tadesse, Yilma; Ansari, Mahammad J; Sharma, Deepak; Hepburn, Colleen
2017-07-01
In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi , Acacia tortilis , Acacia origina , Acacia asak , Lavandula dentata , and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (<30%) with low Shannon's species diversity indices (H') of 0.5-1.52 for different sites. Based on the eco-climatological factors and the variations in their flowering period, these major bee forage species were found to form eight distinct spatiotemporal categories which allow beekeepers to migrate their colonies to exploit the resources at different seasons and place. The Remote Sensed Satellite Image analysis confirmed the spatial distribution of the bee forage resources as determined by the ground inventory work. An integrated approach, combining the ground inventory work with GIS and satellite image processing techniques could be an important tool for characterizing and mapping the available bee forage resources leading to their efficient and sustainable utilization.
ERIC Educational Resources Information Center
Barrow, Jennifer Cahoon
2011-01-01
The purpose of this study was to propose a grounded theory that contributed to the understanding of the professional school counselor's role at the secondary school level in working with students in gangs. The study explored the role of the professional school counselor from the first person perspective of the professional school counselor and…
NASA Astrophysics Data System (ADS)
Gatlin, P. N.; Conover, H.; Berendes, T.; Maskey, M.; Naeger, A. R.; Wingo, S. M.
2017-12-01
A key component of NASA's Earth observation system is its field experiments, for intensive observation of particular weather phenomena, or for ground validation of satellite observations. These experiments collect data from a wide variety of airborne and ground-based instruments, on different spatial and temporal scales, often in unique formats. The field data are often used with high volume satellite observations that have very different spatial and temporal coverage. The challenges inherent in working with such diverse datasets make it difficult for scientists to rapidly collect and analyze the data for physical process studies and validation of satellite algorithms. The newly-funded VISAGE project will address these issues by combining and extending nascent efforts to provide on-line data fusion, exploration, analysis and delivery capabilities. A key building block is the Field Campaign Explorer (FCX), which allows users to examine data collected during field campaigns and simplifies data acquisition for event-based research. VISAGE will extend FCX's capabilities beyond interactive visualization and exploration of coincident datasets, to provide interrogation of data values and basic analyses such as ratios and differences between data fields. The project will also incorporate new, higher level fused and aggregated analysis products from the System for Integrating Multi-platform data to Build the Atmospheric column (SIMBA), which combines satellite and ground-based observations into a common gridded atmospheric column data product; and the Validation Network (VN), which compiles a nationwide database of coincident ground- and satellite-based radar measurements of precipitation for larger scale scientific analysis. The VISAGE proof-of-concept will target "golden cases" from Global Precipitation Measurement Ground Validation campaigns. This presentation will introduce the VISAGE project, initial accomplishments and near term plans.
Parker, Stephen; Dark, Frances; Newman, Ellie; Korman, Nicole; Rasmussen, Zoe; Meurk, Carla
2017-08-01
In the present study, we explored the experiences of staff working at a recovery-oriented, community-based residential mental health rehabilitation unit in Brisbane, Australia, called a 'community care unit' (CCU). A pragmatic approach to grounded theory was taken in the analysis of the transcripts of semistructured interviews with eight staff. Convenience sampling was used, and there was representation of junior and senior staff across nursing, allied health, and non-clinical support roles. Four key themes emerged from the analysis: (i) rehabilitation is different to treatment; (ii) the CCU is a positive transitional space; (iii) they (consumers) have to be ready to engage; and (iv) recovery is central to rehabilitation practice. Staff understandings of recovery in rehabilitation work were complex and included consideration of both personal and clinical recovery concepts. Rehabilitation readiness was considered important to the ability to deliver recovery-oriented care; however, the shared role of staff in maintaining engagement was acknowledged. Threats to recovery-oriented rehabilitation practice included staff burnout and external pressure to accept consumers who are not ready. The reality of working at a community-based recovery-oriented rehabilitation unit is complex. Active vigilance is needed to maintain a focus on recovery and rehabilitation. Leadership needs to focus on reducing burnout and in adapting these services to emergent needs. © 2016 Australian College of Mental Health Nurses Inc.
NASA Technical Reports Server (NTRS)
Goldman, A.
2002-01-01
The Langley-D.U. collaboration on the analysis of high resolultion infrared atmospheric spectra covered a number of important studies of trace gases identification and quantification from field spectra, and spectral line parameters analysis. The collaborative work included: 1) Quantification and monitoring of trace gases from ground-based spectra available from various locations and seasons and from balloon flights; 2) Identification and preliminary quantification of several isotopic species, including oxygen and Sulfur isotopes; 3) Search for new species on the available spectra, including the use of selective coadding of ground-based spectra for high signal to noise; 4) Update of spectroscopic line parameters, by combining laboratory and atmospheric spectra with theoretical spectroscopy methods; 5) Study of trends and correlations of atmosphere trace constituents; and 6) Algorithms developments, retrievals intercomparisons and automatization of the analysis of NDSC spectra, for both column amounts and vertical profiles.
NASA Technical Reports Server (NTRS)
Pitts, D. E.; Badhwar, G.
1980-01-01
The development of agricultural remote sensing systems requires knowledge of agricultural field size distributions so that the sensors, sampling frames, image interpretation schemes, registration systems, and classification systems can be properly designed. Malila et al. (1976) studied the field size distribution for wheat and all other crops in two Kansas LACIE (Large Area Crop Inventory Experiment) intensive test sites using ground observations of the crops and measurements of their field areas based on current year rectified aerial photomaps. The field area and size distributions reported in the present investigation are derived from a representative subset of a stratified random sample of LACIE sample segments. In contrast to previous work, the obtained results indicate that most field-size distributions are not log-normally distributed. The most common field size observed in this study was 10 acres for most crops studied.
NASA Astrophysics Data System (ADS)
Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.
2015-09-01
Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.
NASA Astrophysics Data System (ADS)
Alkhateeb, Abualkair M. Khair
Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on a Bombardier Global 5000 commercial full aircraft was studied. This was achieved via CAD-based modeling with a full-wave electromagnetic software simulation package (FEKO). It is important because the aircraft comes in approach on a 3° glideslope angle. Elevation relative to PPD jammer is changing.
[The relationship between mine environment and hypertension in coal miners].
Wang, Ming-xiao; Shang, Yun-xiao
2008-08-01
To investigate the relationship between mine environment and hypertension in miners. 1736 male miners who worked under the ground and 825 on the ground were recruited in this study. Prevalence of hypertension under the ground and on the ground miners was compared. Prevalence of hypertension of miners under the ground was 23.91% and on the ground was 15.52% (chi(2) = 23.56, P < 0.001). Compared to miners on the ground, the relative risk of hypertension under the ground workers was 1.71 (95%CI 1.38 - 2.13). Prevalence of hypertension was correlated to the years of ground working (chi(2) = 37.00, P < 0.001). The binary logistic regression showed significant relationship between mine environment and hypertension under the ground miners (OR = 1.05, 95%CI 1.02 - 1.08). The underground environment is an important risk factor hypertension to the miners.
Thill, Serge; Padó, Sebastian; Ziemke, Tom
2014-07-01
The recent trend in cognitive robotics experiments on language learning, symbol grounding, and related issues necessarily entails a reduction of sensorimotor aspects from those provided by a human body to those that can be realized in machines, limiting robotic models of symbol grounding in this respect. Here, we argue that there is a need for modeling work in this domain to explicitly take into account the richer human embodiment even for concrete concepts that prima facie relate merely to simple actions, and illustrate this using distributional methods from computational linguistics which allow us to investigate grounding of concepts based on their actual usage. We also argue that these techniques have applications in theories and models of grounding, particularly in machine implementations thereof. Similarly, considering the grounding of concepts in human terms may be of benefit to future work in computational linguistics, in particular in going beyond "grounding" concepts in the textual modality alone. Overall, we highlight the overall potential for a mutually beneficial relationship between the two fields. Copyright © 2014 Cognitive Science Society, Inc.
Consumer Outcomes After Implementing CommonGround as an Approach to Shared Decision Making.
Salyers, Michelle P; Fukui, Sadaaki; Bonfils, Kelsey A; Firmin, Ruth L; Luther, Lauren; Goscha, Rick; Rapp, Charles A; Holter, Mark C
2017-03-01
The authors examined consumer outcomes before and after implementing CommonGround, a computer-based shared decision-making program. Consumers with severe mental illness (N=167) were interviewed prior to implementation and 12 and 18 months later to assess changes in active treatment involvement, symptoms, and recovery-related attitudes. Providers also rated consumers on level of treatment involvement. Most consumers used CommonGround at least once (67%), but few used the program regularly. Mixed-effects regression analyses showed improvement in self-reported symptoms and recovery attitudes. Self-reported treatment involvement did not change; however, for a subset of consumers with the same providers over time (N=83), the providers rated consumers as more active in treatment. This study adds to the growing literature on tools to support shared decision making, showing the potential benefits of CommonGround for improving recovery outcomes. More work is needed to better engage consumers in CommonGround and to test the approach with more rigorous methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohl, M.; /Iowa State U.; Abdo, Aous A.
This is a report on the findings of the SNR/cosmic-ray working group for the white paper on the status and future of ground-based gamma-ray astronomy. The white paper is an APS commissioned document, and the overall version has also been released and can be found on astro-ph. This detailed section of the white paper discusses the status of past and current attempts to observe shell-type supernova remnants and diffuse emission from cosmic rays at GeV-TeV energies. We concentrate on the potential of future ground-based gamma-ray experiments to study the acceleration of relativistic charged particles which is one of the mainmore » unsolved, yet fundamental, problems in modern astrophysics. The acceleration of particles relies on interactions between energetic particles and magnetic turbulence. In the case of SNRs we can perform spatially resolved studies in systems with known geometry, and the plasma physics deduced from these observations will help us to understand other systems where rapid particle acceleration is believed to occur and where observations as detailed as those of SNRs are not possible.« less
Care management and nursing governance in a maternity ward: grounded theory.
Copelli, Fernanda Hannah da Silva; Oliveira, Roberta Juliane Tono de; Santos, José Luís Guedes Dos; Magalhães, Aline Lima Pestana; Gregório, Vitória Regina Petters; Erdmann, Alacoque Lorenzini
2017-01-01
To understand the care management strategies used by nurses in the governance of nursing practice in a maternity ward. Qualitative study based on grounded theory conducted with 27 participants, partitioned into four sample groups. The data were collected through semi-structured interviews and analyzed through open, axial, and selective coding. The care management strategies used by the nurses were: planning professional practice, leading the nursing team, search for scientific knowledge, and training inthe best practices in obstetric care. Associating care management with nursing governance can foster better care outcomes and strengthen nursing autonomy when coordinating nursing work in maternity wards.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Yuen, Joseph H. (Editor)
1993-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The papers included in this document cover satellite tracking and ground-based navigation, spacecraft-ground communications, and optical communication systems for the Deep Space Network.
Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions
Zhang, L.; Ding, X.; Lu, Z.
2011-01-01
An InSAR analysis approach for identifying and extracting the temporarily coherent points (TCP) that exist between two SAR acquisitions and for determining motions of the TCP is presented for applications such as ground settlement monitoring. TCP are identified based on the spatial characteristics of the range and azimuth offsets of coherent radar scatterers. A method for coregistering TCP based on the offsets of TCP is given to reduce the coregistration errors at TCP. An improved phase unwrapping method based on the minimum cost flow (MCF) algorithm and local Delaunay triangulation is also proposed for sparse TCP data. The proposed algorithms are validated using a test site in Hong Kong. The test results show that the algorithms work satisfactorily for various ground features.
ERIC Educational Resources Information Center
Evans, Angela
2013-01-01
This paper draws on my doctoral research study based on consulting work with three primary school Special Educational Needs Co-ordinators (SENCos) that took place in 2008. The study examined the interactions that arose in the consultations with the SENCos and their staff. The findings that emerged from the application of Grounded Theory research…
Learning for sustainability among faith-based organizations in Kenya.
Moyer, Joanne M; Sinclair, A John; Diduck, Alan P
2014-08-01
The complex and unpredictable contexts in which environmental and development work take place require an adaptable, learning approach. Faith-based organizations (FBOs) play a significant role in sustainability work around the world, and provide a unique setting in which to study learning. This paper explores individual learning for sustainability within two FBOs engaged in sustainability work in Kenya. Learning outcomes covered a broad range of areas, including the sustainability framework, environment/conservation, skills, community work, interpersonal engagement, and personal and faith development. These outcomes were acquired through embodied experience and activity, facilitation by the workplace, interpersonal interaction, personal reflection, and Bible study and worship. Grounded categories were compared to learning domains and processes described by Mezirow's transformative learning theory. The findings indicate that for learning in the sustainability field, instrumental learning and embodied learning processes are particularly important, and consequently they require greater attention in the theory when applied in this field.
Learning for Sustainability Among Faith-Based Organizations in Kenya
NASA Astrophysics Data System (ADS)
Moyer, Joanne M.; Sinclair, A. John; Diduck, Alan P.
2014-08-01
The complex and unpredictable contexts in which environmental and development work take place require an adaptable, learning approach. Faith-based organizations (FBOs) play a significant role in sustainability work around the world, and provide a unique setting in which to study learning. This paper explores individual learning for sustainability within two FBOs engaged in sustainability work in Kenya. Learning outcomes covered a broad range of areas, including the sustainability framework, environment/conservation, skills, community work, interpersonal engagement, and personal and faith development. These outcomes were acquired through embodied experience and activity, facilitation by the workplace, interpersonal interaction, personal reflection, and Bible study and worship. Grounded categories were compared to learning domains and processes described by Mezirow's transformative learning theory. The findings indicate that for learning in the sustainability field, instrumental learning and embodied learning processes are particularly important, and consequently they require greater attention in the theory when applied in this field.
The image acquisition system design of floor grinder
NASA Astrophysics Data System (ADS)
Wang, Yang-jiang; Liu, Wei; Liu, Hui-qin
2018-01-01
Based on linear CCD, high resolution image real-time acquisition system serves as designing a set of image acquisition system for floor grinder through the calculation of optical imaging system. The entire image acquisition system can collect images of ground before and after the work of the floor grinder, and the data is transmitted through the Bluetooth system to the computer and compared to realize real-time monitoring of its working condition. The system provides technical support for the design of unmanned ground grinders.
Grounding language in action and perception: from cognitive agents to humanoid robots.
Cangelosi, Angelo
2010-06-01
In this review we concentrate on a grounded approach to the modeling of cognition through the methodologies of cognitive agents and developmental robotics. This work will focus on the modeling of the evolutionary and developmental acquisition of linguistic capabilities based on the principles of symbol grounding. We review cognitive agent and developmental robotics models of the grounding of language to demonstrate their consistency with the empirical and theoretical evidence on language grounding and embodiment, and to reveal the benefits of such an approach in the design of linguistic capabilities in cognitive robotic agents. In particular, three different models will be discussed, where the complexity of the agent's sensorimotor and cognitive system gradually increases: from a multi-agent simulation of language evolution, to a simulated robotic agent model for symbol grounding transfer, to a model of language comprehension in the humanoid robot iCub. The review also discusses the benefits of the use of humanoid robotic platform, and specifically of the open source iCub platform, for the study of embodied cognition. Copyright 2010 Elsevier B.V. All rights reserved.
Centralized mission planning and scheduling system for the Landsat Data Continuity Mission
Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki
2014-01-01
Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.
NASA Technical Reports Server (NTRS)
Raghavan, Rajesh S.; Shamma, Mohammed A.
2003-01-01
This paper will present work being done to model and simulate a CDMA based Mobile Satellite System architecture for providing all or part of the future Air Traffic Management (ATM) services. Such a system, will help in relieving the dependence on ground based networks, if not eliminate it. Additionally such an architecture can be used in parallel or as a supplementary service along with ground based links to help alleviate any capacity bottlenecks, or in areas where such services are difficult to make available such as in oceanic, remote areas outside the jet highways, or in developing countries where ground services are less available.
A plan to study the aquifer system of the Central Valley of California
Bertoldi, Gilbert L.
1979-01-01
Unconsolidated Quaternary alluvial deposits comprise a large complex aquifer system in the Central Valley of California. Millions of acre-feet of water is pumped from the system annually to support a large and expanding agribusiness industry. Since the 1950's, water levels have been steadily declining in many areas of the valley and concern has been expressed about the ability of the entire ground-water system to support agribusiness at current levels, not to mention its ability to function at projected expansion levels. At current levels of ground-water use, an estimated 1.5 to 2 million acre-feet is withdrawn from storage each year; that is, 1.5 to 2 million acre-feet of water is pumped annually in excess of annual replenishment. The U.S. Geological Survey has initiated a 4-year study to develop geologic, hydrologic, and hydraulic information and to establish a valleywide ground-water data base that will be used to build computer models of the ground-water flow system. Subsequently, these models may be used to evaluate the system response to various ground-water management alternatives. This report describes current problems, objectives of the study, and outlines the general work to be accomplished in the study area. A bibliography of about 600 references is included. (Kosco-USGS)
Coordinated Ground- and Space-based Multispectral Campaign to Study Equatorial Spread-F Formation
NASA Astrophysics Data System (ADS)
Finn, S. C.; Geddes, G.; Aryal, S.; Stephan, A. W.; Budzien, S. A.; Duggirala, P. R.; Chakrabarti, S.; Valladares, C.
2016-12-01
We present a concept for a multispectral campaign using coordinated data from state-of-the-art instruments aboard the International Space Station (ISS) and multiple ground-based spectrometers and digisondes deployed at low-latitudes to study the formation and development of Equatorial Spread-F (ESF). This extended observational campaign utilizes ultraviolet, visible, and radio measurements to develop a predictive capability for ESF and to study the coupling of the ionosphere-thermosphere (I-T) system during geomagnetically quiet and disturbed times. The ground-based instruments will be deployed in carefully chosen locations in the American and Indian sectors while the space-based data will provide global coverage spanning all local times and longitudes within ±51° geographic latitudes. The campaign, over an extended period covering a range of geophysical conditions, will provide the extensive data base necessary to address the important science questions. The space-based instrument suite consists of the Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and the GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) instruments, scheduled to launch to the ISS in November 2016. LITES is a compact imaging spectrograph for remote sensing of the upper atmosphere and ionosphere from 60 to 140nm and GROUP-C has a nadir-viewing FUV photometer. The ground-based instruments to be deployed for this campaign are three high-resolution imaging spectrographs capable of continuous round-the-clock airglow observations: Multiwavelength Imaging Spectrograph using Echelle grating (MISE) in India and two High Throughput and Multi-slit Imaging Spectrographs (HiT&MIS) to be deployed in Colombia and Argentina, the Low-Latitude Ionosphere Sensor Network (LISN), and the Global Ionospheric Radio Observatory (GIRO) digisondes network. We present data from the ground-based instruments, initial results from the LITES and GROUP-C instruments on-orbit, and modeling and analysis methods for the campaign. This work was supported by NSF 1315354 and 1145166, and ONR N00014-13-1-0266 grants. LITES and GROUP-C are part of the STP-H5 Payload, integrated and flown under the direction of the DoD Space Test Program.
ERIC Educational Resources Information Center
Morais, Teresa; Silva, Helena; Lopes, José; Dominguez, Caroline
2017-01-01
The use of argumentative strategies that promote the defense of well-grounded personal arguments contributes to the development of a critical, ethical and political thought that leads to responsible and socially committed people. Based on the quality of the produced arguments in philosophical essays, this work evaluates the potential application…
ERIC Educational Resources Information Center
Brierley, Gary; Li, Xilai; Qiao, Youming; Huang, He Qing; Wang, Zhaoyin
2018-01-01
This situated case study outlines how a place-based landscape template provided an integrative platform for the environmental arm of a cross-disciplinary international education initiative, the Three Brothers Project, wherein geographers at the University of Auckland worked alongside engineers at Tsinghua University in Beijing to support…
From Client to Pimp: Male Violence against Female Sex Workers
ERIC Educational Resources Information Center
Karandikar, Sharvari; Prospero, Moises
2010-01-01
The present study explores intimate partner violence (IPV) among female sex workers from the red-light area based in Mumbai, India. Using a grounded theory approach, in-depth interviews were conducted with ten sex workers to explore their experiences of IPV in the context of commercial sex work. Narratives were analyzed and themes constructed. A…
Concepts and Directions for Literacy Coaching: Designing Critical Reform from the Ground Up
ERIC Educational Resources Information Center
Rodgers, Adrian
2014-01-01
A rapid proliferation of literacy coaching has occurred before adequate research could be undertaken to understand the interaction between coach and teacher. In this analysis of a study undertaken by a college campus-based coach working with teachers in a reading clinic setting, Rodgers applies 2 conceptual frames. The 1st conceptual frame…
Cai, Tie; Ting, Hu; Jin-Lan, Zhang
2016-01-01
Coffee is one of the most common and most valuable beverages. According to International Coffee Organization (ICO) reports, the adulteration of coffee for financial reasons is regarded as the most serious threat to the sustainable development of the coffee market. In this work, a novel strategy for adulteration identification in ground coffee was developed based on UPLC-HRMS oligosaccharide profiling. Along with integrated statistical analysis, 17 oligosaccharide composition were identified as markers for the identification of soybeans and rice in ground coffee. This strategy, validated by manual mixtures, optimized both the reliability and authority of adulteration identification. Rice and soybean adulterants present in ground coffee in amounts as low as 5% were identified and evaluated. Some commercial ground coffees were also successfully tested using this strategy. Copyright © 2015 Elsevier Ltd. All rights reserved.
The application of grounded theory and symbolic interactionism.
Jeon, Yun-Hee
2004-09-01
This paper describes the methodological and theoretical context and underpinnings of a study that examined community psychiatric nurses' work with family caregivers of older people with depression. The study used grounded theory research methods, with its theoretical foundations drawn from symbolic interactionism. The aims of the study were to describe and conceptualize the processes involved when community nurses work and interact with family caregivers and to develop an explanatory theory of these processes. This paper begins with an explanation of the rationale for using grounded theory as the method of choice, followed by a discussion of the theoretical underpinnings of the study, including a brief summary of the nature and origins of symbolic interactionism. Key premises of symbolic interactionism regarded as central to the study are outlined and an analytical overview of the grounded theory method is provided. The paper concludes with a commentary on some of the issues and debates in the use of grounded theory in nursing research. The main purpose of this paper is to provide a methodical and critical review of symbolic interactionism and grounded theory that can help readers, particularly those who are intending to use grounded theory, better understand the processes involved in applying this method to their research.
Relevance of near-Earth magnetic field modeling in deriving SEP properties using ground-based data
NASA Astrophysics Data System (ADS)
Kanellakopoulos, Anastasios; Plainaki, Christina; Mavromichalaki, Helen; Laurenza, Monica; Gerontidou, Maria; Storini, Marisa; Andriopoulou, Maria
2014-05-01
Ground Level Enhancements (GLEs) are short-term increases observed in cosmic ray intensity records of ground-based particle detectors such as neutron monitors (NMs) or muon detectors; they are related to the arrival of solar relativistic particles in the terrestrial environment. Hence, GLE events are related to the most energetic class of solar energetic particle (SEP) events. In this work we investigate how the use of different magnetospheric field models can influence the derivation of the relativistic SEP properties when modeling GLE events. As a case study, we examine the event of 2012 May 17 (also known as GLE71), registered by ground-based NMs. We apply the Tsyganenko 89 and the Tsyganenko 96 models in order to calculate the trajectories of the arriving SEPs in the near-Earth environment. We show that the intersection of the SEP trajectories with the atmospheric layer at ~20 km from the Earth's surface (i.e., where the flux of the generated secondary particles is maximum), forms for each ground-based neutron monitor a specified viewing region that is dependent on the magnetospheric field configuration. Then, we apply the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al. 2010, Solar Phys, 264, 239), in order to derive the spectral properties of the related SEP event and the spatial distributions of the SEP fluxes impacting the Earth's atmosphere. We examine the dependence of the results on the used magnetic field models and evaluate their range of validity. Finally we discuss information derived by modeling the SEP spectrum in the frame of particle acceleration scenarios.
1998-10-10
Human primary breast tumor cells after 49 days of growth in a NASA Bioreactor. Tumor cells aggregate on microcarrier beads (indicated by arrow). NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida
Breaking Bad: Reforming Cyber Acquisition via Innovative Strategies
2015-04-01
effects. Just as a special operations tactician can work with any weapon he finds on the ground , the FIRE-based team will thrive by being able to... operation could be challenged on legal grounds , so this acquisition strategy would need to develop an adjoining legal strategy to permit its employment...for the Degree of MASTER OF OPERATIONAL ARTS AND SCIENCES Advisor: Wg Cdr Graem M. Corfield, RAF Maxwell Air Force Base, Alabama April 2015
Common Grounds for Modelling Mathematics in Educational Software
ERIC Educational Resources Information Center
Neuper, Walther
2010-01-01
Two kinds of software, CAS and DGS, are starting to work towards mutual integration. This paper envisages common grounds for such integration based on principles of computer theorem proving (CTP). Presently, the CTP community seems to lack awareness as to which of their products' features might serve mathematics education from high-school to…
NASA Astrophysics Data System (ADS)
Salamuniccar, G.; Loncaric, S.
2008-03-01
The Catalogue from our previous work was merged with the date of Barlow, Rodionova, Boyce, and Kuzmin. The resulting ground truth catalogue with 57,633 craters was registered, using MOLA data, with THEMIS-DIR, MDIM, and MOC data-sets.
Renolen, Åste; Høye, Sevald; Hjälmhult, Esther; Danbolt, Lars Johan; Kirkevold, Marit
2018-01-01
Evidence-based practice is considered a foundation for the provision of quality care and one way to integrate scientific knowledge into clinical problem-solving. Despite the extensive amount of research that has been conducted to evaluate evidence-based practice implementation and research utilization, these practices have not been sufficiently incorporated into nursing practice. Thus, additional research regarding the challenges clinical nurses face when integrating evidence-based practice into their daily work and the manner in which these challenges are approached is needed. The aim of this study was to generate a theory about the general patterns of behaviour that are discovered when clinical nurses attempt to integrate evidence-based practice into their daily work. We used Glaser's classical grounded theory methodology to generate a substantive theory. The study was conducted in two different medical wards in a large Norwegian hospital. In one ward, nurses and nursing assistants were developing and implementing new evidence-based procedures, and in the other ward, evidence-based huddle boards for risk assessment were being implemented. A total of 54 registered nurses and 9 assistant nurses were observed during their patient care and daily activities. Of these individuals, thirteen registered nurses and five assistant nurses participated in focus groups. These participants were selected through theoretical sampling. Data were collected during 90h of observation and 4 focus groups conducted from 2014 to 2015. Each focus group session included four to five participants and lasted between 55 and 65min. Data collection and analysis were performed concurrently, and the data were analysed using the constant comparative method. "Keeping on track" emerged as an explanatory theory for the processes through which the nurses handled their main concern: the risk of losing the workflow. The following three strategies were used by nurses when attempting to integrate evidence-based practices into their daily work: "task juggling", "pausing for considering" and "struggling along with quality improvement". The "keeping on track" theory contributes to the body of knowledge regarding clinical nurses' experiences with evidence-based practice integration. The nurses endeavoured to minimize workflow interruptions to avoid decreasing the quality of patient care provided, and evidence-based practices were seen as a consideration that was outside of their ordinary work duties. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Iiames, J. S.; Riegel, J.; Lunetta, R.
2013-12-01
Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.
Occupation and thyroid cancer: a population-based case-control study in Connecticut
Ba, Yue; Huang, Huang; Lerro, Catherine C.; Li, Shuzhen; Zhao, Nan; Li, Anqi; Ma, Shuangge; Udelsman, Robert; Zhang, Yawei
2016-01-01
Objective The study aims to explore the associations between various occupations and thyroid cancer risk. Methods A population-based case-control study involving 462 histologically confirmed incident cases and 498 controls was conducted in Connecticut in 2010–2011. Results A significantly increased risk of thyroid cancer, particularly papillary microcarcinoma, was observed for those working as the healthcare practitioners and technical workers, health diagnosing and treating practitioners and registered nurses. Those working in building and grounds cleaning, maintenance occupations, pest control, retail sales, and customer service also had increased risk for papillary thyroid cancer. Subjects who worked as cooks, janitors, cleaners, and customer service representatives were at an increased risk of papillary thyroid cancer with tumor size >1 cm. Conclusions Certain occupations were associated with an increased risk of thyroid cancer, with some tumor size and subtype specificity. PMID:26949881
Derbyshire, Julie A; Machin, Alison I; Crozier, Suzanne
2015-01-01
The provision of inter professional learning (IPL) within undergraduate programmes is now well established within many Higher Education Institutions (HEIs). IPL aims to better equip nurses and other health professionals with effective collaborative working skills and knowledge to improve the quality of patient care. Although there is still ambiguity in relation to the optimum timing and method for delivering IPL, effective facilitation is seen as essential. This paper reports on a grounded theory study of university educators' perceptions of the knowledge and skills needed for their role adequacy as IPL facilitators. Data was collected using semi structured interviews with nine participants who were theoretically sampled from a range of professional backgrounds, with varied experiences of education and involvement in facilitating IPL. Constant comparative analysis was used to generate four data categories: creating and sustaining an IPL group culture through transformational IPL leadership (core category), readiness for IPL facilitation, drawing on past interprofessional learning and working experiences and role modelling an interprofessional approach. The grounded theory generated from this study, although propositional, suggests that role adequacy for IPL facilitation is dependent on facilitator engagement in a process of 'transformational interprofessional learning leadership' to create and sustain a group culture. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ionov, D.; Sinyakov, V.; Semenov, V.
Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union (INTAS-YSF-02-138), International Science and Technology Center (ISTC Kr-763), Russian Foundation for Basic Research (RFBR-03-05-64626), the joint foundation of Russian Ministry of Education and St.Petersburg Administration (PD02-1.5-96) and the President of Russia grant (MK-2686.2003.05).
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.
Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V
2018-06-01
Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.
Fast Surface Reconstruction and Segmentation with Ground-Based and Airborne LIDAR Range Data
2009-01-14
to perform a union find on the ground mesh vertices to calculate the sizes of ground mesh segments, 462 seconds to read the airborne data in to a...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of...California at Berkeley,Department of Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9
Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence
Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria
2016-01-01
To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682
Simulation of Ground Winds Time Series
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
2008-01-01
A simulation process has been developed for generation of the longitudinal and lateral components of ground wind atmospheric turbulence as a function of mean wind speed, elevation, temporal frequency range and distance between locations. The distance between locations influences the spectral coherence between the simulated series at adjacent locations. Short distances reduce correlation only at high frequencies; as distances increase correlation is reduced over a wider range of frequencies. The choice of values for the constants d1 and d3 in the PSD model is the subject of work in progress. An improved knowledge of the values for zO as a function of wind direction at the ARES-1 launch pads is necessary for definition of d1. Results of other studies at other locations may be helpful as summarized in Fichtl's recent correspondence. Ideally, further research is needed based on measurements of ground wind turbulence with high resolution anemometers at a number of altitudes at a new KSC tower located closer to the ARES-1 launch pad .The proposed research would be based on turbulence measurements that may be influenced by surface terrain roughness that may be significantly different from roughness prior to 1970 in Fichtl's measurements. Significant improvements in instrumentation, data storage end processing will greatly enhance the capability to model ground wind profiles and ground wind turbulence.
NASA Astrophysics Data System (ADS)
Tiberi, Lara; Costa, Giovanni; Jamšek Rupnik, Petra; Cecić, Ina; Suhadolc, Peter
2018-05-01
The earthquake (Mw 6 from the SHEEC defined by the MDPs) that occurred in the central part of Slovenia on 14 April, 1895, affected a broad region, causing deaths, injuries, and destruction. This event was much studied but not fully explained; in particular, its causative source model is still debated. The aim of this work is to contribute to the identification of the seismogenic source of this destructive event, calculating peak ground velocity values through the use of different ground motion prediction equations (GMPEs) and computing a series of ground motion scenarios based on the result of an inversion work proposed by Jukić in 2009 and on various fault models in the surroundings of Ljubljana: Vič, Želimlje, Borovnica, Vodice, Ortnek, Mišjedolski, and Dobrepolje faults. The synthetic seismograms, at the basis of our computations, are calculated using the multi-modal summation technique and a kinematic approach for extended sources, with a maximum peak ground velocity value of 1 Hz. The qualitative and quantitative comparison of these simulations with the macroseismic intensity database allows us to discriminate between various sources and configurations. The quantitative validation of the seismic source is done using ad hoc ground motion to intensity conversion equations (GMICEs), expressly calculated for this study. This study allows us to identify the most probable causative source model of this event, contributing to the improvement of the seismotectonic knowledge of this region. The candidate fault that has the lowest values of average differences between observed and calculated intensities and chi-squared is a strike slip fault with a toward-north rupture as the Ortnek fault.
Why NASA and the Space Electronics Community Cares About Cyclotrons
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2017-01-01
NASA and the space community are faced with the harsh reality of operating electronic systems in the space radiation environment. Systems need to work reliably (as expected for as long as expected) and be available during critical operations such as docking or firing a thruster. This talk will provide a snapshot of the import of ground-based research on the radiation performance of electronics. Discussion topics include: 1) The space radiation environment hazard, 2) Radiation effects on electronics, 3) Simulation of effects with cyclotrons (and other sources), 4) Risk prediction for space missions, and, 5) Real-life examples of both ground-based testing and space-based anomalies and electronics performance. The talk will conclude with a discussion of the current state of radiation facilities in North America for ground-based electronics testing.
Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex
NASA Technical Reports Server (NTRS)
Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)
2002-01-01
The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.
Voltage Based Detection Method for High Impedance Fault in a Distribution System
NASA Astrophysics Data System (ADS)
Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama
2016-09-01
High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.
Site Selection for Hvdc Ground Electrodes
NASA Astrophysics Data System (ADS)
Freire, P. F.; Pereira, S. Y.
2014-12-01
High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the inversion of the combined deep, near-surface and shallow apparent resistivity curves, results in the layered crust resistivity models. These models will allow for the preliminary interference studies, that will result on the selection of the final electrode site (one for each converter substation).
Koley Seth, Banabithi; Saha, Arpita; Haldar, Srijan; Chakraborty, Partha Pratim; Saha, Partha; Basu, Samita
2016-09-01
This work highlights a systematic and comparative study of the structure-dependent influence of a series of biologically active Cu(II) Schiff base complexes (CSCs) on their in vitro cytotoxicity, apoptosis and binding with polymeric DNA-bases in ground and photo-excited states. The structure-activity relationship of the closely resembled CSCs towards in vitro cytotoxicity and apoptosis against cervical cancerous HeLa and normal human diploid WI-38 cell lines has been investigated by MTT assay and FACS techniques respectively. The steady-state and time-resolved spectroscopic studies have also been carried out to explore the selective binding affinities of the potential complexes towards different polymeric nucleic acid bases (poly d(A), poly d(T), poly d(G), poly d(C), Poly d(G)-Poly d(C)), which enlighten the knowledge regarding their ability in controlling the structure and medium dependent interactions in 'ground' and 'excited' states. The pyridine containing water soluble complexes (CuL(1) and CuL(3)) are much more cytotoxic than the corresponding pyrrole counterparts (CuL(2) and CuL(4)). Moreover the acidic hydrogens in CuL(1) increase its cytotoxicity much more than methyl substitution as in CuL(3). The results of MTT assay and double staining FACS experiments indicate selective inhibition of cell growth (cell viability 39% (HeLa) versus 85% (WI-38)) and occurrence of apoptosis rather than necrosis. The ground state binding of CuL(1) with polymeric DNA bases, especially with guanine rich DNA (Kb=6.41±0.122×10(5)), that enhances its cytotoxic activity, is further confirmed from its binding isotherms. On the other hand the pyrrole substituted CuL(4) complex exhibits the structure and medium dependent selective electron-transfer in triplet state as observed in laser flash photolysis studies followed by magnetic field (MF) effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Shuttle Communications and Tracking Systems Modeling and TDRSS Link Simulations Studies
NASA Technical Reports Server (NTRS)
Chie, C. M.; Dessouky, K.; Lindsey, W. C.; Tsang, C. S.; Su, Y. T.
1985-01-01
An analytical simulation package (LinCsim) which allows the analytical verification of data transmission performance through TDRSS satellites was modified. The work involved the modeling of the user transponder, TDRS, TDRS ground terminal, and link dynamics for forward and return links based on the TDRSS performance specifications (4) and the critical design reviews. The scope of this effort has recently been expanded to include the effects of radio frequency interference (RFI) on the bit error rate (BER) performance of the S-band return links. The RFI environment and the modified TDRSS satellite and ground station hardware are being modeled in accordance with their description in the applicable documents.
ERIC Educational Resources Information Center
Berends, Mark; Donaldson, Kristi
2016-01-01
Background: Although we have learned a good deal from lottery-based and quasi-experimental studies of charter schools, much of what goes on inside of charter schools remains a "black box" to be unpacked. Grounding our work in neoclassical market theory and institutional theory, we examine differences in the social organization of schools…
ERIC Educational Resources Information Center
Gallagher Gordon, Mary
2012-01-01
This dissertation examines nurses' perceptions of the impacts of systems and technology utilized during the medication administration process on patient safety and the culture of medication error reporting. This exploratory research study was grounded in a model of patient safety based on Patricia Benner's Novice to Expert Skill Acquisition model,…
Military Nurses’ Experience in Disaster Response
2010-06-23
their lives. A phenomenological approach grounded in the existential phenomenological works of Merleau-Ponty guided the study. Using purposive...Known” versus “Unknown,” “Structured” versus “Chaos,” “Prepared” versus “Making Do,” “Strength” versus “Emotionality,” and “ Existential Growth...responses had on their lives. A phenomenological approach grounded in the existential phenomenological works of Merleau-Ponty guided the study. Using
GP and pharmacist inter-professional learning - a grounded theory study.
