Review of present groundwater monitoring programs at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hershey, R.L.; Gillespie, D.
1993-09-01
Groundwater monitoring at the Nevada Test Site (NTS) is conducted to detect the presence of radionuclides produced by underground nuclear testing and to verify the quality and safety of groundwater supplies as required by the State of Nevada and federal regulations, and by U.S. Department of Energy (DOE) Orders. Groundwater is monitored at water-supply wells and at other boreholes and wells not specifically designed or located for traditional groundwater monitoring objectives. Different groundwater monitoring programs at the NTS are conducted by several DOE Nevada Operations Office (DOE/NV) contractors. Presently, these individual groundwater monitoring programs have not been assessed or administeredmore » under a comprehensive planning approach. Redundancy exists among the programs in both the sampling locations and the constituents analyzed. Also, sampling for certain radionuclides is conducted more frequently than required. The purpose of this report is to review the existing NTS groundwater monitoring programs and make recommendations for modifying the programs so a coordinated, streamlined, and comprehensive monitoring effort may be achieved by DOE/NV. This review will be accomplished in several steps. These include: summarizing the present knowledge of the hydrogeology of the NTS and the potential radionuclide source areas for groundwater contamination; reviewing the existing groundwater monitoring programs at the NTS; examining the rationale for monitoring and the constituents analyzed; reviewing the analytical methods used to quantify tritium activity; discussing monitoring network design criteria; and synthesizing the information presented and making recommendations based on the synthesis. This scope of work was requested by the DOE/NV Hydrologic Resources Management Program (HRMP) and satisfies the 1993 (fiscal year) HRMP Groundwater Monitoring Program Review task.« less
A ground-water-quality monitoring program for Nevada
Nowlin, Jon O.
1986-01-01
A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.
NASA Astrophysics Data System (ADS)
Esser, B. K.; Beller, H. R.; Carroll, S.; Cherry, J. A.; Jackson, R. B.; Jordan, P. D.; Madrid, V.; Morris, J.; Parker, B. L.; Stringfellow, W. T.; Varadharajan, C.; Vengosh, A.
2015-12-01
California recently passed legislation mandating dedicated groundwater quality monitoring for new well stimulation operations. The authors provided the State with expert advice on the design of such monitoring networks. Factors that must be considered in designing a new and unique groundwater monitoring program include: Program design: The design of a monitoring program is contingent on its purpose, which can range from detection of individual well leakage to demonstration of regional impact. The regulatory goals for permit-required monitoring conducted by operators on a well-by-well basis will differ from the scientific goals of a regional monitoring program conducted by the State. Vulnerability assessment: Identifying factors that increase the probability of transport of fluids from the hydrocarbon target zone to a protected groundwater zone enables the intensity of permit-required monitoring to be tiered by risk and also enables prioritization of regional monitoring of groundwater basins based on vulnerability. Risk factors include well integrity; proximity to existing wellbores and geologic features; wastewater disposal; vertical separation between the hydrocarbon and groundwater zones; and site-specific hydrogeology. Analyte choice: The choice of chemical analytes in a regulatory monitoring program is guided by the goals of detecting impact, assuring public safety, preventing resource degradation, and minimizing cost. Balancing these goals may be best served by tiered approach in which targeted analysis of specific chemical additives is triggered by significant changes in relevant but more easily analyzed constituents. Such an approach requires characterization of baseline conditions, especially in areas with long histories of oil and gas development. Monitoring technology: Monitoring a deep subsurface process or a long wellbore is more challenging than monitoring a surface industrial source. The requirement for monitoring multiple groundwater aquifers across a range of depths and of monitoring at deeper depths than is typical for regulatory monitoring programs requires consideration of monitoring technology, which can range from clusters of wells to multiple wells in a single wellbore to multi-level systems in a single cased wellbore.
Monitored Natural Attenuation as a Remediation Strategy for Nuclear Power Plant Applications
NASA Astrophysics Data System (ADS)
Kim, K.; Bushart, S.
2009-12-01
A NRC Information Notice (IN 2006-13) was produced to inform holders of nuclear operating licenses “of the occurrence of radioactive contamination of ground water at multiple facilities due to undetected leakage from facility structures, systems, or components (SSCs) that contain or transport radioactive fluids” so that they could consider actions, as appropriate, to avoid similar problems. To reinforce their commitment to environmental stewardship the nuclear energy industry has committed to improving management of situations that have the potential to lead to the inadvertent release of radioactive fluids. This Industry Groundwater Protection Initiative, finalized in June 2007 as [NEI 07-07], calls for implementation and improvement of on-site groundwater monitoring programs and enhanced communications with stakeholders and regulators about situations related to inadvertent releases. EPRI developed its Groundwater Protection Program to provide the nuclear energy industry with the technical support needed to implement the Industry Groundwater Initiative. An objective of the EPRI Groundwater Protection Program is to provide the nuclear industry with technically sound guidance for implementing and enhancing on-site groundwater monitoring programs. EPRI, in collaboration with the EPRI Groundwater Protection Committee of utility members, developed the EPRI Groundwater Protection Guidelines for Nuclear Power Plants (EPRI Report 1015118, November 2007), which provides site-specific guidance for implementing a technically sound groundwater monitoring program. The guidance applies a graded approach for nuclear plants to tailor a technically effective and cost efficient groundwater monitoring program to the site’s hydrogeology and risk for groundwater contamination. As part of the Groundwater Protection Program, EPRI is also investigating innovative remediation technologies for addressing low-level radioactive contamination in soils and groundwater at nuclear power plant sites. One of these remediation technologies is monitored natural attenuation (MNA), which has been widely used in other industries for the remediation of contaminants in soil and groundwater. Monitored natural attenuation (MNA) is a non-intervention, but not a no-action, groundwater and soil remediation approach that involves monitoring the dilution, dispersion, and decay of contaminants to meet remediation objectives. MNA has been commonly applied at sites where soil and groundwater have been contaminated by volatile organic compounds. This method has also been applied to remediation of radiological contamination at U.S. DOE facilities and decommissioning nuclear power plant sites. The EPRI published report (1016764) provides guidance for implementing MNA at nuclear power plants for remediation of radiological contaminants in groundwater and soil. The goal of the EPRI Groundwater Protection program is to bring together experience and technologies - both from within the nuclear industry and other industries - to support the industry’s commitment to environmental stewardship. Results from the program are being published in an extensive series of reports and software, and are being communicated to members in an annual EPRI Groundwater Protection technical exchange workshop.
Framework for a ground-water quality monitoring and assessment program for California
Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler
2003-01-01
The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has developed a framework for a comprehensive ground-water-quality monitoring and assessment program for California. The proposed framework relies extensively on previous work conducted by the USGS through its National Water-Quality Assessment (NAWQA) program. In particular, the NAWQA program defines three types of ground-water assessment: (1) status, the assessment of the current quality of the ground-water resource; (2) trends, the detection of changes in water quality, and (3) understanding, assessing the human and natural factors that affect ground-water quality. A Statewide, comprehensive ground-water quality-monitoring and assessment program is most efficiently accomplished by applying uniform and consistent study-design and data-collection protocols to the entire State. At the same time, a comprehensive program should be relevant at a variety of scales, and therefore needs to retain flexibility to address regional and local issues. Consequently, many of the program components include a predominant element that will be consistently applied in all basins, and a secondary element that may be applied in specific basins where local conditions warrant attention.
Calendar Year 2016 Annual Groundwater Monitoring Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copland, John R.; Jackson, Timmie Okchumpulla; Li, Jun
Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractoroperated laboratory. National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., manages and operates SNL/NM for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. Two types of groundwater surveillance monitoring are conducted at SNL/NM: (1) on a site-wide basis as part of the SNL/NM Long-Term Stewardship (LTS) Program’s Groundwater Monitoring Program (GMP) Groundwater Surveillance Task and (2) on a site-specific groundwater monitoring at LTS/Environmental Restoration (ER) Operationsmore » sites with ongoing groundwater investigations. This Annual Groundwater Monitoring Report summarizes data collected during groundwater monitoring events conducted at GMP locations and at the following SNL/NM sites through December 31, 2016: Burn Site Groundwater Area of Concern (AOC); Chemical Waste Landfill; Mixed Waste Landfill; Technical Area-V Groundwater AOC; and the Tijeras Arroyo Groundwater AOC. Environmental monitoring and surveillance programs are required by the New Mexico Environment Department (NMED) and DOE Order 436.1, Departmental Sustainability, and DOE Order 231.1B, Environment, Safety, and Health Reporting.« less
The Savannah River Site's Groundwater Monitoring Program, third quarter 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.
The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.
40 CFR 258.58 - Implementation of the corrective action program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective...) Establish and implement a corrective action ground-water monitoring program that: (i) At a minimum, meet the requirements of an assessment monitoring program under § 258.55; (ii) Indicate the effectiveness of the...
40 CFR 257.28 - Implementation of the corrective action program.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Municipal Non-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.28... corrective action ground-water monitoring program that: (i) At a minimum, meets the requirements of an assessment monitoring program under § 257.25; (ii) Indicates the effectiveness of the corrective action...
40 CFR 257.28 - Implementation of the corrective action program.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Municipal Non-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.28... corrective action ground-water monitoring program that: (i) At a minimum, meets the requirements of an assessment monitoring program under § 257.25; (ii) Indicates the effectiveness of the corrective action...
40 CFR 258.58 - Implementation of the corrective action program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258... implement a corrective action ground-water monitoring program that: (i) At a minimum, meet the requirements of an assessment monitoring program under § 258.55; (ii) Indicate the effectiveness of the corrective...
40 CFR 258.58 - Implementation of the corrective action program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective...) Establish and implement a corrective action ground-water monitoring program that: (i) At a minimum, meet the requirements of an assessment monitoring program under § 258.55; (ii) Indicate the effectiveness of the...
40 CFR 258.58 - Implementation of the corrective action program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective...) Establish and implement a corrective action ground-water monitoring program that: (i) At a minimum, meet the requirements of an assessment monitoring program under § 258.55; (ii) Indicate the effectiveness of the...
40 CFR 257.28 - Implementation of the corrective action program.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Municipal Non-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.28... corrective action ground-water monitoring program that: (i) At a minimum, meets the requirements of an assessment monitoring program under § 257.25; (ii) Indicates the effectiveness of the corrective action...
40 CFR 257.28 - Implementation of the corrective action program.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.28 Implementation of the... ground-water monitoring program that: (i) At a minimum, meets the requirements of an assessment monitoring program under § 257.25; (ii) Indicates the effectiveness of the corrective action remedy; and (iii...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The module presents the requirements for groundwater monitoring at interim status and permitted treatment, storage, and disposal facilities. It describes the groundwater monitoring criteria for interim status and permitted facilities. It explains monitoring well placement and outlines the three stages of the groundwater monitoring program for permitted facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC for the Environmental Compliance Department ES&H Division, Y-12 National Security Complex Oak Ridge, Tennessee
2003-09-30
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2004 will be in accordance with the following requirements of DOE Order 5400.1: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are mostmore » likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2004 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2004 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-09-30
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2005 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2005 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminantsmore » are most likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2005 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2005 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copland, John Robin; Cochran, John Russell
2013-07-01
The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifiesmore » a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.« less
The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, C.D.
1993-02-04
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.
The Savannah River Site's Groundwater Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.
Yager, Tracy J.B.; Smith, David B.; Crock, James G.
2012-01-01
During 2009 and 2010, the U.S. Geological Survey monitored the chemical composition of biosolids, crops, and groundwater related to biosolids applications near Deer Trail, Colorado, in cooperation with the Metro Wastewater Reclamation District. This monitoring effort was a continuation of the monitoring program begun in 1999 in cooperation with the Metro Wastewater Reclamation District and the North Kiowa Bijou Groundwater Management District. The monitoring program addressed concerns from the public about potential chemical effects from applications of biosolids to farmland in the area near Deer Trail, Colo. This report presents chemical data from 2009 and 2010 for biosolids, crops, and alluvial and bedrock groundwater. The chemical data include the constituents of highest concern to the public (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, and plutonium) in addition to many other constituents. The groundwater section also includes data for precipitation, air temperature, and depth to groundwater at various groundwater-monitoring sites.
The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.
The Savannah River Site`s groundwater monitoring program. First quarter 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.
The Savannah River Site's groundwater monitoring program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.
Wellman, Tristan
2015-01-01
A network of candidate monitoring wells was proposed to initiate a regional monitoring program. Consistent monitoring and analysis of groundwater levels will be needed for informed decisions to optimize beneficial use of water and to limit high groundwater levels in susceptible areas. Finalization of the network will require future field reconnaissance to assess local site conditions and discussions with State authorities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-03-01
This annual monitoring report contains groundwater and surface water monitoring data obtained during calendar year (CY) 1998 by the Lockheed Martin Energy Systems, Inc. Y-12 Plant Groundwater Protection Program (GWPP) at the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant, Groundwater and surface water monitoring during CY 1998 was performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), and the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valleymore » (BCV), and the Chestnut Ridge Regime which is located south of the Y-12 Plant.« less
Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, R. L.; Lawrence, B. L.
2011-06-09
The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD2 and the ERDF Amended ROD (EPA 1999). The overall objective of the groundwater monitoring program is to determine whether ERDF has impacted the groundwater. This objective is complicated by the fact that the ERDF is situated downgradient of the numerous groundwater contamination plumes originating from the 200 West Area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2006-01-01
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminantsmore » are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2006 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. The monitoring frequency and selection criteria for each sampling location is in Appendix C. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix D. If issued, addenda to this plan will be inserted in Appendix E, and Groundwater Monitoring Schedules (when issued) will be inserted in Appendix F. Guidance for managing purged groundwater is provided in Appendix G.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted “active” status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells grantedmore » “inactive” status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2008-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2007 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2007 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2007 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). In December 2007, the BWXT corporate name was changed to Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12), which is applied to personnel and organizations throughout CY 2007 for this report. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2007 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2007 by the Y-12 GWPP and BJC address DOE Order 450.1 (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater and surface water contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.« less
Wyoming groundwater-quality monitoring network
Boughton, Gregory K.
2011-01-01
A wide variety of human activities have the potential to contaminate groundwater. In addition, naturally occurring constituents can limit the suitability of groundwater for some uses. The State of Wyoming has established rules and programs to evaluate and protect groundwater quality based on identified uses. The Wyoming Groundwater-Quality Monitoring Network (WGQMN) is a cooperative program between the U.S. Geological Survey (USGS) and the Wyoming Department of Environmental Quality (WDEQ) and was implemented in 2009 to evaluate the water-quality characteristics of the State's groundwater. Representatives from USGS, WDEQ, U.S. Environmental Protection Agency (USEPA), Wyoming Water Development Office, and Wyoming State Engineer's Office formed a steering committee, which meets periodically to evaluate progress and consider modifications to strengthen program objectives. The purpose of this fact sheet is to describe the WGQMN design and objectives, field procedures, and water-quality analyses. USGS groundwater activities in the Greater Green River Basin also are described.
Groundwater quality in the San Francisco Bay groundwater basins, California
Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module presents the requirements for groundwater monitoring at interim status and permitted treatment, storage, and disposal facilities (TSDFs) under the Resource Conservation and Recovery Act (RCRA). The goal of the module is to explain the standards and specific requirements for groundwater monitoring programs at interim status and permitted facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2009-09-01
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contaminationmore » and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.« less
Dillon, David B.; Davis, Tracy A.; Landon, Matthew K.; Land, Michael T.; Wright, Michael T.; Kulongoski, Justin T.
2016-12-09
Exploratory sampling of groundwater in coastal Los Angeles County and Kern and Kings Counties of the southern San Joaquin Valley was done by the U.S. Geological Survey from September 2014 through January 2015 as part of the California State Water Resources Control Board’s Water Quality in Areas of Oil and Gas Production Regional Groundwater Monitoring Program. The Regional Groundwater Monitoring Program was established in response to the California Senate Bill 4 of 2013 mandating that the California State Water Resources Control Board design and implement a groundwater-monitoring program to assess potential effects of well-stimulation treatments on groundwater resources in California. The U.S. Geological Survey is in cooperation with the California State Water Resources Control Board to collaboratively implement the Regional Groundwater Monitoring Program through the California Oil, Gas, and Groundwater Project. Many researchers have documented the utility of different suites of chemical tracers for evaluating the effects of oil and gas development on groundwater quality. The purpose of this exploratory sampling effort was to determine whether tracers reported in the literature could be used effectively in California. This reconnaissance effort was not designed to assess the effects of oil and gas on groundwater quality in the sampled areas. A suite of water-quality indicators and geochemical tracers were sampled at groundwater sites in selected areas that have extensive oil and gas development. Groundwater samples were collected from a total of 51 wells, including 37 monitoring wells at 17 multiple-well monitoring sites in coastal Los Angeles County and 5 monitoring wells and 9 water-production wells in southern San Joaquin Valley, primarily in Kern and Kings Counties. Groundwater samples were analyzed for field waterquality indicators; organic constituents, including volatile and semi-volatile organic compounds and dissolved organic carbon indicators; naturally present inorganic constituents, including trace elements, nutrients, major and minor ions, and iron species; naturally present stable and radioactive isotopes; dissolved noble gases; dissolved standard and hydrocarbon gases, δ13C of methane, ethane, and δ2 H of methane. In total, 249 constituents and water-quality indicators were measured. Four types of quality-control samples (blanks, replicates, matrix spikes, and surrogates spiked in environmental and blank samples) were collected at approximately 10 percent of the wells. The quality-control data were used to determine whether the groundwater-sample data were of sufficient quality for the measured analytes to be used as potential indicators of oil and gas effects. The data from the 51 groundwater samples and from the quality-control samples are presented in this report.
The Savannah River Site`s groundwater monitoring program. Third quarter 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-05-06
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in thismore » report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.« less
The Savannah River Site's groundwater monitoring program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-05-06
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in thismore » report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.« less
Groundwater quality in the Northern Sacramento Valley, California
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.
Groundwater quality in the Southern Sacramento Valley, California
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.
Groundwater quality in the Santa Barbara Coastal Plain, California
Davis, Tracy A.; Belitz, Kenneth
2016-10-03
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.
Groundwater quality in the Klamath Mountains, California
Bennett, George L.; Fram, Miranda S.
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.
,
2013-01-01
The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
2010-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2009 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in referencemore » to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2009 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2009 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2009 by the Y-12 GWPP and BJC address DOE Order 450.1A (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP. Narrative sections of this report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Appendix C contains construction details for the wells in each regime that were sampled during CY 2009 by either the Y-12 GWPP or BJC. Field measurements recorded during collection of the groundwater and surface water samples and results of laboratory analyses of the samples are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for the QA/QC samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, J. E.; Vu, A. K.; Esser, B. K.
2010-08-20
The Groundwater Ambient Monitoring and Assessment (GAMA) Program is a comprehensive groundwater quality monitoring program managed by the California State Water Resources Control Board (SWRCB). The GAMA Special Studies project provides analyses and interpretation of constituents of concern that allow assessment of current groundwater conditions. In addition, the Special Studies project develops analyses that will enhance the monitoring and assessment effort by focusing on specific constituents of concern and water quality parameters, such as disinfection byproducts (DBP), wastewater indicators, and redox conditions, as it relates to irrigation and groundwater management. This study developed a robust analytical method for the quantitationmore » of CBZ, OXC, CBZ-E, CBZ-DiOH, and CBZ-10-OH in wastewater treatement plant (WWTP) effluent and in groundwater in the parts per trillion range.« less
Revised ground-water monitoring compliance plan for the 300 area process trenches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schalla, R.; Aaberg, R.L.; Bates, D.J.
1988-09-01
This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements formore » interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination andmore » determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.
THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.
NASA Astrophysics Data System (ADS)
Conway, B. D.
2014-12-01
Land subsidence due to excess groundwater overdraft has been an ongoing problem in south-central and southern Arizona since the1940's. The first earth fissure attributed to excessive groundwater withdrawal was discovered in 1946 near Picacho, Arizona. In some areas of the State, groundwater declines of more than 400 feet have resulted in extensive earth fissuring and widespread land subsidence; land subsidence of more than 19 feet has been documented near Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence throughout Arizona since 1997 using Interferometric Synthetic Aperture Radar (InSAR) Data and Global Navigation Satellite System Data. The ADWR InSAR program has proven to be a critical resource in monitoring land subsidence throughout Arizona, resulting in the identification of more than twenty-five individual land subsidence features that cover an area of more than 1,200 square miles. The majority of these land subsidence features are a direct result of groundwater declines attributed to groundwater overdraft. Using InSAR data in conjunction with both automated and manual groundwater level datasets, ADWR is able to monitor active land subsidence areas as well as identify other areas that may require additional InSAR monitoring. InSAR data have also proven to be extremely useful in monitoring land surface uplift associated with rising groundwater levels near groundwater recharge facilities. InSAR data can show the impact of the recharged groundwater as the area of uplift extends down gradient from the recharge facility. Some highlights of recent InSAR results include the identification of a new land subsidence feature in the eastern portion of Metropolitan Phoenix where groundwater levels have recently declined; the identification of changes to a floodplain that may be exacerbating recent flooding; seasonal land subsidence and uplift related to seasonal groundwater demands; and the identification of uplift related to groundwater recharge facilities. The declining groundwater levels in Arizona are both a challenge for future groundwater availability but also for mitigating land subsidence. ADWR's InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.
Groundwater quality in the Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.
Groundwater quality in the Tahoe and Martis Basins, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.
Groundwater quality in the South Coast Interior Basins, California
Parsons, Mary C.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The South Coast Interior Basins constitute one of the study units being evaluated.
Groundwater quality in the western San Joaquin Valley, California
Fram, Miranda S.
2017-06-09
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated.
Groundwater quality in the South Coast Range Coastal groundwater basins, California
Burton, Carmen A.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The coastal basins in the Southern Coast Ranges constitute one of the study units being evaluated.
Sizirici, Banu; Tansel, Berrin
2015-04-01
Monitoring contaminant concentrations in groundwater near closed municipal solid waste landfills requires long term monitoring program which can require significant investment for monitoring efforts. The groundwater monitoring data from a closed landfill in Florida was analyzed to reduce the monitoring efforts. The available groundwater monitoring data (collected over 20 years) were analyzed (i.e., type, concentration and detection level) to identify the trends in concentrations of contaminants and spatial mobility characteristics of groundwater (i.e., groundwater direction, retardation characteristics of contaminants, groundwater well depth, subsoil characteristics), to identify critical monitoring locations. Among the 7 groundwater monitoring well clusters (totaling 22 wells) in landfill, the data from two monitoring well clusters (totaling 7 wells) located along direction of groundwater flow showed similarities (the highest concentrations and same contaminants). These wells were used to assess the transport characteristics of the contaminants. Some parameters (e.g., iron, sodium, ammonia as N, chlorobenzene, 1,4-dichlorobenzene) showed decreasing trends in the groundwater due to soil absorption and retardation. Metals were retarded by ion exchange and their concentration increased by depth indicating soil reached breakthrough over time. Soil depth did not have a significant effect on the concentrations of volatile organic contaminants. Based on the analyses, selective groundwater monitoring modifications were developed for effective monitoring to acquire data from the most critical locations which may be impacted by leachate mobility. The adjustments in the sampling strategy reduced the amount of data collected by as much as 97.7% (i.e., total number of parameters monitored). Effective groundwater sampling strategies can save time, effort and monitoring costs while improving the quality of sample handling and data analyses for better utilization of post closure monitoring funds. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2008 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2008 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., coordinating sample collection and sharing data) ensures that the CY 2008 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC,
2012-12-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2011 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12. The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are in reference to the Y-12more » grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. This report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and known extent of groundwater contamination. The CY 2011 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by Babcock & Wilcox Technical Services Y-12, LLC (B&W Y-12) and from sampling and analysis activities implemented under several monitoring programs managed by the DOE Environmental Management (EM) contractor responsible for environmental cleanup on the ORR. In August 2011, URS | CH2M Oak Ridge LLC (UCOR) replaced Bechtel Jacobs Company LLC (BJC) as the DOE EM contractor. For this report, BJC/UCOR will be referenced as the managing contractor for CY 2011. Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC/UCOR (i.e., coordinating sample collection and sharing data) ensures that the CY 2011 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. This report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent QA/QC or DQO evaluation information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC/UCOR. Such details are deferred to the respective programmatic plans and reports issued by BJC. Collectively, the groundwater and surface water monitoring data obtained during CY 2011 by the Y-12 GWPP and BJC/UCOR address DOE Order 436.1 and DOE Order 458.1 requirements for monitoring groundwater and surface water quality in areas (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring) and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). This report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. This report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP.« less
SPATIALLY-BALANCED SURVEY DESIGN FOR GROUNDWATER USING EXISTING WELLS
Many states have a monitoring program to evaluate the water quality of groundwater across the state. These programs rely on existing wells for access to the groundwater, due to the high cost of drilling new wells. Typically, a state maintains a database of all well locations, in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2006 monitoring data were obtained from wells, springs, and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions aremore » in reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge directly south of Y-12. Section 2 of this report provides background information pertinent to groundwater and surface water quality monitoring in each hydrogeologic regime, including the topography and bedrock geology, surface water drainage, groundwater system, and extent of groundwater contamination. The CY 2006 groundwater and surface water monitoring data in this report were obtained from sampling and analysis activities implemented under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT), and from sampling and analysis activities implemented under several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Cooperative implementation of the monitoring programs directed by the Y-12 GWPP and BJC (i.e., preparing SAPs, coordinating sample collection, and sharing data) ensures that the CY 2006 monitoring results fulfill requirements of all the applicable monitoring drivers with no duplication of sampling and analysis efforts. Section 3 of this report contains a summary of information regarding the groundwater and surface water sampling and analysis activities implemented under the Y-12 GWPP including sampling locations and frequency; quality assurance (QA)/quality control (QC) sampling; sample collection and handling; field measurements and laboratory analytes; data management and data quality objective (DQO) evaluation; and groundwater elevation monitoring. However, this report does not include equivalent information regarding the groundwater and surface water sampling and analysis activities associated with the monitoring programs implemented by BJC. Such details are deferred to the respective programmatic plans and reports issued by BJC (see Section 3.0). Collectively, the groundwater and surface water monitoring data obtained during CY 2006 by the Y-12 GWPP and BJC address DOE Order 450.1 (Environmental Protection Program) requirements for monitoring groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). Section 4 of this report presents a summary evaluation of the monitoring data with regard to the respective objectives of surveillance monitoring and exit pathway/perimeter monitoring, based on the analytical results for the principal groundwater and surface water contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. Section 5 of this report summarizes the most pertinent findings regarding the principal contaminants, along with recommendations proposed for ongoing groundwater and surface water quality monitoring performed under the Y-12 GWPP. Narrative sections of this report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Appendix C contains construction details for the wells in each regime that were sampled during CY 2006 by either the Y-12 GWPP or BJC. Field measurements recorded during collection of the groundwater and surface water samples and results of laboratory analyses of the samples are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for the QA/QC samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.
2006-12-07
This document reports the results of groundwater sampling in September-October 2005 and March 2006 at the grain storage facility formerly operated at Centralia, Kansas, by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). These activities were the first and second twice yearly sampling events of the two-year monitoring program approved by the CCC/USDA and Kansas Department of Health and Environment (KDHE) project managers. The initial monitoring network sampled in September and October 2005 consisted of six monitoring wells (MW1-MW6) installed in 2004, plus five groundwater piezometers (SB01, SB04, SB05, SB08, SB09) installed in 2002. The combined September-Octobermore » 2005 sampling was the first monitoring event in the planned two-year program for Centralia. The groundwater samples collected in both September and October were analyzed for volatile organic compounds (VOCs), and samples collected in September were analyzed for dissolved hydrogen and additional groundwater parameters to aid in evaluating the potential for reductive dechlorination processes. After the monitoring in September-October 2005, Argonne recommended expansion of the initial monitoring network. Previous sampling (August 2004) had already suggested that this network of six monitoring wells and five piezometers was inadequate to delineate the extent of the carbon tetrachloride plume. With the approval of the CCC/USDA and KDHE project managers, the monitoring network was expanded in January 2006 through the installation of four additional monitoring wells (MW7-MW10) and one new piezometer (SB07R) to replace a damaged piezometer (the former SB07). Details of the monitoring well and piezometer installations are reported in this document. The expanded monitoring network of ten monitoring wells (MW01-MW10) and six piezometers (SB01, SB04, SB05, SB07R, SB08, and SB09) was sampled in March 2006. This March 2006 sampling was the second monitoring event in the planned two-year program. Results of analyses for VOCs showed further increases in contaminant levels and expansion of the carbon tetrachloride plume toward the south and west from the former CCC/USDA facility. The groundwater samples collected in March 2006 were also analyzed for additional groundwater parameters to aid in the evaluation of the potential for reductive dechlorination processes. Preliminary screening of groundwater parameters provided limited evidence that reductive dechlorination of carbon tetrachloride is taking place at some locations on the former CCC/USDA facility. Groundwater levels measured manually in September 2005, March 2006, and June 2006 were used to map the potentiometric surface at Centralia. Overall, these results were consistent with each other and with previous measurements, generally indicating a groundwater flow direction toward the south-southwest from the former CCC/USDA facility. Data recorders installed in wells MW01-MW06 in August 2004 are gathering long-term data on the groundwater elevation and gradient. Data downloaded in March 2005, September 2005, and June 2006 indicate that two wells north and west of the former CCC/USDA facility boundary show distinct, transient and seasonal water level variations. In contrast, two different wells southwest and south of the former facility boundary show virtually no response to the same events. The first two monitoring events of the planned two-year monitoring program for Centralia have demonstrated increased carbon tetrachloride concentrations and lateral expansion of the contaminated zone. Argonne recommends that the CCC/USDA and KDHE project managers consider development and approval of a work plan to expedite the selection and implementation of an active remedial alternative addressing the concentrated areas of groundwater contamination before the end of the two-year monitoring program in 2007.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
2007-06-30
This document reports the results of groundwater monitoring in September 2005 and March 2006 at the grain storage facility formerly operated at Morrill, Kansas, by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). These activities were the first and second twice yearly sampling events of the two-year monitoring program approved by the CCC/USDA and Kansas Department of Health and Environment (KDHE) project managers. The monitoring network sampled in September 2005 consisted of 9 monitoring wells (MW1S-MW5S and MW1D [installed in the mid 1990s] and MW6S-MW8S [installed in 2004]), plus 3 private wells (Isch, Rillinger, and Stone). Themore » groundwater samples collected in this first event were analyzed for volatile organic compounds (VOCs), dissolved hydrogen, and additional groundwater parameters to aid in evaluating the potential for reductive dechlorination processes. After the monitoring in September 2005, Argonne recommended expansion of the initial monitoring network. Previous sampling (August 2004) had already suggested that the initial network was inadequate to delineate the extent of the carbon tetrachloride plume. With the approval of the CCC/USDA and KDHE project managers, the monitoring network was expanded in January 2006 through the installation of 3 additional monitoring wells (MW9S-MW11S). Details of the monitoring well installations are reported in this document. The expanded monitoring network of 12 monitoring wells (MW1S-MW11S and MW1D) and 3 private wells (Isch, Rillinger, and Stone) was sampled in March 2006, the second monitoring event in the planned two-year program. Results of analyses for VOCs showed minor increases or decreases in contaminant levels at various locations but indicated that the leading edge of the contaminant plume is approaching the intermittent stream leading to Terrapin Creek. The groundwater samples collected in March 2006 were also analyzed for additional groundwater parameters to aid in the evaluation of the potential for reductive dechlorination processes. Preliminary screening of groundwater parameters provided inadequate evidence that reductive dechlorination of carbon tetrachloride is taking place at some locations on the former CCC/USDA property. Groundwater levels measured manually in October 2005, March 2006, and June 2006 were used to map the potentiometric surface at Morrill. The results were generally consistent with each other and with previous measurements, indicating a groundwater flow direction to the south-southeast from the former CCC/USDA facility. Data recorders installed in wells MW1S-MW8S in July 2004 are gathering long-term data on the groundwater elevation and gradient. Data downloaded in August 2004, March 2005, October 2005, and June 2006 indicate that two relatively upgradient wells near the former CCC/USDA facility responded distinctly to apparent rainfall/recharge events. In contrast, two downgradient wells south of the former facility showed virtually no response, probably because of the damping influence of the nearby surface drainages and shallow groundwater at their locations. The first two monitoring events of the planned two-year monitoring program for Morrill have demonstrated no clear pattern of changes in carbon tetrachloride concentrations, though the contaminated zone has expanded toward the intermittent stream. Argonne recommends that the monitoring program continue as approved and that surface water samples be collected in future monitoring events (September 2006, March 2007, and September 2007).« less
Groundwater quality in the North San Francisco Bay shallow aquifer, California
Bennett, George L.; Fram, Miranda S.
2018-02-23
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The North San Francisco Bay Shallow Aquifer constitutes one of the study units being evaluated.
Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches
NASA Astrophysics Data System (ADS)
Harter, T.
2008-12-01
Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination and its typically large spatial extend requires extensive networks at an individual site to accurately and fairly monitor individual compliance. In contrast, regional networks seemingly fail to hold individual landowners accountable. But regional networks can effectively monitor large-scale impacts and water quality trends; and thus inform regulatory programs that enforce management practices tied to nonpoint source pollution. Regional monitoring networks for compliance purposes can face significant challenges in the implementation due to a regulatory and legal landscape that is exclusively structured to address point sources and individual liability, and due to the non-intensive nature of a regional monitoring program (lack of control of hot spots; lack of accountability of individual landowners).
30 CFR 950.16 - Required program amendments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... provide that the groundwater quality description in a permit application must include pH. (i) By June 30... propose to amend its program to specify the minimum groundwater quality parameters that must be monitored...
30 CFR 950.16 - Required program amendments.
Code of Federal Regulations, 2013 CFR
2013-07-01
... provide that the groundwater quality description in a permit application must include pH. (i) By June 30... propose to amend its program to specify the minimum groundwater quality parameters that must be monitored...
30 CFR 950.16 - Required program amendments.
Code of Federal Regulations, 2012 CFR
2012-07-01
... provide that the groundwater quality description in a permit application must include pH. (i) By June 30... propose to amend its program to specify the minimum groundwater quality parameters that must be monitored...
2010 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-02-01
This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Gnome-Coach (Gnome) Site in New Mexico (Figure 1). Groundwater monitoring consisted of collecting hydraulic head data and groundwater samples from the wells on site. Historically, the U.S. Environmental Protection Agency (EPA) had conducted these annual activities under the Long-Term Hydrologic Monitoring Program (LTHMP). LM took over the sampling and data collection activities in 2008 but continues to use the EPA Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, to analyze the water samples. This reportmore » summarizes groundwater monitoring and site investigation activities that were conducted at the site during calendar year 2010.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2005-09-01
This report contains the groundwater and surface water monitoring data that were obtained during calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The CY 2004 monitoring data were obtained from groundwater and surface water sampling locations in three hydrogeologic regimes at Y-12 (Figure A.1). The Bear Creek Hydrogeologic Regime (Bear Creek Regime) encompasses a section of Bear Creek Valley (BCV) between the west end of Y-12 and the west end of the Bear Creek Watershed (directions are inmore » reference to the Y-12 grid system). The Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) encompasses the Y-12 industrial facilities and support structures in BCV. The Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) encompasses a section of Chestnut Ridge south of Y-12. The CY 2004 monitoring data were obtained under the Y-12 Groundwater Protection Program (GWPP) managed by BWXT Y-12, L.L.C. (BWXT) and several monitoring programs managed by Bechtel Jacobs Company LLC (BJC). Data contained in this report meet applicable requirements of DOE Order 450.1 (Environmental Protection Program) regarding evaluation of groundwater and surface water quality in areas: (1) which are, or could be, affected by operations at Y-12 (surveillance monitoring); and (2) where contaminants from Y-12 are most likely to migrate beyond the boundaries of the ORR (exit pathway/perimeter monitoring). However, detailed analysis, evaluation, and interpretation of the CY 2004 monitoring data is deferred to the Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium (BWXT 2005). For each monitoring well, spring, and surface water sampling station included in this report, the GWPP Compendium provides: (1) pertinent well installation and construction information; (2) a complete sampling history, including sampling methods and distinguishing sampling characteristics; (3) an evaluation of hydrologic characteristics, based on pre-sampling groundwater elevations, along with a compilation of available test results (e.g., hydraulic conductivity test data); (4) a discussion of geochemical characteristics based on evaluation of the analytical results for the primary anions and cations; and (5) a detailed analysis and interpretation of the available data for the principal groundwater contaminants at Y-12: nitrate, uranium, volatile organic compounds (VOCs), gross alpha activity, and gross beta activity. The following sections of this report provide details regarding the CY 2004 groundwater and surface water monitoring activities in the Bear Creek, East Fork, and Chestnut Ridge Regime. Section 2 briefly describes the hydrogeologic system and generalized extent of groundwater contamination in each regime. Section 3 describes the monitoring programs implemented and associated sampling activities performed in each regime during CY 2004. Section 4 presents an a summary of the CY 2004 monitoring data with regard to the provisions of DOE Order 450.1 (surveillance and exit pathway/perimeter monitoring), including highlights of notable findings and time-series plots of data for CY 2004 sampling locations that provide representative examples of long-term contaminant concentration trends. Brief conclusions and proposed recommendations are provided in Section 5. Section 6 lists the documents cited for more detailed operational, regulatory, and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Monitoring well construction details are in Appendix C. Results of field measurements and laboratory analyses of the groundwater and surface water samples collected during CY 2004 are in Appendix D (Bear Creek Regime), Appendix E (East Fork Regime and surrounding areas), and Appendix F (Chestnut Ridge Regime). Appendix G contains data for quality assurance/quality control (QA/QC) samples associated with monitoring performed in each regime by the Y-12 GWPP.« less
2015-05-01
in consultation with the site management . 4.0 DATA TYPES AND QUALITY CONTROL A sampling plan must account for the collection, handling, and...GUIDANCE DOCUMENT Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management : Standard Operating Procedures...Groundwater Monitoring for Site Remediation and Management 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Halden, R.U., Roll, I.B. 5d
Groundwater Monitoring Plan. Volume 2. Final Quality Assurance Project Plan
1993-10-01
5 Table 4-2. US EPA Drinking Water MCLs ........................................ 4-6 Table 5-1. Sample Bottle Requirements, Preservation, and Holding... drinking water . " The types of quality control samples that will be collected during the Canal Creek groundwater monitoring program. ]- Jacobs...Revision No.: 0 Date: 10/27/93 Page: 6 of 9 Canal Creek Area, APG-EA, Maryland Groundwater Monitoring Plan, VOLUME I1 Table 4-2. US EPA Drinking Water
Groundwater quality in the Central Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.
Groundwater quality in the Southern Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.
Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California
Mathany, Timothy; Burton, Carmen; Fram, Miranda S.
2017-06-20
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.
Transfer of European Approach to Groundwater Monitoring in China
NASA Astrophysics Data System (ADS)
Zhou, Y.
2007-12-01
Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies in 3 pilot areas have been conducted to build research capacities of the central and provincial groundwater information centers in providing groundwater information services to decision makers and public. Groundwater regime zoning and pollution risk maps were used to lay-out groundwater quantity and quality monitoring networks, respectively. Automatic groundwater recorders were installed in selected observation wells. ArcGIS based regional groundwater information systems were constructed and used to create groundwater regime zoning and pollution risk maps. Steady state groundwater models have been constructed and calibrated. Transient groundwater models are under calibration. Groundwater resources development scenarios were formulated. The model will be used to predict what will be consequences in next 20 years if current situation continues as business as usual. Possibilities of reducing groundwater abstraction and opportunities of artificially enhanced groundwater recharge will be analyzed. Combination of decreasing abstraction and increasing recharge may lead to a sustainable plan of future groundwater resources development.
Parsons, Mary C.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts constitute one of the study units being evaluated.
Burton, Carmen
2018-05-30
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.
Fram, Miranda S.
2017-01-18
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.
NASA Astrophysics Data System (ADS)
Malone, A.; Rolfe, T.; Wildermuth, M.; Kavounas, P.
2014-12-01
The Chino Basin, located in southern California, is a large alluvial groundwater basin with storage in excess of five million acre-feet. The basin has a long history of groundwater development for various uses dating back to the early 1900s. As a result, piezometric heads declined basin-wide during the past century - in some areas by more than 200 feet. Declines of this magnitude typically cause irreversible aquifer-system compaction, which in turn results in subsidence at the ground surface. In portions of Chino Basin, land subsidence has been differential and accompanied by ground fissuring, which damaged existing infrastructure and poses concerns for new and existing development.Chino Basin Watermaster, the agency responsible for groundwater basin management, has recognized that land subsidence and ground fissuring should be minimized to the extent possible. At the same time, Watermaster is implementing aggressive groundwater-supply programs that include controlled overdraft and the possibility of causing head declines in areas prone to subsidence and fissuring. The groundwater-supply programs must also address the subsidence and fissuring phenomena.From 2001 to 2005, Watermaster conducted a technical investigation to characterize the extent, rate, and mechanisms of subsidence and fissuring. The investigation employed InSAR and ground-level surveying of benchmarks to monitor ground-surface deformation, and borehole extensometers and piezometric monitoring to establish the relationships between groundwater production, piezometric levels, and aquifer-system deformation. Based on the results of the investigation, Watermaster developed: (i) subsidence-management criteria for the areas experiencing acute subsidence and fissuring, and (ii) an adaptive management program to minimize the potential for future subsidence and fissuring across the entire Chino Basin. The science-based program includes ongoing monitoring, which now includes sophisticated fissure-monitoring techniques, data analysis, annual reporting, and adjustment to the program as warranted by the data.
NASA Astrophysics Data System (ADS)
Calderone, G. M.
2006-12-01
A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.
Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008
Senior, Lisa A.; Sloto, Ronald A.
2010-01-01
The U.S. Geological Survey in cooperation with the Chester County Water Resources Authority and the Chester County Health Department began a groundwater-quality monitoring program in 1980 in Chester County, Pa., where a large percentage of the population relies on wells for drinking-water supply. This report documents the program and serves as a reference for data collected through the program from 1980 through 2008. The initial focus of the program was to collect data on groundwater quality near suspected localized sources of contamination, such as uncontrolled landfills and suspected industrial wastes, to determine if contaminants were present that might pose a health risk to those using the groundwater. Subsequently, the program was expanded to address the effects of widely distributed contaminant sources associated with agricultural and residential land uses on groundwater quality and to document naturally occurring constituents, such as radium, radon, and arsenic, that are potential hazards in drinking water. Since 2000, base-flow stream samples have been collected in addition to well-water and spring samples in a few small drainage areas to investigate the relation between groundwater quality measured in well samples and streams. The program has primarily consisted of spatial assessment with limited temporal data collected on groundwater quality. Most data were collected through the monitoring program for reconnaissance purposes to identify and locate groundwater-quality problems and generally were not intended for rigorous statistical analyses that might determine land-use or geochemical factors affecting groundwater quality in space or through time. Results of the program found several contaminants associated with various land uses and human activities in groundwater in Chester County. Volatile organic compounds (such as trichloroethylene) were measured in groundwater near suspected localized contaminant sources in concentrations that exceeded drinking-water standards. Groundwater in some agricultural areas had concentrations of nitrate and some pesticides that exceeded drinking-water standards. Elevated concentrations of chloride were measured near salt storage areas and highways. Formaldehyde was detected in groundwater near cemeteries. In residential areas with on-site wastewater disposal, effects on groundwater quality included elevated nitrate concentrations and low concentrations of volatile organic compounds and wastewater compounds, such as antibiotics and detergents. Base-flow samples indicated that groundwater discharge to streams carried contaminants such as nitrate, pesticides, wastewater compounds, and other contaminants. Radionuclides, including radium-226, radium-228, radium-224, and radon-222, and gross alpha-particle activity were measured in groundwater at levels above established and proposed drinking-water standards in some geologic units, particularly in quartzite and quartzite schists. Arsenic concentrations above drinking-water standards were measured in a few samples and were most likely to occur in groundwater in the shales and sandstones in the northern part of the county. Other potential natural hazards, such as lead from aquifer materials or leached from plumbing because of pH, were present in concentrations above drinking-water standards infrequently (less than 10 percent of samples). Limited temporal sampling suggested that chloride concentrations in groundwater increased in the county since the program began in 1980 through 2008, reflecting increasing population and urbanization in that period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-03-01
This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.
Land subsidence and earth fissures in south-central and southern Arizona, USA
NASA Astrophysics Data System (ADS)
Conway, Brian D.
2016-05-01
Land subsidence due to groundwater overdraft has been an ongoing problem in south-central and southern Arizona (USA) since the 1940s. The first earth fissure attributed to excessive groundwater withdrawal was discovered in the early 1950s near Picacho. In some areas of the state, groundwater-level declines of more than 150 m have resulted in extensive land subsidence and earth fissuring. Land subsidence in excess of 5.7 m has been documented in both western metropolitan Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence since 2002 using interferometric synthetic aperture radar (InSAR) and since 1998 using a global navigation satellite system (GNSS). The ADWR InSAR program has identified more than 25 individual land subsidence features that cover an area of more than 7,300 km2. Using InSAR data in conjunction with groundwater-level datasets, ADWR is able to monitor land subsidence areas as well as identify areas that may require additional monitoring. One area of particular concern is the Willcox groundwater basin in southeastern Arizona, which is the focus of this paper. The area is experiencing rapid groundwater declines, as much as 32.1 m during 2005-2014 (the largest land subsidence rate in Arizona State—up to 12 cm/year), and a large number of earth fissures. The declining groundwater levels in Arizona are a challenge for both future groundwater availability and mitigating land subsidence associated with these declines. ADWR's InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with themore » monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments.« less
Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXTmore » Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.« less
The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, third quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, backgroundmore » levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site's Groundwater Monitoring Program, first quarter 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking watermore » standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
Groundwater ages and mixing in the Piceance Basin natural gas province, Colorado
McMahon, Peter B.; Thomas, Judith C.; Hunt, Andrew G.
2013-01-01
Reliably identifying the effects of energy development on groundwater quality can be difficult because baseline assessments of water quality completed before the onset of energy development are rare and because interactions between hydrocarbon reservoirs and aquifers can be complex, involving both natural and human processes. Groundwater age and mixing data can strengthen interpretations of monitoring data from those areas by providing better understanding of the groundwater flow systems. Chemical, isotopic, and age tracers were used to characterize groundwater ages and mixing with deeper saline water in three areas of the Piceance Basin natural gas province. The data revealed a complex array of groundwater ages (50,000 years) and mixing patterns in the basin that helped explain concentrations and sources of methane in groundwater. Age and mixing data also can strengthen the design of monitoring programs by providing information on time scales at which water quality changes in aquifers might be expected to occur. This information could be used to establish maximum allowable distances of monitoring wells from energy development activity and the appropriate duration of monitoring.
40 CFR 257.24 - Detection monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Disposal Units Ground-Water Monitoring and Corrective Action § 257.24 Detection monitoring program. (a... unit; (ii) The mobility, stability, and persistence of waste constituents or their reaction products in... constituents, and reaction products in the ground water; and (iv) The concentration or values and coefficients...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, J.A.
1991-06-01
A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included.
Evaluating data worth for ground-water management under uncertainty
Wagner, B.J.
1999-01-01
A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information - i.e., the projected reduction in management costs - with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program atmore » NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less
Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program atmore » NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less
Hanford Site Groundwater Protection Management Program: Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime,more » (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site.« less
Roadmap to Long-Term Monitoring Optimization
This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...
