Science.gov

Sample records for groundwater pollution jordvarmeanlaeg

  1. Groundwater pollution microbiology

    SciTech Connect

    Bitton, G.; Gerba, C.P.

    1984-01-01

    This book provides a survey of available information on groundwater pollution microbiology. It is useful as a starting point for students and professionals investigating this topic. Subjects discussed include bacteria and virus movement through soils, carcinogenicity of some organic chemicals detected in groundwater, sampling techniques, and land treatment systems. Include references to the journal literature and a subject index.

  2. Bioremediation of groundwater pollution.

    PubMed

    Crawford, R L

    1991-06-01

    Significant progress has been made in the past year towards an understanding of the microbial processes in subsurface environments that may allow natural microbial populations to be employed for bioremediation of groundwater pollution. Among the highlights were: the discovery of several previously unknown xenobiotic-degrading abilities in groundwater microorganisms; progress in using the unique abilities of methanotrophs to oxidize halogenated solvents; and characterizations of microbial populations from subsurface soils.

  3. [Groundwater pollution risk mapping method].

    PubMed

    Shen, Li-na; Li, Guang-he

    2010-04-01

    Based on methods for groundwater vulnerability assessment not involving in contamination source elements, and lack of the systemic and effective techniques and parameter system on groundwater pollution risk mapping in present, through analyzing the structure of groundwater system and characteristics of contaminant sources, and coupling groundwater intrinsic vulnerability with contaminant sources, the integrated multi-index models were developed to evaluate the risk sources of groundwater contaminant and form the groundwater pollution risk mapping in this paper. The models had been used to a large-scale karst groundwater source of northern China as a case study. The results indicated that vulnerability assessment overlaid risk pollution sources of groundwater could effectively confirm the high risk regions of groundwater pollution, and the methods might provide necessary support for the supervision of groundwater pollution.

  4. Groundwater pollution abatement

    SciTech Connect

    Fenton, D.M.; Holm, L.W.; Saunders, D.L.

    1987-05-12

    A method is described for for pollution abatement in groundwaters, comprising the steps of: drilling a series of wells into an aquifer, ahead of an advancing front of water which contains one or more contaminants. The wells are disposed along a line approximately parallel to the advancing front; and introducing, through the wells and into the aquifer, a particulate adsorbent material which can adsorb at least one contaminant.

  5. Groundwater abstraction pollution risk assessment.

    PubMed

    Lytton, L; Howe, S; Sage, R; Greenaway, P

    2003-01-01

    A generic groundwater pollution risk assessment methodology has been developed to enable the evaluation and ranking of the potential risk of pollution to groundwater abstractions. The ranking can then be used to prioritise risk management or mitigation procedures in a robust and quantifiable framework and thus inform business investment decisions. The risk assessment consider the three components of the pollution transport model: source-pathway-receptor. For groundwater abstractions these correspond to land use (with associated pollutants and shallow subsurface characteristics), aquifer and the abstraction borehole. An hierarchical approach was chosen to allow the risk assessment to be successfully carried out with different quality data for different parts of the model. The 400-day groundwater protection zone defines the catchment boundary that form the spatial limit of the land use audit for each receptor. A risk score is obtained for each land use (potential pollution source) within the catchment. These scores are derived by considering the characteristics (such as load, persistence and toxicity) of all pollutants pertaining to each land use, their on-site management and the potential for the unsaturated subsurface to attenuate their effects in the event of a release. Risk scores are also applied to the aquifer characteristics (as pollutant pathway) and to the abstraction borehole (as pollutant receptor). Each risk score is accompanied by an uncertainty score which provides a guide to the confidence in the data used to compile the risk assessment. The application of the methodology has highlighted a number of problems in this type of work and results of initial case studies are being used to trial alternative scoring methods and a more simplified approach to accelerate the process of pollution risk assessment.

  6. Groundwater pollution control

    SciTech Connect

    Steele, J.L.

    1984-05-03

    Chlorinated organic compounds (trichloroethylene, tetrachloroethylene, and 1, 1, 1 trichloroethane) were discovered in the groundwater beneath the reactor fuel and target fabrication area at the Savannah River Plant in June 1981 during routine RCRA monitoring. Principal sources and contaminant location were identified along with air stripping as the remedial action technology. A pilot air stripping column with one recovery well was installed to evaluate air stripping and a 50 gpm production unit with two recovery wells was installed to expedite contaminant recovery. A 400 gpm air stripping column and eleven recovery wells are in the design stage and will be operational in the first quarter of 1985.

  7. Groundwater pollution by nitrates from livestock wastes.

    PubMed

    Goldberg, V M

    1989-11-01

    Utilization of wastes from livestock complexes for irrigation involves the danger of groundwater pollution by nitrates. In order to prevent and minimize pollution, it is necessary to apply geological-hydrogeological evidence and concepts to the situation of wastewater irrigation for the purposes of studying natural groundwater protectiveness and predicting changes in groundwater quality as a result of infiltrating wastes. The procedure of protectiveness evaluation and quality prediction is described. With groundwater pollution by nitrate nitrogen, the concentration of ammonium nitrogen noticeably increases. One of the reasons for this change is the process of denitrification due to changes in the hydrogeochemical conditions in a layer. At representative field sites, it is necessary to collect systematic stationary observations of the concentrations of nitrogenous compounds in groundwater and changes in redox conditions and temperature.

  8. Groundwater pollution by nitrates from livestock wastes

    SciTech Connect

    Goldberg, V.M. )

    1989-11-01

    Utilization of wastes from livestock complexes for irrigation involves the danger of groundwater pollution by nitrates. In order to prevent and minimize pollution, it is necessary to apply geological-hydrogeological evidence and concepts to the situation of wastewater irrigation for the purposes of studying natural groundwater protectiveness and predicting changes in groundwater quality as a result of infiltrating wastes. The procedure of protectiveness evaluation and quality prediction is described. With groundwater pollution by nitrate nitrogen, the concentration of ammonium nitrogen noticeably increases. One of the reasons for this change is the process of denitrification due to changes in the hydrogeochemical conditions in a layer. At representative field sites, it is necessary to collect systematic stationary observations of the concentrations of nitrogenous compounds in groundwater and changes in redox conditions and temperature.

  9. Groundwater contamination and pollution in micronesia

    NASA Astrophysics Data System (ADS)

    Detay, M.; Alessandrello, E.; Come, P.; Groom, I.

    1989-12-01

    This paper is an overview of groundwater contamination and pollution in th e main islands of the Federated States of Micronesia, the Republic of the Marshall Islands and the Republic of Belau (Palau). A strategy for the comprehensive protection of groundwater resources in the Trust Territory of the Pacific Islands is proposed.

  10. Integrating the Sciences to Investigate Groundwater Pollution

    ERIC Educational Resources Information Center

    Grady, Julie R.; Madden, Andrew S.

    2010-01-01

    Investigations that integrate concepts from geological sciences with biology and chemistry are rare. The authors present an investigation that introduces high school students to microbe-mineral interactions by tying together anaerobic respiration, reduction reactions, metal ion solubility, and groundwater pollution. During the investigation,…

  11. Optimal dynamic management of groundwater pollutant sources.

    USGS Publications Warehouse

    Gorelick, S.M.; Remson, I.

    1982-01-01

    The linear programing-superposition method is presented for managing multiple sources of groundwater pollution over time. The method uses any linear solute transport simulation model to generate a unit source-concentration response matrix that is incorporated into a management model. -from Authors

  12. Optimal dynamic management of groundwater pollutant sources

    SciTech Connect

    Gorelick, S.M.; Remson, I.

    1982-02-01

    The linear programming-superposition method is presented for managing multiple sources of groundwater pollution over time. The method uses any linear solute transport simulation model to generate a unit source-concentration response matrix that is incorporated into a management model. This series of constraints indicates local solute concentration histories that will result from any series of waste injection schedules. The linear program operates on the matrix to arrive at optimal disposal schedules. An example demonstrates application of the method to maximizing groundwater waste disposal while maintaining water quality of local water supplies within desired limits. Flow field variation associated with waste injection are ignored as an approximation. Parametric programming is shown to be an important tool in evaluating waste disposal trade-offs at various injection sites over time. Mixed-integer programming permits restrictions to be placed upon the number of injection wells which may operate during given management periods.

  13. [Study on the risk assessment method of regional groundwater pollution].

    PubMed

    Yang, Yan; Yu, Yun-Jiang; Wang, Zong-Qing; Li, Ding-Long; Sun, Hong-Wei

    2013-02-01

    Based on the boundary elements of system risk assessment, the regional groundwater pollution risk assessment index system was preliminarily established, which included: regional groundwater specific vulnerability assessment, the regional pollution sources characteristics assessment and the health risk assessment of regional featured pollutants. The three sub-evaluation systems were coupled with the multi-index comprehensive method, the risk was characterized with the Spatial Analysis of ArcMap, and a new method to evaluate regional groundwater pollution risk that suitable for different parts of natural conditions, different types of pollution was established. Take Changzhou as an example, the risk of shallow groundwater pollution was studied with the new method, and found that the vulnerability index of groundwater in Changzhou is high and distributes unevenly; The distribution of pollution sources is concentrated and has a great impact on groundwater pollution risks; Influenced by the pollutants and pollution sources, the values of health risks are high in the urban area of Changzhou. The pollution risk of shallow groundwater is high and distributes unevenly, and distributes in the north of the line of Anjia-Xuejia-Zhenglu, the center of the city and the southeast, where the human activities are more intense and the pollution sources are intensive.

  14. [Groundwater organic pollution source identification technology system research and application].

    PubMed

    Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan

    2013-02-01

    Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.

  15. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    PubMed

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table (D), net recharge (R), aquifer media (A), soil media (S), topography or slope (T), impact of vadose zone (I) and hydraulic Conductivity(C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  16. Groundwater vulnerability to pollution mapping of Ranchi district using GIS

    PubMed Central

    Krishna, R.; Iqbal, J.; Pathak, G.; Tuluri, F.; Tchounwou, P. B.

    2015-01-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table (D), net recharge (R), aquifer media (A), soil media (S), topography or slope (T), impact of vadose zone (I) and hydraulic Conductivity(C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management. PMID:26557470

  17. Groundwater pollution's effects on residential property values, Portage County, Wisconsin

    SciTech Connect

    Malone, P.; Barrows, R.

    1990-01-01

    Nitrate pollution of groundwater had no statistically significant effect on the price of residential property in a study in Portage County, Wisconsin. These results, however, do not mean that groundwater pollution has no cost. Sellers may be forced to wait longer to sell it to a buyer who is uninformed or simply does not care about nitrate pollution, so the cost of pollution may be denominated in time rather than sale price. A closer examination of market processes suggests that sellers may also absorb pollution costs by drilling new wells or purchasing filters in response to demands from realtors, lenders or buyers. Groundwater pollution costs do not appear in property prices but are likely absorbed in other ways.

  18. LINEAR MODELS FOR MANAGING SOURCES OF GROUNDWATER POLLUTION.

    USGS Publications Warehouse

    Gorelick, Steven M.; Gustafson, Sven-Ake; ,

    1984-01-01

    Mathematical models for the problem of maintaining a specified groundwater quality while permitting solute waste disposal at various facilities distributed over space are discussed. The pollutants are assumed to be chemically inert and their concentrations in the groundwater are governed by linear equations for advection and diffusion. The aim is to determine a disposal policy which maximises the total amount of pollutants released during a fixed time T while meeting the condition that the concentration everywhere is below prescribed levels.

  19. Emerging policies to control nonpoint source pollution of groundwater

    NASA Astrophysics Data System (ADS)

    Harter, T.

    2014-12-01

    Water quality impairment is among the highest ranking public issues of concern in the developed world. While, in Europe and North America, many water quality programs have been put in place over the past half century, regulators difficulties tackling the geographically most widespread water quality degradation in these regions: pollution of groundwater (as opposed to surface water) from diffuse sources (as opposed to point sources), including contamination with nitrate (affecting drinking water supplies in rural areas and at the rural-urban interface) and salinity (affecting irrigation water quality). Other diffuse pollution contaminants include pesticides and emerging contaminants (e.g., antibiotics and pathogens from animal farming). The geographic and hydrologic characteristics of nonpoint source pollution of groundwater are distinctly different from other types of water pollution: individually liable sources are contiguous across the landscape, and internally heterogeneous in space and time. On annually aggregated time scales (most relevant to groundwater), sources are continuously emitting pollution, while pollution levels typically do not exceed MCLs by less than a factor 2. An analysis of key elements of existing water pollution policies to control groundwater pollution from diffuse sources demonstrates the lack of both, science and institutional capacity, while existing point-source approaches cannot be applied toward the control of diffuse pollution to groundwater. For the latter, a key to a successful policy is a tiered, three-way monitoring program based on proxy compliance metrics instead of direct measurement of pollutant discharge, research linking actual pollutant discharges to proxy metrics, and long-term regional groundwater monitoring to establish large scale, long-term trends. Several examples of emerging regulations from California and the EU are given to demonstrate these principles.

  20. Groundwater pollution by perfluorinated surfactants in Tokyo.

    PubMed

    Murakami, Michio; Kuroda, Keisuke; Sato, Nobuyuki; Fukushi, Tetsuo; Takizawa, Satoshi; Takada, Hideshige

    2009-05-15

    Perfluorinated surfactants (PFSs) in groundwater were analyzed to reveal their distribution and sources. Sixteen groundwater and spring samples were collected from the Tokyo metropolitan area, and nine PFSs, including perfluorooctane-sulfonate (PFOS) and perfluorooctanoate (PFOA), were analyzed by liquid chromatography-tandem mass spectrometry. A column test using artificial street runoff was also performed to study their behavior. PFSs were detected in all groundwater samples, some at concentrations comparable to those in wastewater and street runoff, suggesting widespread contamination of groundwater by PFSs. In particular, PFOS -was more abundant in groundwater than in rivers, wastewater, and street runoff. This was attributed to its production from the degradation of its precursors, as supported by the column test. The occurrence of short-chain perfluorocarboxylates (PFCAs) in groundwater was also consistent with the results of the column test, showing that limited amounts of short-chain PFCAs were removed by soil, as the efficiency of removal increased with the chain length. We evaluated the contributions of PFCAs from wastewater and surface runoff to groundwater by using two indicators, the long/(short + long) ratio and the even(even + odd) ratio. Both ratios showed good agreement in their calculated contributions in heavily contaminated groundwater where breakthroughs likely occurred. Wastewater and surface runoff contributed to 54-86% and 16-46% of PFCAs, respectively, in groundwater.

  1. Geophysical methods application in groundwater natural protection against pollution

    NASA Astrophysics Data System (ADS)

    Komatina, S. M.

    1994-02-01

    Natural protection against groundwater pollution mostly depends on water-bearing bed coverage with permeable rocks presenting a good or bad pollution intrusion barrier between the surface and subterranean water. Additional positive effects of polluted groundwater self-purification in these zones are visible. Natural protection from surface pollutants primarily depends on natural (geological) factors: (1) presence of poorly permeable rocks; (2) depth, lithology (grain-size distribution), and filtration features of rocks covering groundwater reservoirs; and (3) aquifer depth. In contrast to artesian aquifers, quantitative and qualitative evaluation for natural protection of intergranular aquifers with a free water surface is significantly complicated. In this case, the estimation is possible with the help of a specially developed statistical method, which requires the following elements referring to the zone of aeration: (1) poorly permeable strata depth; (2) filtration features; (3) groundwater level depth; and (4) lithology. For quantitative evaluation, it is necessary to know the time interval for pollution propagating from surface of the terrain to the free water surface. Describe access is particularly useful in the domain of zones of sanitary protection defined around the source of groundwater. This exploration method could be considerably rationalized by geophysical methods application. Various methods are useful, namely: electric mapping and sounding, self-potential method, seismic reflection and refraction methods, gravity and geomagnetic methods, the “turam” method, and different well-logging measurements (gamma ray, gammagamma, radioactivity log, and thermal log). In the paper, geophysical methods applictations in natural protection against groundwater pollution and appropriate critical analysis are presented. The results of this paper are based on the experience and application of geophysical methods to groundwater studies in Yugoslavia by the author.

  2. Potential Health Effects from Groundwater Pollution.

    ERIC Educational Resources Information Center

    Goyer, Robert A.

    1985-01-01

    Discusses the growing awareness of potential toxicological effects of synthetic organic chemicals contaminating groundwater. Problems concerning pesticides, chlorination, epidemiologic studies, cancer, nephrotoxicity, and considerations of risk are addressed. Additional research in this area is advocated. (DH)

  3. Regulatory perspective for prevention of groundwater pollution. [Monograph

    SciTech Connect

    Dotson, L.J.

    1982-01-01

    This paper attempts to establish a regulatory perspective for preventing groundwater pollution, which is a serious problem in many regions of the country. Historically, pollution-control regulations have been haphazard and uncoordinated. Few have been designed to consider the problems unique to this source. The paper outlines important hydrologic factors to establish a basis for an improved regulatory program for groundwater quality protection. Significant factors include the hydrologic role of ground water, the uses and regional importance of groundwater, and groundwater contamination pathways. A review of past and present trends in regulatory protection includes two regulatory approaches that are generally superior and a listing of key factors that planners should consider when designing land-use regulations. The paper concludes with a discussion of some possible problems of implementing an improved regulatory program, such as limits on our technical or enforcement capabilities. 52 references, 7 figures.

  4. [Quantitative method of representative contaminants in groundwater pollution risk assessment].

    PubMed

    Wang, Jun-Jie; He, Jiang-Tao; Lu, Yan; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-03-01

    In the light of the problem that stress vulnerability assessment in groundwater pollution risk assessment is lack of an effective quantitative system, a new system was proposed based on representative contaminants and corresponding emission quantities through the analysis of groundwater pollution sources. And quantitative method of the representative contaminants in this system was established by analyzing the three properties of representative contaminants and determining the research emphasis using analytic hierarchy process. The method had been applied to the assessment of Beijing groundwater pollution risk. The results demonstrated that the representative contaminants hazards greatly depended on different research emphasizes. There were also differences between the sequence of three representative contaminants hazards and their corresponding properties. It suggested that subjective tendency of the research emphasis had a decisive impact on calculation results. In addition, by the means of sequence to normalize the three properties and to unify the quantified properties results would zoom in or out of the relative properties characteristic of different representative contaminants.

  5. A model for managing sources of groundwater pollution.

    USGS Publications Warehouse

    Gorelick, S.M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the US Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. -from Author

  6. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal.

    PubMed

    Shrestha, Sangam; Semkuyu, Dickson John; Pandey, Vishnu P

    2016-06-15

    Groundwater vulnerability and risk assessment is a useful tool for groundwater pollution prevention and control. In this study, GIS based DRASTIC model have been used to assess intrinsic aquifer vulnerability to pollution whereas Groundwater Risk Assessment Model (GRAM) was used to assess the risk to groundwater pollution in the groundwater basin of Kathmandu Valley. Seven hydrogeological factors were used in DRASTIC model to produce DRASTIC Index (DI) map which represent intrinsic groundwater vulnerability to pollution of the area. The seven hydrogeological factors used were depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity of aquifer. GIS based GRAM was used to produce likelihood of release of hazards, likelihood of detection of hazards, consequence of hazards and residual risk of groundwater contamination in terms of nitrate in the groundwater basin. It was found that more than 50% of the groundwater basin area in the valley is susceptible to groundwater pollution and these areas are mostly in Northern groundwater district Low and very low vulnerable areas account for only 13% and are located in Central and Southern groundwater districts. However after taking into account the barriers to groundwater pollution and likelihood of hazards release and detection, it was observed that most areas i.e. about 87% of the groundwater basin are at moderate residual risk to groundwater pollution. The resultant groundwater vulnerability and risk map provides a basis for policy makers and planner's ability to use information effectively for decision making at protecting the groundwater from pollutants.

  7. ANALYTICAL TOOLS FOR GROUNDWATER POLLUTION ASSESSMENT

    EPA Science Inventory

    This paper deals with the development of analytical screening-exposure models (indices) and their potential application to regulate the use of hazardous chemicals and the design of groundwater buffer strips. The indices describe the leaching of solutes below the root zone (mass f...

  8. [Physical process based risk assessment of groundwater pollution in the mining area].

    PubMed

    Sun, Fa-Sheng; Cheng, Pin; Zhang, Bo

    2014-04-01

    Case studies of groundwater pollution risk assessment at home and abroad generally start from groundwater vulnerability, without considering the influence of characteristic pollutants on the consequences of pollution too much. Vulnerability is the natural sensitivity of the environment to pollutants. Risk assessment of groundwater pollution should reflect the movement and distribution of pollutants in groundwater. In order to improve the risk assessment theory and method of groundwater pollution, a physical process based risk assessment methodology for groundwater pollution was proposed in a mining area. According to the sensitivity of the economic and social conditions and the possible distribution of pollutants in the future, the spatial distribution of risk levels in aquifer was ranged before hand, and the pollutant source intensity corresponding to each risk level was deduced accordingly. By taking it as the criterion for the classification of groundwater pollution risk assessment, the groundwater pollution risk in the mining area was evaluated by simulating the migration of pollutants in the vadose zone and aquifer. The result show that the risk assessment method of groundwater pollution based on physical process can give the concentration distribution of pollutants and the risk level in the spatial and temporal. For single punctuate polluted area, it gives detailed risk characterization, which is better than the risk assessment method that based on aquifer intrinsic vulnerability index, and it is applicable to the risk assessment of existing polluted sites, optimizing the future sites and providing design parameters for the site construction.

  9. Nitrate pollution of groundwater; all right…, but nothing else?

    PubMed

    Menció, Anna; Mas-Pla, Josep; Otero, Neus; Regàs, Oriol; Boy-Roura, Mercè; Puig, Roger; Bach, Joan; Domènech, Cristina; Zamorano, Manel; Brusi, David; Folch, Albert

    2016-01-01

    Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include 5 different aquifer types, to investigate the influence of fertilization on the overall hydrochemical composition of groundwater. Results indicate that intense fertilizer application, causing high nitrate pollution in aquifers, also homogenize the contents of the major dissolved ions (i.e.; Cl(-), SO4(2-), Ca(2+), Na(+), K(+), and Mg(2+)). Thus, when groundwater in igneous and sedimentary aquifers is compared, significant differences are observed under natural conditions for Cl(-), Na(+) and Ca(2+) (with p-values ranging from <0.001 to 0.038), and when high nitrate concentrations occur, these differences are reduced (most p-values ranged between 0.054 and 0.978). Moreover, positive linear relationships between nitrate and some ions are found indicating the magnitude of the fertilization impact on groundwater hydrochemistry (with R(2) values of 0.490, 0.609 and 0.470, for SO4(2-), Ca(2+) and Cl(-), respectively). Nevertheless, the increasing concentration of specific ions is not only attributed to agricultural pollution, but to their enhancing effect upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that these processes should be evaluated in advance in order to assess an adequate groundwater resources management.

  10. Identifying sources of groundwater pollution using trace element signatures.

    PubMed

    Olmez, I; Hayes, M J

    1990-01-01

    A simple receptor modeling approach has been applied to groundwater pollution studies and has shown that marker trace elements can be used effectively in source identification and apportionment. Groundwater and source materials from one coal-fired and five oil-fired power plants, and one coal-tar deposit site have been analyzed by instrumental neutron activation analysis for more than 20 minor and trace elements. In one of the oil-fired power plants, trace element patterns indicated a leak from the hazardous waste surface impoundments owing to the failure of a hypolon liner. Also, the extent and spatial distribution of groundwater contamination have been determined in a coal-tar deposit site.

  11. A molecular topology approach to predicting pesticide pollution of groundwater

    USGS Publications Warehouse

    Worrall , Fred

    2001-01-01

    Various models have proposed methods for the discrimination of polluting and nonpolluting compounds on the basis of simple parameters, typically adsorption and degradation constants. However, such attempts are prone to site variability and measurement error to the extent that compounds cannot be reliably classified nor the chemistry of pollution extrapolated from them. Using observations of pesticide occurrence in U.S. groundwater it is possible to show that polluting from nonpolluting compounds can be distinguished purely on the basis of molecular topology. Topological parameters can be derived without measurement error or site-specific variability. A logistic regression model has been developed which explains 97% of the variation in the data, with 86% of the variation being explained by the rule that a compound will be found in groundwater if 6 < 0.55. Where 6χp is the sixth-order molecular path connectivity. One group of compounds cannot be classified by this rule and prediction requires reference to higher order connectivity parameters. The use of molecular approaches for understanding pollution at the molecular level and their application to agrochemical development and risk assessment is discussed.

  12. Nitrate pollution in groundwater and strategies to reduce pollution.

    PubMed

    Shrestha, R K; Ladha, J K

    2002-01-01

    The input-intensive rainfed tropical ecosystem, where wet season (WS) rice (Oriza sativa L.)-dry season (DS) diversified high-value upland crops like vegetables predominate, has resulted in a problem of a large leakage of N into the environment, thereby polluting the water. Excessive use of N fertilizer in high-value crops grown in DS is economically motivated. Out of twenty water sources evaluated in a watershed with a total area of 265 ha located in Magnuang, Ilocos Norte, Philippines, twelve had near or above the World Health Organization's (WHO) NO3-N limit for drinking water of 10 ppm. Soil mineral N (upper 100 cm) observed in seven rice-sweet pepper (Capsicum annuum L.) farmers' fields ranged from 111 to 694 kg ha(-1) which decreased by 10 to 68% in plots with dry-to-wet (DTW) crops like indigo, indigo+mungo and corn. In fallow plots where mineral N was either maintained or increased, it showed movement to lower soil profiles demonstrating NO3 leaching without a crop. On average, maize (Zea mays L.) captured 176 kg N ha(-1) and indigo (Indigofera tinctoria L.) 194 kg N ha(-1). In both fallow and planted plots, mineral N declined to low levels at 100% water-filled pore spaces (WFPS) before rice transplanting. A strategy for including indigo plus maize as a N-catch crop is proposed to decrease NO3 leaching and maximize N use efficiency in a rice-sweet pepper cropping system.

  13. Groundwater pollution source characterization of an old landfill

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Peter

    1993-02-01

    Only a few landfill investigations have focused on both the quantity and the quality of leachate as a source of groundwater pollution. The investigation of Vejen Landfill in Denmark included an introductionary historical survey (old maps, aerial photographs, interviews, etc.), leachate quality analysis, potential mapping of the groundwater surface below the landfill and leachate flow to surface waters and groundwater. The historical investigation showed that the original soil surface beneath the waste was a relatively heterogeneous mixture of boggy ground and sand soil areas. This indicated that the leaching from the landfill could be unevenly distributed. The main specific organic compounds observed in the leachate were aromatic hydrocarbons (mainly xylenes), phenols and the pesticide MCPP. Preliminary investigations of the leach from the landfill indicated, that both a northerly leach to a drainage ditch and a southerly leach to the secondary aquifer were taking place. To evaluate the proportion of leachate discharging to the drainage ditch, piezometers were installed in the shallow leachate-affected aquifer. On the basis of several soundings, the groundwater surface was mapped and the expected groundwater divides were located. These measurements indicated that approximately 50% of the leachate from the mixed waste discharged to the drainage ditch. This was supported by directly measuring the flux of leachate (as kilograms chloride per year) carried out by continuous gauging of water flow and chloride concentrations in the drainage ditch. Wells were driven into the aquifer at the borders of the landfill area. These proved that the leaching from the landfill was very unevenly distributed. By measurement of present, and estimation of the past, leachate quality and quantity, an evaluation of the history of leachate recharge to the groundwater is given, including time of recharge start and recharge quantities in cubic metres and kilograms of chloride per year.

  14. Investigating groundwater pollution from different sources with combined biological and chemical methods.

    PubMed

    Michaelidou, S C; Akkelidou, D; Ziegler, P

    1995-10-27

    This paper reviews groundwater pollution caused by the disposal of untreated effluents of a dye factory located 20 km to the west of Nicosia (Cyprus). The task of the work was to investigate the nature of the pollution and differentiate it from other possible pollution sources in the area. It focused on toxicity testing and biofractionation in order to address the most toxic pollutants and, on the evaluation of GC/FID profiles for investigating the connection between groundwater pollution and the effluents. This connection was successful due to a multiple comparison amongst the GC/FID profiles resulting from the polluted groundwater, the water from the reference areas and the dye effluents.

  15. A simple methodology for the evaluation of groundwater pollution risks.

    PubMed

    Fernández-Gálvez, J; Barahona, E; Iriarte, A; Mingorance, M D

    2007-05-25

    Groundwater represents a very significant source of fresh water for irrigation and drinking purposes and therefore preserving the availability and quality of this resource is extremely important. A first assessment of the amount of pollutants that can be exported to groundwater via soil drainage can be made by a) measuring the amount of contaminants present in the soil solution at the bottom of the soil after a prolonged simulated rainfall event, and b) estimating the amount of drainage water passing the soil bottom during a period of time long enough to include sufficient instances of both, wet and dry episodes inherent to the local climate. Drainage water was estimated by means of a simple infiltration model ("bucket model") which computes on a daily basis the inputs and outputs of soil water through rainfall and evapotranspiration generated by a stochastic model of the local climate along a period of 50-100 years. The methodology was applied in the Guadiamar valley after the toxic spill of a pyrite mine in Aznalcóllar (Spain). The results show that Zn is the dominant contaminant at the site with a 1.2 g m(-2)year(-1) contribution to groundwater. The presence of a gravel rich horizon below 50 cm depth reveals an increase in drainage and the threat to groundwater.

  16. Effect of oil pollution on fresh groundwater in Kuwait

    NASA Astrophysics Data System (ADS)

    Al-Sulaimi, J.; Viswanathan, M. N.; Székely, F.

    1993-11-01

    Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one.

  17. Alternatives for Containment of Polluted Groundwater, Basin A Vicinity, Rocky Mountain Arsenal, Denver, Colorado.

    DTIC Science & Technology

    1977-12-01

    Denver, Colorado I 3 Basin A’ 4 Location of possible/known sources of groundwater pollution in Basin A’ 5 Location of test borings in/near Basin A’ 6...thought or reported to be significant sources of groundwater pollution . The areas are listed on Table 2. The current general concensus concerning...major source of groundwater pollution in PMlA, studies of soil contamination have been concentrated in that particular area. (Another area where soil

  18. Assessment of groundwater pollution in West Delhi, India using geostatistical approach.

    PubMed

    Adhikary, Partha Pratim; Chandrasekharan, H; Chakraborty, Debashis; Kamble, Kalpana

    2010-08-01

    The exploration, exploitation, and unscientific management of groundwater resources in the National Capital Territory (NCT) of Delhi, India have posed a serious threat of reduction in quantity and deterioration of quality. The objective of the study is to determine the groundwater quality and to assess the risk of groundwater pollution at Najafgarh, NCT of Delhi. The groundwater quality parameters were analyzed from the existing wells of the Najafgarh and the thematic maps were generated using geostatistical concepts. Ordinary kriging and indicator kriging methods were used as geostatistical approach for preparation of thematic maps of the groundwater quality parameters such as bicarbonate, calcium, chloride, electrical conductivity (EC), magnesium, nitrate, sodium, and sulphate with concentrations equal or greater than their respective groundwater pollution cutoff value. Experimental semivariogram values were fitted well in spherical model for the water quality parameters, such as bicarbonate, chloride, EC, magnesium, sodium, and sulphate and in exponential model for calcium and nitrate. The thematic maps of all the groundwater quality parameters exhibited an increasing trend of pollution from the northern and western part of the study area towards the southern and eastern part. The concentration was highest at the southernmost part of the study area but it could not reflect correctly the groundwater pollution status. The indicator kriging method is useful to assess the risk of groundwater pollution by giving the conditional probability of concentrations of different chemical parameters exceeding their cutoff values. Thus, risk assessment of groundwater pollution is useful for proper management of groundwater resources and minimizing the pollution threat.

  19. Modelling of recharge and pollutant fluxes to urban groundwaters.

    PubMed

    Thomas, Abraham; Tellam, John

    2006-05-01

    Urban groundwater resources are of considerable importance to the long-term viability of many cities world-wide, yet prediction of the quantity and quality of recharge is only rarely attempted at anything other than a very basic level. This paper describes the development of UGIf, a simple model written within a GIS, designed to provide estimates of spatially distributed recharge and recharge water quality in unconfined but covered aquifers. The following processes (with their calculation method indicated) are included: runoff and interception (curve number method); evapotranspiration (Penman-Grindley); interflow (empirical index approach); volatilization (Henry's law); sorption (distribution coefficient); and degradation (first order decay). The input data required are: meteorological data, landuse/cover map with event mean concentration attributes, geological maps with hydraulic and geochemical attributes, and topographic and water table elevation data in grid form. Standard outputs include distributions of: surface runoff, infiltration, potential recharge, ground level slope, interflow, actual recharge, pollutant fluxes in surface runoff, travel times of each pollutant through the unsaturated zone, and the pollutant fluxes and concentrations at the water table. The process of validation has commenced with a study of the Triassic Sandstone aquifer underlying Birmingham, UK. UGIf predicts a similar average recharge rate for the aquifer as previous groundwater flow modelling studies, but with significantly more spatial detail: in particular the results indicate that recharge through paved areas may be more important than previously thought. The results also highlight the need for more knowledge/data on the following: runoff estimation; interflow (including the effects of lateral flow and channelling on flow times and therefore chemistry); evapotranspiration in paved areas; the nature of unsaturated zone flow below paved areas; and the role of the pipe network

  20. PROBABILISTIC ASSESSMENT OF GROUNDWATER VULNERABILITY TO NONPOINT SOURCE POLLUTION IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    This paper presents a probabilistic framework for the assessment of groundwater pollution potential by pesticides in two adjacent agricultural watersheds in the Mid-Altantic Coastal Plain. Indices for estimating streams vulnerability to pollutants' load from the surficial aquifer...

  1. Mapping the groundwater vulnerability for pollution at the pan African scale.

    PubMed

    Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik

    2016-02-15

    We estimated vulnerability and pollution risk of groundwater at the pan-African scale. We therefore compiled the most recent continental scale information on soil, land use, geology, hydrogeology and climate in a Geographical Information System (GIS) at a resolution of 15 km × 15 km and at the scale of 1:60,000,000. The groundwater vulnerability map was constructed by means of the DRASTIC method. The map reveals that groundwater is highly vulnerable in Central and West Africa, where the watertable is very low. In addition, very low vulnerability is found in the large sedimentary basins of the African deserts where groundwater is situated in very deep aquifers. The groundwater pollution risk map is obtained by overlaying the DRASTIC vulnerability map with land use. The northern, central and western part of the African continent is dominated by high pollution risk classes and this is very strongly related to shallow groundwater systems and the development of agricultural activities. Subsequently, we performed a sensitivity analysis to evaluate the relative importance of each parameter on groundwater vulnerability and pollution risk. The sensitivity analysis indicated that the removal of the impact of vadose zone, the depth of the groundwater, the hydraulic conductivity and the net recharge causes a large variation in the mapped vulnerability and pollution risk. The mapping model was validated using nitrate concentration data of groundwater as a proxy of pollution risk. Pan-African concentration data were inferred from a meta-analysis of literature data. Results shows a good match between nitrate concentration and the groundwater pollution risk classes. The pan African assessment of groundwater vulnerability and pollution risk is expected to be of particular value for water policy and for designing groundwater resources management programs. We expect, however, that this assessment can be strongly improved when better pan African monitoring data related to groundwater

  2. A fuzzy logic approach to assess groundwater pollution levels below agricultural fields.

    PubMed

    Muhammetoglu, Ayse; Yardimci, Ahmet

    2006-07-01

    A fuzzy logic approach has been developed to assess the groundwater pollution levels below agricultural fields. The data collected for Kumluca Plain of Turkey have been utilized to develop the approach. The plain is known with its intensive agricultural activities, which imply excessive application of fertilizers. The characteristics of the soils and underlying groundwater for this plain were monitored during the years 1999 and 2000. Additionally, an extensive field survey related to the types and yields of crops, fertilizer application and irrigation water was carried out. Both the soil and groundwater have exhibited high levels of nitrogen, phosphorus and salinity with considerable spatial and temporal variations. The pollution level of groundwater at several established stations within the plain were assessed using Fuzzy Logic. Water Pollution Index (WPI) values are calculated by Fuzzy Logic utilizing the most significant groundwater pollutants in the area namely nitrite, nitrate and orthophosphate together with the groundwater vulnerability to pollution. The results of the calculated WPI and the monitoring study have yielded good agreement. WPI indicated high to moderate water pollution levels at Kumluca plain depending on factors such as agricultural age, depth to groundwater, soil characteristics and vulnerability of groundwater to pollution. Fuzzy Logic approach has shown to be a practical, simple and useful tool to assess groundwater pollution levels.