Cunningham, David E; Ferguson, Julie; Wakeling, Judy; Zlotos, Leon; Power, Ailsa
2016-05-01
Practice Based Small Group Learning (PBSGL) is an established learning resource for primary care clinicians in Scotland and is used by one-third of general practitioners (GPs). Scottish Government and UK professional bodies have called for GPs and pharmacists to work more closely together to improve care. To gain GPs' and pharmacists' perceptions and experiences of learning together in an inter-professional PBSGL pilot. Qualitative research methods involving established GP PBSGL groups in NHS Scotland recruiting one or two pharmacists to join them. A grounded theory method was used. GPs were interviewed in focus groups by a fellow GP, and pharmacists were interviewed individually by two researchers, neither being a GP or a pharmacist. Interviews were audio-recorded, transcribed and analysed using grounded theory methods. Data saturation was achieved and confirmed. Three themes were identified: GPs' and pharmacists' perceptions and experiences of inter-professional learning; Inter-professional relationships and team-working; Group identity and purpose of existing GP groups. Pharmacists were welcomed into GP groups and both professions valued inter-professional PBSGL learning. Participants learned from each other and both professions gained a wider perspective of the NHS and of each others' roles in the organisation. Inter-professional relationships, communication and team-working were strengthened and professionals regarded each other as peers and friends.
Radiometric Calibration of the Earth Observing System's Imaging Sensors
NASA Technical Reports Server (NTRS)
Slater, Philip N. (Principal Investigator)
1997-01-01
The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached.
Pushing the limits of spatial resolution with the Kuiper Airborne observatory
NASA Technical Reports Server (NTRS)
Lester, Daniel
1994-01-01
The study of astronomical objects at high spatial resolution in the far-IR is one of the most serious limitations to our work at these wavelengths, which carry information about the luminosity of dusty and obscured sources. At IR wavelengths shorter than 30 microns, ground based telescopes with large apertures at superb sites achieve diffraction-limited performance close to the seeing limit in the optical. At millimeter wavelengths, ground based interferometers achieve resolution that is close to this. The inaccessibility of the far-IR from the ground makes it difficult, however, to achieve complementary resolution in the far-IR. The 1983 IRAS survey, while extraordinarily sensitive, provides us with a sky map at a spatial resolution that is limited by detector size on a spatial scale that is far larger than that available in other wavelengths on the ground. The survey resolution is of order 4 min in the 100 micron bandpass, and 2 min at 60 microns (IRAS Explanatory Supplement, 1988). Information on a scale of 1' is available on some sources from the CPC. Deconvolution and image resolution using this database is one of the subjects of this workshop.
Silicon carbide optics for space and ground based astronomical telescopes
NASA Astrophysics Data System (ADS)
Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court
2012-09-01
Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).
Ground-based photometric support for the CoRoT mission by the CoRoT-Hungarian Asteroseismology Group
NASA Astrophysics Data System (ADS)
Bognár, Zs.; Paparó, M.
2012-12-01
The CoRoT-Hungarian Asteroseismology Group was established in 2005 and joined the preparatory work of the CoRoT Mission via an ESA PECS project. After the successful launch of the telescope, we have continued our work of ground-based multi-colour photometric observations and contributed to the analyses of CoRoT data. Our observations were focused on δ Scuti, γ Doradus, and RR Lyrae stars. The follow-up of some selected targets' pulsations in different wavelengths has provided valuable information for mode identification. We provided additional support by the confirmation of relatively faint variables' spectral types. We proved that our ground-based observations can help in the interpretation of a target with a contaminated CoRoT light curve. In this paper, we summarize our most important results of the photometric support for the CoRoT Mission. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
NASA Astrophysics Data System (ADS)
Dupont, J. C.; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Comstock, J.; Winker, D.; Chervet, P.; Roblin, A.
2009-04-01
Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle [Stephens et al., 1990; Webster, 1994]. According to satellite passive remote sensing, high-altitude clouds cover as much as 40% of the earth's surface on average (Liou 1986; Stubenrauch et al., 2006) and can reach 70% of cloud cover over the Tropics (Wang et al., 1996; Nazaryan et al., 2008). Hence, given their very large cloud cover, they have a major role in the climate system (Lynch et al. 2001). Cirrus clouds can be classified into three distinct families according to their optical thickness, namely subvisible clouds (OD<0.03), semi-transparent clouds (0.03
Containerless Studies of Nucleation and Undercooling
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1985-01-01
The long term research goals are to perform experiments to determine the achievable limits of undercooling, the characteristics of heterogeneous nucleation, and the physical properties of significantly undercooled melts. The techniques used are based on the newly developed containerless manipulation methods afforded by acoustic levitation. Ground based investigations involved 0.1 to 2 mm specimens of pure metals and alloys (In, Ga, Sn, Ga-In, ...) as well as glass-forming organic compounds (O-Terphenyl). A currently operating ultrasonic high temperature apparatus has allowed the ground-based levitation of 1 to 2 mm samples of solid aluminum at 550 deg C in an argon atmosphere. Present work is concentrating on the undercooling of pure metal samples (In, Sn), and on the measurements of surface tension and viscosity of the undercooled melts via shape oscillation techniques monitored through optical detection methods. The sound velocity of undercooled O-Terphenyl is being measured in an immiscible liquid levitation cells.
The 1981 Argentina ground data collection
NASA Technical Reports Server (NTRS)
Horvath, R.; Colwell, R. N. (Principal Investigator); Hicks, D.; Sellman, B.; Sheffner, E.; Thomas, G.; Wood, B.
1981-01-01
Over 600 fields in the corn, soybean and wheat growing regions of the Argentine pampa were categorized by crop or cover type and ancillary data including crop calendars, historical crop production statistics and certain cropping practices were also gathered. A summary of the field work undertaken is included along with a country overview, a chronology of field trip planning and field work events, and the field work inventory of selected sample segments. LANDSAT images were annotated and used as the field work base and several hundred ground and aerial photographs were taken. These items along with segment descriptions are presented. Meetings were held with officials of the State Secretariat of Agriculture (SEAG) and the National Commission on Space Investigations (CNIE), and their support to the program are described.
NASA Astrophysics Data System (ADS)
Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro
2015-01-01
One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides significant sky-coverage using natural guide-stars alone.Here we present an overview of the instrument design, results from the first on-sky and laboratory testing and on-going development work of the instrument and its adaptive optics system.
1988-06-01
and for that reason has received considerable attention recently. Of particular interest in this research Is the work of Toulmin et. al. [19793 In...whenever we make a claim there must be some grounds in which to base our conclusion, Toulmin states that our thoughts are generally directed from the...WARRANT will be the absolute reason to believe the CLAIM on the basis of the GROUNDS. For that, Toulmin allows for further BACKING which, in his
NASA Astrophysics Data System (ADS)
Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.
2015-12-01
While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect surface geologic and topographic signatures of interest. This work includes a preliminary comparison of surface signatures detected from varying standoff distances to assess current sensor performance and benefits.
Navigating the grounded theory terrain. Part 1.
Hunter, Andrew; Murphy, Kathy; Grealish, Annmarie; Casey, Dympna; Keady, John
2011-01-01
The decision to use grounded theory is not an easy one and this article aims to illustrate and explore the methodological complexity and decision-making process. It explores the decision making of one researcher in the first two years of a grounded theory PhD study looking at the psychosocial training needs of nurses and healthcare assistants working with people with dementia in residential care. It aims to map out three different approaches to grounded theory: classic, Straussian and constructivist. In nursing research, grounded theory is often referred to but it is not always well understood. This confusion is due in part to the history of grounded theory methodology, which is one of development and divergent approaches. Common elements across grounded theory approaches are briefly outlined, along with the key differences of the divergent approaches. Methodological literature pertaining to the three chosen grounded theory approaches is considered and presented to illustrate the options and support the choice made. The process of deciding on classical grounded theory as the version best suited to this research is presented. The methodological and personal factors that directed the decision are outlined. The relative strengths of Straussian and constructivist grounded theories are reviewed. All three grounded theory approaches considered offer the researcher a structured, rigorous methodology, but researchers need to understand their choices and make those choices based on a range of methodological and personal factors. In the second article, the final methodological decision will be outlined and its research application described.
Sleep and vestibular adaptation: implications for function in microgravity
NASA Technical Reports Server (NTRS)
Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.
1998-01-01
Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.
Dynamic tire pressure sensor for measuring ground vibration.
Wang, Qi; McDaniel, James Gregory; Wang, Ming L
2012-11-07
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.
Dynamic Tire Pressure Sensor for Measuring Ground Vibration
Wang, Qi; McDaniel, James Gregory; Wang, Ming L.
2012-01-01
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206
30 CFR 77.704 - Work on high-voltage lines; deenergizing and grounding.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Work on high-voltage lines; deenergizing and... OF UNDERGROUND COAL MINES Grounding § 77.704 Work on high-voltage lines; deenergizing and grounding. High-voltage lines shall be deenergized and grounded before work is performed on them, except that...
A Recording-Based Method for Auralization of Rotorcraft Flyover Noise
NASA Technical Reports Server (NTRS)
Pera, Nicholas M.; Rizzi, Stephen A.; Krishnamurthy, Siddhartha; Fuller, Christopher R.; Christian, Andrew
2018-01-01
Rotorcraft noise is an active field of study as the sound produced by these vehicles is often found to be annoying. A means to auralize rotorcraft flyover noise is sought to help understand the factors leading to annoyance. Previous work by the authors focused on auralization of rotorcraft fly-in noise, in which a simplification was made that enabled the source noise synthesis to be based on a single emission angle. Here, the goal is to auralize a complete flyover event, so the source noise synthesis must be capable of traversing a range of emission angles. The synthesis uses a source noise definition process that yields periodic and aperiodic (modulation) components at a set of discrete emission angles. In this work, only the periodic components are used for the source noise synthesis for the flyover; the inclusion of modulation components is the subject of ongoing research. Propagation of the synthesized source noise to a ground observer is performed using the NASA Auralization Framework. The method is demonstrated using ground recordings from a flight test of the AS350 helicopter for the source noise definition.
Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership
NASA Astrophysics Data System (ADS)
Freire, P. F.; Pane, E.; Guaraldo, N.
2012-12-01
Technology for designing ground electrodes for high-voltage direct current transmission systems (HVDC) has being using in the last years, deep soil models based on a wide range of geophysical methods. These models shall include detailed representation of shallow soil, down to 100 meters, in order to allow the evaluation of the soil conditions where the ground electrodes will be buried. Also deep soil models are needed, to be used for the interference studies, which shall represent a soil volume of about 15 km deep and a surface area of about 15 to 30 km radius. Large facilities for power plants (hydroelectric and wind farms, for example) and industrial complexes (such as petrochemical plants) has become usual at the current stage of Brazil industrialization. Grounding mats for these facilities are made of a buried cooper mesh, interconnected to a wide variety of metallic masses, such as steel reinforced concrete foundations, ducts in general etc. These grounding systems may present dimensions with the order of hundreds of meters, and, at least in Brazil, are usually calculated by using electrical resistivity soil models, based on short spacing Wenner measurements (with maximum spacing of about 64 m.). The soil model shall be the best possible representation of the environment in which the grounding electrodes are immersed, for the purpose of calculation of resistance or for digital simulation. The model to be obtained is limited by the amount and quality of soil resistivity measurements are available, and the resources to be used in the calculations and simulations. Geophysics uses a wide range of technologies for exploring subsoil, ranging from surface measurements to wells logging - seismic, gravimetric, magnetic, electrical, electromagnetic and radiometric. The electrical and electromagnetic methods includes various measurement techniques (Wenner, Schlumberger, TDEM, Magneto-telluric etc.), which together allow the development of complex resistivity soil models, layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.
Hoare, Karen J; Mills, Jane; Francis, Karen
2012-12-01
The terminology used to analyse data in a grounded theory study can be confusing. Different grounded theorists use a variety of terms which all have similar meanings. In the following study, we use terms adopted by Charmaz including: initial, focused and axial coding. Initial codes are used to analyse data with an emphasis on identifying gerunds, a verb acting as a noun. If initial codes are relevant to the developing theory, they are grouped with similar codes into categories. Categories become saturated when there are no new codes identified in the data. Axial codes are used to link categories together into a grounded theory process. Memo writing accompanies this data sifting and sorting. The following article explains how one initial code became a category providing a worked example of the grounded theory method of constant comparative analysis. The interplay between coding and categorization is facilitated by the constant comparative method. © 2012 Wiley Publishing Asia Pty Ltd.
Simpson, Howard E.; Riffenburg, Harry Buchholz
1929-01-01
Water is the most valuable of the mineral resources. The study of ground waters is therefore clearly within the field of economic geology and constitutes an important part of the work of the geological surveys, both State and national, as defined by law. In the spring of 1911 the investigation of the ground waters of North Dakota was begun by the North Dakota Geological Survey, and the work was assigned to the author of this paper. During each of the three summers 1911, 1912, and 1913 several weeks were devoted by the author to the field work of a general survey. A report on the ground waters of the State was then prepared by him and was transmitted by the director of the North Dakota Geological Survey to the State printing commission for publication. However, owing to lack of available funds the report was not published.A portion of the summer of 1914 was given to a study of artesian conditions in the Souris River Basin. Since that time considerable work has been done in connection with detailed surveys made for a number of cities and villages in an effort to obtain the best available supply of water for public use.During the summer of 1920 arrangements were made by the United States Geological Survey with the North Dakota Geological Survey whereby the author completed the work as fully as possible by correspondence and brought the report up to date.In the spring of 1921 samples of water from 196 sources were collected by the author and J. H. Buchanan and were sent to the United States Geological Survey for analysis. Most of these samples were analyzed by H. B. Riffenburg, who has used the analyses for a description of the chemical character of ground waters in the State. In addition to the analyses of samples collected in connection with the preparation of this report, over 700 partial analyses from different sources were examined. These analyses are not given in this paper, because the location of many of the wells was not stated definitely, and most of the analyses were incomplete. They were useful, however, in confirming the conclusions based on the analyses that are printed, particularly for counties where only a few samples were collected for this report.
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Human primary breast tumor cells after 49 days of growth in a NASA Bioreactor. Tumor cells aggregate on microcarrier beads (indicated by arrow). NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida
ERIC Educational Resources Information Center
Pauleen, David J.; Corbitt, Brian; Yoong, Pak
2007-01-01
Purpose: To provide a conceptual model for the discovery and articulation of emergent organizational knowledge, particularly knowledge that develops when people work with new technologies. Design/methodology/approach: The model is based on two widely accepted research methods--action learning and grounded theory--and is illustrated using a case…
Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.
2001-01-01
The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.
New Eyes for Galaxies Investigation
NASA Astrophysics Data System (ADS)
D'Onofrio, Mauro; Zaggia, Simone; Rampazzo, Roberto; Vallenari, Antonella; Gilmore, Gerald F.; Marziani, Paola; Stiavelli, Massimo; Calzetti, Daniela; Bianchi, Luciana; Trinchieri, Ginevra; Bromm, Volker; Bland-Hawthorn, Jonathan; Kaifu, Norio; Combes, Françoise; Moss, David L.; Paturel, George
The observational data for the extragalactic research are evolved across this century. While the first studies on galaxies were essentially based on images and spectra taken in the optical waveband and registered after hours of work at the telescope on glass photographic plates, today we receive pre-reduced multiwavelength images and spectra directly on our computers. The work of astronomers is changed completely with the technological progress. Only 30 years ago, 4-5 photographic images of galaxies, or a few spectra, were the best one can hope to get after a night of hard work at the telescope. Today, space and ground-based telescopes with big diameters and field of view are pointed toward the sky every night, collecting gigabytes of data for thousand of galaxies, that we bring with us in our laptop computers.
Radiometric characterization of hyperspectral imagers using multispectral sensors
NASA Astrophysics Data System (ADS)
McCorkel, Joel; Thome, Kurt; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff
2009-08-01
The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of MODIS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most bands as well as similar agreement between results that employ the different MODIS sensors as a reference.
Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors
NASA Technical Reports Server (NTRS)
McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff
2009-01-01
The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.
NASA Astrophysics Data System (ADS)
Li, C.; Li, F.; Liu, Y.; Li, X.; Liu, P.; Xiao, B.
2012-07-01
Building 3D reconstruction based on ground remote sensing data (image, video and lidar) inevitably faces the problem that buildings are always occluded by vegetation, so how to automatically remove and repair vegetation occlusion is a very important preprocessing work for image understanding, compute vision and digital photogrammetry. In the traditional multispectral remote sensing which is achieved by aeronautics and space platforms, the Red and Near-infrared (NIR) bands, such as NDVI (Normalized Difference Vegetation Index), are useful to distinguish vegetation and clouds, amongst other targets. However, especially in the ground platform, CIR (Color Infra Red) is little utilized by compute vision and digital photogrammetry which usually only take true color RBG into account. Therefore whether CIR is necessary for vegetation segmentation or not has significance in that most of close-range cameras don't contain such NIR band. Moreover, the CIE L*a*b color space, which transform from RGB, seems not of much interest by photogrammetrists despite its powerfulness in image classification and analysis. So, CIE (L, a, b) feature and support vector machine (SVM) is suggested for vegetation segmentation to substitute for CIR. Finally, experimental results of visual effect and automation are given. The conclusion is that it's feasible to remove and segment vegetation occlusion without NIR band. This work should pave the way for texture reconstruction and repair for future 3D reconstruction.
NASA Astrophysics Data System (ADS)
Vasudevan Nair, Krishnakumar
Global distribution of cirrus derived from space borne observation has been very elaborately reported by Wang et al., 1996 Mergenthaler et al., 1999, Clark, 2005. But with the arrival of CALIOP on board the CALIPSO mission has improved cirrus reporting and the study on their microphysical properties (Dessler, 2009). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. Most of the study that has reported from this region are derived from the Gadanki ground based station (13.5 0 N, 79.2 0 E). The primary objective of this work is to compare the physical properties of cirrus observed by the ground based and space borne lidar system with respect to the station Gadanki. The current observation is based on the product version 3 data from CALIPSO during the period 2007 to 2010 .This data consist of layer data with horizontal resolution of 5km and a vertical resolution of 300m Both day and night observations are considered for the study. Clouds with optical depth less than 1 and altitude above 8km are only taken in the study to make sure all the observed clouds are cirrus in nature. As clouds with optical depth less than 1 is considered clouds of sub visual, thin and dense clouds are in study Accuracy of the derived cirrus characteristics increases with CAD score. Low CAD score means the accuracy is less or the confidence level in the determined characteristics is less. Clouds with CAD score in the range 70-100 are taken for the study. Since the CALIPSO observations are available continuously along the sub satellite track with a repeat cycle of 16 days. For each orbit cycle the observation track is separated by 1.6 o in longitude. The satellite exactly repeats in a particular point once in 16 days. So in order to get more data grid size of at least 50 and 10 is needed to include more data. In this study the distribution of averaged physical properties inside the grid 50 N to 20 0 N and 60 0 E to 85 0 E is studied. The physical properties of the grid 13.50N and 79.20E is compared with the ground based observation of the same station. .The CALIPSO data with respect to a small grid is few and proper comparison cannot be done. In order to accommodate more cloud data a larger grid is selected. With a larger grid cloud characteristics can be studied in and around the station with a larger perspective. The Fig 6.2 to Fig 6.5 shows the monthly distribution of back scattering ratio. The montly mean back scattering ratio was studied for the period of observation. The back scattering ratio gives the cloud distribution picture. The observation is done for a period of 3 years (2007 to 2010). The year 2007 is a period of less cloud activity. The cloud activity increases as the winter periods starts. It was seen that the frequency of cloud observation increases in the latitude range 10 - 150 N in the month of December 2007. The study also shows that the cloud depolarisation and cloud base altitude measurement shows much similarity, but there is huge variation between the cloud optical depth obtained from CALIPSO measurement and the ground based lidar measurements. This variation is may be due to the multiple scattering algorithms employed by CALIOP measurement. The ground based measurement generally had negligible multiple scattering effects. This was substantiated by measuring the multiple scattering effects in the previous chapter and it was found that cloud events in 2009 had negligible multiple scattering effect. The study also shows that some cirrus event were not detected by CALIPSO .Days with no cloud events in CALIPSO data have shown cloud events by ground based observation. The work also substantiates the following findings • It was found that during the south west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. This distribution of optically and geometrically thick clouds was also observed from the station using the ground based lidar. • The north east monsoon periods had optical thick clouds hugging the coast line. This was observed with the ground based lidar also. It was possible to confirm that similar clouds are seen throughout the western coast line. • The summer had large cloud formation in the Arabian Sea. It was also found that the land masses near to the seas had large cirrus presence. These cirrus clouds were of high altitude and optical depth. • The study also predicts some local convection around Srilanka, which keeps cirrus out of Srilanka during the monsoon period. The monsoon period is the period where active cirrus formation is seen in the inland station and over the Indian Ocean region.
Fusion of remotely sensed data from airborne and ground-based sensors for cotton regrowth study
USDA-ARS?s Scientific Manuscript database
The study investigated the use of aerial multispectral imagery and ground-based hyperspectral data for the discrimination of different crop types and timely detection of cotton plants over large areas. Airborne multispectral imagery and ground-based spectral reflectance data were acquired at the sa...
Ryder, Andrew G; Sunohara, Momoka; Kirmayer, Laurence J
2015-01-01
The aim of this review is twofold: to review recent literature on personality disorders, published in 2013 and the first half of 2014; and to use recent theoretical work to argue for a contextually grounded approach to culture and personality disorder. Recent large-sample studies suggest that U.S. ethnoracial groups differ in personality disorder diagnostic rates, but also that minority groups are less likely to receive treatment for personality disorder. Most of these studies do not test explanations for these differences. However, two studies demonstrate that socioeconomic status partly explains group differences between African-Americans and European Americans. Several new studies test the psychometric properties of instruments relevant to personality disorder research in various non-Western samples. Ongoing theoretical work advocates much more attention to cultural context. Recent investigations of hikikomori, a Japanese social isolation syndrome with similarities to some aspects of personality disorder, are used to demonstrate approaches to contextually grounded personality disorder research. Studies of personality disorder must understand patients in sociocultural context considering the dynamic interactions between personality traits, developmental histories of adversity and current social context. Research examining these interactions can guide contextually grounded clinical work with patients with personality disorder.
ERIC Educational Resources Information Center
Einarsdottir, Sigrun Lilja
2014-01-01
The purpose of this paper is to demonstrate how amateur choral singers experience collective group support as a method of learning "art music" choral work. Findings are derived from a grounded-theory based, socio-musical case study of an amateur "art music" Bach Choir, in the process of rehearsing and performing the Mass in B…
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2013-10-01
The booklet is dedicated to the great Armenian astronomer Beniamin Markarian. Due to his efforts the famous Byurakan surveys have been accomplished and ultraviolet excess galaxies have been discovered, later named after him. The Armenian astronomy is well-known throughout the world as due to Viktor Ambartsumian's, so as to Markarian's works, and Markarian galaxies are being studied by numerous ground-based and space telescopes along the whole range of electromagnetic radiation.
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies
NASA Technical Reports Server (NTRS)
Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.
2018-01-01
Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.
Rocket seedling production on the international space station: Growth and nutritional properties
NASA Astrophysics Data System (ADS)
Colla, Giuseppe; Battistelli, Alberto; Proietti, Simona; Moscatello, Stefano; Rouphael, Youssef; Cardarelli, Mariateresa; Casucci, Marco
2007-09-01
Producing sprouts directly during space missions may represent an interesting opportunity to offer high-quality fresh ready to eat food to the astronauts. The goal of this work was to compare, in terms of growth and nutritional quality, rocket (Eruca sativa Mill.) seedlings grown in the International Space Station during the ENEIDE mission with those grown in a ground-based experiment (in presence and absence of clinorotation). The rocket seedlings obtained from the space-experiment were thinner and more elongated than those obtained in the ground-based experiment. Cotyledons were often closed in the seedlings grown in the space experiment. Quantitative (germination, fresh and dry weight) and qualitative (glucose, fructose, sucrose and starch) traits of rocket seedling were negatively affected by micrograv-ity, especially those recorded on seedlings grown under real microgravity conditions The total chlorophyll, and carotenoids of seedlings obtained in the space experiment were strongly reduced in comparison to those obtained in the ground-based experiment (presence and absence of clinorotation). The results showed that it is possible to produce rocket seedlings in the ISS; however, further studies are needed to define the optimal environmental conditions for producing rocket seedlings with high nutritional value
Methane emissions from the global oil and gas supply chain: recent advances and next steps
NASA Astrophysics Data System (ADS)
Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.
2017-12-01
A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.
NASA Astrophysics Data System (ADS)
Sun, Lei; Khan, Shuhab D.; Sarmiento, Sergio; Lakshmikantha, M. R.; Zhou, Huawei
2017-12-01
Petroleum geoscientists have been using cores and well logs to study source rocks and reservoirs, however, the inherent discontinuous nature of these data cannot account for horizontal heterogeneities. Modern exploitation requires better understanding of important source rocks and reservoirs at outcrop scale. Remote sensing of outcrops is becoming a first order tool for reservoir analog studies including horizontal heterogeneities. This work used ground-based hyperspectral imaging, terrestrial laser scanning (TLS), and high-resolution photography to study a roadcut of the Boone Formation at Bella Vista, northwest Arkansas, and developed an outcrop model for reservoir analog analyses. The petroliferous Boone Formation consists of fossiliferous limestones interbedded with chert of early Mississippian age. We used remote sensing techniques to identify rock types and to collect 3D geometrical data. Mixture tuned matched filtering classification of hyperspectral data show that the outcrop is mostly limestones with interbedded chert nodules. 1315 fractures were classified according to their strata-bounding relationships, among these, larger fractures are dominantly striking in ENE - WSW directions. Fracture extraction data show that chert holds more fractures than limestones, and both vertical and horizontal heterogeneities exist in chert nodule distribution. Utilizing ground-based remote sensing, we have assembled a virtual outcrop model to extract mineral composition as well as fracture data from the model. We inferred anisotropy in vertical fracture permeability based on the dominancy of fracture orientations, the preferential distribution of fractures and distribution of chert nodules. These data are beneficial in reservoir analogs to study rock mechanics and fluid flow, and to improve well performances.
Figure/ground segregation from temporal delay is best at high spatial frequencies.
Kojima, H
1998-12-01
Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.
Ecological Aspects of Condition of Ground Deposits in Shershnevsky Reservoir
NASA Astrophysics Data System (ADS)
Arkanova, I. A.; Denisov, S. E.; Knutarev, D. Yu
2017-11-01
The article considers the aspects of the condition of ground deposits influencing the operating conditions of the water intake facilities in the Shershnevsky reservoir being the only source of the utility and drinking water supply in Chelyabinsk. The object of the research is a section near the Sosnovskie intake stations of the Shershnevsky reservoir. Based on the hydrometric surveys of the studied section and using the Kriging method and the Surfer suite, we calculated the volume of ground deposits. As a result of the analyses, the authors have proved that ground deposits in the studied section have a technology-related nature which is connected with the annual growth of the volume of ground deposits which is inadmissible in the operating conditions of the pump stations of water intake facilities whereas ground deposits will fully block the intake windows of pump stations. In case the bed area of the Shershnevsky reservoir is not timely treated, the ground deposits here will complicate the operation of the pump stations which will result in a technological problem of the treatment facilities operation up to a transfer of the pump station premises to other territories less exposed to the deposits. The treatment of the Shershnevsky reservoir from the ground deposits accumulated in the course of time will help to considerably increase its actual capacity, which will allow one to increase water circulation paths and to improve the water quality indices. In its turn, the water quality improvement will decrease the supply of suspended solids into the water intake facilities and cut the reagent costs in the course of the treatment water works operation.
NASA Astrophysics Data System (ADS)
Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Brown, S. S.; Commane, R.; Daube, B. C.; Gouw, J. A.; Dubé, W. P.; Flynn, J.; Frost, G. J.; Gilman, J. B.; Grossberg, N.; Holloway, J. S.; Kofler, J.; Kort, E. A.; Kuster, W. C.; Lang, P. M.; Lefer, B.; Lueb, R. A.; Neuman, J. A.; Nowak, J. B.; Novelli, P. C.; Peischl, J.; Perring, A. E.; Roberts, J. M.; Santoni, G.; Schwarz, J. P.; Spackman, J. R.; Wagner, N. L.; Warneke, C.; Washenfelder, R. A.; Wofsy, S. C.; Xiang, B.
2011-11-01
Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 ± 11% and 34 ± 4%, respectively, and an average increase in VOC/NOxratio of 48 ± 8% and 43 ± 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOxoxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 ± 13% and 42 ± 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 ± 14% and 22 ± 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB.
NASA Astrophysics Data System (ADS)
Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Brown, S. S.; Commane, R.; Daube, B. C.; de Gouw, J. A.; Dubé, W. P.; Flynn, J.; Frost, G. J.; Gilman, J. B.; Grossberg, N.; Holloway, J. S.; Kofler, J.; Kort, E. A.; Kuster, W. C.; Lang, P. M.; Lefer, B.; Lueb, R. A.; Neuman, J. A.; Nowak, J. B.; Novelli, P. C.; Peischl, J.; Perring, A. E.; Roberts, J. M.; Santoni, G.; Schwarz, J. P.; Spackman, J. R.; Wagner, N. L.; Warneke, C.; Washenfelder, R. A.; Wofsy, S. C.; Xiang, B.
2012-02-01
Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 ± 11% and 34 ± 4%, respectively, and an average increase in VOC/NOx ratio of 48 ± 8% and 43 ± 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOx oxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 ± 13% and 42 ± 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 ± 14% and 22 ± 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB.
Civilian Talent Management: A Proposed Approach for the Aberdeen Proving Ground Workforce
2010-04-01
Culturally, officers and civilians work within the same set of Army 14 values ( loyalty , duty, respect, selfless service , honor, integrity, and...Army acquisition community , the Army’s Senior Service College Fellowship (SSCF) program may serve as a useful example of this portfolio-based approach...CIVILIAN TALENT MANAGEMENT: A PROPOSED APPROACH FOR THE ABERDEEN PROVING GROUND WORKFORCE SENIOR SERVICE COLLEGE FELLOWSHIP STRATEGY
The Telecommunications and Data Acquisition Report. [Deep Space Network
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1988-01-01
In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported. Also included is TDA funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA.
NASA Technical Reports Server (NTRS)
Reddell, Brandon
2015-01-01
Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.
Spent coffee grounds-based activated carbon preparation for sequestering of malachite green
NASA Astrophysics Data System (ADS)
Lim, Jun-Wei; Lam, Keat-Ying; Bashir, Mohammed J. K.; Yeong, Yin-Fong; Lam, Man-Kee; Ho, Yeek-Chia
2016-11-01
The key of reported work was to optimize the fabricating factors of spent coffee grounds-based activated carbon (SCG-bAC) used to sequester Malachite Green (MG) form aqueous solution via adsorption process. The fabricating factors of impregnation ratio with ortho-phosphoric acid, activation temperature and activation time were simultaneously optimized by central composite design (CCD) of response surface methodology (RSM) targeting on maximum removal of MG. At the optimum condition, 96.3% of MG was successfully removed by SCG-bAC at the impregnation ratio with ortho-phosphoric acid of 0.50, activation temperature of 554°C and activation time of 31.4 min. Statistical model that could predict the MG removal percentage was also derived and had been statistically confirmed to be significant. Subsequently, the MG adsorption equilibrium data was found well-fitted to Langmuir isotherm model, indicating the predominance of monolayer adsorption of MG on SCG-bAC surface. To conclude, the findings from the this study unveil the potential of spent coffee grounds as an alternative precursor in fabricating low-cost AC for the treatment of wastewater loaded with MG pollutant.
Adrenocorticotrophic Hormone Levels in Ground Based Studies
NASA Technical Reports Server (NTRS)
Campbell, B. O.
1972-01-01
Baseline values of immunoreactive ACTH were established in the normal healthy adult. Normal levels of ACTH secretion were determined for both the male and the female in circulating plasma and serum. The data obtained in these studies are particularly significant in that the sampling was carefully controlled; only healthy employed individuals of both sexes were tested in a routine work situation that would not be considered conducive to stress. It has been found that alterations in the classically described circadian rhythm of ACTH secretion can occur when activities (such as work/rest cycles) are imposed on the individual studied. These changes can be demonstrated even when there is no appreciable change noted in the rhythm of hydrocortisone secretion.
Study on launch scheme of space-net capturing system.
Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang
2017-01-01
With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.
Study on launch scheme of space-net capturing system
Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang
2017-01-01
With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187
NASA Technical Reports Server (NTRS)
Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.
1988-01-01
A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.
ERIC Educational Resources Information Center
Braganza, Morgan; Akesson, Bree; Rothwell, David
2017-01-01
Grounded theory is a popular methodological approach in social work research, especially by doctoral students conducting qualitative research. The approach, however, is not always used consistently or as originally designed, compromising the quality of the research. The aim of the current study is to assess the quality of recent Canadian social…
Bromley v. H. and J. Quick, 30 March 1988.
1988-01-01
The appellants charged the respondent employer with sex discrimination under the Equal Pay Act 1970 because they were paid less than male employees that they claimed were performing work of equal value. The respondent asserted that there was no discrimination, relying on a commissioned job evaluation study giving different values for the work. The Court of Appeal of England held that the respondent could not rely on the job evaluation study because the study was not an analytical study based on ratings of demands made on the workers as required by law. It also held that the onus was on the employer to show that there were no reasonable grounds for determining that the evaluation in the study was tainted by sex discrimination. full text
Accurate measurements of solar spectral irradiance between 4000-10000 cm-1
NASA Astrophysics Data System (ADS)
Elsey, J.; Coleman, M. D.; Gardiner, T.; Shine, K. P.
2017-12-01
The near-infrared solar spectral irradiance (SSI) is an important input into simulations of weather and climate; the distribution of energy throughout this region of the spectrum influences atmospheric heating rates and the global hydrological cycle through absorption and scattering by water vapour. Current measurements by a mixture of ground-based and space-based instruments show differences of around 10% in the 4000-7000 cm-1 region, with no resolution to this controversy in sight. This work presents observations of SSI taken using a ground-based Fourier Transform spectrometer between 4000-10000 cm-1 at a field site in Camborne, UK, with particular focus on a rigorously defined uncertainty budget. While there is good agreement between this work and the commonly-used ATLAS3 spectrum between 7000-10000 cm-1, the SSI is systematically lower by 10% than ATLAS3 between 4000-7000 cm-1, with no overlap within the k = 2 measurement uncertainties.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Currently, spacecraft ground systems have a well defined and somewhat standard architecture and operations concept. Based on domain analysis studies of various control centers conducted over the years it is clear that ground systems have core capabilities and functionality that are common across all ground systems. This observation alone supports the realization of reuse. Additionally, spacecraft ground systems are increasing in their ability to do things autonomously. They are being engineered using advanced expert systems technology to provide automated support for operators. A clearer understanding of the possible roles of agent technology is advancing the prospects of greater autonomy for these systems. Many of their functional and management tasks are or could be supported by applied agent technology, the dynamics of the ground system's infrastructure could be monitored by agents, there are intelligent agent-based approaches to user-interfaces, etc. The premise of this paper is that the concepts associated with software reuse, applicable in consideration of classically-engineered ground systems, can be updated to address their application in highly agent-based realizations of future ground systems. As a somewhat simplified example consider the following situation, involving human agents in a ground system context. Let Group A of controllers be working on Mission X. They are responsible for the command, control and health and safety of the Mission X spacecraft. Let us suppose that mission X successfully completes it mission and is turned off. Group A could be dispersed or perhaps move to another Mission Y. In this case there would be reuse of the human agents from Mission X to Mission Y. The Group A agents perform their well-understood functions in a somewhat but related context. There will be a learning or familiarization process that the group A agents go through to make the new context, determined by the new Mission Y, understood. This simplified scenario highlights some of the major issues that need to be addressed when considering the situation where Group A is composed of software-based agents (not their human counterparts) and they migrate from one mission support system to another. This paper will address: - definition of an agent architecture appropriate to support reuse; - identification of non-mission-specific agent capabilities required; - appropriate knowledge representation schemes for mission-specific knowledge; - agent interface with mission-specific knowledge (a type of Learning); development of a fully-operational group of cooperative software agents for ground system support; architecture and operation of a repository of reusable agents that could be the source of intelligent components for realizing an autonomous (or nearly autonomous) agent-based ground system, and an agent-based approach to repository management and operation (an intelligent interface for human use of the repository in a ground-system development activity).
Voyer, Stéphane; Cuncic, Cary; Butler, Deborah L; MacNeil, Kimberley; Watling, Christopher; Hatala, Rose
2016-09-01
We developed, implemented and evaluated an evidence-based programme of feedback designed to address limitations identified in the current literature. We sought to advance understanding about how and why feedback processes might be more effective in clinical education. Three faculty members and nine first-year internal medicine residents participated in the pilot programme. To counter challenges identified in the literature, feedback was based on direct observation, grounded in longitudinal faculty-resident relationships, and devoid of summative assessment. We used a qualitative case study design to address three research questions: (i) What benefits did the participants describe? (ii) What elements of the programme facilitated these benefits? (iii) What were the limitations and challenges of the programme? Collected data included audiotapes of interactions between faculty members and residents, field notes written during observations, and semi-structured interviews and focus groups with resident participants. Data analysis moved cyclically and iteratively through inductive and deductive analysis. Residents described benefits relating to their ways of working (clinical skills), ways of learning (accountability for learning) and ways of feeling (emotional well-being). According to participants, specific elements of the programme that achieved these benefits included the direct observation of authentic clinical work, the longitudinal relationship with a faculty member and the emergence of feedback as a conversation between the faculty member and learner. We conclude that the conditions established within our pilot feedback programme influenced the learning culture for first-year internal medicine residents by grounding direct observation in authentic clinical work and setting the observations in the context of a longitudinal, non-assessment-based relationship between a faculty member and resident. These conditions appeared to influence residents' participation in the feedback process, their ways of approaching their daily clinical work, their emotional well-being and their engagement in their own learning. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
International borders, ground water flow, and hydroschizophrenia.