2015 Site Environmental Report Fernald Preserve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertel, Bill; Hooten, Gwen
The Fernald Preserve 2015 Site Environmental Report provides stakeholders with the results from the Fernald, Ohio, Site’s environmental monitoring programs for 2015; a summary of the U.S. Department of Energy’s (DOE’s) activities conducted onsite; and a summary of the Fernald Preserve’s compliance with the various environmental regulations, compliance agreements, and DOE policies that govern site activities. This report has been prepared in accordance with the “Integrated Environmental Monitoring Plan,” which is Attachment D of the Comprehensive Legacy Management and Institutional Controls Plan (LMICP) (DOE 2016). Remediation of the Fernald Preserve has been successfully completed with the exception of the groundwater.more » During 2015, activities at the Fernald Preserve included: environmental monitoring activities related to direct radiation, groundwater, and surface water; ecological restoration monitoring and maintenance as well as inspections, care, and monitoring of the site and the OSDF to ensure that provisions of the LMICP are fully implemented; OSDF leak detection monitoring and collection, monitoring, and treatment of leachate from the OSDF; extraction, monitoring, and treatment of contaminated groundwater from the Great Miami Aquifer (Operable Unit 5); ongoing operation of the Fernald Preserve Visitors Center, associated outreach, and educational activities; and monitoring as specified in the site’s National Pollutant Discharge Elimination System (NPDES) permit. Environmental monitoring programs were developed to ensure that the remedy remains protective of the environment. The requirements of these programs are described in detail in the LMICP and reported in this Site Environmental Report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental, LLC
2009-09-01
This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with themore » multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of Babcock & Wilcox Technical Services Y-12 LLC (hereafter referenced as B&W Y-12), the Y-12 management and operations (M&O) contractor for DOE. B&W Y-12 is a new corporate name, assumed in January 2007, for the company formerly known as BWXT Y-12, L.L.C., hereafter referenced as BWXT. This GWPP management plan addresses the requirements of DOE Order 450.1A Environmental Protection Program (hereafter referenced as DOE O 450.1A), which emphasize a site-wide approach for groundwater protection at each DOE facility through implementation of groundwater surveillance monitoring. Additionally, this plan addresses the relevant and applicable GWPP elements and goals described in the DOE O 450.1A technical guidance documents issued in June 2004 (DOE 2004) and May 2005 (DOE 2005). This GWPP management plan is a 'living' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.« less
1988-11-01
revri if necenary and iIenitif by block number) FIELO GROUP SUS-GROUP Installation Restoration Program , Groundwater ,P& Soils. Surface water ...qoulkhave been affected by the Site 3 flight line storm drainage outfall. Groundwater quali y samples were collected from the Site 4 water supply well No...monitoring. o Groundwater from the Site 4 water well No. 10 contains no VOCs. Because it remains unclear whether levels of THMs previously measured
Trace elements in groundwater used for water supply in Latvia
NASA Astrophysics Data System (ADS)
Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads
2014-05-01
Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name "GeoVipum". This study is supported by the European Social Fund project Nr.2013/0054/2DP/2.1.1.1.0/13/APIA/VIAA/007 in Latvia and European Social Fund Mobilitas grant No MJD309 in Estonia. Reference: Levins I., Gosk, E. 2007. Trace elements in groundwater as indicators of anthropogenic impact. Environmental Geology, 55, 285-290.
Obtaining representative ground water samples is important for site assessment and
remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoffmore » dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.« less
The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-10
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document.more » Analytical results from second quarter 1991 are listed in this report.« less
The Savannah River Site's Groundwater Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-10
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document.more » Analytical results from second quarter 1991 are listed in this report.« less
The Savannah River Site's Groundwater Monitoring Program: Second quarter 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, C.D.
1992-10-07
The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria sectionmore » of this document. Analytical results from second quarter 1992 are listed in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less
Enterovirus and Norovirus Monitoring under UCMR3
This presentation describes the Unregulated Contaminant Monitoring Rule round 3 (UCMR3) monitoring program for enterovirus and norovirus in groundwater. It provides the data on microbial indicators and virus occurrence during the monitoring period. Enteric virus occurrence was ab...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
This report describes the environmental surveillance program at the Niagara Falls Storage Site (NFSS) and provides the results for 1992. From 1944 to the present, the primary use of NFSS has been storage of radioactive residues produced as a by-product of uranium production. All onsite areas of residual radioactivity above guidelines have been remediated. Materials generated during remediation are stored onsite in the 4-ha (10-acre) waste containment structure (WCS). The WCS is a clay-lined, clay-capped, and grass-covered storage pile. The environmental surveillance program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uraniummore » and radium-226 concentrations in surface water, sediments, and groundwater. Several chemical parameters, including seven metals, are also routinely measured in groundwater. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Results of environmental monitoring during 1992 indicate that levels of the parameters measured were in compliance with all but one requirement: Concentrations of iron and manganese in groundwater were above NYSDEC groundwater quality standards. However, these elements occur naturally in the soils and groundwater associated with this region. In 1992 there were no environmental occurrences or reportable quantity releases.« less
ADVANCES IN GROUND WATER SAMPLING PROCEDURES
Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...
Nevada National Security Site Groundwater Program
None
2018-01-16
From 1951 to 1992, the Unites States government conducted 828 underground nuclear tests at the Nevada National Security Site. About one-third of these tests occurred near, below or within the water table - the very top portion of the groundwater layer where rock and soil are completely saturated with water. As a result, some groundwater was contaminated. The U.S. Department of Energy (DOE) began exploring the effects of groundwater contamination in the 1970s. Though contamination from underground testing has never been detected on public land, the DOE was committed to developing an advanced, reliable monitoring network that ensures the long-term protection of the public. An intensive groundwater investigation program was launched in 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Colonie Interim Storage Site (CISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at CISS began in 1984 when Congress added the site to the US Department of Energy`s Formerly Utilized Sites Remedial Action Program. CISS property and surrounding areas were radioactively contaminated by operations conducted by National Lead Industries, which manufactured various components from uranium and thorium from 1958 to 1984. The environmental monitoring program at CISS includes sampling networks for external gamma radiation exposure and for radium-226, thorium-232, and total uranium concentrations inmore » surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. In 1992 the program will also include sampling networks for radioactive and chemical contaminants in stormwater to meet permit application requirements under the Clean Water Act. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE.orders. Environmental standards are established to protect public health and the environment. Results of environmental monitoring during 1991 indicate that average concentrations of radioactive contaminants of concern were well below applicable standards and DCGS. Concentrations of some chemical contaminants in groundwater were above-the New York State Department of Environmental Conservation (Class GA) and EPA guidelines for drinking water. The potential annual radiation exposure (excluding background) calculated for a hypothetical maximally exposed individual is 0.23 mrem (milliroentgen equivalent man), which is less than an individual would receive while traveling in an airplane at 12,000 meters (39,000 feet) for one hour.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. V. Street
This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection ofmore » public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1992-09-01
This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includesmore » sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of themore » nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment.« less
Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California
Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.
2017-09-27
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies.
Fram, Miranda S.; Shelton, Jennifer L.
2018-03-23
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Mokelumne, Cosumnes, and American River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking-water supplies.
Annual Reporting of Monitoring at Morrill, Kansas in 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.
In September 2005, the CCC/USDA initiated periodic sampling of groundwater, in accord with a program (Argonne 2005b) approved by the KDHE (2005), to monitor carbon tetrachloride concentrations in the groundwater. Under the KDHE-approved monitoring plan (Argonne 2005b), groundwater was sampled twice yearly for VOCs analyses through 2011. During the initial two years of monitoring, analysis for selected geochemical parameters was also conducted to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. Consistently low levels of dissolved oxygen (DO) and oxidation-reduction potential (ORP) at monitoring well MW1D (in the deepest portion of themore » contaminated aquifer) and the presence of chloroform (the primary degradation product of carbon tetrachloride) suggested that some degree of reductive dechlorination was occurring.« less
The Savannah River Site's Groundwater Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria sectionmore » of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-12-31
The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria sectionmore » of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.B.
1998-09-01
This report presents an evaluation of the groundwater monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1997. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge bordered by the U.S. Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) to the north, Scarboro Road to the eas~ Bethel Valley Road to the south, and an unnamed drainage basin southwest of the Y-12 Plant (Figure 1). Groundwater quality monitoring is performed at hazardous and nonhazardous waste management facilities in the regime under the auspices of the Y-12 Plant Groundwater Protectionmore » Program (GWPP). The CY 1997 monitoring data are presented in Calendar Year 1997 Annual Groundwater Monitoring Report for the Chestnut Ridge Hydrogeolo~"c Regime at the US. Department of Energy Y-12 Plant, Oak Ridge, Tennessee (MA Technical Services, Inc. 1998), which also presents results of site-specific monitoring data evaluations required under the Resource Conservation and Recovery Act (RCIL4) post-closure permit (PCP) for the Chestnut Ridge Regime« less
Colonie Interim Storage Site annual environmental report for calendar year 1991, Colonie, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Colonie Interim Storage Site (CISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at CISS began in 1984 when Congress added the site to the US Department of Energy's Formerly Utilized Sites Remedial Action Program. CISS property and surrounding areas were radioactively contaminated by operations conducted by National Lead Industries, which manufactured various components from uranium and thorium from 1958 to 1984. The environmental monitoring program at CISS includes sampling networks for external gamma radiation exposure and for radium-226, thorium-232, and total uranium concentrations inmore » surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. In 1992 the program will also include sampling networks for radioactive and chemical contaminants in stormwater to meet permit application requirements under the Clean Water Act. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE.orders. Environmental standards are established to protect public health and the environment. Results of environmental monitoring during 1991 indicate that average concentrations of radioactive contaminants of concern were well below applicable standards and DCGS. Concentrations of some chemical contaminants in groundwater were above-the New York State Department of Environmental Conservation (Class GA) and EPA guidelines for drinking water. The potential annual radiation exposure (excluding background) calculated for a hypothetical maximally exposed individual is 0.23 mrem (milliroentgen equivalent man), which is less than an individual would receive while traveling in an airplane at 12,000 meters (39,000 feet) for one hour.« less
Continuous monitoring of water flow and solute transport using vadose zone monitoring technology
NASA Astrophysics Data System (ADS)
Dahan, O.
2009-04-01
Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and contaminant transport in various hydrological and geological setups. These include floodwater infiltration in arid environments, land use impact on groundwater quality, and control of remediation process in a contaminated vadose zone. The data which is collected by the VMS allows direct measurements of flow velocities and fluxes in the vadose zone while continuously monitoring the chemical evolution of the percolating water. While real time information on the hydrological and chemical properties of the percolating water in the vadose is essential to prevent groundwater contamination it is also vital for any remediation actions. Remediation of polluted soils and aquifers essentially involves manipulation of surface and subsurface hydrological, physical and biochemical conditions to improve pollutant attenuation. Controlling the biochemical conditions to enhance biodegradation often includes introducing degrading microorganisms, applying electron donors or acceptors, or adding nutrients that can promote growth of the desired degrading organisms. Accordingly real time data on the hydrological and chemical properties of the vadose zone may be used to select remediation strategies and determine its efficiency on the basis of real time information.
Hanford Site ground-water monitoring for 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresel, P.E.; Luttrell, S.P.; Evans, J.C.
This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less
77 FR 40836 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
....302. Number, Location and Depth of Monitoring Points The water quality monitoring system shall accurately characterize groundwater and surface water flow and chemistry and flow systems on the site and... properties of coal ash beneficially used and water quality monitoring requirements. Pennsylvania is...
Fram, Miranda S.; Shelton, Jennifer L.
2018-01-08
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
This document describes the environmental monitoring program at the Hazelwood Interim Storage Site (HISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of HISS began in 1984 when the site was assigned to the US Department of Energy (DOE) as part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Development Appropriations Act. DOE placed responsibility for HISS under the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of themore » nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at HISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and radium-226, thorium-230, and total uranium concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards and DCGs are established to protect public health and the environment.« less
1988 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millard, G.; Yeager, G.; Phelan, J.
1989-05-01
Sandia National Laboratories (SNL), Albuquerque is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released in small quantities from its research activities, SNL, Albuquerque has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. A total of 5.23 curies of argon-41 were released as a result of SNL, Albuquerque operations in 1988. The albuquerque population received an estimated 0.04 person-rem from airborne radioactive releases, whereas it received greater than 44,500 person-rem from naturally occurring radionuclides. A nonradioactive effluent monitoring program at SNL,more » Albuquerque includes groundwater, stormwater and sewage monitoring. Results indicate that the groundwater has not been impacted by the chemical waste landfill. Preliminary testing of stormwater showed that no pollutants were above minimum detectable levels. A program to investigate potential remedial action sites has been started. 47 refs., 12 figs., 19 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with thesemore » waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry.« less
Friedel, Michael J.
2008-01-01
Mauritania anticipates an increase in mining activities throughout the country and into the foreseeable future. Because mining-induced changes in the landscape are likely to affect their limited ground-water resources and sensitive aquatic ecosystems, a water-quality assessment program was designed for Mauritania that is based on a nationally consistent environmental stratification framework. The primary objectives of this program are to ensure that the environmental monitoring systems can quantify near real-time changes in surface-water chemistry at a local scale, and quantify intermediate- to long-term changes in groundwater and aquatic ecosystems over multiple scales.
Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard
NASA Astrophysics Data System (ADS)
Dahan, Ofer
2016-04-01
Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models where then used to assess the long term impact of various agricultural setups on the quantity and quality of groundwater recharge. Relevant publications: Turkeltaub et al., WRR. 2016; Turkeltaub et al., J. Hydrol. 2015: Dahan et al., HESS 2014. Baram et al., J. Hydrol. 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Rick
2012-12-01
Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outsidemore » the site boundaries have not been affected by project-related contaminants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activitiesmore » in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE 2005), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). This report provides results for monitoring events in April and September 2009. Under the KDHE-approvedmore » monitoring plan (Argonne 2005b), groundwater was initially sampled twice yearly for a period of two years (in fall 2005, in spring and fall 2006, and in spring and fall 2007). The samples were analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The analytical results for groundwater sampling events at Morrill from September 2005 to October 2008 were documented previously (Argonne 2006a,b, 2007, 2008a,b, 2009). Those results consistently demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 risk-based screening level of 5.0 {micro}g/L for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Low levels ({le} 1.3 {micro}g/L) of carbon tetrachloride were persistently detected at monitoring well MW8S, on the bank of an intermittent tributary to Terrapin Creek. This observation suggested a possible risk of contamination of the surface waters of the creek. That concern is the regulatory driver for ongoing monitoring. In light of the early findings, in 2006 the CCC/USDA recommended expansion of the approved monitoring program to include the collection and analysis of surface water samples along Terrapin Creek (Argonne 2006a). At the request of the KDHE (2007a), locations for both surface water and shallow sediment sampling were discussed with the KDHE in January 2007. An addendum to the existing monitoring plan (Appendix A) and a standard operating procedure (SOP AGEM-15; Appendix B) for sediment sampling were submitted to the KDHE on the basis of these discussions and were subsequently approved (KDHE 2008b). Results of sediment sampling prior to 2009 were reported previously (Argonne 2008a,b; 2009). To supplement the original scope of the monitoring, Argonne also sampled natural vegetation along Terrapin Creek in October 2006, April 2007, and July 2007 for analyses for VOCs. The results of these plant tissue analyses were reported previously (Argonne 2008a, 2009). The April and September 2009 sampling events reported here represent a continuation of the two-year monitoring program, as requested by the KDHE (2007b). The groundwater sampling is presently conducted, in accord with the monitoring plan (Argonne 2005b) and the addendum to that plan (Appendix A in this report), in a network of 12 monitoring wells and 3 private wells (Figure 1.1), at locations approved by the KDHE (2008b). The findings of the April and September 2009 monitoring events at Morrill support the following conclusions: (1) Groundwater flow during the early spring and the later part of this review period was predominantly to the south-southeast, from the vicinity of the former CCC/USDA facility toward Terrapin Creek. In late spring, a slight shift occurred toward more southerly groundwater flow (possibly southwesterly in the immediate vicinity of the intermittent tributary that flows into Terrapin Creek). This shift in the late spring reflected transient seasonal precipitation and recharge that resulted in higher groundwater levels at this time. (2) No significant changes were observed in the levels or distribution of carbon tetrachloride in the groundwater at Morrill during the current review period, or in comparison to the results of the spring and fall 2008 monitoring events. A maximum carbon tetrachloride concentration of 28-30 {micro}g/L was identified in groundwater - at well MW3S - during both the April and September 2009 sampling events. (3) No carbon tetrachloride contamination was detected in surface waters or shallow streambed sediments sampled at five locations along Terrapin Creek, downgradient from the former CCC/USDA facility. (4) Sampling of tree branch tissues from existing trees for VOCs analyses can be an indicator of shallow subsurface groundwater contamination. Detections of carbon tetrachloride in vegetation at the Morrill site to date have been generally consistent with the documented location of the groundwater plume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.L.; Hawkins, W.L.; Mathews, M.
This report describes research done at Los Alamos in FY 1993 for the Hydrologic Resources Management Program. The US Department of Energy funds this research through two programs at the Nevada Test Site (NTS): defense and groundwater characterization. Los Alamos personnel have continued to study the high-pressure zone created in the aquifer under Yucca Flat. We analyzed data from a hole in this area (U-7cd) and drilled another hole and installed a water monitoring tube at U-4t. We analyzed water from a number of locations on the NTS where we know there are radionuclides in the groundwater and critiqued themore » effectiveness of this monitoring effort. Our program for analyzing postshot debris continued with material from the last nuclear test in September 1992. We supported both the defense program and the groundwater characterization program by analyzing water samples from their wells and by reviewing documents pertaining to future drilling. We helped develop the analytical methodology to be applied to water samples obtained in the environmental restoration and waste management efforts at the NTS. Los Alamos involvement in the Hydrologic Resources Management Program is reflected in the appended list of documents reviewed, presentations given, papers published, and meetings attended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drier, R.B.; Caldanaro, A.J.
1996-12-01
This document, Sampling Results, DNAPL Monitoring Well G W-729, Third Quarter FY 1995 through Third Quarter FY 1996, was performed under Work Breakdown Structure 1.4.12.1.1.02 (Activity Data Sheet 2312, `Bear Creek Valley`). This document provides the Environmental Restoration Program with groundwater concentrations for nonradionuclides in the vicinity of the Y-12 Burial Grounds. These data can be used to determine reference concentrations for intermediate and deep groundwater systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.
In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampledmore » twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was taking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) has requested that sitewide monitoring continue at Centralia until a final remedy has been selected (as part of a Corrective Action Study [CAS] evaluation) and implemented for this site. In response to this request, twice-yearly sampling of 10 monitoring wells and 6 piezometers (Figure 1.1) previously approved by the KDHE for monitoring of the groundwater at Centralia (KDHE 2005a,b) was continued in 2008. The sampling events under this extension of the two-year (2005-2007) monitoring program occurred in March and September 2008 (Argonne 2008b, 2009b). Additional piezometers specifically installed to evaluate the progress of the IM pilot test (PMP1-PMP9; Figure 1.2) were also sampled in 2008; the results of these analyses were reported and discussed separately (Argonne 2009a). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program to address both of the continuing monitoring objectives until a CAS for Centralia is developed (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve previously established (before the pilot test) monitoring points (locations identified in Figure 1.3) and the five outlying pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.4); and (2) Sampling twice yearly at the five pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.4). With the approval of the KDHE (2009), groundwater sampling for analyses of VOCs and selected other geochemical parameters was conducted at Centralia under the interim monitoring program outlined above in April and October 2009. This report documents the findings of the 2009 monitoring events.« less
Groundwater studies: principal aquifer surveys
Burow, Karen R.; Belitz, Kenneth
2014-01-01
In 1991, the U.S. Congress established the National Water-Quality Assessment (NAWQA) program within the U.S. Geological Survey (USGS) to develop nationally consistent long-term datasets and provide information about the quality of the Nation’s streams and groundwater. The USGS uses objective and reliable data, water-quality models, and systematic scientific studies to assess current water-quality conditions, to identify changes in water quality over time, and to determine how natural factors and human activities affect the quality of streams and groundwater. NAWQA is the only non-regulatory Federal program to perform these types of studies; participation is voluntary. In the third decade (Cycle 3) of the NAWQA program (2013–2023), the USGS will evaluate the quality and availability of groundwater for drinking supply, improve our understanding of where and why water quality is degraded, and assess how groundwater quality could respond to changes in climate and land use. These goals will be addressed through the implementation of a new monitoring component in Cycle 3: Principal Aquifer Surveys.
Groundwater monitoring well assessment final work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
Jacobs Engineering Group Inc. (JEG) has been contracted by Environmental Management Operations (EMO) to develop and implement a Groundwater Monitoring Well Assessment Plan for Canal Creek in the Edgewood Area of Aberdeen Proving Ground (APG-EA). The task will be performed under the provisions of Master Agreement 071914-A-D7, Task Order 142133. The project consists of assessing the condition of existing groundwater monitoring wells in the Canal Creek Area prior to a groundwater sampling program. The following Work Plan describes the technical approach that will be used to conduct field work for the project. Integrity of some monitoring wells installed at APG-EAmore » has come into question because of problems with well completions that were detected in wells at the O-field Study Area during a recent sampling event. Because of this, EPA and APG-DSHE officials have requested a well integrity assessment for a percentage of 168 monitoring wells installed at the Canal Creek Study Area(14 by USATHAMA, 152 by USGS). Results of the well assessment will be used to determine if these wells were completed in a fashion that minimizes the potential for either cross-contamination of aquifers or leakage of water from the surface into the well.« less
Groundwater conditions and studies in the Brunswick–Glynn County area, Georgia, 2008
Cherry, Gregory S.; Peck, Michael F.; Painter, Jaime A.; Stayton, Welby L.
2010-01-01
The Upper Floridan aquifer is contaminated with saltwater in a 2-square-mile area of downtown Brunswick, Georgia. This contamination has limited development of the groundwater supply in the Glynn County area. Hydrologic, geologic, and water-quality data are needed to effectively manage water resources. Since 1959, the U.S. Geological Survey has conducted a cooperative water program with the City of Brunswick to monitor and assess the effect of groundwater development on saltwater contamination of the Floridan aquifer system. During calendar year 2008, the cooperative water program included continuous water-level recording of 12 wells completed in the Floridan, Brunswick, and surficial aquifer systems; collecting water levels from 21 wells to map the potentiometric surface of the Upper Floridan aquifer during July 2008; and collecting and analyzing water samples from 26 wells to map chloride concentrations in the Upper Floridan aquifer during July 2008. Equipment was installed on 3 wells for real-time water level and specific conductance monitoring. In addition, work was continued to refine an existing groundwater-flow model for evaluation of water-management scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. On the basis of available information, the CCC/USDA believes that one or more third parties operated this facility after termination of the CCC/USDA's lease in 1971. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE), to monitor levels of carbon tetrachloride contaminationmore » identified in the groundwater at this site (Argonne 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater has been sampled twice yearly for a recommended period of two years. The samples are analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 12 monitoring wells and 3 private wells (Figure 1.1), at locations approved by the KDHE. The scope of the originally approved monitoring has been expanded to include vegetation sampling (initiated in October 2006) and surface water and stream bed sediment sampling (initiated in March 2007). The analytical results for groundwater sampling events at Morrill in September 2005, March 2006, September 2006, and March 2007 were documented previously (Argonne 2006a, 2007c,e). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level (5.0 {micro}g/L) for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Little clear pattern of change in the concentrations observed at the individual monitoring points and little plume migration have been observed in previous monitoring events. Low levels ({le} 1.3 {micro}g/L) of carbon tetrachloride have persistently been detected at monitoring well MW8S, however, along an intermittent tributary to Terrapin Creek. This observation suggests a possible risk of contamination of the surface waters of the creek. In light of these findings, in 2006 the CCC/USDA recommended expansion of the approved monitoring program to include the collection and analysis of surface water samples along Terrapin Creek (Argonne 2007e). At the request of the KDHE (KDHE 2007a), locations for both surface water and shallow sediment sampling were discussed with the KDHE in January 2007. An addendum to the existing monitoring plan and a standard operating procedure (SOP AGEM-15) for sediment sampling were submitted to the KDHE on the basis of these discussions (Argonne 2007a,b). This report presents the results of groundwater, surface water, and sediment sampling performed at Morrill in October 2007, in accord with the monitoring plan (Argonne 2005b) and the addendum to that plan (Argonne 2007a). To supplement these studies, Argonne also sampled natural vegetation along Terrapin Creek in October 2006, April 2007, and July 2007 for analyses for VOCs. The results of the plant tissue analyses are included in this report. The October 2007 groundwater sampling at Morrill represents the fifth and final monitoring event performed under the recommended two-year monitoring program approved by the KDHE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental LLC; Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex
This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with themore » multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT), the Y-12 management and operations (M&O) contractor for DOE. This GWPP management plan addresses the requirements of DOE Order 450.1 (BWXT Y12 S/RID) regarding the implementation of a site-wide approach for groundwater protection at each DOE facility. Additionally, this plan is a ''living'' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
This report describes the calendar year 1996 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory (INEEL). Results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs are included in this report. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of human health and themore » environment. This report compares 1996 data with program-specific regulatory guidelines and past data to evaluate trends.« less
Sorenson, S.K.; Cascos, P.V.; Glass, R.L.
1984-01-01
A program to monitor the ground- and surface water quality in the Livermore-Amador Valley has been operated since 1976. As of 1982, this monitoring network consisted of approximately 130 wells, about 100 of which were constructed specifically for this program, and 9 surface water stations. Increased demand on the groundwater for municipal and industrial water supply in the past has caused a decline in water levels and a gradual buildup of salts from natural surface-water recharge and land disposal of treated wastewater from waste treatment plants. Results of this study identify the salt buildup to be the major problem with the groundwater quality. Established water quality objectives for dissolved solids are exceeded in 52 of 130 wells. Concentrations of dissolved nitrate are also in excess of basin objectives and health standards. Water quality in both surface and groundwater is highly variable areally. Magnesium to calcium magnesium bicarbonate groundwater are found in the areas where most of the high volume municipal wells are located. Large areas of sodium bicarbonate water occur in the northern part of the valley. Except for two stations on Arroyo Las Positas which has sodium chloride water, surface water is mixed-cation bicarbonate water. (USGS)
Estes, Tammara L; Pai, Naresh; Winchell, Michael F
2016-06-01
A key factor in the human health risk assessment process for the registration of pesticides by the US Environmental Protection Agency (EPA) is an estimate of pesticide concentrations in groundwater used for drinking water. From 1997 to 2011, these estimates were obtained from the EPA empirical model SCI-GROW. Since 2012, these estimates have been obtained from the EPA deterministic model PRZM-GW, which has resulted in a significant increase in estimated groundwater concentrations for many pesticides. Historical groundwater monitoring data from the National Ambient Water Quality Assessment (NAWQA) Program (1991-2014) were compared with predicted groundwater concentrations from both SCI-GROW (v.2.3) and PRZM-GW (v.1.07) for 66 different pesticides of varying environmental fate properties. The pesticide environmental fate parameters associated with over- and underprediction of groundwater concentrations by the two models were evaluated. In general, SCI-GROW2.3 predicted groundwater concentrations were close to maximum historically observed groundwater concentrations. However, for pesticides with soil organic carbon content values below 1000 L kg(-1) and no simulated hydrolysis, PRZM-GW overpredicted, often by greater than 100 ppb. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
40 CFR 265.91 - Ground-water monitoring system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...
40 CFR 265.91 - Ground-water monitoring system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...
40 CFR 265.91 - Ground-water monitoring system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...
40 CFR 265.91 - Ground-water monitoring system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water monitoring system. 265.91... DISPOSAL FACILITIES Ground-Water Monitoring § 265.91 Ground-water monitoring system. (a) A ground-water monitoring system must be capable of yielding ground-water samples for analysis and must consist of: (1...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, W.J.; Liddle, S.K.
1986-09-01
The primary objectives of this project were to collect and analyze groundwater, surface water, and sediment samples and to perform an initial characterization of the hydrogeochemical regime at potential contamination sites on Shaw Air Force Base near Sumter, South Carolina. This study constituted Phase II of the U.S. Air Force Installation Restoration Program (IRP). Five potential sources of groundwater pollution were studied. The evaluation primarily included the drilling of soil test borings, the installation, development, and sampling of groundwater monitoring wells, and the analyses of soil, surface water, and groundwater samples. Also used in the study were field measurements ofmore » water quality, water-level measurements site observations, published hydrogeologic data and Shaw AFB documents.« less
NASA Astrophysics Data System (ADS)
Townsend-Small, A.
2017-12-01
People living in rural areas of the United States often depend on groundwater as the only domestic and agricultural water resource. Hydraulic fracturing (or "fracking") has led to widespread fears of groundwater contamination, and many people lack resources for monitoring their water. To help in this effort, I led a three-year free groundwater monitoring program for residents of parts of the Utica Shale drilling region of Ohio from early 2012 to early 2015. Our team took samples and made laboratory measurements of species meant to act as indicators of the presence of natural gas or fracking fluid in groundwater. All data were made available to participants, and all participation was voluntary. The project team also made several presentations about our findings at community meetings. In this presentation, I will discuss challenges associated with obtaining funding and communicating results with the media, the oil and gas industry, Congress, and my university. However, opportunities have arisen from this work as well, beyond the obvious opportunity for public service, including recruitment of undergraduate and graduate students to the project team; generation of scientific data in an emerging area of research; and a better understanding of policy needs for rural residents in Appalachia.
Annual summary of ground-water conditions in Arizona, spring 1984 to spring 1985
,
1986-01-01
In arid and semiarid regions such as Arizona, the availability of adequate water supplies has a significant influence on the type and extent of economic development. About two-thirds of the water used in the State is groundwater. The nature and extent of the groundwater reservoirs must be known for proper management of this valuable resource. The U.S. Geological Survey, in cooperation with the State of Arizona, has conducted a program of groundwater studies in Arizona since 1939. The primary purposes of these studies are to define the amount, location, and quality of the groundwater resources of Arizona and to monitor the effects of large-scale development of the groundwater supplies. The program includes the collection, compilation, and analysis of the geologic and hydrologic data necessary to evaluate the groundwater resources of the State. The basic hydrologic data are in computer storage and are available to the public. Since 1974, a major thrust of the program has been to inventory the groundwater conditions in the 68 groundwater areas of the State. Several selected groundwater areas are studied each year; water levels are measured annually in a statewide observation well network, many groundwater samples are collected and analyzed annually, and groundwater pumpage is computed for most of the areas. As of July 1985, reports had been published for 56 of the 68 groundwater areas. Data collected in the groundwater areas include information on selected wells, water level measurements, and water samples for chemical analysis. The data for each of the selected groundwater areas are analyzed, and the results are published in map form. Typically, the maps show depth to water; change in water levels; altitude of the water level; and quality of water data, such as specific conductance, dissolved solids, and fluoride. (Lantz-PTT)
Technical approach to groundwater restoration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) andmore » minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures.« less
Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration
NASA Astrophysics Data System (ADS)
Grasso, K.; Cladouhos, T. T.; Garrison, G.
2013-12-01
Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater monitoring program is currently on-going.
40 CFR 258.55 - Assessment monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 258.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.55 Assessment... be shown that the removed constituents are not reasonably expected to be in or derived from the waste...
40 CFR 258.55 - Assessment monitoring program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...
40 CFR 258.55 - Assessment monitoring program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...
40 CFR 258.55 - Assessment monitoring program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... reaction products in the unsaturated zone beneath the MSWLF unit; (iii) The detectability of indicator parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
NASA Astrophysics Data System (ADS)
Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.
2016-12-01
For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).
Modeling 3H-3He Gas-Liquid Phase Transport for Interpretation of Groundwater Age
NASA Astrophysics Data System (ADS)
Carle, S. F.; Esser, B.; Moran, J. E.
2009-12-01
California’s Groundwater Ambient Monitoring and Assessment (GAMA) Program has measured many hundreds of tritium (3H) and helium-3 (3He) concentrations in well water samples to derive estimates of groundwater age at production and monitoring wells in California basins. However, a 3H-3He age differs from an ideal groundwater age tracer in several respects: (1) the radioactive decay of 3H results in the accumulation of 3He being first-order with respect to 3H activity (versus a zero-order age-mass accumulation process for an ideal tracer), (2) surface concentrations of 3H as measured in precipitation over the last several decades have not been uniform, and (3) the 3H-3He “clock” begins at the water table and not at the ground surface where 3H source measurements are made. To better understand how these non-idealities affect interpretation of 3H-3He apparent groundwater age, we are modeling coupled gas-liquid phase flow and 3H-3He transport including processes of radiogenic decay, phase equilibrium, and molecular diffusion for water, air, 3H, and 3He components continuously through the vadose zone and saturated zone. Assessment of coupled liquid-gas phase processes enables consideration of 3H-3He residence time and dispersion within the vadose zone, including partitioning of tritiogenic 3He to the gas phase and subsequent diffusion into the atmosphere. The coupled gas-liquid phase modeling framework provides direct means to compare apparent 3H-3He age to ideal mean or advective groundwater ages for the same groundwater flow conditions. Examples are given for common groundwater flow systems involving areal recharge, discharge to streams or long-screened wells, and aquifer system heterogeneity. The Groundwater Ambient Monitoring and Assessment program is sponsored by the California State Water Resources Control Board and carried out in cooperation with the U.S. Geological Survey. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Environmental monitoring of the US Department of Energy's (DOE) Maywood Interim Storage Site (MISS) and surrounding area began in 1984. MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The MISS Environmental monitoring programs was established to accommodate facility characteristics, applicable regulations, hazard potential, quantities and concentrations of materials released, extent and use of affected land and water, and localmore » public interest or concern. The environmental monitoring program at MISS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium, radium-226, and thorium-232 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards; federal, state, and local applicable or relevant and appropriate requirements (ARARs); and/or DOE derived concentration guidelines (DCGs). Environmental standards, ARARs, and DCGs are established to protect public health and the environment. Results from the 1990 environmental monitoring program show that concentrations of the contaminants of concern were all below applicable standards. Because the site is used only for interim storage and produces no processing effluents, all monitoring, except for radon and direct gamma radiation, was done on a quarterly basis. 18 refs., 17 figs., 28 tabs.« less
Stamm, Robert G.
2018-06-08
BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly completed. This was done for three principal reasons. First, there was an immediate need to know the distribution of the relatively undisturbed surface to near-surface bedrock geology and unconsolidated materials for the collection of baseline surface data prior to drill site development (drill pad access road, drill pad leveling) and later during monitoring associated with well drilling, well development, and well production. Second, it was necessary to know the bedrock geology to support the siting of: (1) multiple shallow groundwater monitoring wells (possibly as many as four) surrounding and located immediately adjacent to the drill pad, and (2) deep groundwater monitoring wells (possibly two) located at distance from the drill pad with one possibly being sited along one of the deviated production drill legs. Lastly, the framework geology would provide the lateral extent, thickness, lithology, and expected discontinuities of geologic units (to be parsed or grouped as hydrostratigraphic units) and regional structure trends as inputs into the groundwater model.This report provides the methodology of geologic data accumulation and aggregation, and its integration into a geographic information system (GIS) based program. The GIS program will allow multiple data to be exported in various formats (shapefiles [.shp], database files [.dbf], and Keyhole Markup Language files [.KML]) for use in surface and subsurface geologic site characterization, for sampling strategies, and for inputs for groundwater modeling.
40 CFR 258.51 - Ground-water monitoring systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...
40 CFR 258.51 - Ground-water monitoring systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Ground-water monitoring systems. 258.51... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...
40 CFR 257.22 - Ground-water monitoring systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...
40 CFR 258.51 - Ground-water monitoring systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 258... CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a...
40 CFR 257.22 - Ground-water monitoring systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Patrick; Alvarado, Juan
This report serves as the combined annual report for post-closure activities for the following closed corrective action units (CAUs): CAU 90, Area 2 Bitcutter Containment CAU 91, Area 3 U-3fi Injection Well CAU 92, Area 6 Decon Pond Facility CAU 110, Area 3 WMD U-3ax/bl Crater CAU 111, Area 5 WMD Retired Mixed Waste Pits CAU 112, Area 23 Hazardous Waste Trenches The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted annually at CAUs 90, 91, and 112; semiannually at CAUs 92 and 110;more » and quarterly at CAU 111. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 1.0 inches in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 inch in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. At CAU 110, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted in addition to the visual inspections. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. This report will address all monitoring items notes above except groundwater monitoring. Groundwater monitoring is documented in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site. All required inspections, maintenance, and monitoring were conducted in accordance with the post-closure requirements of the permit. Revision 4 of Permit NEV HW0101 was issued effective December 10, 2015, and remains in effect until December 10, 2020.« less
Annual report of groundwater monitoring at Centralia, Kansas, in 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.
In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twicemore » yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation processes (reductive dechlorination) in the subsurface environment (Argonne 2006, 2007a, 2008a). The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound, in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) requested that sitewide monitoring continue until a final remedy is selected (as part of a Corrective Action Study [CAS] evaluation) and implemented. In response to this request, the established sampling across the site and additional sampling in the IM pilot test area continued in 2008 (Argonne 2008b, 2009a,b). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program for both the wider site and the IM pilot test area (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve monitoring points across the site (Figure 1.1) and five outlying IM pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.2); and (2) Twice yearly sampling of five IM pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.2). With the approval of the KDHE (2009), the initial groundwater sampling for VOCs and geochemical analyses under the interim monitoring plan outlined above was conducted in 2009 (Argonne 2010). The present report documents the findings of the 2010 monitoring events, conducted on April 5 and September 19-21, 2010.« less
Classification management plan of groundwater quality in Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chun Ming; Chen, Yu Ying; Pan, Shih Cheng; Li, Hui Jun; Hsiao, Fang Ke
2017-04-01
Taiwan Environmental Protection Administration has been monitoring regional water quality for 14 years. Since the beginning of 2002 till now, there are 453 regional groundwater monitoring wells in ten groundwater subregions in Taiwan, and the monitoring of groundwater quality has been carried out for a long time. Currently, water quality monitoring project has reached 50 items, while the number of water quality monitoring data has reached more than 20,000. In order to use the monitoring data efficiently, this study constructed the localized groundwater quality indicators of Taiwan. This indicator takes into account the different users' point of view, incorporating the Taiwan groundwater pollution monitoring standards (Category II), irrigation water quality standard and drinking water source water quality standard. 50 items of water quality monitoring projects were simplified and classified. The groundwater quality parameters were divided into five items, such as potability for drinking water, salting, external influence, health influences and toxicity hazard. The weight of the five items of groundwater was calculated comprehensively, and the groundwater quality of each monitoring well was evaluated with three grades of good, ordinary, and poor. According to the monitoring results of the groundwater monitoring wells in October to December of 2016, about 70% of groundwater quality in Taiwan is in good to ordinary grades. The areas with poor groundwater quality were mostly distributed in coastal, agriculture and part of the urban areas. The conductivity or ammonia nitrogen concentration was higher in those regions, showing that groundwater may be salinized or affected by external influences. Groundwater quality indicators can clearly show the current comprehensive situation of the groundwater environment in Taiwan and can be used as a tool for groundwater quality classification management. The indicators can coordinate with the Taiwan land planning policy in the future, and will be able to effectively grasp the changes of the national sub-regional environmental resources, which can serve as one of the important references in national land zoning according to environmental resources. Keywords: Groundwater Quality Indicators, Groundwater Quality Classification management
40 CFR 264.99 - Compliance monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the availability of laboratory facilities to perform the analysis of ground-water samples. (e) The... Administrator, and repeat the analysis. If the second analysis confirms the presence of new constituents, the... Administrator within seven days after the completion of the second analysis and add them to the monitoring list...
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
40 CFR 258.54 - Detection monitoring program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.54 Detection... indicator parameters for a MSWLF unit, in lieu of some or all of the heavy metals (constituents 1-15 in... parameters, waste constituents, and reaction products in the ground water; and (iv) The concentration or...
Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to devel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Rick
2013-10-01
Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.
Evans, W.C.; Bergfeld, D.; Sutton, A.J.; Lee, R.C.; Lorenson, T.D.
2015-01-01
We report chemical data for selected shallow wells and coastal springs that were sampled in 2014 to determine whether geothermal power production in the Puna area over the past two decades has affected the characteristics of regional groundwater. The samples were analyzed for major and minor chemical species, trace metals of environmental concern, stable isotopes of water, and two organic compounds (pentane and isopropanol) that are injected into the deep geothermal reservoir at the power plant. Isopropanol was not detected in any of the groundwaters; confirmed detection of pentane was restricted to one monitoring well near the power plant at a low concentration not indicative of source. Thus, neither organic compound linked geothermal operations to groundwater contamination, though chemical stability and transport velocity questions exist for both tracers. Based on our chemical analysis of geothermal fluid at the power plant and on many similar results from commercially analyzed samples, we could not show that geothermal constituents in the groundwaters we sampled came from the commercially developed reservoir. Our data are consistent with a long-held view that heat moves by conduction from the geothermal reservoir into shallow groundwaters through a zone of low permeability rock that blocks passage of geothermal water. The data do not rule out all impacts of geothermal production on groundwater. Removal of heat during production, for example, may be responsible for minor changes that have occurred in some groundwater over time, such as the decline in temperature of one monitoring well near the power plant. Such indirect impacts are much harder to assess, but point out the need for an ongoing groundwater monitoring program that should include the coastal springs down-gradient from the power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-06-01
This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmentalmore » and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.« less
Gordon, Debbie W.
2006-01-01
The U.S. Geological Survey (USGS) has been working with the Albany Water, Gas, and Light Commission to monitor ground-water quality and availability since 1977. This report presents the findings for July 2005 through June 2006 and summarizes the ground-water and surface-water conditions for 2005. Water levels in 14 wells were continuously monitored in Dougherty County, Georgia. Water levels in 12 of those wells were above normal, one was normal, and one was below normal. Ground-water samples collected from the Upper Floridan aquifer indicate that nitrate levels have increased in 13 wells and decreased in two wells from a year earlier. A sample also was collected from the Flint River. A trilinear diagram showing the percent composition of selected major cations and anions indicates that the ground-water quality of the Upper Floridan aquifer at the Albany wellfield is distinctly different from the water quality of the Flint River. To improve the understanding of the ground-water flow system and nitrate movement in the Upper Floridan aquifer, the USGS is developing a ground-water flow model in the southwest Albany area, Georgia.
Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to deve...
Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brainard, James R.; Coplen, Amy K
2005-11-01
Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of wastemore » water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Rick
2011-12-01
Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method.more » Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.« less
Cost Effective Instrumentation for Developing Autonomous Groundwater Monitoring Networks
NASA Astrophysics Data System (ADS)
Viti, T. M.; Garmire, D. G.
2017-12-01
Despite a relatively poor understanding of Hawaiian groundwater systems, the State of Hawaii depends almost exclusively on groundwater for its public water supply. Ike Wai, an NSF funded project (EPSCoR Program Award OIA #1557349) at the University of Hawaii, aims to develop new groundwater models for Hawaii's aquifers, including water quality and transport processes. To better understand aquifer properties such as capacity and hydraulic conductivity, we are developing well-monitoring instruments that can autonomously record water parameters such as conductivity, temperature, and hydraulic head level, with sampling frequencies on the order of minutes. We are currently exploring novel methods and materials for solving classical design problems, such as applying dielectric spectroscopy techniques for measuring salinity, and using recycled materials for producing custom cable assemblies. System components are fabricated in house using rapid prototyping (e.g. 3D printing, circuit board milling, and laser cutting), and traditional manufacturing techniques. This approach allows us to produce custom components while minimizing development cost, and maximizing flexibility in the overall system's design.
Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.
1997-01-01
The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.
Bhat, Shirish; Motz, Louis H; Pathak, Chandra; Kuebler, Laura
2015-01-01
A geostatistical method was applied to optimize an existing groundwater-level monitoring network in the Upper Floridan aquifer for the South Florida Water Management District in the southeastern United States. Analyses were performed to determine suitable numbers and locations of monitoring wells that will provide equivalent or better quality groundwater-level data compared to an existing monitoring network. Ambient, unadjusted groundwater heads were expressed as salinity-adjusted heads based on the density of freshwater, well screen elevations, and temperature-dependent saline groundwater density. The optimization of the numbers and locations of monitoring wells is based on a pre-defined groundwater-level prediction error. The newly developed network combines an existing network with the addition of new wells that will result in a spatial distribution of groundwater monitoring wells that better defines the regional potentiometric surface of the Upper Floridan aquifer in the study area. The network yields groundwater-level predictions that differ significantly from those produced using the existing network. The newly designed network will reduce the mean prediction standard error by 43% compared to the existing network. The adoption of a hexagonal grid network for the South Florida Water Management District is recommended to achieve both a uniform level of information about groundwater levels and the minimum required accuracy. It is customary to install more monitoring wells for observing groundwater levels and groundwater quality as groundwater development progresses. However, budget constraints often force water managers to implement cost-effective monitoring networks. In this regard, this study provides guidelines to water managers concerned with groundwater planning and monitoring.
NASA Astrophysics Data System (ADS)
Lindsey, B.; McMahon, P.; Rupert, M.; Tesoriero, J.; Starn, J.; Anning, D.; Green, C.
2012-04-01
The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program was implemented in 1991 to provide long-term, consistent, and comparable information on the quality of surface and groundwater resources of the United States. Findings are used to support national, regional, state, and local information needs with respect to water quality. The three main goals of the program are to 1) assess the condition of the nation's streams, rivers, groundwater, and aquatic systems; 2) assess how conditions are changing over time; and 3) determine how natural features and human activities affect these conditions, and where those effects are most pronounced. As data collection progressed into the second decade, the emphasis of the interpretation of the data has shifted from primarily understanding status, to evaluation of trends. The program has conducted national and regional evaluations of change in the quality of water in streams, rivers, groundwater, and health of aquatic systems. Evaluating trends in environmental systems requires complex analytical and statistical methods, and a periodic re-evaluation of the monitoring methods used to collect these data. Examples given herein summarize the lessons learned from the evaluation of changes in water quality during the past two decades with an emphasis on the finding with respect to groundwater. The analysis of trends in groundwater is based on 56 well networks located in 22 principal aquifers of the United States. Analysis has focused on 3 approaches: 1) a statistical analysis of results of sampling over various time scales, 2) studies of factors affecting trends in groundwater quality, and 3) use of models to simulate groundwater trends and forecast future trends. Data collection for analysis of changes in groundwater-quality has focused on decadal resampling of wells. Understanding the trends in groundwater quality and the factors affecting those trends has been conducted using quarterly sampling, biennial sampling, and more recently continuous monitoring of selected parameters in a small number of wells. Models such as MODFLOW have been used for simulation and forecasting of future trends. Important outcomes from the groundwater-trends studies include issues involving statistics, sampling frequency, changes in laboratory analytical methods over time, the need for groundwater age-dating information, the value of understanding geochemical conditions and contaminant degradation, the need to understand groundwater-surface water interaction, and the value of modeling in understanding trends and forecasting potential future conditions. Statistically significant increases in chloride, dissolved solids, and nitrate concentrations were found in a large number of well networks over the first decadal sampling period. Statistically significant decreases of chloride, dissolved solids, and nitrate concentrations were found in a very small number of networks. Trends in surface-water are analyzed within 8 large major river basins within the United States with a focus on issues of regional importance. Examples of regional surface-water issues include an analysis of trends in dissolved solids in the Southeastern United States, trends in pesticides in the north-central United States, and trends in nitrate in the Mississippi River Basin. Evaluations of ecological indicators of water quality include temporal changes in stream habitat, and aquatic-invertebrate and fish assemblages.