  3. A model for managing sources of groundwater pollution

    SciTech Connect

    Gorelick, S.M.

    1982-08-01

    The waste disposal capacity of a groundwater system can be maximized maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using th U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disopsal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their values.

  4. [Research of early-warning method for regional groundwater pollution based on risk management].

    PubMed

    Bai, Li-Ping; Wang, Ye-Yao; Guo, Yong-Li; Zhou, You-Ya; Liu, Li; Yan, Zeng-Guang; Li, Fa-Sheng

    2014-08-01

    Groundwater is the main source of water supply in China, and China's overall situation of groundwater pollution is not optimistic at present. Groundwater pollution risk evaluation and early-warning are the effective measures to prevent groundwater pollution. At present, research of groundwater early-warning method at home and abroad is still at the exploratory stage, and the sophisticated technology has not been developed for reference. This paper briefly described the data and technological demand of the early-warning method in different scales, and the main factors influencing the early-warning results of groundwater pollution were classified as protection performance of geological medium, characteristics of pollution sources, groundwater dynamics and groundwater value. Then the main early-warning indexes of groundwater pollution were screened to establish the early-warning model of regional or watershed scale by the index overlay method. At last, the established early-warning model was used in Baotou plain, and the different early-warning grades were zoned by the model. The research results could provide scientific support for the local management department to protect the groundwater resources.

  5. A Fuzzy Markov approach for assessing groundwater pollution potential for landfill siting.

    PubMed

    Chen, Wei-Yea; Kao, Jehng-Jung

    2002-04-01

    This study presents a Fuzzy Markov groundwater pollution potential assessment approach to facilitate landfill siting analysis. Landfill siting is constrained by various regulations and is complicated by the uncertainty of groundwater related factors. The conventional static rating method cannot properly depict the potential impact of pollution on a groundwater table because the groundwater table level fluctuates. A Markov chain model is a dynamic model that can be viewed as a hybrid of probability and matrix models. The probability matrix of the Markov chain model is determined based on the groundwater table elevation time series. The probability reflects the likelihood of the groundwater table changing between levels. A fuzzy set method is applied to estimate the degree of pollution potential, and a case study demonstrates the applicability of the proposed approach. The short- and long-term pollution potential information provided by the proposed approach is expected to enhance landfill siting decisions.

  6. Natural Arsenic Pollution of Groundwater in Mining Zones of Mexico

    NASA Astrophysics Data System (ADS)

    Armienta, M. A.; Rodriguez, R.; Villasennor, G.; Romero, F.; Talavera, O.; Ceniceros, N.; Aguayo, A.; Cruz, O.

    2007-05-01

    Arsenic concentrations exceeding drinking-water standards have been measured in groundwater of various areas of Mexico. This is a relevant public health problem since groundwater supplies most drinking water of the country. Although a natural source has been proposed as the cause of water contamination at most sites, the specific processes releasing As have only been identified in a few aquifers. The geological characteristics of Mexico including volcanic, geothermal, and highly mineralized zones constitute favorable environments for As occurrence. Furthermore, As-abundance in bedrock has lead Mexico to be one of the major world As-producers. As-bearing minerals like arsenopyrite, scorodite, mimetite, adamite, tennantite and nickeline can be found in several zones. Besides, arsenic may be a minor component of Fe, Ag, Cu, Pb, Zn, and Au ores. While thousands of people have been chronically exposed to As, arsenic-related health effects have been documented only for residents at some Mexican locations, like Comarca Lagunera, Zimapan, and Acambaro. Water-rock interactions may release As to water in mining areas, but ore extraction and processing produce surface wastes that can also release As to groundwater. Investigations developed in two historical mining zones revealed different As contents in groundwater. At Zimapan, a semi-arid area about 250 km NE of Mexico City, abundant arsenopyrite and hydrogeological conditions produced high As concentrations in deep wells exploited for drinking water supply. Oxidation and dissolution of As-bearing minerals mainly arsenopyrite, scorodite and tennantite released As to the fractured deep limestone aquifer. In addition, mining operations polluted shallow wells. In contrast, low levels of As were detected in wells near mine tailings in the warm sub-humid zone of Taxco, Guerrero. To explain those differences, the mineralogy and the geochemical processes occurring in tailings at both areas were studied. Results showed that besides

  7. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability.

    PubMed

    Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo

    2012-11-01

    For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.

  8. Solubility enhancement effect of cyclodexin on groundwater pollutants.

    PubMed

    Gao, Heng; Blanford, William J; Gao, Aifang

    2013-03-01

    Cyclodextrin (CD) molecules are polycyclic glucose oligomers that have a hydrophilic exterior and a hydrophobic cavity. This structure provides CD the characteristic of enhancing the solubility of groundwater pollutants. The degree to which CD increases the apparent aqueous solubility of certain chemicals has been defined as the solubility enhancement factor (SEF). In this study, a novel and experimentally simple method has been developed to determine the SEF, which can be mathematically obtained by ratio of apparent and traditional Henry's law constants. The effects of temperature and CD concentration on the SEFs and CD cavity occupation have been investigated. Our results show that SEF values are inversely related to temperature for most examined chemicals, which is consistent with the assertion that the CD-chemical complexes are less stable at higher temperatures. The exception is toluene that shows the least SEF fluctuation within the temperature range studied (5 to 65 °C). This may indicate that the toluene-CD complex is particularly stable. As the definition of SEF predicted, linear relationships were found between the SEFs and CD concentrations for all the subject chemicals. The CD cavity occupation fraction at 5 °C were 3.14, 2.55, 2.04, 1.60, and 1.67 times greater than the values at 65 °C for of trichloroethylene, perchloroethylene, bezene, ethylbenze, and o-xylene, respectively. The fraction of CD cavities occupied was found to be inversely related to the CD concentration for all tested chemicals when pollutant mass are held constant. This study provides important information to accurately evaluate the performance of CD when used for aquifer remediation.

  9. Infiltration of organic pollutants into groundwater: Field studies in the alluvial aquifer of the Sava River

    SciTech Connect

    Ahel, M. )

    1991-10-01

    Groundwater represents one of the most important sources of potable water for many public water supplies in the world. The benefits of these valuable water reservoirs are being reduced however, due to the increasing infiltration of both inorganic and organic pollutants from different sources such as wastewaters, polluted freshwaters, contaminated soils, sanitary landfills, and industrial dumping sites. Therefore, investigations of pollutant migration and persistence in groundwaters are of great significance for groundwater protection strategies. The study of organic pollutants is perhaps the most complex issue in groundwater pollution chemistry. The extremely high number of possible organic pollutants as well as the severe ecotoxicological effects of specific organic compounds make the assessment of water quality and long term pollution trends in the aquifer very difficult. The application of the computer-assisted high-resolution gas chromatography/mass spectroscopy in the last decade has extended our knowledge about the occurrence of specific organic pollutants in groundwaters and processes that determine their transport and transformation.

  10. Explaining nitrate pollution pressure on the groundwater resource in Kinshasa using a multivariate statistical modelling approach

    NASA Astrophysics Data System (ADS)

    Mfumu Kihumba, Antoine; Vanclooster, Marnik

    2013-04-01

    Drinking water in Kinshasa, the capital of the Democratic Republic of Congo, is provided by extracting groundwater from the local aquifer, particularly in peripheral areas. The exploited groundwater body is mainly unconfined and located within a continuous detrital aquifer, primarily composed of sedimentary formations. However, the aquifer is subjected to an increasing threat of anthropogenic pollution pressure. Understanding the detailed origin of this pollution pressure is important for sustainable drinking water management in Kinshasa. The present study aims to explain the observed nitrate pollution problem, nitrate being considered as a good tracer for other pollution threats. The analysis is made in terms of physical attributes that are readily available using a statistical modelling approach. For the nitrate data, use was made of a historical groundwater quality assessment study, for which the data were re-analysed. The physical attributes are related to the topography, land use, geology and hydrogeology of the region. Prior to the statistical modelling, intrinsic and specific vulnerability for nitrate pollution was assessed. This vulnerability assessment showed that the alluvium area in the northern part of the region is the most vulnerable area. This area consists of urban land use with poor sanitation. Re-analysis of the nitrate pollution data demonstrated that the spatial variability of nitrate concentrations in the groundwater body is high, and coherent with the fragmented land use of the region and the intrinsic and specific vulnerability maps. For the statistical modeling use was made of multiple regression and regression tree analysis. The results demonstrated the significant impact of land use variables on the Kinshasa groundwater nitrate pollution and the need for a detailed delineation of groundwater capture zones around the monitoring stations. Key words: Groundwater , Isotopic, Kinshasa, Modelling, Pollution, Physico-chemical.

  11. Toxicity testing of organic chemicals in groundwater polluted with landfill leachate

    SciTech Connect

    Baun, A.; Kloeft, L.; Bjerg, P.L.; Nyholm, N.

    1999-09-01

    A method for assessment of toxicity of nonvolatile organic chemicals contaminants in groundwater polluted with landfill leachate has been evaluated. The biotests utilized were composed of an algal growth inhibition test (Selenastrum capricornutum), a daphnia immobilization test (Daphnia magna), and a bacterial genotoxicity test (umuC, Salmonella typhimurium). The feasibility of the selected biotests was investigated for a series of groundwater samples collected along pollution gradients downstreams of two landfills in Jutland, Denmark. Two different approaches were used, direct toxicity testing of whole groundwater samples, and toxicity testing of concentrates obtained by solid-phase extraction. Direct testing of whole groundwater samples produced toxic responses, but the complex sample matrix masked the toxicity of the organic chemical contaminants of interest. Solid-phase extraction was used successfully as an on-site method that eliminated ion toxicity and produced biotest responses that reflected the toxicity of the nonvolatile organic chemical contaminants in the groundwater.

  12. Sequential Optimal Monitoring Network Design using Iterative Kriging for Identification of Unknown Groundwater Pollution Sources Location

    NASA Astrophysics Data System (ADS)

    Prakash, O.; Datta, B.

    2011-12-01

    Identification of unknown groundwater pollution source characteristics, in terms of location, magnitude and activity duration is important for designing an effective pollution remediation strategy. Precise source characterization also becomes very important to ascertain liability, and to recover the cost of remediation from parties responsible for the groundwater pollution. Due to the uncertainties in accurately predicting the aquifer response to source flux injection, generally encountered sparsity of concentration observation data in the field, and the non uniqueness in the aquifer response to the subjected hydraulic and chemical stresses, groundwater pollution source characterization remains a challenging task. A scientifically designed pollutant concentration monitoring network becomes imperative for accurate pollutant source characterization. The efficiency of the unknown source locations identification process is largely determined by locations of monitoring wells where the pollutant concentration is observed. The proposed method combines spatial interpolation of concentration measurements and Simulated Annealing as optimization algorithm to find the optimum locations for monitoring wells. Initially, the observed concentration data at few sparsely and arbitrarily distributed wells are used to interpolate the concentration data for the aquifer study area. The concentration information is passed to the optimization algorithm (decision model) as concentration gradient which in turn finds the optimum locations for implementing the next sequence of monitoring wells. Concentration measurement data from these designed monitoring wells and already implemented monitoring network are iteratively used as feedback information for potential groundwater pollution source locations identification. The potential applicability of the developed methodology is demonstrated for an illustrative study area.

  13. Bacterial communities in tetrachloroethene-polluted groundwaters: a case study.

    PubMed

    Kotik, Michael; Davidová, Anna; Voříšková, Jana; Baldrian, Petr

    2013-06-01

    The compositions of bacterial groundwater communities of three sites contaminated with chlorinated ethenes were analyzed by pyrosequencing their 16S rRNA genes. For each location, the entire and the active bacterial populations were characterized by independent molecular analysis of the community DNA and RNA. The sites were selected to cover a broad range of different environmental conditions and contamination levels, with tetrachloroethene (PCE) and trichloroethene (TCE) being the primary contaminants. Before sampling the biomass, a long-term monitoring of the polluted locations revealed high concentrations of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), which are toxic by-products of the incomplete bacterial degradation of PCE and TCE. The applied pyrosequencing technique enabled known dechlorinators to be identified at a very low detection level (<0.25%) without compromising the detailed analysis of the entire bacterial community of these sites. The study revealed that only a few species dominated the bacterial communities, with Albidiferax ferrireducens being the only highly prominent member found at all three sites. Only a limited number of OTUs with abundances of up to 1% and high sequence identities to known dechlorinating microorganisms were retrieved from the RNA pools of the two highly contaminated sites. The dechlorinating consortium was likely to be comprised of cDCE-assimilating bacteria (Polaromonas spp.), anaerobic organohalide respirers (mainly Geobacter spp.), and Burkholderia spp. involved in cometabolic dechlorination processes, together with methylotrophs (Methylobacter spp.). The deep sequencing results suggest that the indigenous dechlorinating consortia present at the investigated sites can be used as a starting point for future bioremediation activities by stimulating their anaerobic and aerobic chloroethene degradation capacities (i.e. reductive dechlorination, and metabolic and cometabolic oxidation).

  14. An almost-parameter-free harmony search algorithm for groundwater pollution source identification.

    PubMed

    Jiang, Simin; Zhang, Yali; Wang, Pei; Zheng, Maohui

    2013-01-01

    The spatiotemporal characterization of unknown sources of groundwater pollution is frequently encountered in environmental problems. This study adopts a simulation-optimization approach that combines a contaminant transport simulation model with a heuristic harmony search algorithm to identify unknown pollution sources. In the proposed methodology, an almost-parameter-free harmony search algorithm is developed. The performance of this methodology is evaluated on an illustrative groundwater pollution source identification problem, and the identified results indicate that the proposed almost-parameter-free harmony search algorithm-based optimization model can give satisfactory estimations, even when the irregular geometry, erroneous monitoring data, and prior information shortage of potential locations are considered.

  15. The influence of diffuse pollution on groundwater content patterns for the groundwater bodies of Germany.

    PubMed

    Kunkel, R; Wendland, F; Hannappel, S; Voigt, H J; Wolter, R

    2007-01-01

    Commissioned by Germany's Working Group of the Federal States on Water Problems (LAWA) the authors developed a procedure to define natural groundwater conditions from groundwater monitoring data. The distribution pattern of a specific groundwater parameter observed by a number of groundwater monitoring stations within a petrographically comparable groundwater typology is reproduced by two statistical distribution functions, representing the "natural" and "influenced" component. The range of natural groundwater concentrations is characterized by confidence intervals of the distribution function of the natural component. The applicability of the approach was established for 17 hydrochemical different groundwater typologies occurring throughout Germany. Based on groundwater monitoring data from ca. 26,000 groundwater-monitoring stations, 40 different hydrochemical parameters were evaluated for each groundwater typology. For all investigated parameters the range of natural groundwater concentrations has been identified. According to the requirements of the EC Water Framework Directive (article 17) (WFD) this study is a basis for the German position to propose criteria for assessing a reference state for a "good groundwater chemical status".

  16. A hybrid simulation-optimization approach for solving the areal groundwater pollution source identification problems

    NASA Astrophysics Data System (ADS)

    Ayvaz, M. Tamer

    2016-07-01

    In this study, a new simulation-optimization approach is proposed for solving the areal groundwater pollution source identification problems which is an ill-posed inverse problem. In the simulation part of the proposed approach, groundwater flow and pollution transport processes are simulated by modeling the given aquifer system on MODFLOW and MT3DMS models. The developed simulation model is then integrated to a newly proposed hybrid optimization model where a binary genetic algorithm and a generalized reduced gradient method are mutually used. This is a novel approach and it is employed for the first time in the areal pollution source identification problems. The objective of the proposed hybrid optimization approach is to simultaneously identify the spatial distributions and input concentrations of the unknown areal groundwater pollution sources by using the limited number of pollution concentration time series at the monitoring well locations. The applicability of the proposed simulation-optimization approach is evaluated on a hypothetical aquifer model for different pollution source distributions. Furthermore, model performance is evaluated for measurement error conditions, different genetic algorithm parameter combinations, different numbers and locations of the monitoring wells, and different heterogeneous hydraulic conductivity fields. Identified results indicated that the proposed simulation-optimization approach may be an effective way to solve the areal groundwater pollution source identification problems.

  17. Metal pollution of groundwater in the vicinity of Valiathura Sewage Farm in Kerala, south India.

    PubMed

    Varghese, J; Jaya, D S

    2014-12-01

    A comprehensive study was conducted to evaluate metal pollution of groundwater in the vicinity of Valiathura Sewage Farm in Thiruvananthapuram district, Kerala using the Heavy Metal Pollution Index (HPI). Forty two groundwater samples were collected during the summer season (April 2010) and the concentration of metals Fe, Cu, Zn, Cd and Pb were analyzed. Results showed that groundwater was contaminated mainly with Fe, Cu and Pb. Correlation analysis revealed that the sources of metals in groundwater in the study area are the same, and it may be due to the leachates from the nearby Sewage Farm, Parvathy Puthanar canal and solid wastes dumped in the residential area. Of the groundwater samples studied, 47.62 % were medium and 2.68 % were classified in HPI high category. HPI was highest (41.79) in DW29, which was adjacent to the polluted Parvathy Puthanar canal and Sewage Farm. The present study points out that the metal pollution causes the degradation of groundwater quality around the Sewage Farm during the study period.

  18. Vulnerability of groundwater to pollution from agricultural diffuse sources: a case study.

    PubMed

    Muhammetoğlu, H; Muhammetoğlu, A; Soyupak, S

    2002-01-01

    Kumluca, near Antalya in Turkey, is an important plain with its intensive agricultural activities employing greenhouses. The chemical fertilizer application practices caused excessive increases of the nitrogen, phosphorus and salinity within groundwater. A study has been initiated to assess the present state of the groundwater pollution problem of Kumluca Plain. A total of nine measurement and sampling stations have been selected to represent different depths groundwater table, different types of agricultural activities and different soil types. The magnitudes of the parameters: temperature, salinity and conductivity, nitrate, nitrite, ammonia, orthophosphate and fecal coliform were determined for groundwater. Soil samples collected from the stations have been analyzed for several parameters such as texture, total salinity, total nitrogen, and total phosphorus. The measurement and analyses results of the groundwater showed wide spatial variations depending on factors such as the quality of irrigation water, depth groundwater, soil characteristics, type and age of agriculture and hydrology. Groundwater vulnerabilities to pollution have been analyzed using the SEEPAGE Model approach. Furthermore the soil, aquifer and groundwater characteristics, which will be utilized to establish "cause" and "effect" relationships in future, have been clarified.

  19. Groundwater pollution of post-mined phosphate rock in Tuojiang watershed (Sichuan, China)

    NASA Astrophysics Data System (ADS)

    changwen, ye

    2014-05-01

    Phosphate rock is the source of phosphorus used to make phosphatic fertilizers, essential for growing the food needed by humans in the world today and in the future. The erosion and eluviation on exposed phosphrite layer and overburden in the phosphate rock areas result in the releasing of fluoride and phosphorus and groundwater polluting. Meanwhile, the waste water and untreated mineral waste residue in the beneficiation and mining operations are also main source of pollution. The un-restored post-mined phosphate rock areas in Tuojiang watershed is large scale. The investigation of the amounts of pollutants releasing from mined lands and transporting by runoffs was conducted. The releasing and transporting amounts of pollutants were calculated according to the results of column leaching studies and acreages of exposed phosphrite layers and overburdens. In conclusion, phosphorus mining activity is an important non-point source of groundwater contamination of Tuojiang watershed.Study about the management and engineering measurement can be carried out according to the non-point source: agriculture, Pollution, Phosphorous mine and chemical plant. The study can provide the practical consultation and help making the decision about the management and treatment of groundwater resource in Tuojiang watershed. Keywords: Tuojiang watershed; Groundwater pollution; Losing process; Fluorine; Phosphorus

  20. On the scope and management of pesticide pollution of Swedish groundwater resources: The Scanian example.

    PubMed

    Åkesson, Maria; Sparrenbom, Charlotte J; Dahlqvist, Peter; Fraser, Stephen J

    2015-04-01

    Twenty-three south-Swedish public supply wells were studied to assess pesticide pollution of regional groundwater resources. Relations between pesticide occurrence, hydrogeology, and land use were analyzed using Kohonen's Self-Organizing Maps approach. Pesticides are demonstrated to be substantially present in regional groundwater, with detections in 18 wells. Concentrations above the drinking water threshold are confirmed for nine wells. Observations indicate considerable urban influence, and lagged effects of past, less restricted use. Modern, oxic waters from shallow, unconfined, unconsolidated or fracture-type bedrock aquifers appear particularly vulnerable. Least affected waters appear primarily associated with deeper wells, anoxic conditions, and more confined sediment aquifers lacking urban influence. Comprehensive, standardized monitoring of pesticides in groundwater need to be implemented nationwide to enable sound assessments of pollution status and trends, and to develop sound groundwater management plans in accordance with the Water Framework Directive. Further, existing water protection areas and associated regulations need to be reassessed.

  1. Health risk assessment of groundwater arsenic pollution in southern Taiwan.

    PubMed

    Liang, Ching-Ping; Wang, Sheng-Wei; Kao, Yu-Hsuan; Chen, Jui-Sheng

    2016-12-01

    Residents of the Pingtung Plain, Taiwan, use groundwater for drinking. However, monitoring results showed that a considerable portion of groundwater has an As concentration higher than the safe drinking water regulation of 10 μg/L. Considering residents of the Pingtung Plain continue to use groundwater for drinking, this study attempted to evaluate the exposure and health risk from drinking groundwater. The health risk from drinking groundwater was evaluated based on the hazard quotient (HQ) and target risk (TR) established by the US Environmental Protection Agency. The results showed that the 95th percentile of HQ exceeded 1 and TR was above the safe value of threshold value of 10(-6). To illustrate significant variability of the drinking water consumption rate and body weight of each individual, health risk assessments were also performed using a spectrum of daily water intake rate and body weight to reasonably and conservatively assess the exposure and health risk for the specific subgroups of population of the Pingtung Plain. The assessment results showed that 0.01-7.50 % of the population's HQ levels are higher than 1 and as much as 77.7-93.3 % of the population being in high cancer risk category and having a TR value >10(-6). The TR estimation results implied that groundwater use for drinking purpose places people at risk of As exposure. The government must make great efforts to provide safe drinking water for residents of the Pingtung Plain.

  2. Screening methods for groundwater pollution potential from pesticide use in Colorado agriculture

    SciTech Connect

    Durnford, D.S.; Thompson, K.R.; Ellerbroek, D.A.; Loftis, J.C.; Davies, G.S.

    1990-12-31

    The project evaluates the use of two models for predicting groundwater pollution potential under conditions typical of Colorado agriculture. The two models evaluated in the project are a solute transport model called CMLS and a hydrologic index for ranking relative pollution potential called DRASTIC. The models were used to determine which pesticides had the highest potential for leaching to the groundwater and which areas had the greatest likelihood for groundwater contamination. Results were also used to assess the relative importance of hydrogeologic factors, agricultural management factors and the characteristics of the individual pesticides in determining pollution potential. The San Luis Valley, located in south-central Colorado, was used as a case study for the project.

  3. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site.

    PubMed

    Mor, Suman; Ravindra, Khaiwal; Dahiya, R P; Chandra, A

    2006-07-01

    Leachate and groundwater samples were collected from Gazipur landfill-site and its adjacent area to study the possible impact of leachate percolation on groundwater quality. Concentration of various physico-chemical parameters including heavy metal (Cd, Cr, Cu, Fe, Ni, Pb and Zn) and microbiological parameters (total coliform (TC) and faecal coliform (FC)) were determined in groundwater and leachate samples. The moderately high concentrations of Cl-, NO3(-), SO4(2-), NH4(+), Phenol, Fe, Zn and COD in groundwater, likely indicate that groundwater quality is being significantly affected by leachate percolation. Further they proved to be as tracers for groundwater contamination. The effect of depth and distance of the well from the pollution source was also investigated. The presence of TC and FC in groundwater warns for the groundwater quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demand for the proper management of waste in Delhi.

  4. Polycyclic aromatic hydrocarbon (PAHs) pollutants in groundwater from coal gangue stack area: characteristics and origin.

    PubMed

    Wang, X W; Zhong, N N; Hu, D M; Liu, Z Z; Zhang, Z H

    2009-01-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the leachate from the gangue and 20 groundwater samples, which were collected from the 12th Coal Mine around gangue piles in Henan Province, China, were determined by SPE-GC-MS. The characteristics of PAHs pollutants in groundwater were investigated, and compared with the concentrations of PAHs in the leachate from different weathered gangues to discuss the pollution effects of PAHs from coal gangue on groundwater. The results showed that total concentrations of the 16 EPA preferentially controlled PAHs ranged from 146.9 ng/L to 1220.6 ng/L.The components of PAHs such as chrysene, benzo[a]anthracene, benzo[b + k]fluoranthene, indeno[1,2,3-c,d]-pyrene, and dibenz[a,h]anthracene were fairly high. The 2-4 rings PAHs such as naphthalene, phenanthrene, fluorene and chrysene were dominant in groundwater, which was similar to those of the leachate from the different weathered gangues. Therefore, it should be paid much more attention on the transport of lower ring numbered PAHs leached by rains from the coal mines after landfilling and dumping. Based on the spatial distribution of PAHs and the high concentrations of PAHs with 2-4 rings in groundwater and leaching samples, there might be other pollution sources of PAHs except for penetration from coal gangue into groundwater in the Pingdingshan coal mine area.

  5. Mapping the groundwater vulnerability for pollution at the pan African scale

    NASA Astrophysics Data System (ADS)

    Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik

    2015-04-01

    We mapped the pan-African intrinsic and specific vulnerability of groundwater systems towards pollution. We compiled the most recent continental scale information on soil, land use, geology, hydrogeology and climate in a Geographical Information System (GIS) at the resolution of 15kmx15km and the 1:60,000,000 scale and implemented an indicator vulnerability model based on the DRASTIC method. The intrinsic vulnerability map reveals that groundwater is highly vulnerable in Central, West and some areas of North Africa, where the watertable is very low. The intrinsic vulnerability is very low in the large sedimentary basins of the African deserts where groundwater situates in very deep aquifers. The specific vulnerability is obtained by overlaying the intrinsic vulnerability with current land use. The specific vulnerability is high in North, Central, and West Africa and strongly related to water table depths and development of agricultural activities. Subsequently, we performed a sensitivity analysis to evaluate the relative importance of each indicator parameter on groundwater vulnerability for pollution. The sensitivity analysis indicated that the removal of the vadose zone impact, the depth of the groundwater, the hydraulic conductivity and the net recharge causes a large variation in the vulnerability index. The pan African assessment of groundwater vulnerability presented in this paper is expected to be of particular value for water policy and for designing water resources management programmes. We expect, however, that this assessment can be strongly improved when pan African monitoring data on groundwater pollution will be integrated in the assessment methodology. Keywords: groundwater vulnerability, pan-Africa, DRASTIC method, Sensitivity analysis, GIS

  6. A Spatial and Temporal Assessment of Non-Point Groundwater Pollution Sources, Tutuila Island, American Samoa

    NASA Astrophysics Data System (ADS)

    Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.

    2015-12-01

    The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land

  7. Groundwater pollution on the Zambian Copperbelt: deciphering the source and the risk.

    PubMed

    von der Heyden, C J; New, M G

    2004-07-05

    The protection of groundwater resources is of great importance in many semi-arid and sub-tropical environments. The Copperbelt of Zambia is one such environment and due to the high proportion of tailings impoundments, residue heaps, high-density informal settlements and extensive sulfidic ore deposits in the region, its groundwater resources are under threat of anthropogenic or geogenic pollution. One such pollutant plume is investigated in this study, to determine its origin, rate of progression and the environmental and health risk it poses. Geological and geochemical investigation strongly suggests an upslope tailings impoundment as the source of contaminants, with the edge of the pollution plume lying 500-700 m downstream of the impoundment. Although cobalt, nickel and zinc concentrations were elevated within the polluted groundwater, the concentrations are low as a result of sulfide precipitation and adsorption within the aquifer, and meets guidelines for drinking water quality. Attenuation of heavy metals is linked to tailings dam and aquifer pH, with the high buffering capacity of each implying that these processes of attenuation are likely to continue removing harmful metals from the aquifer. Thus, it appears unlikely that the contaminated groundwater will present a major environmental risk at this site. However, tailings impoundments are widespread throughout the Copperbelt: sites with low tailings dam buffer capacity and in catchments on crystalline bedrock geology, groundwater pollution through tailings dam leachate may liberate high concentrations of heavy metals into the shallow groundwater, potentially posing a serious human health risk to the communities using the water resources and an environmental risk to the downstream ecosystems.

  8. Status of groundwater pollution in the San Gabriel Valley, California

    SciTech Connect

    Earley, J.D.

    1987-07-01

    Contamination of groundwater in the San Gabriel Valley of California has been identified as a potential health hazard from industrial sources. Sampling has revealed the presence of trichloroethylene (TCE), perchloroethylene (PCE) and carbon tetrachloride (CTC); therefore, water purveyors are using a variety of means to alleviate the contamination and the use of contaminated water.

  9. [Phenols pollutants in soil and shallow groundwater of a retired refinery site].

    PubMed

    Pei, Fang; Luo, Ze-Jiao; Peng, Jin-Jin; Qi, Shi-Hua

    2012-12-01

    To study the distribution of phenol compounds in a retired refinery site, 21 soil sampling sites and 8 shallow groundwater wells were investigated. The results showed, shallow unconfined groundwater of the site was in a serious pollution situation and the phenols concentration was much higher than quality standard for ground water. Confined water sample was slightly contaminated by phenols and the total quality was good. Approximately half of the area was heavily polluted by phenol compounds. According to the retired refinery layout, the phenols pollution distribution in shallow groundwater and soil exhibited the regional similarity. The highly contaminated area was production workshop, oil tank and plant storage. Horizontal diffusion of pollutants was not serious. Vertical diffusion of pollutants was different, and a site with pollutant diffusion was deeper than ten meters. The 2-chlorophenol, 2-nitrophenol, 2,4-xylenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol, 2,4-dinitrophenol and 2-methyl-4,6-dinitrophenol in typical soils were analyzed by GC/MS. It showed that concentrations of seven phenol compounds were 0.01-232.96 mg x kg(-1), and the concentrations of 2,4-dinitrophenol and 2-methyl-4,6-dinitrophenol were high.

  10. Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models

  11. Assessing the cost of groundwater pollution: the case of diffuse agricultural pollution in the Upper Rhine valley aquifer.

    PubMed

    Rinaudo, J-D; Arnal, C; Blanchin, R; Elsass, P; Meilhac, A; Loubier, S

    2005-01-01

    This paper presents an assessment of the costs of diffuse groundwater pollution by nitrates and pesticides for the industrial and the drinking water sectors in the Upper Rhine valley, France. Pollution costs which occurred between 1988 and 2002 are described and assessed using the avoidance cost method. Geo-statistical methods (kriging) are then used to construct three scenarios of nitrate concentration evolution. The economic consequences of each scenario are then assessed. The estimates obtained are compared with the results of a contingent valuation study carried out in the same study area ten years earlier.

  12. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China.

    PubMed

    Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado

    2016-09-01

    Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities.

  13. Risk-Based Prioritization Method for the Classification of Groundwater Pollution from Hazardous Waste Landfills

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Jiang, Yong-Hai; lian, Xin-Ying; Xi, Bei-Dou; Ma, Zhi-fei; Xu, Xiang-Jian; An, Da

    2016-12-01

    Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.

  14. Risk-Based Prioritization Method for the Classification of Groundwater Pollution from Hazardous Waste Landfills.

    PubMed

    Yang, Yu; Jiang, Yong-Hai; Lian, Xin-Ying; Xi, Bei-Dou; Ma, Zhi-Fei; Xu, Xiang-Jian; An, Da

    2016-12-01

    Hazardous waste landfill sites are a significant source of groundwater pollution. To ensure that these landfills with a significantly high risk of groundwater contamination are properly managed, a risk-based ranking method related to groundwater contamination is needed. In this research, a risk-based prioritization method for the classification of groundwater pollution from hazardous waste landfills was established. The method encompasses five phases, including risk pre-screening, indicator selection, characterization, classification and, lastly, validation. In the risk ranking index system employed here, 14 indicators involving hazardous waste landfills and migration in the vadose zone as well as aquifer were selected. The boundary of each indicator was determined by K-means cluster analysis and the weight of each indicator was calculated by principal component analysis. These methods were applied to 37 hazardous waste landfills in China. The result showed that the risk for groundwater contamination from hazardous waste landfills could be ranked into three classes from low to high risk. In all, 62.2 % of the hazardous waste landfill sites were classified in the low and medium risk classes. The process simulation method and standardized anomalies were used to validate the result of risk ranking; the results were consistent with the simulated results related to the characteristics of contamination. The risk ranking method was feasible, valid and can provide reference data related to risk management for groundwater contamination at hazardous waste landfill sites.

  15. Impact of diffuse nitrate pollution sources on groundwater quality--some examples from Czechoslovakia.

    PubMed Central

    Benes, V; Pĕkný, V; Skorepa, J; Vrba, J

    1989-01-01

    In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Research based on nitrogen and organic carbon balance has shown that the restoration of a soil-groundwater system is a complicated process that usually requires changes in the extent and intensity of agricultural activities and consistent attention to the effects produced by natural conditions. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making. PMID:2559844

  16. ELECTROCHEMICAL DEGRADATION OF PERSISTANCE POLLUTANTS IN GROUNDWATER AND SEDIMENTS

    EPA Science Inventory

    Electrochemical Degradation (ECD) utilizes redox potential at the anode and the cathode to oxidize and/or reduce organic contaminants. ECD of environmentally persistence pollutants such chlorinate solvents, PCBs, and PAHs, although theoretically possible, has not been experimenta...

  17. Trace metals pollution in seawater and groundwater in the ship breaking area of Sitakund Upazilla, Chittagong, Bangladesh.