Jarvis, Todd; Giordano, Mark; Puri, Shammy; Matsumoto, Kyoko; Wolf, Aaron
2005-01-01
A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?
Gaussian entanglement distribution via satellite
NASA Astrophysics Data System (ADS)
Hosseinidehaj, Nedasadat; Malaney, Robert
2015-02-01
In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.
Altair Navigation During Trans-Lunar Cruise, Lunar Orbit, Descent and Landing
NASA Technical Reports Server (NTRS)
Ely, Todd A.; Heyne, Martin; Riedel, Joseph E.
2010-01-01
The Altair lunar lander navigation system is driven by a set of requirements that not only specify a need to land within 100 m of a designated spot on the Moon, but also be capable of a safe return to an orbiting Orion capsule in the event of loss of Earth ground support. These requirements lead to the need for a robust and capable on-board navigation system that works in conjunction with an Earth ground navigation system that uses primarily ground-based radiometric tracking. The resulting system relies heavily on combining a multiplicity of data types including navigation state updates from the ground based navigation system, passive optical imaging from a gimbaled camera, a stable inertial measurement unit, and a capable radar altimeter and velocimeter. The focus of this paper is on navigation performance during the trans-lunar cruise, lunar orbit, and descent/landing mission phases with the goal of characterizing knowledge and delivery errors to key mission events, bound the statistical delta V costs for executing the mission, as well as the determine the landing dispersions due to navigation. This study examines the nominal performance that can be obtained using the current best estimate of the vehicle, sensor, and environment models. Performance of the system under a variety sensor outages and parametric trades is also examined.
Rapid model-based inter-disciplinary design of a CubeSat mission
NASA Astrophysics Data System (ADS)
Lowe, C. J.; Macdonald, M.
2014-12-01
With an increase in the use of small, modular, resource-limited satellites for Earth orbiting applications, the benefit to be had from a model-based architecture that rapidly searches the mission trade-space and identifies near-optimal designs is greater than ever. This work presents an architecture that identifies trends between conflicting objectives (e.g. lifecycle cost and performance) and decision variables (e.g. orbit altitude and inclination) such that informed assessment can be made as to which design/s to take on for further analysis. The models within the architecture exploit analytic methods where possible, in order avoid computationally expensive numerical propagation, and achieve rapid convergence. Two mission cases are studied; the first is an Earth observation satellite and presents a trade-off between ground sample distance and revisit time over a ground target, given altitude as the decision variable. The second is a satellite with a generic scientific payload and shows a more involved trade-off, between data return to a ground station and cost of the mission, given variations in the orbit altitude, inclination and ground station latitude. Results of each case are presented graphically and it is clear that non-intuitive results are captured that would typically be missed using traditional, point-design methods, where only discrete scenarios are examined.
Weeks, John B.
1978-01-01
The Ogallala Formation and associated Tertiary and Quarternary deposits form the principal aquifers supporting irrigation in the High Plains of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The volume of water in storage within the aquifers is declining in most of the High Plains because water is being withdrawn in excess of the rate of replenishment. The U.S. Geological Survey has initiated a 5-year study of the High Plains aquifer system to develop the geohydrologic data base and computer models of the ground-water flow system needed to evaluate the response of the aquifer,system to ground-water management alternatives. This report describes the objectives, plan, and organization of the study and outlines the work to be accomplished in each state in the study area.
Experimental estimation of energy absorption during heel strike in human barefoot walking.
Baines, Patricia M; Schwab, A L; van Soest, A J
2018-01-01
Metabolic energy expenditure during human gait is poorly understood. Mechanical energy loss during heel strike contributes to this energy expenditure. Previous work has estimated the energy absorption during heel strike as 0.8 J using an effective foot mass model. The aim of our study is to investigate the possibility of determining the energy absorption by more directly estimating the work done by the ground reaction force, the force-integral method. Concurrently another aim is to compare this method of direct determination of work to the method of an effective foot mass model. Participants of our experimental study were asked to walk barefoot at preferred speed. Ground reaction force and lower leg kinematics were collected at high sampling frequency (3000 Hz; 1295 Hz), with tight synchronization. The work done by the ground reaction force is 3.8 J, estimated by integrating this force over the foot-ankle deformation. The effective mass model is improved by dropping the assumption that foot-ankle deformation is maximal at the instant of the impact force peak. On theoretical grounds it is clear that in the presence of substantial damping that peak force and peak deformation do not occur simultaneously. The energy absorption results, due the vertical force only, corresponding to the force-integral method is similar to the results of the improved application of the effective mass model (2.7 J; 2.5 J). However the total work done by the ground reaction force calculated by the force-integral method is significantly higher than that of the vertical component alone. We conclude that direct estimation of the work done by the ground reaction force is possible and preferable over the use of the effective foot mass model. Assuming that energy absorbed is lost, the mechanical energy loss of heel strike is around 3.8 J for preferred walking speeds (≈ 1.3 m/s), which contributes to about 15-20% of the overall metabolic cost of transport.
NASA Technical Reports Server (NTRS)
Lukash, James A.; Daley, Earl
2011-01-01
This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.
A qualitative inquiry into work-family conflict among Indian doctors and nurses.
Pal, Suchitra
2012-01-01
The aims of this pilot study were to identify and examine job control, working long hours and their impact on work and family conflict (WFC) among four Indian doctors and nurses. The four participants had previously worked in the west and were now working in India. Employing a grounded theory approach data were analyzed using several coding procedures geared toward model development. For these four Indian doctors and nurses, job control was found to be grounded in two factors: type of work group control and a lack of control in the work environment. Working long hours is seen to be possible due to a culture accepting of working long hours, a supportive family system, and other arrangements at home.
Working Group 11F Opening Comments NASA Planning for NASA's Future Ground Systems
NASA Technical Reports Server (NTRS)
Smith, Danford S.
2016-01-01
These are simple charts for the introductory comments to be made at the start of a panel session at the Ground System Architecture Workshop (GSAW2016). It is not meant as a formal paper, but rather contains information to prompt further discussion of the panel members and audience. The panel topic is: Embracing Change via the Use of Service-Based Frameworks and Products in an Enterprise.
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1974-01-01
Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.
1998-10-10
High magnification of view of tumor cells aggregate on microcarrier beads, illustrting breast cells with intercellular boundaires on bead surface and aggregates of cells achieving 3-deminstional growth outward from bead after 56 days of culture in a NASA Bioreactor. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida.
1998-10-10
High magnification view of human primary breast tumor cells after 56 days of culture in a NASA Bioreactor. The arrow points to bead surface indicating breast cancer cells (as noted by the staining of tumor cell intermediate filaments). NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida
A space station onboard scheduling assistant
NASA Technical Reports Server (NTRS)
Brindle, A. F.; Anderson, B. H.
1988-01-01
One of the goals for the Space Station is to achieve greater autonomy, and have less reliance on ground commanding than previous space missions. This means that the crew will have to take an active role in scheduling and rescheduling their activities onboard, perhaps working from preliminary schedules generated on the ground. Scheduling is a time intensive task, whether performed manually or automatically, so the best approach to solving onboard scheduling problems may involve crew members working with an interactive software scheduling package. A project is described which investigates a system that uses knowledge based techniques for the rescheduling of experiments within the Materials Technology Laboratory of the Space Station. Particular attention is paid to: (1) methods for rapid response rescheduling to accommodate unplanned changes in resource availability, (2) the nature of the interface to the crew, (3) the representation of the many types of data within the knowledge base, and (4) the possibility of applying rule-based and constraint-based reasoning methods to onboard activity scheduling.
Public Participation Guide: Consensus Workshops
A consensus conference is a type of public meeting that allows stakeholders to be involved in assessing an issue or proposal and working together to find common ground and deliver consensus-based input.
Prince Albert National Park Forest Cover Data in Vector Format
NASA Technical Reports Server (NTRS)
Fitzsimmons, Michael; Nickeson, Jaime; Hall, Forrest G. (Editor)
2000-01-01
This data set provides detailed canopy, understory, and ground cover height, density, and condition information for PANP in the western portion of the BOReal Ecosystem-Atmosphere Study (BOREAS) Southern Study Area (SSA) in vector form. The original biophysical resource data set was produced in 1978 based on aerial photographs taken in 1968 and field work conducted in the mid-1970s, and PANP's update/revision of the data set was completed in 1994. The data are stored in an ARC/INFO export file.
NASA Technical Reports Server (NTRS)
Williams, Earle R.
2001-01-01
This report is concerned with a summary of work completed under NASA Grant NAG5-4778 entitled: "Precipitation-Lightning Relationships on a Global Basis", with a supplement entitled: "A Study of Tropical Continental Convection in TRMM/Brazil". Several areas of endeavor are summarized, some of them concerned directly with the observations from the TRMM satellite, and others focussing on ground based measurements in the NASA TRMM LBA field program in Brazil.
Culturally Responsive Teaching in the Context of Mathematics: A Grounded Theory Case Study
ERIC Educational Resources Information Center
Bonner, Emily P.; Adams, Thomasenia L.
2012-01-01
In this grounded theory case study, four interconnected, foundational cornerstones of culturally responsive mathematics teaching (CRMT), communication, knowledge, trust/relationships, and constant reflection/revision, were systematically unearthed to develop an initial working theory of CRMT that directly informs classroom practice. These…
Estimation of vegetation cover at subpixel resolution using LANDSAT data
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Eagleson, Peter S.
1986-01-01
The present report summarizes the various approaches relevant to estimating canopy cover at subpixel resolution. The approaches are based on physical models of radiative transfer in non-homogeneous canopies and on empirical methods. The effects of vegetation shadows and topography are examined. Simple versions of the model are tested, using the Taos, New Mexico Study Area database. Emphasis has been placed on using relatively simple models requiring only one or two bands. Although most methods require some degree of ground truth, a two-band method is investigated whereby the percent cover can be estimated without ground truth by examining the limits of the data space. Future work is proposed which will incorporate additional surface parameters into the canopy cover algorithm, such as topography, leaf area, or shadows. The method involves deriving a probability density function for the percent canopy cover based on the joint probability density function of the observed radiances.
Python-Based Tool for Universal Nuclear Data Extraction
NASA Astrophysics Data System (ADS)
McDonald, William; Blair, Hayden; Consalvi, Peter; Garbiso, Markus; Grover, Hannah; Harget, Alex; Martin, Matthew; Natzke, Connor; Leach, Kyle
2017-09-01
Over the past 70 years, nuclear physics experiments have provided a vast wealth of experimental data on both ground and excited state properties across the nuclear chart. In many cases, searching for and parsing the relevant nuclear structure data from previous work can be tedious and difficult. Although the compilation, evaluation, and digitization of this data by multiple groups around the world over the past several decades has helped dramatically in this respect, the process of performing systematic studies using this data can still be cumbersome and limited. We are in the process of creating a python-based program to extract, sort, and manipulate nuclear and atomic data efficiently. In its current state, the program is able to extract all atomic-shell ionization energies, excited- and ground-state nuclear properties, and all beta-decay rates and ratios. As a part of this ongoing project, we plan to use this tool to examine beta-decay rates in extreme astrophysical environments.
Brainard, George C; Barger, Laura K; Soler, Robert R; Hanifin, John P
2016-11-01
The review addresses the development of a new solid-state lighting system for the International Space Station (ISS) that is intended to enhance the illumination of the working and living environment of astronauts and to improve sleep, circadian entrainment, and daytime alertness. Spaceflight missions often expose astronauts and mission support ground crews to atypical sleep-wake cycles and work schedules. A recent, extensive study describes the sleep characteristics and use of sleep-promoting pharmaceuticals in astronauts before, during, and after spaceflight. The acceptability, feasibility, and efficacy of the new ISS solid-state lighting systems are currently being tested in ground-based, analog studies. Installation of this lighting system on the ISS is scheduled to begin later this year. In-flight testing of this lighting system is planned to take place during ISS spaceflight expeditions. If the new ISS lighting system is capable of improving circadian entrainment and sleep during spaceflight, it should enhance astronaut health, performance, well-being, and safety. Such an advance would open the door to future lighting applications for humans living on Earth.
On-orbit characterization of hyperspectral imagers
NASA Astrophysics Data System (ADS)
McCorkel, Joel
Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne- and satellite-based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This dissertation presents a method for determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on a multispectral sensor, Moderate-resolution Imaging Spectroradiometer (MODIS), as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. A method to predict hyperspectral surface reflectance using a combination of MODIS data and spectral shape information is developed and applied for the characterization of Hyperion. Spectral shape information is based on RSG's historical in situ data for the Railroad Valley test site and spectral library data for the Libyan test site. Average atmospheric parameters, also based on historical measurements, are used in reflectance prediction and transfer to space. Results of several cross-calibration scenarios that differ in image acquisition coincidence, test site, and reference sensor are found for the characterization of Hyperion. These are compared with results from the reflectance-based approach of vicarious calibration, a well-documented method developed by the RSG that serves as a baseline for calibration performance for the cross-calibration method developed here. Cross-calibration provides results that are within 2% of those of reflectance-based results in most spectral regions. Larger disagreements exist for shorter wavelengths studied in this work as well as in spectral areas that experience absorption by the atmosphere.
Modification of the Electromagnetic Levitator (EML) Hardware
NASA Technical Reports Server (NTRS)
Frost, R. T.
1985-01-01
The goals of this project are: (1) to study the upgrade requirements and approaches needed for incorporation of an Electromagnetic Levitator (EML) into the shuttle orbiter, (2) to work with members of the Electromagnetic Containerless Processing science working group (SWG) to define future experiments for the EML, and (3) to assist these investigators in further development of ground-based experiment techniques to the limits possible in the terrestrial gravitational environment. Present work is directed toward: (1) upgrading the EML flight apparatus to meet requirements of safety and integration interfaces with the MSL orbiter carrier, (2) development of new experiment components required to carry out approved experiments in undercooled solidification and associated fluid flow studies directed by MIT, and (3) construction, test, qualification and integration assistance for the EML MSL flight package.
Overview of lunar-based astronomy
NASA Technical Reports Server (NTRS)
Smith, Harlan J.
1988-01-01
The opportunities along with the advantages and disadvantages of the Moon for astronomical observatories are carefully and methodically considered. Taking a relatively unbiased approach, it was concluded that lunar observatories will clearly be a major factor in the future of astronomy in the next century. He concludes that ground based work will continue because of its accessibility and that Earth orbital work will remain useful, primarily for convenience of access in constructing and operating very large space systems. Deep space studies will feature not only probes but extensive systems for extremely long baseline studies at wavelengths from gamma rays through visible and IR out to radio is also a conclusion drawn, along with the consideration that lunar astronomy will have found important permanent applications along lines such as are discussed at the present symposium and others quite unsuspected today.
Hand-in Hand, Building Community on Common Ground
ERIC Educational Resources Information Center
Lawton, Pamela Harris
2010-01-01
Shortly after the author began teaching at the University of North Carolina at Charlotte (UNCC), Frances Hawthorne, one of the studio faculty, approached her to work on a community-based art project with students. Frances is a social justice artist who works collaboratively with marginalized groups such as the homeless and inmates at the…
Gaining Ground in the Middle Grades. Education Outlook. No. 1
ERIC Educational Resources Information Center
Williams, Trish; Rosin, Matthew; Kirst, Michael W.
2011-01-01
Educators and policymakers have debated in recent years how best to improve academic performance in the middle grades. In the absence of outcomes-based research about what works, school districts have reshuffled grade configurations, bolstered their focus on "academic rigor," and worked to ensure that students are engaged in school as…
NASA Technical Reports Server (NTRS)
Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.
1993-01-01
The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.
Satellite-based phenology detection in broadleaf forests in South-Western Germany
NASA Astrophysics Data System (ADS)
Misra, Gourav; Buras, Allan; Menzel, Annette
2016-04-01
Many techniques exist for extracting phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite-derived observations with ground based phenological observations (Fisher et al., 2006; Hamunyela et al., 2013; Galiano et al., 2015). Such studies are primarily plagued with problems relating to shorter time series of satellite data including spatial and temporal resolution issues. A great challenge is to correlate spatially continuous and pixel-based satellite information with spatially discontinuous and point-based, mostly species-specific, ground observations of phenology. Moreover, the minute differences in phenology observed by ground volunteers might not be sufficient to produce changes in satellite-measured reflectance of vegetation, which also exposes the difference in the definitions of phenology (Badeck et al., 2004; White et al., 2014). In this study Start of Season (SOS) was determined for broadleaf forests at a site in south-western Germany using MODIS-sensor time series of Normalised Difference Vegetation Index (NDVI) data for the years covering 2001 to 2013. The NDVI time series raster data was masked for broadleaf forests using Corine Land Cover dataset, filtered and corrected for snow and cloud contaminations, smoothed with a Gaussian filter and interpolated to daily values. Several SOS techniques cited in literature, namely thresholds of amplitudes (20%, 50%, 60% and 75%), rates of change (1st, 2nd and 3rd derivative) and delayed moving average (DMA) were tested for determination of satellite SOS. The different satellite SOS were then compared with a species-rich ground based phenology information (e.g. understory leaf unfolding, broad leaf unfolding and greening of evergreen tree species). Working with all the pixels at a finer resolution, it is seen that the temporal trends in understory and broad leaf species are well captured. Initial analyses show promising results and suggest that different satellite SOS extraction techniques work well for specific phases of ground phenology information. More than half of the broadleaf pixels show an earliness in SOS which matches with the trend in ground phenology. References 1. F.-W. Badeck, A. Bondeau, K. Bottcher, D. Doktor, W. Lucht, J. Schaber, and S. Sitch, 2004, "Responses of spring phenology to climate change," New Phytologist, vol. 162, no. 2, pp. 295-309. 2. E. Hamunyela, J. Verbesselt, G. Roerink, and M. Herold, 2013, "Trends in Spring Phenology of Western European Deciduous Forests," Remote Sensing, vol. 5, no. 12, pp. 6159-6179. 3. V. F. Rodriguez-Galiano, J. Dash, and P. M. Atkinson, 2015, "Intercomparison of satellite sensor land surface phenology and ground phenology in Europe: Inter-annual comparison and modelling," Geophysical Research Letters, vol. 42, no. 7, pp. 2253-2260. 4. J. Fisher, J. Mustard, and M. Vadeboncoeur, 2006, "Green leaf phenology at Landsat resolution: Scaling from the field to the satellite," Remote Sensing of Environment, vol. 100, no. 2, pp. 265-279. 5. K. White, J. Pontius, and P. Schaberg, 2014, "Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty," Remote Sensing of Environment, vol. 148, pp. 97-107.
A superellipsoid-plane model for simulating foot-ground contact during human gait.
Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T
2016-01-01
Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.
Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State
Looney, Chris; Zack, Richard S.; LaBonte, James R.
2014-01-01
Abstract In this paper we report on ground beetles (Coleoptera: Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity. PMID:24715791
Ground motion-simulations of 1811-1812 New Madrid earthquakes, central United States
Ramirez-Guzman, L.; Graves, Robert; Olsen, Kim B.; Boyd, Oliver; Cramer, Chris H.; Hartzell, Stephen; Ni, Sidao; Somerville, Paul G.; Williams, Robert; Zhong, Jinquan
2015-01-01
The region covered by our simulation domain encompasses a large portion of the CUS centered on the NMSZ, including several major metropolitan areas. Based on our simulations, more than eight million people living and working near the NMSZ would experience potentially damaging ground motion and modified Mercalli intensities ranging from VI to VIII if a repeat of the 1811–1812 earthquakes occurred today. Moreover, the duration of strong ground shaking in the greater Memphis metropolitan area could last from 30 to more than 60 s, depending on the magnitude and epicenter.
NASA Astrophysics Data System (ADS)
Dinh Hoi, Bui; Yarmohammadi, Mohsen; Davoudiniya, Masoumeh
2018-03-01
In this work, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons would be observed in the presence of electronic dopant. However, the mutual interactions between electrons are also considered based on theoretically tight-binding and Hubbard model calculations considering nearest neighbors within the framework of Green's function technique. This work showed that charge concentration of dopant in such system depending on the weak and strong mutual repulsions plays a crucial role in determining the magnetic phase. It follows from the obtained results that the ground state turns paramagnetic in a range of carrier concentrations by neglecting the electronic correlations. The inclusion of a Coulombic repulsion between electrons stops the phase transition and system remains in its ground state antiferromagnetic phase. Furthermore, we concluded that magnetic phases are insensitive to the electron-electron interaction at all weak and strong concentrations of dopant. In addition, this paper provides a controllable gap engineering by doping and inclusion of electron-electron repulsions for further studies on such system as a new potential nanomaterial for magnetic graphene nanoribbon-based applications.
Networked high-speed auroral observations combined with radar measurements for multi-scale insights
NASA Astrophysics Data System (ADS)
Hirsch, M.; Semeter, J. L.
2015-12-01
Networks of ground-based instruments to study terrestrial aurora for the purpose of analyzing particle precipitation characteristics driving the aurora have been established. Additional funding is pouring into future ground-based auroral observation networks consisting of combinations of tossable, portable, and fixed installation ground-based legacy equipment. Our approach to this problem using the High Speed Tomography (HiST) system combines tightly-synchronized filtered auroral optical observations capturing temporal features of order 10 ms with supporting measurements from incoherent scatter radar (ISR). ISR provides a broader spatial context up to order 100 km laterally on one minute time scales, while our camera field of view (FOV) is chosen to be order 10 km at auroral altitudes in order to capture 100 m scale lateral auroral features. The dual-scale observations of ISR and HiST fine-scale optical observations may be coupled through a physical model using linear basis functions to estimate important ionospheric quantities such as electron number density in 3-D (time, perpendicular and parallel to the geomagnetic field).Field measurements and analysis using HiST and PFISR are presented from experiments conducted at the Poker Flat Research Range in central Alaska. Other multiscale configuration candidates include supplementing networks of all-sky cameras such as THEMIS with co-locations of HiST-like instruments to fuse wide FOV measurements with the fine-scale HiST precipitation characteristic estimates. Candidate models for this coupling include GLOW and TRANSCAR. Future extensions of this work may include incorporating line of sight total electron count estimates from ground-based networks of GPS receivers in a sensor fusion problem.
New DTM Extraction Approach from Airborne Images Derived Dsm
NASA Astrophysics Data System (ADS)
Mousa, Y. A.; Helmholz, P.; Belton, D.
2017-05-01
In this work, a new filtering approach is proposed for a fully automatic Digital Terrain Model (DTM) extraction from very high resolution airborne images derived Digital Surface Models (DSMs). Our approach represents an enhancement of the existing DTM extraction algorithm Multi-directional and Slope Dependent (MSD) by proposing parameters that are more reliable for the selection of ground pixels and the pixelwise classification. To achieve this, four main steps are implemented: Firstly, 8 well-distributed scanlines are used to search for minima as a ground point within a pre-defined filtering window size. These selected ground points are stored with their positions on a 2D surface to create a network of ground points. Then, an initial DTM is created using an interpolation method to fill the gaps in the 2D surface. Afterwards, a pixel to pixel comparison between the initial DTM and the original DSM is performed utilising pixelwise classification of ground and non-ground pixels by applying a vertical height threshold. Finally, the pixels classified as non-ground are removed and the remaining holes are filled. The approach is evaluated using the Vaihingen benchmark dataset provided by the ISPRS working group III/4. The evaluation includes the comparison of our approach, denoted as Network of Ground Points (NGPs) algorithm, with the DTM created based on MSD as well as a reference DTM generated from LiDAR data. The results show that our proposed approach over performs the MSD approach.
Oliver, Carolyn; Charles, Grant
2016-06-01
Strengths-based solution-focused approaches are gaining ground in statutory child protection work, but few studies have asked front line practitioners how they navigate the complex worker-client relationships such approaches require. This paper describes one component of a mixed-methods study in a large Canadian statutory child protection agency in which 225 workers described how they applied the ideas of strengths-based practice in their daily work. Interviews with twenty-four practitioners were analysed using an interpretive description approach. Only four interviewees appeared to successfully enact a version of strengths-based practice that closely mirrored those described by key strengths-based child protection theorists and was fully congruent with their mandated role. They described navigating a shifting balance of collaboration and authority in worker-client relationships based on transparency, impartial judgement, attentiveness to the worker-client interaction and the value that clients were fellow human beings. Their accounts extend current conceptualisations of the worker-client relationship in strengths-based child protection work and are congruent with current understandings of effective mandated relationships. They provide what may be a useful model to help workers understand and navigate relationships in which they must reconcile their own authority and expertise with genuine support for the authority and expertise of their clients.
NASA Astrophysics Data System (ADS)
Christodoulakis, John; Varotsos, Costas A.; Cracknell, Arthur P.; Kouremadas, George A.
2018-07-01
Dose Response Functions (DRFs) are widely used in estimating corrosion and/or soiling levels of materials used in building constructions and cultural monuments. These functions quantify the effects of air pollution and environmental parameters on different materials through ground based measurements of specific air pollutants and climatic parameters. Here, we propose a new approach where available satellite observations are used instead of ground-based data. Through this approach, the use of DRFs is expanded to cover situations where there are no in situ measurements, introducing also a totally new field where satellite data can be shown to be very helpful. In the present work satellite observations made by MODIS (MODerate resolution Imaging Spectroradiometer) on board Terra and Aqua, OMI (Ozone Monitoring Instrument) on board Aura and AIRS (Atmospheric Infrared Sounder) on board Aqua have been used.
Ground Based Studies of the Outer Planets
NASA Technical Reports Server (NTRS)
Trafton, Laurence M.
2005-01-01
This report covers progress to date under this grant on our continuing program to conduct ground based studies of the outer solar system planets and satellites, with emphasis on spectroscopy and atmospheric phenomena. The research continues under our new PAST grant, NNG04G131G beginning 5/1/2004. The original period of performance of the subject grant was 3/1/2001 to 2/28/2004, but was extended one year at no cost. Although there is some overlap in the scientific projects conducted during the extended year with those of the new grant, this report is confined to the portion of the work funded under NAG5-10435. The primary goals for this grant period were a comparative study of outer planet thermospheres/ionospheres near solar maximum, extended to the mid-IR, and the investigation of molecular dimers in outer solar system atmospheres. This project supports NASA's planned space missions, Jupiter Polar Orbiter, outer Planet Microprobes, and the recent Cassini flyby of Jupiter. It also supports the OSS strategic plan themes, The Exploration of the Solar System and The Sun-Earth Connection/ Understanding comparative planetary space environments.
Self-assembly of colloids with magnetic caps
NASA Astrophysics Data System (ADS)
Novak, E. V.; Kantorovich, S. S.
2017-06-01
In our earlier work (Steinbach et al., 2016 [1]) we investigated a homogeneous system of magnetically capped colloidal particles that self-assembled via two structural patterns of different symmetry. The particles could form a compact, equilateral triangle with a three-fold rotational symmetry and zero dipole moment and a staggered chain with mirror symmetry with a net magnetisation perpendicular to the chain. The system exhibited a bistability already in clusters of three particles. Based on observations of a real magnetic particles system, analytical calculations and molecular dynamics simulations, it has been shown that the bistability is a result of an anisotropic magnetisation distribution with rotational symmetry inside the particles. The present study is a logical extension of the above research and forms a preparatory stage for the study of a self-assembly of such magnetic particles under the influence of an external magnetic field. Since the magnetic field is only an additive contribution to the total ground state energy, we can study the interparticle interaction energies of candidate ground state structures based on the field-free terms.
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Smith, Guy A.
1997-01-01
A Phase B feasibility study will be performed for the study of the effects of microgravity on the preform processing and fiber pulling of ZBLAN optical glass. Continuing from the positive results achieved in the fiber annealing experiments in 20 second intervals at 0.001 g on the KC-135 and the 5 minute experiments on the SPAR rocket, experiments will continue to work towards design of a fiber sting to initiate fiber pulling operations in space. Anticipated results include less homogeneous nucleation than ground-based annealed fibers. Infrared Fiber Systems and Galileo are the participating industrial investigators.
Laitinen, Heleena; Kaunonen, Marja; Astedt-Kurki, Päivi
2014-11-01
To give clarity to the analysis of participant observation in nursing when implementing the grounded theory method. Participant observation (PO) is a method of collecting data that reveals the reality of daily life in a specific context. In grounded theory, interviews are the primary method of collecting data but PO gives a distinctive insight, revealing what people are really doing, instead of what they say they are doing. However, more focus is needed on the analysis of PO. An observational study carried out to gain awareness of nursing care and its electronic documentation in four acute care wards in hospitals in Finland. Discussion of using the grounded theory method and PO as a data collection tool. The following methodological tools are discussed: an observational protocol, jotting of notes, microanalysis, the use of questioning, constant comparison, and writing and illustrating. Each tool has specific significance in collecting and analysing data, working in constant interaction. Grounded theory and participant observation supplied rich data and revealed the complexity of the daily reality of acute care. In this study, the methodological tools provided a base for the study at the research sites and outside. The process as a whole was challenging. It was time-consuming and it required rigorous and simultaneous data collection and analysis, including reflective writing. Using these methodological tools helped the researcher stay focused from data collection and analysis to building theory. Using PO as a data collection method in qualitative nursing research provides insights. It is not commonly discussed in nursing research and therefore this study can provide insight, which cannot be seen or revealed by using other data collection methods. Therefore, this paper can produce a useful tool for those who intend to use PO and grounded theory in their nursing research.
Shahriari, Milad; Bozorgi-Amiri, Ali; Tavakoli, Shayan; Yousefi-Babadi, Abolghasem
2017-12-01
Shortening the travel time of patient transfer has clinical implications for many conditions such as cardiac arrest, trauma, stroke and STEMI. As resources are often limited precise calculations are needed. In this paper we consider the location problem for both ground and aerial emergency medical services. Given the uncertainty of when patients are in need of prompt medical attention we consider these demand points to be uncertain. We consider various ways in which ground and helicopter ambulances can work together to make the whole process go faster. We develop a mathematical model that minimizes travel time and maximizes service level. We use a compromising programming method to solve this bi-objective mathematical model. For numerical experiments we apply our model to a case study in Lorestan, Iran, using geographical and population data, and the location of the actual hospital based in the capital of the province. Results show that low-accessibility locations are the main focus of the proposed problem and with mathematical modeling access to a hospital is vastly improved. We also found out that once the budget reaches a certain point which suffices for building certain ambulance bases more investments does not necessarily result in less travel time. Copyright © 2017 Elsevier Inc. All rights reserved.
Uncertainty Modeling for Structural Control Analysis and Synthesis
NASA Technical Reports Server (NTRS)
Campbell, Mark E.; Crawley, Edward F.
1996-01-01
The development of an accurate model of uncertainties for the control of structures that undergo a change in operational environment, based solely on modeling and experimentation in the original environment is studied. The application used throughout this work is the development of an on-orbit uncertainty model based on ground modeling and experimentation. A ground based uncertainty model consisting of mean errors and bounds on critical structural parameters is developed. The uncertainty model is created using multiple data sets to observe all relevant uncertainties in the system. The Discrete Extended Kalman Filter is used as an identification/parameter estimation method for each data set, in addition to providing a covariance matrix which aids in the development of the uncertainty model. Once ground based modal uncertainties have been developed, they are localized to specific degrees of freedom in the form of mass and stiffness uncertainties. Two techniques are presented: a matrix method which develops the mass and stiffness uncertainties in a mathematical manner; and a sensitivity method which assumes a form for the mass and stiffness uncertainties in macroelements and scaling factors. This form allows the derivation of mass and stiffness uncertainties in a more physical manner. The mass and stiffness uncertainties of the ground based system are then mapped onto the on-orbit system, and projected to create an analogous on-orbit uncertainty model in the form of mean errors and bounds on critical parameters. The Middeck Active Control Experiment is introduced as experimental verification for the localization and projection methods developed. In addition, closed loop results from on-orbit operations of the experiment verify the use of the uncertainty model for control analysis and synthesis in space.
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun
2017-04-01
In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition precision (90.6%) and recall (91.2%), particularly for incomplete and small objects.
NASA Astrophysics Data System (ADS)
Vinson, T. S.; Carlson, R.; Hansen, R.; Hulsey, L.; Ma, J.; White, D.; Barnes, D.; Shur, Y.
2003-12-01
A National Science Foundation (NSF) Small Grant Exploratory Research Grant was awarded to the University of Alaska Fairbanks to archive bedrock and ground motions and fault offsets and their effects for the October-November 2002 earthquake sequence on the Denali Fault, Alaska. The scope of work included the accumulation of all strong motion records, satellite imagery, satellite remote sensing data, aerial and ground photographs, and structural response (both measured and anecdotal) that would be useful to achieve the objective. Several interesting data sets were archived including ice cover, lateral movement of stream channels, landslides, avalanches, glacial fracturing, "felt" ground motions, and changes in water quantity and quality. The data sources may be spatially integrated to provide a comprehensive assessment of the bedrock and ground motions and fault offsets for the October-November 2002 earthquake sequence. In the aftermath of the October-November 2002 earthquake sequence on the Denali fault, the Alaskan engineering community expressed a strong interest to understand why their structures and infrastructure were not substantially damaged by the ground motions they experienced during the October-November 2002 Earthquake Sequence on the Denali Fault. The research work proposed under this NSF Grant is a necessary prerequisite to this understanding. Furthermore, the proposed work will facilitate a comparison of Denali events with the Loma Prieta and recent Kocelli and Dozce events in Turkey, all of which were associated with strike-slip faulting. Finally, the spatially integrated data will provide the basis for research work that is truly innovative. For example, is may be possible to predict the observed (1) landsliding and avalanches, (2) changes in water quantity and quality, (3) glacial fracturing, and (4) the widespread liquefaction and lateral spreading, which occurred along the Tok cutoff and Northway airport, with the bedrock and ground motions and fault offsets extrapolated from the product of the research. An integrated assessment of the composite effects may be performed to better understand the bedrock and ground motions and fault offset regime that existed during the earthquake sequence.
Signature of a Sudden Stratospheric Warming in the near-ground 7Be flux.
NASA Astrophysics Data System (ADS)
Pacini, A. A.
2015-12-01
We present here a study of the impact of one Sudden Stratospheric Warming (SSW) upon the atmospheric vertical dynamics based on 7Be measurements in near ground air, using both numerical and conceptual. In late September 2002, an unprecedented SSW event occurred in the southern hemisphere (SH), causing changes in the tropospheric circulation, ozone depletion and weakening of the polar jet in the mesosphere. There is an observational evidence suggesting that anomalies in the stratosphere play an important role in driving tropospheric weather producing tropospheric changes that can persists for up to 60 days in NH and up to about 90 days in the SH, as observed after the 2002 SSW (Thompson et al., 2005). Radioactive environmental techniques for tracing large-scale air-mass transport have been applied in studies of atmospheric dynamics for decades and they are becoming more and more precise due to the improvement of the instrumental sensitivity and associated modeling. Temporal variations of the cosmogenic 7Be concentration in the near-surface atmosphere can provide information on the air mass dynamics, precipitation patterns, stratosphere-troposphere coupling and cosmic ray variations. The present study is based on an analysis of 7Be concentration measured in near-ground air in the city of Angra dos Reis, Rio de Janeiro state, Brazil between 1987 and 2009. Using a simplified tropospheric 7Be model deposition based on a two-layer transport model, Pacini (2011) reported that the occurrence of strong downward air flux leave an imprint of the 3D motion of air masses to the near-ground air 7Be data in the studied region. In this work, we have further developed the two-layer model by adding one more layer: the lower stratosphere (LS). In normal conditions, the contribution of the LS 7Be to the near-ground isotopic variability would be very small. On the other hand, stratospheric source can be crucial for the SSW event, indicating that a strong stratospheric air intrusion happened after the SSW and induced a downward flux of stratospheric aerosols from the LS to the ground level lasting several months after the SSW peak, showing that its tropospheric consequences can be much larger than it is usually considered.
Using space-based investigations to inform cancer research on Earth.
Becker, Jeanne L; Souza, Glauco R
2013-05-01
Experiments conducted in the microgravity environment of space are not typically at the forefront of the mind of a cancer biologist. However, space provides physical conditions that are not achievable on Earth, as well as conditions that can be exploited to study mechanisms and pathways that control cell growth and function. Over the past four decades, studies have shown how exposure to microgravity alters biological processes that may be relevant to cancer. In this Review, we explore the influence of microgravity on cell biology, focusing on tumour cells grown in space together with work carried out using models in ground-based investigations.
Orbital transfer vehicle launch operations study. Processing flows. Volume 3
NASA Technical Reports Server (NTRS)
1986-01-01
The Orbit Transfer Vehicle (OTV) processing flow and Resource Identification Sheets (RISs) for the ground based orbit transfer vehicle and for the space based orbit transfer vehicle are the primary source of information for the rest of the Kennedy Space Center (KSC) OTV Launch Operations Study. Work is presented which identifies KSC facility requirements for the OTV Program, simplifies or automates either flow though the application technology, revises test practices and identifies crew sizes or skills used. These flows were used as the primary point of departure from current operations and practices. Analyses results were documented by revising the appropriate RIS page.
Modeling of the ground-to-SSFMB link networking features using SPW
NASA Technical Reports Server (NTRS)
Watson, John C.
1993-01-01
This report describes the modeling and simulation of the networking features of the ground-to-Space Station Freedom manned base (SSFMB) link using COMDISCO signal processing work-system (SPW). The networking features modeled include the implementation of Consultative Committee for Space Data Systems (CCSDS) protocols in the multiplexing of digitized audio and core data into virtual channel data units (VCDU's) in the control center complex and the demultiplexing of VCDU's in the onboard baseband signal processor. The emphasis of this work has been placed on techniques for modeling the CCSDS networking features using SPW. The objectives for developing the SPW models are to test the suitability of SPW for modeling networking features and to develop SPW simulation models of the control center complex and space station baseband signal processor for use in end-to-end testing of the ground-to-SSFMB S-band single access forward (SSAF) link.
Characteristics of strong ground motion generation areas by fully dynamic earthquake cycles
NASA Astrophysics Data System (ADS)
Galvez, P.; Somerville, P.; Ampuero, J. P.; Petukhin, A.; Yindi, L.