NRC evaluates groundwater programs
NASA Astrophysics Data System (ADS)
A recent report by the National Research Council (NRC) noted that about half the people of the United States depend on wells for their drinking water, but recent tests reveal widespread contamination.Responsibility for monitoring and protecting groundwater supplies lies largely with state governments. Federal funding of model projects under the Clean Water Act expired in 1983. However, the U.S. Environmental Protection Agency (EPA) has asked the NRC to identify and evaluate ten state and local groundwater protection programs and to recommend features that may be applied in other areas. A committee, organized by the Water Science and Technology Board and chaired by Jerome B. Gilbert, general manager of the East Bay Municipal Utility District of Oakland, Calif., has undertaken the study. The report is expected to be completed in March 1986.
Evaluation of the U.S. Geological Survey Ground-Water Data-Collection Program in Hawaii, 1992
Anthony, Stephen S.
1997-01-01
In 1992, the U.S. Geological Survey ground-water data-collection program in the State of Hawaii consisted of 188 wells distributed among the islands of Oahu, Kauai, Maui, Molokai, and Hawaii. Water-level and water-quality (temperature, specific conductance, and chloride concentration) data were collected from observation wells, deep monitoring wells that penetrate the zone of transition between freshwater and saltwater, free-flowing wells, and pumped wells. The objective of the program was to collect sufficient spatial and temporal data to define seasonal and long-term changes in ground-water levels and chloride concentrations induced by natural and human-made stresses for different climatic and hydrogeologic settings. Wells needed to meet this objective can be divided into two types of networks: (1) a water-management network to determine the response of ground-water flow systems to human-induced stresses, such as pumpage, and (2) a baseline network to determine the response of ground-water flow systems to natural stresses for different climatic and hydrogeologic settings. Maps showing the distribution and magnitude of pumpage and the distribution of proposed pumped wells are presented to identify areas in need of water-management networks. Wells in the 1992 U.S. Geological Survey ground-water data-collection program were classified as either water-management or baseline network wells. In addition, locations where additional water-management network wells are needed for water-level and water-quality data were identified.
Normal streamflows and water levels continue—Summary of hydrologic conditions in Georgia, 2014
Knaak, Andrew E.; Ankcorn, Paul D.; Peck, Michael F.
2016-03-31
The U.S. Geological Survey (USGS) South Atlantic Water Science Center (SAWSC) Georgia office, in cooperation with local, State, and other Federal agencies, maintains a long-term hydrologic monitoring network of more than 350 real-time, continuous-record, streamflow-gaging stations (streamgages). The network includes 14 real-time lake-level monitoring stations, 72 real-time surface-water-quality monitors, and several water-quality sampling programs. Additionally, the SAWSC Georgia office operates more than 204 groundwater monitoring wells, 39 of which are real-time. The wide-ranging coverage of streamflow, reservoir, and groundwater monitoring sites allows for a comprehensive view of hydrologic conditions across the State. One of the many benefits this monitoring network provides is a spatially distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.Streamflow and groundwater data are verified throughout the year by USGS hydrographers and made available to water-resource managers, recreationists, and Federal, State, and local agencies. Hydrologic conditions are determined by comparing the statistical analyses of data collected during the current water year to historical data. Changing hydrologic conditions underscore the need for accurate, timely data to allow informed decisions about the management and conservation of Georgia’s water resources for agricultural, recreational, ecological, and water-supply needs and in protecting life and property.
40 CFR 258.51 - Ground-water monitoring systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water monitoring systems. 258.51 Section 258.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.51 Ground-water monitoring systems. (a) A...
Recommendations for new monitoring wells at Everest, Kansas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.
2007-05-03
On February 15, 2007, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) submitted Recommendations for Remedial Action at Everest, Kansas. Those Recommendations were accepted by the Kansas Department of Health and Environment (KDHE) in a letter to the CCC/USDA dated March 5, 2007. The approved Recommendations document outlines a plan for systematic groundwater sampling and monitoring at Everest to provide data necessary for the critical evaluation of remedial options - including a phytoremediation alternative - for restoration of the groundwater and protection of the surface waters of the intermittent creek at this site. Phase I of themore » KDHE-approved monitoring plan includes the following activities: (1) Groundwater sampling at existing monitoring wells, with analyses for volatile organic compounds (VOCs) and selected biodegradation parameters; (2) Sampling of surface waters along the intermittent creek for VOCs analyses; and (3) Periodic manual measurement and automated recording of groundwater and surface water levels in the vicinity of the intermittent creek. The locations selected for groundwater and surface water sampling and analyses under the approved monitoring program were determined in consultation with the KDHE. As a result of subsequent discussions among representatives of the KDHE, the CCC/USDA, and Argonne regarding the technical program at Everest, the CCC/USDA seeks KDHE approval for the installation of up to four new permanent monitoring wells along the upper reach of the intermittent creek west of the Nigh property, as shown in Figure 1. The proposed new well locations lie progressively downgradient in the anticipated direction of future groundwater and contaminant movement; all of the recommended points lie at least 2,000 ft upgradient, however, of the confirmed area of groundwater discharge to the creek identified near Highway 73. The proposed new wells will supplement the existing network of groundwater and surface water monitoring points identified in the KDHE-approved monitoring plan. The new wells will be sampled in accord with the schedules outlined in the approved plan. The new wells are recommended to address specific investigation needs, as follows: (1) The proposed borings will provide data on the lithologic and hydrogeologic characteristics - and the relative continuity - of the Everest aquifer unit along the upgradient reach of the intermittent creek, where possible implementation of a phytoremediation remedy is under consideration. (2) Installation of the borings will permit the collection of sediments from the aquifer unit for possible physical or hydraulic property analyses. The completed monitoring wells will also facilitate possible future in situ estimation of the aquifer unit's hydraulic properties in this area, as part of the remedy evaluation and development process. (3) The completed new wells will be used to determine the depths to groundwater and the pattern(s) of groundwater flow near the intermittent creek, and hence to predict more accurately the locations of possible groundwater (and contaminant) discharge and the extent of the area amenable to possible phytoremediation. (4) The use of automated groundwater level recorders at the new locations will provide data on the potential range and variability of groundwater levels to be expected in the area near the intermittent creek. (5) Periodic sampling of the recommended wells for VOCs analyses will help to constrain (1) the rate(s) and pathway(s) of contaminant approach toward the intermittent creek (and the area amenable to possible phytoremediation) and (2) the areal extent of the plume as it continues to evolve. The resulting 'early warning' data obtained from this sampling will therefore help to ensure that remedial action can be taken, if necessary, in sufficient time to prevent unacceptable levels of carbon tetrachloride contamination from threatening the identified surface waters of the creek. The well locations shown in Figure 1 were chosen to satisfy the technical objectives above, as well as to minimize disruption (to the extent possible) of the normal agricultural activities in the required investigation area. To accommodate these somewhat conflicting goals, the recommended monitoring points include one new well (PZ1) along the existing waterways west of the Nigh property, one new well (PZ3) along the margin of the farm field southwest of existing well SB63 and northeast of well SB64, and two new wells (PZ2, PZ4) in the fields east of the intermittent creek. The CCC/USDA has contacted the potentially affected landowner and is attempting to negotiate access to the desired well locations. If the necessary access cannot be obtained, a modified distribution of three new monitoring wells, to be located entirely along the existing waterways west and southwest of the Nigh property, is proposed as a possible alternate configuration.« less
Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.
2009-01-01
Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo. (U.S.A.). In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water effects. This report will present only analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed during 2008. Crock and others have presented earlier a compilation of analytical results for the biosolids samples collected and analyzed for 1999 thru 2006, and in a separate report, data for the 2007 biosolids are reported. More information about the other monitoring components is presented elsewhere in the literature. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity. Nitrogen and chromium also were priority parameters for groundwater and sediment components.
Research opportunities in interdisciplinary ground-water science in the U.S. Geological Survey
Sanford, W.E.; Caine, Jonathan S.; Wilcox, D.A.; McWreath, H.C.; Nicholas, J.R.
2006-01-01
This report is written for the scientifically literate reader but is not limited to those who are involved in ground-water science. The report is intended to encourage U.S. Geological Survey scientists to develop a sense of excitement about ground-water science in the agency, to inform scientists about existing and potential ground-water science opportunities, and to engage scientists and managers in interdisciplinary discussions and collaboration. The report is intended for use by U.S. Geological Survey and Department of the Interior management to formulate long-term ground-water science programs and to continue sustained support of ground-water monitoring and research, some of which may not have an immediate impact. Finally, the report can be used to communicate the U.S. Geological Survey's vision of ground-water science to Congress, partners, other agencies, and the research community at large with the goals of enhancing collaborative opportunities, sharing information, and maintaining dialogue regarding the directions of U.S. Geological Survey ground-water science.
Sonenshein, R.S.
1995-01-01
A hydrogeologic approach that integrates the use of hydrogeologic and spatial tools aids in the identification of land uses that overlie ground- water flow paths and permits a better understanding of ground-water flow systems. A mathematical model was used to simulate the ground-water flow system in Broward County, particle-tracking software was used to determine flow paths leading to the monitor wells in Broward County, and a Geographic Information System was used to identify which land uses overlie the flow paths. A procedure using a geographic information system to evaluate the output from a ground-water flow model has been documented. The ground-water flow model was used to represent steady-state conditions during selected wet- and dry-season months, and an advective flow particle- tracking program was used to simulate the direction of ground-water flow in the aquifer system. Digital spatial data layers were created from the particle pathlines that lead to the vicinity of the open interval of selected wells in the Broward County ground-water quality monitoring network. Buffer zone data layers were created, surrounding the particle pathlines to represent the area of contribution to the water sampled from the monitor wells. Spatial data layers, combined with a land-use data layer, were used to identify the land uses that overlie the ground-water flow paths leading to the monitor wells. The simulation analysis was performed on five Broward County wells with different hydraulic parameters to determine the source of ground-water stress, determine selected particle pathlines, and identify land use in buffer zones in the vicinity of the wells. The flow paths that lead to the grid cells containing wells G-2355, G-2373, and G-2373A did not vary between the wet- and dry-season conditions. Changes in the area of contribution for wells G-2345X and G-2369 were attributed to variations in rainfall patterns, well-field pumpage, and surface-water management practices. Additionally, using a different open interval at a site, such as for wells G-2373 and G-2373A, can result in a very different area that overlies the flow path leading to the monitor well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.B.
1998-09-01
1 1.0 INTRODUCTION This report presents an evaluation of the groundwater quality monitoring data reported in: Calendar Year 1997 Annual Groundwatw Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologtc Rep-meat the US. Department of Energy Y-12 Plant, Oak Ridge, Tennessee (AJA Technical Services, Inc. 1998), which is hereafter referenced as the Annual Monitoring Report. Section 2.0 presents background information for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) that is relevant to data evaluation, including brief descriptions of the geology, the groundwater flow system, the contaminant source areas, and the extent of groundwater contamination inmore » the regime. Section 3.0 provides an overview of the groundwater sampling and analysis activities petiormed during calendar year (CY) 1997, including monitoring well locations, sampling frequency and methods, and laboratory analyses. Evaluation and interpretation of the monitoring da% described in Section 4.0, is generally focused on an overview of data quality assurance/quality control (QA/QC), long-term concentration trends for selected inorganic, organic, and radiological contaminants, and consistency with applicable site-specific conceptual contaminant transport models described in: Report on the Remedial Investigation of the Upper East Fork Poplar Creek Characterization Area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (U.S. Department of Energy 1998), which is referenced hereafter as the Remedial Investigation @I) Report. Findings of the data evaluations are summarized :in Section 5.0 and a list of technical reports and regulatory documents cited for more detailed irdormation (Section 6.0) concludes the report. All of the illustrations (maps and trend graphs) and data summary tables referenced in the text are presented in Appendm A and Appendix B, respectively. Appendix C provides a summary of the analytical results that meet applicable data quality objectives (DQOS) of the Y-12 Plant Groundwater Protection Program.« less
NASA Astrophysics Data System (ADS)
Beckers, J.; Fennell, J.; Scott, M.
2011-12-01
We will present a systematic approach to cumulative effects groundwater management predicated on an integration of traditional tools and the necessary intimate connection between modelling, monitoring and adaptive management, which includes an inventory and gap analysis of available data, consideration for system dynamics in the context of climate variability and change, an assessment of aquifer vulnerability, and consideration for potential future development and overall associated risk to groundwater resources and connected receptors. In our experience, a systematic approach to cumulative effects groundwater management is key to addressing complex challenges associated with large resource development projects, with effects of these projects to aquifer systems often occurring at regional scales and possibly enduring over long time horizons. The principal goal for the groundwater management framework is to manage groundwater resources in a sustainable manner and protect it from over-use. However, proper balances with economic and community objectives need to be taken into account, emphasizing the need for stakeholder engagement in the overall process. Through an understanding of inter-relationships between natural resource and other objectives, legislation, policies and programs across various sectors goals can be developed to achieve the best overall long-term benefits for society and the environment, while minimizing conflicts. The principal goal of monitoring is to evaluate past and current conditions and address data gaps. Long-term monitoring can also be used to improve the hydrogeologic conceptualization of a region. The role of numerical modelling is to quantify the understanding of groundwater flow systems in a region, address uncertainty in this understanding, to quantify potential regional cumulative impacts of current and future development, to provide recommendations for future monitoring locations and targets and for assessing the effectiveness of existing water management guidelines. Each of the three main tools for groundwater management cannot be used in isolation, decision making and regional management is optimized by their proper integration where each tool informs the others. Lastly, water management needs to be adaptive. The tools developed for groundwater management are dynamic, not static, and require regular updating and maintenance as new information becomes available (performance monitoring) and/or new questions and challenges arise. This in turn requires a clear specification of roles and responsibilities of various parties including regulators, operators, stakeholders and consultants. The presentation will introduce our systematic methodology to water management with examples of recent successful implementation from Canada and/or Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
2012-02-27
This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levelsmore » were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.« less
Developing A National Groundwater-Monitoring Network In Korea
NASA Astrophysics Data System (ADS)
Kim, N. J.; Cho, M. J.; Woo, N. C.
1995-04-01
Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-09-01
This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tablesmore » of well inspections and well maintenance activities during the reference time period.« less
Price, V.; Temples, T.; Hodges, R.; Dai, Z.; Watkins, D.; Imrich, J.
2007-01-01
This document discusses results of applying the Integrated Ground-Water Monitoring Strategy (the Strategy) to actual waste sites using existing field characterization and monitoring data. The Strategy is a systematic approach to dealing with complex sites. Application of such a systematic approach will reduce uncertainty associated with site analysis, and therefore uncertainty associated with management decisions about a site. The Strategy can be used to guide the development of a ground-water monitoring program or to review an existing one. The sites selected for study fall within a wide range of geologic and climatic settings, waste compositions, and site design characteristics and represent realistic cases that might be encountered by the NRC. No one case study illustrates a comprehensive application of the Strategy using all available site data. Rather, within each case study we focus on certain aspects of the Strategy, to illustrate concepts that can be applied generically to all sites. The test sites selected include:Charleston, South Carolina, Naval Weapons Station,Brookhaven National Laboratory on Long Island, New York,The USGS Amargosa Desert Research Site in Nevada,Rocky Flats in Colorado,C-Area at the Savannah River Site in South Carolina, andThe Hanford 300 Area.A Data Analysis section provides examples of detailed data analysis of monitoring data.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
NASA Astrophysics Data System (ADS)
Eschenbach, Wolfram; Budziak, Dörte; Elbracht, Jörg; Höper, Heinrich; Krienen, Lisa; Kunkel, Ralf; Meyer, Knut; Well, Reinhard; Wendland, Frank
2018-06-01
Valid models for estimating nitrate emissions from agriculture to groundwater are an indispensable forecasting tool. A major challenge for model validation is the spatial and temporal inconsistency between data from groundwater monitoring points and modelled nitrate inputs into groundwater, and the fact that many existing groundwater monitoring wells cannot be used for validation. With the help of the N2/Ar-method, groundwater monitoring wells in areas with reduced groundwater can now be used for model validation. For this purpose, 484 groundwater monitoring wells were sampled in Lower Saxony. For the first time, modelled potential nitrate concentrations in groundwater recharge (from the DENUZ model) were compared with nitrate input concentrations, which were calculated using the N2/Ar method. The results show a good agreement between both methods for glacial outwash plains and moraine deposits. Although the nitrate degradation processes in groundwater and soil merge seamlessly in areas with a shallow groundwater table, the DENUZ model only calculates denitrification in the soil zone. The DENUZ model thus predicts 27% higher nitrate emissions into the groundwater than the N2/Ar method in such areas. To account for high temporal and spatial variability of nitrate emissions into groundwater, a large number of groundwater monitoring points must be investigated for model validation.
40 CFR 264.97 - General ground-water monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... collection of ground-water samples. The annular space (i.e., the space between the bore hole and well casing... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General ground-water monitoring... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements...
Hart, R.J.; Sottilare, J.P.
1989-01-01
The Black Mesa monitoring program in Arizona is designed to determine long-term effects on the water resources of the area resulting from withdrawals of groundwater from the N aquifer by the strip-mining operation of Peabody Coal Company. Withdrawals by Peabody Coal Company increased from 95 acre-ft in 1968 to 4 ,090 acre-ft in 1988. The N aquifer is an important source of water in the 5,400-sq-mi Black Mesa area on the Navajo and Hopi Indian Reservations. Water levels in the confined area of the aquifer declined as much as 19.7 ft near Low Mountain from 1988 to 1989. Part of the decline in the measured municipal wells may be due to local pumping. During 1965-88, water levels in wells that tap the unconfined area of the aquifer have not declined significantly and have risen in many areas. Chemical analysis indicate no significant changes in the quality of water from wells that tap the N aquifer or from springs that discharge from several stratigraphic units, including the N aquifer, since pumping began at the mine. The groundwater flow model developed for the study area in 1988 was updated using pumpage data for 1985-88. The model simulated a steady decline in water levels in observations wells developed in areas of unconfined groundwater. Measured water levels in these wells did not show this trend but indicated that water levels remained the same or increased. The model accurately simulated water levels in most observation wells developed in areas of confined groundwater. (USGS)
Technology Transfer Opportunities: Automated Ground-Water Monitoring
Smith, Kirk P.; Granato, Gregory E.
1997-01-01
Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.
Four-year advanced monitoring program of polar pesticides in groundwater of Catalonia (NE-Spain).
Köck-Schulmeyer, Marianne; Ginebreda, Antoni; Postigo, Cristina; Garrido, Teresa; Fraile, Josep; López de Alda, Miren; Barceló, Damià
2014-02-01
Pesticide contamination of groundwater is of paramount importance because it is the most sensitive and the largest body of freshwater in the European Union. In this paper, an isotopic dilution method based on on-line solid phase extraction-liquid chromatography (electrospray)-tandem mass spectrometry (SPE-LC(ESI)-MS/MS) was used for the analysis of 22 pesticides in groundwater. Results were evaluated from monitoring 112 wells and piezometers coming from 29 different aquifers located in 18 ground water bodies (GWBs), from Catalonia, Spain, for 4 years as part of the surveillance and operational monitoring programs conducted by the Catalan Water Agency. The analytical method developed allows the determination of the target pesticides (6 triazines, 4 phenylureas, 4 organophosphorous, 1 anilide, 2 chloroacetanilides, 1 thiocarbamate, and 4 acid herbicides) in groundwater with good sensitivity (limits of detection <5 ng/L), accuracy (relative recoveries between 85 and 116%, except for molinate), and repeatability (RSD<23%), and in a fully automated way. The most ubiquitous compounds were simazine, atrazine, desethylatrazine and diuron. Direct relation between frequency of detection of each target compound and Groundwater Ubiquity Score index (GUS index) is observed. Desethylatrazine and deisopropylatrazine, metabolites of atrazine and simazine, respectively, presented the highest mean concentrations. Compounds detected in less than 5% of the samples were cyanazine, molinate, fenitrothion and mecoprop. According to the Directive 2006/118/EC, 13 pesticides have individual values above the requested limits (desethylatrazine, atrazine and terbuthylazine lead the list) and 14 samples have total pesticide levels above 500 ng/L. The GWB with the highest levels of total pesticides is located in Lleida (NE-Spain), with 9 samples showing total pesticide levels above 500 ng/L. Several factors such as regulation of the use of pesticides, type of activities in the area, and irrigation were discussed in relation to the observed levels of pesticides. © 2013.
Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology
Smith, Kirk P.; Granato, Gregory E.
1998-01-01
Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.
Kozar, M.D.; Brown, D.P.
1995-01-01
Ground-water-quality-monitoring sites have been established in compliance with the 1991 West Virginia "Groundwater Protection Act." One of the provisions of the "Groundwater Protection Act" is to conduct ground-water sampling, data collection, analyses, and evaluation with sufficient frequency so as to ascertain the characteristics and quality of ground water and the sufficiency of the ground- water protection programs established pursuant to the act (Chapter 20 of the code of West Virginia, 1991, Article 5-M). Information for 26 monitoring sites (wells and springs) which comprise the Statewide ambient ground-water-quality-monitoring network is presented. Areas in which monitoring sites were needed were determined by the West Virginia Division of Environmental Protection, Office of Water Resources in consultation with the U.S. Geological Survey (USGS). Initial sites were chosen on the basis of recent hydrogeologic investigations conducted by the USGS and from data stored in the USGS Ground Water Site Inventory database. Land use, aquifer setting, and areal coverage of the State are three of the more important criteria used in site selection. A field reconnaissance was conducted to locate and evaluate the adequacy of selected wells and springs. Descriptive information consisting of site, geologic, well construction, and aquifer-test data has been compiled. The 26 sites will be sampled periodically for iron, manganese, most common ions (for example, calcium, magnesium, sodium, potassium, sulfate, chloride, bicarbonate), volatile and semivolatile organic compounds (for example, pesticides and industrial solvents), and fecal coliform and fecal streptococcus bacteria. Background information explaining ground-water systems and water quality within the State has been included.
NASA Astrophysics Data System (ADS)
Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun
2016-04-01
The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.
NASA Astrophysics Data System (ADS)
Westbrook, S. J.; Rayner, J. L.; Davis, G. B.; Clement, T. P.; Bjerg, P. L.; Fisher, S. J.
2005-02-01
This paper presents findings from a 2-year field investigation of a dissolved hydrocarbon groundwater plume flowing towards a tidally and seasonally forced estuarine river system in Perth, Western Australia. Samples collected from transects of multiport wells along the riverbank and into the river, enabled mapping of the fine scale (0.5 m) vertical definition of the hydrocarbon plume and its longitudinal extent. Spear probing beneath the river sediments and water table, and transient monitoring of multiport wells (electrical conductivity) was also carried out to define the zone of mixing between river water and groundwater (the hyporheic zone) and its variability. The results showed that groundwater seepage into the estuarine surface sediments occurred in a zone less than 10 m from the high tide mark, and that this distance and the hyporheic transition zone were influenced by tidal fluctuations and infiltration of river water into the sediments. The dissolved BTEXN (benzene, toluene, ethylbenzene, the xylene isomers and naphthalene) distributions indicated the behaviour of the hydrocarbon plume at the groundwater/surface water transition zone to be strongly influenced by edge-focussed discharge. Monitoring programs and risk assessment studies at similar contaminated sites should therefore focus efforts within the intertidal zone where contaminants are likely to impact the surface water and shallow sediment environments.
Justen, Gisele C; Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; Bergamasco, Rosangela
2012-01-01
In this work the analysis of elements concentration in groundwater was performed using the synchrotron radiation total-reflection X-ray fluorescence (SR-TXRF) technique. A set of nine tube-wells with serious risk of contamination was chosen to monitor the mean concentration of elements in groundwater from the North Serra Geral aquifer in Santa Helena, Brazil, during 1 year. Element concentrations were determined applying a SR-TXRF methodology. The accuracy of SR-TXRF technique was validated by analysis of a certified reference material. As the groundwater composition in the North Serra Geral aquifer showed heterogeneity in the spatial distribution of eight major elements, a hierarchical clustering to the data was performed. By a similarity in their compositions, two of the nine wells were grouped in a first cluster, while the other seven were grouped in a second cluster. Calcium was the major element in all wells, with higher Ca concentration in the second cluster than in the first cluster. However, concentrations of Ti, V, Cr in the first cluster are slightly higher than those in the second cluster. The findings of this study within a monitoring program of tube-wells could provide a useful assessment of controls over groundwater composition and support management at regional level.
40 CFR 265.113 - Closure; time allowed for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... includes an amended waste analysis plan, ground-water monitoring and response program, human exposure....113 Section 265.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
In April 2008, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) conducted groundwater sampling for the analysis of volatile organic compounds (VOCs) in the existing network of monitoring points at Everest, Kansas (Argonne 2008). The objective of the 2008 investigation was to monitor the distribution of carbon tetrachloride contamination in groundwater previously identified in CCC/USDA site characterization and groundwater sampling studies at Everest in 2000-2006 (Argonne 2001, 2003, 2006a,b). The work at Everest is being undertaken on behalf of the CCC/USDA by Argonne National Laboratory, under the oversight of the Kansas Department of Health and Environment (KDHE).more » The findings of the 2008 investigation were as follows: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders demonstrated a consistent pattern of groundwater flow - and inferred contaminant migration - to the north-northwest from the former CCC/USDA facility toward the Nigh property, and then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) The range of concentrations and the areal distribution of carbon tetrachloride identified in the groundwater at Everest in April 2008 were generally consistent with previous results. The results of the 2008 sampling (reflecting the period from 2006 to 2008) and the earlier investigations at Everest (representing the period from 2000 to 2006) show that no significant downgradient extension of the carbon tetrachloride plume occurred from 2000 to 2008. (3) The slow contaminant migration indicated by the monitoring data is qualitatively consistent with the low groundwater flow rates in the Everest aquifer unit estimated previously on the basis of site-specific hydraulic testing (Argonne 2006a,b). (4) The April 2008 and earlier sampling results demonstrate that the limits of the plume have been effectively, identified by the existing network of monitoring points and have not changed significantly during the CCC/USDA investigation program. The carbon tetrachloride distribution within the plume has continued to evolve, however, with relatively constant or apparently decreasing contaminant levels at most sampling locations. In response to these findings, the KDHE requested that the CCC/USDA develop a plan for annual monitoring of the groundwater and surface water at Everest, to facilitate continued tracking of the carbon tetrachloride plume at this site (KDHE 2009a). A recommendation for annual sampling (for analyses of VOCs) of 16 existing groundwater monitoring points within and near the identified contaminant migration pathway and surface water sampling at 5 locations along the intermittent creek west (downgradient) of the identified plume was presented by the CCC/USDA (Appendix A) and approved by the KDHE (2009b) for implementation. The monitoring wells will be sampled according to the low-flow procedure, and sample preservation, shipping, and analysis activities will be consistent with previous work at Everest. The annual sampling will continue until identified conditions at the site indicate a technical justification for a change. This report summarizes the results of sampling and monitoring activities conducted at the Everest site since completion of the April 2008 groundwater sampling event (Argonne 2008). The investigations performed during the current review period (May 2008 to October 2009) were as follows: (1) With one exception, the KDHE-approved groundwater and surface water monitoring points were sampled on April 24-27, 2009. In this event, well PT1 was inadvertently sampled instead of the adjacent well MW04. This investigation represents the first groundwater and surface water sampling event performed under the current plan for annual monitoring approved by the KDHE. (2) Ongoing monitoring of the groundwater levels at Everest is performed with KDHE approval. The levels in selected monitoring wells are recorded continuously, by using downhole pressure sensors equipped with automatic data loggers, and periodically are also measured manually. Groundwater level data were recovered during the current review period on September 19, 2008, and on March 25, April 25-27, and October 20, 2009. (3) Argonne experience has demonstrated that the sampling and analysis (for VOCs) of native vegetation, and particularly tree tissues, often provides a sensitive indicator of possible carbon tetrachloride contamination in the surface water or shallow groundwater within the plant rooting zone. With the approval of the CCC/USDA, on August 28, 2009, samples of tree branch tissues were therefore collected for analyses at 18 locations along the intermittent creek west (downgradient) of the former CCC/USDA facility and the Nigh property.« less
Whitney, Rita
1994-01-01
The U.S. Geological Survey collected and analyzed water samples from June 1987 through February 1990 as part of a study of the ground-water quality in the Carson River Basin. The Carson River Basin is one of seven national pilot projects conducted by the Geological Survey as part of a National Water-Quality Assessment Program. The data from the sampling program include analyses of 110 different constituents and properties of ground water in 400 separate samplings of 230 domestic, public-supply, irrigation, and shallow monitoring wells and one spring. The water-quality data include: field measurements, major constituents, nutrients, minor constituents, radionuclides, stable isotopes, and synthetic organic compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE), suggesting possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alonemore » or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE were the following: Hydraulic control by groundwater extraction with aboveground treatment; Air sparging (AS) coupled with soil vapor extraction (SVE) in large-diameter boreholes (LDBs); and Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to development of a possible CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration pathway, to depict the hydrogeologic characteristics affecting groundwater flow and contaminant movement (Argonne 2006a). (2) A field investigation in early 2006 (Argonne 2006b), as follows: (a) Installation and testing of a production well and associated observation points, at locations approved by the KDHE, to determine the response of the Everest aquifer to groundwater extraction near the Nigh property. (b) Groundwater sampling for the analysis of volatile organic compounds (VOCs) and the installation of additional permanent monitoring points at locations selected by the KDHE, to further constrain the existing contaminant plume. (c) Resampling of all existing permanent monitoring points for VOCs and biodegradation parameter analyses, at the request of the KDHE. On the basis of these studies (Argonne 2006a,b) and the CCC/USDA's past investigations at Everest (Argonne 2006c), the CCC/USDA concluded that groundwater extraction is not an effective remedial option for the main body of the groundwater plume, and the KDHE concurred (KDHE 2006); the KDHE later noted, however (KDHE 2007a), that this and other technologies might represent viable remedial options in the event of further downgradient migration of the plume toward the intermittent creek. In February 2007, the CCC/USDA presented preliminary analyses of (1) the AS-SVE remedial alternative, incorporating the use of LDBs, and (2) the risks to human health and the environment posed by the observed carbon tetrachloride plume in groundwater (Argonne 2007a). The results of these analyses demonstrated the following: (1) Neither groundwater extraction nor AS-SVE in LDBs represents a practical approach for effective remediation of the groundwater contamination at Everest (near the Nigh property). (2) Periodic sampling and analyses for VOCs conducted by the CCC/USDA documented that the areal extent and range of carbon tetrachloride concentrations detected in the groundwater plume at Everest had changed relatively little from 2000 to 2006. (3) Estimates of groundwater flow and contaminant migration times, based on the hydrogeologic properties of the groundwater flow system identified at Everest (Argonne 2003, 2006b,c), indicated that, at minimum, approximately 4 years would be required for the carbon tetrachloride plume (in the subsurface) to reach the vicinity of the intermittent creek directly west of the Nigh property, and more than 20 years would be required for the contamination to reach the identified groundwater discharge area southwest of the Nigh property. (4) The existing (January-March 2006) plume posed no immediate danger of contamination to the surface waters of the intermittent creek. In light of these observations, the CCC/USDA proposed a phased program--over approximately 2-3 years--of groundwater sampling, surface water sampling, and related monitoring activities at Everest to (1) identify locations where a phytoremediation system would be effective and determine that area's extent and (2) support the potential development of a phytoremediation treatment alternative for the site. The recommended elements of the monitoring program are summarized in Table 1.1. In conjunction with this program, both the CCC/USDA and the KDHE recommended the construction of several new monitoring wells, at locations along and near the intermittent creek west of the Nigh property (Argonne 2007b; KDHE 2007b).« less
A conceptual ground-water-quality monitoring network for San Fernando Valley, California
Setmire, J.G.
1985-01-01
A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)
Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater
NASA Astrophysics Data System (ADS)
Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.
2016-12-01
Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.
Hydrologic monitoring for Chicago’s Sustainable Streetscapes Program
Duncker, James J.; Morrow, William S.
2016-04-05
The Chicago Department of Transportation’s Sustainable Streetscapes Program is an innovative program that strives to convert Chicago’s neighborhood commercial areas, riverwalks, and bicycle facilities into active, attractive places for Chicagoans to live, work, and play. The objective of each project is to create flourishing public places while improving the ability of infrastructure to support dense urban living. The U.S. Geological Survey (USGS), in cooperation with the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC), and the Chicago Department of Transportation (CDOT), is monitoring the pre- and postconstruction hydrologic characteristics of an urban corridor on the south side of Chicago that is being renovated using sustainable streetscapes technology.The CDOT Sustainable Streetscapes Program utilizes urban stormwater best-management practices (BMPs) to reduce the storm runoff to the local combined sewer system. The urban stormwater BMPs include permeable pavement, bioswales, infiltration basins, and planters. The urban stormwater BMPs are designed to capture the first flush of storm runoff through features that enhance the infiltration of stormwater runoff to shallow groundwater.The hydrology of the Sustainable Streetscapes Program area is being monitored to evaluate the impacts and effectiveness of the urban stormwater BMP’s. Continuous monitoring of rainfall, sewer flows, stormwater runoff, soil moisture, and groundwater levels will give engineers and scientists measured data to define baseline pre- and postconstruction conditions for the evaluation of the BMPs.Three tipping-bucket rain gages are located along the project corridor. The data provide information on the intensity and volume of rainfall. Rainfall can be highly variable even over a small area like the project corridor.Continuous recording meters are located at specific locations in the combined sewers to record water level and flow during both dry weather (mostly sanitary flow) and wet weather conditions (stormwater runoff in addition to the sanitary flow). Sanitary flow is the largest source of flow in the combined sewers during dry weather, and stormwater runoff and sanitary flow combine during wet weather. The sewer flow data allow engineers and scientists to calculate total runoff volume for selected storm events.Wells are located within the project corridor to record water levels and help determine the direction of movement of groundwater in response to rainfall and snowmelt. In urban settings with aging sewer systems, groundwater can seep into the sewers or combined sewage can seep from the sewers into the local groundwater system. The groundwater data are also important in evaluating the overall impacts of increased infiltration resulting from BMPs.Data from wells show the relative water levels of shallow groundwater, water levels in the combined sewer system, and nearby surface-water channels within the project corridor. In some aging urban sewer systems, the local combined sewer system lies below the water table and receives substantial amounts of groundwater inflow, which can significantly reduce the amount of additional water the sewer system can accept.The bioswale along the south side of West Cermak Road near South Throop Street functions to infiltrate stormwater runoff from the road. Stormwater on the road surface initially drains to the curb and then flows along the curb until it reaches a curb cut-out. Materials within the bioswale allow stormwater to infiltrate and reduce the load to the combined sewer.A common feature in urban areas are curbside catch basins that collect stormwater runoff from paved streets. Stormwater drains first to the curb and then flows along the curb to the catch basin. Lateral sewer pipe connects the catch basin to the combined sewer beneath the street. The use of permeable pavers along the curbs in the project study reach let stormwater infiltrate before it reaches the curb, thus reducing the amount of stormwater draining to the combined sewers.Water-level data from catch basins in the project study area show the effects of permeable pavers in reducing the stormwater drainage to the combined sewers.
2010-08-01
Long - Term Monitoring (LTM) of Groundwater at Military and...Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long - Term Monitoring (LTM) of Groundwater at Military and Government Sites 5a. CONTRACT NUMBER...Council LTM long - term monitoring LTMO long - term monitoring optimization LWQR locally weighted quadratic regression LZ Lower Zone MCL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
This report describes the environmental surveillance program at the Maywood Interim Storage Site (MISS) and provides the results for 1992. Environmental monitoring of MISS began in 1984, when the site was assigned to DOE by Congress through the Energy and Water Development Appropriations Act and was placed under DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. MISS is part of amore » National Priorities List (NPL) site. The environmental surveillance program at MISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analysis includes metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling the DOE objective of measuring and monitoring effluents from DOE activities and calculating hypothetical doses to members of the general public. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. Environmental standards are established to protect public health and the environment. The radiological data for all media sampled support the conclusion that doses to the public are not distinguishable from natural background radiation.« less
COLLABORATIVE RESEARCH: IN-SITU MITIGATION OF MERCURY CONTAMINATED GROUNDWATER IN KAZAKHSTAN
The U.S. Environmental Protection Agency (U.S. EPA) OIA receives funding from the U.S. State Department's Bio-Chem Redirect program to engage former Soviet biological and chemical weapons scientists in civilian research in environmental monitoring and remediation. Scientists in t...
NASA Astrophysics Data System (ADS)
Sass, Ingo; Heldmann, Claus-Dieter; Schäffer, Rafael
2016-06-01
Karst aquifers may on one hand improve the efficiency of geothermal systems due to increased permeabilities, but on the other hand, high groundwater velocities can reduce the efficiency of the underground heat storage capacity. The marble karst aquifer of the Hochstegen formation was explored and developed for the first time as an intermediate-depth geothermal energy storage system at Finkenberg, Tux valley (Tyrol, Austria). Geological field studies and a spring monitoring program for the project revealed characteristic hydro-chemical signatures related to the catchments in specific tectonic units depending on their lithology. Observations showed that the catchment area of the Hochstegen formation karst aquifer extends up to 2650 m a.s.l. southwest of Finkenberg. In the boreholes, karstification was detected to 400 m below surface (Sass et al., 2016). A monitoring program involving seven springs downgradient of the boreholes has shown that the geothermal project has had no long-term impact on groundwater quality.
Effective contaminant detection networks in uncertain groundwater flow fields.
Hudak, P F
2001-01-01
A mass transport simulation model tested seven contaminant detection-monitoring networks under a 40 degrees range of groundwater flow directions. Each monitoring network contained five wells located 40 m from a rectangular landfill. The 40-m distance (lag) was measured in different directions, depending upon the strategy used to design a particular monitoring network. Lagging the wells parallel to the central flow path was more effective than alternative design strategies. Other strategies allowed higher percentages of leaks to migrate between monitoring wells. Results of this study suggest that centrally lagged groundwater monitoring networks perform most effectively in uncertain groundwater-flow fields.
Hydrogeologic characterization of wells HTH-1, UE18r, UE6e, and HTH-3, Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyles, B.F.; McKay, W.A.; Chapman, J.B.
1991-06-01
Monitoring for the migration of contaminants in groundwater or for the proper design of nuclear test emplacement holes at the Nevada Test Site (NTS) requires proper placement and completion of monitoring wells. This is only possible if the hydrogeologic system is understood in a regional and local context, necessitating data from existing wells and boreholes. Though the NTS Groundwater Characterization Project will be drilling wells, their great expense limits the number of new wells. However, there are many existing boreholes and wells on the NTS which have not been completely evaluated hydrologically. Some of these are incorporated in the Longmore » Term Hydrologic Monitoring Program (LTHMP) of the US Environmental Protection Agency (EPA), others are related to the testing programs. In all cases, additional site investigation in necessary to properly interpret the hydrogeologic data from these wells. Monitoring wells on the NTS are poorly characterized with regard to aquifers penetrated, vertical hydraulic gradients, and vertical variations in water quality. One of the goals of the well validation program was to gain a thorough understanding of the parameters needed to interpret the source and fate potential hazardous and radioactive substances that may be detected in these wells in the future. One of the most critical parameters for monitoring is the knowledge of what aquifer or geologic unit is being sampled when a water sample is collected. Pumped water samples are weighted most heavily to the water quality of the most productive (highest transmissivity) aquifer penetrated by the well.« less
NASA Astrophysics Data System (ADS)
Parasyris, Antonios E.; Spanoudaki, Katerina; Kampanis, Nikolaos A.
2016-04-01
Groundwater level monitoring networks provide essential information for water resources management, especially in areas with significant groundwater exploitation for agricultural and domestic use. Given the high maintenance costs of these networks, development of tools, which can be used by regulators for efficient network design is essential. In this work, a monitoring network optimisation tool is presented. The network optimisation tool couples geostatistical modelling based on the Spartan family variogram with a genetic algorithm method and is applied to Mires basin in Crete, Greece, an area of high socioeconomic and agricultural interest, which suffers from groundwater overexploitation leading to a dramatic decrease of groundwater levels. The purpose of the optimisation tool is to determine which wells to exclude from the monitoring network because they add little or no beneficial information to groundwater level mapping of the area. Unlike previous relevant investigations, the network optimisation tool presented here uses Ordinary Kriging with the recently-established non-differentiable Spartan variogram for groundwater level mapping, which, based on a previous geostatistical study in the area leads to optimal groundwater level mapping. Seventy boreholes operate in the area for groundwater abstraction and water level monitoring. The Spartan variogram gives overall the most accurate groundwater level estimates followed closely by the power-law model. The geostatistical model is coupled to an integer genetic algorithm method programmed in MATLAB 2015a. The algorithm is used to find the set of wells whose removal leads to the minimum error between the original water level mapping using all the available wells in the network and the groundwater level mapping using the reduced well network (error is defined as the 2-norm of the difference between the original mapping matrix with 70 wells and the mapping matrix of the reduced well network). The solution to the optimization problem (the best wells to retain in the monitoring network) depends on the total number of wells removed; this number is a management decision. The water level monitoring network of Mires basin has been optimized 6 times by removing 5, 8, 12, 15, 20 and 25 wells from the original network. In order to achieve the optimum solution in the minimum possible computational time, a stall generations criterion was set for each optimisation scenario. An improvement made to the classic genetic algorithm was the change of the mutation and crossover fraction in respect to the change of the mean fitness value. This results to a randomness in reproduction, if the solution converges, to avoid local minima, or, in a more educated reproduction (higher crossover ratio) when there is higher change in the mean fitness value. The choice of integer genetic algorithm in MATLAB 2015a poses the restriction of adding custom selection and crossover-mutation functions. Therefore, custom population and crossover-mutation-selection functions have been created to set the initial population type to custom and have the ability to change the mutation crossover probability in respect to the convergence of the genetic algorithm, achieving thus higher accuracy. The application of the network optimisation tool to Mires basin indicates that 25 wells can be removed with a relatively small deterioration of the groundwater level map. The results indicate the robustness of the network optimisation tool: Wells were removed from high well-density areas while preserving the spatial pattern of the original groundwater level map. Varouchakis, E. A. and D. T. Hristopulos (2013). "Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables." Advances in Water Resources 52: 34-49.
Anisotropic analysis for seismic sensitivity of groundwater monitoring wells
NASA Astrophysics Data System (ADS)
Pan, Y.; Hsu, K.
2011-12-01
Taiwan is located at the boundaries of Eurasian Plate and the Philippine Sea Plate. The movement of plate causes crustal uplift and lateral deformation to lead frequent earthquakes in the vicinity of Taiwan. The change of groundwater level trigged by earthquake has been observed and studied in Taiwan for many years. The change of groundwater may appear in oscillation and step changes. The former is caused by seismic waves. The latter is caused by the volumetric strain and reflects the strain status. Since the setting of groundwater monitoring well is easier and cheaper than the setting of strain gauge, the groundwater measurement may be used as a indication of stress. This research proposes the concept of seismic sensitivity of groundwater monitoring well and apply to DonHer station in Taiwan. Geostatistical method is used to analysis the anisotropy of seismic sensitivity. GIS is used to map the sensitive area of the existing groundwater monitoring well.
Georgia's Ground-Water Resources and Monitoring Network, 2006
Nobles, Patricia L.
2006-01-01
The U.S. Geological Survey (USGS) ground-water network for Georgia currently consists of 170 wells in which ground-water levels are continuously monitored. Most of the wells are locatedin the Coastal Plain in the southern part of the State where ground-water pumping stress is high. In particular, there are large concentrations of wells in coastal and southwestern Georgia areas, where there are issues related to ground-water pumping, saltwater intrusion along the coast, and diminished streamflow in southwestern Georgia due to irrigation pumping. The map at right shows the USGS ground-water monitoring network for Georgia. Ground-water levels are monitored in 170 wells statewide, of which 19 transmit data in real time via satellite and posted on the World Wide Web at http://waterdata.usgs.gov/ga/nwis/current/?type=gw . A greater concentration of wells occurs in the Coastal Plain where there are several layers of aquifers and in coastal and southwestern Georgia areas, which are areas with specific ground-water issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Finnegan; K. S. Kung; B. A. Martinez
In this report the author describes his research in FY 1999 at the Nevada Test Site regarding the movement of radionuclides in groundwater. This work is funded by the US Department of Energy/Nevada Operations Office through their Defense Programs and Environmental Restorations divisions. Significant accomplishments include upgrading a spectrometer used to characterize groundwater colloids, acquisition of a probe to allow in situ measurement of groundwater parameters, and purchase of pumps for use in small-diameter access tubing. He collected water samples from a number of nuclear test sites during the past year. Samples from the chimney horizon at the Camembert sitemore » show that only volatile radionuclides are present there, as expected. Groundwater from the cavity region at the Cheshire site shows evidence of fission product leaching or desorption from melt glass or rock surfaces. Colloids present in this water were found to be remarkably stable during storage for many years. The colloid content of groundwater at the Cambric site and at UE-5n was found to be low relative to that in groundwater on Pahute Mesa. This, coupled with the apparent lack of groundwater flow in the alluvial rock at the Cambric site, suggests that radionuclide movement underground in this area is relatively minimal. He continued the yearly monitoring of the thermally hot cavity fluids at the Almendro site. He concludes this report by listing documents reviewed and presentations and publications generated by the program.« less
Regional Analysis of the Effects of Oil and Gas Development on Groundwater Resources in California
NASA Astrophysics Data System (ADS)
Landon, M. K.; McMahon, P. B.; Kulongoski, J. T.; Ball, L. B.; Gillespie, J. M.; Shimabukuro, D.; Taylor, K. A.
2016-12-01
The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess potential interactions between oil/gas stimulation treatment and groundwater resources. The effects of stimulation on groundwater resources will be difficult to distinguish from the effects of other past or present components of oil and gas development. As a result, the RMP is designed to provide an overall assessment of the effects of oil and gas development on groundwater quality. During 2016-17, the study is focused on selected priority oilfields in the eastern and western portions of the San Joaquin Valley in Kern County to: (1) produce three-dimensional (3D) salinity maps, (2) characterize the chemical composition of groundwater and produced water, and (3) identify the extent to which fluids from oil and gas development may be moving into protected (total dissolved solids less than 10,000 milligrams per liter) groundwater at regional scales. Analysis of available salinity data near oil/gas fields indicates there are regional patterns to salinity depth profiles; however, data gaps between the depths of water and oil/gas wells are common. These results provide a foundation for more detailed oilfield-scale salinity mapping, which includes geophysical methods (borehole, surface, and airborne) to fill data gaps. The RMP sampling-well networks are designed to evaluate groundwater quality along transects from oil/gas fields into adjacent aquifers and consist of existing wells supplemented by monitoring-well installation in priority locations identified by using 3D visualization of hydrogeologic data. The analytes include constituents with different transport characteristics such as dissolved gases, inorganic components (brines), and petroleum compounds. Analytes were selected because of their potential usefulness for understanding processes and pathways by which fluids from oilfield sources reach groundwater.
Hill, G.W.; Sottilare, J.P.