    PubMed

    Hasan, Asma Binta; Kabir, Sohail; Selim Reza, A H M; Zaman, Mohammad Nazim; Ahsan, Mohammad Aminul; Akbor, Mohammad Ahedul; Rashid, Mohammad Mamunur

    2013-06-15

    This study reveals potential accumulation of trace metals in the sea and groundwater due to ship breaking activities which take place along the Bay of Bengal in Sitakund Upazilla, Chittagong, Bangladesh. When compared with WHO and Bangladesh domestic standards for water quality, it is revealed that seawater was strongly polluted by Fe and Hg, moderately by Mn and Al, and slightly by Pb and Cd. Groundwater was strongly polluted by Fe, Pb and Hg, moderately by Mn and Al, and slightly by As. Trace element concentrations of all seawater samples exceeded the average concentration of elements in the Earth's seawater. The application of Principal Components Analysis identified two sources of pollution-marine and ship breaking. The mechanism of groundwater pollution inferred that if seawater is polluted, nearby groundwater is also polluted with trace metals due to the influence of seawater intrusion.

  18. Groundwater pollution potential and greenhouse gas emission from soils amended with different swine biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there exist numerous research studies in the literature on greenhouse gas emission and groundwater pollution potentials of soils amended with plant-based biochar made from traditional dry pyrolysis (hereafter referred as pyrochar), a very few such studies exist for hydrochar made from hydro...

  19. Greenhouse gas emission and groundwater pollution potentials of soils amended with raw and carbonized swine solids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research is to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with raw swine solids and swine biochars made from different thermochemical conditions. Triplicate sets of small pots were designed: 1) control soil with a 50/50 mixture o...

  20. Greenhouse gas emission and groundwater pollution potentials of soils amended with different swine biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with various biochars using different biomass feedstocks and thermal processing conditions. Triplicate sets of small pots were designed; control soil consisting of Histi...

  1. ESTIMATION OF GROUNDWATER POLLUTION POTENTIAL BY PESTICIDES IN MID-ATLANTIC COASTAL PLAIN WATERSHEDS

    EPA Science Inventory

    A simple GIS-based transport model to estimate the potential for groundwater pollution by pesticides has been developed within the ArcView GIS environment. The pesticide leaching analytical model, which is based on one-dimensional advective-dispersive-reactive (ADR) transport, ha...

  2. Mathematical Modeling Groundwater Mercury Pollution, Post Demercuriztion Monitoring And Evaulation of Clean-up Efficiency

    EPA Science Inventory

    The aim of the model was to forecast the groundwater mercury pollution distribution aureole and to discuss the mathematical simulations of the estimated quantity of mercury entering the river Irtysh and the aquifer wells in the village of Pavlodarskoe. During the years of 1975-1...

  3. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment.

    PubMed

    Li, Juan; Yang, Yang; Huan, Huan; Li, Mingxiao; Xi, Beidou; Lv, Ningqing; Wu, Yi; Xie, Yiwen; Li, Xiang; Yang, Jinjin

    2016-05-01

    This paper presents a system for determining the evaluation and gradation indices of groundwater pollution intensity (GPI). Considering the characteristics of the vadose zone and pollution sources, the system decides which anti-seepage measures should be implemented at the contaminated site. The pollution sources hazards (PSH) and groundwater intrinsic vulnerability (GIV) are graded by the revised Nemerow Pollution Index and an improved DRTAS model, respectively. GPI is evaluated and graded by a double-sided multi-factor coupling model, which is constructed by the matrix method. The contaminated sites are categorized as prior, ordinary, or common sites. From the GPI results, we develop guiding principles for preventing and removing pollution sources, procedural interruption and remediation, and end treatment and monitoring. Thus, we can select appropriate prevention and control technologies (PCT). To screen the technological schemes and optimize the traditional analytical hierarchy process (AHP), we adopt the technique for order preference by the similarity to ideal solution (TOPSIS) method. Our GPI approach and PCT screening are applied to three types of pollution sites: the refuse dump of a rare earth mine development project (a potential pollution source), a chromium slag dump, and a landfill (existing pollution sources). These three sites are identified as ordinary, prior, and ordinary sites, respectively. The anti-seepage materials at the refuse dump should perform as effectively as a 1.5-m-thick clay bed. The chromium slag dump should be preferentially treated by soil flushing and in situ chemical remediation. The landfill should be treated by natural attenuation technology. The proposed PCT screening approach was compared with conventional screening methods results at the three sites and proved feasible and effective. The proposed method can provide technical support for the monitoring and management of groundwater pollution in China.

  4. A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Peña-Haro, Salvador; Pulido-Velazquez, Manuel; Sahuquillo, Andrés

    2009-06-01

    SummaryA hydro-economic modelling framework is developed for determining optimal management of groundwater nitrate pollution from agriculture. A holistic optimization model determines the spatial and temporal fertilizer application rate that maximizes the net benefits in agriculture constrained by the quality requirements in groundwater at various control sites. Since emissions (nitrogen loading rates) are what can be controlled, but the concentrations are the policy targets, we need to relate both. Agronomic simulations are used to obtain the nitrate leached, while numerical groundwater flow and solute transport simulation models were used to develop unit source solutions that were assembled into a pollutant concentration response matrix. The integration of the response matrix in the constraints of the management model allows simulating by superposition the evolution of groundwater nitrate concentration over time at different points of interest throughout the aquifer resulting from multiple pollutant sources distributed over time and space. In this way, the modelling framework relates the fertilizer loads with the nitrate concentration at the control sites. The benefits in agriculture were determined through crop prices and crop production functions. This research aims to contribute to the ongoing policy process in the Europe Union (the Water Framework Directive) providing a tool for analyzing the opportunity cost of measures for reducing nitrogen loadings and assessing their effectiveness for maintaining groundwater nitrate concentration within the target levels. The management model was applied to a hypothetical groundwater system. Optimal solutions of fertilizer use to problems with different initial conditions, planning horizons, and recovery times were determined. The illustrative example shows the importance of the location of the pollution sources in relation to the control sites, and how both the selected planning horizon and the target recovery time can

  5. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion.

    PubMed

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-07-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl(-) concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM(ZS) is used as sampling algorithm. Then, the predictive distribution of Cl(-) concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl(-) concentration. The results of model calibration and verification demonstrate that the DREAM(ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015-2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl(-) concentration of groundwater source field always vary between 175mg/l and 200mg/l.

  6. Palaeosol control on groundwater flow and pollutant distribution: the example of arsenic.

    PubMed

    McArthur, John M; Nath, Bibhash; Banerjee, Dhiraj M; Purohit, R; Grassineau, N

    2011-02-15

    The consumption of groundwater polluted by arsenic (As) has a severe and adverse effect on human health, particularly where, as happens in parts of SE Asia, groundwater is supplied largely from fluvial/deltaic aquifers. The lateral distribution of the As-pollution in such aquifers is heterogeneous. The cause of the heterogeneity is obscure. The location and severity of the As-pollution is therefore difficult to predict, despite the importance of such predictions to the protection of consumer health, aquifer remediation, and aquifer development. To explain the heterogeneity, we mapped As-pollution in groundwater using 659 wells across 102 km(2) of West Bengal, and logged 43 boreholes, to reveal that the distribution of As-pollution is governed by subsurface sedimentology. Across 47 km(2) of contiguous palaeo-interfluve, we found that the shallow aquifer (<70 mbgl) is unpolluted by As (<10 μg/L) because it is capped by an impermeable palaeosol of red clay (the last glacial maximum palaeosol, or LGMP, of ref 1 ) at depths between 16 and 24 mbgl. The LGMP protects the aquifer from vertical recharge that might carry As-rich water or dissolved organic matter that might drive reduction of sedimentary iron oxides and so release As to groundwater. In 55 km(2) of flanking palaeo-channels, the palaeosol is absent, so invasion of the aquifer by As and dissolved organic matter can occur, so palaeo-channel groundwater is mostly polluted by As (>50 μg/L). The role of palaeosols and, in particular, the LGMP, has been overlooked as a control on groundwater flow and pollutant movement in deltaic and coastal aquifers worldwide. Models of pollutant infiltration in such environments must include the appreciation that, where the LGMP (or other palaeosols) are present, recharge moves downward in palaeo-channel regions that are separated by palaeo-interfluvial regions where vertical recharge to underlying aquifers cannot occur and where horizontal flow occurs above the LGMP and any

  7. Multimedia Environmental Pollutant Assessment System (MEPAS{reg_sign}): Groundwater pathway formulations

    SciTech Connect

    Whelan, G.; McDonald, J.P.; Sato, C.

    1996-06-01

    This report describes the mathematical formulations used for contaminant fate and transport in the groundwater pathway of the Multimedia Environmental Pollutant Assessment System (MEPAS). It is one in a series of reports that collectively describe the components of MEPAS. The groundwater component of the MEPAS methodology models solute transport through the groundwater environment (i.e., partially saturated and saturated zones). Specifically, this component provides estimates of groundwater contaminant fluxes at various transporting medium interfaces (e.g., water table or aquifer/river interface) and contaminant concentrations at withdrawal wells. Contaminant fluxes at transporting medium interfaces represent boundary conditions for the next medium in which contaminant migration and fate is to be simulated (e.g., groundwater contamination entering a surface-water environment). Contaminant concentrations at withdrawal wells provide contaminant levels for the exposure assessment component of MEPAS. A schematic diagram illustrating the groundwater environment is presented. The migration and fate of contaminants through the groundwater environment are described by the three-dimensional, advective-dispersive equation for solute transport. The results are based on semianalytical solutions (i.e., solutions that require numerical integration) that are well established in the scientific literature. To increase computational efficiency, limits of integration are also identified.

  8. Air and groundwater pollution in an agricultural region of the Turkish Mediterranean coast.

    PubMed

    Tuncel, Semra G; Oztas, Nur Banu; Erduran, M Soner

    2008-09-01

    Air pollution and groundwater pollution in conjunction with agricultural activity were investigated in Antayla province on the Turkish Mediterranean coast. The air pollution was investigated in terms of gas-phase nitric acid (HNO3), sulfur dioxide (SO2), ammonia (NH3), and particulate matter for a 6-month period in the atmosphere using a "filter pack" system, which was developed and optimized in our laboratory. Ozone was measured by using an automated analyzer. Among all of the gas-phase pollutants, HNO3 had the lowest concentration (0.42 microg x m(-3)) followed by NH3. Agricultural activities seem to be the major source of observed NH3 in the air. The current state of water pollution was investigated in terms of organochlorine and organophosphorus pesticides around the greenhouses, in which mainly tomato, pepper, and eggplant are cultivated. Water samples were collected from 40 points, 28 of which were wells and 12 of which were surface water. The pesticide concentrations in water samples were determined by means of solid-phase extraction (SPE) followed by a gas chromatography (GC)-electron capture detector (ECD)/nitrogen phosphorus detector (NPD) system. In general, surface water samples were more polluted by the pesticides than groundwater samples. The most frequently observed pesticides were chlorpyriphos (57%) and aldrin (79%) in groundwater, and chlorpyriphos (75%), aldrin, and endosulfan sulfate (83%) in surface water samples. The highest concentrations were observed for fenamiphos (394.8 ng/L) and aldrin (68.51 ng/L) in groundwater, and dichlorvos (322.2 ng/L) and endosulfan sulfate (89.5 ng/L) in surface water samples. At least one pesticide had a concentration above the health limit in 38% of all the water samples analyzed.

  9. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand.

    PubMed

    Thapinta, Anat; Hudak, Paul F

    2003-04-01

    This study employed geographic information systems (GIS) technology to evaluate the vulnerability of groundwater to pesticide pollution in Thailand. The study area included three provinces, Kanchana Buri, Ratcha Buri, and Suphan Buri, located in west-central Thailand. Factors used for the vulnerability assessment included soil texture, slope, land use, well depth, and rainfall. These vulnerability factors were reclassified to a common scale, and a weighted average was computed to yield a vulnerability score. Vulnerability factors and weights were assigned considering pesticide concentrations in 90 wells throughout the study area. Well depth was the most significant vulnerability factor. Groundwater vulnerability maps were generated for several pesticides. The eastern, agricultural part of the study area has relatively deep wells and fine soils. Shallow wells are present in the mountainous west; however, fewer pesticides are applied in that region. Consequently, much of the study area had a medium groundwater vulnerability rating, although there were pockets of high vulnerability, for example, in agricultural areas with shallow wells. The groundwater vulnerability maps are effective for identifying locations warranting more detailed groundwater pollution and vulnerability investigations.

  10. Evaluation of groundwater pollution risk (GPR) from agricultural activities using DRASTIC model and GIS

    NASA Astrophysics Data System (ADS)

    Mohd Ariffin, Sabrina; Zawawi, Mohamed Azwan Mohamed; Che Man, Hasfalina

    2016-06-01

    Groundwater Pollution risk (GPR) map which utilized groundwater quality is important in order to prevent the groundwater contaminant concentration due to the agricultural activities. DRASTIC model and GIS application are two important tools that had been used for accessing and predicting the quality of groundwater. These supplementary tools are calculating, visualizing, and presenting the GPR by using DRASTIC index for each hydrogeologic factor through ArcGIS software. This study was covered approximately Selangor basin area where the GPR has been defined. There are four categories of agricultural activities in the Selangor basin which are animal husbandary areas, horticultural lands, short term crops and tree, palm and other permanent crops. The map showed that the “low” zones of GPR occupied 56% of the east side of the Selangor basin, 34% of the west side of the Selangor basin exposed to “medium” zones of GPR and the “high” zones of GPR covered 10% at the north side and the south to the west side of the Selangor basin. As a particular, for agricultural activities which is 52% of Selangor basin area, the “low”, ‘’medium” and “high” zones of GPR was occupied as 42%, 43% and 15% respectively. Based on four categories of agricultural landuse, GPR map validated by nitrate distribution map, shows that the 99% of the variation in nitrate distribution zones are explained by GPR zones. In conclusion, groundwater pollution risk was affected by agricultural activities.

  11. Multi-Scale Monitoring and Assessment of Nonpoint Source Pollution in Groundwater

    NASA Astrophysics Data System (ADS)

    Harter, T.; Vanderschans, M.; Leijnse, A.; Mathews, M. C.; Meyer, R. D.

    2003-04-01

    The California dairy industry produces 20% of US milk and is the largest animal industry in the state. Many of the dairy facilities are located in low-relief valleys and basins with vulnerable groundwater resources. The continued influx of dairies into California's Central Valley has raised critical questions regarding their environmental performance, in particular with respect to groundwater quality impacts. While animal farming systems are considered among the leading sources of groundwater nitrate,little is known about the actual impact of dairy farming practices on groundwater quality in the extensive alluvial aquifers underlying the Central Valley. With our work we attempt to characterize and assess shallow groundwater underneath dairies in a relatively vulnerable hydrogeologic region and to discern the impact from various individual sources and management practices within dairies. An extensive shallow groundwater monitoring network was installed on five representative dairy operations in the northeastern San Joaquin Valley, California. The monitoring network spans all dairy management units: manure water lagoons, corrals, storage areas, and manure treated forage fields under various management practices. We recently also surveyed production well water quality. Water quality is found to be highly variable, both in time and space. We propose that a meaningful interpretation of these (nonpoint source pollution) data is only possible by explicitly considering the various scales affiliated with groundwater measurement, pollution source management, regulatory control, and beneficial use. Using statistical analysis and innovative modeling tools, we provide an interpretation of the observed data that is meaningful at the field scale (the scale unit of management decisions), the farm scale (considered to be a regulatory and planning unit), and the regional scale (considered to be a planning unit).

  12. Got Milk? Got Water? Innovative Approach to Evaluating Groundwater Nitrate Nonpoint Source Pollution from Animal Farming

    NASA Astrophysics Data System (ADS)

    Harter, T.; Vanderschans, M.; Leijnse, A.; Meyer, R. D.; Mathews, M. C.

    2002-12-01

    The California dairy industry produces 20% of US milk and is the largest animal industry in the state. Many of the dairy facilities are located in low-relief valleys and basins with vulnerable groundwater resources. The continued influx of dairies into California's Central Valley has raised critical questions regarding their environmental performance, in particular with respect to groundwater quality impacts. While animal farming systems are considered among the leading sources of groundwater nitrate,little is known about the actual impact of dairy farming practices on groundwater quality in the extensive alluvial aquifers underlying the Central Valley. With our work we attempt to characterize and assess shallow groundwater underneath dairies in a relatively vulnerable hydrogeologic region and to discern the impact from various individual sources and management practices within dairies. An extensive shallow groundwater monitoring network was installed on five representative dairy operations in the northeastern San Joaquin Valley, California. The monitoring network spans all dairy management units: manure water lagoons, corrals, storage areas, and manure treated forage fields under various management practices. We recently also surveyed production well water quality. Water quality is found to be highly variable, both in time and space. We propose that a meaningful interpretation of these (nonpoint source pollution) data is only possible by explicitly considering the various scales affiliated with groundwater measurement, pollution source management, regulatory control, and beneficial use. Using statistical analysis and innovative modeling tools, we provide an interpretation of the observed data that is meaningful at the field scale (the scale unit of management decisions), the farm scale (considered to be a regulatory and planning unit), and the regional scale (considered to be a planning unit).

  13. Hot spot formation of chloroform in forest soils caused pollution of groundwater

    NASA Astrophysics Data System (ADS)

    Jacobsen, Ole S.; Albers, Christian N.; Laier, Troels; Hunkeler, Daniel

    2015-04-01

    High concentration of chloroform in groundwater is usually attributed to anthropogenic input, but we have found that the groundwater beneath some pristine areas contained chloroform from 1 - 10 µg/L. Groundwater containing chloroform that exceeds 1 µg/L could not be used for drinking water according to Danish regulations. The strict demands on groundwater quality may have to be taken into account when decisions are made regarding the change of land use in order to protect major recharge areas from pollution with nitrate and pesticides resulting from high-yield agriculture production. The terrestrial environment and especially hot spots in forest soils seem to be important contributors to apparent pollution of groundwater with chloroform. We performed a field study to investigate concentration and fluxes of chloroform to the groundwater from in four coniferous forests in order to increase knowledge on the hot spot formation and fate of natural chloroform. We investigated four stations over a period of several years in order to measure the net-formation of chloroform. Field measurements soil air concentrations of chloroform were monitored in five soil profiles down to the groundwater table. Meteorological data were recorded at all stations In the hotspots up to 120 ppbv was found in soil air under the spruce forest, to be compared to an ambient atmospheric concentration of 0.02 ppbv. The concentration of chloroform in soil air showed seasonal variation with a maximum in August-September. The chloroform concentration decreased with depth in all profiles during the summer half-year to about 20 % of concentration in the production layer. However, the concentration is still high enough to give an equilibrium concentration in the upper groundwater of 1-10 µg/L. Stable carbon isotopic analyses of chloroform from the uppermost groundwater in different parts of the forests and from soil water showed values from δ13C = -13 ‰ to -27 ‰, corresponding to the ratio in

  14. Multiobjective optimization for Groundwater Nitrate Pollution Control. Application to El Salobral-Los Llanos aquifer (Spain).

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, C.; Peña-Haro, S.; Pulido-Velazquez, M.; Molina, J.

    2012-04-01

    Water quality management is complex due to the inter-relations between socio-political, environmental and economic constraints and objectives. In order to choose an appropriate policy to reduce nitrate pollution in groundwater it is necessary to consider different objectives, often in conflict. In this paper, a hydro-economic modeling framework, based on a non-linear optimization(CONOPT) technique, which embeds simulation of groundwater mass transport through concentration response matrices, is used to study optimal policies for groundwater nitrate pollution control under different objectives and constraints. Three objectives were considered: recovery time (for meeting the environmental standards, as required by the EU Water Framework Directive and Groundwater Directive), maximum nitrate concentration in groundwater, and net benefits in agriculture. Another criterion was added: the reliability of meeting the nitrate concentration standards. The approach allows deriving the trade-offs between the reliability of meeting the standard, the net benefits from agricultural production and the recovery time. Two different policies were considered: spatially distributed fertilizer standards or quotas (obtained through multi-objective optimization) and fertilizer prices. The multi-objective analysis allows to compare the achievement of the different policies, Pareto fronts (or efficiency frontiers) and tradeoffs for the set of mutually conflicting objectives. The constraint method is applied to generate the set of non-dominated solutions. The multi-objective framework can be used to design groundwater management policies taking into consideration different stakeholders' interests (e.g., policy makers, agricultures or environmental groups). The methodology was applied to the El Salobral-Los Llanos aquifer in Spain. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has

  15. Protection of groundwater from oil pollution in the vicinity of airports

    NASA Astrophysics Data System (ADS)

    Švoma, Jan; Houzim, Vladimír

    1984-03-01

    Airports are potential, and quite frequently also actual, sources of serious groundwater pollution. This is due to the large amounts of liquid fuel being handled all the time, to the physicochemical properties of oil hydrocarbons, and often to technical errors in the transport and storage of fuels. The environment is further affected by liquid and gaseous emissions escaping during the take-off and landing of aircraft Snow in the vicinity of runways has been found to contain oil hydrocarbons in concentrations of tenths to units of milligrams per liter Moreover, soil tends to accumulate carcinogenous benzopyrenes. In rock formations, oil hydrocarbons spread as a separate layer as well as in solution in porous permeable formations, pollution by a free product affects areas on the order of tens of meters, while hydrocarbons in solution penetrate to distances of hundreds of meters or even kilometers. More complex conditions for the spreading of oil-based substances arise in fissured rocks. Aviation kerosene as a separate phase was found to migrate over 700 meters within 5 months through fissure systems in sandstones Prevention is the most efficient way of protecting groundwater from oil pollution. Preventive surveys are based on the drilling of observation wells at suitable points of the potentially endangered areas. Monitoring of these wells provides timely detection of possible leaks of oil products into the aquifer In the case of an emergency, it is necessary to remove, as soon as possible, the oil substances from the surface or to remove the contaminated soil. When the contaminant has penetrated into the aquifer, the reparatory measures are usually based on hydraulic protection which consists of a system of boreholes. The respective hydrocarbon product is removed from the formation by pumping, the process being speeded up by the change in groundwater flow caused by the creation of depression cones The example of Prague Airport is suitable for describing a successful

  16. Reducing groundwater pollution by toxic substances: Procedures and policies

    NASA Astrophysics Data System (ADS)

    Waterstone, Marvin

    1987-11-01

    One major source of water-related health problems is the improper disposal of toxic substances in the environment. Toxic materials leaching from unregulated and unlined pits, ponds, lagoons, and landfills have created a widespread environmental nightmare in the United States and many other parts of the world. At present, there are two major and interrelated components of this problem in the United States. The first is the issue of cleaning up abandoned disposal sites that pose actual or potential threats to water supplies. The second aspect of the problem concerns the necessity of siting proper management, treatment, or disposal facilities in the future. Priorities must be set to allow efficient, effective, and equitable allocation of the scarce resources that are available for accomplishing these tasks. This article examines a number of the issues involved in setting these priorities, and presents the results obtained from a study of risk estimation and evaluation in the context of groundwater contamination by toxic substances. The article introduces a new concept of risk estimation, which is shown to produce more accurate and credible risk analyses. Finally, the relationships between risk credibility and public perceptions of procedural fairness and equity are examined as these factors bear on the institutional aspects of implementing policies for site cleanup and/or facility siting.

  17. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam.

    PubMed

    McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U

    2012-10-15

    Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As.

  18. Decision Tree based Prediction and Rule Induction for Groundwater Trichloroethene (TCE) Pollution Vulnerability

    NASA Astrophysics Data System (ADS)

    Park, J.; Yoo, K.

    2013-12-01

    For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.

  19. Transport and fate modeling of nitrobenzene in groundwater after the Songhua River pollution accident.

    PubMed

    Zhang, Wenjing; Lin, Xueyu; Su, Xiaosi

    2010-11-01

    In 2005 a pollution accident occurred in the Songhua River, which is geographically located next to groundwater supply plants. This caused public concern about the transport and fate of nitrobenzene (NB) in the groundwater. This paper discusses the mechanisms and effects of the transport and fate of NB in groundwater based on pilot scale experiments conducted in the laboratory, including a simulation experiment, bench-scale batch tests and a one-dimensional numerical model. Parallel batch tests showed that the adsorption of NB to the clay and sand followed the Langmuir-type isotherm, and clay had a greater NB adsorption capacity than sand. NB biodegradation in different conditions was well fitted by the Monod equation and the q(max) values varied from 0.018 to 0.046 h(-1). Results indicated that NB's biodegradation was not affected by the initial NB concentration. Numerical modeling results indicated a good match between computed and observed data, and in the prediction model NB entered the groundwater after the pollution accident. However, the highest concentration of NB was much lower than the allowable limit set by the national standard (0.017 mg/L).

  20. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    SciTech Connect

    Baun, A.; Jensen, S.D.; Bjerg, P.L.; Christensen, T.H.; Nyholm, N.

    2000-05-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additional genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.

  1. Principles and problems of environmental pollution of groundwater resources with case examples from developing countries.

    PubMed Central

    Egboka, B C; Nwankwor, G I; Orajaka, I P; Ejiofor, A O

    1989-01-01

    The principles and problems of environmental pollution and contamination are outlined. Emphasis is given to case examples from developing countries of Africa, Asia, and Latin America with a comparative analysis to developed countries. The problems of pollution/contamination are widespread in developed countries but are gradually spreading from the urban to rural areas in the developing countries. Great efforts in research and control programs to check pollution-loading into the environment have been made in the industrialized countries, but only negligible actions have been taken in developing countries. Pollutants emanate from both point and distributed sources and have adversely affected both surface water and groundwaters. The influences of the geologic and hydrologic cycles that exacerbate the incidences of pollution/contamination have not been well understood by environmental planners and managers. Professionals in the different areas of pollution control projects, particularly in developing countries, lack the integrated multiobjective approaches and techniques in problem solving. Such countries as Nigeria, Kenya, Brazil, and India are now menaced by pollution hazards. Appropriate methods of control are hereby suggested. PMID:2695325

  2. Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations.

    PubMed

    Prakash, Om; Datta, Bithin

    2013-07-01

    One of the difficulties in accurate characterization of unknown groundwater pollution sources is the uncertainty regarding the number and the location of such sources. Only when the number of source locations is estimated with some degree of certainty that the characterization of the sources in terms of location, magnitude, and activity duration can be meaningful. A fairly good knowledge of source locations can substantially decrease the degree of nonuniqueness in the set of possible aquifer responses to subjected geochemical stresses. A methodology is developed to use a sequence of dedicated monitoring network design and implementation and to screen and identify the possible source locations. The proposed methodology utilizes a combination of spatial interpolation of concentration measurements and simulated annealing as optimization algorithm for optimal design of the monitoring network. These monitoring networks are to be designed and implemented sequentially. The sequential design is based on iterative pollutant concentration measurement information from the sequentially designed monitoring networks. The optimal monitoring network design utilizes concentration gradient information from the monitoring network at previous iteration to define the objective function. The capability of the feedback information based iterative methodology is shown to be effective in estimating the source locations when no such information is initially available. This unknown pollution source locations identification methodology should be very useful as a screening model for subsequent accurate estimation of the unknown pollution sources in terms of location, magnitude, and activity duration.

  3. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey.

    PubMed

    Ahmed, A M; Sulaiman, W N

    2001-11-01

    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no

  4. A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems.

    PubMed

    Ayvaz, M Tamer

    2010-09-20

    This study proposes a linked simulation-optimization model for solving the unknown groundwater pollution source identification problems. In the proposed model, MODFLOW and MT3DMS packages are used to simulate the flow and transport processes in the groundwater system. These models are then integrated with an optimization model which is based on the heuristic harmony search (HS) algorithm. In the proposed simulation-optimization model, the locations and release histories of the pollution sources are treated as the explicit decision variables and determined through the optimization model. Also, an implicit solution procedure is proposed to determine the optimum number of pollution sources which is an advantage of this model. The performance of the proposed model is evaluated on two hypothetical examples for simple and complex aquifer geometries, measurement error conditions, and different HS solution parameter sets. Identified results indicated that the proposed simulation-optimization model is an effective way and may be used to solve the inverse pollution source identification problems.

  5. Groundwater screening for 940 organic micro-pollutants in Hanoi and Ho Chi Minh City, Vietnam.

    PubMed

    Duong, Hanh Thi; Kadokami, Kiwao; Chau, Hong Thi Cam; Nguyen, Trung Quang; Nguyen, Thao Thanh; Kong, Lingxiao

    2015-12-01

    Groundwater is the main source of drinking water for more than half of the residents of Hanoi (HN). It also provides about one third of the total water demand for residents of Ho Chi Minh City (HCM). However, due to rapid urbanization and frequent discharges of untreated urban wastewater to surface water, freshwater is widely contaminated by man-made chemicals, which may result in groundwater pollution. As part of an ongoing campaign to collect baseline information on the occurrence of organic micro-pollutants (OMPs) in the aquatic environment in Vietnam, 43 water samples were collected from 26 groundwater wells in HN (22) and HCM (4) in September 2013 and August 2014. Samples were analyzed by gas chromatography-mass spectrometry (GC-MS) and the resulting chromatograms were screened for 940 OMPs by an automated identification and quantification system (AIQS) within a GC-MS database. A total of 74 compounds were detected, with between 4 and 43 (median 18) compounds found at each site. Overall, contamination levels were low, with over 89 % of the detected concentrations that were less than 0.5 μg L(-1). Results suggest that most of the sampled aquifers have been impacted by non-point source pollution. Most of the contaminants detected are either currently not regulated in drinking water or are present at low levels. A health risk assessment for detected contaminants implied that there were no risks to humans. Since this study was based on a limited number of samples, especially in HCM, further, more detailed studies on the occurrence of OMPs in groundwater in HCM and a full risk assessment of detected contaminants should be prioritized.

  6. Statistical approach towards point sources of groundwater pollution with tetrachloroethylene: a field study.

    PubMed

    Kido, K; Magara, Y; Furuichi, T; Ikeda, M

    1989-03-01

    Tetrachloroethylene contamination of well water occurred in a primarily residential area. To search for point source(s) of tetrachloroethylene contamination, 91 water samples were collected on three separate occasions from 41 shallow wells scattered in the areas. Three methods of groundwater level analysis (limited to 30 wells), cluster analysis of water quality indicators and contour drawing of tetrachloroethylene concentrations were applied. The former two analyses showed that the pollution took place in aquifers of two terraces out of the three in the polluted area. The contour mapping demonstrated the presence of three spots of suspected pollution sources as the estimated points of highest tetrachloroethylene concentrations. The available information suggested the existence of a facility with possible use of tetrachloroethylene in the past.

  7. Groundwater pollution and remediation options for multi-source contaminated aquifers (Bitterfeld/Wolfen, Germany).

    PubMed

    Wycisk, P; Weiss, H; Kaschl, A; Heidrich, S; Sommerwerk, K

    2003-04-11

    Large-scale contaminated megasites like Bitterfeld/Wolfen in the eastern part of Germany are characterized by a regional pollution of soil, surface water and groundwater due to the long and varied history of the chemical industry on location. The pollutants in groundwater may spread to uncontaminated areas and endanger receptors like surface water and drinking water wells according to the site-specific hydrologic regime. In addition, the sheer extension of the contamination at megasites as well as the existence of large densely populated areas and land of high-reuse value prevent a simple risk management strategy of use restriction for the whole area. Since a complete clean-up of the groundwater on a megasite is neither economically feasible nor technically possible within a reasonable time-frame, a multi-approach remediation strategy is needed, taking into account the immediate risks for human health, ecosystem and so-called "protectable goods". Moreover, the contaminants at megasites typically represent a dangerous cocktail of multiple harmful substances stemming from a variety of sources, which may interact with each other and complicate the search for an appropriate remediation strategy. At the SAFIRA-project site in Bitterfeld approaches for in situ remediation of multiple contaminants in groundwater are being tested. Alternatives in local implementation strategies as well as consequences of long-term restrictions for megasites like Bitterfeld need an independent evaluation of the situation using a risk-based approach. For this reason, a GIS-based 3D model of the area including geology, contaminants, hydrogeology, land-use and protected areas has been built. The regional groundwater pollution is characterized by contamination profiles of all monitored substances. In the area of investigation, e.g. threefold and fourfold threshold levels of chlorinated methane, ethane and ethene as well as HCH-isomers, mono-, di- and tetrachlorobenzene, DDT-isomers and benzene

  8. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed.

    PubMed

    Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E

    2015-10-15

    This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+20%; high-very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high-very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status (i

  9. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  10. Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers.

    PubMed

    Kuroda, Keisuke; Murakami, Michio; Oguma, Kumiko; Muramatsu, Yuki; Takada, Hideshige; Takizawa, Satoshi

    2012-02-07

    While the occurrence of pharmaceuticals and personal care products (PPCPs) in groundwater has typically been reported in bank filtration sites, irrigated fields, septic tanks, and sewage disposal practices, fewer studies have been conducted in highly urbanized areas, where infiltration of treated or untreated sewage is not supposed to be a source of groundwater recharge. Furthermore, little is known about the occurrence of various kinds of PPCPs in relation to microbial indicators in groundwater from different types of aquifers. Thus, we examined the city-wide occurrence of selected PPCPs (diethyltoluamide, crotamiton, ethenzamide, propyphenazone, carbamazepine, and caffeine) and E. coli in 50 groundwaters from unconfined aquifers (<30 m in depth) and confined aquifers (up to 500 m in depth) in Tokyo, where unintended groundwater contamination could take place due to decrepit sewer networks. PPCPs were detected in unconfined aquifers and springs (23/34 samples, 68%), and in confined aquifers (7/16 samples, 44%). Compared with published results for sewage influents, concentrations of PPCPs, excluding caffeine, were generally 1-2 orders of magnitude lower, while in some samples concentrations were quite comparable. The high occurrence rate of PPCPs, even in confined aquifers, indicated that such aquifers are not always protected from pollution by sewage near the land surface. Among the PPCPs analyzed, carbamazepine and crotamiton were most frequently detected, which would appear to be owing to their high persistence, combined with the high concentration of crotamiton in sewage. Crotamiton was detected in all four E. coli-positive groundwaters, and thus may potentially serve as a precautionary indicator of E. coli contamination. Using carbamazepine as a sewage marker, we estimated that 0.8%-1.7% of the dry-weather flow of sewage was leaking out into the unconfined aquifers.

  11. Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution

    NASA Astrophysics Data System (ADS)

    Martínez-Bastida, Juan J.; Arauzo, Mercedes; Valladolid, Maria

    2010-05-01

    The intrinsic vulnerability of groundwater in the Comunidad de Madrid (central Spain) was evaluated using the DRASTIC and GOD indexes. Groundwater vulnerability to nitrate pollution was also assessed using the composite DRASTIC (CD) and nitrate vulnerability (NV) indexes. The utility of these methods was tested by analyzing the spatial distribution of nitrate concentrations in the different aquifers located in the study area: the Tertiary Detrital Aquifer, the Moor Limestone Aquifer, the Cretaceous Limestone Aquifer and the Quaternary Aquifer. Vulnerability maps based on these four indexes showed very similar results, identifying the Quaternary Aquifer and the lower sub-unit of the Moor Limestone Aquifer as deposits subjected to a high risk of nitrate pollution due to intensive agriculture. As far as the spatial distribution of groundwater nitrate concentrations is concerned, the NV index showed the greatest statistical significance ( p < 0.01). This new type of multiplicative model offers greater accuracy in estimations of specific vulnerability with respect to the real impact of each type of land use. The results of this study provide a basis on which to guide the designation of nitrate vulnerable zones in the Comunidad de Madrid, in line with European Union Directive 91/676/EEC.

  12. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland

    NASA Astrophysics Data System (ADS)

    Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka

    2017-03-01

    The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.