2016-12-01
During recent subduction zone earthquakes (2010 Mw 8.8 Maule and 2011 Mw 9.0 Tohoku), high frequency ground motion radiation has been detected in deep regions of seismogenic zones. By semblance analysis of wave packets, Kurahashi & Irikura (2013) found strong ground motion generation areas (SMGAs) located in the down dip region of the 2011 Tohoku rupture. To reproduce the rupture sequence of SMGA's and replicate their rupture time and ground motions, we extended previous work on dynamic rupture simulations with slip reactivation (Galvez et al, 2016). We adjusted stresses on the most southern SMGAs of Kurahashi & Irikura (2013) model to reproduce the observed peak ground velocity recorded at seismic stations along Japan for periods up to 5 seconds. To generate higher frequency ground motions we input the rupture time, final slip and slip velocity of the dynamic model into the stochastic ground motion generator of Graves & Pitarka (2010). Our results are in agreement with the ground motions recorded at the KiK-net and K-NET stations.While we reproduced the recorded ground motions of the 2011 Tohoku event, it is unknown whether the characteristics and location of SMGA's will persist in future large earthquakes in this region. Although the SMGA's have large peak slip velocities, the areas of largest final slip are located elsewhere. To elucidate whether this anti-correlation persists in time, we conducted earthquake cycle simulations and analysed the spatial correlation of peak slip velocities, stress drops and final slip of main events. We also investigated whether or not the SMGA's migrate to other regions of the seismic zone.To perform this study, we coupled the quasi-dynamic boundary element solver QDYN (Luo & Ampuero, 2015) and the dynamic spectral element solver SPECFEM3D (Galvez et al., 2014; 2016). The workflow alternates between inter-seismic periods solved with QDYN and coseismic periods solved with SPECFEM3D, with automated switch based on slip rate thersholds (Kaneko et al., 2011). We parallelized QDYN with MPI to enable the simulation of fully dynamic earthquake cycles of Mw 8-9 earthquakes in faults that also produce Mw 7 earthquakes.This study was based on the 2015 research project `Improvement for uncertainty of strong ground motion prediction' by the Nuclear Regulation Authority (NRA), Japan.
2012-03-01
for enabling condition based maintenance plus in Army ground vehicles. The sensor study was driven from Failure Mode Effects Analysis ( FMEA ...of Tables Table 1. Sensor technology baseline study based on engine FMEA report. ...................................5 Table 2. Sensor technology...baseline study based on transmission FMEA report. .........................8 Table 3. Sensor technology baseline study based on alternator FMEA report
Implementation of Performance-Based Acquisition in Non-Western Countries
2009-03-01
narratives , phenomenologies , ethnographies , grounded theory studies , or case studies . The researcher collects...are biography, phenomenological study , grounded theory study , ethnography , and case study . The approach used for qualitative data collection method ... qualitative methods , such as the grounded theory approach to
Water vapour intercomparison effort in the frame of HyMeX-SOP1
NASA Astrophysics Data System (ADS)
Summa, Donato; Di Girolamo, Paolo; Stelitano, Dario; Cacciani, Marco; Flamant, Cyrille; Chazette, Patrick; Ducrocq, Véronique; Nuret, Mathieu; Fourié, Nadia; Richard, Evelyne
2014-05-01
A water vapour intercomparison effort, involving airborne and ground-based water vapour lidar systems and mesoscale models, was carried out in the framework of the international HyMeX (Hydrological cycle in the Mediterranean Experiment) dedicated to the hydrological cycle and related high-impact events. Within HyMeX, a major field campaign was dedicated to heavy precipitation and flash flood events from 5 September to 6 November 2012. The 2 month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy, and Spain. The main objective of this work is to provide accurate error estimates for the lidar systems i.e. the ground-based Raman lidar BASIL and the CNRS DIAL Leandre 2 on board the ATR42, as well as use BASIL data to validate mesoscale model results from the MESO NH and Arome WMED. The effort will benefit from the few dedicated ATR42 flights in the frame of the EUFAR Project "WaLiTemp". In the present work our attention was focused on two specific case studies: 13 September and 2 October in the altitude region 0.5 - 5.5 km. Comparisons between the ground-based Raman lidar BASIL and the airborne CNRS DIAL indicate a mean relative bias between the two sensors of 6.5%, while comparisons between BASIL and CNRS DIAL vs. the radiosondes indicate a bias of 2.6 and -3.5 %, respectively. The bias of BASIL vs. the ATR insitu sensor indicate a bias of -20.4 %. Specific attention will also be dedicated to the WALI/BASIL intercomparison effort which took place in Candillargues on 30 October 2012. Specific results from this intercomparison effort and from the intercomparison between BASIL and Meso-NH/AROME-WMed will be illustrated and discussed at the Conference.
The Factors That Influence Bureaucracy and Professionalism in Schools: A Grounded Theory Study
ERIC Educational Resources Information Center
Koybasi, Fatma; Ugurlu, Celal Teyyar
2017-01-01
The aim of this study is to identify the factors that influence the interaction between bureaucracy and professionalism in schools and to develop a model of bureaucracy-professionalism interaction. This is a qualitative study carried out in grounded theory model. The study group consisted of 10 male and 10 female teachers who were working in Sivas…
Developing a Taxonomy of Dark Triad Triggers at Work – A Grounded Theory Study Protocol
Nübold, Annika; Bader, Josef; Bozin, Nera; Depala, Romil; Eidast, Helena; Johannessen, Elisabeth A.; Prinz, Gerhard
2017-01-01
In past years, research and corporate scandals have evidenced the destructive effects of the dark triad at work, consisting of narcissism (extreme self-centeredness), psychopathy (lack of empathy and remorse) and Machiavellianism (a sense of duplicity and manipulativeness). The dark triad dimensions have typically been conceptualized as stable personality traits, ignoring the accumulating evidence that momentary personality expressions – personality states – may change due to the characteristics of the situation. The present research protocol describes a qualitative study that aims to identify triggers of dark triad states at work by following a grounded theory approach using semi-structured interviews. By building a comprehensive categorization of dark triad triggers at work scholars may study these triggers in a parsimonious and structured way and organizations may derive more effective interventions to buffer or prevent the detrimental effects of dark personality at work. PMID:28326048
An Overview of the Total Lightning Jump Algorithm: Past, Present and Future Work
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.; Deierling, Wiebke; Kessinger, Cathy
2011-01-01
Rapid increases in total lightning prior to the onset of severe and hazardous weather have been observed for several decades. These rapid increases are known as lightning jumps and can precede the occurrence of severe weather by tens of minutes. Over the past decade, a significant effort has been made to quantify lightning jump behavior in relation to its utility as a predictor of severe and hazardous weather. Based on a study of 34 thunderstorms that occurred in the Tennessee Valley, early work conducted in our group at Huntsville determined that it was indeed possible to create a reasonable operational lightning jump algorithm (LJA) based on a statistical framework relying on the variance behavior of the lightning trending signal. We the expanded this framework and tested several variance-related LJA configurations on a much larger sample of 87 severe and non severe thunderstorms. This study determined that a configuration named the "2(sigma)" algorithm had the most promise in development of the operational LJA with a probability of detection (POD) of 87%, a false alarm rate (FAR) of 33%, a Heidke Skill Score (HSS) of 0.75. The 2(sigma) algorithm was then tested on an even larger sample of 711 thunderstorms of all types from four regions of the country where total lightning measurement capability existed. The result was very encouraging.Despite the larger number of storms and the inclusion of different regions of the country, the POD remained high (79%), the FAR was low (36%) and HSS was solid (0.71). Average lead time from jump to severe weather occurrence was 20.65 minutes, with a standard deviation of +/- 15 minutes. Also, trends in total lightning were compared to cloud to ground (CG) lightning trends, and it was determined that total lightning trends had a higher POD (79% vs 66%), lower FAR (36% vs 54 %) and a better HSS (0.71 vs 0.55). From the 711-storm case study it was determined that a majority of missed events were due to severe weather producing thunderstorms in low flashing environments. The latest efforts have been geared toward examining these low flashing storms in order to adjust the algorithm for such storms, thus enhancing the capability of the LJA. Future work will test the algorithm in real time using current satellite and radar based cell tracking methods, as well as, comparing total lightning jump occurrence to both satellite based and ground base observations of thunderstorms to create correlations between lightning jumps and the observed structures within thunderstorms. Finally this algorithm will need to be tested using Geostationary Lightning Mapper proxy data to transition the algorithm from VHF ground based lightning measurements to lower frequency space-based lightning measurements.
Preliminary study of a gas burner-driven and ground-coupled heat pump system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.F.
1995-12-31
To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less
Connecting Formal and Content Schemata: Some Results of Recent Work in Semiotics.
ERIC Educational Resources Information Center
Oller, John W., Jr.
This paper expands on schematic theory through a review of recent work in the field of semiotics. Content and formal schemata are shown to be grounded respectively in perceptual (abductive) and indexical (inductive) strategies of inference. A third kind of schemata is based on deductive generalization and referred to as abstract schemata. All…
Achievement Goals as Mediators of the Relationship between Competence Beliefs and Test Anxiety
ERIC Educational Resources Information Center
Putwain, David W.; Symes, Wendy
2012-01-01
Background: Previous work suggests that the expectation of failure is related to higher test anxiety and achievement goals grounded in a fear of failure. Aim: To test the hypothesis, based on the work of Elliot and Pekrun (2007), that the relationship between perceived competence and test anxiety is mediated by achievement goal orientations.…
NASA Astrophysics Data System (ADS)
Rakitin, Vadim; Elansky, Nikolai; Shtabkin, Yury; Skorokhod, Andrey; Grechko, Eugeny; Pankratova, Natalia; Safronov, Alexandr
2016-04-01
A comparative analysis of satellite and ground-based spectroscopic measurements of CO and CH4 total content (CO TC) in the atmosphere in the background and polluted conditions (stations of OIAP RAS and NDACC) for the 2010-2015 time-period. The significant correlation between satellite and ground-based CO TC data for all satellite sensors in background conditions was obtained. Also the empirical private transient relationships between satellite CO MOPITT v6 Joint, AIRS v6, IASI MeTop-A products and the data of solar-tracking ground-based spectrometers are analyzed. Significant correlation between satellite and ground-based data of CO TC was obtained for all satellite sensors if measurements were carried out over unpolluted areas (2010-2014). It was shown that for polluted areas IASI MetOp-A and AIRSv6 data underestimate the actual value of CO TC by the factor of 1.5÷ 2.8. The average correlation between satellite and ground-based data increased significantly for the case if the measurement days, when the height of the planetary boundary layer (PBL) was less than 400-500 meters, were excluded from the comparison. This result was obtained for all of the selected sensors and observational sites. To improve the representativeness of the satellite CO TC data for polluted areas it could be recommended to exclude the days with low height of the PBL from the analysis of spatio-temporal variations and subsequent data assimilation (as example for the CO emissions estimating from powerful surface sources). Best correlation (R2≥0.5) in diurnal CH4 TC with ground-based data was found for AIRS v6. This work has supported by the Russian Scientific Foundation under grant №14-47-00049 and partially by the Russian Foundation for Basic Research (grant № 13-05-41395).
Research opportunities in space motion sickness, phase 2
NASA Technical Reports Server (NTRS)
Talbot, J. M.
1983-01-01
Space and motion sickness, the current and projected NASA research program, and the conclusions and suggestions of the ad hoc Working Group are summarized. The frame of reference for the report is ground-based research.
Comparing Aerosol Retrievals from Ground-Based Instruments at the Impact-Pm Field Campaign
NASA Astrophysics Data System (ADS)
Kupinski, M.; Bradley, C. L.; Kalashnikova, O. V.; Xu, F.; Diner, D. J.; Clements, C. B.; Camacho, C.
2016-12-01
Detection of aerosol types, components having different size and chemical composition, over urban areas is important for understanding their impact on health and climate. In particular, sustained contact with size-differentiated airborne particulate matter: PM10 and PM2.5 can lead to adverse health effects such as asthma attacks, heart and lung diseases, and premature mortality. Multi-angular polarimetric measurements have been advocated in recent years as an additional tool to better understand and retrieve the aerosol properties needed for improved predictions of aerosol impart on air quality and climate. We deployed the ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) for accurate spectropolarimetric and radiance measurements co-located with the AERONET CIMEL sun photometer and a Halo Doppler 18 m resolution lidar from San José State University at the Garland-Fresno Air Quality supersite in Fresno, CA on July 7 during the Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field experiment. GroundMSPI sampled the atmospheric scattering phase function in and 90 degrees out of the principal plane every 15 minutes in an automated manner, utilizing the 2-axis gimbal mount in elevation and azimuth. The goal of this work is verify atmospheric measurement of GroundMSPI with the coincident CIMEL sun photometer and ground-based lidar. Diffuse-sky radiance measurements of GroundMSPI are compared with the CIMEL sun photometer throughout the day. AERONET aerosol parameters such as size, shape, and index of refraction as well as lidar aerosol extinction profiles will be used in a forward radiative transfer model to compare with GroundMSPI observations and optimize these parameters to best match GroundMSPI data.
Data evaluation, analysis, and scientific study
NASA Technical Reports Server (NTRS)
Wu, S. T.
1991-01-01
Extensive work was performed in data analysis and modeling of solar active phenomena. The work consisted in the study of UV data from the Ultraviolet Spectrometer and Polarimeter (UVSP) instrument on board the Solar Maximum Mission satellite. These data were studied in conjunction with X-rays from the Hard X-ray Imaging Spectrometer (HXIS) instrument, and with H-alpha and magnetographic data from ground-based observatories. The processes we studied are the active phenomena which result from the interaction of the solar magnetic fields with the plasma in the outer regions of the solar atmosphere. These processes include some very dynamic processes such as the prominence eruptions and the 'microflares'. Our research aimed at characterizing the following: the observed phenomena, the possible physical models, and the relevance to the chromospheric and coronal heating.
Speak Simply When Warning About After Shocks
NASA Astrophysics Data System (ADS)
Michael, A. J.; Hardebeck, J.; Page, M. T.; van der Elst, N.; Wein, A. M.
2016-12-01
When a fault in the ground slips, the ground moves fast and can shake hard. After a big ground shake, there are more shakes. We call them after shocks and these can happen over a long time, for many years. An after shock can shake the ground more than it shook the first time. These shocks can shake and break places where people live and work, make rocks fall down and the ground go soft and wet, and hurt or kill people. After shocks also make people worry. If people are scared, then they may leave the area and not come back. To help people be safe and feel calm we want to tell them what may happen. We often use big words and lots of numbers to give the chances for the number of shakes over days, weeks, and years. That helps some people fix things and do their jobs such as those who work on roads, power, water, phones, hospitals, schools or in the money business. But big words and too many numbers can confuse a lot of people and make them worry more. Studies of talking about the ground shake problem show that it is best to speak simply to people. What if we only use the ten hundred most often used words to talk about these ground shakes. Would that work? Here is a possible warning: Last week's huge ground shake will probably make more ground shakes. This week expect to feel three to ten ground shakes and maybe one big ground shake that could break things. That big ground shake has a chance of 1 in 10. This is normal. Be safe. Stay out of broken houses, shops, and work places. When you feel the ground shake: drop, cover, and hold on. People may feel afraid or be hurt, so check on friends and family. Get some more food and water. Over time there will be fewer ground shakes, but always be ready for them. That warning gives a lot of key ideas: what may happen, whether houses could get broken, that what is happening is normal, and what people may feel and should do. These are the key parts of a good warning. Maybe we should use the most often used words all the time.
Yang, Zhongyuan; Sassa, Fumihiro; Hayashi, Kenshi
2018-06-22
Improving the efficiency of detecting the spatial distribution of gas information with a mobile robot is a great challenge that requires rapid sample collection, which is basically determined by the speed of operation of gas sensors. The present work developed a robot equipped with a high-speed gas sensor module based on localized surface plasmon resonance. The sensor module is designed to sample gases from an on-ground odor source, such as a footprint material or artificial odor marker, via a fine sampling tubing. The tip of the sampling tubing was placed close to the ground to reduce the sampling time and the effect of natural gas diffusion. On-ground ethanol odor sources were detected by the robot at high resolution (i.e., 2.5 cm when the robot moved at 10 cm/s), and the reading of gas information was demonstrated experimentally. This work may help in the development of environmental sensing robots, such as the development of odor source mapping and multirobot systems with pheromone tracing.
Ground-Based Remote Sensing of Water-Stressed Crops: Thermal and Multispectral Imaging
USDA-ARS?s Scientific Manuscript database
Ground-based methods of remote sensing can be used as ground-truthing for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted ...
Ground-based thermal and multispectral imaging of limited irrigation crops
USDA-ARS?s Scientific Manuscript database
Ground-based methods of remote sensing can be used as ground-truth for satellite-based remote sensing, and in some cases may be a more affordable means of obtaining such data. Plant canopy temperature has been used to indicate and quantify plant water stress. A field research study was conducted in ...
Guide for inservice inspection of ground-based pressure vessels and systems
NASA Technical Reports Server (NTRS)
1976-01-01
This guide includes recommendations for inservice inspection and recertification of ground based, unfired pressure vessels and all pressurized systems including those served by fired pressure vessels hereinafter referred to as pressure vessels, systems and components of systems. It covers the vast array of pound based industrial and special purpose pressurized components and systems used at NASA field installations for research and development and those utility systems and components that require more than routine maintenance to insure continued structural integrity for their useful life. Through surveillance and correction of inservice deterioration, NASA will maintain a safe working environment for their own and contractor personnel, safety for the public sector and protection against loss of capital investment.
Naga Babu, A; Reddy, D Srinivasa; Kumar, G Suresh; Ravindhranath, K; Krishna Mohan, G V
2018-07-15
Water pollution by industrial and anthropogenic actives has become a serious threat to the environment. World Health Organization (WHO) has identified that lead and fluoride amid the environmental pollutants are most poisonous water contaminants with devastating impact on the human race. The present work proposes a study on economical bio-adsorbent based technique using exhausted coffee grounds in the removal of lead and fluoride contaminants from water. The exhausted coffee grounds gathered from industrial wastes have been acid-activated and examined for their adsorption capacity. The surface morphology and elemental characterization of pre-and-post adsorption operations by FESEM, EDX and FTIR spectral analysis confirmed the potential of the exhausted coffee ground as successful bio-sorbent. However, thermodynamic analysis confirmed the adsorption to be spontaneous physisorption with Langmuir mode of homogenous monolayer deposition. The kinetics of adsorption is well defined by pseudo second order model for both lead and fluoride. A significant quantity of lead and fluoride is removed from the synthetic contaminated water by the proposed bio-sorbent with the respective sorption capabilities of 61.6 mg/g and 9.05 mg/g. However, the developed bio-sorbent is also recyclable and is capable of removing the lead and fluoride from the domestic and industrial waste-water sources with an overall removal efficiency of about 90%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Emergent thermal kinetic behavior of artificial spin ice
NASA Astrophysics Data System (ADS)
Lao, Yuyang; Sheikh, Mohammed; Sklenar, Joseph; Gardeazabal, Daniel; Watts, Justin; Albrecht, Alan; Leighton, Chris; Scholl, Andreas; Chern, Gia-Wei; Dahmen, Karin; Nisoli, Cristiano; Schiffer, Peter
Artificial spin ice systems are two dimensional arrays of single-domain nanomagnets designed to study frustration phenomena. By careful choice of the geometry of the system, the lattices can have ground states with non-trivial degeneracy. We study the kinetics of such systems through photoemission electron microscopy (PEEM) measurements of the fluctuations of the individual nanomagnet moments, looking at excitations above the magnetic ground states of the systems and how those excitations are impacted by lattice geometry. Detailed analysis of different systems shows non-trivial kinetics that originate from different interaction patterns. The study indicates the important role of effective excitation in the near-ground-state kinetics of these frustrated systems. This work was funded by the US Department of Energy under Grant Number DE-SC0010778. The work of M.S. and K.D. was supported by DOE DE-FE0011194. Work at UMN was supported by the NSF MRSEC under DMR-1420013, and DMR-1507048. The work of C.N. was carried out under the auspices of the US Department of Energy at LANL under Contract Number DE-AC52-06NA253962. The ALS was supported by the US Department of Energy under Contract Number DE-AC02-05CH11231.
Ensembles of satellite aerosol retrievals based on three AATSR algorithms within aerosol_cci
NASA Astrophysics Data System (ADS)
Kosmale, Miriam; Popp, Thomas
2016-04-01
Ensemble techniques are widely used in the modelling community, combining different modelling results in order to reduce uncertainties. This approach could be also adapted to satellite measurements. Aerosol_cci is an ESA funded project, where most of the European aerosol retrieval groups work together. The different algorithms are homogenized as far as it makes sense, but remain essentially different. Datasets are compared with ground based measurements and between each other. Three AATSR algorithms (Swansea university aerosol retrieval, ADV aerosol retrieval by FMI and Oxford aerosol retrieval ORAC) provide within this project 17 year global aerosol records. Each of these algorithms provides also uncertainty information on pixel level. Within the presented work, an ensembles of the three AATSR algorithms is performed. The advantage over each single algorithm is the higher spatial coverage due to more measurement pixels per gridbox. A validation to ground based AERONET measurements shows still a good correlation of the ensemble, compared to the single algorithms. Annual mean maps show the global aerosol distribution, based on a combination of the three aerosol algorithms. In addition, pixel level uncertainties of each algorithm are used for weighting the contributions, in order to reduce the uncertainty of the ensemble. Results of different versions of the ensembles for aerosol optical depth will be presented and discussed. The results are validated against ground based AERONET measurements. A higher spatial coverage on daily basis allows better results in annual mean maps. The benefit of using pixel level uncertainties is analysed.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, Edward C. (Editor)
1992-01-01
This quarterly publication provides archival reports on developments in programs managed by JPL's Office Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Operations (OSO). The TDA Office also performs work funded by two other NASA program offices through and with the cooperation of the OSO. These are the Orbital Debris Radar Program and 21st Century Communication Studies.
Fulton, Lawrence; Kerr, Bernie; Inglis, James M; Brooks, Matthew; Bastian, Nathaniel D
2015-07-01
In this study, we re-evaluate air ambulance requirements (rules of allocation) and planning considerations based on an Army-approved, Theater Army Analysis scenario. A previous study using workload only estimated a requirement of 0.4 to 0.6 aircraft per admission, a significant bolus over existence-based rules. In this updated study, we estimate requirements for Phase III (major combat operations) using a simulation grounded in previously published work and Phase IV (stability operations) based on four rules of allocation: unit existence rules, workload factors, theater structure (geography), and manual input. This study improves upon previous work by including the new air ambulance mission requirements of Department of Defense 51001.1, Roles and Functions of the Services, by expanding the analysis over two phases, and by considering unit rotation requirements known as Army Force Generation based on Department of Defense policy. The recommendations of this study are intended to inform future planning factors and already provided decision support to the Army Aviation Branch in determining force structure requirements. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
What Is an Empowerment Approach to Working with Sexual Assault Survivors?
ERIC Educational Resources Information Center
Ullman, Sarah E.; Townsend, Stephanie M.
2008-01-01
This exploratory study sought to better understand what constitutes the empowerment approach used by rape crisis advocates working with sexual assault survivors. A grounded theory, qualitative, semistructured interview study was conducted of rape victim advocates (N=25) working in rape crisis centers in a large metropolitan area. Several…
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
High magnification view of human primary breast tumor cells after 56 days of culture in a NASA Bioreactor. The arrow points to bead surface indicating breast cancer cells (as noted by the staining of tumor cell intermediate filaments). NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
High magnification of view of tumor cells aggregate on microcarrier beads, illustrting breast cells with intercellular boundaires on bead surface and aggregates of cells achieving 3-deminstional growth outward from bead after 56 days of culture in a NASA Bioreactor. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida.
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Isolate of long-term growth human mammary epithelial cells (HMEC) from outgrowth of duct element; cells shown soon after isolation and early in culture in a dish. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).
1998-10-10
Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Isolate of long-term growth human mammary epithelial cells (HMEC) from outgrowth of duct element; cells shown soon after isolation and early in culture in a dish. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).
1998-10-10
Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Outgrowth of cells from duct element in upper right corner cultured in a standard dish; most cells spontaneously die during early cell divisions, but a few will establish long-term growth. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).
Ground-based and satellite optical investigation of the atmosphere and surface of Antarctica
NASA Astrophysics Data System (ADS)
Malinka, Aleksey; Blarel, Luc; Chaikovskaya, Ludmila; Chaikovsky, Anatoli; Denishchik-Nelubina, Natalia; Denisov, Sergei; Dick, Vladimir; Fedaranka, Anton; Goloub, Philippe; Katsev, Iosif; Korol, Michail; Lapyonok, Aleksandr; Podvin, Thierr; Prikhach, Alexander; Svidinsky, Vadim; Zege, Eleonora
2018-04-01
This presentation contains the results of the 10-year research of Belarusian Antarctic expeditions. The set of instruments consists of a lidar, an albedometer, and a scanning sky radiometer CIMEL. Besides, the data from satellite radiometer MODIS were used to characterize the snow cover. The works focus on the study of aerosol, cloud and snow characteristics in the Antarctic, and their links with the long range transport of atmospheric pollutants and climate changes.
Stratospheric and Mesospheric Trace Gas Studies Using Ground-Based mm-Wave Receivers
NASA Technical Reports Server (NTRS)
daZafra, Robert L.
1997-01-01
The goal of the proposed work was to understand the latitude structure of nitric oxide in the mesosphere and lower thermosphere. The problem was portrayed by a clear difference between predictions of the nitric oxide distribution from chemical/dynamical models and data from observations made by the Solar Mesosphere Explorer (SMEE) in the early to mid eighties. The data exhibits a flat latitude structure of NO, the models tend to produce at equatorial maximum.
Research opportunities in bone demineralization, phase 3
NASA Technical Reports Server (NTRS)
Anderson, S. A. (Editor); Cohn, S. H. (Editor)
1984-01-01
An overview of bone demineralization during space flight, observations in bone demineralization and experiments related to bone loss planned for Spacelab flights, and suggestions for further research are investigated. The observations of the working group focused upon the following topics: (1) pathogenesis of bone demineralization, (2) potential for occurrence of renal stones consequent to prolonged hypercalciuria, (3) development of appropriate ground based and inflight models to study bone demineralization, (4) integration of research efforts, and (5) development of effective countermeasures.
Looney, Chris; Zack, Richard S; Labonte, James R
2014-01-01
Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.
U.S. Geological Survey activities in New Mexico 1995
Livingston, Russell K.
1995-01-01
The report provides an overview of the USGS in New Mexico, including activities of the Water Resources, Geologic, and National Mapping Divisions. Some USGS projects address hydrologic and geologic hazards, such as flood discharges, landslides, and land subsidence. Recent environmental assessments include participation in the Kirtland Air Force Base Installation Restoration Program, erosion on the Zuni Reservation, and ground-water contamination in eastern Bernalillo County. Water availability studies have focused on ground-water depletion in the Albuquerque Basin, recharge in the Roswell Basin, and the water resources of Taos County. Irrigation drainage in the San Juan River area and trace metals in a reach of the Rio Grande have been investigated. The National Water-Quality Assessment (NAWQA) program has two study units partly located in New Mexico. Energy and mineral resource assess- ments include gas resources in the San Juan Basin and environmental impacts of mining in the Mimbres Resource Area. The USGS is studying the extent of suitable habitat for Mexican Spotted Owls. Also discussed are cartographic/thematic products and Geographical Information Systems; surface-water, ground-water, and water-quality data-collection net- works; and reports published from 1993 to 1995.
Karnowski, Thomas P; Govindasamy, V; Tobin, Kenneth W; Chaum, Edward; Abramoff, M D
2008-01-01
In this work we report on a method for lesion segmentation based on the morphological reconstruction methods of Sbeh et. al. We adapt the method to include segmentation of dark lesions with a given vasculature segmentation. The segmentation is performed at a variety of scales determined using ground-truth data. Since the method tends to over-segment imagery, ground-truth data was used to create post-processing filters to separate nuisance blobs from true lesions. A sensitivity and specificity of 90% of classification of blobs into nuisance and actual lesion was achieved on two data sets of 86 images and 1296 images.
GPS Radiosonde with Spread-Spectrum Transmitter for Aerial dE/dt Studies
NASA Astrophysics Data System (ADS)
Sonnenfeld, R.; John, B. D.; William, W. P.; Aulich, G.; Ken, E.
2003-12-01
Inexpensive, low-power and reliable telemetry is a continuous struggle for those engaged in developing balloon-borne instruments for atmospheric electric studies. Several custom designs, by NCAR and others, have enabled much useful work in radiosondes. Also, packet radio technology has been used with great success. Easily obtainable packet radios are currently limited to 9600 baud. In search of higher baud rates that integrate well with microprocessor-based data acquisition systems, we have tested a new commercial off-the-shelf spread-spectrum transmitter. The transmitter operates in the 900 MHz industrial, scientific and medical (ISM) band with a transmit power of 100 mW. The transmitter (a Maxstream XC09-019NST) is used with a dedicated receiver, such that the data to be transmitted is fed via RS-232C protocols to the transmitter, and received as a text string via a serial port on the receiver. We did tests at raw baud rates of 9600 and 19200 (roughly 1000-2000 characters/second). Initial range tests required integrating the transmitter with a GPS and sending the NMEA-position-string (National Marine Electronics Assoc.) to a ground-based receiver. In ground-based tests, we repeatedly saw that a clear line-of-sight between transmitter and receiver was required for successful telemetry. The maximum range obtained during ground tests was 15.3 km at 9600 baud. Initial balloon tests results were, as hoped, more encouraging than ground-based tests. The maximum range (ground distance and altitude) of any balloon transmission was 58.0 km in fair-weather with excellent line-of-sight visibility. Our highest altitude transmission was 28.6 km absolute altitude (25.3 km altitude relative to launch point). These numbers were determined from the GPS coordinates transmitted. Antenna alignment and acceptance angle effects were observed in our received data. For these reasons, the full data rate of 19200 baud was only obtained out to 10 km, and then again around 45-58 km. Performance of the system could be improved by spreading packets over a wider range of spectrum, improving the transmit antenna geometry, increasing power, using a more directional receive antenna; or all of the above.
New Intensity Attenuation in Georgia
NASA Astrophysics Data System (ADS)
Tsereteli, N. S.; Varazanashvili, O.; Tibaldi, A.; Bonali, F.; Gogoladze, Z.; Kvavadze, N.; Kvedelidze, I.
2016-12-01
In seismic-prone zones, increase of urbanization and infrastructures in turn produces increase of seismic risk that is mainly related to: the level of seismic hazard itself, the seismic resistance of dwelling houses, and many other factors. The relevant objectives of the present work is to improve the regional seismic hazard maps of Georgia, by implementing state-of-the art probabilistic seismic hazard assessment techniques and outputs from recent national and international collaborations. Seismic zoning is the identification of zones of similar levels of earthquake hazard. With reference to seismic zoning by ground motion assessment, the shaking intensity essentially depends on i) regional seismicity, ii) attenuation of ground motion with distance, iii) local site effects on ground motion. In the last decade, seismic hazard assessment is presented in terms of Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), or other recorded parameters. But there are very limited strong motion dataset in Georgia. Furthermore, vulnerability of buildings still is estimated for intensity, and there are no information about correlation between the distribution of ground motion recorded parameters and damage. So, macroseimic Intensity is still a very important parameter for strong ground motion evaluation. In the present work, we calibrated intensity prediction equations (IPE) for the Georgian dataset based on about 78 reviewed earthquakes. Metadata for Intensity (MSK 64 scale) were constrained and predictionequations for various types of distance (epicentral and hypocentral distance, Joyner-Boore distance, closest distance to the fault rupture plane) were calibrated. Relations between intensity and PGA values were derived. For this we used hybrid-empirical ground motion equation derived for Georgia and run scenario earthquakes for events with macroseismic data.
A Proposal to Investigate Outstanding Problems in Astronomy
NASA Technical Reports Server (NTRS)
Ford, Holland
2004-01-01
Holland Ford and Garth Illingworth organized, managed, and coordinated a very successful year of work by the ACS science team. The team is working well together on analysis of ACS observations and supporting data from other satellites and from ground-based observations. Many important papers have been published or submitted, spanning science from observations of newly discovered debris disks around young stars, to the characterization of galaxy clusters at half the age of the Universe, to observations of proto-clusters with ages of approx. 2 billion years, to searches for galaxies forming within the first billion years after the birth of the universe. One important milestone during the year was the annual team meeting during September. The meeting, organized and led by Holland and Garth, produced a plan for analysis of ACS observations during the coming year, and a plan for obtaining supporting observations with large ground-based telescopes.
NASA Astrophysics Data System (ADS)
Ringhausen, J.
2017-12-01
This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.
Antimony in the United States, exclusive of Alaska and Hawaii
White, Donald Edward
1962-01-01
This report is based on a memorandum prepared and placed in the open file in typewritten form in 1944. It has been rewritten and is now published in view of the continuing interest in the ground-water resources of the area. The report summarizes information that was available on the ground-water resources of the Oklahoma City area, Oklahoma County, Oklahoma, to the end of 1943. It was prepared largely from material already in the files, supplemented by records of pumpage and ground-water levels then being obtained currently, and by a few days of field work and study of aerial photographs to outline the terrace deposits near Bethany. The predicament then faced by Oklahoma City was made more acute by the urgent need for adequate water supplies for war industries, and a general picture of ground-water possibilities and probabilities was desirable, not only to indicate where sufficient water might be obtained, but also as a guide to obtaining that water without excessive consumption of materials in short supply. Although the urgency of the situation passed with the arrival of rains that filled the municipal reservoirs, the ground water of the area is still of much interest to suburban areas, industries, and individuals providing their own water supplies.
Case Studies of Extreme Space Weather Effects on the New York State (NYS) Electric Power System
NASA Astrophysics Data System (ADS)
Chantale Damas, M.; Mohamed, Ahmed; Ngwira, Chigomyezo
2017-04-01
New York State (NYS) is home to one of the largest urban cities in the world, New York City (NYC). Understanding and mitigating the effects of extreme space weather events are important to reduce the vulnerabilities of the NYS present bulk power system, which includes NYC. Extreme space weather events perturb Earth's magnetic field and generate geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through transmission lines, followed by transformers and ground. GICs find paths to ground through transformer grounding wires causing half-cycle saturation to their magnetic cores. This causes transformers to overheat, inject harmonics to the grid and draw more reactive power than normal. Overheating, if sustained for a long duration, may lead to transformer failure or lifetime reduction. Presented work uses results from simulations performed by the Global SWMF-generated ground geomagnetic field perturbations. Results from computed values of simulated induced geo-electric fields at specific ground-based active INTERMAGNET magnetometer sites, combined with NYS electricity transmission network real data are used to examine the vulnerabilities of the NYS power grid. As an urban city with a large population, NYC is especially vulnerable and the results from this research can be used to model power systems for other urban cities.
Mattraw, H. C.; Franks, B.J.
1984-01-01
In 1983, the U.S. Geological Survey, Office of Hazardous Waste Hydrology, selected the former American Creosote Works site near Pensacola, Florida as a national research demonstration area. Seventy-nine years (1902-81) of seepage from unlined discharge impoundments had released creosote, diesel fuel, and pentachlorophenol (since 1950) wastes into the ground-water system. A cluster of from 2 to 5 wells constructed at different depths at 9 sites yielded water which revealed contamination 600 feet downgradient and to a depth of 100 feet below land surface near the site. The best cross-sectional representation of the contaminant plume was obtained from samples collected and analyzed for oxidation-reduction sensitive inorganic chemical constituents. Energy dispersive x-ray fluorescence detected recently formed iron carbonate in soil samples from highly reducing ground-water zones. Approximately eighty specific organic contaminants were isolated from ground-water samples by gas-chromotography/mass spectrometry. Column studies indicate the dimethyl phenols are not sorbed or degraded by the sand-and-gravel aquifer materials. Five of nineteen individual phenolic and related compounds are biodegradable based on anaerobic digestor experiments with ACW site bacterial populations. The potential impacts in the nearby Pensacola Bay biotic community are being evaluated. (USGS)
NASA Astrophysics Data System (ADS)
Gülci, S.; Dindaroğlu, T.; Gündoğan, R.
2017-11-01
Unmanned air vehicle systems (UAVSs), which are presently defined as effective measuring instruments, can be used for measurements and evaluation studies in fields. Furthermore, UAVs are effective tools that can produce high-precision and resolution data for use in geographic information system-based work. This study examined a multicopter (hexacopter) as an air platform to seek opportunity in generating DSM with high resolution. Flights were performed in Kahramanmaras Sutcu Imam University Campus area in Turkey. Pre-assessment of field works, mission, tests and installation were prepared by using a Laptop with an adaptive ground control station. Hand remote controller unit was also linked and activated during flight to interfere with emergency situations. Canon model IXSUS 160 was preferred as sensor. As a result of this study, as mentioned previous studies, .The orthophotos can be produced by RGB (Red-green-blue) images obtained with UAV, herewith information on terrain topography, land cover and soil erosion can be evaluated.
NASA Astrophysics Data System (ADS)
Chaikovsky, Anatoli; Korol, Michail; Malinka, A.; Zege, E.; Katsev, I.; Prikhach, A.; Denisov, S.; Dick, V.; Goloub, P.; Blarel, L.; Chaikovskaya, L.; Lapyonok, A.; Podvin, T.; Denishchik-Nelubina, N.; Fedarenka, A.; Svidinsky, V.
2016-01-01
The paper presents lecture materials given at the Nineteenth International Conference and School on Quantum Electronics "Laser Physics and Applications" (19th ICSQE) in 2016, Sozopol, Bulgaria and contains the results of the 10-year research of Belarusian Antarctic expeditions to study the atmospheric aerosol and Earth surface in Antarctica. The works focus on the studying variability and trends of aerosol, cloud and snow characteristics in the Antarctic and the links of these processes with the long range transport of atmospheric pollutants and climate changes.
Making adaptable systems work for mission operations: A case study
NASA Technical Reports Server (NTRS)
Holder, Barbara E.; Levesque, Michael E.