1987-01-01
The N aquifer is an important source of water in the 5,400 sq-mi Black Mesa area on the Navajo and Hopi Indian Reservations. The Black Mesa monitoring program is designed to monitor long-term effects on the groundwater resources of the mesa as a result of withdrawals from the aquifer by the strip-mining operation of Peabody Coal Company. Withdrawals from the N aquifer by the mine increased from 95 acre-ft in 1968 to more than 4,480 acre-ft in 1986. Water levels in the confined area of the aquifer declined as much as 90 ft from 1965 to 1987 in some municipal and observation wells within about a 15-mi radius of the mine well field. Part of the drawdown in municipal wells is due to local pumpage. Water levels have not declined in wells tapping the unconfined area of the aquifer. Chemical analyses indicate no significant changes in the quality of water from wells that tap the N aquifer or from springs that discharge from several stratigraphic units, including the N aquifer, since pumping began at the mine. (USGS)
The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the...
Wilson Corners SWMU 001 2015 Annual Long Term Monitoring Report Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
Lawson, Emily M.
2016-01-01
This document presents the findings of the 2015 Long Term Monitoring (LTM) that was completed at the Wilson Corners site, located at the National Aeronautics and Space Administration John F. Kennedy Space Center, Florida. The objectives of the 2015 LTM event were to evaluate the groundwater flow direction and gradient, to monitor the vertical and horizontal extent of the volatile organic compounds (VOCs; including the upgradient and sidegradient extents, which are monitored every five years), and to monitor select locations internal to the dissolved groundwater plume. The 2015 LTM event included several upgradient and sidegradient monitoring wells that are not sampled annually to verify the extent of VOCs in this portion of the site. The December 2015 LTM groundwater sampling event included, depth to groundwater measurements, 40 VOC samples collected using passive diffusion bags, and one VOC sample collected using low-flow techniques. Additionally, monitoring well MW0052DD was overdrilled and abandoned using rotasonic drilling techniques. The following conclusions can be made based on the 2015 LTM results: groundwater flow is generally to the west with northwest and southwest flow components from the water table to approximately 55 feet below land surface (ft BLS); peripheral monitoring wells generally delineate VOCs to groundwater cleanup target levels (GCTLs) except for monitoring wells MW0088, MW0090, MW0095, and NPSHMW0039, which had vinyl chloride (VC) concentrations near the GCTL and MW0062, which had trichloroethene (TCE), cis-1,2-dichloroethenen (cDCE), and VC concentrations above natural attenuation default concentrations (NADCs); VOCs in interior downgradient wells generally fluctuate within historic ranges except for monitoring wells in the north-northwest portion of the site, which have increasing VC concentrations indicating potential plume migration and expansion; Historically, the vertical extents of the VOCs were delineated by monitoring wells screened greater than 60 ft BLS (MW0083 through MW0086, and MW0078). The 2015 LTM results indicate that concentrations of daughter product cDCE is greater than the NADC in MW0078 and that cDCE and VC are greater than NADCs in MW0130. TCE was greater than the GCTL in monitoring well MW130 and not detected above method detection limits (9 micrograms per Liter) in monitoring well MW0078. No GCTL exceedances were identified in monitoring wells MW0083 or MW0086; the dissolved plume footprint appears generally stable, though not fully delineated by monitoring well data in the northeast portion of the site; and 2015 LTM results generally support the existing Conceptual Site Model. Geosyntec recommends modifying the LTM program, collecting a verification sample from monitoring well MW0062, and performing a direct push technology instigation in the northnortheastern portion of the site. A cluster of monitoring wells (MW0132 [2 to 12 ft BLS], MW0133 [15 to 25 ft BLS], and MW0134 [29 to 34 ft BLS]) is proposed to delineate impacts in the northnortheast portion of the site. Geosyntec recommends installation of a vertical extent well in the center of the site (Hot Spot 2 area) post-remediation implementation.
Zhou, Quanlin; McCraven, Sally; Garcia, Julio; Gasca, Monica; Johnson, Theodore A; Motzer, William E
2009-02-01
Biodegradation of N-Nitrosodimethylamine (NDMA) has been found through laboratory incubation in unsaturated and saturated soil samples under both aerobic and anaerobic conditions. However, direct field evidence of in situ biodegradation in groundwater is very limited. This research aimed to evaluate biodegradation of NDMA in a large-scale groundwater system receiving recycled water as incidental and active recharge. NDMA concentrations in 32 monitoring and production wells with different screen intervals were monitored over a period of seven years. Groundwater monitoring was used to characterize changes in the magnitude and extent of NDMA in groundwater in response to seasonal hydrogeologic conditions and, more importantly, to significant concentration variations in effluent from water reclamation plants (associated with treatment-process changes). Extensive monitoring of NDMA concentrations and flow rates at effluent discharge locations and surface-water stations was also conducted to reasonably estimate mass loading through unlined river reaches to underlying groundwater. Monitoring results indicate that significant biodegradation of NDMA occurred in groundwater, accounting for an estimated 90% mass reduction over the seven-year monitoring period. In addition, a discrete effluent-discharge and groundwater-extraction event was extensively monitored in a well-characterized, localized groundwater subsystem for 626 days. Analysis of the associated NDMA fate and transport in the subsystem indicated that an estimated 80% of the recharged mass was biodegraded. The observed field evidence of NDMA biodegradation is supported by groundwater transport modeling accounting for various dilution mechanisms and first-order decay for biodegradation, and by a previous laboratory study on soil samples collected from the study site [Bradley, P.M., Carr, S.A., Baird, R.B., Chapelle, F.H., 2005. Biodegradation of N-Nitrosodimethylamine in soil from a water reclamation facility. Bioremediat. J. 9 (2), 115-120.].
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
... Activities; Submission to OMB for Review and Approval; Comment Request; Facility Ground-Water Monitoring... docket, go to www.regulations.gov . Title: Facility Ground-Water Monitoring Requirements (Renewal). ICR.... Abstract: This ICR examines the ground-water monitoring standards for permitted and interim status...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J; Walt Kubilius, W; Thomas Kmetz, T
Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring andmore » determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, C.J.; Maciasz, G.; Harder, B.J.
1998-06-01
The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1more » well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.« less
NASA Astrophysics Data System (ADS)
Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.
2015-11-01
Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.
Groundwater inventory and monitoring technical guide: Remote sensing of groundwater
USDA-ARS?s Scientific Manuscript database
The application of remotely sensed data in conjunction with in situ data greatly enhances the ability of the USDA Forest Service to meet the demands of field staff, customers, and others for groundwater information. Generally, the use of remotely sensed data to inventory and monitor groundwater reso...
NASA Astrophysics Data System (ADS)
Neumann, K.; Dowling, C. B.; Moraru, C.; Hannigan, R. E.
2008-12-01
The Mississippi Embayment, located in the southeastern U.S., is a syncline formed by the northward excursion of the Gulf of Coastal Plain. Structurally, the Mississippi Embayment is a hydrogeological basin consisting of six regional aquifers. These productive aquifers yield good-quality waters. The Mississippi Embayment Regional Ground Water Study group located at Arkansas State University compiled and organized the available water chemistry and groundwater level data from the USGS groundwater monitoring database. The uppermost unconfined horizon forms the Mississippi River Valley Alluvial Aquifer (ALVM), one of the largest unconfined aquifers in the world. The Holocene and Pleistocene ALVM is formed from sand, gravel, and loess. The majority of the groundwater wells (approximately 80%) are drilled in the ALVM. As the groundwater levels have fallen in the unconfined ALVM, more groundwater wells are drilled in the deeper aquifers-the Upper, Middle, and Lower Claiborne Aquifers. The Ecocene Upper Claiborne Aquifer protolith is sand, silt, and clay while the Eocene Middle Claiborne and Lower Claiborne aquifers are sand and minor clay. We focused our investigation of the spatial and temporal evolution of groundwater in the Arkansas section of the Mississippi Embayment by using wells with long term monitoring records (1928 - 2005). Overall, the groundwater levels of the unconfined aquifer (ALVM) have decreased; we have not yet evaluated the lower aquifer water level changes. Attention was paid to rock-water interactions along flowpaths in the ALVM and Upper Claiborne aquifers, and to temporal changes at specific sampling sites. The study is utilizing groundwater pH, cation, anion, and nutrient data in the programs AquaChem and PHREEQE to describe mineral and CO2 saturations in groundwater. First results indicate that the modeling allows the identification of different processes (CO2 pressure, calcite saturation) that control distinct geochemical provinces, e.g. urban regions and regions dominated by river water recharge.
NASA Astrophysics Data System (ADS)
Kaur, Tajinder; Bhardwaj, Renu; Arora, Saroj
2017-10-01
Deterioration of groundwater quality due to anthropogenic activities is increasing at an alarming rate in most parts of the Punjab, but limited work has been carried out on groundwater quality and monitoring. This paper highlights the groundwater quality and compares its suitability for drinking and irrigation purpose in Malwa region, a southwestern part of Punjab. The Malwa region makes up the most cultivated area of Punjab with high consumption of pesticides and fertilizers. Twenty-four water samples representing groundwater sources were collected and analyzed for almost all major cations, anions and other physicochemical parameters. Analytical results of physicochemical analysis showed majority of the samples above the permissible limits of the Indian standards. The groundwater of the study area was very hard and the relative abundance of major cations and anions was Na+ > Ca2+ > Mg2+ > K+ and HCO3 - > SO4 2- > Cl-. Fluoride content was higher than permissible limit in 75 % of the samples. The mean concentration of arsenic in groundwater was 9.37 and 11.01µg/L during summer and winter season, respectively. The parameters like sodium adsorption ratio and sodium percentage (Na%) revealed good quality of groundwater for irrigation purposes, whereas magnesium ratio and corrosivity ratio values showed that water is not suitable for agriculture and domestic use. The dominant hydrochemical facies of groundwater was Ca-Mg-HCO3 and Ca-Mg-SO4-Cl. Chloro alkaline indices 1 and 2 indicated that reverse ion exchange is dominant in the region. The samples fall in rock dominance and evaporation dominance fields as indicated by Gibbs diagram. The saturation index shows that all the water samples were supersaturated with respect to carbonate minerals. This work thus concludes that groundwater in the study area is chemically unsuitable for domestic and agricultural uses. It is recommended to carry out a continuous water quality monitoring program and development of effective management practices for utilization of water resources.
Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 653-square-mile South Coast Interior Basins (SCI) study unit was investigated from August to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to Legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater-Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater used as public supply for municipalities in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). SCI was the 27th study unit to be sampled as part of the GAMA Priority Basins Project. This study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies within SCI, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 54 wells within the three study areas [Livermore, Gilroy, and Cuyama] of SCI in Alameda, Santa Clara, San Benito, Santa Barbara, Ventura, and Kern Counties. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds], constituents of special interest [perchlorate and N-nitrosodimethylamine (NDMA)], naturally occurring inorganic constituents [trace elements, nutrients, major and minor ions, silica, total dissolved solids (TDS), and alkalinity], and radioactive constituents [gross alpha and gross beta radioactivity and radon-222]. Naturally occurring isotopes [stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14] and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 288 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 4-11 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data obtained from the groundwater samples. Differences between replicate samples generally were less than 10 percent relative standard deviation, indicating acceptable analytical reproducibility. Matrix spike recoveries were within the acceptable range (70 to 130 percent) for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and/or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and to nonregulatory thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking water are for illustrative purposes only, and are not indicative of complia
New Cost-Effective Method for Long-Term Groundwater Monitoring Programs
2013-05-01
with a small-volume, gas -tight syringe (< 1 mL) and injected directly into the field-portable GC. Alternatively, the well headspace sample can be...according to manufacturers’ protocols. Isobutylene was used as the calibration standard for the PID. The standard gas mixtures were used for 3-point...monitoring wells are being evaluated: 1) direct headspace sampling, 2) sampling tube with gas permeable membrane, and 3) gas -filled passive vapor
NASA Astrophysics Data System (ADS)
Molson, John; Lemieux, Jean-Michel; Fortier, Richard; Therrien, Rene; Ouellet, Michel; Barth, Johannes; van Geldern, Robert; Cochand, Marion; Sottas, Jonathan; Murray, Renaud; Banville, David
2015-04-01
A two square kilometre catchment in a discontinuous permafrost zone near the Inuit community of Umiujaq on the eastern shore of Hudson Bay in Northern Quebec, Canada, is being investigated to determine the impact of permafrost degradation on groundwater resources. The catchment, which became deglaciated about 7500 years ago, lies in a valley which includes about 30-40 m of glacial-fluvial and marine Quaternary sediments. Permafrost mounds at the site extend from a few meters below ground surface to depths of about 10-30 m. Instrumentation has been installed to measure groundwater levels and temperature, as well as groundwater and surface water geochemistry, isotope signatures (including δ18O and 3H) and stream flow. Preliminary groundwater isotope data reflect depleted δ18O signals that differ from expected values for local groundwater, possibly representing permafrost thaw. In addition, stable water isotopes indicate evaporation from shallow thermokarst lakes. Meteorological conditions including air temperatures, precipitation and snowpack are also being monitored. Near-surface geophysical surveys using electrical resistivity tomography (ERT), induced polarization tomography (IPT), georadar and seismic refraction tomography have been carried out to characterize the catchment and to build a 3D geological site model. A numerical model of coupled groundwater flow and heat transport, including thermal advection, conduction, freeze-thaw and latent heat, is being developed for the site to help develop the conceptual model and to assess future impacts of permafrost degradation due to climate warming. The model (Heatflow/3D) includes nonlinear functions for the temperature-dependent unfrozen moisture content and relative permeability, and has been tested against analytical solutions and using benchmarks developed by the INTERFROST modelling consortium. A conceptual 2D vertical-plane model including several permafrost mounds along a 1 km section shows dynamic seasonal behavior with preferential melting from below due to sub-permafrost horizontal groundwater flow and upward flow to surface water through taliks. Under current environmental conditions, the simulations suggest the remaining permafrost in the basin could completely thaw within 50 years. The long-term monitoring program in the catchment will help develop optimal investigative methods for monitoring hydrogeological systems and groundwater resources under permafrost-degrading conditions, and will help determine how new groundwater resources may become available for northern communities as permafrost thaws and recharge to aquifers increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Cameryn; Harris, Quincy; Pyle, Caitlin
The purpose of the full ASER document is to provide details of environmental activities, primarily environmental monitoring, for calendar year 2014. This summary report of the full 2014 ASER provides details in which DOE demonstrates compliance with local, state and federal regulations within environmental programs - both radiological and non-radiological monitoring and groundwater monitoring (DOE, 2016). This report is not intended to present all of the monitoring activities at PORTS and more information can be found at the PORTS Environmental Information Center and website, which is http://energy.gov/pppo/portsmouth-environmental-center.
78 FR 20035 - Adequacy of Oregon Municipal Solid Waste Landfill Permit Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... to issue Research, Development, and Demonstration (RD&D) Permits to owners and operators of MSWLF... Landfill (MSWLF) criteria in 40 CFR part 258 to allow Research, Development, and Demonstration (RD&D... authority for variance of criteria for groundwater monitoring, closure and post-closure requirements (except...
Yongjin, Chen; Weihong, Li; Jiazhen, Liu; Ming, Lu; Mengchen, Xu; Shengliang, Liu
2015-08-01
Based on monitoring data collected from 2006 to 2009 at the lower reaches of the Tarim River, tempo-spatial variations in groundwater depth and chemistry during an approximately 3-year interval of intermittent water delivery were studied. Results indicate that as the groundwater depth increased at the upper sector of the river's lower reaches from March 2007 to September 2009, so too did the main chemical composition of groundwater. Groundwater depth at the intermediate sector also increased, but major ions in groundwater declined. The groundwater depth at the lower sector started to decrease in August 2008, and the concentrations of main ions in the groundwater generally rose and fell along with the variations in groundwater depth. The groundwater depth and chemistry in the monitoring wells located at a distance from the aqueduct expressed complex changes at different sections. For instance, at the section near the Daxihaizi Reservoir Section B, groundwater depth increased gradually, but chemical composition changed little. In contrast, the groundwater depth of monitoring wells far from the Daxihaizi Reservoir (Section I) decreased and salt content in the groundwater increased. In sectors at a moderate distance from the reservoir, groundwater depth decreased and concentrations of main ions significantly increased.
Clarke, John S.; Williams, Lester J.
2010-01-01
Hydrologic studies conducted during 2003-2008 as part of the U.S. Geological Survey Cooperative Water Program with the City of Lawrenceville, Georgia, provide important data for the management of water resources. The Cooperative Water Program includes (1) hydrologic monitoring (precipitation, streamflow, and groundwater levels) to quantify baseline conditions in anticipation of expanded groundwater development, (2) surface-water-quality monitoring to provide an understanding of how stream quality is affected by natural (such as precipitation) and anthropogenic factors (such as impervious area), and (3) geologic studies to better understand groundwater flow and hydrologic processes in a crystalline rock setting. The hydrologic monitoring network includes each of the two watersheds projected for groundwater development?the Redland-Pew Creek and upper Alcovy River watersheds?and the upper Apalachee River watershed, which serves as a background or control watershed because of its similar hydrologic and geologic characteristics to the other two watersheds. In each watershed, precipitation was generally greater during 2003-2005 than during 2006-2008, and correspondingly streamflow and groundwater levels decreased. In the upper Alcovy River and Redland-Pew Creek watersheds, groundwater level declines during 2003-2008 were mostly between 2 and 7 feet, with maximum observed declines of as much as 28.5 feet in the upper Alcovy River watershed, and 49.1 feet in the Redland-Pew Creek watershed. Synoptic base-flow measurements were used to locate and quantify gains or losses to streamflow resulting from groundwater interaction (groundwater seepage). In September 2006, seepage gains were measured at five of nine reaches evaluated in the upper Alcovy River watershed, with losses in the other four. The four losing reaches were near the confluence of the Alcovy River and Cedar Creek where the stream gradient is low and bedrock is at or near the land surface. In the Redland-Pew Creek watershed, groundwater seepage gains were observed at each of the 10 reaches measured during September 2008. Continuous specific conductance, temperature, and turbidity data were collected at gage sites located on Pew and Shoal Creeks, which drain about 32 percent of the city area, and at a background site on the Apalachee River located outside the city boundary. Continuous surface-water monitoring data indicate that reduced precipitation during 2006-2008 resulted in lower turbidity and higher stream temperature and specific conductance than in 2003-2005. In comparison to the other two stream sites, water at the Apalachee River site had the lowest mean and median values for specific conductance, and the greatest mean and median values for turbidity during October 2005-December 2008. In addition to continuous water-quality monitoring, samples were collected periodically to determine fecal-coliform bacteria concentrations. None of the individual samples at the three sites exceeded the Georgia Environmental Protection Division (GaEPD) limit of 4,000 most probable number of colonies per 100 milliliters (MPN col/100 mL) for November through April. In the Redland-Pew Creek and Shoal Creek watersheds, the GaEPD 30-day geometric mean standard of 200 MPN col/100 mL for May-October was exceeded twice during two sampling periods in May-October 2007 and twice during two sampling periods in May-October 2008. Groundwater studies conducted during 2003-2007 include the collection of borehole geophysical logs from four test wells drilled in the upper Alcovy River watershed to provide insight into subsurface geologic characteristics. A flowmeter survey was conducted in a well south of Rhodes Jordan Park to help assess the interconnection of the well with surface water and the effectiveness of a liner-packer assembly installed to eliminate that interconnection. At that same well, hydraulic packer tests were conducted in the open-hole section of the well, and water samp
Geogenic sources of benzene in aquifers used for public supply, California
Landon, Matthew K.; Belitz, Kenneth
2012-01-01
Statistical evaluation of two large statewide data sets from the California State Water Board's Groundwater Ambient Monitoring and Assessment Program (1973 wells) and the California Department of Public Health (12417 wells) reveals that benzene occurs infrequently (1.7%) and at generally low concentrations (median detected concentration of 0.024 μg/L) in groundwater used for public supply in California. When detected, benzene is more often related to geogenic (45% of detections) than anthropogenic sources (27% of detections). Similar relations are evident for the sum of 17 hydrocarbons analyzed. Benzene occurs most frequently and at the highest concentrations in old, brackish, and reducing groundwater; the detection frequency was 13.0% in groundwater with tritium <1 pCi/L, specific conductance >1600 μS/cm, and anoxic conditions. This groundwater is typically deep (>180 m). Benzene occurs somewhat less frequently in recent, shallow, and reducing groundwater; the detection frequency was 2.6% in groundwater with tritium ≥1 pCi/L, depth <30 m, and anoxic conditions. Evidence for geogenic sources of benzene include: higher concentrations and detection frequencies with increasing well depth, groundwater age, and proximity to oil and gas fields; and higher salinity and lower chloride/iodide ratios in old groundwater with detections of benzene, consistent with interactions with oil-field brines.
1988-12-01
and do not refer to monitoring zones at McClellSn AFB. b Priority poLutant metals analyses also included U.S. EPA Methods 206.2, 245.1 and 270.2. EW a...sampling protocol, and the laboratory is audited routinely. Therefore, no corrective action other than good training and supervision is necessary. The same
Environmental Protection Department's well inventory through the second quarter of 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, C.D.
This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored, to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents.
Environmental Protection Department`s well inventory through the second quarter of 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, C.D.
This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored, to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents.
Application of GRACE for Monitoring Groundwater in Data Scarce Regions
NASA Technical Reports Server (NTRS)
Rodell, Matt; Li, Bailing; Famiglietti, Jay; Zaitchik, Ben
2012-01-01
In the United States, groundwater storage is somewhat well monitored (spatial and temporal data gaps notwithstanding) and abundant data are freely and easily accessible. Outside of the U.S., groundwater often is not monitored systematically and where it is the data are rarely centralized and made available. Since 2002 the Gravity Recovery and Climate Experiment (GRACE) satellite mission has delivered gravity field observations which have been used to infer variations in total terrestrial water storage, including groundwater, at regional to continental scales. Challenges to using GRACE for groundwater monitoring include its relatively coarse spatial and temporal resolutions, its inability to differentiate groundwater from other types of water on and under the land surface, and typical 2-3 month data latency. Data assimilation can be used to overcome these challenges, but uncertainty in the results remains and is difficult to quantify without independent observations. Nevertheless, the results are preferable to the alternative - no data at all- and GRACE has already revealed groundwater variability and trends in regions where only anecdotal evidence existed previously.
Incorporation of GRACE Data into a Bayesian Model for Groundwater Drought Monitoring
NASA Astrophysics Data System (ADS)
Slinski, K.; Hogue, T. S.; McCray, J. E.; Porter, A.
2015-12-01
Groundwater drought, defined as the sustained occurrence of below average availability of groundwater, is marked by below average water levels in aquifers and reduced flows to groundwater-fed rivers and wetlands. The impact of groundwater drought on ecosystems, agriculture, municipal water supply, and the energy sector is an increasingly important global issue. However, current drought monitors heavily rely on precipitation and vegetative stress indices to characterize the timing, duration, and severity of drought events. The paucity of in situ observations of aquifer levels is a substantial obstacle to the development of systems to monitor groundwater drought in drought-prone areas, particularly in developing countries. Observations from the NASA/German Space Agency's Gravity Recovery and Climate Experiment (GRACE) have been used to estimate changes in groundwater storage over areas with sparse point measurements. This study incorporates GRACE total water storage observations into a Bayesian framework to assess the performance of a probabilistic model for monitoring groundwater drought based on remote sensing data. Overall, it is hoped that these methods will improve global drought preparedness and risk reduction by providing information on groundwater drought necessary to manage its impacts on ecosystems, as well as on the agricultural, municipal, and energy sectors.
Monitoring probe for groundwater flow
Looney, Brian B.; Ballard, Sanford
1994-01-01
A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.
Monitoring probe for groundwater flow
Looney, B.B.; Ballard, S.
1994-08-23
A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.
Use of Cometabolic Air Sparging to Remediate Chloroethene-Contaminated Groundwater Aquifers
2001-07-31
sampling event, the temperature, dew point , and relative humidity of the soil gas were analyzed using a Control Company Digital Hygrometer/Thermometer...4.2.1.3 Groundwater and Soil- Gas Multi-Level Monitoring Points .................... 20 4.2.1.4 Groundwater Monitoring Wells...C-1 APPENDIX D: SOIL- GAS MONITORING POINT DATA........................................................D-1 APPENDIX E: HISTORICAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
This report describes the environmental surveillance program at the Colonie Interim Storage Site (CISS) and provides the results for 1992. The site is located in eastern New York State, approximately 6.4 km (4.0 mi) northwest of downtown Albany. From 1958 to 1984, National Lead (NL) Industries used the facility to manufacture various components from depleted and enriched uranium natural thorium. Environmental monitoring of CISS began in 1984 when Congress added, the site to the US Department of Energy`s (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program established to identify and decontaminate or otherwise control sites wheremore » residual radioactive materials remain from the early years of the nation`s atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental surveillance program at CISS includes sampling networks for external gamma radiation exposure and for thorium-232 and total uranium concentrations in surface water, sediment, and groundwater. Several chemical parameters are also measured in groundwater, including total metals, volatile organics, and water quality parameters. This surveillance program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results are compared with applicable Environmental Protection Agency (EPA) and New York State Department of Environmental Conservation (NYSDEC) standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements.« less
Das Bremerhavener Grundwasser im Klimawandel - Eine FREEWAT-Fallstudie
NASA Astrophysics Data System (ADS)
Panteleit, Björn; Jensen, Sven; Seiter, Katherina; Siebert, Yvonne
2018-01-01
A 3D structural model was created for the state of Bremen based on an extensive borehole database. Parameters were assigned to the model by interpretation and interpolation of the borehole descriptions. This structural model was transferred into a flow model via the FREEWAT platform, an open-source plug-in of the free QGIS software, with connection to the MODFLOW code. This groundwater management tool is intended for long-term use. As a case study for the FREEWAT Project, possible effects of climate change on groundwater levels in the Bremerhaven area have been simulated. In addition to the calibration year 2010, scenarios with a sea-level rise and decreasing groundwater recharge were simulated for the years 2040, 2070 and 2100. In addition to seawater intrusion in the coastal area, declining groundwater levels are also a concern. Possibilities for future groundwater management already include active control of the water level of a lake and the harbor basin. With the help of a focused groundwater monitoring program based on the model results, the planned flow model can become an important forecasting tool for groundwater management within the framework of the planned continuous model management and for representing the effects of changing climatic conditions and mitigation measures.
Li, Jing; Lu, Hongwei; Fan, Xing; Chen, Yizhong
2017-07-01
In this study, a human health risk constrained groundwater remediation management program based on the improved credibility is developed for naphthalene contamination. The program integrates simulation, multivariate regression analysis, health risk assessment, uncertainty analysis, and nonlinear optimization into a general framework. The improved credibility-based optimization model for groundwater remediation management with consideration of human health risk (ICOM-HHR) is capable of not only effectively addressing parameter uncertainties and risk-exceeding possibility in human health risk but also providing a credibility level that indicates the satisfaction of the optimal groundwater remediation strategies with multiple contributions of possibility and necessity. The capabilities and effectiveness of ICOM-HHR are illustrated through a real-world case study in Anhui Province, China. Results indicate that the ICOM-HHR would generate double remediation cost yet reduce approximately 10 times of the naphthalene concentrations at monitoring wells, i.e., mostly less than 1 μg/L, which implies that the ICOM-HHR usually results in better environmental and health risk benefits. And it is acceptable to obtain a better environmental quality and a lower health risk level with sacrificing a certain economic benefit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurow, T.L.; Large, R.M.; Allman, D.W.
1982-04-01
A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect onmore » the water quality of the shallow aquifers.« less
Wright, Michael T.; Belitz, Kenneth; Burton, Carmen A.
2005-01-01
Because of concerns over ground-water quality, the California State Water Resources Control Board (SWRCB), in collaboration with the U.S. Geological Survey and Lawrence Livermore National Laboratory, has implemented the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. A primary objective of the program is to provide a current assessment of ground-water quality in areas where public supply wells are an important source of drinking water. The San Diego GAMA study unit was the first region of the state where an assessment of ground-water quality was implemented under the GAMA program. The San Diego GAMA study unit covers the entire San Diego Drainages hydrogeologic province, and is broken down into four distinct hydrogeologic study areas: the Temecula Valley study area, the Warner Valley study area, the Alluvial Basins study area, and the Hard Rock study area. A total of 58 ground-water samples were collected from public supply wells in the San Diego GAMA study unit: 19 wells were sampled in the Temecula Valley study area, 9 in the Warner Valley study area, 17 in the Alluvial Basins study area, and 13 in the Hard Rock study area. Over 350 chemical and microbial constituents and water-quality indicators were analyzed for in this study. However, only select wells were measured for all constituents and water-quality indicators. Results of analyses were calculated as detection frequencies by constituent classification and by individual constituents for the entire San Diego GAMA study unit and for the individual study areas. Additionally, concentrations of constituents that are routinely monitored were compared to maximum contaminant levels (MCL) and secondary maximum contaminant levels (SMCL). Concentrations of constituents classified as 'unregulated chemicals for which monitoring is required' (UCMR) were compared to the 'detection level for the purposes of reporting' (DLR). Eighteen of the 88 volatile organic compounds (VOCs) and gasoline oxygenates analyzed for were detected in ground-water samples. Twenty-eight wells sampled in the San Diego GAMA study had at least a single detection of VOCs or gasoline oxygenates. These constituents were most frequently detected in the Alluvial Basin study area (11 of 17 wells), and least frequently detected in the Warner Valley study area (one of nine wells). Trihalomethanes (THMs) were the most frequently detected class of VOCs (18 of 58 wells). The most frequently detected VOCs were chloroform (18 of 58 wells), bromodichloromethane (8 of 58 wells), and methyl tert-butyl ether (MTBE) (7 of 58 wells). Three VOCs were detected at concentrations greater than their MCLs. Tetrachloroethylene (PCE) and trichloroethylene (TCE) were detected in one well in the Hard Rock study area at concentrations of 9.75 and 7.27 micrograms per liter (?g/L), respectively; the MCL for these compounds is 5 ?g/L. MTBE was detected in one well in the Alluvial Basins study area at a concentration of 28.3 ?g/L; the MCL for MTBE is 13 ?g/L. Twenty-one of the 122 pesticides and pesticide degradates analyzed for were detected in ground-water samples. Pesticide or pesticide degradates were detected in 33 of 58 wells sampled, and were most frequently detected in the Temecula Valley study area wells (9 of 14 wells), and least frequently in the Warner Valley study area wells (3 of 9 wells). Herbicides were the most frequently detected class of pesticides (31 of 58 wells), and simazine was the most frequently detected compound (27 of 58 wells), followed by deethylatrazine (14 of 58 wells), prometon (10 of 58 wells), and atrazine (9 of 58 wells). None of the pesticides detected in ground-water samples had concentrations that exceeded MCLs. Eight waste-water indicator compounds were detected in ground-water samples. Twenty-one of 47 wells sampled for waste-water indicator compounds had at least a single detection. Waste-water indicator compounds were detected most frequently in the Allu
Claire Botner, E; Townsend-Small, Amy; Nash, David B; Xu, Xiaomei; Schimmelmann, Arndt; Miller, Joshua H
2018-05-03
Degradation of groundwater quality is a primary public concern in rural hydraulic fracturing areas. Previous studies have shown that natural gas methane (CH 4 ) is present in groundwater near shale gas wells in the Marcellus Shale of Pennsylvania, but did not have pre-drilling baseline measurements. Here, we present the results of a free public water testing program in the Utica Shale of Ohio, where we measured CH 4 concentration, CH 4 stable isotopic composition, and pH and conductivity along temporal and spatial gradients of hydraulic fracturing activity. Dissolved CH 4 ranged from 0.2 μg/L to 25 mg/L, and stable isotopic measurements indicated a predominantly biogenic carbonate reduction CH 4 source. Radiocarbon dating of CH 4 in combination with stable isotopic analysis of CH 4 in three samples indicated that fossil C substrates are the source of CH 4 in groundwater, with one 14 C date indicative of modern biogenic carbonate reduction. We found no relationship between CH 4 concentration or source in groundwater and proximity to active gas well sites. No significant changes in CH 4 concentration, CH 4 isotopic composition, pH, or conductivity in water wells were observed during the study period. These data indicate that high levels of biogenic CH 4 can be present in groundwater wells independent of hydraulic fracturing activity and affirm the need for isotopic or other fingerprinting techniques for CH 4 source identification. Continued monitoring of private drinking water wells is critical to ensure that groundwater quality is not altered as hydraulic fracturing activity continues in the region. Graphical abstract A shale gas well in rural Appalachian Ohio. Photo credit: Claire Botner.
Agricultural chemicals in Iowa's ground water, 1982-95: What are the trends?
Koplin, Dana W.; Hallberg, George; Sneck-Fahrer, D. A.; Libra, Robert
1997-01-01
The Iowa Department of Natural Resources. Geological Survey Bureau: the University of Iowa Hygienic Laboratory; and the U.S. Geological Survey (USGS) have been working together to address this question. As part of the Iowa Ground-Water Monitoring Program (IGWM). water samples have been collected from selected Iowa municipal wells since 1982. An examination of this data identified two trends: (1) concentrations of atrazine in Iowa's ground water generally were decreasing over time, and (2) concentrations of metolachlor generally were increasing. Continuing ground-water sampling can determine if these trends represent long-term changes in chemical concentrations.
Farrar, Christopher; Lyster, Daniel
1990-01-01
In the early 1980's, renewed interest in the geothermal potential of the Long Valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. Early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by groundwater or geothermal development.
Farrar, C.D.; Lyster, D. L.
1990-01-01
In the early 1980's, renewed interest in the geothermal potential of the Long Valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. Early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by groundwater or geothermal development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Gretchen M.; Bertoldo, Nicholas A.; Campbell, Christopher G.
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2009 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available atmore » https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL’s compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL’s compliance with environmental regulations; and Chapter 3 is a description of LLNL’s environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL’s environmental monitoring programs and monitoring data for 2009: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL’s groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9).« less
Groundwater withdrawal impacts in a karst area
NASA Astrophysics Data System (ADS)
Destephen, R. A.; Benson, C. P.
1993-12-01
During a 3000-gpm pump test on a groundwater supply well in Augusta County, Virginia, residential properties were impacted. The impacts included lowered farm pond water levels, development of a sinkhole, and water level decrease in residential wells. A study was performed to assess whether a lower design yield was possible with minimal impacts on adjacent property. This study included a 48-h 1500-gpm pump test that evaluated impacts due to: (1) sinkhole development and potential damage to homes, (2) loss of water in residential wells, and (3) water-quality degradation. Spring flows, residential well levels, survey monuments, and water quality were monitored. Groundwater and surface water testing included inorganic water-quality parameters and microbiological parameters. The latter included particulate analyses, Giardia cysts, and coliforms, which were used to evaluate the connection between groundwater and local surface waterbodies. Although results of the study indicated a low potential for structural damage due to future sinkhole activity, it showed that the water quality of some residential wells might be degraded. Because particulate analyses confirmed that groundwater into the supply well is under the direct influence of surface water, it was recommended that certain residents be placed on an alternate water supply prior to production pumping and that filtration be provided for the well in accordance with the Surface Water Treatment Rule. A mitigation plan was implemented. This plan included crack surveys, a long-term settlement station monitoring program, and limitation of the groundwater withdrawal rate to 1.0 million gallons per day (mgd) and maximum production rate to 1500 gpm.
Time vs. Money: A Quantitative Evaluation of Monitoring Frequency vs. Monitoring Duration.
McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J
2016-09-01
The National Research Council has estimated that over 126,000 contaminated groundwater sites are unlikely to achieve low ug/L clean-up goals in the foreseeable future. At these sites, cost-effective, long-term monitoring schemes are needed in order to understand the long-term changes in contaminant concentrations. Current monitoring optimization schemes rely on site-specific evaluations to optimize groundwater monitoring frequency. However, when using linear regression to estimate the long-term zero-order or first-order contaminant attenuation rate, the effect of monitoring frequency and monitoring duration on the accuracy and confidence for the estimated attenuation rate is not site-specific. For a fixed number of monitoring events, doubling the time between monitoring events (e.g., changing from quarterly monitoring to semi-annual monitoring) will double the accuracy of estimated attenuation rate. For a fixed monitoring frequency (e.g., semi-annual monitoring), increasing the number of monitoring events by 60% will double the accuracy of the estimated attenuation rate. Combining these two factors, doubling the time between monitoring events (e.g., quarterly monitoring to semi-annual monitoring) while decreasing the total number of monitoring events by 38% will result in no change in the accuracy of the estimated attenuation rate. However, the time required to collect this dataset will increase by 25%. Understanding that the trade-off between monitoring frequency and monitoring duration is not site-specific should simplify the process of optimizing groundwater monitoring frequency at contaminated groundwater sites. © 2016 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.
Shyu, Guey-Shin; Cheng, Bai-You; Chiang, Chi-Ting; Yao, Pei-Hsuan; Chang, Tsun-Kuo
2011-01-01
In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH3-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy. PMID:21695030
Monitoring at gasoline spills in Orange County, California has revealed that TBA (tertiary butyl alcohol) is often present at high concentrations in ground water. To manage the hazard associated with the presence of TBA, staff of the UST Local Oversight Program (LOP) of the Oran...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madrid, V.; Singleton, M. J.; Visser, A.
This report combines and summarizes results for two groundwater-sampling events (October 2012 and October/November 2015) from the Sandia National Laboratories/New Mexico (SNL/NM) Burn Site Groundwater (BSG) Area of Concern (AOC) located in the Lurance Canyon Arroyo southeast of Albuquerque, NM in the Manzanita Mountains. The first phase of groundwater sampling occurred in October 2012 including samples from 19 wells at three separate sites that were analyzed by the Environmental Radiochemistry Laboratory at Lawrence Livermore National Laboratory as part of a nitrate Monitored Natural Attenuation (MNA) evaluation. The three sites (BSG, Technical Area-V, and Tijeras Arroyo) are shown on the regionalmore » hydrogeologic map and described in the Sandia Annual Groundwater Monitoring Report. The first phase of groundwater sampling included six monitoring wells at the Burn Site, eight monitoring wells at Technical Area-V, and five monitoring wells at Tijeras Arroyo. Each groundwater sample was analyzed using the two specialized analytical methods, age-dating and denitrification suites. In September 2015, a second phase of groundwater sampling took place at the Burn Site including 10 wells sampled and analyzed by the same two analytical suites. Five of the six wells sampled in 2012 were resampled in 2015. This report summarizes results from two sampling events in order to evaluate evidence for in situ denitrification, the average age of the groundwater, and the extent of recent recharge of the bedrock fracture system beneath the BSG AOC.« less
Leighton, David A.; Fio, John L.
1995-01-01
An evaluation was made of an existing monitoring program in the Panoche Water District for 1986-93. The Panoche Water District is an agricultural area located in the western San Joaquin Valley of California. Because irrigation drainage from this area has high concentrations of dissolved solids and selenium, management strategies have been developed to improve the quality of drainwater discharge. The purpose of the Panoche Water District's monitoring program is to assess the effects of water- and land-use practices on local ground water and drain flow from the district. Drainflow from the district consists of the discharge from 50 separate on-farm underground tile-drainage systems. The Panoche Water District maintains information on water deliveries, planned and actual crop types, and planned and actual acreages planted each year. In addition, the water district monitors ground-water and drainage-system discharges using a variety of data-collection methods. A total of 62 observation well sites are used to monitor ground-water level and quality. A total of 42 sites were monitored for drainflow quantity, and drain flow quality samples were collected from the outlets of each of the 50 drainage systems. However, these data were collected inconsistently and (or) intermittently during the period studied. All data obtained from the water district were compiled and stored in a geographic information system database. Water delivered for irrigation by the Panoche Water District is a mix of imported water and local ground water pumped directly into delivery canals. Although delivered water is a mix, information on the proportion of water from the two sources is not reported. Also, individual growers pump directly to their crops unknown quantities of ground water, the total of which could be greater than 60 percent of total applications during years when water district deliveries are greatly reduced (for example, the years during and following a drought). To evaluate the effects of irrigation on ground-water and drainflow quality, data on the combined chemical characteristics and the volume of water applied to crops are needed as part of the district's monitoring program. For example, without these data, this study could estimate only the effects of irrigation on ground-water recharge for 1986 (60.4 106 m3/y), 1987 (74.2 106 m3/y), and 1988 (56.0 106 m3/y) in the Panoche Water District water years when the amount of ground water pumped by individual growers was probably small. Water-level data show a significant decline of the water table in the upslope, undrained parts of the study area, and little or no significant change in the down slope, drained parts of the study area. Pumping from productions wells, most of which are located in the upslope part of the study area, may have contributed to the decline of the water table in the upslope area. The quantities of drainflow, dissolved solids, and selenium discharged from the study area decreased during the study period. However, drainflow, dissolved solids, and selenium discharged from individual on-farm drainage systems did not decrease. These data also illustrate the need for consistent and regular monitoring of the factors that affect drainage in the western San Joaquin Valley.
NASA Astrophysics Data System (ADS)
Deeb, R. A.; Hawley, E.
2011-12-01
This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and alternative remedial strategies for groundwater remediation under a variety of Federal and state cleanup programs, including technical impracticability (TI) and other Applicable or Relevant and Appropriate Requirement (ARAR) waivers, state and local designations such as groundwater management zones, Alternate Concentration Limits (ACLs), use of monitored natural attenuation (MNA) over long timeframes, and more. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies to illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, timeframe, and potential remedial effectiveness. Case studies provide examples of the flexible, site-specific, application of alternative endpoints and alternative remedial strategies that have been used in the past to manage and remediate groundwater contamination at complex sites. For example, at least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. These designations typically indicate that groundwater contamination is present above permissible levels. Soil and groundwater within these zones are managed to protect human health and the environment. Lesson learned for the analyses conducted and the case studies evaluated allow for a more careful consideration of alternative, beneficial, and cost-effective cleanup objectives and metrics that can be achieved over the short-term (while eventually meeting long-term cleanup objectives or demonstrating the applicability of alternative endpoints), thus improving the site cleanup process at complex sites where appropriate.
Groundwater quality in the Mojave area, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources of discharge are pumping wells and evapotranspiration.
NASA Astrophysics Data System (ADS)
Kolosionis, Konstantinos; Papadopoulou, Maria P.
2017-04-01
Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.
Monitoring subsidence with InSAR and inference of groundwater change
NASA Astrophysics Data System (ADS)
Farr, T. G.
2014-12-01
Groundwater use is increasing in many parts of the world due to population pressure and reduced availability of surface water and rainfall. California's Central Valley and southern Arizona in particular have experienced subsidence in many groundwater basins in recent years due to groundwater overdraft. In order to make informed decisions for adaptation, water resource managers need to know the extent of groundwater depletion, both spatially and volumetrically, and to be able to monitor it over long periods. Water wells provide one solution, but owing to remoteness, funding limitations, a lack of wells, and the difficulty of mandating government monitoring of private wells, less direct methods are necessary. Mapping and monitoring subsidence and rebound from orbit with interferometric synthetic aperture radar (InSAR) may provide important indicators of groundwater state and dynamics for water resource managers as well as warnings of potential damage to infrastructure. We are working with water resource managers at the California Department of Water Resources to produce and update maps of subsidence 'hot-spots' where subsidence threatens to cause irreversible aquifer compaction and loss of groundwater storage capacity. In the future, Germany's TerraSAR-X, Italy's Cosmo SkyMed, Japan's PALSAR-2, Europe's Sentinels, and NASA's NISAR offer the promise of extending the time series of observations and expanding this capability to regions of the world with no effective means to monitor the state of their groundwater. This would provide societal benefits to large segments of the global population dependent on groundwater to bridge gaps in surface and rain water supply. As Earth's climate changes, monitoring of this critical resource will help reduce conflicts over water. * Work performed under contract to NASA
Mathany, Timothy M.; Burton, Carmen A.; Land, Michael; Belitz, Kenneth
2010-01-01
Groundwater quality in the approximately 766-square-mile South Coast Range-Coastal (SCRC) study unit was investigated from May to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The SCRC study unit was the 25th study unit to be sampled as part of the GAMA Priority Basins Project. The SCRC study unit was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the SCRC study unit, groundwater samples were collected from 70 wells in two study areas (Basins and Uplands) in Santa Barbara and San Luis Obispo Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 15 wells were selected to aid in evaluation of specific water-quality issues (understanding wells). In addition to the 70 wells sampled, 3 surface-water samples were collected in streams near 2 of the sampled wells in order to better comprehend the interaction between groundwater and surface water in the area. The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-TCP), naturally occurring inorganic constituents (trace elements, nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and alkalinity), and radioactive constituents (gross alpha and gross beta radioactivity). Naturally occurring isotopes (stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in dissolved nitrate, stable isotopes of sulfur in dissolved sulfate, stable isotopes of carbon in dissolved inorganic carbon, activities of tritium, and carbon-14 abundance), and dissolved gases (including noble gases) also were measured to help identify the sources and ages of the sampled groundwater. In total, 298 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and matrix-spikes) were collected at approximately 3 to 12 percent of the wells in the SCRC study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples generally were less than 10 percent relative and/or standard deviation, indicating acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 84
Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.L. Weiss, B.L. Lawrence, D.W. Woolery
2010-07-08
This document reports the findings of the groundwater and leachate monitoring and sampling at the Environmental restoration Disposal Facility for calendar year 2009. The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.
Groundwater monitoring for the impacts of geothermal energy development, conversion and waste disposal is similar to groundwater monitoring for other purposes except that additional information is needed concerning the geothermal reservoir. The research described here developed a...
Son, Ji-Hee; Hanif, Asma; Dhanasekar, Ashwin; Carlson, Kenneth H
2018-02-13
Currently, only a few states in the USA (e.g., Colorado and Ohio) require mandatory baseline groundwater sampling from nearby groundwater wells prior to drilling a new oil or gas well. Colorado is the first state to regulate groundwater testing before and after drilling, which requires one pre-drilling sample and two additional post-drilling samples within 6-12 months and 5-6 years of drilling. However, the monitoring method is limited to the state's regulatory agency and to ex situ sampling, which offers only a snapshot in time. To overcome the limitations and increase monitoring performance, a new groundwater monitoring system, Colorado Water Watch (CWW), was introduced as a decision-making tool to support the state's regulatory agency and also to provide real-time groundwater quality data to both the industry and the public. The CWW uses simple in situ water quality sensors based on the surrogate sensing technology that employs an event detection system to screen the incoming data in near real-time.
Hanford Site Environmental Report for calendar year 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.
1993-06-01
This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.
Fleming, John B.
2005-01-01
Hydrologic conditions in the newly created Agua Fria National Monument were characterized on the basis of existing hydrologic and geologic information, and streamflow data collected in May 2002. The study results are intended to support the Bureau of Land Management's future water-resource management responsibilities, including quantification of a Federal reserved water right within the monument. This report presents the study results, identifies data deficiencies, and describes specific approaches for consideration in future studies. Within the Agua Fria National Monument, the Agua Fria River flows generally from north to south, traversing almost the entire 23-mile length of the monument. Streamflow has been measured continuously at a site near the northern boundary of the monument since 1940. Streamflow statistics for this site, and streamflow measurements from other sites along the Agua Fria River, indicate that the river is perennial in the northern part of the monument but generally is intermittent in downstream reaches. The principal controls on streamflow along the river within the monument appear to be geology, the occurrence and distribution of alluvium, inflow at the northern boundary and from tributary canyons, precipitation, and evapotranspiration. At present, (2004) there is no consistent surface-water quality monitoring program being implemented for the monument. Ground-water recharge within the monument likely results from surface-water losses and direct infiltration of precipitation. Wells are most numerous in the Cordes Junction and Black Canyon City areas. Only eight wells are within the monument. Ground-water quality data for wells in the monument area consist of specific-conductance values and fluoride concentrations. During the study, ground-water quality data were available for only one well within the monument. No ground-water monitoring program is currently in place for the monument or surrounding areas.