  13. Hydrochemistry of urban groundwater in Seoul, South Korea: effects of land-use and pollutant recharge

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Young; Yun, Seong-Taek; Yu, Soon-Young; Lee, Pyeong-Koo; Park, Seong-Sook; Chae, Gi-Tak; Mayer, Bernhard

    2005-10-01

    The ionic and isotopic compositions (δD, δ18O, and 3H) of urban groundwaters have been monitored in Seoul to examine the water quality in relation to land-use. High tritium contents (6.1-12.0 TU) and the absence of spatial/seasonal change of O-H isotope data indicate that groundwaters are well mixed within aquifers with recently recharged waters of high contamination susceptibility. Statistical analyses show a spatial variation of major ions in relation to land-use type. The major ion concentrations tend to increase with anthropogenic contamination, due to the local pollutants recharge. The TDS concentration appears to be a useful contamination indicator, as it generally increases by the order of forested green zone (average 151 mg/l), agricultural area, residential area, traffic area, and industrialized area (average 585 mg/l). With the increased anthropogenic contamination, the groundwater chemistry changes from a Ca-HCO3 type toward a Ca-Cl(+NO3) type. The source and behavior of major ions are discussed and the hydrochemical backgrounds are proposed as the basis of a groundwater management plan.

  14. Concentrations and speciation of arsenic in groundwater polluted by warfare agents.

    PubMed

    Daus, Birgit; Hempel, Michael; Wennrich, Rainer; Weiss, Holger

    2010-11-01

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16mgL(-1) and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400μgL(-1)) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity.

  15. Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China.

    PubMed

    Kong, Lingxiao; Kadokami, Kiwao; Duong, Hanh Thi; Chau, Hong Thi Cam

    2016-12-01

    Groundwater contamination in China has become a growing public concern because of the country's rapid economic development and dramatically increasing fresh water demand. However, there is little information available on groundwater quality, particularly with respect to trace organic micro-pollutants contamination. This study was undertaken to investigate the occurrence of 1300 pollutants at 27 groundwater sites in Beijing and Tianjin, North China. Seventy-eight chemicals (6% of the targeted compounds) were detected in at least one sampling point; observed chemicals included polycyclic aromatic hydrocarbons (PAHs), pesticides, plasticizers, antioxidants, pharmaceuticals and other emerging compounds. Chemicals with a frequency of detection over 70% were 2-ethyl-1-hexanol (median concentration 152 ng L(-1)), benzyl alcohol (582 ng L(-1)), 2-phenoxy-ethanol (129 ng L(-1)), acetophenone (74 ng L(-1)), pentamethylbenzene (51 ng L(-1)), nitrobenzene (40 ng L(-1)) and dimethyl phthalate (64 ng L(-1)). Pesticides with concentrations exceeding the EU maximum residual limits (MRL) of 0.1 μg L(-1) were 1,4-dichlorobenzene, oxadixyl, diflubenzuron, carbendazim, diuron, and the E and Z isomers of dimethomorph. Naphthalene and its 7 alkylated derivatives were widely observed at maximum concentration up to 30 μg L(-1), which, although high, is still below the Australian drinking water guidelines of 70 μg L(-1). The risk assessment indicated there is no human health risk through the oral consumption from most wells, although there were four wells in which total seven compounds were found at the concentrations with a potential adverse health effects. This work provides a wide reconnaissance on broad spectrum of organic micro-contaminants in groundwater in North China.

  16. Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Mfumu Kihumba, Antoine; Ndembo Longo, Jean; Vanclooster, Marnik

    2016-03-01

    A multivariate statistical modelling approach was applied to explain the anthropogenic pressure of nitrate pollution on the Kinshasa groundwater body (Democratic Republic of Congo). Multiple regression and regression tree models were compared and used to identify major environmental factors that control the groundwater nitrate concentration in this region. The analyses were made in terms of physical attributes related to the topography, land use, geology and hydrogeology in the capture zone of different groundwater sampling stations. For the nitrate data, groundwater datasets from two different surveys were used. The statistical models identified the topography, the residential area, the service land (cemetery), and the surface-water land-use classes as major factors explaining nitrate occurrence in the groundwater. Also, groundwater nitrate pollution depends not on one single factor but on the combined influence of factors representing nitrogen loading sources and aquifer susceptibility characteristics. The groundwater nitrate pressure was better predicted with the regression tree model than with the multiple regression model. Furthermore, the results elucidated the sensitivity of the model performance towards the method of delineation of the capture zones. For pollution modelling at the monitoring points, therefore, it is better to identify capture-zone shapes based on a conceptual hydrogeological model rather than to adopt arbitrary circular capture zones.

  17. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant

    PubMed Central

    2012-01-01

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area. PMID:23369182

  18. Multivariate statistical assessment of heavy metal pollution sources of groundwater around a lead and zinc plant.

    PubMed

    Zamani, Abbas Ali; Yaftian, Mohammad Reza; Parizanganeh, Abdolhossein

    2012-12-17

    The contamination of groundwater by heavy metal ions around a lead and zinc plant has been studied. As a case study groundwater contamination in Bonab Industrial Estate (Zanjan-Iran) for iron, cobalt, nickel, copper, zinc, cadmium and lead content was investigated using differential pulse polarography (DPP). Although, cobalt, copper and zinc were found correspondingly in 47.8%, 100.0%, and 100.0% of the samples, they did not contain these metals above their maximum contaminant levels (MCLs). Cadmium was detected in 65.2% of the samples and 17.4% of them were polluted by this metal. All samples contained detectable levels of lead and iron with 8.7% and 13.0% of the samples higher than their MCLs. Nickel was also found in 78.3% of the samples, out of which 8.7% were polluted. In general, the results revealed the contamination of groundwater sources in the studied zone. The higher health risks are related to lead, nickel, and cadmium ions. Multivariate statistical techniques were applied for interpreting the experimental data and giving a description for the sources. The data analysis showed correlations and similarities between investigated heavy metals and helps to classify these ion groups. Cluster analysis identified five clusters among the studied heavy metals. Cluster 1 consisted of Pb, Cu, and cluster 3 included Cd, Fe; also each of the elements Zn, Co and Ni was located in groups with single member. The same results were obtained by factor analysis. Statistical investigations revealed that anthropogenic factors and notably lead and zinc plant and pedo-geochemical pollution sources are influencing water quality in the studied area.

  19. Nitrate retention as it affects groundwater pollution in Mid-Atlantic soils. Completion report

    SciTech Connect

    Sparks, D.L.

    1987-09-14

    Nitrate retention (NO/sub 3/) as it affects groundwater pollution was investigated on nine major Mid-Atlantic soil types. Objectives of the study were to determine the magnitude and rate of NO/sub 3/ retention and the effect of anion competition on NO/sub 3/ retention. The soils had a wide range in organic matter, clay and oxide content. Charge properties including anion exchange capacity (AEC) and point of zero salt effect (PZSE) were determined. The PZSE values were low indicating little anion-adsorption capacity, while AEC values often significant and increased with profile depth as oxide and clay contents increased.

  20. Risk-based prioritization methodology for the classification of groundwater pollution sources.

    PubMed

    Pizzol, Lisa; Zabeo, Alex; Critto, Andrea; Giubilato, Elisa; Marcomini, Antonio

    2015-02-15

    Water management is one of the EU environmental priorities and it is one of the most serious challenges that today's major cities are facing. The main European regulation for the protection of water resources is represented by the Water Framework Directive (WFD) and the Groundwater Directive (2006/118/EC) which require the identification, risk-based ranking and management of sources of pollution and the identification of those contamination sources that threaten the achievement of groundwater's good quality status. The aim of this paper is to present a new risk-based prioritization methodology to support the determination of a management strategy for the achievement of the good quality status of groundwater. The proposed methodology encompasses the following steps: 1) hazard analysis, 2) pathway analysis, 3) receptor vulnerability analysis and 4) relative risk estimation. Moreover, by integrating GIS functionalities and Multi Criteria Decision Analysis (MCDA) techniques, it allows to: i) deal with several sources and multiple impacted receptors within the area of concern; ii) identify different receptors' vulnerability levels according to specific groundwater uses; iii) assess the risks posed by all contamination sources in the area; and iv) provide a risk-based ranking of the contamination sources that can threaten the achievement of the groundwater good quality status. The application of the proposed framework to a well-known industrialized area located in the surroundings of Milan (Italy) is illustrated in order to demonstrate the effectiveness of the proposed framework in supporting the identification of intervention priorities. Among the 32 sources analyzed in the case study, three sources received the highest relevance score, due to the medium-high relative risks estimated for Chromium (VI) and Perchloroethylene. The case study application showed that the developed methodology is flexible and easy to adapt to different contexts, thanks to the possibility to

  1. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater.

  2. Comparison of policies for controlling groundwater nitrate pollution from agriculture in the Eastern Mancha aquifer (Spain).

    NASA Astrophysics Data System (ADS)

    Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Stalder, A.; Garcia-Prats, A.; Henriquez-Dole, L.

    2012-04-01

    Groundwater nitrate pollution from agriculture has given rise to different legal frameworks. The European Water Framework Directive (WFD) is the most recent one. This work aims to help in the definition of the most cost-efficient policy to control non-point groundwater to attain the objectives established in the WFD. In this study we performed a cost-effectiveness analysis of different policies for controlling groundwater nitrate pollution from agriculture. The policies considered were taxes on nitrogen fertilizers, water price, taxes on emissions and fertilizer standards. We used a hydro-economic model, where we maximized the farmer's benefits. The benefits were calculated as sum of crop revenue minus variable and fixed cost per hectare minus the damage costs from nitrogen leaching. In the cost-effectiveness analysis we considered the costs as the reduction on benefits due to the application of a policy and the effectiveness the reduction on nitrate leaching. The methodology was applied to Eastern Mancha aquifer in Spain. The aquifer is part of the Júcar River Basin, which was declared as EU Pilot Basin in 2002 for the implementation of the WFD. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has provoked a steady decline of groundwater levels and a reduction of groundwater discharged into the Júcar River, as well as nitrate concentrations higher than those allowed by the WFD at certain locations (above 100 mg/l.). Crop revenue was calculated using production functions and the amount of nitrate leached was estimated by calibrated leaching functions. These functions were obtained by using an agronomic model (a GIS version of EPIC, GEPIC), and they depend on the water and the fertilizer use. The Eastern Mancha System was divided into zones of homogeneous crop production and nitrate leaching properties. Given the different soil types and climatic

  3. Locating Groundwater Pollution Source using Breakthrough Curve Characteristics and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Jain, A.; Srivastava, R.

    2005-12-01

    The identification of pollution sources in aquifers is an important area of research not only for the hydrologists but also for the local and Federal agencies and defense organizations. Once the data in terms of pollutant concentration measurements at observation wells become known, it is important to identify the polluting industry in order to implement punitive or remedial measures. Traditionally, hydrologists have relied on the conceptual methods for the identification of groundwater pollution sources. The problem of identification of groundwater pollution sources using the conceptual methods requires a thorough understanding of the groundwater flow and contaminant transport processes and inverse modeling procedures that are highly complex and difficult to implement. Recently, the soft computing techniques, such as artificial neural networks (ANNs) and genetic algorithms, have provided an attractive and easy to implement alternative to solve complex problems efficiently. Some researchers have used ANNs for the identification of pollution sources in aquifers. A major problem with most previous studies using ANNs has been the large size of the neural networks that are needed to model the inverse problem. The breakthrough curves at an observation well may consist of hundreds of concentration measurements, and presenting all of them to the input layer of an ANN not only results in humongous networks but also requires large amount of training and testing data sets to develop the ANN models. This paper presents the results of a study aimed at using certain characteristics of the breakthrough curves and ANNs for determining the distance of the pollution source from a given observation well. Two different neural network models are developed that differ in the manner of characterizing the breakthrough curves. The first ANN model uses five parameters, similar to the synthetic unit hydrograph parameters, to characterize the breakthrough curves. The five parameters employed

  4. Isotopic tracing of landfill leachates and pollutant lead mobility in soil and groundwater.

    PubMed

    Vilomet, J D; Veron, A; Ambrosi, J P; Moustier, S; Bottero, J Y; Chatelet-Snidaro, L

    2003-10-15

    Here we provide evidence of the capability of stable lead isotopes to trace landfill leachate in a shallow groundwater. The municipal landfill we have investigated is located in southeastern France. It has no bottom liner, and wastes are placed directly on the ground. Stable lead isotopes allow the characterization of this landfill leachate signature (206Pb/207Pb = 1.189 +/- 0.004) that is clearly different from that of the local atmosphere (206Pb/207Pb = 1.150 +/- 0.006) and crustal lead (206Pb/207Pb = 1.200 +/- 0.005). Piezometers located in the direct vicinity of the landfill generally display this contaminant imprint. The landfill plume is monitored up to 1000 m downgradient of the landfill, in very good agreement with evaluation from chloride concentration. Meanwhile, 206Pb/207Pb ratios measured at a piezometer located 4600 m downgradient of the landfill suggest a contamination by the landfill plume. This result shows that the complexity of a pollutant plume dispersion in this shallow groundwater system requires several independent tracers to clearly resolve origin and transport pathways for contaminants. Furthermore, seasonal rainfall variation for this Mediterranean mixed Quaternary alluvion reservoir and the use of KCl fertilizers might favor an efficient remobilization of atmospheric lead in plowed soils and its transfer into groundwater as shown by lead isotope systematics.

  5. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    NASA Astrophysics Data System (ADS)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  6. A data parsimonious model for capturing snapshots of groundwater pollution sources

    NASA Astrophysics Data System (ADS)

    Chaubey, Jyoti; Kashyap, Deepak

    2017-02-01

    Presented herein is a data parsimonious model for identification of regional and local groundwater pollution sources at a reference time employing corresponding fields of head, concentration and its time derivative. The regional source flux, assumed to be uniformly distributed, is viewed as the causative factor for the widely prevalent background concentration. The localized concentration-excesses are attributed to flux from local sources distributed around the respective centroids. The groundwater pollution is parameterized by flux from regional and local sources, and distribution parameters of the latter. These parameters are estimated by minimizing the sum of squares of differences between the observed and simulated concentration fields. The concentration field is simulated by a numerical solution of the transient solute transport equation. The equation is solved assuming the temporal derivative term to be known a priori and merging it with the sink term. This strategy circumvents the requirement of dynamic concentration data. The head field is generated using discrete point head data employing a specially devised interpolator that controls the numerical-differentiation errors and simultaneously ensures micro-level mass balance. This measure eliminates the requirement of flow modeling without compromising the sanctity of head field. The model after due verification has been illustrated employing available and simulated data from an area lying between two rivers Yamuna and Krishni in India.

  7. A data parsimonious model for capturing snapshots of groundwater pollution sources.

    PubMed

    Chaubey, Jyoti; Kashyap, Deepak

    2017-02-01

    Presented herein is a data parsimonious model for identification of regional and local groundwater pollution sources at a reference time employing corresponding fields of head, concentration and its time derivative. The regional source flux, assumed to be uniformly distributed, is viewed as the causative factor for the widely prevalent background concentration. The localized concentration-excesses are attributed to flux from local sources distributed around the respective centroids. The groundwater pollution is parameterized by flux from regional and local sources, and distribution parameters of the latter. These parameters are estimated by minimizing the sum of squares of differences between the observed and simulated concentration fields. The concentration field is simulated by a numerical solution of the transient solute transport equation. The equation is solved assuming the temporal derivative term to be known a priori and merging it with the sink term. This strategy circumvents the requirement of dynamic concentration data. The head field is generated using discrete point head data employing a specially devised interpolator that controls the numerical-differentiation errors and simultaneously ensures micro-level mass balance. This measure eliminates the requirement of flow modeling without compromising the sanctity of head field. The model after due verification has been illustrated employing available and simulated data from an area lying between two rivers Yamuna and Krishni in India.

  8. Endosulfan leaching from Typic Argiudolls in soybean tillage areas and groundwater pollution implications.

    PubMed

    Grondona, Sebastián I; Gonzalez, Mariana; Martínez, Daniel E; Massone, Héctor E; Miglioranza, Karina S B

    2014-06-15

    Endosulfan has been recently added to Persistent Organic Pollutants (POPs) list and due to its extensive and massive use and environmental persistence constitutes a potential hazard to groundwater resources. Undisturbed soil columns were used to evaluate endosulfan leaching in two series of Typic Argiudolls considering natural and agricultural land use. Columns were spiked with 10μgL(-1) of technical endosulfan and eluted under saturated flow with five pore volumes of distilled water. Alfa and beta isomer residues were detected in the upper soil level, with decreasing values through the profile, being influenced by soil texture and land use. The endosulfan sulfate metabolite was mainly found in the upper level linked to high dehydrogenase activity. Results from leachates (total endosulfan 27-87ngL(-1)) showed higher α-isomer mobility, and suggest alkaline hydrolysis of both endosulfan isomers. The agricultural use modified the physico-chemical properties and structure of soils leading to vertical migration of endosulfan isomers under saturated conditions. Intact column test provided information close to field data showing its utility for the assessment of groundwater pollution by endosulfan.

  9. Suburban Areas in Developing Countries and Their Relationship to Groundwater Pollution: A Case Study of Mar del Plata, Argentina

    PubMed

    Massone; Martinez; Cionchi; Bocanegra

    1998-03-01

    / Human activities carried out in suburban areas in many developing countries are directly related to groundwater pollution. The main objective of this paper is to analyze the relationship between land use and groundwater pollution in the suburban area of Mar del Plata (Argentina). We identified three elements that are endangering the quality of groundwater: horticultural activity, urban solid waste disposal sites, and sewage disposal on land. Fifty wells in an area of 175 km2 were sampled in order to verify the impact of these problems on groundwater. All samples were analyzed for major ions, and about 30 of them for fecal coliforms and heavy metals. Nineteen samples were selected for pesticide analyses. The average nitrate content was 80 mg/liter, eight times the regional background value. Fecal coliforms were detected in 60% of the analyzed samples. Zinc content and a high Cl-/HCO3- ratio were observed in the surroundings of the solid waste disposal area. Moreover, lindane and heptachlor pesticides were detected in ten samples.KEY WORDS: Suburban areas; Groundwater pollution; Groundwater management; Argentina

  10. Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle

    NASA Astrophysics Data System (ADS)

    Vizintin, Goran; Souvent, Petra; Veselič, Miran; Cencur Curk, Barbara

    2009-10-01

    SummaryThis paper presents the results of the 5th FP project AISUWRS (Assessing and Improving the Sustainability of Urban Water Resources and Systems) which aimed to assess the impact of the urban water infrastructure to underlying or nearby aquifers with the urban water balance modelling approach - a chain of different models that handle with contaminant fluxes and the movement of contaminants from the urban infrastructure into the underlying aquifer. An existing urban water management model UVQ was linked to a model for sewer infiltration and exfiltration (NEIMO), as well as unsaturated zone models (SLeakI/POSI, UL_FLOW) with existing numerical groundwater models. The linked process models offer the prospect of better quantification of urban water balance and contaminant loads, including improved estimates of total recharge and its components in urban areas. Once the model framework has been set up for a selected city, it can easily be updated in the future and it can be used for other purposes like planning of local remediation measures in the vicinity of individual contaminant spillages. This paper describes the application and results of the urban water model chain for the city of Ljubljana, which is the capital of Slovenia. The results from this study suggest that residential land-uses in urban areas with thick unsaturated zone may have significantly smaller impact on the groundwater than agriculture or industry. This can be seen as a speculative understanding of the groundwater pollutions problems. In this respect, use of sustainable urban development systems like on-site infiltration of roof runoff and improved sewer control and standards could result in better groundwater quality.

  11. Detecting leachate plumes and groundwater pollution at Ruseifa municipal landfill utilizing VLF-EM method

    NASA Astrophysics Data System (ADS)

    Al-Tarazi, E.; Abu Rajab, J.; Al-Naqa, A.; El-Waheidi, M.

    2008-09-01

    A Very Low Frequency-Electromagnetic (VLF-EM) survey was carried out in two sites of domestic waste of old and recent landfills. The landfill structures lie on a major highly fractured limestone aquifer of shallow groundwater less than 30 m, which is considered as the main source of fresh water in Amman-Zarqa region. A total of 18 VLF-EM profiles were conducted with length ranges between 250 and 1500 m. Hydrochemical and biochemical analysis of water samples, taken from wells in the region, has also been conducted. The integrated results of previous DC resistivity method of the same study area and the outcomes of the 2-D tipper inversion of VLF-EM data proved the efficiency of this method in locating shallow and deep leachate plume with resistivity less than 20 Ω m, and enabling the mapping of anomalous bodies and their extensions down to 40 m depth. The sign of groundwater contamination was noticed in many surrounding wells resulting in the high number of fecal coliform bacteria and total coliform bacteria and the increase in inorganic parameters such as chloride (Cl). The pollution of groundwater wells in the landfill area is attributed to the leachate bodies which flow through the upper part of Wadi Es Sir (A7) or Amman-Wadi Es Sir Aquifer (B2/A7). Furthermore, several structural features were detected and the direction of local groundwater movement has been determined. The structural features have been found to have critical effects on the flowing of leachate plume towards north-northeast and west-southwest of the potable aquifer in the area.

  12. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters

    NASA Astrophysics Data System (ADS)

    Kunkel, R.; Kreins, P.; Tetzlaff, B.; Wendland, F.

    2009-04-01

    The fundamental objectives of the European Union-Water Framework Directive and the EU Groundwater Directive are to attain a good status of water and groundwater resources in the member states of the EU by 2015. Following the implementation time table, the EU member States carried out a review about the qualitative and quantitative status for all river basins in the EU. For river basins, whose good status cannot be guaranteed by 2015, catchment wide operational plans and measurement programs are to be drafted and implemented until 2009. In the river basin district Weser, Germany, which comprises a catchment area of ca. 49.000 km2, the achievement of the good status is unclear, or rather unlikely for 63% of the groundwater bodies. Inputs from diffuse sources and most of all nitrogen losses from agriculturally used land have been identified as the main reasons for exceeding the groundwater threshold value for nitrate (50 mg/l) and for failing the „good qualitative status" of groundwater in 2015. For this reason the drafting and implementation of measurement programs in the Weser basin are primarily focused on nitrate. The achievement of good qualitative status of groundwater bodies entails a particular challenge especially for large river basins as the complex ecological, hydrological, hydrogeological and agro-economic relationships have to be considered simultaneously. Integrated large scale agroeconomic- hydrologic models are powerful tools to analyze the actual pollution loads and "hot spot" areas and to predict the temporal and spatial effects of reduction measures. We used the interdisciplinary model network REGFLUD to predict the nitrogen intakes into groundwater and the nitrogen losses to surface waters by different pathways at the regional scale using an area differentiated approach. The model system combines the agro-economic model RAUMIS for estimating nitrogen surpluses from agriculture and the hydrological models GROWA/DENUZ/WEKU for describing the

  13. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    continuous tide on the coastal side. The integrated surface water-groundwater numerical model IRENE (Spanoudaki et al., 2009, Spanoudaki, 2010) was also used in the study, with the numerical model predictions being compared with experimental results, which provide a valuable database for model calibration and validation. IRENE couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. The model uses the finite volume method with a cell-centered structured grid providing thus flexibility and accuracy in simulating irregular boundary geometries. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. References Ebrahimi, K., Falconer, R.A. and Lin B. (2007). Flow and solute fluxes in integrated wetland and coastal systems. Environmental Modelling and Software, 22 (9), 1337-1348. Hughes, S.A. (1995). Physical Modelling and Laboratory Techniques in Coastal Engineering. World Scientific Publishing Co. Pte. Ltd., Singapore. Kuan, W.K., Jin, G., Xin, P., Robinson, C. Gibbes, B. and Li. L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48 (2), doi:10.1029/2011WR010678. Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek

  14. Integrated methodology for assessing the HCH groundwater pollution at the multi-source contaminated mega-site Bitterfeld/Wolfen.

    PubMed

    Wycisk, Peter; Stollberg, Reiner; Neumann, Christian; Gossel, Wolfgang; Weiss, Holger; Weber, Roland

    2013-04-01

    A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local

  15. Appetite for danger - genetic potential for PCP degradation at historically polluted groundwater sites

    NASA Astrophysics Data System (ADS)

    Mikkonen, Anu; Yläranta, Kati; Tiirola, Marja; Romantschuk, Martin; Sinkkonen, Aki

    2016-04-01

    Pentachlorophenol (PCP) is a priority pollutant of exclusively anthropogenic origin. Formerly used commonly in timber preservatives, PCP has persisted at polluted groundwater sites decades after its use was banned, typically as the last detectable contaminant component. Notorious for its toxicity and poor biodegradability, little is known about the genetic potential and pathways for PCP degradation in the environment. The only fully characterized mineralization pathway is initiated by the enzyme coded by chromosomal pcpB gene, previously detected in PCP degrading Sphingomonadaceae bacteria isolated at two continents. However, there is no information about the abundance or diversity of any PCP degradation related gene at contaminated sites in situ. Our aim was to assess whether pcpB and/or sphingomonads seem to play a role in in situ degradation of PCP, by studying whether pcpB i) is detectable at chlorophenol-polluted groundwater sediments, ii) responds to PCP concentration changes, and iii) shows correlation with the abundance of sphingomonads or a specific sphingomonad genus. Novel protocols for quantification and profiling of pcpB, with primers covering full known diversity, were developed and tested at two sites in Finland with well-documented long-term chlorophenol contamination history: Kärkölä and Pursiala. High throughput sequencing complemented characterization of the total bacterial community and pcpB gene pool. The relative abundance of pcpB in bacterial community was associated with spatial variability in groundwater PCP concentration in Pursiala, and with temporal differences in groundwater PCP concentration in Kärkölä. T-RFLP fingerprinting results indicated and Ion Torrent PGM and Sanger sequencing confirmed the presence of a single phylotype of pcpB at both geographically distant, historically contaminated sites, matching the one detected previously in Canadian bioreactor clones and Kärkölä bioreactor isolates. Sphingomonad abundance

  16. Biocides in hydraulic fracturing: hazard and vulnerability with respect to potential groundwater pollution

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Wilson, Miles; Davies, Richard

    2016-04-01

    Biocides are one possible chemical additive to frack fluids and their role is to control bacterial growth. Bacterial growth might lead to biofilm build up; and acid sulfide species and hydrogen sulfide (H2S) production: biofilm build up may reduce formation permeability and hinder gas extraction. Kahrilas et al. (2014) published a review of common biocides used in fracking in the USA. The biocides assessed in the review were the sixteen most commonly used in the USA, based on the hydraulic fracturing chemical registry Frac Focus (Frac Focus, 2015). However, the review of Kahrilas et al. (2014) contained no data or observations and so the objective of this study was to consider whether biocides proposed for use in hydrofacturing could be a threat to English groundwater. The study considered all groundwater samples analysed for biocides in English groundwater between 2005 and 2014. The monitoring records were compared to: records of application (both amount and area); and chemical and molecular data for the biocides. The study did not use traditional adsorption and degradation data as these parameters are to prone to variability and are not pure molecular parameters. The study then used the approach of Worrall and Thomsen (2004) to consider the hazard represented by proposed frack biocides and the approach of Worrall and Kolpin (2003) to consider the vulnerability of the areas of potential shale gas exploitation. The study showed that of the 113 biocides tested for in English groundwaters in the decade 2005 - 2014 that 95 were detected above 0.1 g/l . Of these 95, 41 were compounds that were not recorded as being applied during the period of record and the detection of these 41 compounds did not decline over the 10 year period which implies very long residence times and that once compounds do pollute an aquifer then they will be a persistent problem. Furthermore, the solubility of the range of biocides used in frack fluids would imply a potentially higher hazard

  17. Groundwater pollution around an industrial area in the coastal stretch of Maharashtra State, India.

    PubMed

    Naik, Pradeep K; Dehury, Biranchi N; Tiwari, Arun N

    2007-09-01

    The main objective of this paper is to examine pollution threat, especially to the groundwater resources, around Tarapur industrial area (also called the Tarapur MIDC area) located on the Arabian Sea Coast in Thane District of Maharashtra State, India and suggest remedial measures that may also be relevant to other industrial areas on the Indian Sea Coast. One hundred and thirty one samples were collected from various sources, such as dugwells, borewells, dug-cum-borewells, effluent sumps, drainage channels (effluent channels), creeks and ocean, for chemical analyses. These analyses show that the area in general is characterized by hard water and high salinity hazard, possibly due to its proximity and hydraulic connection with the sea. Although the potability of groundwater is questionable in certain pockets, it is good enough for irrigation purposes at present. Low pH value and high heavy metal contents in the adjoining Muramba creek water is a matter of great concern and may be attributed to the indiscriminate disposal of industrial effluents to the drainage channels connecting the creek. Muramba Creek is well connected with the Arabian Sea, and there are evidences of seawater intrusion around this creek. Because of the fact that Muramba Creek is highly polluted, and is hydraulically connected with the dugwells and borewells surrounding the creek, it cannot be ruled out that the groundwater around this creek is susceptible to contamination. Unless measures are not taken immediately to stop the indiscriminate disposal of the solid wastes and liquid effluents in open ground and drainage channels, and measures are not taken to maintain the appropriate pH values at the effluent treatment facilities before their disposal, the problem would indeed be formidable one day, and it will be too late then for the authorities to take care of the resulting maladies. Few suggestions have been given for controlling and managing the industrial pollution around the Tarapur MIDC

  18. Use of geoelectrical methods in groundwater pollution surveys in a coastal environment

    USGS Publications Warehouse

    Frohlich, R.K.; Urish, D.W.; Fuller, J.; O'Reilly, M.

    1994-01-01

    Ghyben-Herzberg relation appears to be disturbed in the area of aquifer pollution. This rise in the conductivity boundary is caused by the highly mineralized bottom of the contaminant plume that submerges into the saltwater saturated zone. In the area of high freshwater pollution the groundwater can be subdivided into three layers that show a decrease in resistivity with depth. The formation factor, F, defined as the ratio of bulk aquifer resistivity to pore water resistivity, shows unusually high values between 10 and 12. These high values are unexpected for an unconsolidated sand. Pollution residues are suspected to clog the pores and thus to increase the resistivity. It is possible that iron-oxidizing bacteria and the precipitation of dissolved iron or organic pollutants are the cause of the high values of F. If proven correct, these interesting possibilities could lead to future new applications of the geoelectrical resistivity method in contaminant hydroloy.

  19. Climate change impacts on risks of groundwater pollution by herbicides: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Steffens, Karin; Moeys, Julien; Lindström, Bodil; Kreuger, Jenny; Lewan, Elisabet; Jarvis, Nick

    2014-05-01

    Groundwater contributes nearly half of the Swedish drinking water supply, which therefore needs to be protected both under present and future climate conditions. Pesticides are sometimes found in Swedish groundwater in concentrations exceeding the EU-drinking water limit and thus constitute a threat. The aim of this study was to assess the present and future risks of groundwater pollution at the regional scale by currently approved herbicides. We identified representative combinations of major crop types and their specific herbicide usage (product, dose and application timing) based on long-term monitoring data from two agricultural catchments in the South-West of Sweden. All these combinations were simulated with the regional version of the pesticide fate model MACRO (called MACRO-SE) for the periods 1970-1999 and 2070-2099 for a major crop production region in South West Sweden. To represent the uncertainty in future climate data, we applied a five-member ensemble based on different climate model projections downscaled with the RCA3-model (Swedish Meteorological and Hydrological Institute). In addition to the direct impacts of changes in the climate, the risks of herbicide leaching in the future will also be affected by likely changes in weed pressure and land use and management practices (e.g. changes in crop rotations and application timings). To assess the relative importance of such factors we performed a preliminary sensitivity analysis which provided us with a hierarchical structure for constructing future herbicide use scenarios for the regional scale model runs. The regional scale analysis gave average concentrations of herbicides leaching to groundwater for a large number of combinations of soils, crops and compounds. The results showed that future scenarios for herbicide use (more autumn-sown crops, more frequent multiple applications on one crop, and a shift from grassland to arable crops such as maize) imply significantly greater risks of herbicide

  20. Designing, Testing, and Validating an Attitudinal Survey on an Environmental Topic: A Groundwater Pollution Survey Instrument for Secondary School Students

    ERIC Educational Resources Information Center

    Lacosta-Gabari, Idoya; Fernandez-Manzanal, Rosario; Sanchez-Gonzalez, Dolores

    2009-01-01

    Research in environmental attitudes' assessment has significantly increased in recent years. The development of specific attitude scales for specific environmental problems has often been proposed. This paper describes the Groundwater Pollution Test (GPT), a 19-item survey instrument using a Likert-type scale. The survey has been used with…

  1. Greenhouse gas emission and groundwater pollution potential of soils amended with raw swine manure, dry and wet pyrolyzed swine biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research is to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with raw swine solid and swine biochars made from different thermochemical conditions. Triplicate sets of small pots were designed: 1) control soil with a 50/50 mixture of...

  2. Use of Enterococcus, BST and sterols as indicators for poultry pollution source tracking in surface and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study has applied Enterococcus, Bacterial Source Tracking (BST) and sterol analysis for pollution source identification from poultry sources. Fecal contamination was detected in 100% of surface water and 15% of groundwater sites tested. E. faecium was the dominant species in aged litter sampl...

  3. Mathematical numeric models for assessing the groundwater pollution from Sanitary landfills

    NASA Astrophysics Data System (ADS)

    Petrov, Vasil; Stoyanov, Nikolay; Sotinev, Petar

    2014-05-01

    Landfills are among the most common sources of pollution in ground water. Their widespread deployment, prolonged usage and the serious damage they cause to all of the elements of the environment are the reasons, which make the study of the problem particularly relevant. Most dangerous of all are the open dumps used until the middle of the twentieth century, from which large amounts of liquid emissions flowed freely (landfill infiltrate). In recent decades, the problem is solved by the construction of sanitary landfills in which they bury waste or solid residue from waste utilization plants. The bottom and the sides of the sanitary landfills are covered with a protective waterproof screen made of clay and polyethylene and the landfill infiltrate is led outside through a drainage system. This method of disposal severely limits any leakage of gas and liquid emissions into the environment and virtually eliminates the possibility of contamination. The main topic in the conducted hydrogeological study was a quantitative assessment of groundwater pollution and the environmental effects of re-landfilling of an old open dump into a new sanitary landfill, following the example of the municipal landfill of Asenovgrad, Bulgaria. The study includes: 1.A set of drilling, geophysical and hydrogeological field and laboratory studies on: -the definition and designation of the spatial limits of the main hydrogeological units; -identification of filtration parameters and migration characteristics of the main hydrogeological units; -clarifying the conditions for the sustentation and drainage of groundwater; -determininng the structure of the filtration field; -identifying and assessing the size and the extent of groundwater contamination from the old open dump . 2.Mathematical numeric models of migration and entry conditions of contaminants below the bottom of the landfill unit, with which the natural protection of the geological environment, the protective effect of the engineering

  4. Quantifying effects of soil heterogeneity on groundwater pollution at four sites in USA.

    PubMed

    Vuurens, Saskia; Stagnitti, Frank; de Rooij, Gerrit; Boll, Jan; Li, Ling; LeBlanc, Marc; Ierodiaconou, Daniel; Versace, Vince; Salzman, Scott

    2005-05-01

    Four sites located in the north-eastern region of the United States of America have been chosen to investigate the impacts of soil heterogeneity in the transport of solutes (bromide and chloride) through the vadose zone (the zone in the soil that lies below the root zone and above the permanent saturated groundwater). A recently proposed mathematical model based on the cumulative beta distribution has been deployed to compare and contrast the regions' heterogeneity from multiple sample percolation experiments. Significant differences in patterns of solute leaching were observed even over a small spatial scale, indicating that traditional sampling methods for solute transport, for example the gravity pan or suction lysimeters, or more recent inventions such as the multiple sample percolation systems may not be effective in estimating solute fluxes in soils when a significant degree of soil heterogeneity is present. Consequently, ignoring soil heterogeneity in solute transport studies will likely result in under- or overprediction of leached fluxes and potentially lead to serious pollution of soils and/or groundwater. The cumulative beta distribution technique is found to be a versatile and simple technique of gaining valuable information regarding soil heterogeneity effects on solute transport. It is also an excellent tool for guiding future decisions of experimental designs particularly in regard to the number of samples within one site and the number of sampling locations between sites required to obtain a representative estimate of field solute or drainage flux.