1993-01-01
The Advanced Multimission Operations System (AMMOS) at NASA's Jet Propulsion Laboratory is based on a highly adaptable multimission ground data system (MGDS) for mission operations. The goal for MGDS is to support current flight project science and engineering personnel and to meet the demands of future missions while reducing associated operations and software development costs. MGDS has become a powerful and flexible mission operations system by using a network of heterogeneous workstations, emerging open system standards, and selecting an adaptable tools-based architecture. Challenges in developing adaptable systems for mission operations and the benefits of this approach are described.
How ground-based observations can support satellite greenhouse gas retrievals
NASA Astrophysics Data System (ADS)
Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.
2012-04-01
Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.
NASA Astrophysics Data System (ADS)
Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa
The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis stresses on the specificity of the satellite and ground-based observations and the importance of the right choice of appropriate scenario for correlative studies.
Frustration and thermalization in an artificial magnetic quasicrystal
NASA Astrophysics Data System (ADS)
Shi, Dong; Budrikis, Zoe; Stein, Aaron; Morley, Sophie A.; Olmsted, Peter D.; Burnell, Gavin; Marrows, Christopher H.
2018-03-01
Artificial frustrated systems offer a playground to study the emergent properties of interacting systems. Most work to date has been on spatially periodic systems, known as artificial spin ices when the interacting elements are magnetic. Here we have studied artificial magnetic quasicrystals based on quasiperiodic Penrose tiling patterns of interacting nanomagnets. We construct a low-energy configuration from a step-by-step approach that we propose as a ground state. Topologically induced emergent frustration means that this configuration cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional `skeleton' that spans the entire pattern and is capable of long-range order, surrounding `flippable' clusters of macrospins that lead to macroscopic degeneracy. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays, especially after annealing the array above its blocking temperature.
Frustration and thermalization in an artificial magnetic quasicrystal
Shi, Dong; Budrikis, Zoe; Stein, Aaron; ...
2017-12-11
Here, artificial frustrated systems offer a playground to study the emergent properties of interacting systems. Most work to date has been on spatially periodic systems, known as artificial spin ices when the interacting elements are magnetic. Here we have studied artificial magnetic quasicrystals based on quasiperiodic Penrose tiling patterns of interacting nanomagnets. We construct a low-energy configuration from a step-by-step approach that we propose as a ground state. Topologically induced emergent frustration means that this configuration cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional ‘skeleton’ that spans the entire pattern and is capablemore » of long-range order, surrounding ‘flippable’ clusters of macrospins that lead to macroscopic degeneracy. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays, especially after annealing the array above its blocking temperature.« less
Assertiveness process of Iranian nurse leaders: a grounded theory study.
Mahmoudirad, Gholamhossein; Ahmadi, Fazlollah; Vanaki, Zohreh; Hajizadeh, Ebrahim
2009-06-01
The purpose of this study was to explore the assertiveness process in Iranian nursing leaders. A qualitative design based on the grounded theory approach was used to collect and analyze the assertiveness experiences of 12 nurse managers working in four hospitals in Iran. Purposeful and theoretical sampling methods were employed for the data collection and selection of the participants, and semistructured interviews were held. During the data analysis, 17 categories emerged and these were categorized into three themes: "task generation", "assertiveness behavior", and "executive agents". From the participants' experiences, assertiveness theory emerged as being fundamental to the development of a schematic model describing nursing leadership behaviors. From another aspect, religious beliefs also played a fundamental role in Iranian nursing leadership assertiveness. It was concluded that bringing a change in the current support from top managers and improving self-learning are required in order to enhance the assertiveness of the nursing leaders in Iran.
Frustration and thermalization in an artificial magnetic quasicrystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dong; Budrikis, Zoe; Stein, Aaron
Here, artificial frustrated systems offer a playground to study the emergent properties of interacting systems. Most work to date has been on spatially periodic systems, known as artificial spin ices when the interacting elements are magnetic. Here we have studied artificial magnetic quasicrystals based on quasiperiodic Penrose tiling patterns of interacting nanomagnets. We construct a low-energy configuration from a step-by-step approach that we propose as a ground state. Topologically induced emergent frustration means that this configuration cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional ‘skeleton’ that spans the entire pattern and is capablemore » of long-range order, surrounding ‘flippable’ clusters of macrospins that lead to macroscopic degeneracy. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays, especially after annealing the array above its blocking temperature.« less
ERIC Educational Resources Information Center
Hixson, Katharine
2013-01-01
Due to the long-duration and long distance nature of future exploration missions, coupled with significant communication delays from ground-based personnel, NASA astronauts will be living and working within confined, isolated environments for significant periods of time. This extreme environment poses concerns for the flight crews' ability to…
Analytical Tools for the Application of Operational Culture: A Case Study in the Trans-Sahel
2011-03-28
Study Team Working Paper 3: Research Methods Discussion for the Study Team Methods229 Generating Empirical Materials In grounded theory ... research I have conducted using these methods . UNCLASSIFIED Analytical Tools for the Application of Operational Culture: A Case Study in the...Survey and a Case Study ,‖ Kjeller, Norway: FFI Glaser, B. G. & Strauss, A. L. (1967). ―The discovery of grounded theory
Reconceptualizing models of delirium education: findings of a Grounded Theory study.
Teodorczuk, Andrew; Mukaetova-Ladinska, Elizabeta; Corbett, Sally; Welfare, Mark
2013-04-01
Effectiveness of educational interventions targeted at improving delirium care is limited by implementation barriers. Studying factors which shape learning needs can overcome these knowledge transfer barriers. This in-depth qualitative study explores learning needs of hospital staff relating to care needs of the confused older patients. Fifteen research participants from across the healthcare spectrum working within an acute care setting were interviewed. Five focus groups were undertaken with patients, carers, and mental health specialists. A Grounded Theory methodology was adopted and data were analyzed thematically in parallel to collection until theoretical saturation was reached. Eight categories of practice gap emerged: ownership of the confused patient, negative attitudes, lack of understanding of how frightened the patient is in hospital, carer partnerships, person-centered care, communication, recognition of cognitive impairment and specific clinical needs (e.g. capacity assessments). Conceptually, the learning needs were found to be hierarchically related. Moreover, a vicious circle relating to the core learning needs of ownership, attitudes and patient's fear emerged. A patient with delirium may be frightened in an alien environment and then negatively labeled by staff who subsequently wish for their removal, thereby worsening the patient's fear. These findings reconceptualize delirium education approaches suggesting a need to focus interventions on core level practice gaps. This fresh perspective on education, away from disease-based delirium knowledge toward work-based patient, team and practice knowledge, could lead to more effective educational strategies to improve delirium care.
Nursing attitudes toward patients with substance use disorders in pain.
Morgan, Betty D
2014-03-01
The problem of inadequate pain management in hospitals is well documented. Patients who have substance use disorders (SUD) have many medical problems and are often in pain as a result of these problems. Nurses often lack knowledge of appropriate treatment of both pain and SUD, and have been identified as having negative attitudes toward patients with SUD. The negative attitudes may affect the quality of care delivered to patients with problems of pain and SUD. The purpose of this study was to identify and explore nurses' attitudes toward hospitalized patients with SUD who are in pain, to expand the knowledge about nurses' attitudes and interactions with patients with SUD in pain, and to generate theory that will contribute to a greater understanding of the problem. Grounded theory methodology was used to interview hospital-based nurses who work with patients with SUD who are in pain. Individual interviews, using a semistructured interview guide, were conducted with 14 nurses who worked with this population. Additionally, an expert addictions nurse was interviewed at the end of the study to validate the findings. Interviews were analyzed and coded with the use of grounded theory concepts. A model illustrating the categories and their relationships was developed based on the theory generated as a result of the study. The implications for nursing practice, education, research, and policy are discussed. Copyright © 2014 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
Electrophysical parameters and NMR-characteristics of cryogel
NASA Astrophysics Data System (ADS)
Shumskayte, M.; Junasheva, A.; Eltsov, T.; Golikov, N.
2016-09-01
There has recently been great interest in the cryogels based on polyvinyl alcohol. Cryogel usage allows improving existing materials and creating new ones. Cryogel is completely safe, both for humans and for the soil. It protects the soil from drying out and erosion and enhances plant growth, making them more adaptive to the environment. Under the conditions of the Far North, cryogels might be used to strengthen building structures in order to prevent destruction. There is a question of monitoring cryogel distribution in the treated environment. To do this, one needs to know the physical properties of cryogel and composites with ground on its basis. This work aims to study the electrical properties and pore space structure of the composites made from ground and cryogel at various temperatures and various amounts of freezing cycles.
Methodology for studying recreation choice behavior with emphasis on grounded inquiry
Kent B. Downing; Roger N. Clark
1985-01-01
This paper reports methodology for investigating recreation choice behavior using grounded, naturalistic research methods. How these techniques can be coordinated with other social research methods is described. Naturalistic methods are preferred over other approaches to uncover recreationists' decision making processes at work.
NASA Astrophysics Data System (ADS)
Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.
2018-04-01
A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.
Low-gravity fluid physics: A program overview
NASA Technical Reports Server (NTRS)
1990-01-01
An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.
Aspects of Vocational Pedagogy as Practice: Decolonizing Minds and Negotiating Local Knowledge
ERIC Educational Resources Information Center
Mjelde, Liv; Daly, Richard
2012-01-01
This work is based on the experience of the authors' involvement in the development of a Masters of Vocational Pedagogy program in Uganda and Southern Sudan between 2007 and 2011. This is also grounded in work with Vocational Education and Culture (VET) over many years. The terms VET and Culture are interdependent; both terms are highly contested…
Mower, R.W.
1954-01-01
Investigations by the United States Geological Survey of Ground Water in the Southern border area of the Snake Rive Plain, south of the Snake River, a re concerned at the present time with delineation of the principal ground-water districts, the extent and location of existing ground-water developments, the possibilities for additional development, and the effects of ground-water development on the regimen of streams and reservoirs whose waters are appropriate for beneficial use. The lower part of the Goose Creek Basin is one of the important ground-water districts of the southern plains area and there are substantial but spotty developments of ground water for irrigation in the basin. Several thousand irrigable acres that are now dry could be put under irrigation if a dependable supply of ground water could be developed. The relations of the ground-water reservoirs to the regime of the Snake River and Goose Cree, and to the large body of ground water in the Snake River Plain north of the Snake, are poorly known. A large amount of geologic and hydrologic study remains to be done before those relations can be accurately determined. Investigations will be continued in the future but file work and preparation of a comprehensive report inevitably will be delayed. Therefore the available records are presented herein in order to make them accessible to farmers, well drillers, government agencies, and the general public. Interpretation of the records is not attempted in this report and is deferred pending the accumulation of additional and quantitative information. The data summarized herein include records of the locations and physical characteristics of wells, the depth to water in wells, fluctuations of water levels in observation wells, and estimated rates and volumes of seasonal ans yearly ground-water pumpage for irrigation, municipal, and other uses. This information is complete for work done as of December 31, 1952. The investigations upon which this report is based were undertaken in cooperation with the U.S. Bureau of Reclamation, Region I, at the request of the Planning Division, Central Snake River District. The report was complied in the first instance for the use of the Bureau of Reclamation but is now released to the public. The observation-well program in the area has been maintained in cooperation with the Idaho State Department of Reclamation as part of the regular cooperative program of the Geological Survey.
Manned geosynchronous mission requirements and systems analysis study extension
NASA Technical Reports Server (NTRS)
1981-01-01
Turnaround requirements for the manned orbital transfer vehicle (MOTV) baseline and alternate concepts with and without a space operations center (SOC) are defined. Manned orbital transfer vehicle maintenance, refurbishment, resupply, and refueling are considered as well as the most effective combination of ground based and space based turnaround activities. Ground and flight operations requirements for abort are identified as well as low cost approaches to space and ground operations through maintenance and missions sensitivity studies. The recommended turnaround mix shows that space basing MOTV at SOC with periodic return to ground for overhaul results in minimum recurring costs. A pressurized hangar at SOC reduces labor costs by approximately 50%.
Modin, Sonja; Törnkvist, Lena; Furhoff, Anna-Karin; Hylander, Ingrid
2010-10-27
This article concerns Swedish family physicians' (FPs) experiences collaborating with district nurses (DNs) when the DNs provide medical treatment for home care patients. The aim was to develop a model to illuminate this process from the FPs' perspective. Semi-structured interviews were conducted with 13 FPs concerning one of their patients with home care by a DN. The interview focused on one patient's treatment and care by different care providers and the collaboration among them. Grounded theory methodology (GTM) was used in the analyses. It was essential for FPs to collaborate with and rely on DNs in the medical treatment of home care patients. According to the FPs, factors such as the disease, FPs' working conditions and attitude determined how much of the initiative in this treatment FPs retained or left to DNs. Depending on the circumstances, two different roles were adopted by the individual FPs: medical conductors who retain the initiative and medical consultants who leave the initiative to DNs. Factors as the disease, DNs' attitudes towards collaboration and DNs' working conditions influenced whether or not the FPs felt that grounds for relying on DNs were satisfactory. Regardless of the role of the FP, conditions for medical treatment were judged by the FPs to be good enough when the grounds for relying on the DN were satisfactory and problematic when they were not. In the role of conductor, the FP will identify when the grounds for relying on the DN are unsatisfactory and be able to take action, but in the role of consultant the FP will not detect this, leaving home care patients without appropriate support. Only when there are satisfactory grounds for relying on the DN, will conditions for providing home care medical treatment be good enough when the FP adopts a consultative role.
Stability limits and dynamics of nonaxisymmetric liquid bridges
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Resnik, Andy; Kaukler, William F.
1993-01-01
This program of theoretical and experimental ground-based and low gravity research is focussed on the understanding of the dynamics and stability limits of nonaxisymmetric liquid bridges. There are three basic objectives to the proposed work: (1) to determine the stability limits of nonaxisymmetric liquid bridges held between non-coaxially aligned disks; (2) to examine the dynamics of nonaxisymmetric bridges and nonaxisymmetric oscillations of initially axisymmetric bridges (some of these experiments require a low gravity environment and the ground-based research will culminate in a definitive flight experiment); and (3) to experimentally investigate the vibration sensitivity of liquid bridges under terrestrial and low gravity conditions.
Ground heat flux and power sources of low-enthalpy geothermal systems
NASA Astrophysics Data System (ADS)
Bayer, Peter; Blum, Philipp; Rivera, Jaime A.
2015-04-01
Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.
Adopting exergy analysis for use in aerospace
NASA Astrophysics Data System (ADS)
Hayes, David; Lone, Mudassir; Whidborne, James F.; Camberos, José; Coetzee, Etienne
2017-08-01
Thermodynamic analysis methods, based on an exergy metric, have been developed to improve system efficiency of traditional heat driven systems such as ground based power plants and aircraft propulsion systems. However, in more recent years interest in the topic has broadened to include applying these second law methods to the field of aerodynamics and complete aerospace vehicles. Work to date is based on highly simplified structures, but such a method could be shown to have benefit to the highly conservative and risk averse commercial aerospace sector. This review justifies how thermodynamic exergy analysis has the potential to facilitate a breakthrough in the optimization of aerospace vehicles based on a system of energy systems, through studying the exergy-based multidisciplinary design of future flight vehicles.
Lawton, Teri
2016-01-01
There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.
Assimilating to Hierarchical Culture: A Grounded Theory Study on Communication among Clinical Nurses
2016-01-01
The purpose of this study was to generate a substantive model that accounts for the explanatory social processes of communication in which nurses were engaged in clinical settings in Korea. Grounded theory methodology was used in this study. A total of 15 clinical nurses participated in the in-depth interviews. “Assimilating to the hierarchical culture” emerged as the basic social process of communication in which the participants engaged in their work environments. To adapt to the cultures of their assigned wards, the nurses learned to be silent and engaged in their assimilation into the established hierarchy. The process of assimilation consisted of three phases based on the major goals that nurses worked to achieve: getting to know about unspoken rules, persevering within the culture, and acting as senior nurse. Seven strategies and actions utilized to achieve the major tasks emerged as subcategories, including receiving strong disapproval, learning by observing, going silent, finding out what is acceptable, minimizing distress, taking advantages as senior nurse, and taking responsibilities as senior nurse. The findings identified how the pattern of communication in nursing organizations affected the way in which nurses were assimilated into organizational culture, from individual nurses’ perspectives. In order to improve the rigid working atmosphere and culture in nursing organizations and increase members’ satisfaction with work and quality of life, managers and staff nurses need training that focuses on effective communication and encouraging peer opinion-sharing within horizontal relationships. Moreover, organization-level support should be provided to create an environment that encourages free expression. PMID:27253389
Kim, MinYoung; Oh, Seieun
2016-01-01
The purpose of this study was to generate a substantive model that accounts for the explanatory social processes of communication in which nurses were engaged in clinical settings in Korea. Grounded theory methodology was used in this study. A total of 15 clinical nurses participated in the in-depth interviews. "Assimilating to the hierarchical culture" emerged as the basic social process of communication in which the participants engaged in their work environments. To adapt to the cultures of their assigned wards, the nurses learned to be silent and engaged in their assimilation into the established hierarchy. The process of assimilation consisted of three phases based on the major goals that nurses worked to achieve: getting to know about unspoken rules, persevering within the culture, and acting as senior nurse. Seven strategies and actions utilized to achieve the major tasks emerged as subcategories, including receiving strong disapproval, learning by observing, going silent, finding out what is acceptable, minimizing distress, taking advantages as senior nurse, and taking responsibilities as senior nurse. The findings identified how the pattern of communication in nursing organizations affected the way in which nurses were assimilated into organizational culture, from individual nurses' perspectives. In order to improve the rigid working atmosphere and culture in nursing organizations and increase members' satisfaction with work and quality of life, managers and staff nurses need training that focuses on effective communication and encouraging peer opinion-sharing within horizontal relationships. Moreover, organization-level support should be provided to create an environment that encourages free expression.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1990-01-01
Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL) Office of Telecommunications and Data Acquisition (TDA) are given. Space communications, radio navigation, radio science, and ground-based radio and radar astronomy, activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations are reported. Also included is TDA-funded activity at JPL on data and information systems and reimbursable Deep Space Network (DSN) work performed for other space agencies through NASA.
GLAST and Ground-Based Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
McEnery, Julie
2008-01-01
The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.
Scaling earthquake ground motions for performance-based assessment of buildings
Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.
2011-01-01
The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.
Lessons learned from recent geomagnetic disturbance model validation activities
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Welling, D. T.
2017-12-01
Due to concerns pertaining to geomagnetically induced current impact on ground-based infrastructure, there has been significantly elevated interest in applying models for local geomagnetic disturbance or "delta-B" predictions. Correspondingly there has been elevated need for testing the quality of the delta-B predictions generated by the modern empirical and physics-based models. To address this need, community-wide activities were launched under the GEM Challenge framework and one culmination of the activities was the validation and selection of models that were transitioned into operations at NOAA SWPC. The community-wide delta-B action is continued under the CCMC-facilitated International Forum for Space Weather Capabilities Assessment and its "Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs" working group. The new delta-B working group builds on the past experiences and expands the collaborations to cover the entire international space weather community. In this paper, we discuss the key lessons learned from the past delta-B validation exercises and lay out the path forward for building on those experience under the new delta-B working group.
Delineation of marsh types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama, in 2010
Enwright, Nicholas M.; Hartley, Stephen B.; Couvillion, Brady R.; Michael G. Brasher,; Jenneke M. Visser,; Michael K. Mitchell,; Bart M. Ballard,; Mark W. Parr,; Barry C. Wilson,
2015-07-23
This study incorporates about 9,800 ground reference locations collected via helicopter surveys in coastal wetland areas. Decision-tree analyses were used to classify emergent marsh vegetation types by using ground reference data from helicopter vegetation surveys and independent variables such as multitemporal satellite-based multispectral imagery from 2009 to 2011, bare-earth digital elevation models based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables. Image objects were created from 2010 National Agriculture Imagery Program color-infrared aerial photography. The final classification is a 10-meter raster dataset that was produced by using a majority filter to classify image objects according to the marsh vegetation type covering the majority of each image object. The classification is dated 2010 because the year is both the midpoint of the classified multitemporal satellite-based imagery (2009–11) and the date of the high-resolution airborne imagery that was used to develop image objects. The seamless classification produced through this work can be used to help develop and refine conservation efforts for priority natural resources.
WFIRST Microlensing Exoplanet Characterization with HST Follow up
NASA Astrophysics Data System (ADS)
Bhattacharya, Aparna; David Bennett, Jay Anderson, J.P. Beaulieu.
2018-01-01
More than 50 planets are discovered with the different ground based telescopes available for microlensing. But the analysis of ground based data fails to provide a complete solution. To fulfill that gap, space based telescopes, like Hubble space telescope and Spitzer are used. My research work focuses on extracting the planet mass, host star mass, their separation and their distance in physical units from HST Follow-up observations. I will present the challenges faced in developing this method.This is the primary method to be used for NASA's top priority project (according to 2010 decadal survey) Wide Field InfraRed Survey Telescope (WFIRST) Exoplanet microlensing space observatory, to be launched in 2025. The unique ability of microlensing is that with WFIRST it can detect sub-earth- mass planets beyond the reach of Kepler at separation 1 AU to infinity. This will provide us the necessary statistics to study the formation and evolution of planetary systems. This will also provide us with necessary initial conditions to model the formation of planets and the habitable zones around M dwarf stars.
NASA Astrophysics Data System (ADS)
Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga
2016-11-01
This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.
A knowledge-based system for prototypical reasoning
NASA Astrophysics Data System (ADS)
Lieto, Antonio; Minieri, Andrea; Piana, Alberto; Radicioni, Daniele P.
2015-04-01
In this work we present a knowledge-based system equipped with a hybrid, cognitively inspired architecture for the representation of conceptual information. The proposed system aims at extending the classical representational and reasoning capabilities of the ontology-based frameworks towards the realm of the prototype theory. It is based on a hybrid knowledge base, composed of a classical symbolic component (grounded on a formal ontology) with a typicality based one (grounded on the conceptual spaces framework). The resulting system attempts to reconcile the heterogeneous approach to the concepts in Cognitive Science with the dual process theories of reasoning and rationality. The system has been experimentally assessed in a conceptual categorisation task where common sense linguistic descriptions were given in input, and the corresponding target concepts had to be identified. The results show that the proposed solution substantially extends the representational and reasoning 'conceptual' capabilities of standard ontology-based systems.
Canny edge-based deformable image registration
NASA Astrophysics Data System (ADS)
Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping
2017-02-01
This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.
Juggling and the Art of the Integrative Assignment
ERIC Educational Resources Information Center
Dunlap, Lynn; Sult, Larry
2013-01-01
When faculty study samples of student work, assignment prompts typically become part of the review. Two experienced learning community faculty from Skagit Valley College examined their students' work with three questions in mind: whether the work was grounded in disciplinary insights; whether the work leveraged disciplinary knowledge to develop…
Sorting Olive Batches for the Milling Process Using Image Processing
Puerto, Daniel Aguilera; Martínez Gila, Diego Manuel; Gámez García, Javier; Gómez Ortega, Juan
2015-01-01
The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results. PMID:26147729
Environmentally Friendly Corrosion Preventative Compounds for Ground Support Structures
NASA Technical Reports Server (NTRS)
Montgomery Eliza L.; Calle, Luz, Marina; Curran, Jerome P.; Kolody, Mark R.
2013-01-01
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
Environmentally friendly corrosion preventive compounds for ground support structures
NASA Astrophysics Data System (ADS)
Montgomery, Eliza; Curran, Jerome; Calle, Luz Marina; Kolody, Mark
The need to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based corrosion preventive compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. CPCs are used as temporary protective coatings and must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different oily film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing. The results for the fifteen CPC systems are presented in this paper.
Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Eric D; Mitchell, Jeremy N; Booth, C H
2009-01-01
The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The competition between spin, charge, and lattice interactions is at the heart of many of the strongly-correlated ground states in materials of current interest, such as in colossal magnetoresistors and high-temperature superconductors. This relationship is particularly strong in the CeTIn{sub 5} and PuTGa{sub 5} series (T = Co, Rh, Ir) of heavy-fermion superconductors. In these systems (figure 1), competition between bulk magnetic and non-magnetic ground states, as well asmore » between superconducting and normal states, are directly related to local properties around the lanthanide or actinide ion, such as the nearest-neighbor bond lengths and the local density of states at the Fermi level. Tiny changes in the latter values can easily tip the balance from one ground state to another. This paper reviews recent work by the authors exploring the relationship between local crystal and electronic structure and ground state magnetic and conducting properties in the Ce- and Pu-based 115 materials.« less
NASA Technical Reports Server (NTRS)
Campbell, James R.; Ge, Cui; Wang, Jun; Welton, Ellsworth J.; Bucholtz, Anthony; Hyer, Edward J.; Reid, Elizabeth A.; Chew, Boon Ning; Liew, Soo-Chin; Salinas, Santo V.;
2015-01-01
This work describes some of the most extensive ground-based observations of the aerosol profile collected in Southeast Asia to date, highlighting the challenges in simulating these observations with a mesoscale perspective. An 84-h WRF Model coupled with chemistry (WRF-Chem) mesoscale simulation of smoke particle transport at Kuching, Malaysia, in the southern Maritime Continent of Southeast Asia is evaluated relative to a unique collection of continuous ground-based lidar, sun photometer, and 4-h radiosonde profiling. The period was marked by relatively dry conditions, allowing smoke layers transported to the site unperturbed by wet deposition to be common regionally. The model depiction is reasonable overall. Core thermodynamics, including landsea-breeze structure, are well resolved. Total model smoke extinction and, by proxy, mass concentration are low relative to observation. Smoke emissions source products are likely low because of undersampling of fires in infrared sun-synchronous satellite products, which is exacerbated regionally by endemic low-level cloud cover. Differences are identified between the model mass profile and the lidar profile, particularly during periods of afternoon convective mixing. A static smoke mass injection height parameterized for this study potentially influences this result. The model does not resolve the convective mixing of aerosol particles into the lower free troposphere or the enhancement of near-surface extinction from nighttime cooling and hygroscopic effects.
A photogrammetric technique for generation of an accurate multispectral optical flow dataset
NASA Astrophysics Data System (ADS)
Kniaz, V. V.
2017-06-01
A presence of an accurate dataset is the key requirement for a successful development of an optical flow estimation algorithm. A large number of freely available optical flow datasets were developed in recent years and gave rise for many powerful algorithms. However most of the datasets include only images captured in the visible spectrum. This paper is focused on the creation of a multispectral optical flow dataset with an accurate ground truth. The generation of an accurate ground truth optical flow is a rather complex problem, as no device for error-free optical flow measurement was developed to date. Existing methods for ground truth optical flow estimation are based on hidden textures, 3D modelling or laser scanning. Such techniques are either work only with a synthetic optical flow or provide a sparse ground truth optical flow. In this paper a new photogrammetric method for generation of an accurate ground truth optical flow is proposed. The method combines the benefits of the accuracy and density of a synthetic optical flow datasets with the flexibility of laser scanning based techniques. A multispectral dataset including various image sequences was generated using the developed method. The dataset is freely available on the accompanying web site.
Portable traceability solution for ground-based calibration of optical instruments
NASA Astrophysics Data System (ADS)
El Gawhary, Omar; van Veghel, Marijn; Kenter, Pepijn; van der Leden, Natasja; Dekker, Paul; Revtova, Elena; Heemskerk, Maurice; Trarbach, André; Vink, Ramon; Doyle, Dominic
2017-11-01
We present a portable traceability solution for the ground-based optical calibration of earth observation (EO) instruments. Currently, traceability for this type of calibration is typically based on spectral irradiance sources (e.g. FEL lamps) calibrated at a national metrology institute (NMI). Disadvantages of this source-based traceability are the inflexibility in operating conditions of the source, which are limited to the settings used during calibration at the NMI, and the susceptibility to aging, which requires frequent recalibrations, and which cannot be easily checked on-site. The detector-based traceability solution presented in this work uses a portable filter radiometer to calibrate light sources onsite, immediately before and after, or even during instrument calibration. The filter radiometer itself is traceable to the primary standard of radiometry in the Netherlands. We will discuss the design and realization, calibration and performance verification.
Magaldi-Dopman, Danielle; Park-Taylor, Jennie; Ponterotto, Joseph G
2011-05-01
In this present grounded theory study, 16 experienced psychologists, who practiced from varied theoretical orientations and came from diverse religious/spiritual/nonreligious backgrounds, explored their personal religious/spiritual/nonreligious identity development journeys, their experiences with clients' religious/spiritual content in psychotherapy sessions, and how their identity may have influenced the way they interacted with religious/spiritual material during sessions. Results revealed that psychologists' spiritual/religious/nonreligious identity is conflicted and complex and that their academic and clinical training did not provide sufficient opportunity to examine how this may affect their therapeutic work. A tentative grounded theory emerged suggesting that psychologists both identified with and were activated by clients' spiritual/religious conflicts and their internal experiences about the spiritual/religious content, both of which presented significant challenges to therapeutic work.
Ground-water conditions at Beale Air Force Base and vicinity, California
Page, R.W.
1980-01-01
Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)
ERIC Educational Resources Information Center
Simmons, Denise Rutledge
2012-01-01
This work develops a constructivist grounded theory describing the influence of family and those that serve a role similar to family on the academic decision making of undergraduate first generation in college (FGC) students majoring in engineering. FGC students, in this study, are students with neither parent having attained a bachelor's…
NASA Astrophysics Data System (ADS)
Rinaldi, Antonio P.; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai
2017-11-01
Ground deformation, commonly observed in storage projects, carries useful information about processes occurring in the injection formation. The Krechba gas field at In Salah (Algeria) is one of the best-known sites for studying ground surface deformation during geological carbon storage. At this first industrial-scale on-shore CO2 demonstration project, satellite-based ground-deformation monitoring data of high quality are available and used to study the large-scale hydrological and geomechanical response of the system to injection. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 have single-lobe patterns, but they can also indicate a deep fracture zone mechanical response to the injection. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties are determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in agreement with both spatial and temporal observations. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results. In addition, the formal joint inversion of hydrogeological and geomechanical data provides measures of the estimation uncertainty.
Rinaldi, Antonio P.; Rutqvist, Jonny; Finsterle, Stefan; ...
2016-10-24
Ground deformation, commonly seen in storage projects, carries useful information about processes occurring in the injection formation. The Krechba gas field at In Salah (Algeria) is one of the best-known sites for studying ground surface deformation during geological carbon storage. At this first industrial-scale on-shore CO 2 demonstration project, satellite-based ground-deformation monitoring data of high quality are available and used to study the large-scale hydrological and geomechanical response of the system to injection. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO 2 injection wells (KB-501, KB-502, KB-503). Previousmore » numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 have single-lobe patterns, but they can also indicate a deep fracture zone mechanical response to the injection.The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties are determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in agreement with both spatial and temporal observations. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results. In addition, the formal joint inversion of hydrogeological and geomechanical data provides measures of the estimation uncertainty.« less
Dual Analyses Examining Proving Process: Grounded Theory and Knowledge Analysis
ERIC Educational Resources Information Center
Adiredja, Aditya P.; Smith Karunakaran, Shiv
2016-01-01
This report presents dual analyses of an undergraduate student, Cassie, whose work provides nice contrasts between Grounded Theory (GT) analysis and Knowledge Analysis (KA). The analyses highlight particular methodological differences, such as grain size of findings, positioning of novices and more general implications about expert-novice studies.…
A Hockey Night in Canada: An Imagined Conversation between Theorists
ERIC Educational Resources Information Center
Fogel, Curtis
2010-01-01
In this paper, various methodological issues surrounding the sociological study of sport are explored. Through an imagined dialogue between two graduate students at a hockey game, this work brings together three divergent approaches to social enquiry: Positivist Grounded Theory, Constructivist Grounded Theory, and Actor-Network Theory. This paper…
Gridding Cloud and Irradiance to Quantify Variability at the ARM Southern Great Plains Site
NASA Astrophysics Data System (ADS)
Riihimaki, L.; Long, C. N.; Gaustad, K.
2017-12-01
Ground-based radiometers provide the most accurate measurements of surface irradiance. However, geometry differences between surface point measurements and large area climate model grid boxes or satellite-based footprints can cause systematic differences in surface irradiance comparisons. In this work, irradiance measurements from a network of ground stations around Kansas and Oklahoma at the US Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains facility are examined. Upwelling and downwelling broadband shortwave and longwave radiometer measurements are available at each site as well as surface meteorological measurements. In addition to the measured irradiances, clear sky irradiance and cloud fraction estimates are analyzed using well established methods based on empirical fits to measured clear sky irradiances. Measurements are interpolated onto a 0.25 degree latitude and longitude grid using a Gaussian weight scheme in order to provide a more accurate statistical comparison between ground measurements and a larger area such as that used in climate models, plane parallel radiative transfer calculations, and other statistical and climatological research. Validation of the gridded product will be shown, as well as analysis that quantifies the impact of site location, cloud type, and other factors on the resulting surface irradiance estimates. The results of this work are being incorporated into the Surface Cloud Grid operational data product produced by ARM, and will be made publicly available for use by others.
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Gangopadhyay, Anup K.; Lee, G. W.; Hyers, Robert W.; Rathz, T. J.; Robinson, Michael B.; Rogers, Jan R.
2003-01-01
From extensive ground based work on the phase diagram and undercooling studies of Ti-Zr-Ni alloys, have clearly identified the composition of three different phases with progressively increasing polytetrahedral order such as, (Ti/Zr), the C14 Laves phase, and the i-phase, that nucleate directly from the undercooled liquid. The reduced undercooling decreases progressively with increasing polytetrahedral order in the solid, supporting Frank s hypothesis. A new facility for direct measurements of the structures and phase transitions in undercooled liquids (BESL) was developed and has provided direct proof of the primary nucleation of a metastable icosahedral phase in some Ti-Zr-Ni alloys. The first measurements of specific heat and viscosity in the undercooled liquid of this alloy system have been completed. Other than the importance of thermo-physical properties for modeling nucleation and growth processes in these materials, these studies have also revealed some interesting new results (such as a maximum of C(sup q, sub p) in the undercooled state). These ground-based results have clearly established the necessary background and the need for conducting benchmark nucleation experiments at the ISS on this alloy system.
Empowering occupational therapists to become evidence-based work rehabilitation practitioners.
Vachon, Brigitte; Durand, Marie-José; LeBlanc, Jeannette
2010-01-01
Occupational therapists (OTs) engage in continuing education to integrate best available knowledge and skills into their practice. However, many barriers influence the degree to which they are currently able to integrate research evidence into their clinical decision making process. The specific objectives were to explore the clinical decision-making processes they used, and to describe the empowerment process they developed to become evidence-based practitioners. Eight OTs, who had attended a four-day workshop on evidence-based work rehabilitation, were recruited to participate to a reflective practice group. A collaborative research methodology was used. The group was convened for 12 meetings and held during a 15-month period. The data collected was analyzed using the grounded theory method. The results revealed the different decision-making modes used by OTs: defensive, repressed, cautious, autonomous intuitive and autonomous thoughtful. These modes influenced utilization of evidence and determined the stances taken toward practice change. Reflective learning facilitated their utilization of an evidence-based practice model through a three-level empowerment process: deliberateness, client-centeredness and system mindedness. During the course of this study, participants learned to become evidence-based practitioners. This process had an impact on how they viewed their clients, their practice and the work rehabilitation system.
ERIC Educational Resources Information Center
Cohen, Richard
2012-01-01
Evidence-based treatments are increasingly important and necessary parts of many disciplines when working with very young children and their families. In using them, it is advantageous to be grounded in the principles and practices that research has shown are critical to children's healthy development, particularly the importance of supporting the…
Progress towards the development of a source of entangled photons for Space
NASA Astrophysics Data System (ADS)
Fedrizzi, Alessandro; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton
2007-03-01
Quantum entanglement offers exciting applications like quantum computing, quantum teleportation and quantum cryptography. Ground based quantum communication schemes in optical fibres however are limited to a distance of the order of ˜100 km. In order to extend this limit to a global scale we are working on the realization of an entanglement-based quantum communication transceiver for space deployment. Here we report on a compact, extremely bright source for polarization entangled photons meeting the scientific requirements for a potential space to ground optical link. The pair production rate exceeds 4*10̂6 pairs/s at just 20mW of laser diode pump power. Furthermore, we will present the results of various experiments proving the feasibility of quantum information in space, including a weak coherent pulse single-photon downlink from a LEO satellite and the distribution of entanglement over a 144km free space link, using ESAs optical ground station.
Sevenster, M; Buurman, J; Liu, P; Peters, J F; Chang, P J
2015-01-01
Accumulating quantitative outcome parameters may contribute to constructing a healthcare organization in which outcomes of clinical procedures are reproducible and predictable. In imaging studies, measurements are the principal category of quantitative para meters. The purpose of this work is to develop and evaluate two natural language processing engines that extract finding and organ measurements from narrative radiology reports and to categorize extracted measurements by their "temporality". The measurement extraction engine is developed as a set of regular expressions. The engine was evaluated against a manually created ground truth. Automated categorization of measurement temporality is defined as a machine learning problem. A ground truth was manually developed based on a corpus of radiology reports. A maximum entropy model was created using features that characterize the measurement itself and its narrative context. The model was evaluated in a ten-fold cross validation protocol. The measurement extraction engine has precision 0.994 and recall 0.991. Accuracy of the measurement classification engine is 0.960. The work contributes to machine understanding of radiology reports and may find application in software applications that process medical data.
The Remote Observing Working Group for the Asteroid Impact and Deflection Assessment (AIDA)
NASA Astrophysics Data System (ADS)
Rivkin, A. S.; Pravec, P.; Thomas, C. A.; Thirouin, A.; Snodgrass, C.; Green, S.; Licandro, J.; Sickafoose, A. A.; Erasmus, N.; Howell, E. S.; Osip, D.; Thomas-Osip, J.; Moskovitz, N.; Scheirich, P.; Oszkiewicz, D.; Richardson, D. C.; Polishook, D.; Ryan, W. H.; Busch, M. W.