Moreland, Joe A.; Wood, Wayne A.
1982-01-01
Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system.Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant.Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts.
Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.
2005-01-01
The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling frequency, and a simple water-table level observation well network.
Tracking and forecasting the Nation’s water quality - Priorities and strategies for 2013-2023
Rowe, Gary L.; Gilliom, Robert J.; Woodside, Michael D.
2013-01-01
Water-quality issues facing the Nation are growing in number and complexity, and solutions are becoming more challenging and costly. Key factors that affect the quality of our drinking water supplies and ecosystem health include contaminants of human and natural origin in streams and groundwater; excess nutrients and sediment; alteration of natural streamflow; eutrophication of lakes, reservoirs, and coastal estuaries; and changes in surface and groundwater quality associated with changes in climate, land and water use, and management practices. Tracking and forecasting the Nation's water quality in the face of these and other pressing water-quality issues are important goals for 2013-2023, the third decade of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. In consultation with stakeholders and the National Research Council, a new strategic Science Plan has been developed that describes a strategy for building upon and enhancing assessment of the Nation's freshwater quality and aquatic ecosystems. The plan continues strategies that have been central to the NAWQA program's long-term success, but it also makes adjustments to the monitoring and modeling approaches NAWQA will use to address critical data and science information needs identified by stakeholders. This fact sheet describes surface-water and groundwater monitoring and modeling activities that will start in fiscal year 2013. It also provides examples of the types of data and information products planned for the next decade, including (1) restored monitoring for reliable and timely status and trend assessments, (2) maps and models that show the distribution of selected contaminants (such as atrazine, nitrate, and arsenic) in streams and aquifers, and (3) Web-based modeling tools that allow managers to evaluate how water quality may change in response to different scenarios of population growth, climate change, or land-use management.
40 CFR 264.90 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applying to a regulated unit with alternative requirements for groundwater monitoring and corrective action for releases to groundwater set out in the permit (or in an enforceable document) (as defined in 40... contributed to the release; and (2) It is not necessary to apply the groundwater monitoring and corrective...
40 CFR 264.90 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... applying to a regulated unit with alternative requirements for groundwater monitoring and corrective action for releases to groundwater set out in the permit (or in an enforceable document) (as defined in 40... contributed to the release; and (2) It is not necessary to apply the groundwater monitoring and corrective...
40 CFR 264.90 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applying to a regulated unit with alternative requirements for groundwater monitoring and corrective action for releases to groundwater set out in the permit (or in an enforceable document) (as defined in 40... contributed to the release; and (2) It is not necessary to apply the groundwater monitoring and corrective...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossabi, J.; Jenkins, R.A.; Wise, M.B.
1993-12-31
The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less
Ground-water quality in Douglas County, western Nevada
Garcia, K.T.
1989-01-01
A 182% increase in population within the last 10 years in Douglas County, Nevada, has raised concerns by county officials as to the possible effects land development may have on groundwater quality. Most groundwater in Douglas County meets the State of Nevada drinking water standards. Of the 333 water samples used in this analysis, 6 equaled or were greater than the drinking water standards for sulfates, 44 for fluoride, 4 for dissolved solids, 5 for nitrate as nitrate, 12 for arsenic, 33 for iron, and 18 for manganese. Groundwater in the west-central, northern, and northeastern part of Carson Valley is influenced by geothermal water. Some areas in the county may have septic-tank effluent contaminating the groundwater. Temporal changes in most municipal wells showed no overall trend for dissolved-solids and nitrate concentrations spanning the years 1969-83. However, a municipal well in the Topaz Lake area has shown a general increases in the nitrate concentration from 1961 to 1984, but the concentration does not exceed the drinking-water standard. A future groundwater quality monitoring program in Douglas County would include periodic sampling of primary or heavily pumped wells, long-term trend wells, and supplemental wells. (Thacker-USGS)
Pellacani, C; Cassoni, F; Bocchi, C; Martino, A; Pinto, G; Fontana, F; Furlini, M; Buschini, A
2016-12-01
The assessment of the toxicological properties of raw groundwater may be useful to predict the type and quality of tap water. Contaminants in groundwater are known to be able to affect the disinfection process, resulting in the formation of substances that are cytotoxic and/or genotoxic. Though the European directive (98/83/EC, which establishes maximum levels for contaminants in raw water (RW)) provides threshold levels for acute exposure to toxic compounds, the law does not take into account chronic exposure at low doses of pollutants present in complex mixture. The purpose of this study was to evaluate the cyto- and genotoxic load in the groundwater of two water treatment plants in Northern Italy. Water samples induced cytotoxic effects, mainly observed when human cells were treated with RW. Moreover, results indicated that the disinfection process reduced cell toxicity, independent of the biocidal used. The induction of genotoxic effects was found, in particular, when the micronucleus assay was carried out on raw groundwater. These results suggest that it is important to include bio-toxicological assays as additional parameters in water quality monitoring programs, as their use would allow the evaluation of the potential risk of groundwater for humans.
Automated ground-water monitoring with Robowell: case studies and potential applications
NASA Astrophysics Data System (ADS)
Granato, Gregory E.; Smith, Kirk P.
2002-02-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/
Automated ground-water monitoring with robowell-Case studies and potential applications
Granato, G.E.; Smith, K.P.; ,
2001-01-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB{sub 2}), however, several other aquifermore » unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.« less
Brown, Christopher R.; Macy, Jamie P.
2012-01-01
Water-chemistry data for selected wells and baseflow investigations sites are presented. No well samples analyzed exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level standards for drinking water, but several samples exceeded Secondary Maximum Contaminant Level standards for chloride, fluoride, sulfate, iron, and total dissolved solids.
Lee, Kil Yong; Kim, Yong-Chul; Cho, Soo Young; Kim, Seong Yun; Yoon, Yoon Yeol; Koh, Dong Chan; Ha, Kyucheol; Ko, Kyung-Seok
2016-12-01
The recharge fractions of injection water in combined abstraction-injection wells (AIW) were determined using continuous radon monitoring and radon mass balance model. The recharge system consists of three combined abstraction-injection wells, an observation well, a collection tank, an injection tank, and tubing for heating and transferring used groundwater. Groundwater was abstracted from an AIW and sprayed on the water-curtain heating facility and then the used groundwater was injected into the same AIW well by the recharge system. Radon concentrations of fresh groundwater in the AIWs and of used groundwater in the injection tank were measured continuously using a continuous radon monitoring system. Radon concentrations of fresh groundwater in the AIWs and used groundwater in the injection tank were in the ranges of 10,830-13,530 Bq/m 3 and 1500-5600 Bq/m 3 , respectively. A simple radon mass balance model was developed to estimate the recharge fraction of used groundwater in the AIWs. The recharge fraction in the 3 AIWs was in the range of 0.595-0.798. The time series recharge fraction could be obtained using the continuous radon monitoring system with a simple radon mass balance model. The results revealed that the radon mass balance model using continuous radon monitoring was effective for determining the time series recharge fractions in AIWs as well as for characterizing the recharge system. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gosses, M. J.; Wöhling, Th.; Moore, C. R.; Dann, R.; Scott, D. M.; Close, M.
2012-04-01
Groundwater resources worldwide are increasingly under pressure. Demands from different local stakeholders add to the challenge of managing this resource. In response, groundwater models have become popular to make predictions about the impact of different management strategies and to estimate possible impacts of changes in climatic conditions. These models can assist to find optimal management strategies that comply with the various stakeholder needs. Observations of the states of the groundwater system are essential for the calibration and evaluation of groundwater flow models, particularly when they are used to guide the decision making process. On the other hand, installation and maintenance of observation networks are costly. Therefore it is important to design monitoring networks carefully and cost-efficiently. In this study, we analyse the Central Plains groundwater aquifer (~ 4000 km2) between the Rakaia and Waimakariri rivers on the Eastern side of the Southern Alps in New Zealand. The large sedimentary groundwater aquifer is fed by the two alpine rivers and by recharge from the land surface. The area is mainly under agricultural land use and large areas of the land are irrigated. The other major water use is the drinking water supply for the city of Christchurch. The local authority in the region, Environment Canterbury, maintains an extensive groundwater quantity and quality monitoring programme to monitor the effects of land use and discharges on groundwater quality, and the suitability of the groundwater for various uses, especially drinking-water supply. Current and projected irrigation water demand has raised concerns about possible impacts on groundwater-dependent lowland streams. We use predictive uncertainty analysis and the Central Plains steady-state groundwater flow model to evaluate the worth of pressure head observations in the existing groundwater well monitoring network. The data worth of particular observations is dependent on the problem-specific prediction target under consideration. Therefore, the worth of individual observation locations may differ for different prediction targets. Our evaluation is based on predictions of lowland stream discharge resulting from changes in land use and irrigation in the upper Central Plains catchment. In our analysis, we adopt the model predictive uncertainty analysis method by Moore and Doherty (2005) which accounts for contributions from both measurement errors and uncertain structural heterogeneity. The method is robust and efficient due to a linearity assumption in the governing equations and readily implemented for application in the model-independent parameter estimation and uncertainty analysis toolkit PEST (Doherty, 2010). The proposed methods can be applied not only for the evaluation of monitoring networks, but also for the optimization of networks, to compare alternative monitoring strategies, as well as to identify best cost-benefit monitoring design even prior to any data acquisition.
Cardoso-Neto, J.E.; Williams, D.W.
1995-01-01
A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.
Cardoso-Neto, Joao E.; Williams, Daniel W.
1996-01-01
A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.
Robust, non-invasive methods for metering groundwater well extraction in remote environments
NASA Astrophysics Data System (ADS)
Bulovic, Nevenka; Keir, Greg; McIntyre, Neil
2017-04-01
Quantifying the rate of extraction from groundwater wells can be essential for regional scale groundwater management and impact assessment. This is especially the case in regions heavily dependent on groundwater such as the semi-arid Surat and Bowen Basins in Queensland, Australia. Of the 30 000+ groundwater wells in this area, the majority of which are used for stock watering and domestic purposes, almost none have flow metering devices installed. As part of a research project to estimate regional groundwater extraction, we have undertaken a small scale flow metering program on a selected set of wells. Conventional in-line flow meters were unsuitable for our project, as both non-invasiveness and adaptability / suitability to a variety of discharge pipe characteristics was critical. We describe the use of two metering technologies not widely used in groundwater applications, non-invasive, clamp-on ultrasonic transit time flow meters and tipping bucket flow meters, as semi-permanent installations on discharge pipes of various artesian and sub-artesian groundwater wells. We present examples of detailed extraction rate time-series, which are of particular value in developing predictive models of water well extraction in data limited areas where water use dynamics and drivers are poorly understood. We conclude by discussing future project trajectories, which include expansion of the monitoring network through development of novel metering techniques and telemetry across large areas of poor connectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deeb, Rula A.; Hawley, Elisabeth L.
The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-termmore » management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)« less
NASA Astrophysics Data System (ADS)
Kwon, E. H.; Park, J.; Chung, E.; Kang, B. R.; Park, W. B.; Woo, N. C.
2017-12-01
Groundwater is the sole-source of water supply in the volcanic island, Jeju-do, Korea. Since early 1990s, the nitrate contamination of groundwater has increased especially in the western part of the island. High level of nitrate in water can cause not only health risk to human body but also environmental side effect such as eutrophication and algal bloom in the coastal area. Several studies have done to estimate nitrate contamination in groundwater of local areas, but none of them dealt with nitrate movement with flow paths. So, this study aimed to determine the source and migration of nitrate in groundwater in the Gosan area, located in the western part of Jeju island through seasonal monitoring of hydrogeochemistry and stable isotope analyses from pumping and monitoring wells. Water samples including rainfall and groundwater are measured for major ions (Ca, Na, K, Mg, SO4, HCO3, NO3, Cl, etc.) and stable isotopes (i.e., δ2H, δ18O, δ18O-NO3, δ15N-NO3). From the monitoring data, we could evaluate hydrochemical change during nitrate contamination, and also could identify that groundwater in Gosan area is recharged mainly by regional flow from the high-altitude region. In future study, we will conduct additional seasonal monitoring from the multi-depth monitoring wells and will use statistical analysis to understand pollution sources and paths specifically.
Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring
NASA Astrophysics Data System (ADS)
Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki
The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.
Groundwater quality in the Colorado River basins, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from subsurface flow from the groundwater basins to the west. Groundwater discharge is primarily to pumping wells, evapotranspiration, and, locally, to the Colorado River.
Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface
2008-08-01
seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER
Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.
2017-04-10
Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvado Environmental
2008-02-01
This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardousmore » waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the CRSDB, CRSP, and KHQ that differ from those established under the expired PCP, including modified suites of laboratory analytes (RCRA groundwater target compounds) for each site and annual rather than semiannual sampling frequencies for the CRSDB and KHQ. The new PCP also specifies the RCRA post-closure groundwater monitoring requirements for the ECRWP, a closed TSD unit that was not addressed in the expired PCP.« less
NASA Astrophysics Data System (ADS)
Mueller, Matthias H.; Epting, Jannis; Köhler, Mandy; Händel, Falk; Huggenberger, Peter
2015-04-01
Increasing groundwater temperatures observed in many urban areas strongly interfere with the demand of thermal groundwater use. The groundwater temperatures in these urban areas are affected by numerous interacting factors: open and closed-loop geothermal systems for heating and cooling, sealed surfaces, constructions in the subsurface (infrastructure and buildings), artificial groundwater recharge, and interaction with rivers. On the one hand, these increasing groundwater temperatures will negatively affect the potential for its use in the future e.g. for cooling purposes. On the other hand, elevated subsurface temperatures can be considered as an energy source for shallow geothermal heating systems. Integrated thermal management concepts are therefore needed to coordinate the thermal use of groundwater in urban areas. These concepts should be based on knowledge of the driving processes which influence the thermal regime of the aquifer. We are currently investigating the processes influencing the groundwater temperature throughout the urban area of Basel City, Switzerland. This involves a three-dimensional numerical groundwater heat-transport model including geothermal use and interactions with the unsaturated zone such as subsurface constructions reaching into the aquifer. The cantonal groundwater monitoring system is an important part of the data base in our model, which will help to develop sustainable management strategies. However, single temperature measurements in conventional groundwater wells can be biased by vertical thermal convection. Therefore, multilevel observation wells are used in the urban areas of the city to monitor subsurface temperatures reaching from the unsaturated zone to the base of the aquifer. These multilevel wells are distributed in a pilot area in order to monitor the subsurface temperatures in the vicinity of deep buildings and to quantify the influence of the geothermal use of groundwater. Based on time series of the conventional groundwater wells, the multilevel observation wells and the different boundary conditions we characterize the groundwater temperature regimes using a regional groundwater heat-transport model. In the urban area of Basel, mean annual groundwater temperatures are significantly increasing with 0.05 K per year in the period of 1994 to 2014, which is most likely due to anthropogenic influences. Overall, mean annual groundwater temperatures of Basel are 3.0
NASA Astrophysics Data System (ADS)
McCraven, S.; Zhou, Q.; Garcia, J.; Gasca, M.; Johnson, T.
2007-12-01
N-Nitrosodimethylamine (NDMA) is an emerging contaminant in groundwater, because of its aqueous miscibility, exceptional animal toxicity, and human carcinogenicity. NDMA detections in groundwater have been tracked to either decomposition of unsymmetrical dimethylhydrazine (UDMH) used in rocket fuel facilities or chlorine disinfection in wastewater reclamation plants. Laboratory experiments on both unsaturated and saturated soil samples have demonstrated that NDMA can be biodegraded by microbial activity, under both aerobic and anaerobic conditions. However, very limited direct evidence for its biodegradation has been found from the field in saturated groundwater. Our research aimed to evaluate photolysis and biodegradation of NDMA occurring along the full travel path - from wastewater reclamation plant effluent, through rivers and spreading grounds, to groundwater. For this evaluation, we established an extensive monitoring network to characterize NDMA concentrations at effluent discharge points, surface water stations, and groundwater monitoring and production wells, during the operation of the Montebello Forebay Groundwater Recharge facilities in Los Angeles County, California. Field monitoring for NDMA has been conducted for more than six years, including 32 months of relatively lower NDMA concentrations in effluent, 43 months of elevated NDMA effluent concentrations, and 7 months with significantly reduced NDMA effluent concentrations. The NDMA effluent concentration increase and significant concentration decrease were caused by changes in treatment processes. The NDMA sampling data imply that significant biodegradation occurred in groundwater, accounting for a 90% mass reduction of NDMA over the six-year monitoring period. In addition, the occurrence of a discrete well monitored effluent release during the study period allowed critical analysis of the fate of NDMA in a well- characterized, localized groundwater flow subsystem. The data indicate that 80% of the recharged NDMA mass was biodegraded in groundwater with the remaining mass pumped out by extraction wells. To reproduce the observation data, a groundwater flow and transport model was developed and calibrated against groundwater elevation and NDMA concentration data. The calibrated half-life of NDMA in groundwater is 69 days, which is consistent with the values obtained through laboratory incubation using soil samples from the Montebello Forebay Spreading Grounds. Given the photolysis of NDMA in surface water and biodegradation in groundwater observed during this study, reclaimed wastewater with limited NDMA concentrations can be safely used for groundwater recharge under the study area conditions.
Truini, Margot; Macy, J.P.
2008-01-01
The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured once in 2006 and once in 2007 at Moenkopi School Spring. Flow decreased by 18.9 percent at Moenkopi School Spring. During the period of record, flow fluctuated, and a decreasing trend was apparent. Continuous records of surface-water discharge in the Black Mesa area have been collected from streamflow gages at the following sites: Moenkopi Wash at Moenkopi (1976 to 2006), Dinnebito Wash near Sand Springs (1993 to 2006), Polacca Wash near Second Mesa (1994 to 2006), and Pasture Canyon Springs (August 2004 to December 2006). Median flows during November, December, January, and February of each water year were used as an index of the amount of ground-water discharge to the above named sites. For the period of record at each streamflow-gaging station, the median winter flows have generally remained even, showing neither a significant increase nor decrease in flows. There is not a long enough period of record for Pasture Canyon Spring for a trend to be apparent. In 2007, water samples were collected from 1 well and 1 spring in the Black Mesa area and were analyzed for selected chemical constituents. Concentrations of dissolved solids, chloride, and sulfate have varied at Peabody well 5 for the period of record, and there is an apparent increasing trend. Dissolved-solids, chloride, and sulfate concentrations increased at Moenkopi School Spring during the more than 12 years of record.
Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado
Robson, Stanley G.
1977-01-01
The Metropolitan Denver Sewage Disposal District and the City and County of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system included determining the direction of ground-water movement in the area, evaluating the impact of the wastedisposal activities on the chemical quality of local ground water, and evaluating the need for continued water-quality monitoring.Surficial geology of the area consists of two principal units: (1) Alluvium with a maximum thickness of about 25 feet (7.6 meters) deposited along stream channels, and (2) bedrock consisting of undifferentiated Denver and Dawson Formations. Ground water in formations less than 350 feet (110 meters) deep moves to the north, as does surface flow, while ground water in formations between 570 and 1,500 feet (170 and 460 meters) deep moves to the west. Estimates of ground-water velocity were made using assumed values for hydraulic conductivity and porosity, and the observed hydraulic gradient from the study area. Lateral velocities are estimated to be 380 feet (120 meters) per year in alluvium and 27 feet (8.2 meters) per year in the upper part of the bedrock formations. Vertical velocity is estimated to be 0.58 foot (0.18 meter) per year in the upper part of the bedrock formations.Potentiometric head decreases with depth in the bedrock formations indicating a potential for downward movement of ground water. However, waterquality analysis and the rate and direction of ground-water movement suggest that ground-water movement in the area is primarily in the lateral rather than the vertical direction. Five wells perforated in alluvium were found to have markedly degraded water quality. One well was located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others were located downgradient and near sewage-sludge burial areas, and the remaining two are located near stagnant surface ponds. Concentrations of nitrate in wells downgradient from fields where sludge is plowed into the soil were higher than background concentrations due to the effects of the sludge disposal. No evidence of water-quality degradation was detected in deeper wells perforated in the bedrock formations. Continued water-quality monitoring is needed because of the continuing disposal of wastes. A suggested monitoring program would consist of monitoring wells near the landfill twice a year and monitoring wells near the sludge-disposal areas on an annual basis.
Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz
2011-02-01
The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.
Lin, Hsueh-Chun; Hong, Yao-Ming; Kan, Yao-Chiang
2012-01-01
The groundwater level represents a critical factor to evaluate hillside landslides. A monitoring system upon the real-time prediction platform with online analytical functions is important to forecast the groundwater level due to instantaneously monitored data when the heavy precipitation raises the groundwater level under the hillslope and causes instability. This study is to design the backend of an environmental monitoring system with efficient algorithms for machine learning and knowledge bank for the groundwater level fluctuation prediction. A Web-based platform upon the model-view controller-based architecture is established with technology of Web services and engineering data warehouse to support online analytical process and feedback risk assessment parameters for real-time prediction. The proposed system incorporates models of hydrological computation, machine learning, Web services, and online prediction to satisfy varieties of risk assessment requirements and approaches of hazard prevention. The rainfall data monitored from the potential landslide area at Lu-Shan, Nantou and Li-Shan, Taichung, in Taiwan, are applied to examine the system design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edenborn, Harry M.; Jain, Jinesh N.
The geological storage of anthropogenic carbon dioxide (CO 2) is one method of reducing the amount of CO 2 released into the atmosphere. Monitoring programs typically determine baseline conditions in surface and near-surface environments before, during, and after CO 2 injection to evaluate if impacts related to injection have occurred. Because CO 2 concentrations in groundwater fluctuate naturally due to complex geochemical and geomicrobiologicalinteractions, a clear understanding of the baseline behavior of CO 2 in groundwater near injection sites is important. Numerous ways of measuring aqueous CO 2 in the field and lab are currently used, but most methods havemore » significant shortcomings (e.g., are tedious, lengthy, have interferences, or have significant lag time before a result is determined). In this study, we examined the effectiveness of two novel CO 2 detection methods and their ability to rapidly detect CO2in shallow groundwater monitoring wells associated with the Illinois Basin –Decatur Project geological sequestration site. The CarboQC beverage carbonation meter was used to measure the concentration of CO 2 in water by monitoring temperature and pressure changes and calculating the PCO 2 from the ideal gas law. Additionally, a non-dispersive infrared (NDIR) CO< sub>2sensor enclosed in a gas-permeable, water-impermeable membrane measured CO2by determining an equilibrium concentration. Results showed that the CarboQC method provided rapid (< 3 min) and repeatable results under field conditions within a measured concentration range of 15 –125 mg/L CO 2. The NDIR sensor results correlated well (r 2= 0.93) with the CarboQC data, but CO 2 equilibration required at least 15 minutes, making the method somewhat less desirable under field conditions. In contrast, NDIR-based sensors have a greater potential for long-term deployment. Both systems are adaptable to in-line groundwater sampling methods. Other specific advantages and disadvantages associated with the two approaches, and anomalies associated with specific samples, are discussed in greater detail in this poster.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-04-01
This evaluation was conducted to determine if surface discharges of contaminated water from a retention pond and seepage of tailings pore water from the disposal cell have affected ground I water quality in the alluvial deposits east and northeast of the Bodo Canyon disposal cell. The question of whether corrective remedial action is needed for the alluvial groundwater downgradient of the disposal cell is also addressed. Maximum observed concentrations of seven hazardous constituents equalled or exceeded proposed US Environmental Protection Agency (EPA) maximum concentration limits (MCLs) in the alluvial groundwater downgradient of the disposal cell. These constituents include chromium, lead,more » molybdenum, net gross alpha, radium-226 and -228, selenium, and uranium. Concentrations greater than MCLs for molybdenum, net gross alpha, and radium-226 and -228 may be naturally occurring in the alluvial groundwater. There is no statistical evidence that these hazardous constituents are groundwater contaminants with concentrations that exceed the MCLs in alluvial groundwater. However, the median selenium concentration in monitor well 608 exceeds the MCL. Therefore, selenium contamination in the alluvial groundwater in the area of monitor well 608 is possible. Selenium concentrations show no definite increasing or decreasing trend. Since groundwater contamination by selenium is possible in one monitor well, but concentrations are not increasing, corrective action is not warranted at this time. Alluvial groundwater quality will continue to be monitored quarterly and the discharge from the retention pond should be sampled after treatment to ascertain its potential affects on groundwater quality.« less
NASA Astrophysics Data System (ADS)
Viaroli, Stefano; Mastrorillo, Lucia; Lotti, Francesca; Paolucci, Vittorio; Mazza, Roberto
2018-01-01
Groundwater management authorities usually use groundwater budget calculations to evaluate the sustainability of withdrawals for different purposes. The groundwater budget calculation does not always provide reliable information, and it must often be supported by further aquifer monitoring in the case of hydraulic connections between neighboring aquifers. The Riardo Plain aquifer is a strategic drinking resource for more than 100,000 people, water storage for 60 km2 of irrigated land, and the source of a mineral water bottling plant. Over a long period, the comparison between the direct recharge and the estimated natural outflow and withdrawals highlights a severe water deficit of approximately 40% of the total groundwater outflow. A groundwater budget deficit should be a clue to the aquifer depletion, but the results of long-term water level monitoring allowed the observation of the good condition of this aquifer. In fact, in the Riardo Plain, the calculated deficit is not comparable to the aquifer monitoring data acquired in the same period (1992-2014). The small oscillations of the groundwater level and the almost stable streambed spring discharge allows the presumption of an additional aquifer recharge source. The confined carbonate aquifer locally mixes with the above volcanic aquifer, providing an externally stable recharge that reduces the effects of the local rainfall variability. The combined approach of the groundwater budget results and long-term aquifer monitoring (spring discharge and/or hydraulic head oscillation) provides information about significant external groundwater exchanges, even if unidentified by field measurements, and supports the stakeholders in groundwater resource management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The monitoring program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) aremore » not applicable to SLAPS, but are included only as a basis for comparison. The DOE DCGs and the DOE radiation protection standard have been revised. (Appendix B). During 1985, annual average radon levels in air at the SLAPS were below the DCG for uncontrolled areas. External gamma monitoring in 1985 showed measured annual gamma dose rates ranging from 3 to 2087 mrem/y, with the highest value occurring in an area known to be contaminated. The calculated maximum dose at the site boundary, assuming limited occupancy, would be 6 mrem/y. Average annual concentrations of /sup 230/Th, /sup 226/Ra, and total uranium in surface waters remained below the DOE DCG. The on-site groundwater measurements showed that average annual concentrations of /sup 230/Th, /sup 226/Ra and total uranium were within the DOE DCGs. Although there are no DCGs for sediments, all concentrations of total uraniu, /sup 230/Th, and /sup 226/Ra were below the FUSRAP Guidelines.« less
Wilkison, Donald H.
2012-01-01
Source contributions to monitoring and supply wells, contributing recharge areas, groundwater travel times, and current (2012) understanding of alluvial water quality were used to develop a groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri well field. The plan was designed to evaluate long-term alluvial water quality and assess potential changes in, and threats to, well-field water quality. Source contributions were determined from an existing groundwater flow model in conjunction with particle-tracking analysis and verified with water-quality data collected from 1997 through 2010 from a network of 68 monitoring wells. Three conjunctive factors - well-field pumpage, Missouri River discharge, and aquifer recharge - largely determined groundwater flow and, therefore, source contributions. The predominant source of groundwater to most monitoring wells and supply wells is the Missouri River, and this was reflected, to some extent, in alluvial water quality. To provide an estimate of the maximum potential lead time available for remedial action, monitoring wells where groundwater travel times from the contributing recharge areas are less than 2 years and predominately singular sources (such as the Missouri River or the land surface) were selected for annual sampling. The sample interval of the remaining wells, which have varying travel times and intermediate mixtures of river and land-surface contributions, were staggered on a 2-, 3-, or 4-year rotation. This was done to provide data from similar contributing areas and account for inherent aquifer variability yet minimize sample redundancy.
Kelly, Brian P.
2011-01-01
The City of Independence, Missouri, operates a well field in the Missouri River alluvial aquifer. Contributing recharge areas (CRA) were last determined for the well field in 1996. Since that time, eight supply wells have been installed in the area north of the Missouri River and well pumpage has changed for the older supply wells. The change in pumping has altered groundwater flow and substantially changed the character of the CRA and groundwater travel times to the supply wells. The U.S Geological Survey, in a cooperative study with the City of Independence, Missouri, simulated steady-state groundwater flow for 2007 well pumpage, average annual river stage, and average annual recharge. Particle-tracking analysis was used to determine the CRA for supply wells and monitoring wells, and the travel time from recharge areas to supply wells, recharge areas to monitoring wells, and monitoring wells to supply wells. The simulated CRA for the well field is elongated in the upstream direction and extends to both sides of the Missouri River. Groundwater flow paths and recharge areas estimated for monitoring wells indicate the origin of water to each monitoring well, the travel time of that water from the recharge area, the flow path from the vicinity of each monitoring well to a supply well, and the travel time from the monitoring well to the supply well. Monitoring wells 14a and 14b have the shortest groundwater travel time from their contributing recharge area of 0.30 years and monitoring well 29a has the longest maximum groundwater travel time from its contributing recharge area of 1,701 years. Monitoring well 22a has the shortest groundwater travel time of 0.5 day to supply well 44 and monitoring well 3b has the longest maximum travel time of 31.91 years to supply well 10. Water-quality samples from the Independence groundwater monitoring well network were collected from 1997 to 2008 by USGS personnel during ongoing annual sampling within the 10-year contributing recharge area (CRA) of the Independence well field. Statistical summaries and the spatial and temporal variability of water quality in the Missouri River alluvial aquifer near the Independence well field were characterized from analyses of 598 water samples. Water-quality constituent groups include dissolved oxygen and physical properties, nutrients, major ions and trace elements, wastewater indicator compounds, fuel compounds, and total benzene, toluene, ethylbenzene, and xylene (BTEX), alachlor, and atrazine. The Missouri Secondary Maximum Contaminant Level (SMCL) for iron was exceeded in almost all monitoring wells. The Missouri Maximum Contaminant Level (MCL) for arsenic was exceeded 32 times in samples from monitoring wells. The MCL for barium was exceeded five times in samples from one monitoring well. The SMCL for manganese was exceeded 160 times in samples from all monitoring wells and the combined well-field sample. The most frequently detected wastewater indicator compounds were N,N-diethyl-meta-toluamide (DEET), phenol, caffeine, and metolachlor. The most frequently detected fuel compounds were toluene and benzene. Alachlor was detected in 22 samples and atrazine was detected in 37 samples and the combined well-field sample. The MCL for atrazine was exceeded in one sample from one monitoring well. Samples from monitoring wells with median concentrations of total inorganic nitrogen larger than 1 milligram per liter (mg/L) are located near agricultural land and may indicate that agricultural land practices are the source of nitrogen to groundwater. Largest median values of specific conductance; total inorganic nitrogen; dissolved calcium, magnesium, sodium, iron, arsenic, manganese, bicarbonate, and sulfate and detections of wastewater indicator compounds generally were in water samples from monitoring wells with CRAs that intersect the south bank of the Missouri River. Zones of higher specific conductance were located just upstream from the Independen
Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona-2005-06
Truini, Margot; Macy, J.P.
2007-01-01
The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area averages about 6 to 14 inches per year. The water monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2005 to September 2006. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, (5) ground-water chemistry, and (6) periodic testing of ground-water withdrawal meters. In 2005, ground-water withdrawals in the Black Mesa area totaled 7,330 acre-feet, including ground-water withdrawals for industrial (4,480 acre-feet) and municipal (2,850 acre-feet) uses. From 2004 to 2005, total withdrawals increased by less than 2 percent, industrial withdrawals increased by approximately 3 percent, and total municipal withdrawals increased by 0.35 percent. From 2005 to 2006, annually measured water levels in the Black Mesa area declined in 10 of 13 wells in the unconfined areas of the N aquifer, and the median change was -0.5 foot. Measurements indicated that water levels declined in 12 of 15 wells in the confined area of the aquifer, and the median change was -1.4 feet. From the prestress period (prior to 1965) to 2006, the median water-level change for 29 wells was -8.5 feet. Median water-level changes were -0.2 foot for 13 wells in the unconfined areas and -46.6 feet for 16 wells in the confined area. Ground-water discharges were measured once in 2005 and once in 2006 at Moenkopi School Spring and Burro Spring. Discharge decreased by 3.5 percent at Moenkopi School Spring and by 15 percent at Burro Spring. During the period of record at each spring, discharges fluctuated; a decreasing trend was apparent. Continuous records of surface-water discharge in the Black Mesa area have been collected from streamflow gages at the following sites: Moenkopi Wash (1976 to 2005), Dinnebito Wash (1993 to 2005), Polacca Wash (1994 to 2005), Pasture Canyon Spring (August 2004 to December 2005), and Laguna Creek (1996 to 2005). Median flows during November, December, January, and February of each water year were used as an index of the amount of ground-water discharge to the above named sites. For the period of record at each streamflow-gaging station, the median winter flows have decreased for Moenkopi Wash, Dinnebito Wash, and Polacca Wash. There is not a long enough period of record for Pasture Canyon Spring and Laguna Creek was discontinued at the end of December 2005. In 2006, water samples were collected from 6 wells and 2 springs in the Black Mesa area and analyzed for selected chemical constituents. Dissolved-solids concentrations ranged from 111 to 588 milligrams per liter. Water samples from 5 of the wells and both of the springs had less than 500 milligrams per liter of dissolved solids. Trends in the chemistry of water samples from the 6 wells show the Pi?on NTUA 1 and Peabody 9 wells increasing in dissolved solids, Forest Lake NTUA 1 and Peabody 2 wells decreasing in dissolved solids, and Kykotsmovi PM2 and Keams Canyon PM2 wells show a steady trend. Increasing trends in dissolved-solids, chloride, and sulfate concentrations were evident from the more than 11 years of data for the 2 springs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Findlay, Rick
The Gnome-Coach, New Mexico, Site was the location of a 3-kiloton-yield underground nuclear test in 1961 and a groundwater tracer test in 1963. The U.S. Geological Survey conducted the groundwater tracer test using four dissolved radionuclides--tritium, iodine-131, strontium-90, and cesium-137--as tracers. Site reclamation and remediation began after the underground testing, and was conducted in several phases at the site. The New Mexico Environment Department (NMED) issued a Conditional Certificate of Completion in September 2014, which documents that surface remediation activities have been successfully completed in accordance with the Voluntary Remediation Program. Subsurface activities have included annual sampling and monitoring ofmore » wells at and near the site since 1972. These annual monitoring activities were enhanced in 2008 to include monitoring hydraulic head and collecting samples from the onsite wells USGS-4, USGS-8, and LRL-7 using the low-flow sampling method. In 2010, the annual monitoring was focused to the monitoring wells within the site boundary. A site inspection and annual sampling were conducted on January 27-28, 2015. A second site visit was conducted on April 21, 2015, to install warning/notification signs to fulfill a requirement of the Conditional Certificate of Completion that was issued by the NMED for the surface.« less
NASA Astrophysics Data System (ADS)
Gourdol, L.; Hissler, C.; Pfister, L.
2012-04-01
The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.
Hart, R.J.; Sottilare, J.P.
1988-01-01
The Black Mesa, Arizona, monitoring program is designed to determine long-term effects on the water resources of the area resulting from withdrawals of groundwater from the N aquifer by the strip-mining operation of Peabody Coal Company. Withdrawals by Peabody Coal Company increased from 95 acre-ft in 1968 to 3 ,832 acre-ft in 1987. The N aquifer is an important source of water in the 5,400-sq-mi Black Mesa area on the Navajo and Hopi Indian Reservations. Water levels in the confined area of the aquifer declined as much as 95.1 ft near Keams Canyon from 1965 to 1988. Part of the decline in the measured municipal wells may be due to local pumping. During 1965-88, water levels in wells that tap the unconfined area of the aquifer have not declined significantly and have risen in many areas. Chemical analyses indicate no significant changes in the quality of water from wells that tap the N aquifer or from springs that discharge from several stratigraphic units, including the N aquifer, since pumping began at the mine. (USGS)
Ground-water conditions in Georgia, 1999
Cressler, Alan M.
2000-01-01
Ground-water conditions in Georgia during 1999 and for the period of record were evaluated using data from U.S. Geological Survey ground-water-level and ground-water-quality monitoring networks. Data for 1999 included in this report are from continuous water-level records from 130 wells and chloride analyses from 14 wells. Data from one well is incomplete because data collection was discontinued. Chloride concentration in water from the Upper Floridan aquifer in most of coastal Georgia was within drinking-water standards established by the Georgia Department of Natural Resources and the U.S. Environmental Protection Agency. In the Savannah area, chloride concentration has not changed appreciably with time. However, chloride concentration in water from some wells that tap the Floridan aquifer system in the Brunswick area exceeds the drinking-water standards. Ground-water-level and ground-water-quality data are essential for water assessment and management. Ground-water-level fluctuations and trends can be used to estimate changes in aquifer storage resulting from the effects of ground-water withdrawal and recharge from precipitation. These data can be used to address water-management needs and to evaluate the effects of management and conservation programs. As part of the ground-water investigations conducted by the U.S. Geological Survey (USGS), in cooperation with the State of Georgia and city and county governments, a Statewide water-level-measurement program was started in 1938. Initially, this program consisted of an observation-well network in the coastal area of Georgia to monitor variations in ground-water storage and quality. Additional wells were later included in areas where data could be used to aid in water resources development and management. During 1999, periodic water-level measurements were made in 46 wells, and continuous water-level measurements were obtained from 165 wells. Continuous water-level records were obtained using analog (pen and chart) recorders and electronic data recorders that record the water level at 60-minute intervals. For wells having incomplete water-level record, water levels during periods of missing record may have been higher or lower than recorded water levels. Water samples collected from 85 wells during May, June, July, August, September, October, November, and December 1999 were analyzed to determine chloride concentration in the Savannah and Brunswick areas.
Groundwater quality in the Antelope Valley, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds.
Groundwater quality in Coachella Valley, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Salton Sea and Imperial Valley areas.
Identifying Effective Policy and Technologic Reforms for Sustainable Groundwater Management in Oman
NASA Astrophysics Data System (ADS)
Madani, K.; Zekri, S.; Karimi, A.
2014-12-01
Oman has gone through three decades of efforts aimed at addressing groundwater over-pumping and the consequent seawater intrusion. Example of measures adopted by the government since the 1990's include a vast subsidy program of irrigation modernization, a freeze on drilling new wells, delimitation of several no-drill zones, a crop substitution program, re-use of treated wastewater and construction of recharge dams. With no major success through these measures, the government laid the ground for water quotas by creating a new regulation in 1995. Nevertheless, groundwater quotas have not been enforced to date due to the high implementation and monitoring costs of traditional flow meters. This presentation discusses how sustainable groundwater management can be secured in Oman using a suit of policy and technologic reforms at a reasonable economic, political and practical cost. Data collected from farms with smart meters and low-cost wireless smart irrigation systems have been used to propose sustainable groundwater withdrawal strategies for Oman using a detailed hydro-economic model that couples a MODFLOW-SEAWAT model of the coastal aquifers with a dynamic profit maximization model. The hydro-economic optimization model was flexible to be run both as a social planner model to maximize the social welfare in the region, and as an agent-based model to capture the behavior of farmers interested in maximizing their profits independently. This flexibility helped capturing the trade-off between the optimality of the social planner solution developed at the system's level and its practicality (stability) with respect to the concerns and behaviors of the profit-maximizing farmers. The idetified promising policy and technolgical reforms for Oman include strict enforcement of groundwater quotas, smart metering, changing crop mixes, improving irrigation technologies, and revising geographical distribution of the farming activities. The presentation will discuss how different combinations of these reforms would affect groundwater and energy use, groundwater level and salinity, crop yield, and agricultural revenues in the future.
NASA Astrophysics Data System (ADS)
Davis, T. A.; Landon, M. K.; Bennett, G.
2016-12-01
The California State Water Resources Control Board is collaborating with the U.S. Geological Survey to implement a Regional Monitoring Program (RMP) to assess where and to what degree groundwater resources may be at risk of contamination from oil and gas development activities including stimulation, well integrity issues, produced water ponds, and underground injection. A key issue in the implementation of the RMP is that the state has 487 onshore oil fields covering 8,785 square kilometers but detailed characterization work can only be done in a few oil fields annually. The first step in the RMP is to prioritize fields using available data that indicate potential risk to groundwater from oil and gas development, including vertical proximity of groundwater and oil/gas resources, density of petroleum and water wells, and volume of water injected in oil fields. This study compiled data for these factors, computed summary metrics for each oil field, analyzed statewide distributions of summary metrics, used those distributions to define relative categories of potential risk for each factor, and combined these into an overall priority ranking. Aggregated results categorized 22% (107 fields) of the total number of onshore oil and gas fields in California as high priority, 23% as moderate priority, and 55% as low priority. On an area-weighted basis, 41% of the fields ranked high, 30% moderate, and 29% low, highlighting that larger fields tend to have higher potential risk because of greater intensity of development, sometimes coupled with closer proximity to groundwater. More than half of the fields ranked as high priority were located in the southern Central Valley or the Los Angeles Basin. The prioritization does not represent an assessment of groundwater risk from oil and gas development; rather, such assessments are planned to follow based on detailed analysis of data from the RMP near the oil fields selected for study in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.
This Monitoring Report describes groundwater monitoring for the property at Ramona, Kansas, on which a grain storage facility was formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The monitoring was implemented on behalf of the CCC/USDA by Argonne National Laboratory. Monitoring was conducted as specified in the Long-Term Groundwater Monitoring Plan (Argonne 2012) approved by the Kansas Department of Health and Environment (KDHE 2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montoya, Amber L.; Goering, Teresa Lynn; Wagner, Katrina
2005-09-01
Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2004. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmentalmore » monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004a). (DOE 2004a).« less
Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie
2004-09-01
Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmentalmore » monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).« less
Extant or Absent: Formation Water in New York State Drinking Water Wells
NASA Astrophysics Data System (ADS)
Christian, K.; Lautz, L. K.
2013-12-01
The current moratorium on hydraulic fracturing in New York State (NYS) provides an opportunity to collect baseline shallow groundwater quality data pre-hydraulic fracturing, which is essential for determining the natural variability of groundwater chemistry and to evaluate future claims of impaired groundwater quality if hydraulic fracturing occurs in the State. Concerns regarding the future environmental impact of shale gas extraction in NYS include potential shallow groundwater contamination due to migration of methane or formation water from shale gas extraction sites. Treatment, storage and disposal of saline flowback fluids after gas extraction could also be a source of water contamination. In this study, we combine southern NYS shallow groundwater chemistry data from Project Shale-Water Interaction Forensic Tools (SWIFT, n=60), the National Uranium Resource Evaluation program (NURE, n=684), and the USGS 305(b) Ambient Groundwater Quality Monitoring program (USGS, n=89) to examine evidence of formation water mixing with groundwater using the methodology of Warner et al. (2012). Groundwater characterized as low salinity (<20 mg/L Cl-) accounted for 72% of samples and 28% of samples had high salinity (>20 mg/L Cl-). A plot of bromide versus chloride shows high salinity groundwater samples with Br/Cl ratios >0.0001 fall on the mixing line between low salinity groundwater and Appalachian Basin formation water. Based on the observed linear relationship between bromide and chloride, it appears there is up to 1% formation water mixing with shallow groundwater in the region. The presence of formation water in shallow groundwater would indicate the existence of natural migratory pathways between deep formation wells and shallow groundwater aquifers. A plot of sodium versus chloride also illustrates a linear trend for Type D waters (R^2= 0.776), but the relationship is weaker than that for bromide versus chloride (R^2= 0.924). Similar linear relationships are not observed between other ions and chloride, including Mg, Ca, and Sr. If high salinity groundwater samples from NYS contain small percentages of formation water, we expect linear relationships between chloride and these other, generally conservative ions. The absence of these linear relationships suggests high salinity could be associated with contamination by landfill leachate, septic effluent, road salt, or other potential sources of elevated salt. Future work needs to determine if mixing of shallow groundwater with other potential sources of salinity, such as road deicers, can explain the observed linear relationships. Strontium isotopes from shallow groundwater samples will also be compared to those for NY formation water.
NASA Astrophysics Data System (ADS)
Khader, A. I.; Rosenberg, D. E.; McKee, M.
2013-05-01
Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150/person and 0.6/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is no value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300/person or the bottled water cost increases to 2.3/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by manager recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.
NASA Astrophysics Data System (ADS)
Khader, A.; Rosenberg, D.; McKee, M.
2012-12-01
Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i) ignore the health risk of nitrate contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150 $/person and 0.6 $/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is not value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300 $/person or the bottled water cost increases to 2.3 $/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by managers' recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.
Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 860-square-mile Madera-Chowchilla study unit (MADCHOW) was investigated in April and May 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within MADCHOW, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 35 wells in Madera, Merced, and Fresno Counties. Thirty of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and five more were selected to provide additional sampling density to aid in understanding processes affecting groundwater quality (flow-path wells). Detection summaries in the text and tables are given for grid wells only, to avoid over-representation of the water quality in areas adjacent to flow-path wells. Groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], low-level 1,2-dibromo-3-chloropropane [DBCP] and 1,2-dibromoethane [EDB], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA], perchlorate, and low-level 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (uranium isotopes, and gross alpha and gross beta particle activities). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 300 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at approximately 11 percent of the wells sampled for each analysis, and the results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from MADCHOW wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides
Wang, Pei; Lu, Yonglong; Wang, Tieyu; Zhu, Zhaoyun; Li, Qifeng; Meng, Jing; Su, Hongqiao; Johnson, Andrew C; Sweetman, Andrew J
2016-11-01
Short chain perfluoroalkyl acids (PFAAs) have been developed since 2002 by the major manufacturers to replace the conventional C8 and higher homologues, with much of the world production shifted to China in recent years. In this study, we conducted a continuous monitoring program over the period 2011-2014 with seasonal monitoring in 2013 for PFAAs emitted from two rapidly developing fluorochemical industry parks located in the Daling River Basin, Northern China. The trend of PFAA contamination was identified, dominated by perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA), with the maximum concentrations of 3.78 μg/L, 3.70 μg/L, and 1.95 μg/L, respectively. Seasonal monitoring uncovered the occasional emission of perfluorooctane sulfonic acid (PFOS). Construction trends of new facilities and associated manufacturing capacity of the main products were also analyzed to assess correlations with PFAA emissions. An assessment of the data over the period 2011-2014 found a positive correlation with fluorocarbon alcohol (FCA) production and emission of PFAAs. Groundwater and tap water around the main source indicated that the dominant PFAAs had different diffusion behaviors. PFBS levels were higher in surface water, while PFBA was dominant in groundwater and tap water, with PFOA levels being higher in downstream groundwater. Considering the continuous expansion and development of fluorochemical industry in the Daling River Basin, this study will provide abundant information on the effectiveness of risk assessment and management. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitten, C.B.; Sjostrom, K.J.