  5. Soak-away systems and possible groundwater pollution problems in developing countries.

    PubMed

    Olanrewaju, D

    1990-06-01

    People in the developing countries do not have adequate sanitation and everyone defaecates somewhere. Those who do not have a toilet or latrine have to resort to indiscriminate defaecation either in the sea shore such as in the Lagos lagoon in Nigeria, or vacant plots and open drains as in Iddo area of Lagos and sides of rural footpaths. Water closets (W.C.s) are the most accepted sanitation system, but the cost of operating and maintaining them is high. As a result sewerage is not appropriate for the majority of people in developing countries whose greater population live in rural areas and small towns. The majority of people in urban areas use septic tanks and very often most of these septic tanks are not properly designed or sometimes located too close to sources of water supply, which then become contaminated. It is generally believed that systems like septic tanks, pit latrines and aqua privies are capable of totally eliminating these pathogens. There are many problems associated with the physical, chemical and biological processes that may result in groundwater pollution from septic tanks. Many experiments have shown that faecal organisms do not travel any significant distance radially as a result of concentration gradient. They are, however, carried with groundwater flow. The task is to prevent pathogens from getting into the aquifer. This paper attempts to highlight the ability of some enteric viruses to survive septic tank wastewater treatment.

  6. Nitrate pollution in intensively farmed regions: What are the prospects for sustaining high-quality groundwater?

    NASA Astrophysics Data System (ADS)

    Howden, Nicholas J. K.; Burt, Tim P.; Worrall, Fred; Mathias, Simon; Whelan, Mick J.

    2011-06-01

    Widespread pollution of groundwater by nutrients due to 20th century agricultural intensification has been of major concern in the developed world for several decades. This paper considers the River Thames catchment (UK), where water-quality monitoring at Hampton (just upstream of London) has produced continuous records for nitrate for the last 140 years, the longest continuous record of water chemistry anywhere in the world. For the same period, data are available to characterize changes in both land use and land management at an annual scale. A modeling approach is used that combines two elements: an estimate of nitrate available for leaching due to land use and land management; and, an algorithm to route this leachable nitrate through to surface or groundwaters. Prior to agricultural intensification at the start of World War II, annual average inputs were around 50 kg ha-1, and river concentrations were stable at 1 to 2 mg l-1, suggesting in-stream denitrification capable of removing 35 (±15) kt N yr-1. Postintensification data suggest an accumulation of 100 (±40) kt N yr-1 in the catchment, most of which is stored in the aquifer. This build up of reactive N species within the catchments means that restoration of surface nitrate concentrations typical of the preintensification period would require massive basin-wide changes in land use and management that would compromise food security and take decades to be effective. Policy solutions need to embrace long-term management strategies as an urgent priority.

  7. Speciation of dissolved iron(II) and manganese(II) in a groundwater pollution plume

    SciTech Connect

    Jensen, D.L.; Boddum, J.K.; Redemann, S.; Christensen, T.H.

    1998-09-15

    Groundwater samples with high concentrations of Fe(II) and Mn(II), obtained from an anaerobic pollution plume, were speciated under anaerobic conditions in terms of colloidal (screen filtration and cross-flow ultrafiltration), complexed (ion-exchange resins), and free divalent species of Fe(II) and Mn(II). Most of the metal content in a nonfiltered sample passed through a 0.001 {micro}m membrane and was considered truly dissolved. Although free metal ions were the dominant species in the dissolved fraction, speciation modeling using MINTEQA2 suggested an average of 19% Fe(II) a/nd 20% Mn(II) were present as bicarbonate complexes, which are here operationally defined as labile. Organic complexes were not significant, although the groundwater contained up to 67 mg of C L{sup {minus}1}. Calculations with MINTEQA2 indicated that sample solutions representative of the truly dissolved fraction were strongly supersaturated with respect to siderite (FeCO{sub 3}) and moderately supersaturated with respect to rhodochrosite (MnCO{sub 3}). SEM-EDS (Scanning Electron Microscopy combined with Energy Dispersive X-ray Spectroscopy) analysis indicated that the colloidal fractions most likely consisted of clay type particles and iron sulfide precipitates. The amount of Mn(II) in the colloidal fractions was too low for determination by SEM-EDS. These results show that roughly 65% of the iron and manganese in anaerobic pollution plumes is present as free divalent ions and, according to the current thermodynamic database in MINTEQA2, the solutions are supersaturated with respect to carbonate.

  8. Optimal Management of Nitrate Pollution of Groundwater in Agricultural Watersheds Considering Environmental and Economic Constraints

    NASA Astrophysics Data System (ADS)

    Almasri, M. N.; Kaluarachchi, J. J.

    2007-05-01

    Groundwater pollution due to nitrogen species from various land use activities and practices is a common concern in most agricultural watersheds. Minimization of nonpoint source nitrogen pollution can be achieved by appropriate changes to land use practices to the extent of not affecting local economies that depend heavily on agricultural activities. Most prior research work focused on predicting nitrogen loading and/or fate and transport of nitrate in groundwater due to various agricultural activities. In this work, however, we propose to present a broad integrated methodology for the optimal management of nitrate contamination of ground water combining environmental assessment and economic cost evaluation through multi-criteria decision analysis. The proposed methodology incorporates an integrated physical modeling framework accounting for on-ground nitrogen loading and losses, soil nitrogen dynamics, and fate and transport of nitrate in ground water to compute the sustainable on-ground nitrogen loading such that the maximum contaminant level is not violated. A number of protection alternatives to stipulate the predicted sustainable on-ground nitrogen loading are evaluated using the decision analysis that employs the importance order of criteria approach for ranking and selection of the protection alternatives. The methodology was successfully demonstrated for the Sumas-Blaine aquifer in Washington State. The results showed the importance of using this integrated approach that predicts the sustainable on-ground nitrogen loadings and provides an insight to the economic consequences generated in satisfying the environmental constraints. The results also show that the proposed decision analysis framework, within certain limitation, is effective when selecting alternatives with competing demands.

  9. Study of groundwater vulnerability to pollution using the DRASTIC method coupled with a geographic information system (GIS): application to groundwater Beni Amir, Morocco

    NASA Astrophysics Data System (ADS)

    Knouz, Najat; Boudhar, Abdelghani; Bachaoui, El Mostafa

    2016-04-01

    Fresh water is the condition of all life on Earth for its vital role in the survival of living beings and in the social, economic and technological development. The Groundwater, as the surface water, is increasingly threatened by agricultural and industrial pollution. In this respect, the groundwater vulnerability assessment to pollution is a very valuable tool for resource protection, management of its quality and uses it in a sustainable way. The main objective of this study is the evaluation of groundwater vulnerability to pollution of the study area, Beni Amir, located in the first irrigated perimeter of Morocco, Tadla, using the DRASTIC method (depth to water, net recharge, aquifer media, soil media, Topography, impact of Vadose zone and hydraulic conductivity), and assessing the impact of each parameter on the DRASTIC vulnerability index by a sensitivity analysis. This study also highlights the role of geographic information systems (GIS) in assessing vulnerability. The Vulnerability index is calculated as the sum of product of ratings and weights assigned to each of the parameter DRASTIC. The results revealed four vulnerability classes, 7% of the study area has a high vulnerability, 31% are moderately vulnerable, 57% have a low vulnerability and 5% are of very low vulnerability.

  10. Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany

    NASA Astrophysics Data System (ADS)

    Osenbrück, Karsten; Fiedler, Stefan; KnöLler, Kay; Weise, Stephan M.; Sültenfuß, Jürgen; Oster, Harald; Strauch, Gerhard

    2006-12-01

    Nitrate pollution from agricultural activities often persistently affects groundwater quality due to long residence times in the vadose and saturated zone. In this study we used a lumped parameter approach to estimate the residence time of groundwater and nitrate from the agriculturally used Jahna-Aue drinking water catchment in Saxonia, Germany. Inverse modeling of measured concentrations of tritium and tritiogenic 3He revealed consistent mean residence times between 25 and 50 years for the young, nitrate-rich groundwater component, and high contributions (>75%) of an old, tracer-free, and nitrate-poor groundwater. The obtained age distributions are in accordance with the complex hydrogeological situation of the investigated catchment, suggesting that the shallow and therefore most vulnerable part of the aquifer is not connected to the production wells. High residence times are supported by low concentrations of CFCs and by radiogenic 4He as an independent age indicator. CFC concentrations only yield lower age limits due to identified problems with CFC contamination. Using the tracer-calibrated age distributions, future nitrate concentrations in the production wells most probably will remain below the drinking water limit because of the high dilution with old, nitrate-poor groundwater. Deterioration of the groundwater quality with respect to nitrate may occur if the groundwater pumping regime is changed so that the fraction of the younger, nitrate-bearing water is increased.

  11. Real-time management of an urban groundwater well field threatened by pollution.

    PubMed

    Bauser, Gero; Franssen, Harrie-Jan Hendricks; Kaiser, Hans-Peter; Kuhlmann, Ulrich; Stauffer, Fritz; Kinzelbach, Wolfgang

    2010-09-01

    We present an optimal real-time control approach for the management of drinking water well fields. The methodology is applied to the Hardhof field in the city of Zurich, Switzerland, which is threatened by diffuse pollution. The risk of attracting pollutants is higher if the pumping rate is increased and can be reduced by increasing artificial recharge (AR) or by adaptive allocation of the AR. The method was first tested in offline simulations with a three-dimensional finite element variably saturated subsurface flow model for the period January 2004-August 2005. The simulations revealed that (1) optimal control results were more effective than the historical control results and (2) the spatial distribution of AR should be different from the historical one. Next, the methodology was extended to a real-time control method based on the Ensemble Kalman Filter method, using 87 online groundwater head measurements, and tested at the site. The real-time control of the well field resulted in a decrease of the electrical conductivity of the water at critical measurement points which indicates a reduced inflow of water originating from contaminated sites. It can be concluded that the simulation and the application confirm the feasibility of the real-time control concept.

  12. Groundwater

    USGS Publications Warehouse

    Stonestrom, David A.; Wohl, Ellen E.

    2016-01-01

    Groundwater represents the terrestrial subsurface component of the hydrologic cycle. As such, groundwater is generally in motion, moving from elevated areas of recharge to lower areas of discharge. Groundwater usually moves in accordance with Darcy’s law (Dalmont, Paris: Les Fontaines Publiques de la Ville de Dijon, 1856). Groundwater residence times can be under a day in small upland catchments to over a million years in subcontinental-sized desert basins. The broadest definition of groundwater includes water in the unsaturated zone, considered briefly here. Water chemically bound to minerals, as in gypsum (CaSO4 • 2H2O) or hydrated clays, cannot flow in response to gradients in total hydraulic head (pressure head plus elevation head); such water is thus usually excluded from consideration as groundwater. In 1940, M. King Hubbert showed Darcy’s law to be a special case of thermodynamically based potential field equations governing fluid motion, thereby establishing groundwater hydraulics as a rigorous engineering science (Journal of Geology 48, pp. 785–944). The development of computer-enabled numerical methods for solving the field equations with real-world approximating geometries and boundary conditions in the mid-1960s ushered in the era of digital groundwater modeling. An estimated 30 percent of global fresh water is groundwater, compared to 0.3 percent that is surface water, 0.04 percent atmospheric water, and 70 percent that exists as ice, including permafrost (Shiklomanov and Rodda 2004, cited under Groundwater Occurrence). Groundwater thus constitutes the vast majority—over 98 percent—of the unfrozen fresh-water resources of the planet, excluding surface-water reservoirs. Environmental dimensions of groundwater are equally large, receiving attention on multiple disciplinary fronts. Riparian, streambed, and spring-pool habitats can be sensitively dependent on the amount and quality of groundwater inputs that modulate temperature and solutes

  13. The handbook of groundwater engineering

    SciTech Connect

    Delleur, J.W.

    1998-12-31

    From an engineering perspective, this book provides a practical treatment of groundwater flow; substance transport, well construction, groundwater production, site characterization, and remediation of groundwater pollution.

  14. Long-time risk of groundwater/drinking water pollution with sulphuric compounds beneath burned peatlands in Indonesia.

    PubMed

    Hammen, V C

    2007-01-01

    Smoke-haze episodes caused by vegetation and peat fires affect parts of Indonesia every year with significant impacts on human health and climate. The forest fires 1997/1998 were by far the largest in Indonesian history, burning between 5 and 8 million hectares before they were stopped by the monsoon rains in December 1997. Fires sprang up again in 1998 on Kalimantan when monsoon rain paused. Peat forests and peatlands are in particular severely affected. In the 1997/1998 haze event, 2.1-2.5 million hectare of peat swamp forest burnt in Indonesia. The remaining ash contains high concentrations of sulphur and sulphuric compounds which eventually leach into the groundwater, thus polluting groundwater and drinking water. The thicker the peat layer is and the higher the number of fires in the respective area the more sulphuric compounds will leach into the groundwater. Risk areas for the sulphur loads of the ash are identified.

  15. Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA.

    PubMed

    Li, Ruopu; Merchant, James W

    2013-03-01

    Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality. Most groundwater vulnerability modeling has been based on current hydrogeology and land use conditions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions that may change in response to future changes in climate and/or socio-economic conditions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with high vulnerability will expand northward and/or northwestward in Eastern North Dakota under different scenarios. GIS-based models that account for future changes in climate and land use can help decision-makers identify potential future threats to groundwater quality and take early steps to protect this critical resource.

  16. Vulnerability of groundwater resources to nitrate pollution: A simple and effective procedure for delimiting Nitrate Vulnerable Zones.

    PubMed

    Arauzo, Mercedes

    2017-01-01

    This research was undertaken to further our understanding of the factors involved in nonpoint-source nitrate pollution of groundwater. The shortcomings of some of the most commonly used methods for assessing groundwater vulnerability have been analysed and a new procedure that incorporates key improvements has been proposed. The new approach (LU-IV procedure) allows us to assess and map groundwater vulnerability to nitrate pollution and to accurately delimit the Nitrate Vulnerable Zones. The LU-IV procedure proved more accurate than the most widely used methods to assess groundwater vulnerability (DRASTIC, GOD), when compared with nitrate distribution in the groundwater of 46 aquifers included in the study (using the drainage basin as the unit of analysis). The proposed procedure stands out by meeting the following requirements: (1) it uses readily available parameters that provide enough data to feed the model, (2) it excludes redundant parameters, (3) it avoids the need to assign insufficiently contrasted weights to parameters, (4) it assess the whole catchment area that potentially drains N-polluted waters into the receptor aquifer, (5) it can be implemented within a GIS, and (6) it provides a multi-scale representation. As the LU-IV procedure has been demonstrated to be a reliable tool for delimiting NVZ, it could be particularly interesting to use it in countries where certain types of environmental data are either not available or have only limited availability. Based on this study (and according to the LU-IV procedure), it was concluded that an area of at least 1728km(2) should be considered as NVZ. This sharply contrasts with the current 328km(2) officially designated in the study area by the Spain's regional administrations. These results highlight the need to redefine the current NVZ designation, which is essential for an appropriate implementation of action programmes designed to restore water quality in line with Directive 91/676/EEC.

  17. [Groundwater quality in two arid areas of Morocco: impact of pollution on biodiversity and paleogeographic implications].

    PubMed

    Boughrous, A A; Yacoubi Khebiza, M; Boulanouar, M; Boutin, C; Messana, G

    2007-11-01

    The biodiversity and the quality of subterranean waters have been comparatively studied in the Haouz plain near Marrakesh and in the Tafilalet, in south-eastern Morocco. For this purpose, physicochemical and faunistic analyses were carried out on the water of ten wells and springs located in the area of Marrakesh, and in Errachidia area respectively. In the wells of Marrakesh, the average stygobiologic diversity is relatively high in the wells located upstream the dumping from the city where the ground water presents low contents of nitrates and orthophosphates. In contrast, the wells located in the spreading zone of Marrakesh wastewaters are characterized by the scarcity or the absence of stygobitic species; in these latter wells, the water is highly polluted. It is rich in nitrates, nitrites, ammonium, and the conductivity is rather high. In the area of Errachidia the faunistic inventory gathers some ten species, some of which are living in hot springs. The subterranean water is highly mineralised. In the two studied areas, the biodiversity decreases when well water is locally polluted, and the subterranean fauna completely disappears if the degree of contamination is important. This relation between the biodiversity and water quality which had already appeared in surface water, is confirmed within the wells of Marrakech. The groundwater fauna of both two areas presents similarities in relation to their geological history, mainly the various marine cycles of marine transgressions-regressions, which were at the origin of the settlement of the ancestors of the extant species, and the Atlasic orogenesis which separated the common ancestral populations into two separated stocks, involving a different evolution of the ancestors and a resulting speciation by vicariance.

  18. Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran.

    PubMed

    Rahmati, Omid; Melesse, Assefa M

    2016-10-15

    Effective management and sustainable development of groundwater resources of arid and semi-arid environments require monitoring of groundwater quality and quantity. The aim of this paper is to develop a reasonable methodological framework for producing the suitability map for drinking water through the geographic information system, remote sensing and field surveys of the Andimeshk-Dezful, Khozestan province, Iran as a semi-arid region. This study investigated the delineation of groundwater potential zone based on Dempster-Shafer (DS) theory of evidence and evaluate its applicability for groundwater potentiality mapping. The study also analyzed the spatial distribution of groundwater nitrate concentration; and produced the suitability map for drinking water. The study has been carried out with the following steps: i) creation of maps of groundwater conditioning factors; ii) assessment of groundwater occurrence characteristics; iii) creation of groundwater potentiality map (GPM) and model validation; iv) collection and chemical analysis of water samples; v) assessment of groundwater nitrate pollution; and vi) creation of groundwater potentiality and quality map. The performance of the DS was also evaluated using the receiver operating characteristic (ROC) curve method and pumping test data to ensure its generalization ability, which eventually, the GPM showed 87.76% accuracy. The detailed analysis of groundwater potentiality and quality revealed that the 'non acceptable' areas covers an area of about 1479km(2) (60%). The study will provide significant information for groundwater management and exploitation in areas where groundwater is a major source of water and its exploration is critical to support drinking water need.

  19. Tracing fecal pollution sources in karst groundwater by Bacteroidales genetic biomarkers, bacterial indicators, and environmental variables.

    PubMed

    Zhang, Ya; Kelly, Walton R; Panno, Samuel V; Liu, Wen-Tso

    2014-08-15

    Fecal contamination in Midwestern karst regions was evaluated by simultaneously measuring traditional bacterial indicators (coliforms and Escherichia coli), Bacteroidales-based biomarkers, and environmental variables. Water samples from springs and wells were collected from karst regions in Illinois (IL), Wisconsin (WI), Kentucky (KY), and Missouri (MO). Quantitative PCR (Q-PCR) with seven primer sets targeting different members of Bacteroidales was used to determine the origin of fecal contamination (i.e., from human waste, livestock waste, or both). Most samples were contaminated by both human and animal waste, with a few samples showing pollution solely by one or the other. Spring water tended to have higher levels of contamination than well water, and higher concentrations of fecal biomarkers were detected in urban springs compared to rural spring systems. However, there were discrepancies on contamination profile determined by Bacteroidales-based biomarkers and by traditional bacterial indicators. Among all the environmental parameters examined, E. coli, sulfate, total dissolved solids (TDS), and silicon were significantly correlated (p<0.05) with the level of Bacteroidales-based fecal indicators. A rapid screening method using total nitrogen (TN) and chloride (Cl(-)) concentrations to determine fecal contamination was shown to be effective and correlated well with Bacteroidales-based MST. The results suggest that human and livestock feces co-contaminated a large portion of karst groundwater systems in Midwestern regions, and the inclusion of traditional bacterial indicators, environmental variables, and Bacteroidales-based MST is an effective approach for identifying fecal contamination in karst regions.

  20. Decision support model for assessing aquifer pollution hazard and prioritizing groundwater resources management in the wet Pampa plain, Argentina.

    PubMed

    Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E

    2013-06-01

    This paper gives an account of the implementation of a decision support system for assessing aquifer pollution hazard and prioritizing subwatersheds for groundwater resources management in the southeastern Pampa plain of Argentina. The use of this system is demonstrated with an example from Dulce Stream Basin (1,000 km(2) encompassing 27 subwatersheds), which has high level of agricultural activities and extensive available data regarding aquifer geology. In the logic model, aquifer pollution hazard is assessed as a function of two primary topics: groundwater and soil conditions. This logic model shows the state of each evaluated landscape with respect to aquifer pollution hazard based mainly on the parameters of the DRASTIC and GOD models. The decision model allows prioritizing subwatersheds for groundwater resources management according to three main criteria including farming activities, agrochemical application, and irrigation use. Stakeholder participation, through interviews, in combination with expert judgment was used to select and weight each criterion. The resulting subwatershed priority map, by combining the logic and decision models, allowed identifying five subwatersheds in the upper and middle basin as the main aquifer protection areas. The results reasonably fit the natural conditions of the basin, identifying those subwatersheds with shallow water depth, loam-loam silt texture soil media and pasture land cover in the middle basin, and others with intensive agricultural activity, coinciding with the natural recharge area to the aquifer system. Major difficulties and some recommendations of applying this methodology in real-world situations are discussed.

  1. Risk assessment of surface water and groundwater pollution through agricultural activity on the catchment area of the Shelek River

    NASA Astrophysics Data System (ADS)

    Zubairov, Bulat; Dautova, Assel

    2015-04-01

    Agricultural activity in rural areas of Kazakhstan can create a potential risk of surface and groundwater pollution. In our contribution, we will focus on the risk assessment of surface water and groundwater pollution in the catchment area of the Shelek River basin in southeast Kazakhstan. Since soviet time, in the research area an intensive cultivation of tobacco was performed which means to use a big amount of pesticides during the growing-process. Therefore, this research was conducted in order to receive reliable data for management decisions justification and for practical testing of approach which is recommended by WHO for drinking water supply based on risks mapping. For our study, the soil and water samples from tobacco fields, artesian spring, and surface water source were taken for analysis on pesticides content. The samples were investigated in laboratory of Centre of Sanitary and Epidemiological Expertise of Almaty city (CSEE) according to approved methods from the national standards which are accepted in Kazakhstan. For the first time, in artesian spring small amount of nitrate pollution was found whose groundwater is one of the drinking water supplies of the region.

  2. [Pollution characteristics and distribution of polycyclic aromatic hydrocarbons and organochlorine pesticides in groundwater at Xiaodian Sewage Irrigation Area, Taiyuan City].

    PubMed

    Li, Jia-le; Zhang, Cai-xiang; Wang, Yan-xin; Liao, Xiao-ping; Yao, Lin-lin; Liu, Min; Xu, Liang

    2015-01-01

    Sewage irrigation has been widely used in areas of water shortage in northern China, and it may introduce organic contaminants into groundwater. To characterize the organic contaminants in groundwater in sewage irrigation area, the Xiaodian sewage irrigation area in Shanxi Province was chosen as the case study area. A total of 16 groundwater samples (13 from shallow aquifer, 3 from deep aquifer) were collected. Polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography-mass spectrometry (GC-MS) and organochlorine pesticides (OCPs) were ainalyzed by gas chromatography-electron capture detection (GC-ECD). The results showed that the concentrations of PAHs ranged from 13.98 to 505.89 ng x L(-1) with an average concentration of 115.67 ng x (L)(-1). The 2 and 3 ring-PAHs were the main components, while naphthalene and phenanthrene were most frequently detected. The concentrations of OCPs were in the range of 13.91-103.23 ng x L(-1) with an average concentration of 40.99 ng x L(-1), while alpha-HCH, delta-HCH, o,p'-DDD, Aldrin, Endosulfan-sulfate and HCB were most frequently detected. Overall, shallow aquifers appeared more contaminated with these pollutants than deep aquifers. In the area, the order of the organic contaminants concentration in groundwater was: East Main Channel < Beizhang Drainage < Taiyu Drainage, which indicated the quality of groundwater was influenced by the sewage irrigation.

  3. Is it worth protecting groundwater from diffuse pollution with agri-environmental schemes? A hydro-economic modeling approach.

    PubMed

    Hérivaux, Cécile; Orban, Philippe; Brouyère, Serge

    2013-10-15

    In Europe, 30% of groundwater bodies are considered to be at risk of not achieving the Water Framework Directive (WFD) 'good status' objective by 2015, and 45% are in doubt of doing so. Diffuse agricultural pollution is one of the main pressures affecting groundwater bodies. To tackle this problem, the WFD requires Member States to design and implement cost-effective programs of measures to achieve the 'good status' objective by 2027 at the latest. Hitherto, action plans have mainly consisted of promoting the adoption of Agri-Environmental Schemes (AES). This raises a number of questions concerning the effectiveness of such schemes for improving groundwater status, and the economic implications of their implementation. We propose a hydro-economic model that combines a hydrogeological model to simulate groundwater quality evolution with agronomic and economic components to assess the expected costs, effectiveness, and benefits of AES implementation. This hydro-economic model can be used to identify cost-effective AES combinations at groundwater-body scale and to show the benefits to be expected from the resulting improvement in groundwater quality. The model is applied here to a rural area encompassing the Hesbaye aquifer, a large chalk aquifer which supplies about 230,000 inhabitants in the city of Liege (Belgium) and is severely contaminated by agricultural nitrates. We show that the time frame within which improvements in the Hesbaye groundwater quality can be expected may be much longer than that required by the WFD. Current WFD programs based on AES may be inappropriate for achieving the 'good status' objective in the most productive agricultural areas, in particular because these schemes are insufficiently attractive. Achieving 'good status' by 2027 would demand a substantial change in the design of AES, involving costs that may not be offset by benefits in the case of chalk aquifers with long renewal times.

  4. Groundwater resource development

    SciTech Connect

    Hamill, L.

    1986-01-01

    This book provides engineers with a treatment of the steps involved in the exploration and evaluation of aquifers, the construction and testing of water supply boreholes, and the management of the resource. The important subjects of water quality criteria, pollution hazards and modeling techniques are also included. Contents: Development of Groundwater Resources; Groundwater: Fundamentals; Groundwater Exploration; Assessment of Aquifer Recharge and Potential Well Yield; Groundwater Quality; Well Design and Construction; Aquifer Hydraulics and Pumping Tests; Groundwater Pollution; Groundwater Management; Groundwater Modeling Techniques.

  5. A review of the potential and actual sources of pollution to groundwater in selected karst areas in Slovenia

    NASA Astrophysics Data System (ADS)

    Kovačič, G.; Ravbar, N.

    2005-02-01

    Slovenian karst areas extend over 43% of the country; limestones and dolomites of the Mesozoic era prevail. In Slovenia karst groundwater contributes up to 50% of the total drinking water supply. The quality of water is very high, despite the fact that it is extremely vulnerable to pollution. The present article is a study and a review of the potential and actual sources of pollution to the groundwater in the selected karst aquifers (the Kras, Velika planina and Snežnik plateaus), which differ in their natural characteristics. Unlike the other selected plateaus, the Kras plateau is inhabited. There are several settlements in the area and the industrial, agricultural and traffic activities carried out that represent a serious threat to the quality of karst groundwater. The Velika planina and Snežnik plateaus do not have permanent residents, however there are some serious hazards to the quality of the karst springs arising from sports, tourist, construction and farming activities, as well as from the traffic related to them. Despite relatively favourable conditions for protection, many important karst aquifers and springs are improperly protected in Slovenia. The reason is the lack of knowledge about sustainable water management in karst regions and the confusion in drinking water protection policy.

  6. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    PubMed

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  7. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data.

    PubMed

    Zhai, Yuanzheng; Lei, Yan; Wu, Jin; Teng, Yanguo; Wang, Jinsheng; Zhao, Xiaobing; Pan, Xiaodong

    2017-02-01

    Nitrate pollution has pervaded many parts of the world, especially in developing countries such as China. Based on the available groundwater nitrate data sets in China (2000-2015), the groundwater pollution levels at the provincial scale are evaluated which contains 33 provinces (units) except for Macau because of lacking data. Then, the potential risks posed to human health in national scale are quantified. In order to make the results more precise and systematical, both drinking and dermal contact exposure pathways are considered, and the influenced crowd are more finely divided into four groups to study the impacts of age and gender on the outcome, which include infants (0-6 months), children (7 months-17 years old), adult males (18 years old-), and adult females (18 years old-). Results indicate that there are seven units whose groundwater nitrate concentrations exceed the standard value with Shaanxi being a seriously poor condition. Facing the same level of nitrate, the health risk level changes in the order of infants > children > adult males > adult females. That is to say, minors and males are more vulnerable compared with adults and females, respectively. There is no adverse effect on adult females of the whole country, while gender really impacts on the health risk assessment result. Adult males, children, and infants face various degrees of health risk respectively in Shaanxi and Shandong, which are needed to pay more attention to.

  8. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China

    PubMed Central

    Zhong, Shuang; Geng, Hui; Zhang, Fengjun; Liu, Zhaoying; Wang, Tianye; Song, Boyu

    2015-01-01

    The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI), Cd, As, and Pb) analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I) and Nemerow pollution index (NI). The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS). The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream. PMID:26366176

  9. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China.

    PubMed

    Zhong, Shuang; Geng, Hui; Zhang, Fengjun; Liu, Zhaoying; Wang, Tianye; Song, Boyu

    2015-01-01

    The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI), Cd, As, and Pb) analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I) and Nemerow pollution index (NI). The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS). The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream.

  10. Using fluorescence spectroscopy coupled with chemometric analysis to investigate the origin, composition, and dynamics of dissolved organic matter in leachate-polluted groundwater.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Wang, Lei; Ma, Yan; Cui, Dong-Yu; Tan, Wen-Bing

    2015-06-01

    Groundwater was collected in 2011 and 2012, and fluorescence spectroscopy coupled with chemometric analysis was employed to investigate the composition, origin, and dynamics of dissolved organic matter (DOM) in the groundwater. The results showed that the groundwater DOM comprised protein-, fulvic-, and humic-like substances, and the protein-like component originated predominantly from microbial production. The groundwater pollution by landfill leachate enhanced microbial activity and thereby increased microbial by-product-like material such as protein-like component in the groundwater. Excitation-emission matrix fluorescence spectra combined with parallel factor analysis showed that the protein-like matter content increased from 2011 to 2012 in the groundwater, whereas the fulvic- and humic-like matter concentration exhibited no significant changes. In addition, synchronous-scan fluorescence spectra coupled with two-dimensional correlation analysis showed that the change of the fulvic- and humic-like matter was faster than that of the protein-like substances, as the groundwater flowed from upstream to downstream in 2011, but slower than that of the protein-like substance in 2012 due to the enhancement of microbial activity. Fluorescence spectroscopy combined with chemometric analysis can investigate groundwater pollution characteristics and monitor DOM dynamics in groundwater.

  11. Coupled radon, methane and nitrate sensors for large-scale assessment of groundwater discharge and non-point source pollution to coastal waters.

    PubMed

    Dulaiova, Henrieta; Camilli, Richard; Henderson, Paul B; Charette, Matthew A

    2010-07-01

    We constructed a survey system of radon/methane/nitrate/salinity to find sites of submarine groundwater discharge (SGD) and groundwater nitrate input. We deployed the system in Waquoit Bay and Boston Harbor, MA where we derived SGD rates using a mass balance of radon with methane serving as a fine resolution qualitative indicator of groundwater. In Waquoit Bay we identified several locations of enhanced groundwater discharge, out of which two (Childs and Quashnet Rivers) were studied in more detail. The Childs River was characterized by high nitrate input via groundwater discharge, while the Quashnet River SGD was notable but not a significant source of nitrate. Our radon survey of Boston Harbor revealed several sites with significant SGD, out of these Inner Harbor and parts of Dorchester Bay and Quincy Bay had groundwater fluxes accompanied by significant water column nitrogen concentrations. The survey system has proven effective in revealing areas of SGD and non-point source pollution.

  12. Modeling of transient groundwater flow, pollutant transport, and biodegradation in an aquifer with large hydraulic head variations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Sandro; Louati, Sihem; Bendjoudi, Hocine; de Marsily, Ghislain

    2014-06-01

    Industrially sourced dense non-aqueous phase liquids (DNAPLs) contaminated an alluvial aquifer in France decades ago. The location(s) and nature of the pollution source zone(s) were unknown, and the dissolved concentrations of volatile organic compounds in the monitoring wells varied greatly with time. The aquifer was in hydraulic equilibrium with an artificial canal whose water level was highly variable (up to 5 m). These variations propagated into the aquifer, causing changes in the groundwater flow direction; a transient numerical model of flow and solute transport showed that they correlate with the concentration variations because the changes in the flow direction resulted in the contaminant plume shifting. The transient hydrogeological numerical model was built, taking into account solvent biodegradation with first-order chain, since biodegradation has a significant influence on the pollutant concentration evolution. The model parameterization confirms the position of the source zones among the potential troughs in the bedrock where DNAPLs could have accumulated. The groundwater model was successfully calibrated to reproduce the observed concentration variations over several years and allowed a rapid validation of the hypotheses on the functioning of the polluted system.

  13. Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China.

    PubMed

    Gong, Xing; Chen, Zhihua; Luo, Zhaohui

    2014-12-01

    This study first presents the spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a nonferrous metal mine area in China. Unconfined groundwater was polluted by Pb, Zn, As, and Cu, in order, while confined karst water in the mines showed pollution in the following sequence: Zn, Cd, Cu, Pb, and As. Pollution by Pb was widespread, while Zn, As, Cu, and Cd were found to be high in the north-central industrial region and to decrease gradually with distance from smelters and tailings. Vertically, more Pb, Zn, Cu, and Cd have accumulated in shallow Quaternary groundwater, while more As have migrated into the deeper fracture groundwater in the local discharge area. Zn, Cd, and Cu concentrations in groundwater along the riverside diminished owing to reduced wastewater drainage since 1977, while samples in the confluence area were found to have increasing contents of Pb, Zn, As, Cu, and Cd since industrialization began in the 1990s. Sources of heavy metals in groundwater were of anthropogenic origin except for Cr. Pb originated primarily from airborne volatile particulates, wastewater, and waste residues and deposited continuously, while Zn, Cd, and Cu were derived from the wastewater of smelters and leakage of tailings, which corresponded to the related soil and surface residue researches. Elevated As values around factories might be the result of chemical reactions. Flow patterns in different hydrogeological units and adsorption capability of from Quaternary sediments restricted their cross-border diffusion.

  14. NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA

    NASA Astrophysics Data System (ADS)

    Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.

    2009-12-01

    Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one

  15. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters.