2017-09-01
The Asteroid Impact and Deflection Assessment (AIDA) is a joint US-European mission concept designed to demonstrate the effectiveness of an kinetic impactor for planetary defense. Ground-based observing is a key component to AIDA and critical for its success. We present the observing campaign we have been conducting of the asteroid Didymos, the AIDA target, and plans for future work.
Remote sensing of vegetation pattern and condition to monitor changes in Everglades biogeochemistry
Jones, John W.
2011-01-01
Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management.
Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel
2010-01-01
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.
Sensor Amplifier for the Venus Ground Ambient
NASA Technical Reports Server (NTRS)
DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.
2006-01-01
Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.
Geneste, Grégory; Hermet, Jessica; Dezanneau, Guilhem
2017-08-09
We respond to the erroneous criticisms about our modeling of proton transport in barium stannate [G. Geneste et al., Phys. Chem. Chem. Phys., 2015, 17, 19104]. In this previous work, we described, on the basis of density-functional calculations, proton transport in the classical and semi-classical regimes, and provided arguments in favor of an adiabatic picture for proton transfer at low temperature. We re-explain here our article (with more detail and precision), the content of which has been distorted in the Comment, and reiterate our arguments in this reply. We refute all criticisms. They are completely wrong in the context of our article. Even though a few of them are based on considerations probably true in some metals, they make no sense here since they do not correspond to the content of our work. It has not been understood in the Comment that two competitive configurations, associated with radically different transfer mechanisms, have been studied in our work. It has also not been understood in the Comment that the adiabatic regime described for transfer occurs in the protonic ground state, in a very-low barrier configuration with the protonic ground state energy larger than the barrier. Serious confusion has been made in the Comment with the case of H in metals like Nb or Ta, leading to the introduction of the notion of (protonic) "excited-state proton transfer", relevant for H in some metals, but (i) that does not correspond to the (ground state) adiabatic transfers here described, and (ii) that does not correspond to what is commonly described as the "adiabatic limit for proton transfer" in the scientific literature. We emphasize, accordingly, the large differences between proton transfer in the present oxide and hydrogen jumps in metals like Nb or Ta, and the similarities between proton transfer in the present oxide and in acid-base solutions. We finally describe a scenario for proton transfer in the present oxide regardless of the temperature regime.
"They just know": the epistemological politics of "evidence-based" non-formal education.
Archibald, Thomas
2015-02-01
Community education and outreach programs should be evidence-based. This dictum seems at once warranted, welcome, and slightly platitudinous. However, the "evidence-based" movement's more narrow definition of evidence--privileging randomized controlled trials as the "gold standard"--has fomented much debate. Such debate, though insightful, often lacks grounding in actual practice. To address that lack, the purpose of the study presented in this paper was to examine what actually happens, in practice, when people support the implementation of evidence-based programs (EBPs) or engage in related efforts to make non-formal education more "evidence-based." Focusing on three cases--two adolescent sexual health projects (one in the United States and one in Kenya) and one more general youth development organization--I used qualitative methods to address the questions: (1) How is evidence-based program and evidence-based practice work actually practiced? (2) What perspectives and assumptions about what non-formal education is are manifested through that work? and (3) What conflicts and tensions emerge through that work related to those perspectives and assumptions? Informed by theoretical perspectives on the intersection of science, expertise, and democracy, I conclude that the current dominant approach to making non-formal education more evidence-based by way of EBPs is seriously flawed. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Neuroscience of Storing and Molding Tool Action Concepts: How "Plastic" is Grounded Cognition?
Mizelle, J C; Wheaton, Lewis A
2010-01-01
Choosing how to use tools to accomplish a task is a natural and seemingly trivial aspect of our lives, yet engages complex neural mechanisms. Recently, work in healthy populations has led to the idea that tool knowledge is grounded to allow for appropriate recall based on some level of personal history. This grounding has presumed neural loci for tool use, centered on parieto-temporo-frontal areas to fuse perception and action representations into one dynamic system. A challenge for this idea is related to one of its great benefits. For such a system to exist, it must be very plastic, to allow for the introduction of novel tools or concepts of tool use and modification of existing ones. Thus, learning new tool usage (familiar tools in new situations and new tools in familiar situations) must involve mapping into this grounded network while maintaining existing rules for tool usage. This plasticity may present a challenging breadth of encoding that needs to be optimally stored and accessed. The aim of this work is to explore the challenges of plasticity related to changing or incorporating representations of tool action within the theory of grounded cognition and propose a modular model of tool-object goal related accomplishment. While considering the neuroscience evidence for this approach, we will focus on the requisite plasticity for this system. Further, we will highlight challenges for flexibility and organization of already grounded tool actions and provide thoughts on future research to better evaluate mechanisms of encoding in the theory of grounded cognition.
Hope beyond (redundant) hope: how chaplains work with dying patients.
Nolan, Steve
2011-01-01
Using Grounded Theory, this study examines the experience of 19 palliative care chaplains in counselling dying people. Taking a broad-based definition of counselling, and using unstructured individual interviews and group work, the study aimed to understand how palliative care chaplains work with patients at the point when it has been decided to cease active treatment, the point where they risk losing hope and falling into despair. Analysing the data using code-based theory building software, the author identified four organic moments in the chaplain-patient relationship, each moment being a discernable development in the chaplain's being-with the patient: 'evocative presence'; 'accompanying presence'; 'comforting presence'; and 'hopeful presence'. The author represents the four moments as a theory of 'chaplain as hopeful presence', and offers a description of the way in which the quality of presence can facilitate patients to develop 'a hopeful manner' in which hope is reconfigured into an attribute of being. The author concludes (with Levinas) that chaplains and other palliative care staff should be aware that simply being-with an other can, in itself, be hope fostering.
Design of smart prosthetic knee utilizing magnetorheological damper
NASA Astrophysics Data System (ADS)
Gao, F.; Liu, Y. N.; Liao, W. H.
2017-04-01
In this study, based on human knee's kinetics, a smart prosthetic knee employing springs, DC motor and magnetorheological (MR) damper is designed. The MR damper is coupled in series with the springs that are mounted in parallel with the DC motor. The working principle of the prosthesis during level-ground walking is presented. During stance phase, the MR damper is powered on. The springs will store and release the negative mechanical energy for restoring the function of human knee joint. In swing phase, the MR damper is powered off for disengaging the springs. In this phase, the work of knee joint is negative. For improving the system energy efficiency, the DC motor will work as a power generator to supply required damping torque and harvest electrical energy. Finally, the design of MR damper is introduced.
Mayer, Claude-Hélène; Viviers, Rian
2018-06-01
Faith has been pointed out as a possible resource in strengthening individuals' health and well-being at work. The aim of this article is to gain in-depth knowledge of the faith development and vocation of a selected female leader in a male-dominated work context. The article contributes to research on faith development in women leaders, based on Fowler's faith development theory. This is a single case study grounded in a qualitative research design. In-depth qualitative data were gathered through observation and interviews over 18 months. Findings showed the development of faith across a women leader's life span and highlight that faith and vocation are important resources that provide strength, meaningfulness and a vision.
Landmeyer, J.E.
1994-01-01
Ground-water samples were collected from four shallow water-table aquifer observation wells beneath the Small-Arms Firing Range study area at Shaw Air Force Base. Water-chemistry analyses indicated that total lead concentrations in shallow ground water beneath the study area do not exceed the U.S. Environmental Protection Agency maximum contaminant level established for lead in drinking water (0.05 milligrams per liter). All other trace element total concentrations in ground water beneath the study area were at or below the detection limit of the analytical methodology.
Observation of Feshbach resonances between ultracold Na and Rb atoms
NASA Astrophysics Data System (ADS)
Wang, Fudong; Xiong, Dezhi; Li, Xiaoke; Wang, Dajun
2013-03-01
Absolute ground-state 23Na87Rb molecule has a large electric dipole moment of 3.3 Debye and its two body exchange chemical reaction is energetically forbidden at ultracold temperatures. It is thus a nice candidate for studying quantum gases with dipolar interactions. We have built an experiment setup to investigate ultracold collisions between Na and Rb atoms as a first step toward the production of ground state molecular samples. Ultracold mixtures are first obtained by evaporative cooling of Rb and sympathetic cooling of Na. They are then transferred to a crossed dipole trap and prepared in different spin combinations for Feshbach resonance study. Several resonances below 1000 G are observed with both atoms prepared in either | F = 1,mF = 1 > or | F = 1,mF = - 1 > hyperfine states. Most of them are within 30 G of predicted values§ based on potentials obtained by high quality molecular spectroscopy studies. This work is supported by RGC Hong Kong. § E. Tiemann, private communications
Schumann Resonances on Mars - a Two-layer Ground Case
NASA Astrophysics Data System (ADS)
Kozakiewicz, J.; Kulak, A.; Mlynarczyk, J.
2012-04-01
Schumann resonances (SR) are global resonances of electromagnetic waves in the range of extremely low frequencies (ELF) propagating in a cavity formed by a planetary surface and a lower ionosphere. SR are induced by electrical discharges, which on Earth are associated mainly with lightning. They were predicted by Winfried Otto Schumann in 1952. SR are supposed to occur on Mars, although many properties of the Martian environment are still unknown. One of the most important problems in modeling SR on Mars is to estimate electrical properties of the Martian ground and their influence on ELF waves propagation. The Martian crust is composed mainly of basaltic materials. Water, which causes significant increase in electrical conductivity of rocks, does not exist in liquid state at the surface of Mars. Therefore the Martian ground is believed to be a low conductive one. However, it is possible that some liquid water may be present at various depths below the surface. In our previous study we have developed an analytical model, based on the characteristic electric and magnetic altitudes' formalism, that has allowed us to take into consideration the Martian ground. Using this new model, we found that basaltic ground of low conductivity greatly influenced the SR parameters. In this work, we carried out simulations in order to characterize an influence of vertical changes in ground properties on the parameters of the Martian ground-ionosphere waveguide. We have considered several cases of a two-layer ground, in which the lower layer was of higher conductivity than the upper one. The obtained results indicate how the SR parameters depend on electrical conductivity, permittivity, and depth of the layers. The results also point out the importance of studying SR on Mars and the need for further research in propagation of ELF waves in the Martian environment. SR can be used as a remote sensing tool for exploration of the Martian crust. Furthermore, they can be especially useful for groundwater detection.
Disproportionate Declines in Ground-Foraging Insectivorous Birds after Mistletoe Removal
Watson, David M.
2015-01-01
Insectivorous birds have been recognized as disproportionately sensitive to land-use intensification and habitat loss, with those species feeding primarily on the ground exhibiting some of the most dramatic declines. Altered litter inputs and availability of epigeic arthropods have been suggested to underlie reduced abundances and shrinking distributions but direct evidence is lacking. I used a patch-scale removal experiment in southern Australia to evaluate whether ground-feeding insectivores are especially vulnerable to altered litter-fall. Building on work demonstrating the importance of mistletoe litter to nutrient dynamics, litter was reduced by removing mistletoe (Loranthaceae) from one set of eucalypt woodlands, responses of birds three years after mistletoe removal compared with otherwise similar control woodlands containing mistletoe. Despite not feeding on mistletoes directly, insectivores exhibited the greatest response to mistletoe removal. Among woodland residents, ground-foraging insectivores showed the most dramatic response; treatment woodlands losing an average of 37.4% of their pre-treatment species richness. Once these 19 species of ground-foraging insectivores were excluded, remaining woodland species showed no significant effect of mistletoe removal. This response reflects greater initial losses in treatment woodlands during the study (which coincided with a severe drought) and double the number of species returning to control woodlands (where mistletoe numbers and litter were not manipulated) post-drought. These findings support the productivity-based explanation of declining insectivores, suggesting diminished litter-fall reduced habitat quality for these birds via decreased availability of their preferred prey. In addition to altered prey availability, interactions between litter-fall and epigeic arthropods exemplify the importance of below-ground / above-ground linkages driving ecosystem function. PMID:26640895
Lee, Karl K.; Risley, John C.
2002-03-19
Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.
Shedlock, Robert J.; Bolton, David W.; Cleaves, Emery T.; Gerhart, James M.; Nardi, Mark R.
2007-01-01
The Maryland Coastal Plain region is, at present, largely dependent upon ground water for its water supply. Decades of increasing pumpage have caused ground-water levels in parts of the Maryland Coastal Plain to decline by as much as 2 feet per year in some areas of southern Maryland. Continued declines at this rate could affect the long-term sustainability of ground-water resources in Maryland's heavily populated Coastal Plain communities and the agricultural industry of the Eastern Shore. In response to a recommendation in 2004 by the Advisory Committee on the Management and Protection of the State's Water Resources, the Maryland Geological Survey and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information and new data management and analysis tools for the State to use in allocating ground water in the Coastal Plain. The comprehensive assessment has five goals aimed at improving the current information and tools used to understand the resource potential of the aquifer system: (1) document the geologic and hydrologic characteristics of the aquifer system in the Maryland Coastal Plain and appropriate areas of adjacent states; (2) conduct detailed studies of the regional ground-water-flow system and water budget for the aquifer system; (3) improve documentation of patterns of water quality in all Coastal Plain aquifers, including the distribution of saltwater; (4) enhance ground-water-level, streamflow, and water-quality-monitoring networks in the Maryland Coastal Plain; and (5) develop science-based tools to facilitate sound management of the ground-water resources in the Maryland Coastal Plain. The assessment, as designed, will be conducted in three phases and if fully implemented, is expected to take 7 to 8 years to complete. Phase I, which was initiated in January 2006, is an effort to assemble all the information and investigation tools needed to do a more comprehensive assessment of the aquifer system. The work will include updating the hydrogeologic framework, developing a Geographic Information System-based aquifer information system, refinement of water-use information, assessment of existing water-quality data, and development of detailed plans for ground-water-flow and management models. Phase II is an intensive study phase during which a regional ground-water-flow model will be developed and calibrated for the entire region of Maryland in the Atlantic Coastal Plain as well as appropriate areas of Delaware and Virginia. The model will be used to simulate flow and water levels in the aquifer system and to study the water budget of the system. The model analysis will be based on published information but will be supplemented with field investigations of recharge and leakage in the aquifer system. Localized and finely discretized ground-water-flow models that are embedded in the regional model will be developed for selected areas of heavy withdrawals. Other modeling studies will be conducted to better understand flow in the unconfined parts of the aquifer system and to support the recharge studies. Phase II will also include selected water-quality studies and a study to determine how hydrologic and water-quality-monitoring networks need to be enhanced to appropriately assess the sustainability of the Coastal Plain aquifer system. Phase III will be largely devoted to the development and application of a ground-water optimization model. This model will be linked to the ground-water-flow model to create a model package that can be used to test different water-management scenarios. The management criteria that will be used to develop these scenarios will be determined in consultation with a variety of state and local stakeholders and policy makers in Phases I and II of the assessment. The development of the aquifer information system is a key component of the assessment. The system will store all relevant aquifer data
Ground State Structure Search of Fluoroperovskites through Lattice Instability
NASA Astrophysics Data System (ADS)
Mei, W. N.; Hatch, D. M.; Stokes, H. T.; Boyer, L. L.
2002-03-01
Many Fluoroperovskite are capable of a ferroelectric transition from a cubic to a tetragonal and even lower-symmetry structures. In this work, we studied systematically the structural phase transitions of several fluoroperovskites ABF3 where A= Na, K and B= Ca, Sr. Combining the Self-Consistent Atom Deformation (SCAD) -- a density-functional method using localized densities -- and the frozen-phonon method which utilizes the isotropy subgroup operations, we calculate the phonon energies and find instabilities which lower the symmetry of the crystal. Following this scheme, we work down to lower symmetry structures until we no longer find instabilities. The final results are used to compare with those obtained from molecular dynamics based on Gordon-Kim potentials.
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Human primary breast tumor cells after 56 days of culture in a NASA Bioreactor. A cross-section of a construct, grown from surgical specimens of brease cancer, stained for microscopic examination, reveals areas of tumor cells dispersed throughout the non-epithelial cell background. The arrow denotes the foci of breast cancer cells. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues. Here, two High-Aspect Ratio Vessels turn at about 12 rmp to keep breast tissue constructs suspended inside the culture media. Syringes allow scientists to pull for analysis during growth sequences. The tube in the center is a water bubbler that dehumidifies the air to prevent evaporation of the media and thus the appearance of destructive bubbles in the bioreactor.
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Outgrowth of cells from duct element in upper right corner cultured in a standard dish; most cells spontaneously die during early cell divisions, but a few will establish long-term growth. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).
Breast Cancer Research at NASA
NASA Technical Reports Server (NTRS)
1998-01-01
Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Same long-term growth human mammary epithelial cells (HMEC), but after 3 weeks in concinuous culture. Note attempts to reform duct elements, but this time in two dimensions in a dish rather that in three demensions in tissue. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).
1998-10-10
NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues. Here, two High-Aspect Ratio Vessels turn at about 12 rmp to keep breast tissue constructs suspended inside the culture media. Syringes allow scientists to pull for analysis during growth sequences. The tube in the center is a water bubbler that dehumidifies the air to prevent evaporation of the media and thus the appearance of destructive bubbles in the bioreactor.
1998-10-10
Human primary breast tumor cells after 56 days of culture in a NASA Bioreactor. A cross-section of a construct, grown from surgical specimens of brease cancer, stained for microscopic examination, reveals areas of tumor cells dispersed throughout the non-epithelial cell background. The arrow denotes the foci of breast cancer cells. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Jearne Becker, University of South Florida
1998-10-10
Isolation of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Same long-term growth human mammary epithelial cells (HMEC), but after 3 weeks in concinuous culture. Note attempts to reform duct elements, but this time in two dimensions in a dish rather that in three demensions in tissue. NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cell (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunorous tissue. Credit: Dr. Robert Tichmond, NASA/Marshall Space Flight Center (MSFC).
How do dentists and their teams incorporate evidence about preventive care? An empirical study.
Sbaraini, Alexandra; Carter, Stacy Marie; Evans, Robin Wendell; Blinkhorn, Anthony
2013-10-01
To identify how dentists and their teams adopt evidence-based preventive care. A qualitative study using grounded theory methodology was conducted. We interviewed 23 participants working in eight dental practices about their experience and work processes, while adopting evidence-based preventive care. During the study, Charmaz's grounded theory methodology was employed to examine the social process of adopting preventive dental care in dental practices. Charmaz's iteration of the constant comparative method was used during the data analysis. This involved coding of interview transcripts, detailed memo-writing and drawing diagrams. The transcripts were analyzed as soon as possible after each round of interviews in each dental practice. Coding was conducted primarily by AS, supported by team meetings and discussions when researchers compared their interpretations. Participants engaged in a slow process of adapting evidence-based protocols and guidelines to the existing logistics of the practices. This process was influenced by practical, philosophical, and historical aspects of dental care, and a range of barriers and facilitators. In particular, dentists spoke spontaneously about two deeply held 'rules' underpinning continued restorative treatment, which acted as barriers to provide preventive care: (i) dentists believed that some patients were too 'unreliable' to benefit from prevention; and (ii) dentists believed that patients thought that only tangible restorative treatment offered 'value for money'. During the adaptation process, some dentists and teams transitioned from their initial state - selling restorative care - through an intermediary stage - learning by doing and educating patients about the importance of preventive care - and finally to a stage where they were offering patients more than just restorative care. Resources were needed for the adaptation process to occur, including: the ability to maintain the financial viability of the practice, appropriate technology, time, and supportive dental team relationships. The findings from this study show that with considerable effort, motivation and coordination, it is possible for dental practices to work against the dental 'mainstream' and implement prevention as their clinical norm. This study has shown that dental practice is not purely scientific, but it includes cultural, social, and economic resources that interfere with the provision of preventive care. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Massa, Marco; Barani, Simone; Lovati, Sara
2014-06-01
The paper presents an extensive review of topographic effects in seismology taking into account the knowledge of 40 yr of scientific literature. An overview of topographic effects based on experimental observations and numerical modelling is presented with the aim of highlighting meaning and causes of these phenomena as well as possible correlations between site response (fundamental frequency, amplification level) and geometrical (width and shape ratio of a relief) parameters. After a thorough summary of topographic effects, the paper focuses on five Italian sites whose seismic response is potentially affected by local morphology, as already evidenced by previous studies. In this study, seismic data recorded at these sites are analysed computing directional spectral ratios both in terms of horizontal to vertical spectral ratios (HVSRs) and, wherever possible, in terms of standard spectral ratios (SSRs). The analysis lead to the conclusion that wavefield tends to be polarized along a direction perpendicular to the main axis of a topographic irregularity, direction along which ground motion amplification is maximum. The final section of the article compares and contrasts different spectral ratio techniques in order to examine their effectiveness and reliability in detecting topographic effects. The examples discussed in the paper show that site responses based on HVSRs rather than SSR measurements could lead to misinterpretation of ground response results, both as concerns the definition of the site fundamental frequency and amplification level. Results and findings of this work will be used as starting point to discuss the influence of topographic effects on ground motion prediction equations and regulations for design. These topics will be discussed in the companion article.
NASA Technical Reports Server (NTRS)
Tilley, roger; Dowla, Farid; Nekoogar, Faranak; Sadjadpour, Hamid
2012-01-01
Conventional use of Ground Penetrating Radar (GPR) is hampered by variations in background environmental conditions, such as water content in soil, resulting in poor repeatability of results over long periods of time when the radar pulse characteristics are kept the same. Target objects types might include voids, tunnels, unexploded ordinance, etc. The long-term objective of this work is to develop methods that would extend the use of GPR under various environmental and soil conditions provided an optimal set of radar parameters (such as frequency, bandwidth, and sensor configuration) are adaptively employed based on the ground conditions. Towards that objective, developing Finite Difference Time Domain (FDTD) GPR models, verified by experimental results, would allow us to develop analytical and experimental techniques to control radar parameters to obtain consistent GPR images with changing ground conditions. Reported here is an attempt at developing 20 and 3D FDTD models of buried targets verified by two different radar systems capable of operating over different soil conditions. Experimental radar data employed were from a custom designed high-frequency (200 MHz) multi-static sensor platform capable of producing 3-D images, and longer wavelength (25 MHz) COTS radar (Pulse EKKO 100) capable of producing 2-D images. Our results indicate different types of radar can produce consistent images.
NASA Technical Reports Server (NTRS)
Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.
1990-01-01
The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.
Relativity, Relatedness and Reality.
ERIC Educational Resources Information Center
Deloria, Vine, Jr.
1992-01-01
Anticipated the modern physics relativity theory, American Indians gained information about the natural world through careful observation based on the principle that all things are related. American Indian students could radically transform scientific knowledge by grounding themselves in traditional knowledge about the world and working this…
Environmental Learning Centers: A Template.
ERIC Educational Resources Information Center
Vozick, Eric
1999-01-01
Provides a working model, or template, for community-based environmental learning centers (ELCs). The template presents a philosophy as well as a plan for staff and administration operations, educational programming, and financial support. The template also addresses "green" construction and maintenance of buildings and grounds and…
Dierick, Frédéric; Bouché, Anne-France; Scohier, Mikaël; Guille, Clément; Buisseret, Fabien
2018-05-15
Previous research on unstable footwear has suggested that it may induce mechanical noise during walking. The purpose of this study was to explore whether unstable footwear could be considered as a noise-based training gear to exercise body center of mass (CoM) motion during walking. Ground reaction forces were collected among 24 healthy young women walking at speeds between 3 and 6 km h -1 with control running shoes and unstable rocker-bottom shoes. The external mechanical work, the recovery of mechanical energy of the CoM during and within the step cycles, and the phase shift between potential and kinetic energy curves of the CoM were computed. Our findings support the idea that unstable rocker-bottom footwear could serve as a speed-dependent noise-based training gear to exercise CoM motion during walking. At slow speed, it acts as a stochastic resonance or facilitator that reduces external mechanical work; whereas at brisk speed it acts as a constraint that increases external mechanical work and could mimic a downhill slope.
On-board multispectral classification study
NASA Technical Reports Server (NTRS)
Ewalt, D.
1979-01-01
The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.
Three-dimensional motor schema based navigation
NASA Technical Reports Server (NTRS)
Arkin, Ronald C.
1989-01-01
Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.
Educating CPE supervisors: a grounded theory study.
Ragsdale, Judith R; Holloway, Elizabeth L; Ivy, Steven S
2009-01-01
This qualitative study was designed to cull the wisdom of CPE supervisors doing especially competent supervisory education and to develop a theory of CPE supervisory education. Grounded theory methodology included interviewing 11 supervisors and coding the data to identify themes. Four primary dimensions emerged along with a reciprocal core dimension, Supervisory Wisdom, which refers to work the supervisors do in terms of their continuing growth and development.
ERIC Educational Resources Information Center
Akkary, Rima Karami
2014-01-01
This study provides empirical data about the role and work context of the school principal in the Lebanon. The study applied grounded theory methods in collecting and analysing the data. The data were collected through a series of open-ended interviews with 53 secondary school principals, and focus group interviews with 8 principals from public as…
Zhang, Pinglei; Wei, Heming; Guo, Jingjing; Sun, Changsen
2016-10-01
Ground settlement (GS) is one of the causes that destroy the durability of reinforced concrete structures. It could lead to a deterioration in the structural basement and increase the risk of collapse. The methods used for GS monitoring were mostly electronic-based sensors for reading the changes in resistance, resonant frequencies, etc. These sensors often bear low accuracy in the long term. Our published work demonstrated that a fiber-optic low-coherent interferometer configured in a Michelson interferometer was designed as a GS sensor, and a micro-meter resolution in the room environment was approached. However, the designed GS sensor, which in principle is based on a hydraulic connecting vessel, has to suffer from a tilt degeneration problem due to a strictly vertical requirement in practical installment. Here, we made a design for the GS sensor based on its robust tilt performance. The experimental tests show that the sensor can work well within a ±5° tilt. This could meet the requirements in most designed GS sensor installment applications.
NASA Astrophysics Data System (ADS)
Christodoulakis, J.; Tzanis, C. G.; Varotsos, C. A.; Kouremadas, G.
2016-08-01
Dose-response functions (DRFs) are functions used for estimating corrosion and/or soiling levels of materials used in constructions and cultural monuments. In order to achieve this, DRFs lean on ground-based measurements of specific air pollution and climatic parameters like nitrogen oxides, ozone, temperature and others. In DRAGON 3 2015 Symposium we presented a new approach which proposed a technique for using satellite-based data for the necessary parameters instead of ground-based expanding in this way: a) the usage of DRFs in cases/areas where there is no availability of in situ measurements, b) the applicability of satellite-based data. In this work we present mapping results of deterioration levels (corrosion and soiling) for the case of Athens, Greece but also for the whole Greece country.
Preservice and Inservice Teachers' Challenges in the Planning of Practical Work in Physics
NASA Astrophysics Data System (ADS)
Nivalainen, Ville; Asikainen, Mervi A.; Sormunen, Kari; Hirvonen, Pekka E.
2010-06-01
Practical work in school science plays many essential roles that have been discussed in the literature. However, less attention has been paid to how teachers learn the different roles of practical work and to the kind of challenges they face in their learning during laboratory courses designed for teachers. In the present study we applied the principles of grounded theory to frame a set of factors that seem to set major challenges concerning both successful work in the school physics laboratory and also in the preparation of lessons that exploit practical work. The subject groups of the study were preservice and inservice physics teachers who participated in a school laboratory course. Our results derived from a detailed analysis of tutoring discussions between the instructor and the participants in the course, which revealed that the challenges in practical or laboratory work consisted of the limitations of the laboratory facilities, an insufficient knowledge of physics, problems in understanding instructional approaches, and the general organization of practical work. Based on these findings, we present our recommendations on the preparation of preservice and inservice teachers for the more effective use of practical work in school science and in school physics.
USDA-ARS?s Scientific Manuscript database
The Iberá Nature Reserve in northeastern Argentina protects one of the largest freshwater wetlands and reservoirs of species in South America. However, key invertebrate groups such as the ants (Hymenoptera: Formicidae) remain almost unknown. The main objective of this work was to study the ground an...
"The Complexity of Experience": A Grounded Theory Exploration of Scholarly Practice
ERIC Educational Resources Information Center
Falciani-White, Nancy
2013-01-01
This grounded theory study explores the ways in which scholars conduct their research, including how they find and organize resources, how they identify and work with collaborators, how they interact with technology during the course of their research, and how they disseminate the results of a research project. Nine scholars were interviewed…
Little, Mark P; Tatalovich, Zaria; Linet, Martha S; Fang, Michelle; Kendall, Gerald M; Kimlin, Michael G
2018-06-13
Solar ultraviolet radiation is the primary risk factor for skin cancers and sun-related eye disorders. Estimates of individual ambient ultraviolet irradiance derived from ground-based solar measurements and from satellite measurements have rarely been compared. Using self-reported residential history from 67,189 persons in a nationwide occupational US radiologic technologists cohort, we estimated ambient solar irradiance using data from ground-based meters and noontime satellite measurements. The mean distance-moved from city of longest residence in childhood increased from 137.6 km at ages 13-19 to 870.3 km at ages ≥65, with corresponding increases in absolute latitude-difference moved. At ages 20/40/60/80, the Pearson/Spearman correlation coefficients of ground-based and satellite-derived solar potential ultraviolet exposure, using irradiance and cumulative radiant-exposure metrics, were high (=0.87-0.92). There was also moderate correlation (Pearson/Spearman correlation coefficients=0.51-0.60) between irradiance at birth and at last-known address, for ground-based and satellite data. Satellite-based lifetime estimates of ultraviolet radiation were generally 14-15% lower than ground-based estimates, albeit with substantial uncertainties, possibly because ground-based estimates incorporate fluctuations in cloud and ozone, which are incompletely incorporated in the single noontime satellite-overpass ultraviolet value. If confirmed elsewhere, the findings suggest that ground-based estimates may improve exposure-assessment accuracy and potentially provide new insights into ultraviolet-radiation-disease relationships in epidemiologic studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Classification of Dust Days by Satellite Remotely Sensed Aerosol Products
NASA Technical Reports Server (NTRS)
Sorek-Hammer, M.; Cohen, A.; Levy, Robert C.; Ziv, B.; Broday, D. M.
2013-01-01
Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 nm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88 percent occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary variables, demonstrated 93.2 percent correct classifications of DD and NDD. Evaluation of the combined CART-logistic regression scheme in an adjacent geographical region (Gush Dan) demonstrated good results. Using SRS aerosol products for DD and NDD, identification may enable us to distinguish between health, ecological, and environmental effects that result from exposure to these distinct particle populations.
Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites.
Cadet, Jean-Maurice; Bencherif, Hassan; Portafaix, Thierry; Lamy, Kévin; Ncongwane, Katlego; Coetzee, Gerrie J R; Wright, Caradee Y
2017-11-14
South Africa has been measuring the ground-based solar UV index for more than two decades at six sites to raise awareness about the impacts of the solar UV index on human health. This paper is an exploratory study based on comparison with satellite UV index measurements from the OMI/AURA experiment. Relative UV index differences between ground-based and satellite-derived data ranged from 0 to 45% depending on the site and year. Most of time, these differences appear in winter. Some ground-based stations' data had closer agreement with satellite-derived data. While the ground-based instruments are not intended for long-term trend analysis, they provide UV index information for public awareness instead, with some weak signs suggesting such long-term trends may exist in the ground-based data. The annual cycle, altitude, and latitude effects clearly appear in the UV index data measured in South Africa. This variability must be taken into account for the development of an excess solar UV exposure prevention strategy.
Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites
Cadet, Jean-Maurice; Bencherif, Hassan; Portafaix, Thierry; Lamy, Kévin; Ncongwane, Katlego; Coetzee, Gerrie J. R.; Wright, Caradee Y.
2017-01-01
South Africa has been measuring the ground-based solar UV index for more than two decades at six sites to raise awareness about the impacts of the solar UV index on human health. This paper is an exploratory study based on comparison with satellite UV index measurements from the OMI/AURA experiment. Relative UV index differences between ground-based and satellite-derived data ranged from 0 to 45% depending on the site and year. Most of time, these differences appear in winter. Some ground-based stations’ data had closer agreement with satellite-derived data. While the ground-based instruments are not intended for long-term trend analysis, they provide UV index information for public awareness instead, with some weak signs suggesting such long-term trends may exist in the ground-based data. The annual cycle, altitude, and latitude effects clearly appear in the UV index data measured in South Africa. This variability must be taken into account for the development of an excess solar UV exposure prevention strategy. PMID:29135965
Lysaght, Rosemary; Petner-Arrey, Jami; Howell-Moneta, Angela; Cobigo, Virginie
2017-09-01
Employment provides an important avenue to social inclusion for most adults. A range of productivity options exist for persons with intellectual and developmental disabilities (IDD) who wish to work, each offering unique challenges relative to inclusion. This qualitative study examined the productivity experiences of people with intellectual and developmental disabilities in Ontario, Canada. A purposive sample of 74 individuals with productivity experiences spanning the spectrum of no employment to community-based jobs was selected from a pool of volunteers recruited through a mailed survey. Semi-structured interviews were conducted with individuals and family members. Interview transcripts were subjected to a team-based analysis using grounded theory methods. Varying needs and interests exist in regard to work. Participants revealed a multitude of factors contributing to inclusion and exclusion through productivity. Productivity, whether paid or unpaid, can be an avenue to social inclusion. The experience of inclusion, particularly of belonging, depends on a successfully negotiated congruence between worker attributes and the social features and demands of the work environment. © 2016 John Wiley & Sons Ltd.
[Risk assessment of work-related stress: the case of a public administration].
Loi, Michela; Bellò, Benedetta; Mattana, Veronica
2015-01-01
The paper describes a case study of work related stress assessment in a public administration, based on an objective methodology (Romano, 2009). The Ispes1 forms (2010) have been used to perform the assessment. They have been filled during some focus group in which 45 workers have been involved, divided into 7 homogeneous groups relying on their department, back-office vs front-office typology of work and the office collocation. According to the Grounded Theory perspective, through the content analysis three further risk factors arose, comparing to the Ispesl forms, such as: (a) the quality of communication, (b) the relationship among and with leaders and colleagues, (c) the presence of discriminatory behaviours. Hence, on the basis of the results, mostly for a deeper analysis of work related stress assessment in a public administration, we suggest to consider these further risk factors.
Senior, Lisa A.; Cinotto, Peter J.
2007-01-01
On-site wastewater disposal has the potential to introduce contaminants into ground water and subsequently, by ground-water discharge, to streams. A pilot study was conducted during 2005 by the U.S. Geological Survey in cooperation with the Chester County Health Department and the Chester County Water Resources Authority to determine if wastewater components, including inorganic constituents and selected organic wastewater compounds, such as detergents, considered to be emerging contaminants, were present in ground water and stream base flow in areas with on-site wastewater disposal. The study area was a small watershed (about 7.1 square miles) of mixed land use drained by Broad Run in central Chester County, Pa. The area is underlain by fractured metamorphic rocks that form aquifers recharged by precipitation. Surface- and ground-water sampling was done in areas with and without on-site wastewater disposal for comparison, including a relatively densely populated village with cesspools and septic systems, a residential area with septic systems, a residential area served by sewers, and agricultural land. Samples were collected in May-June and September 2005 from eight headwater stream sites under base-flow conditions and in June 2005 from eight wells and two springs. Samples were analyzed for major ions, nutrients, boron, bacteria, and a suite of organic wastewater compounds. Several emerging contaminant wastewater compounds, including detergent components, insect repellents, and flame retardants, were detected in base-flow and ground-water samples. Stream base-flow samples generally contained more compounds and higher concentrations of those compounds than did ground-water samples, and of the ground-water samples, samples from springs contained more compounds and higher concentrations than samples from wells. Concentrations of nitrate, chloride, and boron (inorganic constituents associated with wastewater) generally were all elevated in base-flow and ground-water samples in areas with relatively high densities of on-site wastewater disposal (septic systems or cesspools) compared to other areas sampled. Results of this pilot study should be considered preliminary because of limited data.
Revisiting Nuclear Thermal Propulsion for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Percy, Thomas K.; Rodriguez, Mitchell
2017-01-01
Nuclear Thermal Propulsion (NTP) has long been considered as a viable in-space transportation alternative for delivering crew and cargo to the Martian system. While technology development work in nuclear propulsion has continued over the year, general interest in NTP propulsion applications has historically been tied directly to the ebb and flow of interest in sending humans to explore Mars. As far back as the 1960’s, plans for NTP-based human Mars exploration have been proposed and periodically revisited having most recently been considered as part of NASA Design Reference Architecture (DRA) 5.0. NASA has been investigating human Mars exploration strategies tied to its current Journey to Mars for the past few years however, NTP has only recently been added into the set of alternatives under consideration for in-space propulsion under the Mars Study Capability (MSC) team, formerly the Evolvable Mars Campaign (EMC) team. The original charter of the EMC was to find viable human Mars exploration approaches that relied heavily on technology investment work already underway, specifically related to the development of large Solar Electric Propulsion (SEP) systems. The EMC team baselined several departures from traditional Mars exploration ground rules to enable these types of architectures. These ground rule changes included lower energy conjunction class trajectories with corresponding longer flight times, aggregation of mission elements in cis-Lunar space rather than Low Earth Orbit (LEO) and, in some cases, the pre-deployment of Earth return propulsion systems to Mars. As the MSC team continues to refine the in-space transportation trades, an NTP-based architecture that takes advantage of some of these ground rule departures is being introduced.
Reflecting on the challenges of choosing and using a grounded theory approach.
Markey, Kathleen; Tilki, Mary; Taylor, Georgina
2014-11-01
To explore three different approaches to grounded theory and consider some of the possible philosophical assumptions underpinning them. Grounded theory is a comprehensive yet complex methodology that offers a procedural structure that guides the researcher. However, divergent approaches to grounded theory present dilemmas for novice researchers seeking to choose a suitable research method. This is a methodology paper. This is a reflexive paper that explores some of the challenges experienced by a PhD student when choosing and operationalising a grounded theory approach. Before embarking on a study, novice grounded theory researchers should examine their research beliefs to assist them in selecting the most suitable approach. This requires an insight into the approaches' philosophical assumptions, such as those pertaining to ontology and epistemology. Researchers need to be clear about the philosophical assumptions underpinning their studies and the effects that different approaches will have on the research results. This paper presents a personal account of the journey of a novice grounded theory researcher who chose a grounded theory approach and worked within its theoretical parameters. Novice grounded theory researchers need to understand the different philosophical assumptions that influence the various grounded theory approaches, before choosing one particular approach.