1991-04-01
Ground-water contaminants were found in ground-water monitoring wells at the existing landfill. More wells to define the horizontal and vertical extent of the contaminant plume are to be installed. Geophysical techniques (electro-magnetic induction, vertical electrical resistivity, and horizontal resistivity profiling) were used to map the extent of the contaminant plume. Using the geophysical, ground-water elevation, and geologic data, five anomalous areas south and east of the landfill were identified as locations for additional ground-water monitoring wells.
Thomas, Judith C.; Arnold, Larry R. Rick
2015-07-06
The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Ten monitoring wells were installed during October and November 2012. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system will provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.
NASA Astrophysics Data System (ADS)
Rohde, M. M.; Froend, R.; Howard, J.
2016-12-01
New requirements under California's Sustainable Groundwater Management Act of 2014 (SGMA) requires local Groundwater Sustainability Agencies to identify Groundwater Dependent Ecosystems (GDEs) and consider the interests of environmental beneficial uses and users of groundwater when developing their Groundwater Sustainability Plans. Most local water agencies will be identifying and considering GDEs for the first time under SGMA, and will find this challenging due to a lack of in-house biological and ecologic expertise. Uncertainty around what management triggers and thresholds are needed to prevent harm to GDEs is not only endemic to California, but also worldwide due to a lack of science at the intersection of hydrology and ecology. Australia has, however, has done an exceptional job at reducing uncertainty when selecting management triggers and thresholds for GDEs in their water management plans. This has been achieved by integrating risk assessment into an adaptive management framework that uses monitoring programs to inform management strategies. This "learn by doing" approach has helped close knowledge gaps needed to manage GDEs in response to Australia's national sustainable water management legislation. The two main objectives of this paper are to: 1) synthesize Australia's adaptive management approach of GDEs in state water plans, and 2) highlight opportunities for knowledge transfer from Australia into the California context.
40 CFR 265.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the current post-closure plan (e.g., leachate or ground-water monitoring results, characteristics of... and the environment (e.g., leachate or ground-water monitoring results indicate a potential for...
40 CFR 265.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the current post-closure plan (e.g., leachate or ground-water monitoring results, characteristics of... and the environment (e.g., leachate or ground-water monitoring results indicate a potential for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMaster, B.W.; Jones, S.B.; Sitzler, J.L.
1995-06-01
This document is a compendium of results of the calendar year 1994 Monitor Well Inspection and Maintenance Program at the Department of Energy Y-12 Plant in Oak Ridge, Tennessee. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for pluggingmore » and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the life expectancy of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant during 1994. All inspections were conducted between April and December.« less
Koike, S.; Krapac, I.G.; Oliver, H.D.; Yannarell, A.C.; Chee-Sanford, J. C.; Aminov, R.I.; Mackie, R.I.
2007-01-01
To monitor the dissemination of resistance genes into the environment, we determined the occurrence of tetracycline resistance (Tcr) genes in groundwater underlying two swine confinement operations. Monitoring well networks (16 wells at site A and 6 wells at site C) were established around the lagoons at each facility. Groundwater (n = 124) and lagoon (n = 12) samples were collected from the two sites at six sampling times from 2000 through 2003. Total DNA was extracted, and PCR was used to detect seven Tcr genes [tet(M), tet(O), tet(Q), tet(W), tet(C), tet(H), and tet(Z)]. The concentration of Tcr genes was quantified by real-time quantitative PCR. To confirm the Tcr gene source in groundwater, comparative analysis of tet(W) gene sequences was performed on groundwater and lagoon samples. All seven Tcr genes were continually detected in groundwater during the 3-year monitoring period at both sites. At site A, elevated detection frequency and concentration of Tcr genes were observed in the wells located down-gradient of the lagoon. Comparative analysis of tet(W) sequences revealed that the impacted groundwater contained gene sequences almost identical (99.8% identity) to those in the lagoon, but these genes were not found in background libraries. Novel sequence clusters and unique indigenous resistance gene pools were also found in the groundwater. Thus, antibiotic resistance genes in groundwater are affected by swine manure, but they are also part of the indigenous gene pool. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.
Koike, S.; Krapac, I. G.; Oliver, H. D.; Yannarell, A. C.; Chee-Sanford, J. C.; Aminov, R. I.; Mackie, R. I.
2007-01-01
To monitor the dissemination of resistance genes into the environment, we determined the occurrence of tetracycline resistance (Tcr) genes in groundwater underlying two swine confinement operations. Monitoring well networks (16 wells at site A and 6 wells at site C) were established around the lagoons at each facility. Groundwater (n = 124) and lagoon (n = 12) samples were collected from the two sites at six sampling times from 2000 through 2003. Total DNA was extracted, and PCR was used to detect seven Tcr genes [tet(M), tet(O), tet(Q), tet(W), tet(C), tet(H), and tet(Z)]. The concentration of Tcr genes was quantified by real-time quantitative PCR. To confirm the Tcr gene source in groundwater, comparative analysis of tet(W) gene sequences was performed on groundwater and lagoon samples. All seven Tcr genes were continually detected in groundwater during the 3-year monitoring period at both sites. At site A, elevated detection frequency and concentration of Tcr genes were observed in the wells located down-gradient of the lagoon. Comparative analysis of tet(W) sequences revealed that the impacted groundwater contained gene sequences almost identical (99.8% identity) to those in the lagoon, but these genes were not found in background libraries. Novel sequence clusters and unique indigenous resistance gene pools were also found in the groundwater. Thus, antibiotic resistance genes in groundwater are affected by swine manure, but they are also part of the indigenous gene pool. PMID:17545324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Stacy
2014-09-01
Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of themore » National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).« less
Nitrate variability in groundwater of North Carolina using monitoring and private well data models.
Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L
2014-09-16
Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.
Reliable groundwater levels: failures and lessons learned from modeling and monitoring studies
NASA Astrophysics Data System (ADS)
Van Lanen, Henny A. J.
2017-04-01
Adequate management of groundwater resources requires an a priori assessment of impacts of intended groundwater abstractions. Usually, groundwater flow modeling is used to simulate the influence of the planned abstraction on groundwater levels. Model performance is tested by using observed groundwater levels. Where a multi-aquifer system occurs, groundwater levels in the different aquifers have to be monitored through observation wells with filters at different depths, i.e. above the impermeable clay layer (phreatic water level) and beneath (artesian aquifer level). A reliable artesian level can only be measured if the space between the outer wall of the borehole (vertical narrow shaft) and the observation well is refilled with impermeable material at the correct depth (post-drilling phase) to prevent a vertical hydraulic connection between the artesian and phreatic aquifer. We were involved in improper refilling, which led to impossibility to monitor reliable artesian aquifer levels. At the location of the artesian observation well, a freely overflowing spring was seen, which implied water leakage from the artesian aquifer affected the artesian groundwater level. Careful checking of the monitoring sites in a study area is a prerequisite to use observations for model performance assessment. After model testing the groundwater model is forced with proposed groundwater abstractions (sites, extraction rates). The abstracted groundwater volume is compensated by a reduction of groundwater flow to the drainage network and the model simulates associated groundwater tables. The drawdown of groundwater level is calculated by comparing the simulated groundwater level with and without groundwater abstraction. In lowland areas, such as vast areas of the Netherlands, the groundwater model has to consider a variable drainage network, which means that small streams only carry water during the wet winter season, and run dry during the summer. The main streams drain groundwater throughout the whole year. We simulated groundwater levels with a steady-state groundwater flow model with and without groundwater abstraction for the wet and dry season, i.e. considering a high (all streams included) and low drainage density (only major streams), respectively. Groundwater drawdown maps for the wet and dry season were compiled. Stakeholders (farmers, ecologists) were very concerned about the large drawdowns. After a while and discussions with the Water Supply Company and stakeholders, we realised that we had calculated unrealistic large drawdowns of the phreatic groundwater level for the dry season. We learnt that by applying a steady-state model we did not take into account the large volume of groundwater, which is released from the groundwater storage. The transient groundwater model that we developed then, showed that the volume of groundwater released from the storage per unit of time is significant and that the drawdown of the phreatic groundwater level by the end of the dry period is substantially smaller than the one simulated by the steady-state model. The results of the transient groundwater flow model agreed rather well with the pumping test that lasted the whole dry season.
NASA Astrophysics Data System (ADS)
Karasu, İ. G.; Yilmaz, K. K.; Yilmaz, M. T.
2017-12-01
Estimation of the groundwater storage change and its interannual variability is critical over Konya Closed Basin which has excessive agricultural production. The annual total precipitation falling over the region is not sufficient to compensate the agricultural irrigation needs of the region. This leds many to use groundwater as the primary water resource, which resulted in significant drop in the groundwater levels. Accordingly, monitoring of the groundwater change is critical for sustainable water resources management. Gravity Recovery and Climate Experiment (GRACE) observations and Global Land Data Assimilation System (GLDAS) have been succesfully used over many locations to monitor the change in the groundwater storages. In this study, GRACE-derived terrestrial water storage estimates and GLDAS model soil moisture, canopy water, snow water equivalent and surface runoff simulations are used to retrieve the change in the groundwater storage over Konya Closed Basin streching over 50,000 km2 area. Initial comparisons show the declining trend in GRACE and GLDAS combined groundwater storage change estimates between 2002 and 2016 are consistent with the actual groundwater level change observed at ground stations. Even though many studies recommend GRACE observations to be used over regions larger than 100,000 km2 - 200,000 km2 area, results show GRACE remote sensing and GLDAS modeled groundwater change information are skillful to monitor the large mass changes occured as a result of the excessive groundwater exploitation over Konya Closed Basin with 50,000 km2 area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daley, P F; Jantos, J; Pedler, W H
2005-09-20
This report presents an intercomparison of three groundwater flow monitoring technologies at a trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County, California. Soil and groundwater at this site became contaminated by fuels and solvents that were burned on a portion of OU 1 called the Fire Drill Area (FDA) as part of firefighter training from 1962 and 1985. Cont Contamination is believed to be restricted to the unconfined A-aquifer, where water is reached at a depthmore » of approximately 60 to 80 feet below the ground surface; the aquifer is from 15 to 20 feet in thickness, and is bounded below by a dense clay layer, the Salinas Valley Aquitard. Soil excavation and bioremediation were initiated at the site of fire training activities in the late 1980s. Since that time a pump-and-treat operation has been operated close to the original area of contamination, and this system has been largely successful at reducing groundwater contamination in this source area. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In this report, we have augmented flow monitoring equipment permanently installed in an earlier project (Oldenburg et al., 2002) with two additional flow monitoring devices that could be deployed in existing monitoring wells, in an effort to better understand their performance in a nearly ideal, homogeneous sand aquifer, that we expected would exhibit laminar groundwater flow owing to the site's relatively simple hydrogeology. The three flow monitoring tools were the Hydrotechnics{reg_sign} In In-Situ Permeable Flow Sensor (ISPFS), the RAS Integrated Subsurface Evaluation Hydrophysical Logging tool (HPL), and the Lawrence Livermore National Laboratory Scanning Colloidal Borescope Flow Meter (SCBFM). All three devices produce groundwater flow velocity measurements, and the ISPFS and SCBFM systems also gene generate flow direction rate estimates. The ISPFS probes are permanently installed and are non-retrievable, but produce long-term records with essentially no operator intervention or maintenance. The HPL and SCBFM systems are lightweight, portable logging devices that employ recording of electrical conductivity changes in wells purged with deionized water (HPL), or imaging of colloidal particles traversing the borehole (SCBFM) as the physical basis for estimating the velocity of groundwater flow through monitoring wells. All three devices gave estimates of groundwater velocity that were in reasonable agreement. However, although the ISPFS produced groundwater azimuth data that correlated well with conventional conductivity and gradient analyses of the groundwater flow field, the SCBFM direction data were in poor agreement. Further research into the reasons for this lack of correlation would seem to be warranted, given the ease of deployment of this tool in existing conventional monitoring wells, and its good agreement with the velocity estimates of the other technologies examined.« less
Design and Installation of Monitoring Wells Guidance
EPA Region 4 Science and Ecosystem Support Division (SESD) document, from Feb. 18, 2008, that describes procedures, methods, and considerations when designing and installing groundwater monitoring wells to be used for collection of groundwater samples.
Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA
Rowden, R.D.; Liu, H.; Libra, R.D.
2001-01-01
Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.
Trace elements and radon in groundwater across the United States, 1992-2003
Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.
2011-01-01
Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Bertoldo, N A; Campbell, C G
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2008 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and ismore » available at https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2008: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary. The report is the responsibility of LLNL's Environmental Protection Department. Monitoring data were obtained through the combined efforts of the Environmental Protection Department; Environmental Restoration Department; Physical and Life Sciences Environmental Monitoring Radiation Laboratory; and the Hazards Control Department.« less
Waste Isolation Pilot Plant site environmental report, for calendar year 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The U.S. Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires DOE facilities, that conduct environmental protection programs, to annually prepare a Site Environmental Report (SER). The purpose of the SER is to provide an abstract of environmental assessments conducted in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit. The content of this SER is not restricted to a synopsis of the required data, in addition, information pertaining to new and continued monitoring and compliance activities during the 1995 calendar yearmore » are also included. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP). The EMP provides inclusive guidelines implemented to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater. air, soil, and biotic matrices are monitored for an array of radiological and nonradiological factors. The baseline radiological surveillance program encompasses a broader geographic area that includes nearby ranches, villages, and cities. Most elements of nonradiological assessments are conducted within the geographic vicinity of the WIPP site.« less
Phillips, Steven P.; Carlson, Carl S.; Metzger, Loren F.; Howle, James F.; Galloway, Devin L.; Sneed, Michelle; Ikehara, Marti E.; Hudnut, Kenneth W.; King, Nancy E.
2003-01-01
Ground-water levels in Lancaster, California, declined more than 200 feet during the 20th century, resulting in reduced ground-water supplies and more than 6 feet of land subsidence. Facing continuing population growth, water managers are seeking solutions to these problems. Injection of imported, treated fresh water into the aquifer system when it is most available and least expensive, for later use during high-demand periods, is being evaluated as part of a management solution. The U.S. Geological Survey, in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency, monitored a pilot injection program, analyzed the hydraulic and subsidence-related effects of injection, and developed a simulation/optimization model to help evaluate the effectiveness of using existing and proposed wells in an injection program for halting the decline of ground-water levels and avoiding future land subsidence while meeting increasing ground-water demand. A variety of methods were used to measure aquifer-system response to injection. Water levels were measured continuously in nested (multi-depth) piezometers and monitoring wells and periodically in other wells that were within several miles of the injection site. Microgravity surveys were done to estimate changes in the elevation of the water table in the absence of wells and to estimate specific yield. Aquifer-system deformation was measured directly and continuously using a dual borehole extensometer and indirectly using continuous Global Positioning System (GPS), first-order spirit leveling, and an array of tiltmeters. The injected water and extracted water were sampled periodically and analyzed for constituents, including chloride and trihalomethanes. Measured injection rates of about 750 gallons per minute (gal/min) per well at the injection site during a 5-month period showed that injection at or above the average extraction rates at that site (about 800 gal/min) was hydraulically feasible. Analyses of these data took many forms. Coupled measurements of gravity and water-level change were used to estimate the specific yield near the injection wells, which, in turn, was used to estimate areal water-table changes from distributed measurements of gravity change. Values of the skeletal components of aquifer-system storage, which are key subsidence-related characteristics of the system, were derived from continuous measurements of water levels and aquifer-system deformation. A numerical model of ground-water flow was developed for the area surrounding Lancaster and used to estimate horizontal and vertical hydraulic conductivities. A chemical mass balance was done to estimate the recovery of injected water. The ground-water-flow model was used to project changes in ground-water levels for 10 years into the future, assuming no injection, no change in pumping distribution, and forecasted increases in ground-water demand. Simulated ground-water levels decreased throughout the Lancaster area, suggesting that land subsidence would continue as would the depletion of ground-water supplies and an associated loss of well production capacity. A simulation/optimization model was developed to help identify optimal injection and extraction rates for 16 existing and 13 proposed wells to avoid future land subsidence and to minimize loss of well production capacity while meeting increasing ground-water demands. Results of model simulations suggest that these objectives can be met with phased installation of the proposed wells during the 10-year period. Water quality was not considered in the optimization, but chemical-mass-balance results indicate that a sustained injection program likely would have residual effects on the chemistry of ground water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Michael George
This report summarizes radiological monitoring results from groundwater wells associated with the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds Reuse Permit (I-161-02). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Monitoring: a vital component of science at USGS WEBB sites
NASA Astrophysics Data System (ADS)
Shanley, J. B.; Peters, N. E.; Campbell, D. H.; Clow, D. W.; Walker, J. F.; Hunt, R. J.
2007-12-01
The U.S. Geological Survey launched its Water, Energy, and Biogeochemical Budgets (WEBB) program in 1991 with the establishment of five long-term research watersheds. Monitoring of climate, hydrology, and chemistry is the cornerstone of WEBB scientific investigations. At Loch Vale, CO, long-term streamflow and climate monitoring indicated an increase rather than the expected decrease in the runoff:precipitation ratio during a drought in the early 2000s, indicating the melting of subsurface and glacial ice in the basin. At Luquillo Experimental Forest in Puerto Rico, monitoring of mercury in precipitation revealed the highest recorded mercury wet deposition rates in the USA, an unexpected finding given the lack of point sources. At Panola Mountain, GA, long-term monitoring of soil- and groundwater revealed step shifts in chemical compositions in response to wet and drought cycles, causing a corresponding shift in stream chemistry. At Sleepers River, VT, WEBB funding has extended a long- term (since 1960) weekly snow water equivalent dataset which is a valuable integrating signal of regional climate trends. At Trout Lake, WI, long-term monitoring of lakes, ground-water levels, streamflow and subsurface water chemistry has generated a rich dataset for calibrating a watershed model, and allowed for efficient design of an automated procedure for sampling mercury during runoff events. The 17-plus years of monitoring at the WEBB watersheds provides a foundation for generating new scientific hypotheses, a basis for trend detection, and context for anomalous observations that often drive new research.
Lawrence Livermore National Laboratory Environmental Report 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H E; Bertoldo, N A; Campbell, C G
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and ismore » available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, S; Gallegos, G; Berg, L L
2008-09-24
The purposes of the 'Lawrence Livermore National Laboratory Environmental Report 2007' are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites--the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available atmore » https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2007: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.« less
Mapping the groundwater vulnerability for pollution at the pan African scale.
Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik
2016-02-15
We estimated vulnerability and pollution risk of groundwater at the pan-African scale. We therefore compiled the most recent continental scale information on soil, land use, geology, hydrogeology and climate in a Geographical Information System (GIS) at a resolution of 15 km × 15 km and at the scale of 1:60,000,000. The groundwater vulnerability map was constructed by means of the DRASTIC method. The map reveals that groundwater is highly vulnerable in Central and West Africa, where the watertable is very low. In addition, very low vulnerability is found in the large sedimentary basins of the African deserts where groundwater is situated in very deep aquifers. The groundwater pollution risk map is obtained by overlaying the DRASTIC vulnerability map with land use. The northern, central and western part of the African continent is dominated by high pollution risk classes and this is very strongly related to shallow groundwater systems and the development of agricultural activities. Subsequently, we performed a sensitivity analysis to evaluate the relative importance of each parameter on groundwater vulnerability and pollution risk. The sensitivity analysis indicated that the removal of the impact of vadose zone, the depth of the groundwater, the hydraulic conductivity and the net recharge causes a large variation in the mapped vulnerability and pollution risk. The mapping model was validated using nitrate concentration data of groundwater as a proxy of pollution risk. Pan-African concentration data were inferred from a meta-analysis of literature data. Results shows a good match between nitrate concentration and the groundwater pollution risk classes. The pan African assessment of groundwater vulnerability and pollution risk is expected to be of particular value for water policy and for designing groundwater resources management programs. We expect, however, that this assessment can be strongly improved when better pan African monitoring data related to groundwater pollution will be integrated in the assessment methodology. Copyright © 2015 Elsevier B.V. All rights reserved.
Groundwater quality in the Indian Wells Valley, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Indian Wells Valley are completed to depths between 240 and 800 feet (73 to 244 meters), consist of solid casing from the land surface to a depth of 180 to 260 feet (55 to 79 meters), and are screened or perforated below the solid casing.
Building science-based groundwater tools and capacity in Armenia for the Ararat Basin
Carter, Janet M.; Valder, Joshua F.; Anderson, Mark T.; Meyer, Patrick; Eimers, Jo L.
2016-05-18
The U.S. Geological Survey (USGS) and U.S. Agency for International Development (USAID) began a study in 2016 to help build science-based groundwater tools and capacity for the Ararat Basin in Armenia. The growth of aquaculture and other uses in the Ararat Basin has been accompanied by increased withdrawals of groundwater, which has resulted in a reduction of artesian conditions (decreased springflow, well discharges, and water levels) including loss of flowing wells in many places (Armenia Branch of Mendez England and Associates, 2014; Yu and others, 2015). This study is in partnership with USAID/Armenia in the implementation of its Science, Technology, Innovation, and Partnerships (STIP) effort through the Advanced Science and Partnerships for Integrated Resource Development (ASPIRED) program and associated partners, including the Government of Armenia, Armenia’s Hydrogeological Monitoring Center, and the USAID Global Development Lab and its GeoCenter. Scientific tools will be developed through this study that groundwater-resource managers, such as those in the Ministry of Nature Protection, in Armenia can use to understand and predict the consequences of their resource management decisions.
Occurrence and distribution of microbiological indicators in groundwater and stream water
Francy, D.S.; Helsel, D.R.; Nally, R.A.
2000-01-01
A total of 136 stream water and 143 groundwater samples collected in five important hydrologic systems of the United States were analyzed for microbiological indicators to test monitoring concepts in a nationally consistent program. Total coliforms were found in 99%, Escherichia coli in 97%, and Clostridium perfringens in 73% of stream water samples analyzed for each bacterium. Total coliforms were found in 20%, E. coli in less than 1%, and C. perfringens in none of the groundwater samples analyzed for each bacterium. Although coliphage analyses were performed on many of the samples, contamination in the laboratory and problems discerning discrete plaques precluded quantification. Land use was found to have the most significant effect on concentrations of bacterial indicators in stream water. Presence of septic systems on the property near the sampling site and well depth were found to be related to detection of coliforms in groundwater, although these relationships were not statistically significant. A greater diversity of sites, more detailed information about some factors, and a larger dataset may provide further insight to factors that affect microbiological indicators.
Macy, Jamie P.
2010-01-01
The N aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area, which is typically about 6 to 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2008 to September 2009. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2008, total groundwater withdrawals were 4,110 acre-feet, industrial withdrawals were 1,210 acre-ft, and municipal withdrawals were 2,900 acre-ft. Total withdrawals during 2008 were about 44 percent less than total withdrawals in 2005. From 2007 to 2008 total withdrawals decreased by 4 percent, industrial withdrawals increased by approximately 3 percent, but total municipal withdrawals decreased by 6 percent. From 2008 to 2009, annually measured water levels in the Black Mesa area declined in 8 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 11 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was -0.2 feet. From the prestress period (prior to 1965) to 2009, the median water-level change for 34 wells in both the confined and unconfined area was -11.8 feet. Also, from the prestress period to 2009, the median water-level changes were -1.6 feet for 16 wells measured in the unconfined areas and -36.7 feet for 18 wells measured in the confined area. Spring flow was measured at three springs in 2009. Flow fluctuated during the period of record, but a decreasing trend was apparent at Moenkopi School Spring and Pasture Canyon Spring. Discharge at Burro spring has remained constant since it was first measured in 1998. Continuous records of surface-water discharge in the Black Mesa area were collected from streamflow-gaging stations at the following sites: Moenkopi Wash at Moenkopi 09401260 (1976 to 2008), Dinnebito Wash near Sand Springs 09401110 (1993 to 2008), Polacca Wash near Second Mesa 09400568 (1994 to 2008), and Pasture Canyon Springs 09401265 (August 2004 to 2008). Median winter flows (November through February) of each water year were used as an index of the amount of groundwater discharge at the above-named sites. For the period of record of each streamflow-gaging station, the median winter flows have generally remained constant, which suggests no change in groundwater discharge. In 2009, water samples collected from 6 wells and 3 springs in the Black Mesa area were analyzed for selected chemical constituents, and the results were compared with previous analyses. Concentrations of dissolved solids, chloride, and sulfate have varied at all 6 wells for the period of record, but neither increasing nor decreasing trends over time were found. Dissolved-solids, chloride, and sulfate concentrations increased at Moenkopi School Spring during the more than 12 years of record at that site. Concentrations of dissolved solids, chloride, and sulfate at Pasture Canyon Spring have not varied much since the early 1980s, and there is no trend in those data. Concentrations of dissolved solids, chloride, and sulfate at Burro Spring have varied for the period of record, but there is no trend in the data.
Macy, Jamie P.
2009-01-01
The N aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area, which is typically about 6 to 14 inches per year. The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2007 to September 2008. The monitoring program includes measurements of (1) groundwater withdrawals, (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry. In 2007, total groundwater withdrawals were 4,270 acre-feet, industrial withdrawals were 1,170 acre-ft, and municipal withdrawals were 3,100 acre-ft. Total withdrawals during 2007 were about 41 percent less than total withdrawals in 2005. From 2006 to 2007, however, total withdrawals increased by 4 percent, industrial withdrawals decreased by approximately 2 percent, and total municipal withdrawals increased by 7 percent. From 2007 to 2008, annually measured water levels in the Black Mesa area declined in 6 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was -0.2 feet. Water levels declined in 9 of 18 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was -0.2 feet. From the prestress period (prior to 1965) to 2008, the median water-level change for 33 wells in both the confined and unconfined area was -12.9 feet. Median water-level changes were -1.0 feet for 15 wells measured in the unconfined areas and -33.2 feet for 18 wells measured in the confined area. Spring flow was measured at two springs in 2008. Flow decreased at both Moenkopi School Spring and Pasture Canyon Spring from previous years. Flow fluctuated during the period of record, but a decreasing trend was apparent. Continuous records of surface-water discharge in the Black Mesa area were collected from streamflow-gaging stations at the following sites: Moenkopi Wash at Moenkopi 09401260 (1976 to 2007), Dinnebito Wash near Sand Springs 09401110 (1993 to 2007), Polacca Wash near Second Mesa 09400568 (1994 to 2007), and Pasture Canyon Springs 09401265 (August 2004 to 2007). Median winter flows (November through February) of each water year were used as an index of the amount of groundwater discharge at the above-named sites. For the period of record of each streamflow-gaging station, the median winter flows have generally remained constant, which suggests no change in groundwater. The period of record is too short to determine if there is a trend at Pasture Canyon Spring. In 2008, water samples collected from 6 wells and 2 springs in the Black Mesa area were analyzed for selected chemical constituents and the results compared with previous analyses. Concentrations of dissolved solids, chloride, and sulfate have varied at all 6 wells for the period of record, but neither increasing nor decreasing trends over time were found. Dissolved-solids, chloride, and sulfate concentrations increased at Moenkopi School Spring during the more than 12 years of record at that site. Concentrations of dissolved solids, chloride, and sulfate at Pasture Canyon Spring have not varied much since the early 1980s, and there is no trend in those data.
Macy, Jamie P.; Mason, Jon P.
2017-12-07
The Navajo (N) aquifer is an extensive aquifer and the primary source of groundwater in the 5,400-square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use by a growing population and because of low precipitation in the arid climate of the Black Mesa area. Precipitation in the area typically is between 6 and 16 inches per year.The U.S. Geological Survey water-monitoring program in the Black Mesa area began in 1971 and provides information about the long-term effects of groundwater withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected as part of the monitoring program in the Black Mesa area from January 2013 to December 2015. The monitoring program includes measurements of (1) groundwater withdrawals (pumping), (2) groundwater levels, (3) spring discharge, (4) surface-water discharge, and (5) groundwater chemistry.In 2013, total groundwater withdrawals were 3,980 acre-feet (ft), in 2014 total withdrawals were 4,170 acre-ft, and in 2015 total withdrawals were 3,970 acre-ft. From 2013 to 2015 total withdrawals varied by less than 5 percent.From 2014 to 2015, annually measured water levels in the Black Mesa area declined in 9 of 15 wells that were available for comparison in the unconfined areas of the N aquifer, and the median change was -0.1 feet. Water levels declined in 3 of 16 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.6 feet. From the prestress period (prior to 1965) to 2015, the median water-level change for 34 wells in both the confined and unconfined areas was -13.2 feet; the median water-level changes were -1.7 feet for 16 wells measured in the unconfined areas and -42.3 feet for 18 wells measured in the confined area.Spring flow was measured at four springs in 2014. Flow fluctuated during the period of record for Burro Spring and Unnamed Spring near Dennehotso, but a decreasing trend was statistically significant (p<0.05) at Moenkopi School Spring and Pasture Canyon Spring. Discharge at Burro Spring has remained relatively constant since it was first measured in the 1980s and discharge at Unnamed Spring near Dennehotso has fluctuated for the period of record. Trend analysis for discharge at Moenkopi and Pasture Canyon Springs yielded a slope significantly different (p<0.05) from zero.Continuous records of surface-water discharge in the Black Mesa area were collected from streamflow-gaging stations at the following sites: Moenkopi Wash at Moenkopi 09401260 (1976 to 2015), Dinnebito Wash near Sand Springs 09401110 (1993 to 2015), Polacca Wash near Second Mesa 09400568 (1994 to 2015), and Pasture Canyon Springs 09401265 (2004 to 2015). Median winter flows (November through February) of each water year were used as an index of the amount of groundwater discharge at the above-named sites. For the period of record of each streamflow-gaging station, the median winter flows have generally remained constant, which suggests no change in groundwater discharge.In 2014, water samples collected from four springs in the Black Mesa area were analyzed for selected chemical constituents, and the results were compared with previous analyses. Dissolved solids, chloride, and sulfate concentrations increased at Moenkopi School Spring during the more than 25 years of record at that site. Concentrations of dissolved solids, chloride, and sulfate at Pasture Canyon Spring have not varied significantly (p>0.05) since the early 1980s, and there is no increasing or decreasing trend in those data. Concentrations of dissolved solids, chloride, and sulfate at Burro Spring and Unnamed Spring near Dennehotso have varied for the period of record, but there is no increasing or decreasing statistical trend in the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greilling, R.W.; Peshkin, R.L.
1985-12-20
An IRP Phase II (Stage 1) Confirmation/Quantification Investigation was performed in the American Lake Garden Tract residential community as a consequence of previously confirmed groundwater contamination by like compounds both in the Garden Tract and on McChord AFB. A similar type of groundwater problem was believed to exist at the opposite end of the residential area, and may possibly be related to Army operations on Fort Lewis. The field study was designed to identify the type, quantity, and extent of groundwater contamination by expanding the study area to include all of the Garden tract, the entire west half of McChordmore » AFB, and the northern one-third of the Fort Lewis Logistics Center. Field investigations consisted of 58,000 lineal feet of self-potential and 24,000 lineal feet of seismic refraction surveys. Forty electrical resistance stations were established. Twenty-six two-inch-diameter monitoring wells were constructed. More than 225 water samples from more than 60 EPA, Army, and Air Force monitoring wells, plus domestic water-supply wells were characterized for volatile organic chemicals. All wells were sounded at least weekly for static water levels, and in-situ hydrochemical properties were monitored. Study results confirm independent sources of chlorinated hydrocarbon contamination exist on each military facility, and that these contaminants are migrating into different parts of the American Lake Garden Tract.« less
NASA Astrophysics Data System (ADS)
Yoshioka, Mayumi; Takakura, Shinichi; Uchida, Youhei
2018-05-01
To estimate the groundwater flow around a borehole heat exchanger (BHE), thermal properties of geological core samples were measured and a thermal response test (TRT) was performed in the Tsukuba upland, Japan. The thermal properties were measured at 57 points along a 50-m-long geological core, consisting predominantly of sand, silt, and clay, drilled near the BHE. In this TRT, the vertical temperature in the BHE was also monitored during and after the test. Results for the thermal properties of the core samples and from the monitoring indicated that groundwater flow enhanced thermal transfers, especially at shallow depths. The groundwater velocities around the BHE were estimated using a two-dimensional numerical model with monitoring data on temperature changes. According to the results, the estimated groundwater velocity was generally consistent with hydrogeological data from previous studies, except for the data collected at shallow depths consisting of a clay layer. The reasons for this discrepancy at shallow depths were predicted to be preferential flow and the occurrence of vertical flow through the BHE grout, induced by the hydrogeological conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Findlay, Rick; Kautsky, Mark
2015-12-01
The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–22 and 27, 2015. Several of the land owners were not available to allow access to their respective properties, which created the need for several sample collection trips. This report documents the analytical results of the Rulison monitoring event and includes the trip report and the data validation package (Appendix A). The groundwater and surface water monitoring were shipped to the GEL Group Inc. laboratories for analysis. All requested analyses were successfully completed.more » Samples were analyzed for gamma-emitting radionuclides by high- resolution gamma spectrometry. Tritium was analyzed using two methods, the conventional tritium method, which has a detection limit on the order of 400 picocuries per liter (pCi/L), and the enriched method (for selected samples), which has a detection limit on the order of 3 pCi/L.« less
Monitoring Ground-Water Quality in Coastal Ecosystems
Colman, John A.; Masterson, John P.
2007-01-01
INTRODUCTION The Cape Cod National Seashore (CACO) extends along more than 70 km of Atlantic Ocean open-beach coastline and includes three large saltwater bays - Wellfleet Harbor, Nauset Marsh, and Pleasant Bay (fig. 1). CACO encompasses about 18,000 ha of uplands, lakes, wetlands, and tidal lands (Godfrey and others, 1999) including most habitats typical of the sandy coast in National seashores and parks extending southward from Massachusetts to Florida. In 1995, CACO was selected by the National Park Service (NPS) as a prototype park typifying the Atlantic and Gulf Coast biogeographic region for long-term coastal ecosystem monitoring. The U.S. Geological Survey (USGS) is currently (2007) assisting the NPS in the development of protocols for a Long-Term Coastal Ecosystem Monitoring Program at the CACO in Massachusetts. The overall purpose of the monitoring program is to characterize both natural and human-induced change in the biological resources of the CACO, over a time scale of decades, in the context of a changing global ecosystem.
NASA Astrophysics Data System (ADS)
Kim, U.; Parker, J.; Borden, R. C.
2014-12-01
In-situ chemical oxidation (ISCO) has been applied at many dense non-aqueous phase liquid (DNAPL) contaminated sites. A stirred reactor-type model was developed that considers DNAPL dissolution using a field-scale mass transfer function, instantaneous reaction of oxidant with aqueous and adsorbed contaminant and with readily oxidizable natural oxygen demand ("fast NOD"), and second-order kinetic reactions with "slow NOD." DNAPL dissolution enhancement as a function of oxidant concentration and inhibition due to manganese dioxide precipitation during permanganate injection are included in the model. The DNAPL source area is divided into multiple treatment zones with different areas, depths, and contaminant masses based on site characterization data. The performance model is coupled with a cost module that involves a set of unit costs representing specific fixed and operating costs. Monitoring of groundwater and/or soil concentrations in each treatment zone is employed to assess ISCO performance and make real-time decisions on oxidant reinjection or ISCO termination. Key ISCO design variables include the oxidant concentration to be injected, time to begin performance monitoring, groundwater and/or soil contaminant concentrations to trigger reinjection or terminate ISCO, number of monitoring wells or geoprobe locations per treatment zone, number of samples per sampling event and location, and monitoring frequency. Design variables for each treatment zone may be optimized to minimize expected cost over a set of Monte Carlo simulations that consider uncertainty in site parameters. The model is incorporated in the Stochastic Cost Optimization Toolkit (SCOToolkit) program, which couples the ISCO model with a dissolved plume transport model and with modules for other remediation strategies. An example problem is presented that illustrates design tradeoffs required to deal with characterization and monitoring uncertainty. Monitoring soil concentration changes during ISCO was found to be important to avoid decision errors associated with slow rebound of groundwater concentrations.
Sensitivity of GRACE-derived estimates of groundwater-level changes in southern Ontario, Canada
NASA Astrophysics Data System (ADS)
Hachborn, Ellen; Berg, Aaron; Levison, Jana; Ambadan, Jaison Thomas
2017-12-01
Amidst changing climates, understanding the world's water resources is of increasing importance. In Ontario, Canada, low water conditions are currently assessed using only precipitation and watershed-based stream gauges by the Conservation Authorities in Ontario and the Ministry of Natural Resources and Forestry. Regional groundwater-storage changes in Ontario are not currently measured using satellite data by research institutes. In this study, contributions from the Gravity Recovery and Climate Experiment (GRACE) data are compared to a hydrogeological database covering southern Ontario from 2003 to 2013, to determine the suitability of GRACE total water storage estimates for monitoring groundwater storage in this location. Terrestrial water storage data from GRACE were used to determine monthly groundwater storage (GWS) anomaly values. GWS values were also determined by multiplying groundwater-level elevations (from the Provincial Groundwater Monitoring Network wells) by specific yield. Comparisons of GRACE-derived GWS to well-based GWS data determined that GRACE is sufficiently sensitive to obtain a meaningful signal in southern Ontario. Results show that GWS values produced by GRACE are useful for identifying regional changes in groundwater storage in areas with limited available hydrogeological characterization data. Results also indicate that GRACE may have an ability to forecast changes in groundwater storage, which will become useful when monitoring climate shifts in the near future.
NASA Astrophysics Data System (ADS)
Yoon, H.; Kim, Y.; Lee, S. H.; Ha, K.
2017-12-01
It is necessary to monitor the variation of freshwater-saltwater interface for the sustainable use of groundwater resources in coastal areas. In the present study, we developed a device to measure the location of the freshwater-saltwater interface based on the concept of the neutral buoyancy and installed it in a coastal aquifer of the western sea, South Korea. To evaluate the impact of pumping on the groundwater and saltwater-freshwater interface level, we designed nine different pumping scenarios and monitored the groundwater and saltwater-freshwater interface levels of pumping well and two observation wells. The result of monitoring groundwater level shows that the response of observation wells to the pumping is relatively fast and high, however, the response of freshwater-saltwater interface occurred when the pumping rate and duration are over 25m3/day and 48hours, respectively. For the prediction and simulation of the groundwater level fluctuation under groundwater pumping events, we designed a artificial neural network based time series model considering rainfall, tide, and pumping rate as input components. The result of the prediction shows that the correlation coefficient between observed and estimated groundwater levels is as high as 0.7. It is expected that the result of this research can provide useful information for the effective management of groundwater resources in the study area.
Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Weiss
2007-12-05
The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and to report leachate results in fulfillment of the requirements specified in the ERDF ROD.
Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Weiss
2007-05-30
The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and to report leachate results in fulfillment of the requirements specified in the ERDF ROD.
Rowe, Gary L.; Belitz, Kenneth; Demas, Charlie R.; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lee, Casey J.; Munn, Mark D.; Wolock, David W.
2013-01-01
This report presents a science strategy for the third decade of the National Water-Quality Assessment (NAWQA) Program, which since 1991, has been responsible for providing nationally consistent information on the quality of the Nation's streams and groundwater; how water quality is changing over time; and the major natural and human factors that affect current water quality conditions and trends. The strategy is based on an extensive evaluation of the accomplishments of NAWQA over its first two decades, the current status of water-quality monitoring activities by USGS and its partners, and an updated analysis of stakeholder priorities. The plan is designed to address priority issues and national needs identified by NAWQA stakeholders and the National Research Council (2012) irrespective of budget constraints. This plan describes four major goals for the third decade (Cycle 3), the approaches for monitoring, modeling, and scientific studies, key partnerships required to achieve these goals, and products and outcomes that will result from planned assessment activities. The science plan for 2013–2023 is a comprehensive approach to meet stakeholder priorities for: (1) rebuilding NAWQA monitoring networks for streams, rivers, and groundwater, and (2) upgrading models used to extrapolate and forecast changes in water-quality and stream ecosystem condition in response to changing climate and land use. The Cycle 3 plan continues approaches that have been central to the Program’s long-term success, but adjusts monitoring intensities and study designs to address critical information needs and identified data gaps. Restoration of diminished monitoring networks and new directions in modeling and interpretative studies address growing and evolving public and stakeholder needs for water-quality information and improved management, particularly in the face of increasing challenges related to population growth, increasing demands for water, and changing land use and climate. However, a combination of funding growth and extensive collaboration with other USGS programs and other Federal, State, and local agencies, public interest groups, professional and trade associations, academia, and private industry will be needed to fully realize the monitoring and modeling goals laid out in this plan (USGS Fact Sheet 2013-3008).
Landmeyer, James E.
2001-01-01
At contaminated groundwater sites, poplar trees can be used to affect ground-water levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.
Bias in groundwater samples caused by wellbore flow
Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.
1989-01-01
Proper design of physical installations and sampling procedures for groundwater monitoring networks is critical for the detection and analysis of possible contaminants. Monitoring networks associated with known contaminant sources sometimes include an array of monitoring wells with long well screens. The purpose of this paper is: (a) to report the results of a numerical experiment indicating that significant borehole flow can occur within long well screens installed in homogeneous aquifers with very small head differences in the aquifer (less than 0.01 feet between the top and bottom of the screen); (b) to demonstrate that contaminant monitoring wells with long screens may completely fail to fulfill their purpose in many groundwater environments.
Fram, Miranda S.; Munday, Cathy; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 460-square-mile Tahoe-Martis study unit was investigated in June through September 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the Tahoe-Martis study unit (Tahoe-Martis) and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 52 wells in El Dorado, Placer, and Nevada Counties. Forty-one of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 11 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, strontium isotope ratio, and stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 240 constituents and water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at 12 percent of the wells, and the results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate of compliance or noncompliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from the Tahoe-Martis wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides) were detected in about 40 percent of the samples from grid wells, and most concentrations were less than 1/100th of regulatory and nonregulatory health-based thresholds, although the conentration of perchloroethene in one sample was above the USEPA maximum contaminant level (MCL-US). Concentrations of all trace elements and nutrients in samples from grid wells were below regulatory and nonregulatory health-based thresholds, with five exceptions. Concentra
Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 1,600 square-mile Antelope Valley study unit (ANT) was investigated from January to April 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within ANT, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 57 wells in Kern, Los Angeles, and San Bernardino Counties. Fifty-six of the wells were selected using a spatially distributed, randomized, grid-based method to provide statistical representation of the study area (grid wells), and one additional well was selected to aid in evaluation of specific water-quality issues (understanding well). The groundwater samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], gasoline additives and degradates, pesticides and pesticide degradates, fumigants, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (strontium, tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 239 constituents and water-quality indicators (field parameters) were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at 12 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most compoundsThis study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with drinking water standards. Most constituents that were detected in groundwater samples were found at concentrations below drinking-water thresholds. Volatile organic compounds (VOCs) were detected in about one-half of the samples and pesticides detected in about one-third of the samples; all detections of these constituents were below health-based thresholds. Most detections of trace elements and nutrients in samples from ANT wells were below health-based thresholds. Exceptions include: one detection of nitrite plus nitr
Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth
2010-01-01
Groundwater quality in the 188-square-mile Colorado River Study unit (COLOR) was investigated October through December 2007 as part of the Priority Basin Project of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and the U.S. Geological Survey (USGS) is the technical project lead. The Colorado River study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within COLOR, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 28 wells in three study areas in San Bernardino, Riverside, and Imperial Counties. Twenty wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the Study unit; these wells are termed 'grid wells'. Eight additional wells were selected to evaluate specific water-quality issues in the study area; these wells are termed `understanding wells.' The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], gasoline oxygenates and degradates, pesticides and pesticide degradates, pharmaceutical compounds), constituents of special interest (perchlorate, 1,4-dioxane, and 1,2,3-trichlorpropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents. Concentrations of naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 220 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and matrix spikes) were collected at approximately 30 percent of the wells, and the results were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data. Differences between replicate samples were within acceptable ranges and matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared to regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and to thresholds established for aesthetic concerns by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples were below drinking-water thresholds. Volatile organic compounds (VOC) were detected in approximately 35 percent of grid well samples; all concentrations were below health-based thresholds. Pesticides and pesticide degradates were detected in about 20 percent of all samples; detections were below health-based thresholds. No concentrations of constituents of special interest or nutrients were detected above health-based thresholds. Most of the major and minor ion constituents sampled do not have health-based thresholds; the exception is chloride. Concentrations of chloride, sulfate, and total dis
Wilson Corners SWMU 001 2014 Annual Long Term Monitoring Report Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
Langenbach, James
2015-01-01
This document presents the findings of the 2014 Long Term Monitoring (LTM) that was completed at the Wilson Corners site, located at the National Aeronautics and Space Administration (NASA) John F. Kennedy Space Center (KSC), Florida. The goals of the 2014 annual LTM event were to evaluate the groundwater flow direction and gradient and to monitor the vertical and downgradient horizontal extent of the volatile organic compounds (VOCs) in groundwater at the site. The LTM activities consisted of an annual groundwater sampling event in December 2014, which included the collection of water levels from the LTM wells. During the annual groundwater sampling event, depth to groundwater was measured and VOC samples were collected using passive diffusion bags (PDBs) from 30 monitoring wells. In addition to the LTM sampling, additional assessment sampling was performed at the site using low-flow techniques based on previous LTM results and assessment activities. Assessment of monitoring well MW0052DD was performed by collecting VOC samples using low-flow techniques before and after purging 100 gallons from the well. Monitoring well MW0064 was sampled to supplement shallow VOC data north of Hot Spot 2 and east of Hot Spot 4. Monitoring well MW0089 was sampled due to its proximity to MW0090. MW0090 is screened in a deeper interval and had an unexpected detection of trichloroethene (TCE) during the 2013 LTM, which was corroborated during the March 2014 verification sampling. Monitoring well MW0130 was sampled to provide additional VOC data beneath the semi-confining clay layer in the Hot Spot 2 area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, David
2015-02-01
This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2014 results. Analysis results for leachate contaminants collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included. During 2014, groundwater samples were collected and static water levels were measured at threemore » wells surrounding the Area 5 RWMS. Groundwater samples were collected at wells UE5PW-1, UE5PW-2, and UE5PW-3 on March 11 and August 12, 2014, and static water levels were measured at each of these wells on March 10, June 2, August 11, and October 14, 2014. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. General water chemistry (cations and anions) was also measured. Results from samples collected in 2014 are within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. The data from the shallow aquifer indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS, and there were no significant changes in measured groundwater parameters compared to previous years. Leachate from above the primary liner of Cell 18 drains into a sump and is collected in a tank at the ground surface. Cell 18 began receiving waste in January 2011. Samples were collected from the tank when the leachate volume approached the 3,000-gallon tank capacity. Leachate samples have been collected 16 times since January 2011. During 2014, samples were collected on February 25, March 5, May 20, August 12, September 16, November 11, and December 16. Each leachate sample was analyzed for toxicity characteristic contaminants and polychlorinated biphenyls (PCB). Beginning with the sample from July 31, 2013, pH and specific conductance were also measured. Leachate analysis results show no evidence of contamination. Results for toxicity characteristic contaminants are all below regulatory levels and analysis quantification limits. No quantifiable PCB levels were detected in any sample. Results for pH and specific conductance are also within expected ranges. After analysis, leachate was pumped from the collection tank and used in Cell 18 for dust control. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.« less
Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.