    PubMed

    Albers, Christian Nyrop; Feld, Louise; Ellegaard-Jensen, Lea; Aamand, Jens

    2015-10-15

    Groundwater is an important drinking water resource. Yet, this resource is threatened by pollution from chemicals, such as pesticides and their degradation products. To investigate the potential for remediation of groundwater polluted by trace concentrations of the pesticide residue 2,6-dichlorobenzamide (BAM), we established a pilot waterworks including two sand filters. The waterworks treated groundwater polluted with 0.2 μg/L BAM at flow conditions typical for rapid sand filters. Bioaugmentation of the sand filter with a specific BAM-degrading bacterium (Aminobacter sp. MSH1) resulted in significant BAM degradation to concentrations below the legal threshold level (0.1 μg/L), and this without adverse effects on other sand filter processes such as ammonium and iron oxidation. However, efficient degradation for more than 2-3 weeks was difficult to maintain due to loss of MSH1-bacteria, especially during backwashing. By limiting backwash procedures, the period of degradation was prolonged, but bacteria (and hence degradation activity) were still lost with time. Protozoa were observed to grow in the filters to a density that contributed significantly to the general loss of bacteria from the filters. Additionally, the concentration of easily assimilable organic carbon (AOC) in the remediated water may have been too low to sustain a sufficient population of degrader bacteria in the filter. This study shows that scaling up is not trivial and shortcomings in transferring degradation rates obtained in batch experiments to a rapid sand filter system are discussed. Further optimization is necessary to obtain and control more temporally stable systems for water purification. However, for the first time outside the laboratory and at realistic conditions a potential for the biodegradation of recalcitrant micropollutants in bioaugmented rapid sand filters is shown.

  16. Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater.

    PubMed

    Soares, Olivia Salomé G P; Orfão, José J M; Gallegos-Suarez, Esteban; Castillejos, Eva; Rodríguez-Ramos, Inmaculada; Pereira, Manuel Fernando R

    2012-01-01

    The influence of the presence of inorganic and organic matter during the catalytic reduction of nitrate in a local groundwater over a Pd-Cu catalyst supported on carbon nanotubes was investigated. It was observed that the catalyst performance was affected by the groundwater composition. The nitrate conversion attained was higher in the experiment using only deionized water as solvent than in the case of simulated or real groundwater. With exception of sulphate ions, all the other solutes evaluated (chloride and phosphate ions and natural organic matter) had a negative influence on the catalytic activity and selectivity to nitrogen.

  17. Economic and institutional aspects of risk and liability in the control of ground-water pollution. Technical report

    SciTech Connect

    Rojas, T.D.; Segerson, K.

    1987-01-01

    Two alternative means of controlling negative externalities (pollution), namely the use of ex ante regulation and the use of ex post liability, are compared. Alternative forms of liability, in particular strict liability and negligence, are discussed. The different approaches are first compared using theoretical models of externalities to determine when one might be theoretically preferred to another. The results of the theoretical analysis suggest that, because no single alternative is a perfect control mechanism, the joint use of regulation, and some form of liability is perhaps best. The results are used as background information in an analysis of two case studies of groundwater pollution. The first is contamination from the Kohler Company landfill in Sheboygan County, Wisconsin. The second is contamination from a municipally owned landfill in Onalaska, Wisconsin.

  18. [Groundwater].

    PubMed

    González De Posada, Francisco

    2012-01-01

    From the perspective of Hydrogeology, the concept and an introductory general typology of groundwater are established. From the perspective of Geotechnical Engineering works, the physical and mathematical equations of the hydraulics of permeable materials, which are implemented, by electric analogical simulation, to two unique cases of global importance, are considered: the bailing during the construction of the dry dock of the "new shipyard of the Bahia de Cádiz" and the waterproofing of the "Hatillo dam" in the Dominican Republic. From a physical fundamental perspective, the theories which are the subset of "analogical physical theories of Fourier type transport" are related, among which the one constituted by the laws of Adolf Fick in physiology occupies a historic role of some relevance. And finally, as a philosophical abstraction of so much useful mathematical process, the one which is called "the Galilean principle of the mathematical design of the Nature" is dealt with.

  19. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters

    NASA Astrophysics Data System (ADS)

    Kazakis, Nerantzis; Voudouris, Konstantinos S.

    2015-06-01

    In the present study the DRASTIC method was modified to estimate vulnerability and pollution risk of porous aquifers to nitrate. The qualitative parameters of aquifer type, soil and impact of the vadose zone were replaced with the quantitative parameters of aquifer thickness, nitrogen losses from soil and hydraulic resistance. Nitrogen losses from soil were estimated based on climatic, soil and topographic data using indices produced by the GLEAMS model. Additionally, the class range of each parameter and the final index were modified using nitrate concentration correlation with four grading methods (natural breaks, equal interval, quantile and geometrical intervals). For this reason, seventy-seven (77) groundwater samples were collected and analyzed for nitrate. Land uses were added to estimate the pollution risk to nitrates. The two new methods, DRASTIC-PA and DRASTIC-PAN, were then applied in the porous aquifer of Anthemountas basin together with the initial versions of DRASTIC and the LOSN-PN index. The two modified methods displayed the highest correlations with nitrate concentrations. The two new methods provided higher discretisation of the vulnerability and pollution risk, whereas the high variance of the (ANOVA) F statistic confirmed the increase of the average concentrations of NO3-, increasing from low to high between the vulnerability and pollution risk classes. The importance of the parameters of hydraulic resistance of the vadose zone, aquifer thickness and land use was confirmed by single-parameter sensitivity analysis.

  20. Estimating the benefits of land imagery in environmental applications: a case study in nonpoint source pollution of groundwater

    USGS Publications Warehouse

    Bernknopf, Richard L.; Forney, William M.; Raunikar, Ronald P.; Mishra, Shruti K.; Laxminarayan, Ramanan; Maccauley, Molly K.

    2012-01-01

    Moderate-resolution land imagery (MRLI) is crucial to a more complete assessment of the cumulative, landscape-level effect of agricultural land use and land cover on environmental quality. If this improved assessment yields a net social benefit, then that benefit reflects the value of information (VOI) from MRLI. Environmental quality and the capacity to provide ecosystem services evolve because of human actions, changing natural conditions, and their interaction with natural physical processes. The human actions, in turn, are constrained and redirected by many institutions and regulations such as agricultural, energy, and environmental policies. We present a general framework for bringing together sociologic, biologic, physical, hydrologic, and geologic processes at meaningful scales to interpret environmental implications of MRLI applications. We set out a specific application using MRLI observations to identify crop planting patterns and thus estimate surface management activities that influence groundwater resources over a regional landscape. We tailor the application to the characteristics of nonpoint source groundwater pollution hazards in Iowa to illustrate a general framework in a land use-hydrologic-economic system. In the example, MRLI VOI derives from reducing the risk of both losses to agricultural production and damage to human health and other consequences of contaminated groundwater.

  1. Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Jianyao; Tang, Changyuan; Sakura, Yasuo; Yu, Jingjie; Fukushima, Yoshihiro

    2005-06-01

    A survey of the quality of groundwater across a broad area of the North China Plain, undertaken in 1998 to 2000, indicates that nitrate pollution is a serious problem affecting the drinking water for a vast population. The use of nitrogen (N)-fertilizer in agriculture has greatly increased over the past 20 years to meet the food needs of the rapidly expanding population. During the study, 295 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. High concentrations of nitrate, especially in a recharge area along the western side, but also in the vicinity of Beijing and locally in other parts of the plain, pose a serious problem for the drinking water supply. In places, the nitrate concentration exceeds the maximum for safe drinking water of 45 mg/L. The intense use of N-fertilizer and the widespread use of untreated groundwater for crop irrigation contribute greatly to the problem, but no doubt the disposal of industrial and municipal waste into streams and infiltrating the aquifer also contribute to the problem; however, the lack of data prevents evaluation of those sources. In the recharge area, nitrate is found at depths of as much as 50 m. Near Beijing, relatively high concentrations of nitrate occur at depths of as much as 80 m. In the discharge area, in the vicinity of the Yellow River, high concentrations of nitrate occur at depths of <8 m.

  2. Integrated Use of GLEAMS and GIS to Prevent Groundwater Pollution Caused by Agricultural Disposal of Animal Waste

    PubMed

    Garnier; Lo Porto A; Marini; Leone

    1998-09-01

    / In modern intensive animal farming the disposal of a large amount of waste is of great concern, as, if not properly performed, it can cause the pollution of water, mainly because of the high content of nitrate and phosphate. This paper presents the results of a study intended to assess the environmental sustainability of animal waste disposal on agricultural soils in the alluvial plain of the River Chiana (Tuscany, Italy), a particularly sensitive area because of the high vulnerability of the shallow aquifer and of the intensive agricultural and breeding activities. With this aim, a strategy has been employed, that consists of the integrated use of a management model and GISs. The consequences on groundwater of applying animal waste to different kind of soils and crop arrangements have been simulated by means of the management model GLEAMS (Groundwater Loading Effects of Agricultural Management Systems, ver 2.01). As the huge amount of data required by such a sophisticated model does not allow applications at a scale larger than the field size, IDRISI and GRASS GIS packages have been used to divide the study area into land units, with homogeneous environmental characteristics, and then to generalize on these units the outputs of the model. The main conclusions can be synthesized as follows: The amount of animal waste produced in some of the investigated areas (i.e., municipal territory) is greater than that disposable on their own agricultural soil with no risks to the groundwater; consequently a cooperative approach among municipalities is necessary in order to plan waste disposal in a comprehensive and centralized way.KEY WORDS: Land use; Animal waste disposal; Groundwater protection; GIS, Management models

  3. Case study of groundwater pollution in a critical area of the Southern-Friuli exposed to agricultural and landfill pressures.

    PubMed

    Adami, G; Siviero, P; Barbieri, P; Piselli, S; Reisenhofer, E

    2001-01-01

    Groundwater of the Southern-Friuli displays high levels of agricultural pollutants, such as nitrates and triazinic herbicides not only in the surficial layers, but also in the deeper ones, below 150 m. Some wells of the district of Gonars was monitored. The examined waters, used for irrigation but also for drinkable use, are exposed to environmental risk due to both agricultural practices and presence of many waste disposal sites. Heavy metals, nitrates and triazinic herbicides were measured in samples taken at four wells in three periods having different rain conditions. We found that groundwater quality is affected mainly by agricultural practices: nitrates and triazines are present at levels very near as well as superior to the maximum concentration allowable by Italian law. These agricultural contaminants have similar levels at all sampled sites: no difference was detected between dry periods and rain ones. Heavy metal contents are negligible in all cases; this fact suggests that ion-exchange, sorbing and complexing properties of the soils hinder the way of the metal leachates towards underlying groundwater. Zinc constitutes an exception; it is found at levels near or superior to the maximum allowable concentration (CMA), and the highest contents are observed in rain periods; different sites display different zinc levels, suggesting that this metal could have various point sources. Nitrates fertilisers were found in all sites at similar levels, very near to CMA (50 mg/L). Triazines are specific herbicides for corn growing, highly diffused here: their use in recent years is forbidden by Italian law, but the presence in groundwater of parent triazines and metabolites is a persistent problem of this area. The Italian law indicates a CMA of 0.10 microgram/L for the sum of atrazine and desethylatrazine, but we found that desethylatrazine by itself exceeds largely CMA in all sites.

  4. Plant a Tree, Save a Lake: Urban trees reduce groundwater nutrient pollution

    NASA Astrophysics Data System (ADS)

    Nidzgorski, D. A.; Hobbie, S. E.

    2013-12-01

    Background/Questions/Methods Urban trees are known to enhance human well-being in many ways, from improving air quality to reducing crime rates, but less is understood about how urban trees can affect the water quality of local lakes and streams. Many urban waterways suffer from excess nitrogen (N) and phosphorus (P) feeding algal blooms, which cause lower water clarity and oxygen levels, bad odor and taste, and the loss of desirable species. The expansion and turnover of urban forests present a large-scale opportunity for homeowners, city foresters, and other land managers to select species that reduce nutrient pollution and improve the water quality and ecosystem service provisioning of local waterways. In this study, we examine how common urban tree species affect N and P leaching to groundwater. We sampled thirty-three trees of fourteen species, and seven open grassy areas, across three city parks in Saint Paul, Minnesota. We installed lysimeters at 60cm depth to collect soil water and measure nutrient concentrations approximately biweekly. We collected soil samples from 0-10cm, 10-20cm, 20-40cm, and 40-60cm as well as leaf, root, and leaf-litter samples, for carbon, nitrogen, and phosphorus analyses. Results/Conclusions A prolonged drought in 2011-2012 prevented lysimeter sampling during autumn litterfall and snowmelt to date. Nevertheless, data from July-August 2011, April-June 2012, and May-June 2013 showed significant differences in total N and P concentrations in lysimeter water among grass, conifer, and hardwood sites, with trees reducing concentrations relative to turfgrass and hardwoods reducing them relative to conifers (TN mg/L×se: grass=8.3×1.3, conifer = 7.3×1.0, hardwood=5.0×0.7; p=0.0002; TP μg/L×se: grass=153.2×21.4, conifer=82.5×14.0, hardwood=46.0×4.0; p=0.0001). Total P concentrations in lysimeter water were significantly higher than expected for most soils, with a grand mean of 78μg/L, higher than the lake-eutrophication standard of

  5. Monitoring of Nitrate and Pesticide Pollution in Mnasra, Morocco Soil and Groundwater.

    PubMed

    Marouane, Bouchra; Dahchour, Abdelmalek; Dousset, Sylvie; El Hajjaji, Souad

    2015-06-01

    This study evaluates the levels of nitrates and pesticides occurring in groundwater and agricultural soil in the Mnasra, Morocco area, a zone with intensive agricultural activity. A set of 108 water samples and 68 soil samples were collected from ten selected sites in the area during agricultural seasons, from May 2010 to September 2012. The results reveal that 89.7% of water samples exceeded the standard limit of nitrate concentrations for groundwater (50 mg/L). These results can be explained by the prevailing sandy nature of the soil in the area, the frequency of fertilizer usage, and the shallow level of the water table, which favors the leaching of nitrate from field to groundwater. In contrast, the selected pesticide molecules were not detected in the analysed soil and water samples; levels were below the quantification limit in all samples. This situation could be explained by the probable partial or total transformation of the molecules in soil.

  6. Source apportionment of groundwater pollution around landfill site in Nagpur, India.

    PubMed

    Pujari, Paras R; Deshpande, Vijaya

    2005-12-01

    The present work attempts statistical analysis of groundwater quality near a Landfill site in Nagpur, India. The objective of the present work is to figure out the impact of different factors on the quality of groundwater in the study area. Statistical analysis of the data has been attempted by applying Factor Analysis concept. The analysis brings out the effect of five different factors governing the groundwater quality in the study area. Based on the contribution of the different parameters present in the extracted factors, the latter are linked to the geological setting, the leaching from the host rock, leachate of heavy metals from the landfill as well as the bacterial contamination from landfill site and other anthropogenic activities. The analysis brings out the vulnerability of the unconfined aquifer to contamination.

  7. Assessment of ammonium, nitrate, phosphate, and heavy metal pollution in groundwater from Amik Plain, southern Turkey.

    PubMed

    Ağca, Necat; Karanlık, Sema; Ödemiş, Berkant

    2014-09-01

    Amik Plain is one of the most important agricultural areas of Turkey. Because the groundwater resources have been used not only for irrigation but also for drinking purpose, groundwater resources play a vital role in this area. However, there exist no or a very limited number of studies on groundwater quality and its physicochemical and heavy metal composition for Amik Plain. This study aimed to assess groundwater of Amik Plain in terms of human health and suitability for irrigation based on physicochemical variables, heavy metals, and their spatial distribution. A total of 92 groundwater samples were collected from wells and were analyzed for temperature (T), salt content (SC), dissolved oxygen (DO), ammonium (NH4(+)), nitrate (NO3(-)), and phosphorus (P) and such heavy metals as cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn). The temperature, SC, DO, NH4(+), and NO3(-) parameters were measured in situ immediately with YSI Professional plus instrument (Pro Plus). Water depth was taken from owner of the wells. Heavy metal analyses were carried out in triplicate using inductively coupled atomic emission spectrometer (ICP-AES). The ICP-AES was calibrated for all the metals by running different concentrations of standard solutions. Descriptive statistical analyses were calculated to characterize distribution of physicochemical properties and heavy metal contents of groundwater. Correlation analysis was used to assess the possible relationships among heavy metals and physicochemical properties of the groundwater. Spatial variability in groundwater parameters were determined by geostatistical methods. Result shows that the highest and lowest coefficient of variation occurred for NO3(-) and T, respectively. Mean water table depth was 92.1 m, and only 12 of all the samples exceeded the desirable limit of 50 mg/L for NO3(-) content. The metal concentrations showed a dominance in the order of Fe >

  8. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China.

    PubMed

    Zhai, Yuanzheng; Zhao, Xiaobing; Teng, Yanguo; Li, Xiao; Zhang, Junjun; Wu, Jin; Zuo, Rui

    2017-03-01

    In order to learn the pollution circumstance of groundwater nitrate detailedly in Songnen Plain of Northeast China and estimate its potential risk to human health of local residents, a total of 389 groundwater samples were collected in 2014 and studied from residential areas and public water supply wells in 11 cities and counties in southeastern of Songnen Plain. The analysis results showed that the spatial distributions of main chemical components in groundwater had great variations with statistical concentrations in the order of TDS> HCO3> Ca> NO3> Cl> Na> SO4> Mg> K> NH4> NO2. As for NO3, it ranged from less than 0.02mg/L to 497mg/L with an average value of 39.46mg/L indicating an obviously anthropogenic pollution. Even more than 32% of the samples exceeded the Grade III threshold (20mg/L of N) according to China's standard. The results obtained from principal component analysis showed that high NO3 concentration could be attributed to human activities, especially the excessive use of chemical fertilizers in agriculture. Further, a human health risk assessment (HHRA) model derived from the US Environmental Protection Agency (USEPA) was applied to estimate the potential health risk of groundwater nitrate considering both drinking water and dermal contact pathways. The results indicated that potential health risks of adult males and females within about 60% of the area were at the acceptable level, while those within about 40% were beyond the acceptable level. The area at the acceptable level for children covered 49% of the total area while the same value for infants was 37%. The NO3 concentration in southeast and northeast of the study area was the highest so that residents in these regions were at the highest health risk. In conclusion, risk levels for different crowds in the study area varied obviously, generally in the order of infants> children> adult females> adult males, and the potential health risks of residents, especially minors and rural residents

  9. Quantum vs. topological descriptors in the development of molecular models of groundwater pollution by pesticides.

    PubMed

    Worrall, Fred; Thomsen, Marianne

    2004-01-01

    Using monitoring observations from two, independent studies of US groundwater comprising a total of 61 pesticide compounds, this study has shown that those compounds found in groundwater can be distinguished from those that cannot be found in groundwater on the basis of semi-empirical, quantum chemical and empirical molecular descriptors. For the semi-empirical descriptors, logistic regression models have been developed and validated against the dataset based on the semi-empirical and quantum chemical descriptors. Logistic regression models, based on the Debye dipole moment (mu), the hydration energy (DeltaHhyd), and van der Waals volume (VvdW), resulted in a maximal explained variation in the data of 74%. When topological indices were also included the explained variance in data increased to 91%, with 86% of the variation being explained by the rule that a compound will be found in groundwater if: 0.28mu < 6chip(v) where 6chip(v) is the sixth-order molecular path connectivity and mu is the dipole moment of the compound. The significance of the dipole moment and hydration energy (or van der Waals volume) indicates that it is water solubility that controls mobility, with the inclusion of topological descriptors representing structural factors limiting the solubility. The dependence of leaching potential on the descriptors that control solubility indicates that predictions of environmental fate based on this approach may represent a strong alternative to the use of adsorption and degradation parameters.

  10. The economic valuation of groundwater pollution policies: The role of subjective risk perceptions

    SciTech Connect

    Caudill, J.D.; Hoehn, J.P. )

    1992-12-01

    A utility theoretic model is derived to examine personal risk and environmental perceptions as determinants of households' evaluations of groundwater protection. Perceived severity of health effects and non-use environmental effects are important determinants for both rural and urban households. Interpersonal altruism is an important determinant for rural households.

  11. Integrated hydrochemical and geophysical studies for assessment of groundwater pollution in basaltic settings in Central India.

    PubMed

    Pujari, Paras R; Padmakar, C; SuriNaidu, L; Vaijnath, V U; Kachawe, Bhusan; Gurunadha Rao, V V S; Labhasetwar, P K

    2012-05-01

    The Pithampur Industrial sectors I, II, and III, located approximately, 45 km from Indore in Central India have emerged as one of the largest industrial clusters in the region. Various types of industries ranging from automobiles to chemicals and pharmaceuticals have been set up in the region since 1990. Most of the industries have effluent treatment plants (ETP) for treating wastewater before its disposal on land and/or in water body. The present study is an attempt to assess the groundwater quality in the watersheds surrounding these industrial sectors to develop the baseline groundwater quality in order to enable the policy makers to facilitate decisions on the development of industries in this region. The industries are located in two sub-watersheds, namely, Gambhir river sub-watershed and Chambal river sub-watershed. Geologically, the study area is located in the Deccan traps of Cretaceous to Paleocene age. The different basaltic flow units underlie clayey soils varying in thickness from 2-3 m. The aquifer is mostly of unconfined nature. Samples have been collected from a network of observation wells set up in the watersheds. The water quality analysis of the groundwater samples has been carried out six times during three hydrological cycles of 2004, 2005, and 2006. The results indicate that a few observation wells in the vicinity of the industrial clusters have very high TDS concentration and exceed the Bureau of Indian Standards (BIS) guideline for TDS concentration. The contamination of groundwater has been more severe in the Gambhir watershed as compared to the Chambal watershed. The presence of the impermeable clay layers has resulted in a slow migration of contaminants from the sources. The findings reveal that there is no significant groundwater contamination in the Pithampur industrial sectors except in the vicinity of the industrial clusters, which indicates that there is good environmental space available for the expansion of industrial units in

  12. Control of Groundwater Pollution from Animal Feeding Operations: A Farm-Level Dynamic Model for Policy Analysis

    NASA Astrophysics Data System (ADS)

    Wang, J.; Baerenklau, K.

    2012-12-01

    Consolidation in livestock production generates higher farm incomes due to economies of scale, but it also brings waste disposal problems. Over-application of animal waste on adjacent land produces adverse environmental and health effects, including groundwater nitrate pollution. The situation is particularly noticeable in California. In respond to this increasingly severe problem, EPA published a type of command-and-control regulation for concentrated animal feeding operations (CAFOs) in 2003. The key component of the regulation is its nutrient management plans (NMPs), which intend to limit the land application rates of animal waste. Although previous studies provide a full perspective on potential economic impacts for CAFOs to meet nutrient standards, their models are static and fail to reflect changes in management practices other than spreading manure on additional land and changing cropping patterns. We develop a dynamic environmental-economic modeling framework for representative CAFOs. The framework incorporates four models (i.e., animal model, crop model, hydrologic model, and economic model) that include various components such as herd management, manure handling system, crop rotation, water sources, irrigation system, waste disposal options, and pollutant emissions. We also include the dynamics of soil characteristics in the rootzone as well as the spatial heterogeneity of the irrigation system. The operator maximizes discounted total farm profit over multiple periods subject to environmental regulations. Decision rules from the dynamic optimization problem demonstrate best management practices for CAFOs to improve their economic and environmental performance. Results from policy simulations suggest that direct quantity restrictions of emission or incentive-based emission policies are much more cost-effective than the standard approach of limiting the amount of animal waste that may be applied to fields (as shown in the figure below); reason being

  13. The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed.

    PubMed

    Elçi, A; Karadaş, D; Fistikoğlu, O

    2010-01-01

    A numerical modeling case study of groundwater flow in a diffuse pollution prone area is presented. The study area is located within the metropolitan borders of the city of Izmir, Turkey. This groundwater flow model was unconventional in the application since the groundwater recharge parameter in the model was estimated using a lumped, transient water-budget based precipitation-runoff model that was executed independent of the groundwater flow model. The recharge rate obtained from the calibrated precipitation-runoff model was used as input to the groundwater flow model, which was eventually calibrated to measured water table elevations. Overall, the flow model results were consistent with field observations and model statistics were satisfactory. Water budget results of the model revealed that groundwater recharge comprised about 20% of the total water input for the entire study area. Recharge was the second largest component in the budget after leakage from streams into the subsurface. It was concluded that the modeling results can be further used as input for contaminant transport modeling studies in order to evaluate the vulnerability of water resources of the study area to diffuse pollution.

  14. Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain).

    PubMed

    Chica-Olmo, Mario; Luque-Espinar, Juan Antonio; Rodriguez-Galiano, Victor; Pardo-Igúzquiza, Eulogio; Chica-Rivas, Lucía

    2014-02-01

    Groundwater nitrate pollution associated with agricultural activity is an important environmental problem in the management of this natural resource, as acknowledged by the European Water Framework Directive. Therefore, specific measures aimed to control the risk of water pollution by nitrates must be implemented to minimise its impact on the environment and potential risk to human health. The spatial probability distribution of nitrate contents exceeding a threshold or limit value, established within the quality standard, will be helpful to managers and decision-makers. A methodology based on non-parametric and non-linear methods of Indicator Kriging was used in the elaboration of a nitrate pollution categorical map for the aquifer of Vega de Granada (SE Spain). The map has been obtained from the local estimation of the probability that a nitrate content in an unsampled location belongs to one of the three categories established by the European Water Framework Directive: CL. 1 good quality [Min - 37.5 ppm], CL. 2 intermediate quality [37.5-50 ppm] and CL. 3 poor quality [50 ppm - Max]. The obtained results show that the areas exceeding nitrate concentrations of 50 ppm, poor quality waters, occupy more than 50% of the aquifer area. A great proportion of the area's municipalities are located in these poor quality water areas. The intermediate quality and good quality areas correspond to 21% and 28%, respectively, but with the highest population density. These results are coherent with the experimental data, which show an average nitrate concentration value of 72 ppm, significantly higher than the quality standard limit of 50 ppm. Consequently, the results suggest the importance of planning actions in order to control and monitor aquifer nitrate pollution.

  15. Amoco-US Environmental Protection Agency, pollution prevention project, Yorktown, Virginia: Groundwater and soil data

    SciTech Connect

    Cozens-Roberts, C.; Kremesec, V.J.; Hockman, E.L.

    1991-03-01

    At the Amoco Company refinery in Yorktown, Virginia, potential sources and sinks of groundwater contamination were evaluated to determine the affects of the plant on the subsurface. Subsurface characterization of the refinery included an extensive subsurface sampling program that included 39 soil borings, 181 monitoring wells, and 23 surface water sampling points. Groundwater flow was modeled using FTWORK, a modification of MODFLOW. Results showed that, due to above ground process piping, contamination at the Yorktown refinery was significantly less than that observed at other refineries. Free-phase hydrocarbons were only detected in one monitoring well. Metals contamination was limited to monitoring wells associated with historic waste management activities at the east end of the refinery. Contamination was detected in monitoring wells located adjacent to process units but affects were limited due to the process sewer acting as a collection point.

  16. The groundwater pollution in Lombardy (north Italy) caused by organo-halogenated compounds.

    PubMed

    Berbenni, P; Cavallaro, A; Mori, B

    1993-01-01

    This paper deals with the phenomenon of the presence of organo-halogenated compounds in groundwaters of the Lombardy Region (North Italy). The regionwide study evidentiated the magnitude of the phenomenon, since these compounds are employed in all productive and household activities. The main cause of groundwater contamination is the infiltration of industrial wastewater: in the Province of Mantova, for example, organic chlorinated solvents have their origin in the NaOCl wastewater treatment for ammonia removal. Organic alogenated compounds in waters intended for human consumption in Lombardy are present in 510 wells over 92 townships, affecting a population of 1,934,133 equivalent to 20% of the total resident population (1991 data). Maximum observed concentrations are related to trielin and tetrachloroethilene. Water treatment was achieved through aeration (stripping) and activated carbon or resin adsorption; in a few instances, also hydraulic interventions were implemented.

  17. The impact of point source pollution on shallow groundwater used for human consumption in a threshold country.

    PubMed

    Cruz, Mercedes Cecilia; Cacciabue, Dolores Gutiérrez; Gil, José F; Gamboni, Oscar; Vicente, María Soledad; Wuertz, Stefan; Gonzo, Elio; Rajal, Verónica B

    2012-09-01

    Many developing and threshold countries rely on shallow groundwater wells for their water supply whilst pit latrines are used for sanitation. We employed a unified strategy involving satellite images and environmental monitoring of 16 physico-chemical and microbiological water quality parameters to identify significant land uses that can lead to unacceptable deterioration of source water, in a region with a subtropical climate and seasonally restricted torrential rainfall in Northern Argentina. Agricultural and non-agricultural sources of nitrate were illustrated in satellite images and used to assess the organic load discharged. The estimated human organic load per year was 28.5 BOD(5) tons and the N load was 7.5 tons, while for poultry farms it was 9940-BOD(5) tons and 1037-N tons, respectively. Concentrations of nitrates and organics were significantly different between seasons in well water (p values of 0.026 and 0.039, respectively). The onset of the wet season had an extraordinarily negative impact on well water due in part to the high permeability of soils made up of fine gravels and coarse sand. Discriminant analysis showed that land uses had a pronounced seasonal influence on nitrates and introduced additional microbial contamination, causing nitrification and denitrification in shallow groundwater. P-well was highly impacted by a poultry farm while S-well was affected by anthropogenic pollution and background load, as revealed by Principal Component Analysis. The application of microbial source tracking techniques is recommended to corroborate local sources of human versus animal origin.

  18. 3-D modeling useful tool for planning. [mapping groundwater and soil pollution and subsurface features

    SciTech Connect

    Calmbacher, C.W. )

    1992-12-01

    Visualizing and delineating subsurface geological features, groundwater contaminant plumes, soil contamination, geological faults, shears and other features can prove invaluable to environmental consultants, engineers, geologists and hydrogeologists. Three-dimensional modeling is useful for a variety of applications from planning remediation to site planning design. The problem often is figuring out how to convert drilling logs, map lists or contaminant levels from soil and groundwater into a 3-D model. Three-dimensional subsurface modeling is not a new requirement, but a flexible, easily applied method of developing such models has not always been readily available. LYNX Geosystems Inc. has developed the Geoscience Modeling System (GMS) in answer to the needs of those regularly having to do three-dimensional geostatistical modeling. The GMS program has been designed to allow analysis, interpretation and visualization of complex geological features and soil and groundwater contamination. This is a powerful program driven by a 30 volume modeling technology engine. Data can be entered, stored, manipulated and analyzed in ways that will present very few limitations to the user. The program has selections for Geoscience Data Management, Geoscience Data Analysis, Geological Modeling (interpretation and analysis), Geostatistical Modeling and an optional engineering component.

  19. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds.

    PubMed

    Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura

    2014-01-15

    Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone.

  20. Geospatial Investigation into Groundwater Pollution and Water Quality Supported by Satellite Data: A Case Study from the Evros River (Eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Elias, Dimitriou; Angeliki, Mentzafou; Vasiliki, Markogianni; Maria, Tzortziou; Christina, Zeri

    2014-06-01

    Managing water resources, in terms of both quality and quantity, in transboundary rivers is a difficult and challenging task that requires efficient cross-border cooperation and transparency. Groundwater pollution risk assessment and mapping techniques over the full catchment area are important tools that could be used as part of these water resource management efforts, to estimate pollution pressures and optimize land planning processes. The Evros river catchment is the second largest river in Eastern Europe and sustains a population of 3.6 million people in three different countries (Bulgaria, Turkey and Greece). This study provides detailed information on the main pollution sources and pressures in the Evros catchment and, for the first time, applies, assesses and evaluates a groundwater pollution risk mapping technique using satellite observations (Landsat NDVI) and an extensive dataset of field measurements covering different seasons and multiple years. We found that approximately 40 % of the Greek part of the Evros catchment is characterized as of high and very high pollution risk, while 14 % of the study area is classified as of moderate risk. Both the modeled and measured water quality status of the river showed large spatiotemporal variations consistent with the strong anthropogenic pressures in this system, especially on the northern and central segments of the catchment. The pollutants identified illustrate inputs of agrochemicals and urban wastes in the river. High correlation coefficients ( R between 0.79 and 0.85) were found between estimated pollution risks and measured concentrations of those chemical parameters that are mainly attributed to anthropogenic activities rather than in situ biogeochemical processes. The pollution risk method described here could be used elsewhere as a decision support tool for mitigating the impact of hazardous human activities and improving management of groundwater resources.

  1. Parametric study of the impact of waste pollutants on groundwater: the case of Abidjan District (Ivory Coast)

    NASA Astrophysics Data System (ADS)

    Agnès Kouamé, Amenan; Jaboyedoff, Michel; Tacher, Laurent; Derron, Marc-Henri; Franz, Martin

    2015-04-01

    Abidjan like numerous African cities is experiencing a significant and uncontrolled population growth. The annual growth rate is estimated at 3.99% by the National Institute of Statistics. This rapid population growth also generates growing needs in general and especially for drinking water and economic activities. In the District of Abidjan, groundwater comes from the Mio-Pliocene age aquifer called "Continental Terminal". This unconfined aquifer is the main source of water supply. Its lithology consists of four levels. Actually only the two upper levels outcrop and constitute the main part of the Continental Terminal aquifer. Some recent studies report a potential overexploitation and pollution of Abidjan groundwater (Jourda, 1986, Kouame 2007, Deh, 2013). This deterioration in water quality could be due to the release of domestic and industrial waste water, pesticide and fertilizer from crops and toxic waste sites containing high doses of organochlorines, of hydrogen sulfide and sulfides. This risk is also linked to the economic activities such as car workshops, gas stations and the sand exploitation in the lagoon. To observe the likely evolution of such contaminants in the subsurface and we developed hydrogeological models that couple groundwater flow and transport with FEFLOW software. The model is composed of a sandy layer where two constant hydraulic heads of 55 m and 0.2 m are imposed on the north and the south respectively. We carried out grain size analysis of some samples (E2, E3, E4, E5, and E6) which shows particle size ranging between 0.0001 mm and 8 mm. This grain size analysis performed by sieving underwater and laser indicates that these five soils are: loamy sand with traces of clay and gravel for E2 and E5; Sandy loam with traces of clay for E3; Sand with traces of clay and gravel for E4 and Sand with traces of silt and clay for E6. Their porosity and average values of permeability coefficient K measured in the laboratory range from 0.2 to 0

  2. Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution.