Study of the marine environment of the northern Gulf of California
NASA Technical Reports Server (NTRS)
Hendrickson, J. R. (Principal Investigator)
1973-01-01
There are no author-identified significant results in this report. Progress in studies of the marine environment of the northern Gulf of California is described. A ship was chartered in Mexico, staffed with local seamen, equipped for oceanographic work, and is now conducting monthly cruises of 47 stations, collecting ground observations for correlation with ERTS-1 imagery in the Arizona Regional Ecological Test Site laboratory in Tucson. Progress is reported on fabrication of instrument buoys equipped with marine-adapted DCP's to transmit ground observations via satellite to Tucson. Data handling processes are described. Coordination of work with Mexican scientists is detailed.
Fatigue Management in Spaceflight Operations
NASA Technical Reports Server (NTRS)
Whitmire, Alexandra
2011-01-01
Sleep loss and fatigue remain an issue for crewmembers working on the International Space Station, and the ground crews who support them. Schedule shifts on the ISS are required for conducting mission operations. These shifts lead to tasks being performed during the biological night, and sleep scheduled during the biological day, for flight crews and the ground teams who support them. Other stressors have been recognized as hindering sleep in space; these include workload, thinking about upcoming tasks, environmental factors, and inadequate day/night cues. It is unknown if and how other factors such as microgravity, carbon dioxide levels, or increased radiation, may also play a part. Efforts are underway to standardize and provide care for crewmembers, ground controllers and other support personnel. Through collaborations between research and operations, evidenced-based clinical practice guidelines are being developed to equip flight surgeons with the tools and processes needed for treating circadian desynchrony (and subsequent sleep loss) caused by jet lag and shift work. The proper implementation of countermeasures such as schedules, lighting protocols, and cognitive behavioral education can hasten phase shifting, enhance sleep and optimize performance. This panel will focus on Fatigue Management in Spaceflight Operations. Speakers will present on research-based recommendations and technologies aimed at mitigating sleep loss, circadian desynchronization and fatigue on-orbit. Gaps in current mitigations and future recommendations will also be discussed.
Remote sensing of vegetation pattern and condition to monitor changes in everglades biogeochemistry
Jones, J.W.
2011-01-01
Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management. Copyright ?? 2011 Taylor & Francis Group, LLC.
Ground Water Technical Support Center (GWTSC) Annual ...
The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo
2004-04-15
The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.
NASA Technical Reports Server (NTRS)
2004-01-01
The manipulation of organic materials--cells, tissues, and even living organisms--offers many exciting possibilities for the future from organic computers to improved aquaculture. Commercial researchers are using the microgravity environment to produce large near perfect protein crystals Research on insulin has yielded crystals that far surpass the quality of insulin crystals grown on the ground. Using these crystals industry partners are working to develop new and improved treatments for diabetes. Other researchers are exploring the possibility of producing antibiotics using plant cell cultures which could lead to both orbital production and the improvement of ground-based antibiotic production.
Potential of laser for SPS power transmission
NASA Technical Reports Server (NTRS)
Bain, C. N.
1978-01-01
Research on the feasibility of using a laser subsystem as an additional option for the transmission of the satellite power system (STS) power is presented. Current laser work and predictions for future laser performance provide a level of confidence that the development of a laser power transmission system is technologically feasible in the time frame required to develop the SBS. There are significant economic advantages in lower ground distribution costs and a reduction of more than two orders of magnitude in real estate requirements for ground based receiving/conversion sites.
Abrar, Amina; Cheema, Kausar Jamal; Saif, Samia; Mahmood, Asim
2017-01-24
The study focused on assessment of the health status of workers during construction phase of highway rehabilitation projects at six selected sites of N5 around Lahore, including Kala Shah Kaku, Muridke, Kamuki, Bhaipheru, Pattoki, and Okara. The study was based on multi-methods approach involving hazard identification through survey and checklist as well as a questionnaire for health status assessment and measurements of health parameters including peak expiratory flow rate (PEFR) and audiometric screening of 300 subjects. The study revealed non-congenial working conditions at the sites. Noise, vibrations, dust, asphalt fumes, poor work postures, and injuries were found to be major health hazards. PEFR of most of the workers was found to be significantly lower than the reference value. Average PEFR±SEM values were 187±5.1 l/min, 178±4.3 l/min, and 266±5.3 l/min in ground preparation workers, asphalt workers, and heavy vehicle drivers, respectively. The highest rate (29%) of hearing loss was recorded among heavy vehicle drivers. Musculoskeletal problems were found to be more common among ground preparation workers. Data revealed unsatisfactory health status of most of the workers. Direct relationship between health outcomes and the type of construction activities were observed. The current study focuses on the importance of including occupational health and safety plan in the execution phase of every developmental project that involves construction activities.
Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows
Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen
2012-01-01
This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616
Thomas, H.E.
1946-01-01
Ground-water investigations in Utah by the Geological Survey of the U.S. Department of the Interior have been in progress since 1935, in cooperation with the Utah State Engineer. This cooperative work includes (1) determination of the fluctuations of water level in most of the developed ground-water areas in the state, based upon measurements which are tabulated and published annually by the Geological Survey; and (2) detailed investigations of specific ground-water areas to determine source, movement, disposal, quantity and quality of the ground water, and to show the relation of present development to the maximum economic development of which those areas are capable. Such detailed investigations have been completed during the past decade for areas in Iron, Millard, Salt Lake, Tooele, and Weber Counties, and are referred to in discussion subsequently. Similar investigations are now in progress in other areas in Davis, Iron, and Weber Counties.
A ground based phase control system for the solar power satellite, volume 4
NASA Technical Reports Server (NTRS)
Chie, C. M.
1980-01-01
A ground phase control system is studied as an alternative approach to the current reference retrodirective phase control system in order to simplify the spaceborne hardware requirement. Based on waveform selections, functional subsystems to implement the ground-based phase control concept are identified and functionally represented. It was concluded that the feasibility of the concept becomes unclear if the conditions of the ionosphere and satellite motion are not met.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Yang, Y; Young, L
Purpose: Radiomic texture features derived from the oncologic PET have recently been brought under intense investigation within the context of patient stratification and treatment outcome prediction in a variety of cancer types; however, their validity has not yet been examined. This work is aimed to validate radiomic PET texture metrics through the use of realistic simulations in the ground truth setting. Methods: Simulation of FDG-PET was conducted by applying the Zubal phantom as an attenuation map to the SimSET software package that employs Monte Carlo techniques to model the physical process of emission imaging. A total of 15 irregularly-shaped lesionsmore » featuring heterogeneous activity distribution were simulated. For each simulated lesion, 28 texture features in relation to the intensity histograms (GLIH), grey-level co-occurrence matrices (GLCOM), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated and compared with their respective values extracted from the ground truth activity map. Results: In reference to the values from the ground truth images, texture parameters appearing on the simulated data varied with a range of 0.73–3026.2% for GLIH-based, 0.02–100.1% for GLCOM-based, 1.11–173.8% for GLNDM-based, and 0.35–66.3% for GLZSM-based. For majority of the examined texture metrics (16/28), their values on the simulated data differed significantly from those from the ground truth images (P-value ranges from <0.0001 to 0.04). Features not exhibiting significant difference comprised of GLIH-based standard deviation, GLCO-based energy and entropy, GLND-based coarseness and contrast, and GLZS-based low gray-level zone emphasis, high gray-level zone emphasis, short zone low gray-level emphasis, long zone low gray-level emphasis, long zone high gray-level emphasis, and zone size nonuniformity. Conclusion: The extent to which PET imaging disturbs texture appearance is feature-dependent and could be substantial. It is thus advised that use of PET texture parameters for predictive and prognostic measurements in oncologic setting awaits further systematic and critical evaluation.« less
Hsieh, Yu-Chin; Apostolopoulos, Yorghos; Hatzudis, Kiki; Sönmez, Sevil
2016-06-01
Grounded in ecosocial theory, this paper discusses the mental health disparities of working-class Latinas from multiple perspectives. An overview of working-class Latinas' prevalent mental health disorders, barriers to care and suggestions for interventions and future studies are provided.
Mankowski, Mariann; Tower, Leslie E; Brandt, Cynthia A; Mattocks, Kristin
2015-10-01
Over the past three decades women's enlistment has continued to increase. In an effort to help social workers better meet the needs of female veterans, this study sought to learn women's enlistment motivations and postdeployment experiences. This qualitative study was nested within the Women Veterans Cohort Study. Using a semistructured interview guide, authors interviewed 18 enlisted female service members and veterans. The themes that emerged, based on grounded theory, included not only opportunity and calling, but also outcomes. Unexpectedly, enlistment resulted in a professional military career, with over half of the participants making the military their life's work. Further study on the motivation, retention, and the reintegration needs of women postmilitary is necessary, particularly with military recruitment targets of 20 percent women by the year 2020 and the increased awareness of the military as a potentially hostile work environment for women.
Advancing adolescent maternal development: a grounded theory.
Atkinson, Leah D; Peden-McAlpine, Cynthia J
2014-01-01
This paper reports a substantive grounded theory called the theory of Advancing Adolescent Maternal Development. A grounded theory approach was used. Thirty public health nurses working with adolescent clients in a state public health nurse home visiting program volunteered to participate in this study. The basic social psychological problem that emerged from the data was incomplete and at risk adolescent maternal development. Social support and public health nursing interventions are central in the problem resolution process which occurs in stages. Study results can be used to inform the nursing care of pregnant and parenting adolescents. © 2014.
An application of thermometry to the study of ground water
Schneider, Robert
1962-01-01
The precise measurement of fluctuations in ground-water temperature, based on monthly readings in shallow glacial-outwash aquifers (up to about 70 feet deep), is useful in the study of ground-water movement and recharge. In addition to the study of natural phenomena in the hydrologic cycle, thermometry may be used as a tool in making detailed studies of (1) the effects of inducing the infiltration of surface water, (2) artificial recharge, (3) the effects of injecting petroleum products or radioactive or other wastes into the ground, and (4) ground-water movement in mines.
The haptic pleasures of ground-feel: The role of textured terrain in motivating regular exercise.
Brown, Katrina M
2017-07-01
This paper explores the role that somatic or bodily touch-based experience of ground surface textures plays in securing a commitment to health-giving exercise practices, and argues that ground-feel is a neglected and underrated dimension of how environments co-constitute health. Past work has largely either overlooked ground-feel or positioned rough ground solely as a barrier to bodily movement. This research, however, informed by mobile and video ethnographies of walking and mountain biking in Scotland, elaborates a number of ways in which the experience of textured terrain can produce sensory and emotional experiences that motivate regular exercise. The possibility of positive tactile as well as visual experiences of landscapes, including uneven as well as smooth surfaces, ought then to be taken more seriously in designing everyday outdoor environments that encourage the energetic movement of bodies. A key challenge is to identify the optimal mix of textured and smooth ground surfaces to encourage increased energetic engagement for the widest range of users. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
The structure of the perceived professional identity of Japanese public health nurses.
Iwasaki, Riho; Kageyama, Masako; Nagata, Satoko
2018-05-01
As health problems become more diverse and complicated, the way public health nurses (PHNs) work is changing. Research at the conceptual level of professional identity of PHNs is lacking. This study aimed to explore the structure of the perceived professional identity of Japanese PHNs. Grounded theory method was used. Twenty-five PHNs in Japanese municipalities were participated in the study. Data were collected through semistructured interviews and analyzed using open, axial, and selective coding. Three categories emerged: (1) providing support to the consulter directly, (2) working as a member of the administrative organization, and (3) working for all residents to improve community development. The modality of perceived professional identity showed interindividual and intraindividual differences and was either stable or unstable. The perceived professional identities coexisted, but there was a conflict between (1) and (2). PHNs should be made aware of the three identities revealed in our study and the possibility of a conflict between identities. Moreover, to ensure working for all residents to improve community development, a population-based approach to education is needed with cooperation of universities and clinical practice. © 2018 Wiley Periodicals, Inc.
Chronic kidney disease of unknown aetiology and ground-water ionicity: study based on Sri Lanka.
Dharma-Wardana, M W C; Amarasiri, Sarath L; Dharmawardene, Nande; Panabokke, C R
2015-04-01
High incidence of chronic kidney disease of unknown aetiology (CKDU) in Sri Lanka is shown to correlate with the presence of irrigation works and rivers that bring-in 'nonpoint source' fertilizer runoff from intensely agricultural regions. We review previous attempts to link CKDU with As, Cd and other standard toxins. Those studies (e.g. the WHO-sponsored study), while providing a wealth of data, are inconclusive in regard to aetiology. Here, we present new proposals based on increased ionicity of drinking water due to fertilizer runoff into the river system, redox processes in the soil and features of 'tank'-cascades and aquifers. The consequent chronic exposure to high ionicity in drinking water is proposed to debilitate the kidney via a Hofmeister-type (i.e. protein-denaturing) mechanism.
Studies on orientation and rotation parameters of 4179 Toutatis from Chang'e-2 mission
NASA Astrophysics Data System (ADS)
Zhao, Yuhui; Ji, Jianghui; Hu, Shoucun
The ginger-shaped near-Earth asteroid 4179 Toutatis is close to a 4:1 orbital resonance with the Earth and has made close Earth flybys approximately every four years in the recent 20 years. China’s lunar probe Chang’e-2 achieved a successful flyby the Toutatis on 13th Dec 2012 during its most recent flyby of Earth. During the mission, a series of image with high resolution has been obtained. Combined with the radar model of Toutatis, these figures show the attitude of the asteroid from the camera’s point of view and the orientation of it is then deduced based on the attitude of the camera and the relative position between 4179 Toutatis and Chang'e-2 in our works. According to the previous ground-based observations and works on the rotation parameters of Toutatis, this paper studies the rotating rate of the asteroid in accordance with the imaging result of Toutatis by Chang’e-2 and puts forward a correction to the spin rate parameters.
Governance of professional nursing practice in a hospital setting: a mixed methods study.
dos Santos, José Luís Guedes; Erdmann, Alacoque Lorenzini
2015-01-01
To elaborate an interpretative model for the governance of professional nursing practice in a hospital setting. A mixed methods study with concurrent triangulation strategy, using data from a cross-sectional study with 106 nurses and a Grounded Theory study with 63 participants. The quantitative data were collected through the Brazilian Nursing Work Index - Revised and underwent descriptive statistical analysis. Qualitative data were obtained from interviews and analyzed through initial, selective and focused coding. Based on the results obtained with the Brazilian Nursing Work Index - Revised, it is possible to state that nurses perceived that they had autonomy, control over the environment, good relationships with physicians and organizational support for nursing governance. The governance of the professional nursing practice is based on the management of nursing care and services carried out by the nurses. To perform these tasks, nurses aim to get around the constraints of the organizational support and develop management knowledge and skills. It is important to reorganize the structures and processes of nursing governance, especially the support provided by the organization for the management practices of nurses.
Heeswijk, Marijke van; Smith, Daniel T.
2002-01-01
An evaluation of the interaction between ground-water flow on Naval Submarine Base Bangor and the regional-flow system shows that for selected alternatives of future ground-water pumping on and near the base, the risk is low that significant concentrations of on-base ground-water contamination will reach off-base public-supply wells and hypothetical wells southwest of the base. The risk is low even if worst-case conditions are considered ? no containment and remediation of on-base contamination. The evaluation also shows that future saltwater encroachment of aquifers below sea level may be possible, but this determination has considerable uncertainty associated with it. The potential effects on the ground-water flow system resulting from four hypothetical ground-water pumping alternatives were considered, including no change in 1995 pumping rates, doubling the rates, and 2020 rates estimated from population projections with two different pumping distributions. All but a continuation of 1995 pumping rates demonstrate the possibility of future saltwater encroachment in the Sea-level aquifer on Naval Submarine Base Bangor. The amount of time it would take for encroachment to occur is unknown. For all pumping alternatives, future saltwater encroachment in the Sea-level aquifer also may be possible along Puget Sound east and southeast of the base. Future saltwater encroachment in the Deep aquifer also may be possible throughout large parts of the study area. Projections of saltwater encroachment are least certain outside the boundaries of Naval Submarine Base Bangor. The potential effects of the ground-water pumping alternatives were evaluated by simulating the ground-water flow system with a three-dimensional uniform-density ground-water flow model. The model was calibrated by trial-and-error by minimizing differences between simulated and measured or estimated variables. These included water levels from prior to January 17, 1977 (termed 'predevelopment'), water-level drawdowns since predevelopment until April 15, 1995, ground-water discharge to streams in water year 1995, and residence times of ground water in different parts of the flow system that were estimated in a separate but related study. Large amounts of ground water were pumped from 1977 through 1980 from the Sea-level aquifer on Naval Submarine Base Bangor to enable the construction of an off-shore drydock. Records of the flow-system responses to the applied stresses were used to help calibrate the model. Errors in the calibrated model were significant. The poor agreement between simulated and measured values could be improved by making many local changes to hydraulic parameters but these changes were not supported by other data. Model errors may have resulted in errors in the simulated effects of ground-water pumping alternatives.
Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P.; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel
2010-01-01
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment. PMID:22163405
NASA Astrophysics Data System (ADS)
Sandal, Gro Mjeldheim; Manzey, Dietrich
2009-12-01
Today's space operations involve co-working of people with different ethnical, professional and organisational backgrounds. The aim of this study was to examine the implications of cultural diversity for efficient collaboration within the European Space Agency (ESA), and between ESA employees and representatives from other agencies. ESA employees from European countries ( N=576) answered to the CULT Ground Survey. The results showed that differences in relation to leadership and decision making were the most important issues thought to interfere with efficient co-working within ESA, and between ESA employees and colleagues from other agencies. Employees who collaborated with more than three nationalities within ESA indicated most challenges in co-working due to differences in compliance, behavioural norms and competitiveness. Challenges in co-working differed between agencies, and these differences were consistent with value differences in the national populations. The results may have applied value for training of European employees working in international space program teams.
Cloud effects on middle ultraviolet global radiation
NASA Technical Reports Server (NTRS)
Borkowski, J.; Chai, A.-T.; Mo, T.; Green, A. E. O.
1977-01-01
An Eppley radiometer and a Robertson-Berger sunburn meter are employed along with an all-sky camera setup to study cloud effects on middle ultraviolet global radiation at the ground level. Semiempirical equations to allow for cloud effects presented in previous work are compared with the experimental data. The study suggests a means of defining eigenvectors of cloud patterns and correlating them with the radiation at the ground level.
CERN@school: bringing CERN into the classroom
NASA Astrophysics Data System (ADS)
Whyntie, T.; Cook, J.; Coupe, A.; Fickling, R. L.; Parker, B.; Shearer, N.
2016-04-01
CERN@school brings technology from CERN into the classroom to aid with the teaching of particle physics. It also aims to inspire the next generation of physicists and engineers by giving participants the opportunity to be part of a national collaboration of students, teachers and academics, analysing data obtained from detectors based on the ground and in space to make new, curiosity-driven discoveries at school. CERN@school is based around the Timepix hybrid silicon pixel detector developed by the Medipix 2 Collaboration, which features a 300 μm thick silicon sensor bump-bonded to a Timepix readout ASIC. This defines a 256-by-256 grid of pixels with a pitch of 55 μm, the data from which can be used to visualise ionising radiation in a very accessible way. Broadly speaking, CERN@school consists of a web portal that allows access to data collected by the Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment in space and the student-operated Timepix detectors on the ground; a number of Timepix detector kits for ground-based experiments, to be made available to schools for both teaching and research purposes; and educational resources for teachers to use with LUCID data and detector kits in the classroom. By providing access to cutting-edge research equipment, raw data from ground and space-based experiments, CERN@school hopes to provide the foundation for a programme that meets the many of the aims and objectives of CERN and the project's supporting academic and industrial partners. The work presented here provides an update on the status of the programme as supported by the UK Science and Technology Facilities Council (STFC) and the Royal Commission for the Exhibition of 1851. This includes recent results from work with the GridPP Collaboration on using grid resources with schools to run GEANT4 simulations of CERN@school experiments.
Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements
NASA Astrophysics Data System (ADS)
Xi, B.; Dong, X.; Wu, P.; Qiu, S.
2017-12-01
A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.
Biomass burning aerosols characterization from ground based and profiling measurements
NASA Astrophysics Data System (ADS)
Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona
2018-04-01
The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.
NASA Astrophysics Data System (ADS)
Wilson, K. E.; Wright, M.; Cesarone, R.; Ceniceros, J.; Shea, K.
2003-01-01
Optical communications can provide high-data-rate telemetry from deep-space probes with subsystems that have lower mass, consume less power, and are smaller than their radio frequency (RF) counterparts. However, because optical communication is more affected by weather than is RF communication, it requires ground station site diversity to mitigate the adverse effects of inclement weather on the link. An optical relay satellite is not affected by weather and can provide 24-hour coverage of deep-space probes. Using such a relay satellite for the deep-space link and an 8.4-GHz (X-band) link to a ground station would support high-data-rate links from small deep-space probes with very little link loss due to inclement weather. We have reviewed past JPL-funded work on RF and optical relay satellites, and on proposed clustered and linearly dispersed optical subnets. Cost comparisons show that the life cycle costs of a 7-m optical relay station based on the heritage of the Next Generation Space Telescope is comparable to that of an 8-station subnet of 10-m optical ground stations. This makes the relay link an attractive option vis-a-vis a ground station network.
NASA Astrophysics Data System (ADS)
Kim, E.; Tedesco, M.; de Roo, R.; England, A. W.; Gu, H.; Pham, H.; Boprie, D.; Graf, T.; Koike, T.; Armstrong, R.; Brodzik, M.; Hardy, J.; Cline, D.
2004-12-01
The NASA Cold Land Processes Field Experiment (CLPX-1) was designed to provide microwave remote sensing observations and ground truth for studies of snow and frozen ground remote sensing, particularly issues related to scaling. CLPX-1 was conducted in 2002 and 2003 in Colorado, USA. One of the goals of the experiment was to test the capabilities of microwave emission models at different scales. Initial forward model validation work has concentrated on the Local-Scale Observation Site (LSOS), a 0.8~ha study site consisting of open meadows separated by trees where the most detailed measurements were made of snow depth and temperature, density, and grain size profiles. Results obtained in the case of the 3rd Intensive Observing Period (IOP3) period (February, 2003, dry snow) suggest that a model based on Dense Medium Radiative Transfer (DMRT) theory is able to model the recorded brightness temperatures using snow parameters derived from field measurements. This paper focuses on the ability of forward DMRT modelling, combined with snowpack measurements, to reproduce the radiobrightness signatures observed by the University of Michigan's Truck-Mounted Radiometer System (TMRS) at 19 and 37~GHz during the 4th IOP (IOP4) in March, 2003. Unlike in IOP3, conditions during IOP4 include both wet and dry periods, providing a valuable test of DMRT model performance. In addition, a comparison will be made for the one day of coincident observations by the University of Tokyo's Ground-Based Microwave Radiometer-7 (GBMR-7) and the TMRS. The plot-scale study in this paper establishes a baseline of DMRT performance for later studies at successively larger scales. And these scaling studies will help guide the choice of future snow retrieval algorithms and the design of future Cold Lands observing systems.
NASA Astrophysics Data System (ADS)
Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart
2015-02-01
This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51 ± 1.92) to (97.27 ± 0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.
Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L; Beauchemin, Steven S; Rodrigues, George; Gaede, Stewart
2015-02-21
This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51 ± 1.92) to (97.27 ± 0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.
A qualitative analysis of how advanced practice nurses use clinical decision support systems.
Weber, Scott
2007-12-01
The purpose of this study was to generate a grounded theory that will reflect the experiences of advanced practice nurses (APNs) working as critical care nurse practitioners (NPs) and clinical nurse specialists (CNS) with computer-based decision-making systems. A study design using grounded theory qualitative research methods and convenience sampling was employed in this study. Twenty-three APNs (13 CNS and 10 NPs) were recruited from 16 critical care units located in six large urban medical centers in the U.S. Midwest. Single-structured in-depth interviews with open-ended audio-taped questions were conducted with each APN. Through this process, APNs defined what they consider to be relevant themes and patterns of clinical decision system use in their critical care practices, and they identified the interrelatedness of the conceptual categories that emerged from the results. Data were analyzed using the constant comparative analysis method of qualitative research. APN participants were predominantly female, white/non-Hispanic, had a history of access to the clinical decision system used in their critical care settings for an average of 14 months, and had attended a formal training program to learn how to use clinical decision systems. "Forecasting decision outcomes," which was defined as the voluntary process employed to forecast the outcomes of patient care decisions in critical care prior to actual decision making, was the core variable describing system use that emerged from the responses. This variable consisted of four user constructs or components: (a) users' perceptions of their initial system learning experience, (b) users' sense of how well they understand how system technology works, (c) users' understanding of how system inferences are created or derived, and (d) users' relative trust of system-derived data. Each of these categories was further described through the grounded theory research process, and the relationships between the categories were identified. The findings of this study suggest that the main reason critical care APNs choose to integrate clinical decision systems into their practices is to provide an objective, scientifically derived, technology-based backup for human forecasting of the outcomes of patient care decisions prior to their actual decision making. Implications for nursing, health care, and technology research are presented.
Historical Analysis and Charaterization of Ground Level Ozone for Canada and United State
NASA Astrophysics Data System (ADS)
Lin, H.; Li, H.; Auld, H.
2003-12-01
Ground-level ozone has long been recognized as an important health and ecosystem-related air quality concern in Canada and the United States. In this work we seek to understand the characteristics of ground level ozone conditions for Canada and United States to support the Ozone Annex under the Canada-U.S. Air Quality Agreement. Our analyses are based upon the data collected by Canadian National Air Pollution Surveillance (NAPS, the NAPS database has also been expanded to include U.S. EPA ground level ozone data) network. Historical ozone data from 1974 to 2002 at a total of 538 stations (253 Canadian stations and 285 U.S. stations) were statistically analyzed using several methodologies including the Canada Wide Standard (CWS). A more detailed analysis including hourly, daily, monthly, seasonally and yearly ozone concentration distributions and trends was undertaken for 54 stations.
Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A. E.; Calder, S.; Morrow, R.
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3LiOsO6 and Ba2YOsO6, which reveals a dramatic spitting of the t2g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5dmore » systems and introduces a new arena in the search for spin-orbit controlled phases of matter.« less
NASA Astrophysics Data System (ADS)
Hull, Anthony B.; Barentine, J.; Legters, S.
2012-01-01
The same technology and analytic approaches that led to cost-effective unmitigated successes for the spaceborne Kepler and WISE telescopes are now being applied to meter-class to 4-meter-class ground telescopes, providing affordable solutions to ground astronomy, with advanced features as needed for the application. The range of optical and mechanical performance standards and features that can be supplied for ground astronomy shall be described. Both classical RC designs, as well as unobscured designs are well represented in the IOS design library, allowing heritage designs for both night time and day time operations, the latter even in the proximity of the sun. In addition to discussing this library of mature features, we will also describe a process for working with astronomers early in the definition process to provide the best-value solution. Solutions can include remote operation and astronomical data acquisition and transmission.
Satellite Communications for ATM
NASA Technical Reports Server (NTRS)
Shamma, Mohammed A.
2003-01-01
This presentation is an overview on Satellite Communication for the Aeronautical Telecommunication Management (ATM) research. Satellite Communications are being considered by the FAA and NASA as a possible alternative to the present and future ground systems supporting Air Traffic Communications. The international Civil Aviation Organization (ICAO) have in place Standards and Recommended Practices (SARPS) for the Aeronautical Mobile Satellite Services (AMSS) which is mainly derived from the pre-existing Inmarsat service that has been in service since the 1980s. The Working Group A of the Aeronautical Mobile Communication Panel of ICAO has also been investigating SARPS for what is called the Next Generation Satellite Service (NGSS) which conforms less to the Inmarsat based architecture and explores wider options in terms of satellite architectures. Several designs are being proposed by Firms such as Boeing, ESA, NASA that are geared toward full or secondary usage of satellite communications for ATM. Satellite communications for ATM can serve several purposes ranging from primary usage where ground services would play a minimal backup role, to an integrated solution where it will be used to cover services, or areas that are less likely to be supported by the proposed and existing ground infrastructure. Such Integrated roles can include usage of satellite communications for oceanic and remote land areas for example. It also can include relieving the capacity of the ground network by providing broadcast based services of Traffic Information Services messages (TIS-B), or Flight Information Services (FIS-B) which can take a significant portion of the ground system capacity. Additionally, satellite communication can play a backup role to support any needs for ground replacement, or additional needed capacity even after the new digital systems are in place. The additional bandwidth that can be provided via satellite communications can also open the door for many new applications that generally will enhance the standard services provided. All of those possibilities were investigated and comments, as well as descriptions of those analyses are put forward, as well as suggestions for future areas of study.
Small Scale Polygons and the History of Ground Ice on Mars
NASA Technical Reports Server (NTRS)
Mellon, Michael T.
2003-01-01
Recent progress on polygon modeling has focused on the diameter and surface relief that we expect of thermal-contraction polygons in martian permafrost. With this in mind, we developed a finite-element model of thermal-contraction-crack behavior in permafrost in a martian climate. This model was generated from a finite element code by Jay Melosh (called TECTON) originally developed for terrestrial and planetary crustal-deformation studies. We adapted this model to martian permafrost by including time (and temperature) dependent rheologies, boundary conditions, and isotropic thermal-contraction, as well as several small adaptations to a martian environment. We tested our model extensively, including comparison to an analytic solution of pre-fracture stress. We recently published an analysis of two potential sources of water for forming the recent gullies. In this work we first evaluated the potential for near-surface ground ice (in the top meter or so of soil) to melt under conditions of solar heating on sloped surfaces at high obliquity, utilizing both thermal and diffusion-based ground-ice-stability models; our results suggested that the ground ice will sublimate, and the ice table will recede to greater depths before the melting temperature can be reached. An exception can occur only for extremely salt-rich ice, depressing the freezing point.
NASA Technical Reports Server (NTRS)
Santana, Erico Soriano Martins; Mueller, Carlos
2003-01-01
The occurrence of flight delays in Brazil, mostly verified at the ground (airfield), is responsible for serious disruptions at the airport level but also for the unchaining of problems in all the airport system, affecting also the airspace. The present study develops an analysis of delay and travel times at Sao Paulo International Airport/ Guarulhos (AISP/GRU) airfield based on simulation model. Different airport physical and operational scenarios had been analyzed by means of simulation. SIMMOD Plus 4.0, the computational tool developed to represent aircraft operation in the airspace and airside of airports, was used to perform these analysis. The study was mainly focused on aircraft operations on ground, at the airport runway, taxi-lanes and aprons. The visualization of the operations with increasing demand facilitated the analyses. The results generated in this work certify the viability of the methodology, they also indicated the solutions capable to solve the delay problem by travel time analysis, thus diminishing the costs for users mainly airport authority. It also indicated alternatives for airport operations, assisting the decision-making process and in the appropriate timing of the proposed changes in the existing infrastructure.
NASA Astrophysics Data System (ADS)
Sánchez-Naranjo, S.; Rincón, W.; Ramos-Pollán, R.; González, F. A.; Soley, S.
2017-04-01
Ground Based Augmentation Systems GBAS provide differential corrections to approaching and landing aircrafts in the vicinities of an airport. The ionosphere can introduce an error not accountable by those differential corrections, and a threat model for the Conterminous United States region CONUS was developed in order to consider the highest gradients measured. This study presents the first extensive analysis of ionospheric gradients for Ecuador, from data fully covering 2013 and 2014 collected by their national Global Navigation Satellite System GNSS monitoring network (REGME). In this work it is applied an automated methodology adapted for low latitudes for processing data from dual frequency receivers networks, by considering data from all available days in the date range of the study regardless the geomagnetic indices values. The events found above the CONUS threat model occurred during days of nominal geomagnetic indices, confirming: (1) the higher bounds required for an ionospheric threat model for Ecuador, and (2) that geomagnetic indices are not enough to indicate relevant ionospheric anomalies in low latitude regions, reinforcing the necessity of a continuous monitoring of ionosphere. As additional contribution, the events database is published online, making it available to other researchers.
The Medicine and GERD of Immanuel Kant (1724-1804).
Figueiredo Filho, Gilberto Vilela
2009-01-01
We can place Kant as one of the pillars of contemporary medicine. Firstly, as an Illuminist, his work subordinates the collection of empirical data, which in medical science is constitutional to reason. This was the basis of a rational medical science. Secondly, he is the father of medical regulation, having set the philosophical control ground stone for physicians by the State. His work "Critique of Practical Reason" drafts all the future codes of ethics and bioethics. We will hereby study his relationship with medicine based on the text "The Conflict with the Faculty of Medicine" and other auxiliary texts.We can find in Kant's works the description of a series of symptoms that were related to a nonspecific dyspeptic syndrome that nowadays would be diagnosed as a strong indication that he suffered from gastroesophageal reflux disease (GERD).
NASA Astrophysics Data System (ADS)
Czapla-Myers, J.
2013-12-01
Landsat 8 was successfully launched from Vandenberg Air Force Base in California on 11 February 2013, and was placed into the orbit previously occupied by Landsat 5. Landsat 8 is the latest platform in the 40-year history of the Landsat series of satellites, and it contains two instruments that operate in the solar-reflective and the thermal infrared regimes. The Operational Land Imager (OLI) is a pushbroom sensor that contains eight multispectral bands ranging from 400-2300 nm, and one panchromatic band. The spatial resolution of the multispectral bands is 30 m, which is similar to previous Landsat sensors, and the panchromatic band has a 15-m spatial resolution, which is also similar to previous Landsat sensors. The 12-bit radiometric resolution of OLI improves upon the 8-bit resolution of the Enhanced Thematic Mapper Plus (ETM+) onboard Landsat 7. An important requirement for the Landsat program is the long-term radiometric continuity of its sensors. Ground-based vicarious techniques have been used for over 20 years to determine the absolute radiometric calibration of sensors that encompass a wide variety of spectral and spatial characteristics. This work presents the early radiometric calibration results of Landsat 8 OLI that were obtained using the traditional reflectance-based approach. University of Arizona personnel used five sites in Arizona, California, and Nevada to collect ground-based data. In addition, a unique set of in situ data were collected in March 2013, when Landsat 7 and Landsat 8 were observing the same site within minutes of each other. The tandem overfly schedule occurred while Landsat 8 was shifting to the WRS-2 orbital grid, and lasted only a few days. The ground-based data also include results obtained using the University of Arizona's Radiometric Calibration Test Site (RadCaTS), which is an automated suite of instruments located at Railroad Valley, Nevada. The results presented in this work include a comparison to the L1T at-sensor spectral radiance and the top-of-atmosphere reflectance, both of which are standard products available from the US Geological Survey.
Evaluating Remotely-Sensed Soil Moisture Retrievals Using Triple Collocation Techniques
USDA-ARS?s Scientific Manuscript database
The validation is footprint-scale (~40 km) surface soil moisture retrievals from space is complicated by a lack of ground-based soil moisture instrumentation and challenges associated with up-scaling point-scale measurements from such instrumentation. Recent work has demonstrated the potential of e...
ERIC Educational Resources Information Center
Singh, Anneliese A.; Urbano, Alessandra; Haston, Meg; McMahon, Eleanor
2010-01-01
A qualitative study used a grounded theory methodology to explore the strategies that 16 school counselors who self-identified as social justice agents used to advocate for systemic change within their school communities. Findings included seven overarching themes: (a) using political savvy to navigate power structures, (b) consciousness raising,…
Lawton, Teri
2016-01-01
There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263
McGaghie, William C; Barsuk, Jeffrey H; Cohen, Elaine R; Kristopaitis, Theresa; Wayne, Diane B
2015-11-01
Dissemination of a medical education innovation, such as mastery learning, from a setting where it has been used successfully to a new and different medical education environment is not easy. This article describes the uneven yet successful dissemination of a simulation-based mastery learning (SBML) curriculum on central venous catheter (CVC) insertion for internal medicine and emergency medicine residents across medical education settings. The dissemination program was grounded in implementation science principles. The article begins by describing implementation science which addresses the mechanisms of medical education and health care delivery. The authors then present a mastery learning case study in two phases: (1) the development, implementation, and evaluation of the SBML CVC curriculum at a tertiary care academic medical center; and (2) the dissemination of the SBML CVC curriculum to an academic community hospital setting. Contextual information about the drivers and barriers that affected the SBML CVC curriculum dissemination is presented. This work demonstrates that dissemination of mastery learning curricula, like all other medical education innovations, will fail without active educational leadership, personal contacts, dedication, hard work, rigorous measurement, and attention to implementation science principles. The article concludes by presenting a set of lessons learned about disseminating an SBML CVC curriculum across different medical education settings.