2010-01-01
As part of the National Water-Quality Assessment Program, the U.S. Geological Survey collected and analyzed groundwater samples during 1996-2006 from the San Antonio segment of the Edwards aquifer of central Texas, a productive karst aquifer developed in Cretaceous-age carbonate rocks. These National Water-Quality Assessment Program studies provide an extensive dataset of groundwater geochemistry and water quality, consisting of 249 groundwater samples collected from 136 sites (wells and springs), including (1) wells completed in the shallow, unconfined, and urbanized part of the aquifer in the vicinity of San Antonio (shallow/urban unconfined category), (2) wells completed in the unconfined (outcrop area) part of the regional aquifer (unconfined category), and (3) wells completed in and springs discharging from the confined part of the regional aquifer (confined category). This report evaluates these data to assess geochemical evolution processes, including local- and regional-scale processes controlling groundwater geochemistry, and to make water-quality observations pertaining to sources and distribution of natural constituents and anthropogenic contaminants, the relation between geochemistry and hydrologic conditions, and groundwater age tracers and travel time. Implications for monitoring water-quality trends in karst are also discussed. Geochemical and isotopic data are useful tracers of recharge, groundwater flow, fluid mixing, and water-rock interaction processes that affect water quality. Sources of dissolved constituents to Edwards aquifer groundwater include dissolution of and geochemical interaction with overlying soils and calcite and dolomite minerals that compose the aquifer. Geochemical tracers such as magnesium to calcium and strontium to calcium ratios and strontium isotope compositions are used to evaluate and constrain progressive fluid-evolution processes. Molar ratios of magnesium to calcium and strontium to calcium in groundwater typically increase along flow paths; results for samples of Edwards aquifer groundwater show an increase from shallow/urban unconfined, to unconfined, to confined groundwater categories. These differences are consistent with longer residence times and greater extents of water-rock interaction controlling fluid compositions as groundwater evolves from shallow unconfined groundwater to deeper confined groundwater. Results for stable isotopes of hydrogen and oxygen indicate specific geochemical processes affect some groundwater samples, including mixing with downdip saline water, mixing with recent recharge associated with tropical cyclonic storms, or mixing with recharge water than has undergone evaporation. The composition of surface water recharging the aquifer, as well as mixing with downdip water from the Trinity aquifer or the saline zone, also might affect water quality. A time-series record (1938-2006) of discharge at Comal Springs, one of the major aquifer discharge points, indicates an upward trend for nitrate and chloride concentrations, which likely reflects anthropogenic activities. A small number of organic contaminants were routinely or frequently detected in Edwards aquifer groundwater samples. These were the pesticides atrazine, its degradate deethylatrazine, and simazine; the drinking-water disinfection byproduct chloroform; and the solvent tetrachloroethene. Detection of these contaminants was most frequent in samples of the shallow/urban unconfined groundwater category and least frequent in samples of the unconfined groundwater category. Results indicate that the shallow/urban unconfined part of the aquifer is most affected by anthropogenic contaminants and the unconfined part of the aquifer is the least affected. The high frequency of detection for these anthropogenic contaminants aquifer-wide and in samples of deep, confined groundwater indicates that the entire aquifer is susceptible to water-quality changes as a result of anthropogenic activities. L
Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin
2016-01-01
Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).
NASA Astrophysics Data System (ADS)
Kennedy, Jeffrey; Ferré, Ty P. A.; Creutzfeldt, Benjamin
2016-09-01
Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwood, T.L.; Marsh, J.D. Jr.
1994-04-01
This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the Whitemore » Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).« less
Hanford Site Groundwater Monitoring for Fiscal Year 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Mary J.; Morasch, Launa F.; Webber, William D.
2001-03-01
This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uraniummore » are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.« less
Torikai, J.D.
1996-01-01
This report describes the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1994 through September 1996, with a focus on data from July through September 1996 (third quarter of 1996). A complete database of ground-water withdrawals and chloride-concentration records since 1985 is maintained by the U.S. Geological Survey. Total rainfall for the period July through September 1996 was 8.94 inches, which is 60 percent less than the mean rainfall of 22.23 inches for the period July through September. July and August are part of the annual dry season, while September is the start of the annual wet season. Ground-water withdrawal during July through September 1996 averaged 1,038,300 gallons per day. Withdrawal for the same 3 months in 1995 averaged 888,500 gallons per day. Ground-water withdrawals have steadily increased since about April 1995. At the end of September 1996, the chloride concentration of water from the elevated tanks at Cantonment and Air Operations were 68 and 150 milligrams per liter, respectively. The chloride concentration from all five production areas increased throughout the third quarter of 1996, and started the upward trend in about April 1995. Chloride concentration of ground water in monitoring wells at Cantonment and Air Operations also increased throughout the third quarter of 1996, with the largest increases from water in the deepest monitoring wells. Chloride concentrations have not been at this level since the dry season of 1994. A fuel-pipeline leak at Air Operations in May 1991 decreased total islandwide withdrawals by 15 percent. This lost pumping capacity is being offset by increased pumpage at Cantonment. Six wells do not contribute to the water supply because they are being used to hydraulically divert fuel migration away from water-supply wells by a program of ground-water withdrawal and injection.
Is It Working? Lysimeter Monitoring in the Southern Willamette Valley Groundwater Management Area
Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...
NASA Astrophysics Data System (ADS)
Miro, M.; Famiglietti, J. S.
2016-12-01
In California, traditional water management has focused heavily on surface water, leaving many basins in a state of critical overdraft and lacking in established frameworks for groundwater management. However, new groundwater legislation, the 2014 Sustainable Groundwater Management Act (SGMA), presents an important opportunity for water managers and hydrologists to develop novel methods for managing statewide groundwater resources. Integrating scientific advances in groundwater monitoring with hydrologically-sound methods can go a long way in creating a system that can better govern the resource. SGMA mandates that groundwater management agencies employ the concept of sustainable yield as their primary management goal but does not clearly define a method to calculate it. This study will develop a hydrologically-based method to quantify sustainable yield that follows the threshold framework under SGMA. Using this method, sustainable yield will be calculated for two critically-overdrafted groundwater basins in California's Central Valley. This measure will also utilize groundwater monitoring data and downscaled remote sensing estimates of groundwater storage change from NASA's GRACE satellite to illustrate why data matters for successful management. This method can be used as a basis for the development of SGMA's groundwater management plans (GSPs) throughout California.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farnham, Irene
Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are evaluatedmore » to determine whether the UR boundaries remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Additionally, monitoring data are used to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries (CBs) calculated with the models are the primary basis of the UR boundaries. In summary, the monitoring results from 2016 indicate the regulatory controls on the closure of CAU 98 remain effective in protection of human health and the environment. Recommendations resulting from this first year of monitoring activities include formally incorporating wells UE-5 PW-1, UE-5 PW-2, and UE-5 PW-3 into the groundwater-level monitoring network given their strategic location in the basin; and early development of a basis for trigger levels for the groundwater-level monitoring given the observed trends. Additionally, it is recommended to improve the Real Estate/Operations Permit process for capturing information important for evaluating the impact of activities on groundwater resources, and to shift the reporting requirement for this annual report from the second quarter of the federal fiscal year (end of March) to the second quarter of the calendar year (end of June).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, D.F.; Whitehouse, J.M.
A dedicated low-flow groundwater sample collection system was designed for implementation in a post-closure ACL monitoring program at the Yaworski Lagoon NPL site in Canterbury, Connecticut. The system includes dedicated bladder pumps with intake ports located in the screened interval of the monitoring wells. This sampling technique was implemented in the spring of 1993. The system was designed to simultaneously obtain samples directly from the screened interval of nested wells in three distinct water bearing zones. Sample collection is begun upon stabilization of field parameters. Other than line volume, no prior purging of the well is required. It was foundmore » that dedicated low-flow sampling from the screened interval provides a method of representative sample collection without the bias of suspended solids introduced by traditional techniques of pumping and bailing. Analytical data indicate that measured chemical constituents are representative of groundwater migrating through the screened interval. Upon implementation of the low-flow monitoring system, analytical results exhibited a decrease in concentrations of some organic compounds and metals. The system has also proven to be a cost effective alternative to pumping and bailing which generate large volumes of purge water requiring containment and disposal.« less
2013-02-01
20000 18200 ug/L 91 60 - 140 Styrene - DL 70 10000 10900 ug/L 109 60 - 140 1,1,2,2-Tetrachloroethane - DL 220 10000 12600 ug/L 126 60 - 140...L 110 60 - 140 Trichloroethene - DL2 180 10000 12600 F ug/L 126 56 - 118 Vinyl acetate - DL2 210 10000 4630 F ug/L 46 60 - 140 Vinyl chloride - DL2
Kramer, Ariele R.; Kelly, Brian P.
2017-05-08
The U.S. Geological Survey (USGS) is a non-regulatory Earth science agency within the Department of the Interior that provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS cooperates with Federal, State, tribal, and local agencies in Kansas to deliver long-term data in real-time and interpretive reports describing what those data mean to the public and resource management agencies. USGS science programs in Kansas provide real-time groundwater monitoring at more than 23 locations; streamflow monitoring at more than 218 locations; water-quality and trends in the Little Arkansas and Kansas Rivers; inflows and outflows of sediment to/from reservoirs and in streams; harmful algal bloom research in the Kansas River, Milford Lake, and Cheney Reservoir; water-quantity and water-quality effects of artificial groundwater recharge for the Equus Beds Aquifer Storage and Recovery project near Wichita, Kansas; compilation of Kansas municipal and irrigation water-use data statewide; the occurrence, effects, and movement of environmental pesticides, antibiotics, algal toxins, and taste-and-odor compounds; and funding to the Kansas Water Resources Research Institute to further research and education through Kansas universities.
NASA Astrophysics Data System (ADS)
Wang, L.; Wolfgang, K.; Steiner, J. F.
2016-12-01
Groundwater has been over-pumped for irrigation in the North China Plain in the past decades causing a drastic decrease in the groundwater level. Shallow groundwater can be recharged by rainfall, and the aquifer could be rehabilitated for sustainable use. However, understanding and maintaining the balance of the aquifer - including climatic as well as anthropogenic influences - are fundamental to enable such a sustainable groundwater management. This is still severely obstructed by a lack of measurements of recharge and exploitation. A project to measure groundwater pumping rate at the distributed scale based on monitoring electric energy consumption is going on in Guantao County (456 km2) located in the southern part of the North China Plain. Considerably less costly than direct measurements of the pumping rate, this approach enables us to (a) cover a larger area and (b) use historic electricity data to reconstruct water use in the past. Pumping tests have been carried out to establish a relation between energy consumption and groundwater exploitation. Based on the results of the pumping tests, the time series of the pumping rate can be estimated from the historical energy consumption and serves as the input for a box model to reconstruct the water balance of the shallow aquifer for recent years. This helps us to determine the relative contribution of recharge due to rainfall as well as drawdown due to groundwater pumping for irrigation. Additionally, 100 electric meters have been installed at the electric transformers supplying power for irrigation. With insights gained from the pumping tests, real-time monitoring of the groundwater exploitation is achieved by converting the measured energy consumption to the water use, and pumping control can also be achieved by limiting the energy use. A monitoring and controlling system can then be set up to implement the strategy of sustainable groundwater use.
Friedel, Michael J.
1998-01-01
During the past 25 years, industry and government made large financial investments that resulted in better water quality across the Nation; however, many water-quality concerns remain. Following a 1986 pilot project, the U.S. Geological Survey began implementation of the National Water-Quality Assessment (NAWQA) Program in 1991. This program differs from other national water-quality assessment studies in that the NAWQA integrates monitoring of surface- and ground-water quality with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers (water-bearing sediments and rocks), (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality.The Upper Illinois River Basin National Water- Quality Assessment (NAWQA) study will increase the scientific understanding of surface- and ground-water quality and the factors that affect water quality in the basin. The study also will provide information needed by water-resource managers to implement effective water-quality management actions and evaluate long-term changes in water quality.
Considerations for use of the RORA program to estimate ground-water recharge from streamflow records
Rutledge, A.T.
2000-01-01
The RORA program can be used to estimate ground-water recharge in a basin from analysis of a streamflow record. The program can be appropriate for use if the ground-water flow system is characterized by diffuse areal recharge to the water table and discharge to a stream. The use of the program requires an estimate of a recession index, which is the time required for ground-water discharge to recede by one log cycle after recession becomes linear or near-linear on the semilog hydrograph. Although considerable uncertainty is inherent in the recession index, the results of the RORA program may not be sensitive to this variable. Testing shows that the program can yield consistent estimates under conditions that include leakage to or from deeper aquifers and ground-water evapotranspiration. These tests indicate that RORA estimates the net recharge, which is recharge to the water table minus leakage to a deeper aquifer, or recharge minus ground-water evapotranspiration. Before the program begins making calculations it designates days that fit a requirement of antecedent recession, and these days are used in calculations. The program user might increase the antecedent-recession requirement above its default value to reduce the influence of errors that are caused by direct-surface runoff, but other errors can result from the reduction in the number of peaks detected. To obtain an understanding of flow systems, results from the RORA program might be used in conjunction with other methods such as analysis of ground-water levels, estimates of ground-water discharge from other forms of hydrograph separation, and low-flow variables. Relations among variables may be complex for a variety of reasons; for example, there may not be a unique relation between ground-water level and ground-water discharge, ground-water recharge and discharge are not synchronous, and low-flow variables can be related to other factors such as the recession index.
Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth
2008-01-01
Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks, replicates, laboratory matrix spikes) were collected at approximately 10 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the ground-water samples. Differences between replicate samples were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most constituents. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and are not indicative of compliance or noncompliance with regulatory thresholds. Most constituents that were detected in ground-water samples were found at concentrations below drinking-water thresholds. VOCs were detected in less than one-third and pesticides and pesticide degradates in just over one-half of the grid wells, and all detections of these constituents in samples from all wells of the MSACV study unit were below health-based thresholds. All detections of trace elements in samples from MSACV grid wells were below health-based thresholds, with the exceptions of arsenic and boro
Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Weiss; D. W. Woolery
2009-09-03
The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF, to report leachate results in fulfillment of the requirements specified in the ERDF ROD and the ERDF Amended ROD.
This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.
Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring
Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008
Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.
2009-01-01
Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linard, Joshua; Hall, Steve
2016-08-01
This biennial event includes sampling five groundwater locations (four monitoring wells and one domestic well) at the Lakeview, Oregon, Processing Site. For this event, the domestic well (location 0543) could not be sampled because no one was in residence during the sampling event (Note: notification was provided to the resident prior to the event). Per Appendix A of the Groundwater Compliance Action Plan, sampling is conducted to monitor groundwater quality on a voluntary basis. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated).more » One duplicate sample was collected from location 0505. Water levels were measured at each sampled monitoring well. The constituents monitored at the Lakeview site are manganese and sulfate. Monitoring locations that exceeded the U.S. Environmental Protection Agency (EPA) Secondary Maximum Contaminant Levels for these constituents are listed in Table 1. Review of time-concentration graphs included in this report indicate that manganese and sulfate concentrations are consistent with historical measurements.« less
Water-resources activities of the U.S. Geological Survey in New Mexico, fiscal year 1992
Allen, Harriet R.
1994-01-01
Awareness of our environment in general, and water resources in particular, has brought increased interest in and support of hydrologic data collection and research. The quantity, quality, and distribution of water are extremely important to the future well-being of New Mexico. The State's surface-water resources are minimal and highly variable due to climate and to regulation and diversion; ground-water resources are subject to development that exceeds natural recharge and to potential contamination by land use. Issues related to global climate change, disposal of hazardous wastes, toxic substances in water, water rights, and ground-water contamination are evolving areas of greater public concern. At the same time there is a continuing need for a better understanding of various hydrologic systems and processes in order to manage these limited water resources for maximum benefit to present and future generations.The U.S. Geological Survey has collected and disseminated information on the water resources of New Mexico for more than a century. The Survey began to collect records of streamflow in New Mexico in December 1888 when the first discharge measurements were made on the Rio Grande near the present gaging station at Embudo. This site, called the "birthplace of systematic stream gaging," was chosen to be the training center for the first hydrographers of the Irrigation Survey, a bureau within the original Geological Survey. Since that time, in cooperation with Federal, State, local, and tribal agencies, we have monitored streams at hundreds of sites throughout the State and have a current network of more than 200 streamflow-gaging stations. Through the Cooperative Program, we also have established sites where ground-water levels are monitored to document changes in ground-water storage or where surface-water and groundwater samples are collected to determine water chemistry, and we have undertaken investigative studies to define the availability, quality, and distribution of water resources. Information from the data program and results of investigative studies are made available to water-resources managers, regulators, and the public to be used for the effective management of the State's water resources.This report provides a brief summary of the activities of the New Mexico District for FY (fiscal year) 1992, including our mission, organization, sources of funding, and descriptions of current projects. This report serves to document not only the content of the program, but also the diversity and complexity of that program. Cooperation among water-resources agencies will be essential in effectively dealing with water-related issues facing New Mexico. We look forward to the challenge of addressing these issues by continuing to provide factual hydrologic data and technically sound areal appraisals and interpretive studies.
Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.
2011-01-01
Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program was recently extended through the end of 2010 and is now completed. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water runoff effects. This report summarizes analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2010. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ("priority analytes") (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied (background). Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2009, and this consistency continues with the samples for 2010. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 12 years of this study.
Crock, J.G.; Smith, D.B.; Yager, T.J.B.; Berry, C.J.; Adams, M.G.
2010-01-01
Since late 1993, Metro Wastewater Reclamation District of Denver, a large wastewater treatment plant in Denver, Colo., has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colo., U.S.A. In cooperation with the Metro District in 1993, the U.S. Geological Survey began monitoring groundwater at part of this site. In 1999, the Survey began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through the end of 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream-bed sediment. Streams at the site are dry most of the year, so samples of stream-bed sediment deposited after rain were used to indicate surface-water effects. This report presents analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed for 2009. In general, the objective of each component of the study was to determine whether concentrations of nine trace elements ('priority analytes') (1) were higher than regulatory limits, (2) were increasing with time, or (3) were significantly higher in biosolids-applied areas than in a similar farmed area where biosolids were not applied. Previous analytical results indicate that the elemental composition of biosolids from the Denver plant was consistent during 1999-2008, and this consistency continues with the samples for 2009. Total concentrations of regulated trace elements remain consistently lower than the regulatory limits for the entire monitoring period. Concentrations of none of the priority analytes appear to have increased during the 11 years of this study.
Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio
2015-08-26
The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.
Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio
2015-01-01
The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring. PMID:26343653
Impacts of a Rural Subdivision on Groundwater Quality: Results of Long-Term Monitoring.
Rayne, Todd W; Bradbury, Kenneth R; Krause, Jacob J
2018-03-30
A rural subdivision in south central Wisconsin was instrumented with monitoring wells and lysimeters before, during, and after its construction to examine the impacts of the unsewered subdivision on groundwater quality and quantity. Prior to construction, the 78-acre (32 ha) site was farmland. Sixteen homes were constructed beginning in 2003. Initial monitoring from 2002 to 2005 showed that groundwater beneath the site had been impacted by previous agricultural use, with nitrate-N values as high as 30 mg/L and some detections of the herbicide atrazine. Our 12-year study shows that the transition from agricultural to residential land use has changed groundwater quality in both negative and positive ways. Although groundwater elevations showed typical seasonal fluctuations each year, there were no measurable changes in groundwater levels or general flow directions during the 12-year study period. Chloride values increased in many wells, possibly as a result of road salting or water softener discharge. Nitrate concentrations varied spatially and temporally over the study period, with some initial concentrations substantially above the drinking water standard. In some wells, nitrate and atrazine levels have declined substantially since agriculture ceased. However, atrazine was still present at trace concentrations throughout the site in 2014. Wastewater tracers show there are small but detectable impacts from septic effluent on groundwater quality. Particle traces based on a groundwater flow model are consistent with the hypothesis that septic leachate has impacted groundwater quality. © 2018, National Ground Water Association.
Liu, Fuming; Yi, Shuping; Ma, Haiyi; Huang, Junyi; Tang, Yukun; Qin, Jianbo; Zhou, Wan-Huan
2017-12-20
This paper presents a demonstration of an integrated risk assessment and site investigation for groundwater contamination through a case study, in which the geologic and hydrogeological feature of the site and the blueprint of the fossil power plant (FPP) were closely analyzed. Predictions for groundwater contamination in case of accidents were performed by groundwater modeling system (GMS) and modular three-dimensional multispecies transport model (MT3DMS). Results indicate that the studied site area presents a semi-isolated hydrogeological unit with multiplicity in stratum lithology, the main aquifers at the site are consisted of the filled karst development layer with a thickness between 6.0 and 40.0 m. The poor permeability of the vadose zone at the FPP significantly restricted the infiltration of contaminants through the vadose zone to the subsurface. The limited influence of rarely isotropic porous karstified carbonate rocks on the groundwater flow system premised the simulate scenarios of plume migration. Analysis of the present groundwater chemistry manifested that that the groundwater at the site and the local area are of the HCO 3 -Ca, HCO 3 , and SO 4 -Ca types. A few of the water samples were contaminated by coliform bacteria and ammonia nitrogen as a result of the local cultivation. Prediction results indicate that the impact of normal construction and operation processes on the groundwater environment is negligible. However, groundwater may be partly contaminated within a certain period in the area of leakage from the diesel tanks, the industrial wastewater pool, and the cooling tower water tank in case of accidents. On a positive note, none of the plumes would reach the local sensitive areas for groundwater using. Finally, an anti-seepage scheme and a monitoring program are proposed to safeguard the groundwater protection. The integrated method of the site investigation and risk assessment used in this case study can facilitate the protection of groundwater for the construction of large-scale industrial project.
Thomas, Judith C.
2015-10-07
The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.
NASA Astrophysics Data System (ADS)
Jurgens, B. C.; Bohlke, J. K.; Voss, S.; Fram, M. S.; Esser, B.
2015-12-01
Tracer-based, lumped parameter models (LPMs) are an appealing way to estimate the distribution of age for groundwater because the cost of sampling wells is often less than building numerical groundwater flow models sufficiently complex to provide groundwater age distributions. In practice, however, tracer datasets are often incomplete because of anthropogenic or terrigenic contamination of tracers, or analytical limitations. While age interpretations using such datsets can have large uncertainties, it may still be possible to identify key parts of the age distribution if LPMs are carefully chosen to match hydrogeologic conceptualization and the degree of age mixing is reasonably estimated. We developed a systematic approach for evaluating groundwater age distributions using LPMs with a large but incomplete set of tracer data (3H, 3Hetrit, 14C, and CFCs) from 535 wells, mostly used for public supply, in the Central Valley, California, USA that were sampled by the USGS for the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment or the USGS National Water Quality Assessment Programs. In addition to mean ages, LPMs gave estimates of unsaturated zone travel times, recharge rates for pre- and post-development groundwater, the degree of age mixing in wells, proportion of young water (<60 yrs), and the depth of the boundary between post-development and predevelopment groundwater throughout the Central Valley. Age interpretations were evaluated by comparing past nitrate trends with LPM predicted trends, and whether the presence or absence of anthropogenic organic compounds was consistent with model results. This study illustrates a practical approach for assessing groundwater age information at a large scale to reveal important characteristics about the age structure of a major aquifer, and of the water supplies being derived from it.
La Camera, Richard J.; Locke, Glenn L.; Habte, Aron M.; Darnell, Jon G.
2006-01-01
The U.S. Geological Survey, in support of the U.S. Department of Energy, Office of Repository Development, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region of southern Nevada and eastern California. These data are collected to allow assessments of ground-water resources during activities to determine the potential suitability or development of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 35 boreholes and 1 fissure (Devils Hole), ground-water discharge at 5 springs, both ground-water levels and discharge at 1 flowing borehole, and total reported ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are tabulated from January through December 2004. Also tabulated are ground-water levels, discharges, and withdrawals collected by other agencies (or collected as part of other programs) and data revised from those previously published at monitoring sites. Historical data on water levels, discharges, and withdrawals are presented graphically to indicate variations through time. A statistical summary of ground-water levels at seven boreholes in Jackass Flats is presented for the period 1992-2004 to indicate potential effects of ground-water withdrawals associated with U.S. Department of Energy activities near Yucca Mountain. The statistical summary includes the annual number of measurements, maximum, minimum, and median water-level altitudes, and average deviation of measured water-level altitudes compared to the 1992-93 baseline period. At six boreholes in Jackass Flats, median water levels for 2004 were slightly higher (0.3-2.7 feet) than their median water levels for 1992-93. At one borehole in Jackass Flats, median water level for 2004 equaled the median water level for 1992-93.
Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 1,180-square-mile Northern Sacramento Valley study unit (REDSAC) was investigated in October 2007 through January 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within REDSAC and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 66 wells in Shasta and Tehama Counties. Forty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 23 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of nitrogen and oxygen in nitrate, stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 275 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and sampmatrix spikes) were collected at approximately 8 to 11 percent of the wells, and the results for these samples were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples were within acceptable ranges for nearly all compounds, indicating acceptably low variability. Matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples from REDSAC were below drinking-water thresholds. Volatile organic compounds (VOC) and pesticides were detected in less than one-quarter of the samples and were generally less than a hundredth of any health-based thresholds. NDMA was detected in one grid well above the NL-CA. Concentrations of all nutrients and trace elements in samples from REDSAC wells were below the health-based thresholds except those of arsenic in three samples, which were above the USEPA maximum contaminant level (MCL-US). However
Groundwater quality in the Owens Valley, California
Dawson, Barbara J. Milby; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Owens Valley are completed to depths between 210 and 480 feet (64 to 146 meters), consist of solid casing from the land surface to a depth of 50 to 80 feet (15 to 24 meters), and are screened or perforated below the solid casing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agogino, Karen; Sanchez, Rebecca
2008-09-30
Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention,more » and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).« less
Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.
1996-01-01
Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.
NASA Astrophysics Data System (ADS)
Rossetto, Rudy; Barbagli, Alessio; Borsi, Iacopo; Mazzanti, Giorgio; Picciaia, Daniele; Vienken, Thomas; Bonari, Enrico
2015-04-01
In Managed Aquifer Recharge (MAR) schemes the monitoring system, for both water quality and quantity issues, plays a key role in assuring that a groundwater recharge plant is really managed. Considering induced Riverbank Filtration (RBF) schemes, while the effect of the augmented filtration consists in an improvement of the quality and quantity of the water infiltrating the aquifer, there is in turn the risk for groundwater contamination, as surface water bodies are highly susceptible to contamination. Within the framework of the MARSOL (2014) EU FPVII-ENV-2013 project, an experimental monitoring system has been designed and will be set in place at the Sant'Alessio RBF well field (Lucca, Italy) to demonstrate the sustainability and the benefits of managing induced RBF versus the unmanaged option. The RBF scheme in Sant'Alessio (Borsi et al. 2014) allows abstraction of an overall amount of about 0,5 m3/s groundwater providing drinking water for about 300000 people of the coastal Tuscany. Water is derived by ten vertical wells set along the Serchio River embankments inducing river water filtration into a high yield (10-2m2/s transmissivity) sand and gravel aquifer. Prior to the monitoring system design, a detailed site characterization has been completed taking advantage of previous and new investigations, the latter performed by means of MOSAIC on-site investigation platform (UFZ). A monitoring network has been set in place in the well field area using existing wells. There groundwater head and the main physico-chemical parameters (temperature, pH, dissolved oxygen, electrical conductivity and redox potential) are routinely monitored. Major geochemical compounds along with a large set of emerging pollutants are analysed (in cooperation with IWW Zentrum Wasser, Germany) both in surface-water and ground-water. The experimental monitoring system (including sensors in surface- and ground-water) has been designed focusing on managing abstraction efficiency and safety at one of the ten productive wells. The groundwater monitoring system consists of a set of six piezometer clusters drilled around a reference well along the main groundwater flowpaths. At each cluster, three piezometers (screened in the penultimate meter) are set at different depths to allow multilevel monitoring and sampling. At six selected piezometers, depending on ongoing hydrogeochemical investigations, six sensors for continuous monitoring of groundwater head, temperature and electrical conductivity will be set in operation. Within the Serchio River, two monitoring stations will be set in operation in order to monitor river head, water temperature and electrical conductivity upstream and downstream the experimental plot. A multi/parameter probe for the detection of selected analytes such nitrates, and selected organics to be defined will also be set in the Serchio River water. Each sensor will constitute a node of a Wireless Sensor Network (WSN). The WSN is based on several data loggers «client» connected via radio to one server point (Gateway), transmitting to a server via GSM-GPRS. This set up, while maintaining the high quality of data transmission, will allow to reduce installation and operational costs. The main characteristic of the conceived monitoring system is that sensors have been selected so to transmit data in an open format. The sensor network prototype will allow to get a substantial sensor cost reduction compared to available commercial solutions. The ultimate goal of this complex monitoring setting will be that of defining the minimum monitoring set up to guarantee efficiency and safety of groundwater withdrawals. Acknowledgements The authors wish to acknowledge GEAL spa for technical support and granting access to the well field. The activities described in this paper are co-financed within the framework of the EU FP7-ENV-2013-WATER-INNO-DEMO MARSOL (Grant Agreement n. 619120). References Borsi, I., Mazzanti, G., Barbagli, A., Rossetto, R., 2014. The riverbank filtration plant in S. Alessio (Lucca): monitoring and modeling activity within EU the FP7 MARSOL project. Acque Sotterranee - Italian Journal of Groundwater, Vol. 3, n. 3/137 MARSOL (2014). Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought www.marsol.eu [accessed 4 January 2015
Technical recommendations have recently been published by the U.S. Environmental Protection Agency to address site characterization needed to support selection of Monitored Natural Attenuation (MNA) for cleanup of inorganic contaminant plumes in groundwater. Immobilization onto ...
A passive discrete-level multilayer ground-water sampler was evaluated to determine its capability to obtain representative discrete-interval samples within the screen intervals of traditional monitoring wells without purging. Results indicate that the device is able to provide ...
Van Metre, P.C.
1990-01-01
A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)
Shale gas impacts on groundwater resources: insights from monitoring a fracking site in Poland
NASA Astrophysics Data System (ADS)
Montcoudiol, Nelly; Isherwood, Catherine; Gunning, Andrew; Kelly, Thomas; Younger, Paul
2017-04-01
Exploitation of shale gas by hydraulic fracturing (fracking) is highly controversial and concerns have been raised regarding induced risks from this technique. The SHEER project, an EU Horizon 2020-funded project, is looking into developing best practice to understand, prevent and mitigate the potential short- and long-term environmental impacts and risks from shale gas exploration and exploitation. Three major potential impacts were identified: groundwater contamination, air pollution and induced seismicity. This presentation will deal with the hydrogeological aspect. As part of the SHEER project, four monitoring wells were installed at a shale gas exploration site in Northern Poland. They intercept the main drinking water aquifer located in Quaternary sediments. Baseline monitoring was carried out from mid-December 2015 to beginning of June 2016. Fracking operations occurred in two horizontal wells, in two stages, in June and July 2016. The monitoring has continued after fracking was completed, with site visits every 4-6 weeks. Collected data include measurements of groundwater level, conductivity and temperature at 15-minute intervals, frequent sampling for laboratory analyses and field measurements of groundwater physico-chemical parameters. Groundwater samples are analysed for a range of constituents including dissolved gases and isotopes. The presentation will focus on the interpretation of baseline monitoring data. The insights gained into the behaviour of the Quaternary aquifer will allow a greater perspective to be place on the initial project understanding draw from previous studies. Short-term impacts will also be discussed in comparison with the baseline monitoring results. The presentation will conclude with discussion of challenges regarding monitoring of shale gas fracking sites.
Eddy-Miller, Cheryl A.; Constantz, Jim; Wheeler, Jerrod D.; Caldwell, Rodney R.; Barlow, Jeannie R.B.
2012-01-01
Groundwater and surface water in many cases are considered separate resources, but there is growing recognition of a need to treat them as a single resource. For example, groundwater inflow during low streamflow is vitally important to the health of a stream for many reasons, including buffering temperature, providing good quality water to the stream, and maintaining flow for aquatic organisms. The U.S. Geological Survey (USGS) has measured stream stage and flow at thousands of locations since 1889 and has the ability to distribute the information to the public within hours of collection, but collecting shallow groundwater data at co-located measuring sites is a new concept. Recently developed techniques using heat as a tracer to quantify groundwater and surface-water exchanges have shown the value of coupling these resources to increase the understanding of the water resources of an area. In 2009, the USGS Office of Groundwater began a pilot study to examine the feasibility and utility of widespread use of real-time groundwater monitoring at streambank wells coupled with real-time surface-water monitoring at active streamgages to assist in understanding the exchange of groundwater and surface water in a cost effective manner.
Rewis, D.L.
1995-01-01
A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.
In Situ Biological Treatment Test at Kelly Air Force Base. Volume 3. Appendices.
1987-07-01
175 B-12 Results of Groundwater Acidity Monitoring. . . . . . . . 176 B-13 Results of Groundwater Alkalinity Monitoring . . . . . . 177 B- 14 ...Oichloroethylene 499 Vinyl chloride 850 1.2-cis dichloroethylene Pam jupe Table A-I. Results of 5/23/85 Groundwater Sampling (Continued) 14 aqualab inc. 9909...Sample No. : 08/134621 Matrix: NATURAL WATER Parameter Result Units CC SPECIAL SCAN 1400 ug/L Client I.D.: 14 ERG Sample No.: 08/134622 Matrix
Management of Brackish Groundwater Extraction, San Diego-Tijuana area, USA and Mexico
NASA Astrophysics Data System (ADS)
Danskin, W. R.
2017-12-01
Management of brackish groundwater extraction from coastal sediment in the transboundary San Diego-Tijuana area, USA and Mexico, involves monitoring storage depletion, seawater intrusion, and land subsidence. In 2017, five additional extraction wells were installed, doubling capacity of the Reynolds Groundwater Desalination Facility. Environmental permits to expand capacity of the facility, and the recently-enacted Sustainable Groundwater Management Act (SGMA) by the State of California require monitoring the possible adverse effects of the additional extraction. Fortuitously, over the past 14 years, 12 deep multiple-depth, monitoring-well sites were installed by the United States Geological Survey (USGS) to aid in mapping the coastal geology and groundwater conditions. Now these sites are being used for groundwater management. Storage depletion is monitored daily via water levels measured using transducers installed permanently in each of the 4-6 piezometers at each site and transmitted automatically to the Internet. Seawater intrusion is tracked annually via electromagnetic geophysical logging in the deepest piezometer at each site, 500-800 meters below land surface, about twice the depth of the extraction wells. Land subsidence is determined annually from surveys of reference points installed at the well sites and from Interferometric Synthetic Aperature Radar (InSAR) satellite data. Management also involves use of a regional hydrologic model to simulate the likely location and timing of future storage depletion, seawater intrusion, and land subsidence.
The Idaho National Engineering Laboratory Site environmental report for calendar Year 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, D.L.; Mitchell, R.G.; Moore, R.
1991-06-01
The results of the various monitoring programs for 1990 indicate that most radioactivity from the Idaho National Engineering Laboratory (INEL) operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the INEL Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. The first section of the report summarizes Calendar Year 1990 and January 1 through April 1, 1991, INEL activities related to compliance with environmental regulations and laws. Themore » balance of the report describes the surveillance program, the collection of foodstuffs at the INEL boundary and distant offsite locations, and the collection of air and water samples at onsite locations and offsite boundary and distant locations. The report also compares and evaluates the sample results and discusses implications, if any. Nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) ground-water monitoring program are also summarized. 33 refs., 18 figs., 29 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Jason; Smith, Fred
This semiannual event includes sampling groundwater and surface water at the Monticello Disposal and Processing Sites. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated) and Program Directive MNT-2016-01. Complete sample sets were collected from 42 of 48 planned locations (9 of 9 former mill site wells, 13 of 13 downgradient wells, 7 of 9 downgradient permeable reactive barrier wells, 4 of 7 seeps and wetlands, and 9 of 10 surface water locations). Planned monitoring locations are shown in Attachment 1, Sampling andmore » Analysis Work Order. Locations R6-M3, SW00-01, Seep 1, Seep 2, and Seep 5 were not sampled due to insufficient water availability. A partial sample was collected at location R4-M3 due to insufficient water. All samples from the permeable reactive barrier wells were filtered as specified in the program directive. Duplicate samples were collected from surface water location Sorenson and from monitoring wells 92-07 and RlO-Ml. Water levels were measured at all sampled wells and an additional set of wells. See Attachment2, Trip Report for additional details. The contaminants of concern (COCs) for the Monticello sites are arsenic, manganese, molybdenum, nitrate+ nitrite as nitrogen (nitrate+ nitrite as N), selenium, uranium, and vanadium. Locations with COCs that exceeded remediation goals are listed in Table 1 and Table 2. Time-concentration graphs of the COCs for all groundwater and surface water locations are included in Attachment 3, Data Presentation. An assessment of anomalous data is included in Attachment 4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.
This report describes groundwater monitoring in 2014 for the property at Ramona, Kansas, on which a grain storage facility was formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The monitoring was implemented on behalf of the CCC/USDA by Argonne National Laboratory and was conducted as specified in the Long-Term Groundwater Monitoring Plan (Argonne 2012) approved by the Kansas Department of Health and Environment (KDHE 2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.
This report describes groundwater monitoring in 2015 for the property at Ramona, Kansas, on which a grain storage facility was formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The monitoring was implemented on behalf of the CCC/USDA by Argonne National Laboratory and was conducted as specified in the Long-Term Groundwater Monitoring Plan (Argonne 2012) approved by the Kansas Department of Health and Environment (KDHE 2012).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... Activities; Proposed Collection; Comment Request; Facility Ground-Water Monitoring Requirements AGENCY...) concerning groundwater monitoring reporting and recordkeeping requirements. This ICR is scheduled to expire... arrived at the estimate that you provide. 5. Offer alternative ways to improve the collection activity. 6...
"Traditional" approaches to sampling groundwater and interpreting monitoring well data often provide misleading pictures of plume shape and location in the subsurface and the true extent of contamination. Groundwater samples acquired using pumps and bailers in conventional monito...
Modeling Natural Attenuation of an Industrial Facility in Houston
NASA Astrophysics Data System (ADS)
Sun, D.
2016-12-01
Groundwater monitoring is currently ongoing at a commercial/industrial facility located in Deer Park, Texas (the site). The subject site is an approximate 10 acre commercial/industrial facility that began operation in the late-1970s. Operations have historically consisted of vehicle maintenance services, administrative, and equipment storage. Assessment and groundwater monitoring activities have been conducted at the site to evaluate the magnitude and extent of groundwater affected with chlorinated volatile organic compounds (VOCs). Groundwater data has been collected at this site since the mid-2000s on a quarterly basis. Presently, VOC constituents tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC) are the only chemicals of concern (COCs) detected at concentrations exceeding the TCEQ Actions Levels established by the state of Texas. The goal is that one day the site will receive a certificate of completion from the state, which states that all non-responsible parties are released from all liability to the state for cleanup. The remediation technology that is currently being used at this site is Monitoring Natural Attenuation (MNA). A significant question is whether MNA is efficiently removing COCs in groundwater and how long will this process take to achieve the remediation goals. The objective of this study is to provide an estimate of concentrations of COCs in groundwater at the site using the Biochlor model. The Biochlor model will help answer the question as to whether or not natural attenuation is occurring at the site efficiently. Results show that Monitored Natural Attenuation may not be the optimal remediation technology to use at this site. Other remedial technologies are needed to clean up chemical in the site. Groundwater monitoring is currently ongoing at a commercial/industrial facility located in Deer Park, Texas (the site). The subject site is an approximate 10 acre commercial/industrial facility that began operation in the late-1970s. Operations have historically consisted of vehicle maintenance services, administrative, and equipment storage. Assessment and groundwater monitoring activities have been conducted at the site to evaluate the magnitude and extent of groundwater affected with chlorinated volatile organic compounds (VOCs). Groundwater data has been collected at this site since the mid-2000s on a quarterly basis. Presently, VOC constituents tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC) are the only chemicals of concern (COCs) detected at concentrations exceeding the TCEQ Actions Levels established by the state of Texas. The goal is that one day the site will receive a certificate of completion from the state, which states that all non-responsible parties are released from all liability to the state for cleanup. The remediation technology that is currently being used at this site is Monitoring Natural Attenuation (MNA). A significant question is whether MNA is efficiently removing COCs in groundwater and how long will this process take to achieve the remediation goals. The objective of this study is to provide an estimate of concentrations of COCs in groundwater at the site using the Biochlor model. The Biochlor model will help answer the question as to whether or not natural attenuation is occurring at the site efficiently. Results show that Monitored Natural Attenuation may not be the optimal remediation technology to use at this site. Other remedial technologies are needed to clean up chemical in the site.
Yang, Changbing; Hovorka, Susan D; Treviño, Ramón H; Delgado-Alonso, Jesus
2015-07-21
This study presents a combined use of site characterization, laboratory experiments, single-well push-pull tests (PPTs), and reactive transport modeling to assess potential impacts of CO2 leakage on groundwater quality and leakage-detection ability of a groundwater monitoring network (GMN) in a potable aquifer at a CO2 enhanced oil recovery (CO2 EOR) site. Site characterization indicates that failures of plugged and abandoned wells are possible CO2 leakage pathways. Groundwater chemistry in the shallow aquifer is dominated mainly by silicate mineral weathering, and no CO2 leakage signals have been detected in the shallow aquifer. Results of the laboratory experiments and the field test show no obvious damage to groundwater chemistry should CO2 leakage occur and further were confirmed with a regional-scale reactive transport model (RSRTM) that was built upon the batch experiments and validated with the single-well PPT. Results of the RSRTM indicate that dissolved CO2 as an indicator for CO2 leakage detection works better than dissolved inorganic carbon, pH, and alkalinity at the CO2 EOR site. The detection ability of a GMN was assessed with monitoring efficiency, depending on various factors, including the natural hydraulic gradient, the leakage rate, the number of monitoring wells, the aquifer heterogeneity, and the time for a CO2 plume traveling to the monitoring well.
Hydrogeologic controls on water quality at a university dairy farm
NASA Astrophysics Data System (ADS)
McKay, L. D.; Hunter, R. W.; Lee, J.
2010-12-01
Dairy farms typically produce large quantities of manure and other waste products which are often stored or treated in lagoons and then applied to local fields as fertilizer. Contamination of nearby streams by dairy farm wastes through surface runnoff, drainage tile discharge, direct release of wastes or inundation of waste storage facilities during seasonal flooding have long been recognized as major environmental concerns. However, much less attention has been paid to fate and transport of dairy wastes in the subsurface and their potential impact on water quality in aquifers or in groundwater discharge to streams. One of the challenges in evaluating the environmental impact of dairy operations is that there are relatively few field research sites where all of the potential pathways for waterborne transport of dairy wastes are monitored and quantititatively evaluated. There are even fewer sites where extensive baseline water quality monitoring programs were established prior to operation of the dairy. This is essential to distinguish between environmental impacts from dairy operations and other nearby sources, such as beef production and human sewage from septic fields. This talk describes the development of a an integrated hydrogeologic/hydrologic site assessment and groundwater/surface water quality monitoring program at the University of Tennessee - Little River Dairy Farm, located near Townsend, TN. The dairy is currently under construction and the first cows are expected to arrive in late 2010. Hydrologic/hydrogeologic investigations of streams and groundwater at the site have been underway for more than 3 years, and these are expected to provide background data for assessing impacts of dairy wastes and for testing the effectiveness of different management practises. The lower half of the ~180 ha site consists of low-relief fields used for row crops, which are underlain by 4 - 8 m of alluvial deposits (mainly interbedded silt and fine-grained sands) on top of by black shale or limestone. Several active sinkholes are present in the portion of the fields underlain by limestone. The fields are bounded on two sides by the Little River, a popular recreational river, and on the third side by Ellejoy Creek, which is on the state’s 303(d) list for impairment by nutrients, sediment and fecal microorganisms, which are derived from upstream agricultural and rural residential development. These fields will be fertilized with treated dairy wastes and are the main area of concern for offsite migration of contaminants through groundwater, drainage ditches and (eventually) a tile drain system. A secondary area of concern is the dairy waste treatment pond which is located, along with the dairy barns, on the upland portion of the site, which is underlain by 1-2 m of clay-rich residual soils developed on fractured shale bedrock. Long term water quality monitoring of runnoff, streams, drainage ditches and groundwater is planned, with the intent of measuring environmental impact of dairy operations and testing the effectiveness of different management practises.
Controlling groundwater pumping online.
Zekri, Slim
2009-08-01
Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.
Comparing Budget-based and Tracer-based Residence Times in Butte Basin, California
NASA Astrophysics Data System (ADS)
Moran, J. E.; Visser, A.; Esser, B.; Buck, C.
2017-12-01
The California Sustainable Groundwater Management Act of 2014 (SGMA) calls for basin-scale Groundwater Sustainability Plans (GSPs) that include a water budget covering a 50 year planning horizon. A nine layer, Integrated Water Flow Model (IWFM) developed for Butte Basin, California, allows examination of water budgets within 36 sub-regions having varying land and water use, to inform SGMA efforts. Detailed land use, soil type, groundwater pumping, and surface water delivery data were applied in the finite element IWFM calibration. In a sustainable system, the volume of storage does not change over a defined time period, and the residence time can be calculated from the water storage volume divided by the flux (recharge or discharge rate). Groundwater ages based on environmental tracer data reflect the mean residence time of groundwater, or its inverse, the turnover rate. Comparisons between budget-based residence times determined from storage and flux, and residence times determined from isotopic tracers of groundwater age, can provide insight into data quality, model reliability, and system sustainability. Budget-based groundwater residence times were calculated from IWFM model output by assuming constant storage and dividing by either averaged annual net recharge or discharge. Calculated residence times range between approximately 100 and 1000 years, with shorter times in subregions where pumping dominates discharge. Independently, 174 wells within the model boundaries were analyzed for tritium-helium groundwater age as part of the California Groundwater Ambient Monitoring and Assessment program. Age distributions from isotopic tracers were compared to model-derived groundwater residence times from groundwater budgets within the subregions of Butte Basin. Mean, apparent, tracer-based residence times are mostly between 20 and 40 years, but 25% of the long-screened wells that were sampled do not have detectable tritium, indicating residence times of more than about 60 years and broad age distributions. A key factor in making meaningful comparisons is to examine budget-based and tracer-based results over transmissive vertical sections, where pumping increases turnover time.
An Economic Analysis of Two Groundwater Allocation Programs for the Salinas Valley
1994-06-01
monitoring system would establish a definable and 17Each individual well would have a frequency generator, analog/ digital converter, microprocessor with...RTU). The cost for purchasing and installing the frequency generator is estimated to be $1,100. The RTU consists of an analog/ digital converter and a...programmable microprocessor that can accept up to eight inputs and one output. The unit can transmit and receive digital data via LAN network or
Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.
1987-01-01
The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).
Niagara Falls Storage Site annual site environmental monitoring report. Calendar year 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-04-01
During 1985, an environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of low-level radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. Monitoring results show that the NFSS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable limits have been revisedmore » since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the limits applied for the 1985 are based on a standard of 100 mrem/yr. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program measured radon gas concentrations in air; uranium and radium concentrations in surface water, groundwater, and sediments; and external gamma dose rates. Environmental samples collected were analyzed to determine compliance with applicable standards. Potential radiation doses to the public were also calculated.« less
USGS California Water Science Center water programs in California
Shulters, Michael V.
2005-01-01
California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.
Vapor port and groundwater sampling well
Hubbell, Joel M.; Wylie, Allan H.
1996-01-01
A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.
Vapor port and groundwater sampling well
Hubbell, J.M.; Wylie, A.H.
1996-01-09
A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.
Environmental monitoring handbook for coal conversion facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salk, M.S.; DeCicco, S.G.