    PubMed

    Kalin, Robert M

    2004-06-01

    Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

  3. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  4. Chromium isotope inventory of Cr(VI)-polluted groundwaters at four industrial sites in Central Europe

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Martinkova, Eva; Chrastny, Vladislav; Stepanova, Marketa; Curik, Jan; Szurmanova, Zdenka; Cron, Marcel; Tylcer, Jiri; Sebek, Ondrej

    2016-04-01

    Chromium is one of the most toxic elements, especially in its dissolved Cr(VI) form. In the Czech Republic (Central Europe), massive contamination of groundwater has been reported at more than 200 industrial operations. Under suitable conditions, i.e., low Eh, and high availability of reductive agents, Cr(VI) in groundwater may be spontaneously reduced to solid, largely non-toxic Cr(III). This process is associated with a Cr isotope fractionation, with the residual liquid Cr(VI) becoming enriched in the heavier isotope 53Cr. At industrial operations that have been closed and/or where no further leakage of Cr(VI) occurs, the contaminated groundwater plume may be viewed as a closed system. At such sites, an increasing degree of Cr(VI) reduction should result in an increasing del53/52Cr value of the residual liquid. Here we present del53/52Cr systematics at four contaminated Czech sites, focusing on groundwaters. At two of the four sites (Zlate Hory, Loucna) we were also able to analyze the source of contamination. Chromium in the electroplating solutes was isotopically relatively light, with del53/52Cr values <1 per mil. At the remaining two sites (Letnany and Velesin), the Cr isotope signature of the source of contamination was not known. At all four sites, most del53/52Cr values were positive, with means higer than 1 per mil: At Zlate Hory, del53/52Cr ranged between -2.2 and +3.0 per mil (mean of +1.5 per mil); at Loucna, del53/52Cr ranged between 0 and +4.0 per mil (mean of +1.7 per mil); at Letnany, del53/52Cr ranged between +2.0 and +4.5 per mil (mean of +3.2 per mil); and at Velesin, del53/52Cr ranged between +0.5 and +4.5 per mil (mean of +2.7 per mil). Cr(VI) reduction may proceed at Zlate Hory and Loucna, where del53/52Cr(VI) values in groundwater were on average higher than those of the contamination source. At these two sites, our Cr isotope data are not consistent with the existing estimates of the amount of dissolved and precipitated Cr: The pool size of

  5. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  6. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain).

    PubMed

    Rodriguez-Galiano, Victor; Mendes, Maria Paula; Garcia-Soldado, Maria Jose; Chica-Olmo, Mario; Ribeiro, Luis

    2014-04-01

    Watershed management decisions need robust methods, which allow an accurate predictive modeling of pollutant occurrences. Random Forest (RF) is a powerful machine learning data driven method that is rarely used in water resources studies, and thus has not been evaluated thoroughly in this field, when compared to more conventional pattern recognition techniques key advantages of RF include: its non-parametric nature; high predictive accuracy; and capability to determine variable importance. This last characteristic can be used to better understand the individual role and the combined effect of explanatory variables in both protecting and exposing groundwater from and to a pollutant. In this paper, the performance of the RF regression for predictive modeling of nitrate pollution is explored, based on intrinsic and specific vulnerability assessment of the Vega de Granada aquifer. The applicability of this new machine learning technique is demonstrated in an agriculture-dominated area where nitrate concentrations in groundwater can exceed the trigger value of 50 mg/L, at many locations. A comprehensive GIS database of twenty-four parameters related to intrinsic hydrogeologic proprieties, driving forces, remotely sensed variables and physical-chemical variables measured in "situ", were used as inputs to build different predictive models of nitrate pollution. RF measures of importance were also used to define the most significant predictors of nitrate pollution in groundwater, allowing the establishment of the pollution sources (pressures). The potential of RF for generating a vulnerability map to nitrate pollution is assessed considering multiple criteria related to variations in the algorithm parameters and the accuracy of the maps. The performance of the RF is also evaluated in comparison to the logistic regression (LR) method using different efficiency measures to ensure their generalization ability. Prediction results show the ability of RF to build accurate models

  7. Estimation of groundwater vulnerability to pollution based on DRASTIC in the Niipele sub-basin of the Cuvelai Etosha Basin, Namibia

    NASA Astrophysics Data System (ADS)

    Hamutoko, J. T.; Wanke, H.; Voigt, H. J.

    2016-06-01

    Surface water is a scarce resource in Namibia with about sixty percent of Namibia's population dependent on groundwater for drinking purposes. With increasing population, the country faces water challenges and thus groundwater resources need to be managed properly. One important aspect of Integrated Water Resources Management is the protection of water resources, including protection of groundwater from contamination and over-exploitation. This study explores vulnerability mapping as a basic tool for protecting groundwater resources from pollution. It estimates groundwater vulnerability to pollution in the upper Niipele sub-basin of the Cuvelai-Etosha in Northern Namibia using the DRASTIC index. The DRASTIC index uses GIS to estimate groundwater vulnerability by overlaying different spatially referenced hydrogeological parameters that affect groundwater contamination. The study assesses the discontinuous perched aquifer (KDP) and the Ohangwena multi-layered aquifer 1 (KOH-1). For perched aquifers, point data was regionalized by a hydrotope approach whereas for KOH-1 aquifer, inverse distance weighting was used. The hydrotope approach categorized different parts of the hydrogeological system with similar properties into five hydrotopes. The result suggests that the discontinuous perched aquifers are more vulnerable than Ohangwena multi-layered aquifer 1. This implies that vulnerability increases with decreasing depth to water table because contaminants have short travel time to reach the aquifer when they are introduced on land surface. The nitrate concentration ranges between 2 and 288 mg/l in perched aquifers while in Ohangwena multi-layered aquifer 1, it ranges between 1 and 133 mg/l. It was observed that perched aquifers have high nitrate concentrations than Ohangwena 1 aquifer, which correlates well with the vulnerability results.

  8. Tracking reactive pollutants in large groundwater systems by particle-based simulations

    NASA Astrophysics Data System (ADS)

    Kalbacher, T.; Sun, Y.; He, W.; Jang, E.; Delfs, J.; Shao, H.; Park, C.; Kolditz, O.

    2013-12-01

    Worldwide, great amounts of human and financial resources are being invested to protect and secure clean water resources. Especially in arid and semi-arid regions civilization depends on the availability of freshwater from the underlying aquifer systems where water quality and quantity are often dramatically deteriorating. Main reasons for the mitigation of water quality are extensive fertilizer use in agriculture and waste water from cities and various industries. It may be assumed that climate and demographic changes will add further stress to this situation in the future. One way to assess water quality is to model the coupled groundwater and chemical system, e.g.to assess the impact of possible contaminant precipitation, absorption and migration in subsurface media. Currently, simulating such scenarios at large scales is a challenging task due to the extreme computational load, numerical stability issues, scale-dependencies and spatially and temporally infrequently distributed or missing data, which can lead e.g. to in appropriate model simplifications and additionally uncertainties in the results. The simulation of advective-dispersive mass transport is usually solved by standard finite differences, finite element or finite volume methods. Particle tracking is an alternative method and commonly used e.g. to delineate contaminant travel times, with the advantage of being numerically more stable and computational less expensive. Since particle tracking is used to evaluate groundwater residence times, it seems natural and straightforward to include reactive processes to track geochemical changes as well. The main focus of the study is the evaluation of reactive transport processes at large scales. Therefore, a number of new methods have been developed and implemented into the OpenGeoSys project, which is a scientific, FEM-based, open source code for numerical simulation of thermo-hydro-mechanical-chemical processes in porous and fractured media (www

  9. Community perspectives on the risk of indoor air pollution arising from contaminated groundwater.

    PubMed

    Johnston, Jill E; Kramer, Amanda J; Gibson, Jacqueline MacDonald

    2015-05-01

    The migration of volatile contaminants into overlying buildings, known as vapor intrusion, is a health concern for people living above contaminated groundwater. As public health and environmental agencies develop protocols to evaluate vapor intrusion exposure, little attention has been paid to the experiences and opinions of communities likely to be affected by vapor intrusion. Using a community-driven research approach and qualitative interviews, we explored community perspectives on the vapor intrusion pathway and the perceived impact on community health and well-being among neighbors living atop a large, shallow-chlorinated solvent plume in San Antonio, TX. Most participants associated vapor intrusion with health risks, expressing concern about the unavoidable and uncontrollable nature of their exposure. Few were satisfied with the responsiveness of public officials. Above all, participants wanted more accurate, transparent information and additional independent scientific investigations.

  10. A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation.

    PubMed

    Uricchio, Vito F; Giordano, Raffaele; Lopez, Nicola

    2004-11-01

    In this paper we propose a decision support system that can provide information on the environmental impact of anthropic activities by examining their effects on groundwater quality. We use the combined value of both intrinsic vulnerability of a specific local aquifer, obtained by implementing a parametric managerial model (SINTACS), and a degree of hazard value, which takes into account specific human activities. Incomplete information is notoriously common in environmental planning. To overcome this deficiency we apply an algorithmic and a qualitative approach, based on expert judgment incorporated into the system's knowledge base. The decision support system takes into account the uncertainty of the environmental domain by using fuzzy logic and evaluates the reliability of the results according to information availability.

  11. Simulating Stable Isotope Ratios in Plumes of Groundwater Pollutants with BIOSCREEN-AT-ISO.

    PubMed

    Höhener, Patrick; Li, Zhi M; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S

    2017-03-01

    BIOSCREEN is a well-known simple tool for evaluating the transport of dissolved contaminants in groundwater, ideal for rapid screening and teaching. This work extends the BIOSCREEN model for the calculation of stable isotope ratios in contaminants. A three-dimensional exact solution of the reactive transport from a patch source, accounting for fractionation by first-order decay and/or sorption, is used. The results match those from a previously published isotope model but are much simpler to obtain. Two different isotopes may be computed, and dual isotope plots can be viewed. The dual isotope assessment is a rapidly emerging new approach for identifying process mechanisms in aquifers. Furthermore, deviations of isotope ratios at specific reactive positions with respect to "bulk" ratios in the whole compound can be simulated. This model is named BIOSCREEN-AT-ISO and will be downloadable from the journal homepage.

  12. Groundwater quality

    SciTech Connect

    Ward, C.H.; Giger, W.; McCarty, P.L.

    1985-01-01

    This book is a collection of 28 selected papers presented at the First International Conference on Groundwater Quality Research, at Rice University in October 1981. Several studies provide an overview of chemical and microbial contamination. Local groundwater pollution problems in the Netherlands and metals motility in New Zealand are described. In addition, the effects to groundwater quality due to the discharge of treated wastewaters in the Netherlands, Great Britain, and Houston, Texas are described. Mathematical models are presented that can be used to simulate and predict the transport of contaminants in a saturated groundwater system. Studies describing the sorption of halogenated hydrocarbons, the survival and transport of pathogenic bacteria, the biodegradation of contaminants, and anaerobic transformation in subsurface environments are included. Other topics of discussion include methods for obtaining representative groundwater samples, methods for assessing groundwater problems, methods for designing and constructing microcosms and the microbial characterization of subsurface systems.

  13. Groundwater Pollution Characteristics and Hydrochemical Properties of Typical Plain River-net Area in Lower Yangtze River Delta, China: A Case Study in Suzhou City

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Ruan, X.; Sun, H.; Pan, Z.

    2011-12-01

    Due to anthropogenic activities, tidal river water retention and other geological factors, groundwater quality in plain river-net area is vulnerable to pollution. Detailed chemical analysis results of 49 groundwater samples were carried out to identify groundwater pollution characteristics, hydrochemical properties and to assess groundwater quality and usability in Suzhou City, a typical plain area in Lower Yangtze River Delta, China. In order to protect, utilize and manage groundwater resources effectively, it is necessary to recognize the dominant processes responsible for hydrogeochemistry, groundwater pollution threats in study area. The results revealed ammonia concentration in confined and shallow groundwater ranges from 0.02 to 6.78 mg/L, 0.04 to 3.17 mg/L, respectively. Nitrite concentrations range from 0.004 to 1.01 mg/L, 0.004 to 3.66 mg/L, respectively. Iron concentrations range from 0.006 to 16.9 mg/L, 0.02 to 7.88 mg/L, respectively. Manganese concentrations range from 0.003 to 1.04 mg/L, 0.06 to 0.58 mg/L, respectively. On the basis of analytical results and water quality standards, majority of groundwater samples are not suitable for drinking, domestic as well as for industrial uses directly. Toxic metals and high levels ions should be removed if groundwater is supplied for different purposes. Salinity, sodium adsorption ratio, residual sodium carbonate and sodium percentage values revealed that most of groundwater samples are suitable for irrigation purposes except only a few. The salinity hazard of study area is regarded as low to medium, and special management for salinity control is required in scattered regions. Results of suitability for industrial purposes according to calculated Langeliar saturation index and Larson Ratio showed that majority of samples are calcium carbonate depositing, whereas a few are calcium carbonate dissolving in nature. Results show that sodium, calcium and bicarbonate are the dominant ions of groundwater. Na-HCO3

  14. Automated sample preparation for monitoring groundwater pollution by carbamate insecticides and their transformation products.

    PubMed

    Chiron, S; Valverde, A; Fernandez-Alba, A; Barceló, D

    1995-01-01

    We investigated automated on-line solid-phase extraction (SPE) followed by liquid chromatographic (LC) techniques for monitoring carbamates and their transformation products. Analytical determinations were performed by LC with UV or postcolumn fluorescence detection (U.S. Environmental Protection Agency Method 531.1 for carbamate insecticides) after preconcentration with on-line SPE using C18 Empore extraction disks. On-line SPE/LC/thermospray mass spectrometry with time-scheduled selected-ion monitoring was used as confirmatory method. The method was used to determine pesticide traces in well waters of a typical aquifer in the Almeria area (Andalucia, south of Spain) from March 1993 to February 1994. The major pollutants, found in highest amounts, were carbofuran, methiocarb, and methomyl, at levels of 0.32, 0.3, and 0.8 micrograms/L, respectively. According to results of seasonal variation studies, pollution by carbamate insecticides is sporadic and exceeds the limit of 0.5 micrograms/L for total pesticides allowed by the European Economic Community Drinking Water Directive only twice a year. 3-Hydroxycarbofuran and methiocarb sulfone also were detected, showing the importance of including the main toxic break-down products of carbamate insecticides in future monitoring programs.

  15. Simulating stable carbon and chlorine isotope ratios in dissolved chlorinated groundwater pollutants with BIOCHLOR-ISO.

    PubMed

    Höhener, Patrick

    2016-12-01

    BIOCHLOR is a well-known simple tool for evaluating the transport of dissolved chlorinated solvents in groundwater, ideal for rapid screening and teaching. This work extends the BIOCHLOR model for the calculation of stable isotope ratios of carbon and chlorine isotopes in chloroethenes. An exact solution for the three-dimensional reactive transport of a chain of degrading compounds including sorption is provided in a spreadsheet and applied for modeling the transport of individual isotopes (12)C, (13)C, (35)Cl, (37)Cl from a constant source. The model can consider secondary isotope effects that can occur in the breaking of CCl bonds. The model is correctly reproducing results for δ(13)C and δ(37)Cl modeled by a previously published 1-D numerical model without secondary isotope effects, and is also reproducing results from a microcosm experiment with secondary chlorine isotope effects. Two applications of the model using field data from literature are further given and discussed. The new BIOCHLOR-ISO model is distributed as a spreadsheet (MS EXCEL) along with this publication.

  16. Simulating stable carbon and chlorine isotope ratios in dissolved chlorinated groundwater pollutants with BIOCHLOR-ISO

    NASA Astrophysics Data System (ADS)

    Höhener, Patrick

    2016-12-01

    BIOCHLOR is a well-known simple tool for evaluating the transport of dissolved chlorinated solvents in groundwater, ideal for rapid screening and teaching. This work extends the BIOCHLOR model for the calculation of stable isotope ratios of carbon and chlorine isotopes in chloroethenes. An exact solution for the three-dimensional reactive transport of a chain of degrading compounds including sorption is provided in a spreadsheet and applied for modeling the transport of individual isotopes 12C, 13C, 35Cl, 37Cl from a constant source. The model can consider secondary isotope effects that can occur in the breaking of Csbnd Cl bonds. The model is correctly reproducing results for δ13C and δ37Cl modeled by a previously published 1-D numerical model without secondary isotope effects, and is also reproducing results from a microcosm experiment with secondary chlorine isotope effects. Two applications of the model using field data from literature are further given and discussed. The new BIOCHLOR-ISO model is distributed as a spreadsheet (MS EXCEL) along with this publication.

  17. Can subsoil denitrification reduce groundwater nitrate pollution and atmospheric N2O emissions?

    NASA Astrophysics Data System (ADS)

    Mofizur Rahman Jahangir, Mohammad; Khalil, Mohammad Ibrahim; Cardenas, Laura; Hatch, David; Johnston, Paul; Richards, Karl

    2010-05-01

    Denitrification, a biological nitrate removal pathway, can control the availability of NO3- for leaching to the receptors but it is not only a natural pathway for excess NO3- elimination but also contributes to the emissions of N2O, a potent greenhouse gas. Denitrification potential and N2:N2O+N2 ratios were investigated in intact soil cores collected at 0-10, 45-55 and 120-130 cm soil depths where groundwater table was approximately 2 m below ground level. The soil was a moderately well drained loam to clay loam Gleysol under a grazing pasture in South Eastern Ireland. Three individual experiments were carried out by amending the soil with (i) 90 mg NO3--N as KNO3, (ii) -(i) + 150 mg glucose-C, (iii) -(i) + 150 mg DOC, kg-1 dry soil. An automated laboratory incubation system was used to simultaneously measure N2O and N2 at 15°C at 3% moisture content above field capacity. N2O fluxes differed significantly (p

  18. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India).

    PubMed

    Voltaggio, M; Spadoni, M; Sacchi, E; Sanam, R; Pujari, P R; Labhasetwar, P K

    2015-06-15

    The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra - India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. (87)Sr/(86)Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water-rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers.

  19. Preliminary development of a GIS-tool to assess threats to shallow groundwater quality from soil pollutants in Glasgow, UK (GRASP).

    NASA Astrophysics Data System (ADS)

    Dochartaigh, B. É. Ó.; Fordyce, F. M.; Ander, E. L.; Bonsor, H. C.

    2009-04-01

    The protection of groundwater and related surface water quality is a key aspect of the European Union Water Framework Directive and environmental legislation in many countries worldwide. Globally, the protection of urban groundwater resources and related ecosystem services is of growing concern as urbanisation increases. Although urban areas are often where groundwater resources are most in need of protection, there is frequently a lack of information about threats to groundwater quality. Most studies of soil and groundwater contamination, although detailed, are site-specific, and city-wide overviews are generally lacking. The British Geological Survey (BGS) is currently undertaking the Clyde Urban Super-Project (CUSP), delivering multi-disciplinary geoscience products for the Glasgow conurbation. Under this project, a GIS-based prioritisation tool known as GRASP (GRoundwater And Soil Pollutants) has been trialled to aid urban planning and sustainable development by providing a broad-scale assessment of threats to groundwater quality across the conurbation. GRASP identifies areas where shallow groundwater quality is at greatest threat from the leaching and downward movement of potentially harmful metals in the soil. Metal contamination is a known problem in many urban centres including Glasgow, which has a long industrial heritage and associated contamination legacy, notably with respect to Cr. GRASP is based primarily upon an existing British Standard - International Standards Organisation methodology to determine the leaching potential of metals from soils, which has been validated for 11 metals: Al, Fe, Cd, Co, Cr, Cu, Hg, Ni, Mn, Pb and Zn (BS-ISO 15175:2004). However, the GRASP tool is innovative as it combines assessments of soil leaching potential with soil metal content data to highlight threats to shallow groundwater quality. The input parameters required for GRASP (soil pH, clay, organic matter, sesquioxide and metal content) are based upon a systematic

  20. Nitrate pollution and its transfer in surface water and groundwater in irrigated areas: a case study of the Piedmont of South Taihang Mountains, China.

    PubMed

    Li, Jing; Li, Fadong; Liu, Qiang; Suzuki, Yoshimi

    2014-12-01

    Irrigation projects have diverted water from the lower reaches of the Yellow River in China for more than 50 years and are unique in the world. This study investigated the effect of irrigation practices on the transfer and regional migration mechanisms of nitrate (NO3(-)) in surface water and groundwater in a Yellow River alluvial fan. Hydrochemical indices (EC, pH, Na(+), K(+), Mg(2+), Ca(2+), Cl(-), SO4(2-), and HCO(3-)) and stable isotopic composition (δ18O and δD) were determined for samples. Correlation analysis and principal component analysis (PCA) were performed to identify the sources of water constituents. Kriging was employed to simulate the spatial diffusion of NO3(-) and stable isotopes. Our results demonstrated that the groundwater exhibited more complex saline conditions than the surface water, likely resulting from alkaline conditions and lixiviation. NO3(-) was detected in all samples, 87.0% of which were influenced by anthropogenic activity. The NO3(-) pollution in groundwater was more serious than the common groundwater irrigation areas in the North China Plain (NCP), and was also slightly higher than that in surface water in the study area, but this was not statistically significant (p > 0.05). In addition, the groundwater sites with higher NO3(-) concentrations did not overlap with the spatial distribution of fertilizer consumption, especially in the central and western parts of the study area. NO3(-) distributions along the hydrogeological cross-sections were related to the groundwater flow system. Hydrochemical and environmental isotopic evidences indicate that surface water-groundwater interactions influence the spatial distribution of NO3(-) in the Piedmont of South Taihang Mountains.

  1. The patterns of bacterial community and relationships between sulfate-reducing bacteria and hydrochemistry in sulfate-polluted groundwater of Baogang rare earth tailings.

    PubMed

    An, Xinli; Baker, Paul; Li, Hu; Su, Jianqiang; Yu, Changping; Cai, Chao

    2016-11-01

    Microorganisms are the primary agents responsible for the modification, degradation, and/or detoxification of pollutants, and thus, they play a major role in their natural attenuation; yet, little is known about the structure and diversity of the subsurface community and relationships between microbial community and groundwater hydrochemistry. In this study, denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) allowed a comparative microbial community analysis of sulfate-contaminated groundwater samples from nine different wells in the region of Baogang rare earth tailings. Using real-time PCR, the abundance of total bacteria and the sulfate-reducing genes of aprA and dsrB were quantified. Statistical analyses showed a clear distinction of the microbial community diversity between the contaminated and uncontaminated samples, with Proteobacteria being the most dominant members of the microbial community. SO4(2-) concentrations exerted a significant effect on the variation of the bacterial community (P < 0.05), with higher concentrations of sulfate reducing the microbial diversity (H' index), indicating that human activity (e.g., mining industries) was a possible factor disturbing the structure of the bacterial community. Quantitative analysis of the functional genes showed that the proportions of dsrB to total bacteria were 0.002-2.85 %, and the sulfate-reducing bacteria (SRB) were predominant within the prokaryotic community in the groundwater. The uncontaminated groundwater with low sulfate concentration harbored higher abundance of SRB than that in the polluted samples, while no significant correlation was observed between sulfate concentrations and SRB abundances in this study, suggesting other environmental factors possibly contributed to different distributions and abundances of SRB in the different sites. The results should facilitate expanded studies to identify robust microbe

  2. Ground water. [Water pollution monitoring and control

    SciTech Connect

    Emrich, G.H.

    1982-06-01

    A literature review dealing with the occurrences, extent, and sampling of groundwater pollution is presented. Groundwater sampling procedures for various contaminants, and geophysical methods designed to investigate groundwater pollution are reviewed. (KRM)

  3. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation.

    PubMed

    Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos

    2016-01-01

    Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate.

  4. The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: a case study.

    PubMed

    Pérez, José Miguel Sánchez; Antiguedad, Iñaki; Arrate, Iñaki; García-Linares, Cristina; Morell, Ignacio

    2003-12-30

    The average nitrate concentration in the groundwater of the Vitoria-Gasteiz (Basque Country) quaternary aquifer rose from 50 mg NO3-/l during 1986 to over 200 mg/l in 1995, which represents an increase of some 20 mg NO3-/l per year. From 1995 to 2002, the nitrate concentration of the groundwater slightly decreased. Nitrate groundwater pollution during the period 1986-1993 was the result of the abusive use of fertilizers and of the modification in the recharge patterns of the aquifer from surface water sources. From 1993 onwards, apart from a possible rationalization in fertilizer use, the change in the origin of water for irrigation and wetland restoration (water is taken now from artificial pools outside the quaternary aquifer) must be explained in order to account for the observed decrease in nitrate concentration in the groundwater. The water of the aquifer and of the unsaturated zone were studied in two experimental plots (one of them cultivated and the other uncultivated) for 18 months (January 1993-June 1994), during the period of maximum contamination, to evaluate the effect of fertilizers on soil water and on the water in the saturated zone. The soil water was sampled using soil lysimeters at various depths. The volumetric water content of the soil was measured at the same depths using time domain reflectrometry (TDR) probes. Samples of groundwater were taken from a network of wells on the aquifer scale, two located close to the two experimental plots. The temporal evolution of nitrate concentrations in soil solutions depends on the addition of fertilizers and on soil nitrate leaching by rain. During episodes of intense rain (>50 mm in a day), the groundwater deposits are recharged with water coming from the leaching of interstitial soil solutions, causing an increase in the groundwater nitrate concentrations. The mass of nitrate leached from the cultivated zone is five times higher than that of the nitrate leached from the uncultivated zone (1147 kg NO3

  5. Assessment of the impact of on-site sanitation systems on groundwater pollution in two diverse geological settings--a case study from India.

    PubMed

    Pujari, Paras R; Padmakar, C; Labhasetwar, Pawan K; Mahore, Piyush; Ganguly, A K

    2012-01-01

    On-site sanitation has emerged as a preferred mode of sanitation in cities experiencing rapid urbanization due to the high cost involved in off-site sanitation which requires conventional sewerages. However, this practice has put severe stress on groundwater especially its quality. Under the above backdrop, a study has been undertaken to investigate the impact of on-site sanitation on quality of groundwater sources in two mega cities namely Indore and Kolkata which are situated in two different geological settings. The parameters for the studies are distance of groundwater source from place of sanitation, effect of summer and monsoon seasons, local hydro-geological conditions, and physico-chemical parameters. NO(3) and fecal coliform concentrations are considered as main indexes of pollution in water. Out of many conclusions which can be made from this studies, one major conclusion is about the influence of on-site sanitation on groundwater quality is minimal in Kolkata, whereas it is significant in Indore. This difference is due to the difference in hydrogeological parameters of these two cities, Kolkata being on alluvium quaternary and Indore being on Deccan trap of Cretaceous to Paleogene age.

  6. Predictive model of limestone scaling in ammonia stripping towers and its experimental validation on a treatment plant fed by MSW leachate-polluted groundwater.

    PubMed

    Raboni, Massimo; Viotti, Paolo

    2017-01-01

    Groundwater pollution by municipal solid waste (MSW) landfill leachate is a global concern. Stripping towers are one of the most implemented techniques for the removal of ammonia pollution. This study presents a predictive computational model to estimate calcium carbonate precipitation in ammonia stripping towers. The model considers the Ca(2+) super-saturation condition due to the water pH, temperature and salinity. The results have been validated through experimental data obtained from a plant fed with MSW landfill leachate-polluted groundwater. The plant consisted of two parallel lines composed of a coagulation-flocculation stage at high pH followed by a stripping tower. Six combinations of water pH and temperature conditions were tested. Maximum precipitation was 1,400 kgCaCO3 after a period of 120days, observed at inlet pH and temperatures of 10.5 and 38 °C The maximum removal efficiency of ammonia was reported as 91%, 87% and 80% respectively. Finally, a good relationship between the loss of efficiency in ammonia removal and the increase of precipitating CaCO3 to the tower plain area ratio, valid for all water pH and temperatures, has been found.

  7. [Comparative analysis of two different methods for risk assessment of groundwater pollution: a case study in Beijing plain].

    PubMed

    Wang, Hong-na; He, Jiang-tao; Ma, Wen-jie; Xu, Zhen

    2015-01-01

    Groundwater contamination risk assessment has important meaning to groundwater contamination prevention planning and groundwater exploitation potentiality. Recently, UN assessment system and WP assessment system have become the focuses of international research. In both systems, the assessment framework and indices were drawn from five aspects: intrinsic vulnerability, aquifer storage, groundwater quality, groundwater resource protection zone and contamination load. But, the five factors were built up in different ways. In order to expound the difference between the UN and WP assessment systems, and explain the main reasons, the UN and WP assessment systems were applied to Beijing Plain, China. The maps constructed from the UN and WP risk assessment systems were compared. The results showed that both kinds of groundwater contamination risk assessment maps were in accordance with the actual conditions and were similar in spatial distribution trends. However, there was quite significant different in the coverage area at the same level. It also revealed that during the system construction process, the structural hierarchy, relevant overlaying principles and classification method might have effects on the groundwater contamination risk assessment map. UN assessment system and WP assessment system were both suitable for groundwater contamination risk assessment of the plain, however, their emphasis was different.

  8. Groundwater contamination and emergency response guide

    SciTech Connect

    Guswa, J.H.; Donigian, A.S.

    1984-01-01

    This book provides a review of equipment, methods, and field techniques; an overview of groundwater hydrology; and a methodology for estimating groundwater contamination under emergency response conditions. It describes techniques used to identify, quantify, and respond to groundwater pollution incidents.

  9. Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China.

    PubMed

    Li, Peiyue; Wu, Jianhua; Qian, Hui; Lyu, Xinsheng; Liu, Hongwei

    2014-08-01

    Groundwater quality which relates closely to human health has become as important as its quantity due to the demand for safe water. In the present study, an entropy-weighted fuzzy water quality index (WQI) has been proposed for performing groundwater quality assessment in and around an industrial park, northwest China, where domestic water requirements are solely met by groundwater. The human health risk was assessed with the model recommended by the United States Environmental Protection Agency. In addition, the sources of major ions and main contaminants were also analyzed. The study shows that groundwater in the study area has been contaminated conjunctively by natural processes and industrial and agricultural activities. Nitrate, manganese (Mn), fluoride, total dissolved solids, total hardness and sulfate are major contaminants influencing groundwater quality. Nitrate and heavy metals such as Mn are mainly affected by human agricultural activities and industrial production, while other contaminants are mainly originated from mineral weathering and water-rock interactions. The results of water quality assessment suggest that half of the groundwater samples collected are of medium quality thus require pretreatment before human consumption. The mean health risk caused by the consumption of contaminated groundwater in the area is 8.42 × 10(-5) per year which surpasses the maximum acceptable level (5 × 10(-5) per year) recommended by the International Commission on Radiologic Protection. The entropy-weighted fuzzy WQI proposed in this study can not only assign proper weights to parameters but also treat uncertainties associated with water quality classification. This study will be of interest to international environmentalists and hydrogeologists. It will also be useful in regional groundwater management and protection.

  10. Evaluation of groundwater pollution potential of sewage-irrigated vegetable growing areas of the eastern fringe of Calcutta city.

    PubMed

    Mitra, A; Gupta, S K

    2000-01-01

    In recent years recycling in agriculture is a common method of disposal or utilisation of waste. However, recycling of wastes may cause contamination of groundwater by toxic elements like heavy metals, cationic and anionic contaminants and pathogens. Groundwater of shallow and deep tubewells was collected during 1991 to 1997 from raw sewage effluent irrigated garbage farming areas on the eastern fringe of Calcutta city. In general raw sewage effluents, sludges and sewage-irrigated soils contain very high amounts of cations, anions, organics and heavy metals. It is found that most of the groundwater contained undesirable pH, total dissolved solids, total hardness, calcium, magnesium, phenolic compounds, iron and manganese and the observed values or concentrations were much above the maximum desirable limits specified by World Health Organisation (WHO) and Bureau of Indian Standards (BIS) for use as drinking water. Groundwater of that area may be used for irrigation. Dispersion by leaching of the metals, cationic and anionic contaminants from irrigated soil and from settled bottom sludge in unlined sewage channels are the principal causes of groundwater contamination. Some management plans have been suggested to control further deterioration of groundwater quality.

  11. Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor.

    PubMed

    Zhou, Minghua; Wang, Wei; Chi, Meiling

    2009-10-01

    To improve denitrification performance and effective degradation of organic pollutants from micro-polluted groundwater simultaneously, a novel three-dimensional (3D) bio-electrochemical reactor was developed, which introduced activated carbon into a traditional two-dimensional (2D) reactor as the third electrode. The static and dynamic characteristics of the reactor were investigated with special attentions paid to the performance comparison of these two reactors. In the 3D reactor both TOC and nitrate removal efficiency were greatly improved, and the formation of nitrite byproduct is considerably reduced, comparing with that of the 2D reactor. The role of activated carbon biofilm was explored and possible remediation mechanisms for the 2D and 3D reactors were suggested. In such a 3D reactor, the denitrification rate improved greatly to 0.288 mg NO(3)-N/cm(2)/d and the current efficiency could reach as high as 285%. Further, it demonstrated good performance stably against variable conditions, indicating very promising in application for groundwater remediation.

  12. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  13. Risk screening for exposure to groundwater pollution in a wastewater irrigation district of the Mexico City region.

    PubMed Central

    Downs, T J; Cifuentes-García, E; Suffet, I M

    1999-01-01

    Untreated wastewater from the Mexico City basin has been used for decades to irrigate cropland in the Mezquital Valley, State of Hidalgo, Mexico. Excess irrigation water recharges the near-surface aquifer that is used as a domestic water supply source. We assessed the groundwater quality of three key groundwater sources of domestic water by analyzing for 24 trace metals, 67 target base/neutral/acid (BNA) organic compounds, nontarget BNA organics, 23 chlorinated pesticides, 20 polychlorinated biphenyls, and nitrate, as well as microbiological contaminants--coliforms, Vibrio cholerae, and Salmonella. Study participants answered a questionnaire that estimated ingestion and dermal exposure to groundwater; 10% of the sample reported frequent diarrhea and 9% reported persistent skin irritations. Detection of V. cholerae non-01 in surface waters at all sites suggested a potential risk (surrogate indicator present) of diarrheal disease for canal and river bathers by accidental ingestion, as well as potential Vibrio contamination of near-surface groundwater and potential cholera risk, magnified by lapses in disinfection. High total coliform levels in surface water and lower levels in groundwater at all sites indicated fecal contamination and a potential risk of gastrointestinal disease in populations exposed to inadequately disinfected groundwater. Using chemical criteria, no significant risk from ingestion or dermal contact was identified at the method detection limits at any site, except from nitrate exposure: infants and young children are at risk from methemoglobinemia at all sites. Results suggest that pathogen risk interventions are a priority, whereas nitrate risk needs further characterization to determine if formal treatment is needed. The risks exist inside and outside the irrigation district. The method was highly cost-effective. Images Figure 1 PMID:10398590

  14. Risk screening for exposure to groundwater pollution in a wastewater irrigation district of the Mexico City region.

    PubMed

    Downs, T J; Cifuentes-García, E; Suffet, I M

    1999-07-01

    Untreated wastewater from the Mexico City basin has been used for decades to irrigate cropland in the Mezquital Valley, State of Hidalgo, Mexico. Excess irrigation water recharges the near-surface aquifer that is used as a domestic water supply source. We assessed the groundwater quality of three key groundwater sources of domestic water by analyzing for 24 trace metals, 67 target base/neutral/acid (BNA) organic compounds, nontarget BNA organics, 23 chlorinated pesticides, 20 polychlorinated biphenyls, and nitrate, as well as microbiological contaminants--coliforms, Vibrio cholerae, and Salmonella. Study participants answered a questionnaire that estimated ingestion and dermal exposure to groundwater; 10% of the sample reported frequent diarrhea and 9% reported persistent skin irritations. Detection of V. cholerae non-01 in surface waters at all sites suggested a potential risk (surrogate indicator present) of diarrheal disease for canal and river bathers by accidental ingestion, as well as potential Vibrio contamination of near-surface groundwater and potential cholera risk, magnified by lapses in disinfection. High total coliform levels in surface water and lower levels in groundwater at all sites indicated fecal contamination and a potential risk of gastrointestinal disease in populations exposed to inadequately disinfected groundwater. Using chemical criteria, no significant risk from ingestion or dermal contact was identified at the method detection limits at any site, except from nitrate exposure: infants and young children are at risk from methemoglobinemia at all sites. Results suggest that pathogen risk interventions are a priority, whereas nitrate risk needs further characterization to determine if formal treatment is needed. The risks exist inside and outside the irrigation district. The method was highly cost-effective.