Initial Results from Radiometer and Polarized Radar-Based Icing Algorithms Compared to In-Situ Data
NASA Technical Reports Server (NTRS)
Serke, David; Reehorst, Andrew L.; King, Michael
2015-01-01
In early 2015, a field campaign was conducted at the NASA Glenn Research Center in Cleveland, Ohio, USA. The purpose of the campaign is to test several prototype algorithms meant to detect the location and severity of in-flight icing (or icing aloft, as opposed to ground icing) within the terminal airspace. Terminal airspace for this project is currently defined as within 25 kilometers horizontal distance of the terminal, which in this instance is Hopkins International Airport in Cleveland. Two new and improved algorithms that utilize ground-based remote sensing instrumentation have been developed and were operated during the field campaign. The first is the 'NASA Icing Remote Sensing System', or NIRSS. The second algorithm is the 'Radar Icing Algorithm', or RadIA. In addition to these algorithms, which were derived from ground-based remote sensors, in-situ icing measurements of the profiles of super-cooled liquid water (SLW) collected with vibrating wire sondes attached to weather balloons produced a comprehensive database for comparison. Key fields from the SLW-sondes include air temperature, humidity and liquid water content, cataloged by time and 3-D location. This work gives an overview of the NIRSS and RadIA products and results are compared to in-situ SLW-sonde data from one icing case study. The location and quantity of super-cooled liquid as measured by the in-situ probes provide a measure of the utility of these prototype hazard-sensing algorithms.
de Medeiros, Ana Lúcia; dos Santos, Sérgio Ribeiro; de Cabral, Rômulo Wanderley Lima
2012-09-01
This study was aimed at understanding, from the nurses' perspective, the experience of going through the Systematization of nursing care (SNC) in an obstetric service unit. We used grounded theory as the theoretical and methodological framework. The subjects of this study consisted of thirteen nurses from a public hospital in the city of João Pessoa, in the state of Paraíba. The data analysis resulted in the following phenomenon. "perceiving SNC as a working method that organizes, directs and improves the quality of care by bringing visibility and providing security for the nursing staff" The nurses expressed the extent of knowledge about the SNC experienced in obstetrics as well as considered the nursing process as a decision-making process, which guides the reasoning of nurses in the planning of nursing care in obstetrics. It was concluded that nurses perceive the SNC as an instrument of theoretical-practical articulation leading to personalized assistance.
Analysis on H Spectral Shape During the Early 2012 SEPs with the PAMELA Experiment
NASA Technical Reports Server (NTRS)
Martucci, Matteo; Boezio, M.; Bravar, U.; Carbone, R.; Christian, E. R.; De Nolfo, G. A.; Merge, M.; Mocchiutti, E.; Munini, R.; Ricci, M.;
2013-01-01
The satellite-borne PAMELA experiment has been continuously collecting data since 2006.This apparatus is designed to study charged particles in the cosmic radiation. The combination of a permanent magnet, a silicon strip tracker and a silicon-tungsten imaging calorimeter, and the redundancy of instrumentation allow very precise studies on the physics of cosmic rays in a wide energy range and with high statistics. This makes PAMELA a very suitable instrument for Solar Energetic Particle (SEP) observations. Not only does its pan the energy range between the ground-based neutron monitor data and the observations of SEPs from space,but PAMELA also carries out the first direct measurements of the composition for the highest energy SEP events, including those causing Ground Level Enhancements (GLEs).In particular, PAMELA has registered many SEP events during solar cycle 24,offering unique opportunities to address the question of high-energy SEP origin. A preliminary analysis on proton spectra behaviour during this event is presented in this work.
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Kaula, W. M.; Mccord, T. B.; Trombka, J. L.
1977-01-01
Topics discussed include the need for: the conception and development of a wide spectrum of experiments, instruments, and vehicles in order to derive the proper return from an exploration program; the effective use of alternative methods of data acquisition involving ground-based, airborne and near Earth orbital techniques to supplement spacraft mission; and continued reduction and analysis of existing data including laboratory and theoretical studies in order to benefit fully from experiments and to build on the past programs toward a logical and efficient exploration of the solar system.
The Occurrence Rate of Hot Jupiters
NASA Astrophysics Data System (ADS)
Rampalli, Rayna; Catanzarite, Joseph; Batalha, Natalie M.
2017-01-01
As the first kind of exoplanet to be discovered, hot Jupiters have always been objects of interest. Despite being prevalent in radial velocity and ground-based surveys, they were found to be much rarer based on Kepler observations. These data show a pile-up at radii of 9-22 Rearth and orbital periods of 1-10 days. Computing accurate occurrence rates can lend insight into planet-formation and migration-theories. To get a more accurate look, the idea of reliability was introduced. Each hot Jupiter candidate was assigned a reliability based on its location in the galactic plane and likelihood of being a false positive. Numbers were updated if ground-based follow-up indicated a candidate was indeed a false positive. These reliabilities were introduced into an occurrence rate calculation and yielded about a 12% decrease in occurrence rate for each period bin examined and a 25% decrease across all the bins. To get a better idea of the cause behind the pileup, occurrence rates based on parent stellar metallicity were calculated. As expected from previous work, higher metallicity stars yield higher occurrence rates. Future work includes examining period distributions in both the high metallicity and low metallicity sample for a better understanding and confirmation of the pile-up effect.
Fostering Multilateral Involvement in Analog Research
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.
2015-01-01
International collaboration in space flight research is an effective means for conducting investigations and utilizing limited resources to the fullest extent. Through these multilateral collaborations mutual research questions can be investigated and resources contributed by each international partner to maximize the scientific benefits to all parties. Recently the international partners embraced this approach to initiate collaborations in ground-based space flight analog environments. In 2011, the International Analog Research Working Group was established, and later named the International Human Space Flight Analog Research Coordination Group (HANA). Among the goals of this working group are to 1) establish a framework to coordinate research campaigns, as appropriate, to minimize duplication of effort and enhance synergy; 2) define what analogs are best to use for collaborative interests; and 3) facilitate interaction between discipline experts in order to have the full benefit of international expertise. To accomplish these goals, HANA is currently engaged in developing international research campaigns in ground-based analogs. Plans are being made for an international solicitation for proposals to address research of common interest to all international partners. This solicitation with identify an analog environment that will best accommodate the types of investigations requested. Once selected, studies will be integrated into a campaign and implemented at the analog site. Through these combined efforts, research beneficial to all partners will be conducted efficiently to further address human risks of space exploration.
Gravitational Role in Liquid Phase Sintering
NASA Technical Reports Server (NTRS)
Upadhyaya, Anish; Iacocca, Ronald G.; German, Randall M.
1998-01-01
To comprehensively understand the gravitational effects on the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 35 to 98 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. This study also shows that the pores during microgravity sintering act as a stable phase and attain anomalous shapes.
NASA Astrophysics Data System (ADS)
Ben Fredj, Nabil; Sidhom, Habib
2006-06-01
For environmental considerations, the substitution of the conventionally used oil-based grinding fluids has nowadays become strongly recommended. Although several alternatives have been proposed, cryogenic cooling by liquid nitrogen is the non-polluting coolant that has been given relatively more attention because of its very low temperature. In this investigation, in order to contribute to developing this promising cooling mode, its beneficial effects on the ground surface integrity of the AISI 304 stainless steel and their consequences on the fatigue lifetime are explored. Results of this investigation show that grinding under cryogenic cooling mode generates surfaces with lower roughness, less defects, higher work hardening and less tensile residual stresses than those obtained on surfaces ground under oil-based grinding fluid. These surface enhancements result into substantial improvements in the fatigue behaviour of components ground under this cooling mode. An increasing rate of almost 15% of the endurance limit at 2 × 10 6 cycles could be realized. SEM analyses of the fatigue fracture surfaces have shown that the fatigue cracks observed on the specimens ground under cryogenic cooling are shorter (i.e., 30-50 μm) than those generated under oil-based cooling mode (i.e., 150-200 μm). The realized improvements in the surface integrity and in the fatigue behaviour are thought to be related to the reduction of the grinding zone temperature observed under cryogenic cooling, as no significant differences between the grinding force components for both cooling modes have been observed.
Resonant-spin-ordering of vortex cores in interacting mesomagnets
NASA Astrophysics Data System (ADS)
Jain, Shikha
2013-03-01
The magnetic system of interacting vortex-state elements have a dynamically reconfigurable ground state characterized by different relative polarities and chiralities of the individual disks; and have a corresponding dynamically controlled spectrum of collective excitation modes that determine the microwave absorption of the crystal. The development of effective methods for dynamic control of the ground state in this vortex-type magnonic crystal is of interest both from fundamental and technological viewpoints. Control of vortex chirality has been demonstrated previously using various techniques; however, control and manipulation of vortex polarities remain challenging. In this work, we present a robust and efficient way of selecting the ground state configuration of interacting magnetic elements using resonant-spin-ordering approach. This is achieved by driving the system from the linear regime of constant vortex gyrations to the non-linear regime of vortex-core reversals at a fixed excitation frequency of one of the coupled modes. Subsequently reducing the excitation field to the linear regime stabilizes the system to a polarity combination whose resonant frequency is decoupled from the initialization frequency. We have utilized the resonant approach to transition between the two polarity combinations (parallel or antiparallel) in a model system of connected dot-pairs which may form the building blocks of vortex-based magnonic crystals. Taking a step further, we have extended the technique by studying many-particle system for its potential as spin-torque oscillators or logic devices. Work at Argonne was supported by the U. S. DOE, Office of BES, under Contract No. DE-AC02-06CH11357. This work was in part supported by grant DMR-1015175 from the U. S. National Science Foundation, by a Contract from the U.S. Army TARDEC and RDECOM.
Overcommunication Strategies of Violating Grice's Cooperative Principle in Ground Service
ERIC Educational Resources Information Center
Xiaoqin, Liu
2017-01-01
Based on four maxims of Grice's cooperative principle framework, a small-scale study is conducted to examine the communication strategies employed by experienced ground service staff. Data have been collected from questionnaires and in-depth interviews with Chinese domestic airlines' ground staff. This study identifies that the communicative…
NASA Astrophysics Data System (ADS)
Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha
2018-01-01
It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.
ERIC Educational Resources Information Center
Gessner, Susann
2017-01-01
Purpose: The article enquires about how young migrants perceive and evaluate civic education in school and what expectations they have of the subject. Method: The article is based on a qualitative-oriented research work based on the Grounded Theory; surveys were made by interviews with students. Findings: The article emphasises that educational…
Prediction of new ground-state crystal structure of T a2O5
NASA Astrophysics Data System (ADS)
Yang, Yong; Kawazoe, Yoshiyuki
2018-03-01
Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daffron, James Y.
2003-02-27
Unexploded Ordnance (UXO) removal and investigation projects typically involve multiple organizations including Government entities, private contractors, and technical experts. Resources are split into functional ''teams'' who perform the work and interface with the clients. The projects typically generate large amounts of data that must be shared among the project team members, the clients, and the public. The ability to efficiently communicate and control information is essential to project success. Web-based project collaboration is an effective management and communication tool when applied to ordnance and explosives (OE) projects. During a recent UXO/OE removal project at the Jefferson Proving Ground (JPG) inmore » Madison, IN, American Technologies, Inc. (ATI) successfully used the Project Commander(reg sign) (www.ProCommander.com) project collaboration website as a dynamic project and information management tool.« less
NASA Astrophysics Data System (ADS)
Guerrero, L.; Salas, Y.; Blanco, J.
2016-02-01
In this work electrochemical techniques were used to determine the corrosion behaviour of copper and stainless steel electrodes, used in grounding varying soil type with which they react. A slight but significant change in the corrosion rate, linear polarization resistance and equivalent parameters in the technique of electrochemical impedance spectroscopy circuit was observed. Electrolytes in soils are slightly different depending on laboratory study, but the influence was noted in the retention capacity of water, mainly due to clays, affecting ion mobility and therefore measures such as the corrosion rate. Behaviour was noted in lower potential for copper corrosion, though the corrosion rate regardless of the type of soil, was much higher for electrodes based on copper, by several orders of magnitude.
An epidemiological study of reproductive health in female civil aviation employees.
Yang, Yue; Zhang, Weiyuan; Chan, Ada; Li, Chunling; He, Xiaoyan; Cui, Lei; Lv, Yuren; Liu, Juan; Guo, Xiuhua
2013-06-01
To investigate the correlations between occupational risk factors and reproductive health and to provide targeted healthcare services to female civil aviation employees based on surveys about menstrual and reproductive health status. Subjects were selected from flight attendants working for China Southern Airlines, Air China, and other airlines; employees of China Aviation Oil Limited, China TravelSky, and China Aviation Supplies Holding Company; and airport ground service crews. Data were collected using anonymous questionnaires. A total of 1175 valid questionnaires were recovered. The subjects were categorized into a flight attendant group and a ground service group, which contained 563 and 612 women, respectively. The prevalence of irregular menstruation, including abnormal cycles, severe dysmenorrhea, and hypomenorrhea or menorrhagia, was significantly higher in the flight attendant group (30.55%) than in the ground service group (13.40%); in concordance, the fertility rate was significantly lower in the flight attendant group (36.59%) than in the ground service group (43.95%). The spontaneous abortion rate in the flight attendant group (6.80%) was significantly higher than in the ground service group (2.97%). The rate of life-threatening abortions, preterm births, and low birth weight was significantly lower in the flight attendant group than in the ground service group. The impact of occupational risk factors on the reproductive health of female aviation workers should be evaluated and examined more thoroughly. Additional healthcare services such as routine menstruation healthcare and policies for workers planning to have a pregnancy are beneficial in monitoring reproductive health, reducing harmful exposures during early pregnancy, and preventing incapacitating gynecologic events.
NASA Astrophysics Data System (ADS)
Zhao, Fengfan; Meng, Lingyuan
2016-04-01
The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).
Fall, Veronica M; Cao, Qing; Hong, Yang
2013-01-01
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.
Fall, Veronica M.; Hong, Yang
2013-01-01
Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR) and Ku-band Precipitation Radar (PR), which are onboard NASA's CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE). This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ) system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors' type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR) reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts. PMID:24459424
GPM Pre-Launch Algorithm Development for Physically-Based Falling Snow Retrievals
NASA Technical Reports Server (NTRS)
Jackson, Gail Skofronick; Tokay, Ali; Kramer, Anne W.; Hudak, David
2008-01-01
In this work we compare and correlate the long time series (Nov.-March) neasurements of precipitation rate from the Parsivels and 2DVD to the passive (89, 150, 183+/-1, +/-3, +/-7 GHz) observations of NOAA's AMSU-B radiometer. There are approximately 5-8 AMSU-B overpass views of the CARE site a day. We separate the comparisons into categories of no precipitation, liquid rain and falling snow precipitation. Scatterplots between the Parsivel snowfall rates and AMSU-B brightness temperatures (TBs) did not show an exploitable relationship for retrievals. We further compared and contrasted brightness temperatures to other surface measurements such as temperature and relative humidity with equally unsatisfying results. We found that there are similar TBs (especially at 89 and 150 GHz) for cases with falling snow and for non-precipitating cases. The comparisons indicate that surface emissivity contributions to the satellite observed TB over land can add uncertainty in detecting and estimating falling snow. The newest results show that the cloud icc scattering signal in the AMSU-B data call be detected by computing clear air TBs based on CARE radiosonde data and a rough estimate of surface emissivity. That is the differences in computed TI3 and AMSU-B TB for precipitating and nonprecipitating cases are unique such that the precipitating versus lon-precipitating cases can be identified. These results require that the radiosonde releases are within an hour of the AMSU-B data and allow for three surface types: no snow on the ground, less than 5 cm snow on the ground, and greater than 5 cm on the ground (as given by ground station data). Forest fraction and measured emissivities were combined to calculate the surface emissivities. The above work and future work to incorporate knowledge about falling snow retrievals into the framework of the expected GPM Bayesian retrievals will be described during this presentation.
Design and analysis of coplanar waveguide triple-band antenna based on defected ground structure
NASA Astrophysics Data System (ADS)
Lv, Hong; Chen, Wanli; Xia, Xinsheng; Qi, Peng; Sun, Quanling
2017-11-01
A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David
2012-01-01
Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.
NASA Astrophysics Data System (ADS)
Tao, Gang; Wei, Guohua; Wang, Xu; Kong, Ming
2018-03-01
There has been increased interest over several decades for applying ground-based synthetic aperture radar (GB-SAR) for monitoring terrain displacement. GB-SAR can achieve multitemporal surface deformation maps of the entire terrain with high spatial resolution and submilimetric accuracy due to the ability of continuous monitoring a certain area day and night regardless of the weather condition. The accuracy of the interferometric measurement result is very important. In this paper, the basic principle of InSAR is expounded, the influence of the platform's instability on the interferometric measurement results are analyzed. The error sources of deformation detection estimation are analyzed using precise geometry of imaging model. Finally, simulation results demonstrates the validity of our analysis.
Do characteristics of a stationary obstacle lead to adjustments in obstacle stepping strategies?
Worden, Timothy A; De Jong, Audrey F; Vallis, Lori Ann
2016-01-01
Navigating cluttered and complex environments increases the risk of falling. To decrease this risk, it is important to understand the influence of obstacle visual cues on stepping parameters, however the specific obstacle characteristics that have the greatest influence on avoidance strategies is still under debate. The purpose of the current work is to provide further insight on the relationship between obstacle appearance in the environment and modulation of stepping parameters. Healthy young adults (N=8) first stepped over an obstacle with one visible top edge ("floating"; 8 trials) followed by trials where experimenters randomly altered the location of a ground reference object to one of 7 different positions (8 trials per location), which ranged from 6cm in front of, directly under, or up to 6cm behind the floating obstacle (at 2cm intervals). Mean take-off and landing distance as well as minimum foot clearance values were unchanged across different positions of the ground reference object; a consistent stepping trajectory was observed for all experimental conditions. Contrary to our hypotheses, results of this study indicate that ground based visual cues are not essential for the planning of stepping and clearance strategies. The simultaneous presentation of both floating and ground based objects may have provided critical information that lead to the adoption of a consistent strategy for clearing the top edge of the obstacle. The invariant foot placement observed here may be an appropriate stepping strategy for young adults, however this may not be the case across the lifespan or in special populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Mullaney, John R.
2004-01-01
Ground-water budgets were developed for 32 small basin-based zones in the Greenwich area of southwestern Connecticut, where crystalline-bedrock aquifers supply private wells, to determine the status of residential ground-water consumption relative to rates of ground-water recharge and discharge. Estimated residential ground-water withdrawals for small basins (averaging 1.7 square miles (mi2)) ranged from 0 to 0.16 million gallons per day per square mile (Mgal/d/mi2). To develop these budgets, residential ground-water withdrawals were estimated using multiple-linear regression models that relate water use from public water supply to data on residential property characteristics. Average daily water use of households with public water supply ranged from 219 to 1,082 gallons per day (gal/d). A steady-state finite-difference ground-water- flow model was developed to track water budgets, and to estimate optimal values for hydraulic conductivity of the bedrock (0.05 feet per day) and recharge to the overlying till deposits (6.9 inches) using nonlinear regression. Estimated recharge rates to the small basins ranged from 3.6 to 7.5 inches per year (in/yr) and relate to the percentage of the basin underlain by coarse- grained glacial stratified deposits. Recharge was not applied to impervious areas to account for the effects of urbanization. Net residential ground-water consumption was estimated as ground-water withdrawals increased during the growing season, and ranged from 0 to 0.9 in/yr. Long-term average stream base flows simulated by the ground-water-flow model were compared to calculated values of average base flow and low flow to determine if base flow was substantially reduced in any of the basins studied. Three of the 32 basins studied had simulated base flows less than 3 in/yr, as a result of either ground-water withdrawals or reduced recharge due to urbanization. A water-availability criteria of the difference between the 30-day 2-year low flow and the recharge rate for each basin was explored as a method to rate the status of water consumption in each basin. Water consumption ranged from 0 to 14.3 percent of available water based on this criteria for the 32 basins studied. Base-flow water quality was related to the amount of urbanized area in each basin sampled. Concentrations of total nitrogen and phosphorus, chloride, indicator bacteria, and the number of pesticide detections increased with basin urbanization, which ranged from 18 to 63 percent of basin area.
Occupational exposure to diesel engine exhaust: A literature review
Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia
2010-01-01
Background Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Methods Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO2). Information on determinants of exposure was abstracted. Results In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO2 measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles, and 68% from off-road vehicles (30% mining, 15% railroad, and 22% other). Highest levels were reported for enclosed underground work sites where heavy equipment is used: mining, mine maintenance, and construction, (EC: 27-658 μg/m3). Intermediate exposure levels were generally reported for above ground (semi-)enclosed areas where smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC< 50 μg/m3). Lowest levels were reported for enclosed areas separated from the source such as drivers and train crew, or outside such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 μg/m3). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Conclusions Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above ground (semi-)enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies. PMID:19277070
Occupational exposure to diesel engine exhaust: a literature review.
Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A
2009-07-01
Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC<50 microg/m(3)). Lowest levels were reported for enclosed areas separated from the source, such as drivers and train crew, or outside, such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 microg/m(3)). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies.
Korpinen, Leena H; Pääkkönen, Rauno J
2010-04-01
The occupational exposure to electric and magnetic fields during various work tasks at seven 110 kV substations in Finland's Tampere region was studied. The aim was to investigate if the action values (10 kV/m for the E-field and 500 microT for the B-field) of the EU Directive 2004/40/EC were exceeded. Electric and magnetic fields were measured during the following work tasks: (1) walking or operating devices on the ground; (2) working from a service platform; (3) working around the power transformer on the ground or using a ladder; and (4) changing a bulb from a man hoist. In work task 2 "working from a service platform" the measured electric field (maximum value 16.6 kV/m) exceeded 10 kV/m in three cases. In the future it is important to study if the limit value (10 mA/m(2)) of Directive 2004/40/EC is exceeded at 110 kV substations. The occupational 500 microT action value of the magnetic flux density field (B-field) was not exceeded in any working situation.
A case study of systemic curricular reform: A forty-year history
NASA Astrophysics Data System (ADS)
Laubach, Timothy Alan
What follows is a description of the development of a particular inquiry-based elementary school science curriculum program and how its theoretical underpinnings positively influenced a school district's (K-12) science program and also impacted district- and state-wide curriculum reform initiatives. The district's science program has evolved since the inception of the inquiry-based elementary school science curriculum reform forty years ago. Therefore, a historical case study, which incorporated grounded theory methodology, was used to convey the forty-year development of a science curriculum reform effort and its systemic influences. Data for this study were collected primarily through artifacts, such as technical and non-technical documents, and supported and augmented with interviews. Fifteen people comprised the interview consortium with professional responsibilities including (a) administrative roles, such as superintendents, assistant superintendents, principals, and curriculum consultants/coordinators; (b) classroom roles, such as elementary and secondary school teachers who taught science; (c) partnership roles, such as university faculty who collaborated with those in administrative and classroom positions within the district; and (d) the co-director of SCIS who worked with the SCIS trial center director. Data were analyzed and coded using the constant comparative method. The analysis of data uncovered five categories or levels in which the curriculum reform evolved throughout its duration. These themes are Initiation, Education, Implementation, Confirmation, and Continuation. These five categories lead to several working hypotheses that supported the sustaining and continuing of a K-12 science curriculum reform effort. These components are a committed visionary; a theory base of education; forums promoting the education of the theory base components; shared-decision making; a university-school partnership; a core group of committed educators and teachers; evidences of success; national and state reform initiatives; a core group of administrators; longevity of the science program; district support (philosophical, financial, and emotional); and community support all contributed to the initiation, education, implementation, confirmation, and the continuation of the systemic curricular reform. The underlying component, or grounded theory generated by the study, that ties these experiences together is the "theory base" that concurrently evolved in the local school district and in a nearby university.
LISA Technology Development and Risk Reduction at NASA
NASA Technical Reports Server (NTRS)
Stebbins, Robin T.
2010-01-01
The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the mission formulation. The results of systems engineering work on flight software, avionics and reliability will be summarized.
Rosenheck, Robert; Mueser, Kim T; Sint, Kyaw; Lin, Haiqun; Lynde, David W; Glynn, Shirley M; Robinson, Delbert G; Schooler, Nina R; Marcy, Patricia; Mohamed, Somaia; Kane, John M
2017-04-01
Participation in work and school are central objectives for first episode psychosis (FEP) programs, but evidence effectiveness has been mixed in studies not focused exclusively on supported employment and education (SEE). Requirements for current motivation to work or go to school limit the generalizability of such studies. FEP participants (N=404) at thirty-four community treatment clinics participated in a cluster randomized trial that compared usual Community Care (CC) to NAVIGATE, a comprehensive, team-based treatment program that included ≥5h of SEE services per week, , grounded in many of the principles of the Individual Placement and Support model of supported employment combined with supported education services. All study participants were offered SEE regardless of their initial interest in work or school. Monthly assessments over 24months recorded days of employment and attendance at school, days of participation in SEE, and both employment and public support income (including disability income). General Estimation Equation models were used to compare CC and NAVIGATE on work and school participation, employment and public support income, and the mediating effect of receiving ≥3 SEE visits on these outcomes. NAVIGATE treatment was associated with a greater increase in participation in work or school (p=0.0486) and this difference appeared to be mediated by SEE. No group differences were observed in earnings or public support payments. A comprehensive, team-based FEP treatment approach was associated with greater improvement in work or school participation, and this effect appears to be mediated, in part, by participation in SEE. Published by Elsevier B.V.
Standardizing Interaction Design Education
ERIC Educational Resources Information Center
Thomassen, Aukje; Ozcan, Oguzhan
2010-01-01
The objective of this paper is to which extend the didactic format of studio-based group-work is applicable for creating a common-ground for Interaction Design Education in European Perspective. The current debate on design education shows us a landscape of different initiatives. So far difficulties have arisen in the area of accreditation and…
The Global Maritime Partnership: Networking Challenges and Opportunities
2010-06-01
The Victorians eagerly embraced the telegraph as something that was “faster and better” than waiting for newspapers to arrive via ship and... fashion . 31 While little quantitative work on network-centric operations has been done based on from-the-ground-up modeling and simulation, the United
Vocabulary Instruction for Struggling Students. What Works for Special-Needs Learners Series
ERIC Educational Resources Information Center
Vadasy, Patricia F.; Nelson, J. Ron
2012-01-01
Addressing a key skill in reading, writing, and speaking, this comprehensive book is grounded in cutting-edge research on vocabulary development. It presents evidence-based instructional approaches for at-risk students, including English language learners and those with learning difficulties. Coverage ranges from storybook reading interventions…
Rewetting of monogroove heat pipe in Space Station radiators
NASA Technical Reports Server (NTRS)
Chan, S. H.
1993-01-01
The annual status report for the experimental work in progress regarding the rewetting of a monogroove heat pipe in a microgravity environment is presented. This report is divided into two sections. The first details improvements in the experimental apparatus, and the second reports the ground based and theoretical results.
Comprehensive Teacher Education: A Handbook of Knowledge.
ERIC Educational Resources Information Center
American Association of Colleges for Teacher Education, Washington, DC.
Since 1992, AACTE and the DeWitt Wallace-Reader's Digest Fund have worked in partnership to advance the knowledge base of comprehensive teacher education. The AACTE/DeWitt Wallace-Reader's Digest Fund's Comprehensive Teacher Education National Demonstration Project is grounded in the mutual belief that preparation of classroom teachers must…
ERIC Educational Resources Information Center
Zandniapour, Lily; Conway, Maureen
The Sectoral Employment Development Learning Project conducted a longitudinal survey of participants of industry-based workforce development programs about two years after completing training. Outcomes for unemployed and underemployed workers--77 percent of the sample--indicated increased hours worked and increased earnings per hour produced…
Common Ground: An Interactive Visual Exploration and Discovery for Complex Health Data
2015-04-01
working with Intermountain Healthcare on a new rich dataset extracted directly from medical notes using natural language processing ( NLP ) algorithms...probabilities based on a state- of-the-art NLP classifiers. At that stage the data did not include geographic information or temporal information but we
Bland, Andrew J; Tobbell, Jane
2016-09-01
Simulation has become an established feature of nurse education yet little is understood about the mechanisms that lead to learning. To explore the attributes of simulation-based education that enable student learning in undergraduate nurse education. Final year students drawn from one UK University (n=46) participated in a grounded theory study. First, nonparticipant observation and video recording of student activity was undertaken. Following initial analysis, recordings and observations were deconstructed during focus group interviews that enabled both the researcher and participants to unpack meaning. Lastly emergent findings were verified with final year students drawn from a second UK University (n=6). A staged approach to learning emerged from engagement in simulation. This began with initial hesitation as students moved through nonlinear stages to making connections and thinking like a nurse. Core findings suggest that simulation enables curiosity and intellect (main concern) through doing (core category) and interaction with others identified as social collaboration (category). This study offers a theoretical basis for understanding simulation-based education and integration of strategies that maximise the potential for learning. Additionally it offers direction for further research, particularly with regards to how the application of theory to practice is accelerated through learning by doing and working collaboratively. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Zhe; Liu, Zhizhao
2016-05-01
This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.
NASA Astrophysics Data System (ADS)
Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.
2015-12-01
Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.
NASA Technical Reports Server (NTRS)
Ulsig, Laura; Nichol, Caroline J.; Huemmrich, Karl F.; Landis, David R.; Middleton, Elizabeth M.; Lyapustin, Alexei I.; Mammarella, Ivan; Levula, Janne; Porcar-Castell, Albert
2017-01-01
Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R (sup 2) equals 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R (sup 2) is greater than 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Aaron D.; Warren, Emily L.; Gorai, Prashun
ZnSiP2 demonstrates promising potential as an optically active material on silicon. There has been a longstanding need for wide band gap materials that can be integrated with Si for tandem photovoltaics and other optoelectronic applications. ZnSiP2 is an inexpensive, earth abundant, wide band gap material that is stable and lattice matched with silicon. This conference proceeding summarizes our PV-relevant work on bulk single crystal ZnSiP2, highlighting the key findings and laying the ground work for integration into Si-based tandem devices.
Masso, Malcolm; McCarthy, Grace; Kitson, Alison
2014-07-01
The context for the study was a nation-wide programme in Australia to implement evidence-based practice in residential aged care, in nine areas of practice, using a wide range of implementation strategies and involving 108 facilities. The study drew on the experiences of those involved in the programme to answer the question: what mechanisms influence the implementation of evidence-based practice in residential aged care and how do those mechanisms interact? The methodology used grounded theory from a critical realist perspective, informed by a conceptual framework that differentiates between the context, process and content of change. People were purposively sampled and invited to participate in semi-structured interviews, resulting in 44 interviews involving 51 people during 2009 and 2010. Participants had direct experience of implementation in 87 facilities, across nine areas of practice, in diverse locations. Sampling continued until data saturation was reached. The quality of the research was assessed using four criteria for judging trustworthiness: credibility, transferability, dependability and confirmability. Data analysis resulted in the identification of four mechanisms that accounted for what took place and participants' experiences. The core category that provided the greatest understanding of the data was the mechanism On Common Ground, comprising several constructs that formed a 'common ground' for change to occur. The mechanism Learning by Connecting recognised the ability to connect new knowledge with existing practice and knowledge, and make connections between actions and outcomes. Reconciling Competing Priorities was an ongoing mechanism whereby new practices had to compete with an existing set of constantly shifting priorities. Strategies for reconciling priorities ranged from structured approaches such as care planning to more informal arrangements such as conversations during daily work. The mechanism Exercising Agency bridged the gap between agency and action. It was the human dimension of change, both individually and collectively, that made things happen. The findings are consistent with the findings of others, but fit together in a novel way and add to current knowledge about how to improve practices in residential aged care. Each of the four mechanisms is necessary but none are sufficient for implementation to occur. Copyright © 2013 Elsevier Ltd. All rights reserved.
Employment and work safety among 12 to 14 year olds: listening to parents.
Usher, Amelia M; Breslin, Curtis; MacEachen, Ellen; Koehoorn, Mieke; Laberge, Marie; Laberge, Luc; Ledoux, Élise; Wong, Imelda
2014-10-01
Survey research indicates that a surprising number of 12 to 14 year olds in North America engage in some form of paid work, and work-related injuries for this age group are reported at rates similar to older teens. Parents exhibit significant involvement in many aspects of their teens' work and may influence perceptions of work safety, yet few studies have explored this phenomenon from a qualitative perspective with parents of working 12 to 14 year olds. This paper focuses on parental perceptions and understandings of work safety based on focus groups conducted with urban Canadian parents of young teens who work for pay. Parents discussed the types of job held by their 12 to 14 year olds, the perceived costs and benefits to working at this age, and their understanding of risk and supervision on the job. A grounded theory approach was used to thematically analyze the focus group transcripts. Parents in this study held favourable attitudes towards their 12 to 14 year olds' working. Parents linked pro-social moral values and skills such as responsibility, work ethic, time management, and financial literacy with their young teen's employment experience. Risks and drawbacks were generally downplayed or discounted. Perceptions of workplace safety were mitigated by themes of trust, familiarity, sense of being in control and having discretion over their 12 to 14 year olds' work situation. Further, parental supervision and monitoring fell along a continuum, from full parental responsibility for monitoring to complete trust and delegation of supervision to the workplace. The findings suggest that positive parental attitudes towards working overshadow occupational health and safety concerns. Parents may discount potential hazards based on the presence of certain mitigating factors.
NASA Astrophysics Data System (ADS)
Black, Stephen T.; Eshleman, Wally
1997-01-01
This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.
Timing Comparisons for GLEs and High-energy Proton Events using GPS Proton Measurements
NASA Astrophysics Data System (ADS)
Bernstein, V.; Winter, L. M.; Carver, M.; Morley, S.
2017-12-01
The newly released LANL GPS particle sensor data offers a unique snapshot of access of relativistic particles into the geomagnetic field. Currently, 23 of the 31 operational GPS satellites host energetic particle detectors which can detect the arrival of high-energy solar protons associated with Ground Level Enhancements (GLEs). We compare the timing profiles of solar energetic proton detections from GPS satellites as well as from ground-based Neutron Monitors and GOES spacecraft at geostationary orbit in order to understand how high-energy protons from the Sun enter the geomagnetic field and investigate potential differences in arrival time of energetic protons at GPS satellites as a function of location. Previous studies could only use one or two spacecraft at a similar altitude to track the arrival of energetic particles. With GPS data, we can now test whether the particles arrive isotropically, as assumed, or whether there exist differences in the timing and energetics viewed by each of the individual satellites. Extensions of this work could lead to improvements in space weather forecasting that predict more localized risk estimates for space-based technology.
NASA Astrophysics Data System (ADS)
Khamatnurova, M. Yu.; Gribanov, K. G.; Zakharov, V. I.; Rokotyan, N. V.; Imasu, R.
2017-11-01
The algorithm for atmospheric methane distribution retrieval in atmosphere from IASI spectra has been developed. The feasibility of Levenberg-Marquardt method for atmospheric methane total column amount retrieval from the spectra measured by IASI/METOP modified for the case of lack of a priori covariance matrices for methane vertical profiles is studied in this paper. Method and algorithm were implemented into software package together with iterative estimation of a posteriori covariance matrices and averaging kernels for each individual retrieval. This allows retrieval quality selection using the properties of both types of matrices. Methane (XCH4) retrieval by Levenberg-Marquardt method from IASI/METOP spectra is presented in this work. NCEP/NCAR reanalysis data provided by ESRL (NOAA, Boulder, USA) were taken as initial guess. Surface temperature, air temperature and humidity vertical profiles are retrieved before methane vertical profile retrieval. The data retrieved from ground-based measurements at the Ural Atmospheric Station and data of L2/IASI standard product were used for the verification of the method and results of methane retrieval from IASI/METOP spectra.
BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla
NASA Astrophysics Data System (ADS)
Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.
2012-10-01
At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Canonica, Michael; Lanzoni, Patrick; Noell, Wilfried; Lani, Sebastien
2014-03-01
Multi-object spectroscopy (MOS) is a powerful tool for space and ground-based telescopes for the study of the formation and evolution of galaxies. This technique requires a programmable slit mask for astronomical object selection. We are engaged in a European development of micromirror arrays (MMA) for generating reflective slit masks in future MOS, called MIRA. MMA with 100 × 200 μm2 single-crystal silicon micromirrors were successfully designed, fabricated and tested. Arrays are composed of 2048 micromirrors (32 x 64) with a peak-to-valley deformation less than 10 nm, a tilt angle of 24° for an actuation voltage of 130 V. The micromirrors were actuated successfully before, during and after cryogenic cooling, down to 162K. The micromirror surface deformation was measured at cryo and is below 30 nm peak-to-valley. These performances demonstrate the ability of such MOEMS device to work as objects selector in future generation of MOS instruments both in ground-based and space telescopes. In order to fill large focal planes (mosaicing of several chips), we are currently developing large micromirror arrays integrated with their electronics.
Rowley, Jack T; Joyner, Ken H
2012-01-01
This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles. PMID:22377680
Rowley, Jack T; Joyner, Ken H
2012-01-01
This paper presents analyses of data from surveys of radio base stations in 23 countries across five continents from the year 2000 onward and includes over 173,000 individual data points. The research compared the results of the national surveys, investigated chronological trends and compared exposures by technology. The key findings from this data are that irrespective of country, the year and cellular technology, exposures to radio signals at ground level were only a small fraction of the relevant human exposure standards. Importantly, there has been no significant increase in exposure levels since the widespread introduction of 3G mobile services, which should be reassuring for policy makers and negate the need for post-installation measurements at ground level for compliance purposes. There may be areas close to antennas where compliance levels could be exceeded. Future potential work includes extending the study to additional countries, development of cumulative exposure distributions and investigating the possibility of linking exposure measurements to population statistics to assess the distribution of exposure levels relative to population percentiles.
Studies of Circumstellar Disk Evolution
NASA Technical Reports Server (NTRS)
Hartmann, Lee W.
2004-01-01
Spitzer Space Telescope infrared data for our program on disk evolution has been taken (the main IRAC - 3-8 micron exposures; the 24 and 70 micron MIPS data are to come later). We now have deep maps in the four IRAC bands of the 3-Myr-old cluster Trumpler 37, and the 10-Myr-old cluster NGC 7160. Analysis of these data has now begun. We will be combining these data with our ground-based photometric and spectroscopic data to obtain a complete picture of disk frequency as a function of mass through this important age range, which spans the likely epoch of (giant) planet formation in most systems. Analysis of the SIRTF data, and follow-on ground-based spectroscopy on the converted MMT telescope using the wide-field, fiber-fed, multiobject spectrographs, Hectospec and Hectochelle, will be the major activity during the next year.Work was also performed on the following: protoplanetary disk mass accretion rates in very low-mass stars; the inner edge of T Tauri disks; accretion in intermediate-mass T Tauri stars (IMPS); and the near-infrared spectra of the rapidly-accreting protostellar disks FU Ori and V1057 Cyg.