1978-05-01
The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impactsmore » during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.« less
40 CFR 258.53 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...
40 CFR 258.53 - Ground-water sampling and analysis requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...
Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Weiss; T. A. Lee
2008-06-25
The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the Environmental Restoration Disposal Facility and to report leachate results in fulfillment of the requirements specified in the ERDF Record of Decision and the ERDF Amended Record of Decision.
Hanford Site Groundwater Monitoring for Fiscal Year 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Mary J.; Morasch, Launa F.; Webber, William D.
2003-02-28
This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.
40 CFR 264.97 - General ground-water monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General ground-water monitoring requirements. 264.97 Section 264.97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste...
Rosen, Michael R.; Lapham, W.W.
2008-01-01
Assessment of temporal trends in national ground-water quality networks are rarely published in scientific journals. This is partly due to the fact that long-term data from these types of networks are uncommon and because many national monitoring networks are not driven by hypotheses that can be easily incorporated into scientific research. The U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) since 1991 has to date (2006) concentrated on occurrence of contaminants because sufficient data for trend analysis is only just becoming available. This paper introduces the first set of trend assessments from NAWQA and provides an assessment of the success of the program. On a national scale, nitrate concentrations in ground water have generally increased from 1988 to 2004, but trends in pesticide concentrations are less apparent. Regionally, the studies showed high nitrate concentrations and frequent pesticide detections are linked to agricultural use of fertilizers and pesticides. Most of these areas showed increases in nitrate concentration within the last decade, and these increases are associated with oxic-geochemical conditions and well-drained soils. The current NAWQA plan for collecting data to define trends needs to be constantly reevaluated to determine if the approach fulfills the expected outcome. To assist this evaluation, a comparison of NAWQA to other national ground-water quality programs was undertaken. The design and spatial extent of each national program depend on many factors, including current and long-term budgets, purpose of the program, size of the country, and diversity of aquifer types. Comparison of NAWQA to nine other national programs shows a great diversity in program designs, but indicates that different approaches can achieve similar and equally important goals. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
NASA Astrophysics Data System (ADS)
Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.
2017-12-01
Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike lewis
2013-02-01
This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Lewis
2014-02-01
This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.
Groundwater Change in Storage Estimation by Using Monitoring Wells Data
NASA Astrophysics Data System (ADS)
Flores, C. I.
2016-12-01
In present times, remarkable attention is being given to models and data in hydrology, regarding their role in meeting water management requirements to enable well-informed decisions. Water management under the Sustainable Groundwater Management Act (SGMA) is currently challenging, due to it requires that groundwater sustainability agencies (GSAs) formulate groundwater sustainability plans (GSPs) to comply with new regulations and perform a responsible management to secure California's groundwater resources, particularly when droughts and climate change conditions are present. In this scenario, water budgets and change in groundwater storage estimations are key components for decision makers, but their computation is often difficult, lengthy and uncertain. Therefore, this work presents an innovative approach to integrate hydrologic modeling and available groundwater data into a single simplified tool, a proxy function, that estimate in real time the change in storage based on monitoring wells data. A hydrologic model was developed and calibrated for water years 1970 to 2015, the Yolo County IWFM, which was applied to generate the proxy as a study case, by regressing simulated change in storage versus change in head for the cities of Davis and Woodland area, and obtain a linear function dependent on heads variations over time. Later, the proxy was applied to actual groundwater data in this region to predict the change in storage. Results from this work provide proxy functions to approximate change in storage based on monitoring data for daily, monthly and yearly frameworks, being as well easily transferable to any spreadsheet or database to perform simply yet crucial computations in real time for sustainable groundwater management.
Groundwater similarity across a watershed derived from time-warped and flow-corrected time series
NASA Astrophysics Data System (ADS)
Rinderer, M.; McGlynn, B. L.; van Meerveld, H. J.
2017-05-01
Information about catchment-scale groundwater dynamics is necessary to understand how catchments store and release water and why water quantity and quality varies in streams. However, groundwater level monitoring is often restricted to a limited number of sites. Knowledge of the factors that determine similarity between monitoring sites can be used to predict catchment-scale groundwater storage and connectivity of different runoff source areas. We used distance-based and correlation-based similarity measures to quantify the spatial and temporal differences in shallow groundwater similarity for 51 monitoring sites in a Swiss prealpine catchment. The 41 months long time series were preprocessed using Dynamic Time-Warping and a Flow-corrected Time Transformation to account for small timing differences and bias toward low-flow periods. The mean distance-based groundwater similarity was correlated to topographic indices, such as upslope contributing area, topographic wetness index, and local slope. Correlation-based similarity was less related to landscape position but instead revealed differences between seasons. Analysis of variance and partial Mantel tests showed that landscape position, represented by the topographic wetness index, explained 52% of the variability in mean distance-based groundwater similarity, while spatial distance, represented by the Euclidean distance, explained only 5%. The variability in distance-based similarity and correlation-based similarity between groundwater and streamflow time series was significantly larger for midslope locations than for other landscape positions. This suggests that groundwater dynamics at these midslope sites, which are important to understand runoff source areas and hydrological connectivity at the catchment scale, are most difficult to predict.
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar
2018-03-06
Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.
Kulongoski, Justin T.; Belitz, Kenneth
2007-01-01
Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N-nitrosodimethylamine, 1,2,3-trichloropropane, nitrate, radon-222, and coliform bacteria were detected at concentrations higher than health-based regulatory thresholds. Six constituents, including total dissolved solids, hexavalent chromium, iron, manganese, molybdenum, and sulfate were detected at concentrations above levels set for aesthetic concerns. One-third of the randomized wells sampled for the Monterey Bay and Salinas Valley GAMA study had at least a single detection of a VOC or gasoline additive. Twenty-eight of the 88 VOCs and gasoline additives investigated were found in ground-water samples; however, detected concentrations were one-third to one-sixty-thousandth of their respective regulatory thresholds. Compounds detected in 10 percent or more of the wells sampled include chloroform, a compound resulting from the chlorination of water, and tetrachloroethylene (PCE), a common solvent. Pesticides and pesticide degradates also were detected in one-third of the ground-water samples collected; however, detected concentrations were one-thirtieth to one-fourteen-thousandth of their respective regulatory thresholds. Ten of the 122 pesticides and pesticide degradates investigated were found in ground-water samples. Compounds detected in 10 percent or more of the wells sampled include the herbicide simazine, and the pesticide degradate deethylatrazine. Ground-water samples had a median total dissolved solids (TDS) concentration of 467 milligrams per liter (mg/L), and 16 of the 34 samples had TDS concentrations above the recommended secondary maximum contaminant level (SMCL-a threshold established for aesthetic qualities: taste, odor, and color) of 500 mg/L, while four samples had concentrations above the upper SMCL of 1,000 mg/L. Concentrations of nitrate plus nitrite ranged from 0.04 to 37.8 mg/L (as nitrogen), and two samples had concentrations above the health-based threshold for nitrate of 10 mg/L (as nitrogen). The median sulfate concentration
Groundwater quality in West Virginia, 1993-2008
Chambers, Douglas B.; Kozar, Mark D.; White , Jeremy S.; Paybins, Katherine S.
2012-01-01
Approximately 42 percent of all West Virginians rely on groundwater for their domestic water supply. However, prior to 2008, the quality of the West Virginia’s groundwater resource was largely unknown. The need for a statewide assessment of groundwater quality prompted the U.S. Geological Survey (USGS), in cooperation with West Virginia Department of Environmental Protection (WVDEP), Division of Water and Waste Management, to develop an ambient groundwater-quality monitoring program. The USGS West Virginia Water Science Center sampled 300 wells, of which 80 percent were public-supply wells, over a 10-year period, 1999–2008. Sites for this statewide ambient groundwater-quality monitoring program were selected to provide wide areal coverage and to represent a variety of environmental settings. The resulting 300 samples were supplemented with data from a related monitoring network of 24 wells and springs. All samples were analyzed for field measurements (water temperature, pH, specific conductance, and dissolved oxygen), major ions, trace elements, nutrients, volatile organic compounds, fecal indicator bacteria, and radon-222. Sub-sets of samples were analyzed for pesticides or semi-volatile organic compounds; site selection was based on local land use. Samples were grouped for comparison by geologic age of the aquifer, Groups included Cambrian, Ordovician, Silurian, Devonian, Pennsylvanian, Permian, and Quaternary aquifers. A comparison of samples indicated that geologic age of the aquifer was the largest contributor to variability in groundwater quality. This study did not attempt to characterize drinking water provided through public water systems. All samples were of raw, untreated groundwater. Drinking-water criteria apply to water that is served to the public, not to raw water. However, drinking water criteria, including U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL), non-enforceable secondary maximum contaminant level (SMCL), non-enforceable proposed MCL, or non-enforceable advisory health-based screening level (HBSL), were used as benchmarks against which to compare analytical results. Constituent concentrations were less than the MCLs in most samples. However, some samples exceeded non-enforceable SMCLs, proposed MCLs, or advisory HBSLs. Radon-222 concentrations exceeded the proposed MCL of 300 pCi/L in 45 percent of samples, and iron concentrations exceeded the SMCL of 300 µg/L in 57 percent of samples. Manganese concentrations were greater than the SMCL (50 µg/L) in 62 percent of samples and greater than the HBSL (300 µg/L) in 25 percent of the samples. Other sampled constituents, including organic compounds and trace elements, exceeded drinking-water criteria at much lower frequencies. The radon-222 median concentrations in samples from Cambrian, Ordovician, Silurian, Permian, and Quaternary aquifers exceeded the proposed 300 pCi/L MCL. Although median radon concentrations for wells in Devonian, Mississippian, and Pennsylvanian aquifers were less than the proposed MCL, radon concentrations greater than the proposed MCL were measured in samples from aquifers of all geologic ages. The median iron concentrations for samples from Devonian and Pennsylvanian aquifers were greater than the 300 µg/L SMCL. Iron concentrations exceeded the SMCL in aquifers of all geologic ages, except Cambrian. Median concentrations of manganese exceeded the SMCL in samples from Devonian, Pennsylvanian, and Quaternary aquifers. As with iron, manganese concentrations were found to exceed the SMCL in at least one sample from aquifers of all geologic ages, except Cambrian. Pesticides were detected most frequently and in higher concentrations in limestone-dominated areas. Most of West Virginia’s agriculture is concentrated in those areas. This study, the most comprehensive assessment of West Virginia groundwater quality to date, indicates the water quality of West Virginia’s groundwater is generally good; in the majority of cases raw-water samples met primary drinking water-criteria. However, some constituents, notably iron and manganese, exceeded the secondary drinking criteria in more than half the samples.
1992-03-01
I I 3 TABLE 15. SUMMARY OF THE WATER QUALITY DURING THE OLD O-FIELD GROUNDWATER PILOT SCALE TOXICITY TESTS - UNTREATED GROUNDWATER ( FRESHWATER ...SUBJECT TERMS (Coftinut on reverse of necessary and identity by block number) FIELD IGROUP SUB-GROUP Groundwater , aquatic , to*’teltyi- daphnia,--Daphnia...FATHEAD MINNOWS AND DAPHNIDS ........................................... 30 12. SUMMARY OF THE WATER QUALITY DURING THE OLD O-FIELD GROUNDWATER BENCH
Impact of geochemical stressors on shallow groundwater quality
An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.
2005-01-01
Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional geochemical stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.
Arnold, Larry R. Rick
2015-01-01
During May–June, 2013, the U.S. Geological Survey, in cooperation with Park County, Colorado, drilled and installed four groundwater monitoring wells in areas identified as needing new wells to provide adequate spatial coverage for monitoring water quality in the South Park basin. Lithologic logs and well-construction reports were prepared for each well, and wells were developed after drilling to remove mud and foreign material to provide for good hydraulic connection between the well and aquifer. Slug tests were performed to estimate hydraulic-conductivity values for aquifer materials in the screened interval of each well, and groundwater samples were collected from each well for analysis of major inorganic constituents, trace metals, nutrients, dissolved organic carbon, volatile organic compounds, ethane, methane, and radon. Documentation of lithologic logs, well construction, well development, slug testing, and groundwater sampling are presented in this report.
St. Louis Airport Site annual site environmental report. Calendar year 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-04-01
During 1985, the environmental monitoring program was continued at the St. Louis Airport Site (SLAPS) in St. Louis County, Missouri. The ditches north and south of the site have been designated for cleanup as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a United States Department of Energy (DOE) program to identify, decontaminate, or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. The site is not currently controlled or regulated by DOE or NRC, although radiological monitoring of the site has been authorized by the DOE. The monitoringmore » program at the SLAPS measures radon gas concentrations in air; external gamma radiation dose rates; and uranium, thorium, and radium concentrations in surface water, groundwater, and sediment. Potential radiation doses to the public are also calculated. Because the site is not controlled or regulated by the DOE, the DOE Derived Concentration Guides (DCGs) are not applicable to SLAPS, but are included as a basis for comparison only. The DOE DCGs and the DOE radiation protection standard have been revised.« less
NASA Astrophysics Data System (ADS)
Walker, David; Forsythe, Nathan; Parkin, Geoff; Gowing, John
2016-07-01
This study shows how community-based hydrometeorological monitoring programmes can provide reliable high-quality measurements comparable to formal observations. Time series of daily rainfall, river stage and groundwater levels obtained by a local community in Dangila woreda, northwest Ethiopia, have passed accepted quality control standards and have been statistically validated against formal sources. In a region of low-density and declining formal hydrometeorological monitoring networks, a situation shared by much of the developing world, community-based monitoring can fill the observational void providing improved spatial and temporal characterisation of rainfall, river flow and groundwater levels. Such time series data are invaluable in water resource assessment and management, particularly where, as shown here, gridded rainfall datasets provide gross under or over estimations of rainfall and where groundwater level data are non-existent. Discussions with the local community during workshops held at the setup of the monitoring programme and since have demonstrated that the community have become engaged in the project and have benefited from a greater hydrological knowledge and sense of ownership of their resources. This increased understanding and empowerment is at the relevant scale required for effective community-based participatory management of shallow groundwater and river catchments.
Squillace, P.J.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.
1996-01-01
The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE) is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-1994 aspart of the U.S. Geological Survey's National Water-Quality Assessment program. Samples were collected from five drinking water wells, 12 springs, and 193 monitoring wells in urban areas. No MTBE was detected in drinking water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in eight areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in nine areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft drinking water health advisory. Because MTBE is persistent and mobile in groundwater, it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylene (BTEX) compounds, which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and non-point sources, such as recharge of precipitation and stormwater runoff.
Kolpin, D.W.; Sneck-Fahrer, D.; Hallberg, G.R.; Libra, R.D.
1997-01-01
Since 1982, the Iowa Groundwater Monitoring (IGWM) Program has been used to sample untreated groundwater from Iowa municipal wells for selected agricultural chemicals. This long-term database was used to determine if concentrations of select agricultural chemicals in groundwater have changed with time. Nitrate, alachlor [2-chloro-2′-6′-diethyl-N-(methoxymethyl)-acetanilide], atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile)], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were selected for this temporal analysis of the data. Conclusive temporal changes in frequency of detection and median chemical concentrations were found only for atrazine (decrease) and metolachlor (increase). The greatest temporal chemical changes occurred in the shallowest wells and in alluvial aquifers—both relating to groups of wells generally having the youngest groundwater age. The temporal patterns found for atrazine and metolachlor are consistent with their patterns of chemical use and/or application rates and are suggestive of a causal relation. Only continued data collection, however, will indicate if the trends in chemical concentrations described here represent long-term temporal patterns or only short-term changes in groundwater. No definitive answers could be made in regards to the question of overall improvements in groundwater quality with respect to agricultural chemical contamination and time, due to the inherent problems with the simplistic measurement of overall severity (summation of alachlor + atrazine + cyanazine + metolachlor concentrations) examined for this study. To adequately determine if there is an actual decreasing trend in the overall severity of contamination (improving groundwater quality), the collection of additional water-chemistry data and the investigation of other measures of severity are needed.
Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth
2012-01-01
Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.
Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells = 61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity > 0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping.
Isotopic Survey of Lake Davis and the Local Groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, M N; Moran, J E; Singleton, M J
2007-08-21
In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek andmore » rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.« less
Hanford Site Environmental Report 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
TM Poston; RW Hanf; RL Dirkes
This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmentalmore » programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.« less
Hanford Site 1998 Environmental Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
RL Dirkes; RW Hanf; TM Poston
This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at themore » Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.« less
2007-2008 Annual Progress Report for BPA Grant Exp Restore Walla Walla River Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, Bob
WWBWC and its partners have been working on a wide variety of conservation and aquifer recharge related activities including: monitoring groundwater and surface water conditions, creating a geospatial database for the Walla Walla River valley (project focal area), expanding aquifer recharge testing at the HBDIC site and conducting an extensive outreach/education program by which to share the information, ideas and potential solutions to our current water management issues in this basin. This report is an outline of those activities and is accompanied by individual program-component (attached as appendices) reports for the areas that BPA is assisting to fund these on-the-groundmore » projects along with the innovative research and monitoring being done to further aquifer recharge as a water management tool for the Pacific Northwest.« less
ERIC Educational Resources Information Center
Cole, Charles A.
Described is a presentation and learning session on groundwater, which is intended to educate advisory groups interested in improving water quality decision making. Among the areas addressed are the importance of groundwater, sources of contamination, and groundwater pollution control programs. These materials are part of the Working for Clean…
Roll, Isaac B.; Driver, Erin M.; Halden, Rolf U.
2016-01-01
Annual U.S. expenditures of $2B for site characterization invite the development of new technologies to improve data quality while reducing costs and minimizing uncertainty in groundwater monitoring. This work presents a new instrument for time-integrated sampling of environmental fluids using in situ solid-phase extraction (SPE). The In Situ Sampler (IS2) is an automated submersible device capable of extracting dissolved contaminants from water (100s – 1000s mL) over extended periods (hours to weeks), retaining the analytes, and rejecting the processed fluid. A field demonstration of the IS2 revealed 28-day average concentration of hexavalent chromium in a shallow aquifer affected by tidal stresses via sampling of groundwater as both liquid and sorbed composite samples, each obtained in triplicate. In situ SPE exhibited 75 ± 6% recovery and an 8-fold improvement in reporting limit. Relative to use of conventional methods (100%), beneficial characteristics of the device and method included minimal hazardous material generation (2%), transportation cost (10%), and associated carbon footprint (2%). The IS2 is compatible with commercial SPE resins and standard extraction methods, and has been certified for more general use (i.e., inorganics and organics) by the Environmental Security Technology Certification Program (ESTCP) of the U.S. Department of Defense. PMID:26971208
Roll, Isaac B; Driver, Erin M; Halden, Rolf U
2016-06-15
Annual U.S. expenditures of $2B for site characterization invite the development of new technologies to improve data quality while reducing costs and minimizing uncertainty in groundwater monitoring. This work presents a new instrument for time-integrated sampling of environmental fluids using in situ solid-phase extraction (SPE). The In Situ Sampler (IS2) is an automated submersible device capable of extracting dissolved contaminants from water (100s-1000smL) over extended periods (hours to weeks), retaining the analytes, and rejecting the processed fluid. A field demonstration of the IS2 revealed 28-day average concentration of hexavalent chromium in a shallow aquifer affected by tidal stresses via sampling of groundwater as both liquid and sorbed composite samples, each obtained in triplicate. In situ SPE exhibited 75±6% recovery and an 8-fold improvement in reporting limit. Relative to use of conventional methods (100%), beneficial characteristics of the device and method included minimal hazardous material generation (2%), transportation cost (10%), and associated carbon footprint (2%). The IS2 is compatible with commercial SPE resins and standard extraction methods, and has been certified for more general use (i.e., inorganics and organics) by the Environmental Security Technology Certification Program (ESTCP) of the U.S. Department of Defense. Copyright © 2016 Elsevier B.V. All rights reserved.
Nishikawa, Tracy; Densmore, Jill N.; Martin, Peter; Matti, Jonathan
2003-01-01
Ground water historically has been the sole source of water supply for the Town of Yucca Valley in the Warren subbasin of the Morongo ground-water basin, California. An imbalance between ground-water recharge and pumpage caused ground-water levels in the subbasin to decline by as much as 300 feet from the late 1940s through 1994. In response, the local water district, Hi-Desert Water District, instituted an artificial recharge program in February 1995 using imported surface water to replenish the ground water. The artificial recharge program resulted in water-level recoveries of as much as 250 feet in the vicinity of the recharge ponds between February 1995 and December 2001; however, nitrate concentrations in some wells also increased from a background concentration of 10 milligrams per liter to more than the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 44 milligrams per liter (10 milligrams per liter as nitrogen). The objectives of this study were to: (1) evaluate the sources of the high-nitrate concentrations that occurred after the start of the artificial-recharge program, (2) develop a ground-water flow and solute-transport model to better understand the source and transport of nitrates in the aquifer system, and (3) utilize the calibrated models to evaluate the possible effect of a proposed conjunctive-use project. These objectives were accomplished by collecting water-level and water-quality data for the subbasin and assessing changes that have occurred since artificial recharge began. Collected data were used to calibrate the ground-water flow and solute-transport models. Data collected for this study indicate that the areal extent of the water-bearing deposits is much smaller (about 5.5 square miles versus 19 square miles) than that of the subbasin. These water-bearing deposits are referred to in this report as the Warren ground-water basin. Faults separate the ground-water basin into five hydrogeologic units: the west, the midwest, the mideast, the east and the northeast hydrogeologic units. Water-quality analyses indicate that septage from septic tanks is the primary source of the high-nitrate concentrations measured in the Warren ground-water basin. Water-quality and stable-isotope data, collected after the start of the artificial recharge program, indicate that mixing occurs between imported water and native ground water, with the highest recorded nitrate concentrations in the midwest and the mideast hydrogeologic units. In general, the timing of the increase in measured nitrate concentrations in the midwest hydrogeologic unit is directly related to the distance of the monitoring well from a recharge site, indicating that the increase in nitrate concentrations is related to the artificial recharge program. Nitrate-to-chloride and nitrogen-isotope data indicate that septage is the source of the measured increase in nitrate concentrations in the midwest and the mideast hydrogeologic units. Samples from four wells in the Warren ground-water basin were analyzed for caffeine and selected human pharmaceutical products; these analyses suggest that septage is reaching the water table. There are two possible conceptual models that explain how high-nitrate septage reaches the water table: (1) the continued downward migration of septage through the unsaturated zone to the water table and (2) rising water levels, a result of the artificial recharge program, entraining septage in the unsaturated zone. The observations that nitrate concentrations increase in ground-water samples from wells soon after the start of the artificial recharge program in 1995 and that the largest increase in nitrate concentrations occur in the midwest and mideast hydrogeologic units where the largest increase in water levels occur indicate the validity of the second conceptual model (rising water levels). The potential nitrate concentration resulting from a water-level rise in the midwest and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, G.
1992-12-28
The following Topics were among those completed at the Air Force Faculty Research Summer Program: Experiences using Model-Based Techniques for the Development of a Large Parallel Instrumentation System; Data Reduction of Laser Induced Fluorescence in Rocket Motor Exhausts; Feasibility of Wavelet Analysis for Plume Data Study; Characterization of Seagrass Meadows in St. Andrew (Crooked Island) Sound, Northern Gulf of Mexico; A Preliminary Study of the Weathering of Jet Fuels in Soil Monitored by SFE with GC Analysis; Preliminary Numerical model of Groundwater Flow at the MADE2 Site.
Ackerman, D.J.
1980-01-01
In order to design a network to monitor the effects of works of improvement in the Middle and North Branch Park River watersheds, and to determine the major factors controlling water-quality conditions in the watersheds, an evaluation of sediment transport, water chemistry, and biology was conducted during the spring and early summer of 1978.Major factors controlling water quality are geology, stream gradient, ground-water seepage, and the duration of streamflow.Sediment loads originate on the Pembina Escarpment. The coarse silt and sand parts of these loads are deposited on the Lake Agassiz Plain. Transport of sediment is lowered and flow duration is increased on the Middle Branch Park River due to the presence of small dams. Observations suggest that bedload transport is a significant process, particularly in the upstream reaches. However, no quantitative bedload data were collected.During periods of low flow, analyses of water from the rivers in both watersheds show downstream increases in sodium and chloride due to ground-water seepage or the unregulated flow of wells. Diversity of benthic invertebrates indicates water-quality conditions are better on the Middle Branch Park River than on the North Branch, and are better at upstream sites than at downstream sites. A program through which the Soil Conservation Service can monitor the effects of present and future works of improvement on the watersheds was designed. The monitoring program consists of intensive sampling at four locations for sediment and water chemistry during spring and early summer runoff events and by profiles of water chemistry during summer base runoff.
Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas
Ying Ouyang; Jia-En Zhang
2012-01-01
Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic...
Open Source Platform Application to Groundwater Characterization and Monitoring
NASA Astrophysics Data System (ADS)
Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.
2017-12-01
Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.
Templin, W.E.; Smith, P.E.; DeBortoli, M.L.; Schluter, R.C.
1995-01-01
This report presents an evaluation of water- resources data-collection networks in the northern and coastal areas of Monterey County, California. This evaluation was done by the U.S. Geological Survey in cooperation with the Monterey County Flood Control and Water Conservation District to evaluate precipitation, surface water, and ground water monitoring networks. This report describes existing monitoring networks in the study areas and areas where possible additional data-collection is needed. During this study, 106 precipitation-quantity gages were identified, of which 84 were active; however, no precipitation-quality gages were identified in the study areas. The precipitaion-quantity gages were concentrated in the Monterey Peninsula and the northern part of the county. If the number of gages in these areas were reduced, coverage would still be adequate to meet most objectives; however, additional gages could improve coverage in the Tularcitos Creek basin and in the coastal areas south of Carmel to the county boundary. If collection of precipitation data were expanded to include monitoring precipitation quality, this expanded monitoring also could include monitoring precipitation for acid rain and pesticides. Eleven continuous streamflow-gaging stations were identified during this study, of which seven were active. To meet the objectives of the streamflow networks outlined in this report, the seven active stations would need to be continued, four stations would need to be reactivated, and an additional six streamflow-gaging stations would need to be added. Eleven stations that routinely were sampled for chemical constituents were identified in the study areas. Surface water in the lower Big Sur River basin was sampled annually for total coli- form and fecal coliform bacteria, and the Big Sur River was sampled monthly at 16 stations for these bacteria. Routine sampling for chemical constituents also was done in the Big Sur River basin. The Monterey County Flood Control and Water Conservation District maintained three networks in the study areas to measure ground-water levels: (1) the summer network, (2) the monthly network, and (3) the annual autumn network. The California American Water Company also did some ground-water-level monitoring in these areas. Well coverage for ground-water monitoring was dense in the seawater-intrusion area north of Moss Landing (possibly because of multiple overlying aquifers), but sparse in other parts of the study areas. During the study, 44 sections were identified as not monitored for ground-water levels. In an ideal ground-water-level network, wells would be evenly spaced, except where local conditions or correlations of wells make monitoring unnecessary. A total of 384 wells that monitor ground-water levels and/or ground-water quality were identified during this study. The Monterey County Flood Control and Water Conservation District sampled ground-water quality monthly during the irrigation season to monitor seawater intrusion. Once each year (during the summer), the wells in this network were monitored for chlorides, specific conductance, and nitrates. Additional samples were collected from each well once every 5 years for complete mineral analysis. The California Department of Health Services, the California American Water Company, the U.S. Army Health Service at Ford Ord, and the Monterey Peninsula Water Management District also monitored ground-water quality in wells in the study areas. Well coverage for the ground-water- quality networks was dense in the seawater- intrusion area north of Moss Landing, but sparse in the rest of the study areas. During this study, 54 sections were identified as not monitored for water quality.
NASA Astrophysics Data System (ADS)
Messier, K. P.; Kane, E.; Bolich, R.; Serre, M. L.
2014-12-01
Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. Legacy contamination, or past releases of NO3-, is thought to be impacting current groundwater and surface water of North Carolina. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure known as constrained forward nonlinear regression and hyperparameter optimization (CFN-RHO) is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is then used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. The major finding regarding legacy sources NO3- in this study is that the LUR-BME models show the geographical extent of low-level contamination of deeper drinking-water aquifers is beyond that of the shallower monitoring well. Groundwater NO3- in monitoring wells is highly variable with many areas predicted above the current Environmental Protection Agency standard of 10 mg/L. Contrarily, the private well results depict widespread, low-level NO3-concentrations. This evidence supports that in addition to downward transport, there is also a significant outward transport of groundwater NO3- in the drinking water aquifer to areas outside the range of sources. Results indicate that the deeper aquifers are potentially acting as a reservoir that is not only deeper, but also covers a larger geographical area, than the reservoir formed by the shallow aquifers. Results are of interest to agencies that regulate surface water and drinking water sources impacted by the effects of legacy NO3- sources. Additionally, the results can provide guidance on factors affecting the point-level variability of groundwater NO3- and areas where monitoring is needed to reduce uncertainty. Lastly, LUR-BME predictions can be integrated into surface water models for more accurate management of non-point sources of nitrogen.
Subsurface and Surface Characterization using an Information Framework Model
NASA Astrophysics Data System (ADS)
Samuel-Ojo, Olusola
Groundwater plays a critical dual role as a reservoir of fresh water for human consumption and as a cause of the most severe problems when dealing with construction works below the water table. This is why it is critical to monitor groundwater recharge, distribution, and discharge on a continuous basis. The conventional method of monitoring groundwater employs a network of sparsely distributed monitoring wells and it is laborious, expensive, and intrusive. The problem of sparse data and undersampling reduces the accuracy of sampled survey data giving rise to poor interpretation. This dissertation addresses this problem by investigating groundwater-deformation response in order to augment the conventional method. A blend of three research methods was employed, namely design science research, geological methods, and geophysical methods, to examine whether persistent scatterer interferometry, a remote sensing technique, might augment conventional groundwater monitoring. Observation data (including phase information for displacement deformation from permanent scatterer interferometric synthetic aperture radar and depth to groundwater data) was obtained from the Water District, Santa Clara Valley, California. An information framework model was built and applied, and then evaluated. Data was preprocessed and decomposed into five components or parts: trend, seasonality, low frequency, high frequency and octave bandwidth. Digital elevation models of observed and predicted hydraulic head were produced, illustrating the piezometric or potentiometric surface. The potentiometric surface characterizes the regional aquifer of the valley showing areal variation of rate of percolation, velocity and permeability, and completely defines flow direction, advising characteristics and design levels. The findings show a geologic forcing phenomenon which explains in part the long-term deformation behavior of the valley, characterized by poroelastic, viscoelastic, elastoplastic and inelastic deformations under the influence of an underlying geologic southward plate motion within the theory of plate tectonics. It also explains the impact of a history of heavy pumpage of groundwater during the agricultural and urbanization era. Thus the persistent scatterer interferometry method offers an attractive, non-intrusive, cost-effective augmentation of the conventional method of monitoring groundwater for water resource development and stability of soil mass.
Relationships between groundwater contamination and major-ion chemistry in a karst aquifer
NASA Astrophysics Data System (ADS)
Scanlon, B. R.
1990-11-01
Groundwater contamination was examined within a rural setting of the Inner Bluegrass Karst Region of central Kentucky where potential contaminant sources include soil-organic matter, organic and inorganic fertilizer, and septic-tank effluent. To evaluate controls on groundwater contamination, data on nitrate concentrations and indicator bacteria in water from wells and springs were compared with physical and chemical attributes of the groundwater system. Bacterial densities greater than the recommended limit were found in all springs and approximately half of the wells, whereas nitrate concentrations >45 mg l -1 were restricted to 20% of the springs and 10% of the wells. Nitrate concentrations varied markedly in closely spaced wells and springs, which indicates that land use is not the primary control on groundwater contamination. Groundwater contamination is related to the distribution of chemical water types in the study area. All Ca subtype water was contaminated with nitrate and bacteria. Ca subtype water occurs in the shallow, rapidly circulating groundwater zone, which is most susceptible to contamination. The similarity in nitrate concentrations between local springs, major springs, and wells that contain Ca subtype water indicates that the occurrence of large conduits is not the main control on nitrate and bacterial contamination of groundwater. Temporal fluctuations in nitrate concentrations of Ca subtype water are attributed to seasonal fluctuations in recharge and in plant growth. Ca-Mg water subtype was generally not contaminated, and Na-HCO 3 and Na-Cl water types were not contaminated. Ca-Mg water subtype, and Na-HCO 3 and Na-Cl water types are associated with longer residence times and reducing conditions, which allow bacterial die-off and denitrification, respectively. Differences in residence time and reducing conditions among the chemical water types and subtypes are attributed to variations in rock permeability and to the occurrence of horizontal shales that control the rate and depth of active groundwater circulation. This relationship between chemical water types and contaminant concentrations is important for groundwater monitoring programs and the siting of waste-disposal facilities.
Groundwater flux estimation in streams: A thermal equilibrium approach
Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon K.
2018-01-01
Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash–Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.
Groundwater flux estimation in streams: A thermal equilibrium approach
NASA Astrophysics Data System (ADS)
Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon
2018-06-01
Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.
Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, M.D.
1995-06-13
This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench beganmore » in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.« less
NASA Astrophysics Data System (ADS)
Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.
2013-12-01
During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the geochemistry of groundwater and surface water at the catchment outlet. Following synthesis of the available information, including a cryo-hydrogeophysical investigation in progress, a three-dimensional hydrogeological conceptual and numerical model of the catchment basin will be developed. According to different scenarios of climate change, the potential of using groundwater as a sustainable resource in northern regions will be assessed by simulating the present and future impacts of climate change on this groundwater system.
Gravity changes, soil moisture and data assimilation
NASA Astrophysics Data System (ADS)
Walker, J.; Grayson, R.; Rodell, M.; Ellet, K.
2003-04-01
Remote sensing holds promise for near-surface soil moisture and snow mapping, but current techniques do not directly resolve the deeper soil moisture or groundwater. The benefits that would arise from improved monitoring of variations in terrestrial water storage are numerous. The year 2002 saw the launch of NASA's Gravity Recovery And Climate Experiment (GRACE) satellites, which are mapping the Earth's gravity field at such a high level of precision that we expect to be able to infer changes in terrestrial water storage (soil moisture, groundwater, snow, ice, lake, river and vegetation). The project described here has three distinct yet inter-linked components that all leverage off the same ground-based monitoring and land surface modelling framework. These components are: (i) field validation of a relationship between soil moisture and changes in the Earth's gravity field, from ground- and satellite-based measurements of changes in gravity; (ii) development of a modelling framework for the assimilation of gravity data to constrain land surface model predictions of soil moisture content (such a framework enables the downscaling and disaggregation of low spatial (500 km) and temporal (monthly) resolution measurements of gravity change to finer spatial and temporal resolutions); and (iii) further refining the downscaling and disaggregation of space-borne gravity measurements by making use of other remotely sensed information, such as the higher spatial (25 km) and temporal (daily) resolution remotely sensed near-surface soil moisture measurements from the Advanced Microwave Scanning Radiometer (AMSR) instruments on Aqua and ADEOS II. The important field work required by this project will be in the Murrumbidgee Catchment, Australia, where an extensive soil moisture monitoring program by the University of Melbourne is already in place. We will further enhance the current monitoring network by the addition of groundwater wells and additional soil moisture sites. Ground-based gravity measurements will also be made on a monthly basis at each monitoring site. There will be two levels of modelling and monitoring; regional across the entire Murrumbidgee Catchment (100,000 km2), and local across a small sub-catchment (150 km2).
Groundwater vulnerability to drought in agricultural watersheds, S. Korea
NASA Astrophysics Data System (ADS)
Song, Sung-Ho; Kim, Jin-Sung; Lee, Byungsun
2017-04-01
Drought can be generally defined by a considerable decrease in water availability due to a deficit in precipitation during a significant period over a large area. In South Korea, the severe drought occurred over late spring to early summer during from 2012 to 2015. In this period, precipitation decreased up to 10-40% compared with a normal one, resulting in reduction of stream flow and reservoir water over the country. It led to a shortage of irrigation water that caused great damage to grow rice plants on early stage. Furthermore, drought resulted in a negative effect on groundwater system with decline of its level. Change of the levels significantly reflects intrinsic characteristics of aquifer system. Identifying drought effects on groundwater system is very difficult because change of groundwater level after hydrological events tends to be delayed. Therefore, quantitative assessment on decline of groundwater level in agricultural watersheds plays an essential role to make customized policies for water shortage since groundwater system is directly affected by drought. Furthermore, it is common to analyze the time-series groundwater data from monitoring wells including hydrogeological characteristics in company with meteorological data because drought effects on groundwater system is site-specific. Currently, a total of 364 groundwater monitoring wells including 210 wells for rural groundwater management network(RGMN) and 154 wells for seawater intrusion monitoring network (SIMN) have been operating in agricultural watersheds in S. Korea. To estimate the effect of drought on groundwater system, monthly mean groundwater level data were obtained from RGMN and SIMN during the periods of 2012 to 2015. These data were compared to their past data in company with rainfall data obtained from adjacent weather stations. In 2012 and 2014, mean groundwater level data in the northern part of the country during irrigation season(April to June), when precipitation was recorded to 10% and 30% of an average one during the past 30 years, decreased up to 1.32 m and 0.71 m compared to that of the normal year, respectively. In 2015, mean groundwater level in the same area with 40% of a normal precipitation decreased up to 0.51-0.77 m. Consequently, total amounts of groundwater in aquifer have decreased due to the effect of periodic drought events during irrigation season. Effective policies should be required to manage groundwater vulnerability by drought in rural areas, South Korea.
U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985
NASA Astrophysics Data System (ADS)
Ragone, Stephen E.
1986-09-01
In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program
Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.
2006-01-01
Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area. Results are presented in a descending order based on detection frequencies (most frequently detected compound listed first), or alphabetically when a detection frequency could not be calculated. Only certain wells were measured for all constituents and water-quality parameters. The results of all of the analyses were compared with U.S. Environmental Protection Agency (USEPA) and California Department of Health Services (CADHS) Maximum Contaminant Levels (MCLs), Secondary Maximum Contaminant Levels (SMCLs), USEPA lifetime health advisories (HA-Ls), the risk-specific dose at a cancer risk level equal to 1 in 100,000 or 10E-5 (RSD5), and CADHS notification levels (NLs). When USEPA and CADHS MCLs are the same, detection levels were compared with the USEPA standard; however, in some cases, the CADHS MCL may be lower. In those cases, the data were compared with the CADHS MCL. Constituents listed by CADHS as 'unregulated chemicals for which monitoring is required' were compared with the CADHS 'detection level for the purposes of reporting' (DLR). DLRs unlike MCLs are not health based standards. Instead, they are levels at which current laboratory detection capabilities allow eighty percent of qualified laboratories to achieve measurements within thirty percent of the true concentration. Twenty-three volatile organic compounds (VOCs) and seven gasoline oxygenates were detected in ground-water samples collected in the Northern San Joaquin Basin GAMA study unit. Additionally, 13 tentatively identified compounds were detected. VOCs were most frequently detected in the Eastern San Joaquin Basin study area and least frequently detected in samples collected in the Cosumnes Basin study area. Dichlorodifluoromethane (CFC-12), a CADHS 'unregulated chemical for which monitoring is required,' was detected in two wells at concentrations greater than the DLR. Trihalomethanes were the most frequently detected class of VOC constituents. Chloroform (trichloromethane) was the m
2010-04-01
isotopes. Laboratory analysis for general chemistry included Na, Ca, Mg, K, Fe, Cl, HCO3, CO3 , SO4, F, B, NO3, arsenic (As), hardness, alkalinity...used for interpretations within the project. Prior to this effort, a single -location repository for isotopic data related to IWV investigations...canyons of importance to this study (Indian Wells Canyon, Freeman Canyon, and the upgradient canyons of Cow Haven, Sage, and Horse). Single samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-01
This operable unit consists of Sites 41 and 74. The remedial actions are designed to prevent future potential exposure by implementing institutional controls. These controls include: (1) designate the sites as `restricted` or `limited use` areas, within the base master plan; (2) prohibit the installation of potable water supply wells within the vicinity of the sites: and (3) implement a groundwater, surface water and sediment monitoring program.
Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies
NASA Astrophysics Data System (ADS)
Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.
2011-12-01
Dairy farming in California's Central Valley is a significant source of nitrate to underlying aquifers. One approach to mitigation is to implement farm-scale management plans that reduce nutrient loading to groundwater while sustaining crop yield. While the effect of different management practices on crop yield is easily measured, their effect on groundwater quality has only infrequently been evaluated. Documenting and predicting the impact of management on water quality requires a quantitative assessment of transport (including timescale and mixing) through the vadose and saturated zones. In this study, we measured tritium, helium isotopic composition, and noble gas concentrations in groundwater drawn from monitor wells on several dairies in the Lower San Joaquin Valley and Tulare Lake Basin of California's Central Valley in order to predict the timescales on which changes in management may produce observable changes in groundwater quality. These dairies differ in age (from <10 to >100 years old), thickness of the vadose zone (from <10 to 60 m), hydrogeologic setting, and primary source of irrigation water (surface or groundwater). All of the dairies use manure wastewater for irrigation and fertilization. Three of the dairies have implemented management changes designed to reduce nutrient loading and/or water usage. Monitor wells in the southern Tulare Lake Basin dairies were installed by UC-Davis as multi-level nested wells allowing depth profiling of tritium and noble gases at these sites. Tritium/helium-3 groundwater ages, calculated using a simple piston-flow model, range from <2 to >50 years. Initial tritium (the sum of measured tritium and tritiogenic helium-3) is close to or slightly above precipitation in the calculated recharge year for young samples; and significantly above the precipitation curve for older samples. This pattern is consistent with the use of 20-30 year old groundwater recharged before 1980 for irrigation, and illustrates how irrigation with groundwater can complicate the use of tritium alone for age dating. The presence of radiogenic helium-4 in several samples with measurable tritium provides evidence of mixing between pre-modern and younger groundwater. Groundwater age-depth relationships are complicated, consistent with transient flow patterns in shallow agricultural groundwaters affected by irrigation pumping and recharge. For the multi-level installations in the southern dairies, both depth profiles and re-sampling after significant changes in groundwater elevation emphasize the need to sample groundwater within 3 meters of the water table to obtain "first-encounter" groundwater with a tritium/helium-3 age of less than 5 years, and to use age tracers to identify wells and groundwater conditions suitable for monitoring and assessment of best management practice impacts on underlying groundwater quality. This work was carried out with funding from Sustainable Conservation and the California State Water Resources Control Board in collaboration with UC-Davis, and was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.
The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at Barnes, Kansas, in 1949-1974. Carbon tetrachloride contamination was initially detected in 1986 in the town's public water supply wells. In 2006-2007, the CCC/USDA conducted a comprehensive targeted investigation at and near its former property in Barnes to characterize this contamination. Those results were reported previously (Argonne 2008a). The results of that investigation indicated that carbon tetrachloride contamination is present in groundwater at low to moderate levels in the vicinity of the former CCC/USDA grain storage facility. Information obtained during the 2006-2007 investigation alsomore » indicated that at least one other potential source might have contributed to the groundwater contaminant plume (Argonne 2008a). The former agriculture building owned by the local school district, located immediately east of well PWS3, is also a potential source of the contamination. In November 2007, the CCC/USDA began periodic groundwater monitoring at Barnes. The monitoring is being conducted on behalf of the CCC/USDA by Argonne National Laboratory, under the direction of the Kansas Department of Health and Environment (KDHE). The objective is to monitor the carbon tetrachloride contamination identified in the groundwater at Barnes. Through 2010, sampling was conducted in a network of 28 individual monitoring wells (at 19 distinct locations), 2 public water supply wells, and 1 private well (Figure 1.1). The results of the 2006-2007 targeted investigation and the subsequent monitoring events (Argonne 2008a-d, 2009a,b, 2010) demonstrated the presence of carbon tetrachloride contamination in groundwater at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5.0 {micro}g/L for this compound. The contaminant plume appears to extend from the former CCC/USDA property northwestward, toward the Barnes public water supply wells. Long-term monitoring of the groundwater levels and the contaminant distribution has confirmed that pumping of the public water supply wells affects the direction of groundwater flow. When these wells are not pumping, the direction of groundwater flow is to the northeast. However, when they are pumping, groundwater flow is directed to the northwest, toward the public wells. A contingency interim measure (Argonne 2009c) has been approved by the KDHE (2009) and will be implemented if the two operating public water supply wells become contaminated at levels above the RBSL of 5.0 {micro}g/L for carbon tetrachloride. This current report presents the results of monitoring conducted in 2010. Sampling of the monitoring well network was conducted in March-April 2010 and September 2010. In addition, the two operating public water supply wells were sampled in June 2010 and December 2010. On the basis of an evaluation of the data collected in 2006-2009 (Argonne 2010), including a trend analysis of the site contamination and its migration, the KDHE (2010) concurred that future monitoring will occur on an annual basis, with twice-yearly sampling of the two public water supply wells in service (conducted in cooperation with the city). The KDHE (2010) also agreed to decrease the number wells to be sampled in the future, as discussed in Section 5.« less
Zimmerman, Marc J.; Waldron, Marcus C.; Barbaro, Jeffrey R.; Sorenson, Jason R.
2010-01-01
Low-impact-development (LID) approaches are intended to create, retain, or restore natural hydrologic and water-quality conditions that may be affected by human alterations. Wide-scale implementation of LID techniques may offer the possibility of improving conditions in river basins, such as the Ipswich River Basin in Massachusetts, that have run dry during the summer because of groundwater withdrawals and drought. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of LID enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of * replacing an impervious parking-lot surface with a porous surface on groundwater quality, * installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and * installing a 3,000-ft2 (square-foot) green roof on the quantity and quality of rainfall-generated roof runoff. In addition to these small-scale installations, the U.S. Geological Survey's Ipswich River Basin model was used to simulate the basin-wide effects on streamflow of several changes: broad-scale implementation of LID techniques, reduced water-supply withdrawals, and water-conservation measures. Water-supply and conservation scenarios for application in model simulations were developed with the assistance of two technical advisory committees that included representatives of State agencies responsible for water resources, the U.S. Environmental Protection Agency, the U.S. Geological Survey, water suppliers, and non-governmental organizations. From June 2005 to June 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, Massachusetts, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers designed to enhance rainfall infiltration into the groundwater and to minimize runoff to Silver Lake. Concentrations of phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons in groundwater were monitored. Enhancing infiltration of precipitation did not result in discernible increases in concentrations of these potential groundwater contaminants. Concentrations of dissolved oxygen increased slightly in groundwater profiles following the removal of the impervious asphalt parking-lot surface. In Wilmington, Massachusetts, in a 3-acre neighborhood, stormwater runoff volume and quality were monitored to determine the ability of selected LID enhancements (rain gardens and porous paving stones) to reduce flows and loads of the selected constituents to Silver Lake. Water-quality samples were analyzed for nutrients, metals, total petroleum hydrocarbons, and total-coliform and E. coli bacteria. A decrease in runoff quantity was observed for storms of 0.25 inch or less of precipitation. Water-quality-monitoring results were inconclusive; there were no statistically significant differences in concentrations or loads when the pre- and post-installation-period samples were compared. In a third field study, the characteristics of runoff from a vegetated 'green' roof and a conventional, rubber-membrane roof were compared. The two primary factors affecting the green roof's water-storage capacity were the amount of precipitation and antecedent dry period. Although concentrations of many of the chemicals in roof runoff were higher from the green roof than from the conventional roof, the ability of the green roof to retain w