  15. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution. [South Dakota

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J. L.

    1980-01-01

    The author has identified the following significant results. Day thermal data were analyzed to assess depth to groundwater in the test site. HCMM apparent temperature was corrected for atmospheric effects using lake temperature of the Oahe Reservoir in central South Dakota. Soil surface temperatures were estimated using an equation developed for ground studies. A significant relationship was found between surface soil temperature and depth to groundwater, as well as between the surface soil-maximum air temperature differential and soil water content (% of field capacity) in the 0 cm and 4 cm layer of the profile. Land use for the data points consisted of row crops, small grains, stubble, and pasture.

  16. USE OF FLUORESCENT POLYCYLIC AROMATIC HYDROCARBON PROBES IN STUDYING THE IMPACT OF COLLOIDS ON POLLUTANT TRANSPORT IN GROUNDWATER

    EPA Science Inventory

    A fluorescence-quenching method was developed to assess the hydrophobic organic pollutant binding potential of organic colloids (OC) in unaltered natural waters. This method allows (1) direct assessment of the importance of OC-enhanced pollutant transport for environmental sam- p...

  17. Linking a one-dimensional pesticide fate model to a three-dimensional groundwater model to simulate pollution risks of shallow and deep groundwater underlying fractured till

    NASA Astrophysics Data System (ADS)

    Stenemo, Fredrik; Jørgensen, Peter R.; Jarvis, Nicholas

    2005-09-01

    The one-dimensional pesticide fate model MACRO was loose-linked to the three-dimensional discrete fracture/matrix diffusion model FRAC3DVS to describe transport of the pesticide mecoprop in a fractured moraine till and local sand aquifer (5-5.5 m depth) overlying a regional limestone aquifer (16 m depth) at Havdrup, Denmark. Alternative approaches to describe the upper boundary in the groundwater model were examined. Field-scale simulations were run to compare a uniform upper boundary condition with a spatially variable upper boundary derived from Monte-Carlo simulations with MACRO. Plot-scale simulations were run to investigate the influence of the temporal resolution of the upper boundary conditions for fluxes in the groundwater model and the effects of different assumptions concerning the macropore/fracture connectivity between the two models. The influence of within-field variability of leaching on simulated mecoprop concentrations in the local aquifer was relatively small. A fully transient simulation with FRAC3DVS gave 20 times larger leaching to the regional aquifer compared to the case with steady-state water flow, assuming full connectivity with respect to macropores/fractures across the boundary between the two models. For fully transient simulations 'disconnecting' the macropores/fractures at the interface between the two models reduced leaching by a factor 24. A fully connected, transient simulation with FRAC3DVS, with spatially uniform upper boundary fluxes derived from a MACRO simulation with 'effective' parameters is therefore recommended for assessing leaching risks to the regional aquifer, at this, and similar sites.

  18. [Uncertainty analysis of groundwater protection and control zoning in Beijing plain].

    PubMed

    Lu, Yan; He, Jiang-Tao; Wang, Jun-Jie; Liu, Li-Ya; Zhang, Xiao-Liang

    2012-09-01

    Groundwater pollution prevention mapping has important meaning to groundwater protection, pollution prevention and effective management. A mapping method was built through combining groundwater pollution risk assessment, groundwater value and wellhead protection area zoning. To make the method more accurate, two series of uncertainty analysis were performed and discussed. One was performed by changing the weights of the toxicity, mobility and degradation of pollutants, and the other was by changing the weights of groundwater pollution risk, groundwater value and wellhead protection area zoning. The results showed that the weights of groundwater pollution risk, groundwater value and wellhead protection area zoning were more sensitive than the weights of toxicity, mobility and degradation of pollutants.

  19. [Pesticide pollution of groundwater and drinking water by the processes of artificial groundwater enrichment or coastal filtration: underrated sources of contamination].

    PubMed

    Mathys, W

    1994-12-01

    The research objective of this study is to monitor the degree of pesticide pollution in public drinking waters and to characterise the pathways by which these substances get into potable waters. Public drinking waters, raw waters, ground waters, and surface waters in an area with intensive agriculture were analysed for pesticides and nitrate during the years 1987-1992. The monitoring reveals that only potable waters of water works using the process of artificial ground water recharge are polluted by pesticides. The very influence of surface water on the degree of pesticide contamination can be shown up to the wells. Wells that are influenced by bank filtration or infiltration contain significantly (P < 0.001) higher amounts and a greater number of substances than pure ground water wells. Most often triazines and phenylureas are analysed. Among the tested water works the artificial ground water recharge is the main factor for the input of pesticides into the aquifer and the drinking water. Percolation experiments, and parallel seasonal changes of pesticides and nitrate in raw and infiltration water document a high mobility during the subsoil passage and an easy vulnerability of the aquifer. There is no correlation between pesticides and nitrate. So nitrates are not suited as an indicator for pesticide pollution. Almost all tested surface waters, including channels, contain pesticides in highly varying concentrations during the whole year and are thus always a possible source for an input into the recharged ground water. In addition to agricultural runoffs a remarkable contamination of rivers with the herbicide diuron caused by municipal waste waters can be observed in the summer. Because of insufficient elimination of herbicides like triazines and phenylureas during bank filtration or infiltration and because of the high loads of surface waters with pesticides a minimisation of pesticide losses within the whole catchment area, especially of runoffs into surface

  20. Diffuse pollution (pesticides and nitrate) at catchment scale on two constrasted sites: mass balances and characterization of the temporal variability of groundwater quality.

    NASA Astrophysics Data System (ADS)

    Baran, N.; Gutierrez, A.

    2009-04-01

    Enhanced monitoring of groundwater quality over several years has revealed a nitrate and /or pesticide contamination of aquifers in North America and Europe (Gilliom et al., 2006; Ifen, 2004). In many countries (France, United Kingdom, Denmark, Switzerland), drinking water is partly or dominantly supplied by groundwater. Assessing the extent of nitrate or pesticide contamination in aquifer and understanding the transport of the solutes to groundwater is, therefore, of major importance for the management of groundwater resources. Besides, the objective set by the European Water Framework Directive (WFD - 2000/60/EC, OJEC 2000) is for "all groundwater bodies to achieve the good quantitative and chemical status … at the latest by 2015". The Directive demands that European Union Member States not only characterize their levels of groundwater contamination, but also that they study the evolutionary trends of their pollutant concentrations. Monitoring groundwater quality for nitrate and pesticide is thus particularly relevant as well as the characterization of the transfer of solutes to and in groundwater is essential for effective water resource management. Several countries have approached the stage of characterization of their groundwater bodies either by using data derived from various measurement networks, as in France or by establishing specific sampling and analysis protocols (NAQUA network in Switzerland; NAWQA network in the United States). Pesticide monitoring networks, where they exist, are often less than 10 years old with a fairly low measurement frequency (1 to 4 analyses per year). Chemical status and trend interpretations are thus difficult and limited. Characterizing an entire groundwater body from observations limited in time and space remains a challenge. Little published data exists concerning intensive monitoring over several years, whether at the catchment outlet or at observation points spread over a basin, that would allow these

  1. Groundwater contamination

    SciTech Connect

    Haimes, Y. . Dept. of Systems Engineering)

    1986-01-01

    The subject of these conference proceedings is the groundwater contamination. It is by nature multifarious - dealing with detection and monitoring, prevention, abatement and containment, and correction and restoration of contaminated groundwater - it intrinsically encompasses myriad disciplines, and it involves all levels of government. Also, the subject of groundwater contamination is complex because decisions concerning groundwater pollution control that are scientifically sound, technologically within the state of the art, economically feasible, politically tractable, legally sustainable, socially acceptable, morally accountable, and organizationally implementable must be grounded on appropriate information and intelligence bases in their respective areas - science, technology, economics, politics, the law, society, ethics, and management. Indeed, the human health effects (e.g., cancer, damage to the central nervous system, liver and kidney damage) and non-health effects (economic hardship to industry, agriculture, households, and municipalities; environmental impacts; social impacts) necessitate that we, as a society, address in a somber way the following variations of the same question: How safe is safe enough How clean is safe enough The enormous cost - in billions of dollars over the next decade - that various studies project for the prevention, detection and monitoring, abatement and containment, and correction and restoration of groundwater contamination make an answer to these questions even more urgent. There are sixteen papers in these proceedings.

  2. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  3. Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Baldi, B.; Guastaldi, E.; Rossetto, R.

    2009-04-01

    During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers

  4. Arsenic pollution in groundwater: a self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh.

    PubMed

    Tareq, Shafi M; Safiullah, S; Anawar, H M; Rahman, M Majibur; Ishizuka, T

    2003-09-01

    The presence of considerable concentrations of As (Sonargon: below detection limit (bdl)-1.46 mg/l; Faridpur: bdl-1.66 mg/l) and some other elements (like B, F, U) in groundwater of the Ganges-Meghna-Brahmaputra (G-M-B) rivers flood plain indicate that several millions of people are consuming contaminated water. Conditions regulating the mobilization and diagenetic behavior of arsenic in sediments are not well characterized, although understanding these conditions is essential in order to predict the modes of transfer of this contaminant from sediments to groundwater. Analyses of vertical profiles of total arsenic and iron as well as easily soluble As and reducible (reactive) iron concentrations in sediments of the Ganges and Meghna flood plains show no arsenic-enriched layer up to 36-m depth. However, arsenic content in sediments is relatively higher than mean crustal concentration, showing some peaks (Sonargaon: 27.9 mg/kg; 3 m, 31.5 mg/kg; 9 m, 27.30 mg/kg; 16 m, 37.70 mg/kg; 29.5 m, Faridpur: 19.80 mg/kg; 6 m, 26.60 mg/kg; 14.5 m, 29.40 mg/kg; 25 m) depending on the periodical differences in sedimentary cycling of arsenic, metal (hydr)oxides and organic matter. Seasonal changes have no clear or consistent effect on the groundwater arsenic concentrations; with the exception of a small-scale localized irregular change (10-16%). However, easily reducible metal oxides and hydroxides were significant factors affecting the retention of arsenic by sediments during leaching. The biogeochemical cycling of arsenic and iron is closely coupled in deltaic systems where iron oxy-hydroxides provide a carrier phase for the deposition of arsenic in sediments. Analytical results of mimic leaching experiments strongly supported the reduction (Fe oxy-hydroxides) mechanism for arsenic mobilization in alluvial aquifer of deltaic sedimentary environment of G-M-B rivers flood plain.

  5. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater

    PubMed Central

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens

    2015-01-01

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 105 degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales. PMID:26590282

  6. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater.

    PubMed

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens; Albers, Christian Nyrop

    2015-11-20

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales.

  7. Risk mitigation by waste-based permeable reactive barriers for groundwater pollution control at e-waste recycling sites.

    PubMed

    Beiyuan, Jingzi; Tsang, Daniel C W; Yip, Alex C K; Zhang, Weihua; Ok, Yong Sik; Li, Xiang-Dong

    2017-02-01

    Permeable reactive barriers (PRBs) have proved to be a promising passive treatment to control groundwater contamination and associated human health risks. This study explored the potential use of low-cost adsorbents as PRBs media and assessed their longevity and risk mitigation against leaching of acidic rainfall through an e-waste recycling site, of which Cu, Zn, and Pb were the major contaminants. Batch adsorption experiments suggested a higher adsorption capacity of inorganic industrial by-products [acid mine drainage sludge (AMDS) and coal fly ash (CFA)] and carbonaceous recycled products [food waste compost (FWC) and wood-derived biochar] compared to natural inorganic minerals (limestone and apatite). Continuous leaching tests of sand columns with 10 wt% low-cost adsorbents were then conducted to mimic the field situation of acidic rainfall infiltration through e-waste-contaminated soils (collected from Qingyuan, China) by using synthetic precipitation leaching procedure (SPLP) solution. In general, Zn leached out first, followed by Cu, and finally delayed breakthrough of Pb. In the worst-case scenario (e.g., at initial concentrations equal to 50-fold of average SPLP result), the columns with limestone, apatite, AMDS, or biochar were effective for a relatively short period of about 20-40 pore volumes of leaching, after which Cu breakthrough caused non-cancer risk concern and later-stage Pb leaching considerably increased both non-cancer and lifetime cancer risk associated with portable use of contaminated water. In contrast, the columns with CFA or FWC successfully mitigated overall risks to an acceptable level for a prolonged period of 100-200 pore volumes. Therefore, with proper selection of low-cost adsorbents (or their mixture), waste-based PRBs is a technically feasible and economically viable solution to mitigate human health risk due to contaminated groundwater at e-waste recycling sites.

  8. Linking groundwater pollution to the decay of 15th-century sculptures in Burgos Cathedral (northern Spain).

    PubMed

    Gázquez, Fernando; Rull, Fernando; Medina, Jesús; Sanz-Arranz, Aurelio; Sanz, Carlos

    2015-10-01

    Precipitation of salts-mainly hydrated Mg-Na sulfates-in building materials is rated as one of the most severe threats to the preservation of our architectural and cultural heritage. Nevertheless, the origin of this pathology is still unknown in many cases. Proper identification of the cause of damage is crucial for correct planning of future restoration actions. The goal of this study is to identify the source of the degradation compounds that are affecting the 15th-century limestone sculptures that decorate the retro-choir of Burgos Cathedral (northern Spain). To this end, detailed characterization of minerals by in situ (Raman spectroscopy) and laboratory techniques (XRD, Raman and FTIR) was followed by major elements (ICP and IC) and isotopic analysis (δ(34)S and δ(15)N) of both the mineral phases precipitated on the retro-choir and the dissolved salts in groundwater in the vicinity of the cathedral. The results reveal unequivocal connection between the damage observed and capillary rise of salts-bearing water from the subsoil. The multianalytical methodology used is widely applicable to identify the origin of common affections suffered by historical buildings and masterpieces.

  9. Characteristic of pollution with groundwater inflow (90)Sr natural waters and terrestrial ecosystems near a radioactive waste storage.

    PubMed

    Lavrentyeva, G V

    2014-09-01

    The studies were conducted in the territory contaminated by (90)Sr with groundwater inflow as a result of leakage from the near-surface trench-type radioactive waste storage. The vertical soil (90)Sr distribution up to the depth of 2-3 m is analyzed. The area of radioactive contamination to be calculated with a value which exceeds the minimum significant activity 1 kBq/kg for the tested soil layers: the contaminated area for the 0-5 cm soil layer amounted to 1800 ± 85 m(2), for the 5-10 cm soil layer amounted to 300 ± 12 m(2), for the 10-15 cm soil layer amounted to 180 ± 10 m(2). It is found that (90)Sr accumulation proceeds in a natural sorption geochemical barrier of the marshy terrace near flood plain. The exposure doses for terrestrial mollusks Bradybaena fruticum are presented. The excess (90)Sr interference level was registered both in the ground and surface water during winter and summer low-water periods and autumn heavy rains.

  10. Isotopic analysis of N and O in NO3- by selective bacterial reduction to N2O for groundwater pollution.

    PubMed

    Fang, Jingjing; Ma, Chuanming; Liu, Cunfu; Yue, Xiangbing

    2014-12-01

    We describe a method to determine the nitrogen and oxygen isotopic composition of nitrate in groundwater samples ((15)N/(14)N and (18)O/(16)O, respectively), which is based on the analysis of nitrous oxide gas (N2O) that is produced quantitatively from nitrate by denitrifying bacteria. This method which is simple, inexpensive and effective in the removal of nitrite is greatly selective for NO2(-) and was used for mixed samples containing both NO2(-) and NO3(-) with little or no measurable cross-contamination. The precision of δ(15)N and δ(18)O are 0.3 and 0.17‰ respectively, compared to that of 0.1 and 0.5‰ abroad (Brand et al. in Org Geochem 21:585-594, 1994; Begley and Scrimgeour in Anal Chem 69(8): 1530-1535, 1997; Kornexl et al. in Rapid Commun Mass Spectrom 13(16):1685-1693, 1999; Böhlke et al. in Rapid Commun Mass Spectrom 17:1835-1846, 2003; Gehre and Strauch in Rapid Commun Mass Spectrom 17(13):1497-1503, 2003; Werner in Isot Environ Health Stud 39:85-104, 2003).

  11. Nitrate pollution of groundwater in the alsatian plain (France)—A multidisciplinary study of an agricultural area: The Central Ried of the ill river

    NASA Astrophysics Data System (ADS)

    Bernhard, C.; Carbiener, R.; Cloots, A. R.; Froehlicher, R.; Schenck, Ch.; Zilliox, L.

    1992-09-01

    The area studied is part of the “Ried Central” of the Ill river (Middle Alsatian plain in northeastern France). This area is located mainly in the present floodplain of the Ill. The closeness of the water table to the surface results in quasi general soil hydromorphism. The economic constraints of the last two decades led to deep changes in agricultural activities in the study area. These have essentially involved a marked extension of intensive cultivation of grain corn at the expense of grasslands. The study of the influence of this change on the parallel increase in the concentration of nitrate in groundwater is only feasible when a multidisciplinary approach is adopted. The analyses carried out in the field and in the laboratory show that nitrate reduction occurs in gleyed or peaty horizons of hydromorphic soils. The aptitude and efficiency of the permanent ambient vegetation (alluvial forests and grasslands) in retaining nitrate must be emphasized. The amount of nitrate eliminated from the aquifer by rivers fed by this aquifer is considerable. This evacuation of nitrate into the Ill is a fine example of waste and illustrates the absurdity of the economic situation responsible for excessive nitrogen fertilization of farmlands. In determining hazard zones, this study also proposes practical solutions to the problem of nitrate pollution: diminution of land area under cultivation, reintroduction of grasslands, and a more judicious use of nitrogen manure.

  12. Artificial recharge of groundwater

    SciTech Connect

    Asano, T.

    1985-01-01

    The vast underground reservoirs formed by aquifers constitute invaluable water supply sources as well as water storage facilities. Because natural replenishment of the supply occurs very slowly, continued excessive exploitation of it causes groundwater levels to decline with time. If not corrected this leads to an eventual depletion of a valuable natural resource. To prevent mining and groundwater pollution, the artificial recharge of groundwater basins is becoming increasingly important in groundwater management as a way to increase this natural supply of water. Artificial recharge can reduce, stop, and even reverse declining levels of groundwater. In addition, it can protect underground freshwater in coastal aquifers against salt-water intrusion from the ocean, and can be used to store surface and reclaimed water for future use. This book is a treatise of the artificial recharge of groundwater, with particular emphasis on recharge with reclaimed municipal wastewater.

  13. Comprehensive monitoring of organic micro-pollutants in surface and groundwater in the surrounding of a solid-waste treatment plant of Castellón, Spain.

    PubMed

    Pitarch, Elena; Cervera, María Inés; Portolés, Tania; Ibáñez, María; Barreda, Mercedes; Renau-Pruñonosa, Arianna; Morell, Ignacio; López, Francisco; Albarrán, Fernando; Hernández, Félix

    2016-04-01

    The solid-waste treatment plant of RECIPLASA is located in the municipality of Onda (Castellón province), which is an important agricultural area of Spain, with predominance of citrus crops. In this plant, all urban solid wastes from the town of Castellón (around 200,000 inhabitants) and other smaller towns as Almassora, Benicàssim, Betxí, Borriana, L'Alcora, Onda and Vila-Real are treated. In order to evaluate the potential impact of this plant on the surrounding water, both surface and groundwater, a comprehensive monitoring of organic pollutants has been carried out along 2011, 2012 and 2013. To this aim, an advanced analytical strategy was applied for wide-scope screening, consisting on the complementary use of liquid chromatography (LC) and gas chromatography (GC) coupled to mass spectrometry (MS) with quadrupole (Q)-time of flight analyser (TOF). A generic solid-phase extraction with Oasis HLB cartridges was applied prior to the chromatographic analysis. The screening included more than 1500 organic pollutants as target compounds, such as pesticides, pharmaceuticals, veterinary drugs, drugs of abuse, UV-filters, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), among others. Pesticides, mainly herbicides, were the compounds more frequently detected. Other compounds as antioxidants, cosmetics, drugs of abuse, PAHs, pharmaceuticals and UV filters, were also identified in the screening though at much lower frequency. Once the screening was made, quantitative analysis focused on the compounds more frequently detected was subsequently applied using LC coupled to tandem MS with triple quadrupole analyser. In this way, up to 24 pesticides and transformation products (TPs), 7 pharmaceuticals, one drug of abuse and its metabolite could be quantified at sub-ppb concentrations. Along the three years of study, ten compounds were found at concentrations higher than 0.1μg/L. Most of them were pesticides

  14. Groundwater Contamination Response Guide. Volume 1. Methodology.

    DTIC Science & Technology

    1983-06-01

    Reference are designed to help base level engineering personnel to address groundwater pollution problems in a logical manner. This will address such specific...They do, however, describe an overall approach which can be followed to ensure a logical, scientifically based response to a groundwater pollution incident...the art of the various techniques used to identify, quantify, and respond to groundwater pollution incidents. 2 SECTION 11 IDENTIFYING AND ASSESSING

  15. Assessment of nitrate contamination due to groundwater pollution in north eastern part of Anantapur District, A.P. India.

    PubMed

    Reddy, A G S; Niranjan Kumar, K; Subba Rao, D; Sambashiva Rao, S

    2009-01-01

    The north eastern part of Anantapur district is in the state of Andhra Pradesh, India, is significant as it is covered by varied geological formations and has different land use and irrigation practices. Though ground water is the major drinking water source, deterioration in its quality is going unchecked. In such agro-economy based rural areas, the nitrate contamination is rampant and much attention has not been drawn towards this anthropogenic pollution. In the study area ground water samples from different hydrogeological set-up have been collected during the pre and post monsoon seasons and analysed for the major ions such as Ca, Mg, Na, K, CO(3), HCO(3), Cl, SO(4), NO(3) and F. The study revealed that 65% of the samples were found to be unsuitable for drinking purposes in the pre monsoon season and 45% in the post monsoon due to excess nitrate (>45 mg/l) content in the ground water. Among the different seasons and environs, nitrate was in highest concentration in the granitic terrain and canal command areas during pre monsoon season. The nitrate was found to decrease with depth in all the hydrogeological set-ups in both the seasons. Intense agriculture practices, improper sewerage and organic waste disposal methods were observed to contribute nitrate to the shallow and moderately deep aquifers.

  16. Bioremediation of contaminated groundwater

    SciTech Connect

    Hazen, T.C.; Fliermans, C.B.

    1992-12-31

    The present invention relates to a method for in situ bioremediation of contaminated soil and groundwater. In particular, the invention relates to remediation of contaminated soil and groundwater by the injection of nutrients to stimulate growth of pollutant-degrading microorganisms. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  17. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    PubMed Central

    2012-01-01

    Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city. PMID:23369323

  18. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India.

    PubMed

    Nagarajan, Rajkumar; Thirumalaisamy, Subramani; Lakshumanan, Elango

    2012-12-27

    Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city.

  19. Outlook: Groundwater Pollution and Conservation

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1972

    1972-01-01

    Characteristics of ground water and aquifers are explained to facilitate understanding of their importance in domestic water supplies. Problems of over usage, contamination, and regulation are enumerated and a national protection policy is advocated. (BL)

  20. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater based on a coupled agroeconomic - hydro(geo)logic model (Invited)

    NASA Astrophysics Data System (ADS)

    Wendland, F.

    2010-12-01

    The fundamental objectives of the European Union-Water Framework Directive and the EU Groundwater Directive are to attain a good status of water and groundwater resources in the member states of the EU by 2015. For river basins, whose good status cannot be guaranteed by 2015, catchment wide operational plans and measurement programs have to be drafted and implemented until 2009. In the river basin district Weser, Germany, which comprises a catchment area of ca. 49.000 km2, the achievement of the good status is unclear, or rather unlikely for 63% of the groundwater bodies. Inputs from diffuse sources and most of all nitrate losses from agriculturally used land have been identified as the main reasons for exceeding the groundwater threshold value for nitrate (50 mg/l) and for failing the good qualitative status of groundwater. The achievement of good qualitative status of groundwater bodies entails a particular challenge as the complex ecological, hydrological, hydrogeological and agro-economic relationships have to be considered simultaneously. We used an interdisciplinary model network to predict the nitrogen intakes into groundwater at the regional scale using an area differentiated approach. The model system combines the agro-economic model RAUMIS for estimating nitrogen surpluses from agriculture and the hydrological models GROWA/DENUZ/WEKU for describing the reactive nitrate transport in the soil-groundwater system. In a first step the model is used to analyze the present situation using N surpluses from agriculture for the year 2003. In many region of the Weser basin, particularly in the northwestern part which is characterized by high livestock densities, predicted nitrate concentrations in percolation water exceed the EU groundwater quality standard of 50 mg/L by far. In a second step the temporal and spatial impacts of the common agricultural policy (CAP) of the EU, already implemented agri-environmental measures of the Federal States and the expected

  1. EPA Completes Construction of Water line in Chester and Washington Townships, N.J., Agency Action Protects Community from Polluted Groundwater

    EPA Pesticide Factsheets

    (New York, N.Y.) Officials from the U.S. Environmental Protection Agency today marked the completion of a water line extension that will provide a safe source of drinking water to 73 homes and businesses threatened by contaminated groundwater from the Comb

  2. PREDICTING OF RISKS OF GROUNDWATER AND SURFACE WATER POLLUTION WITH DIFFERENT CLASSES OF HERBICIDES IN SOIL IN EASTERN EUROPE CLIMATE CONDITIONS.

    PubMed

    Korshun, M; Dema, O; Kucherenko, O; Korshun, O; Garkavyi, S; Pelio, I; Antonenko, A; Velikaia, N

    2016-11-01

    Application of pesticides in modern agriculture is a powerful permanent risk factor for public health and the natural environment. The aim of the study was a comparative hygienic assessment of the danger of contamination of ground and surface water sources with most widely used herbicides of different chemical classes (sulfonylureas, imidazolinones, pirimidinilkarboksilovye compounds semicarbazones). Field hygienic experiments for studying of the residues dynamics of studied herbicides concentration in agrocenosis objects were made by us in different types of soils: chernozem, sod-podzolic, podzolized forest. Then the half-life periods (DT50) of the substances in the soil were calculated. It was found that according to GUS index there is a high probability of leaching into groundwater of sulfonylureas and imidazolinones; according to LEACH index all investigated substances have a high risk of run-off into groundwater and surface water.

  3. Groundwater chemicals desk reference

    SciTech Connect

    Montgomery, J.H.; Welkom, L.M.

    1990-01-01

    Information is compiled on more than 135 compounds that may be groundwater pollutants. The compounds profiled include all the Priority Pollutants promulgated by the US EPA under the Clean Water Act (CWA) of 1977. Many of these priority pollutants were included among the Target Compounds promulgated by the EPA under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) in 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986. All chemicals described in the book are classified as priority pollutants and/or target compounds. For each chemical, the following information is given: (1) synonyms; (2) structural formula; (3) CAS Registry number; (4) DOT designation; (5) empirical formula; (6) formula weight; (7) RETCS number; (8) physical and chemical properties; (9) fire hazards; (10) health hazard data; and (11) manufacturing data and/or selected manufacturers.

  4. [Risk assessment of quaternary groundwater contamination in Beijing Plain].

    PubMed

    Guo, Gao-Xuan; Li, Yu; Xu, Liang; Li, Zhi-Ping; Yang, Qing; Xu, Miao-Juan

    2014-02-01

    Firstly, advances in investigation and evaluation of groundwater pollution in China in the last decade were presented, and several issues in the field which hinder the development of groundwater environment were pointed out. Then, four key concepts in risk assessment of groundwater pollution were briefly described with more emphasis on the difference between groundwater pollution assessment and groundwater quality assessment in this paper. After that, a method on risk assessment of groundwater pollution which included four indicators, the pollution assessment, the quality assessment, the vulnerability and the pollution load of groundwater, was presented based on the regional characteristics of Beijing Plain. Also, AHP and expert scoring method were applied to determine the weight of the four evaluation factors. Finally, the application of this method in Beijing Plain showed the area with high, relative high, medium, relative low and low risk of groundwater contamination was 1 232.1 km2, 699.3 km2, 1 951.4 km, 2 644 km2, and 133.2 km2, respectively. The study results showed that the higher risk in the western region was likely caused by the higher pollution load and its higher vulnerability, while the relatively high risk in the southeast of Beijing plain area, the Tongzhou District, is mainly caused by historical pollution sources.

  5. Groundwater Science

    NASA Astrophysics Data System (ADS)

    McKenna, Sean A.

    A good introductory groundwater textbook must strike a delicate balance in presenting the basics of the physical, chemical, geological, mathematical, and engineering aspects of the groundwater field without being too lengthy or overly detailed. Charles Fitts states that his motivation for writing Groundwater Science was to be able to “…teach concepts and quantitative analyses with a clear, lean, but thorough book.” He has succeeded in striking this balance of having just the right amount of information, and has met his goals of producing a concise book that can be used to teach the concepts and analyses necessary for the study of groundwater.Overall, Groundwater Science would serve well as the text for an introductory groundwater course at the college senior or first-year graduate level. The author and the publisher have made excellent use of two-color, gray and blue-scale images throughout the book. The graphics are crisp and explanatory. Data sets needed to work some of the problems in the book are available as text files from its Web site (http://www.academicpress.com/groundwater). I found these files to be complete and easy to understand. The references are up to date and point the reader to additional information across a wide range of groundwater issues, and also provide a number of examples to illustrate different points made in the book.

  6. Aquatic pollution, 2nd ed

    SciTech Connect

    Laws, E.A.

    1993-01-01

    This book systematically covers all aspects of water pollution in marine and freshwater systems. Didactic style, frequent use of case studies and an extensive bibliography facilitate understanding of fundamental concepts. Offers basic, relevant ecological and toxicological information. Straightforward presentation of the scientific aspects of environmental issues. Information updated, particularly the discussion of toxicology and the case studies of water pollution. Three new chapters on acid rain, groundwater pollution and plastics are added.

  7. PATHS groundwater hydrologic model

    SciTech Connect

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  8. Mineralization of the Common Groundwater Pollutant 2,6-Dichlorobenzamide (BAM) and its Metabolite 2,6-Dichlorobenzoic Acid (2,6-DCBA) in Sand Filter Units of Drinking Water Treatment Plants.

    PubMed

    Vandermaesen, Johanna; Horemans, Benjamin; Degryse, Julie; Boonen, Jos; Walravens, Eddy; Springael, Dirk

    2016-09-20

    The intrinsic capacity to mineralize the groundwater pollutant 2,6-dichlorobenzamide (BAM) and its metabolite 2,6-dichlorobenzoic acid (2,6-DCBA) was evaluated in samples from sand filters (SFs) of drinking water treatment plants (DWTPs). Whereas BAM mineralization occurred rarely and only in SFs exposed to BAM, 2,6-DCBA mineralization was common in SFs, including those treating uncontaminated water. Nevertheless, SFs treating BAM contaminated water showed the highest 2,6-DCBA mineralization rates. For comparison, 2,6-DCBA and BAM mineralization were determined in various topsoil samples. As in SF samples, BAM mineralization was rare, whereas 2,6-DCBA mineralization capacity appeared widespread, with high mineralization rates found especially in forest soils. Multivariate analysis showed that in both SF and soil samples, high 2,6-DCBA mineralization correlated with high organic carbon content. Adding a 2,6-DCBA degradation deficient mutant of the BAM mineralizing Aminobacter sp. MSH1 confirmed that 2,6-DCBA produced from BAM is rapidly mineralized by the endogenous microbial community in SFs showing intrinsic 2,6-DCBA mineralization. This study demonstrates that (i) 2,6-DCBA mineralization is widely established in SFs of DWTPs, allowing the mineralization of 2,6-DCBA produced during BAM degradation and (ii) the first metabolic step in BAM mineralization is rare in microbial communities, rather than its further degradation beyond 2,6-DCBA.

  9. Groundwater monitoring: Guidelines and methodology for developing and implementing a ground-water quality monitoring program

    SciTech Connect

    Everett, L.G.

    1984-01-01

    The handbook attempts to structure a cost-effective, generic groundwater pollution monitoring methodology that can be applied either on a regional basis or to site-specific, alternative approaches to monitoring the quality of groundwater at a considerable saving of time and money. Extensive detail is given to the relation of groundwater quality to the geohydrologic framework, constituents in the polluted groundwater, sources and causes of pollution, and use of water. Information is also given about groundwater monitoring techniques used in top soil, the vadose zone, ad the saturated zone. The costs of these techniques are described in figures and tables. Groundwater databases and their applicability to water resources information systems are also covered. Comprehensive site-specific examples are given of how to use the material in the handbook to monitoring major sources of groundwater pollution. Included are in-depth models of hazardous waste disposal, brine disposal, landfill leachate control, oxidation ponds and percolation ponds, septic fields, and agricultural return flow, as well as descriptions of cases of multiple-source municipal and agricultural pollution.

  10. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  11. ESTABLISHMENT OF A GROUNDWATER RESEARCH DATA CENTER FOR VALIDATION OF SUBSURFACE FLOW AND TRANSPORT MODELS

    EPA Science Inventory

    The International Ground Water Modeling Center has established a Groundwater Research Data Center that provides information on datasets resulting from publicly funded field experiments and related bench studies in soil and groundwater pollution and distributes datasets for tes...

  12. Solutions Remediate Contaminated Groundwater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  13. Tackling cross-media pollution

    SciTech Connect

    Tangley, L.

    1985-02-01

    Environmental problems caused by cycling of pollutants from air to land to water have been recognized. Because of the lack of a holistic environmental approach, pollution control measures fail to account for the exposure of the ecosystem to pollutants anywhere other than the medium covered by that particular law. Examples presented in the paper include: acid rain and groundwater pollution; disposal of sludge from smokestack scrubbers; control of cadmium, 1,3-butadiene and chlorinated solvents. The efforts of the Environmental Protection Agency, the Electric Power Research Institute and industry in addressing these problems are described.

  14. Public policy perspective on groundwater quality

    SciTech Connect

    Libby, L.W. )

    1990-01-01

    Groundwater pollution problems are fundamentally institutional problems. The means for reducing contamination are institutional: the mix of incentives, rights and obligations confronting resource users. Only changes in the rights and obligations of users or the economic and social cost of water use options will reduce groundwater pollution. Policy is the process by which those changes are made. The essential purpose of groundwater quality policy is to change water use behavior. For the most part, people do respond to evidence that a failure to change could be painful. New information can produce the support necessary for regulation or other policy change. It is essential to maintain healthy respect for the rights and intentions of individuals. Improved understanding of human behavior is essential to success in groundwater policy.

  15. Pollutant Types

    EPA Pesticide Factsheets

    Describes the types of air pollutants, including common or criteria pollutants, and hazardous air pollutants and links to additional information. Also links to resources on other air pollution issues.

  16. Noise Pollution

    MedlinePlus

    ... attention as other types of pollution, such as air pollution, or water pollution. The air around us is ... Air Act Overview Home Progress Cleaning the Air Air Pollution Challenges Requirements and History Role of Science and ...

  17. Viruses in soil and groundwater

    SciTech Connect

    Vaughn, J.M.; Landry, E.F.

    1981-01-01

    Human viruses usually gain access to soil systems through intentional or unintentional discharges of domestic wastewater. Intentional land treatment/disposal systems represent an attractive alternative to surface water discharges, providing both economic and environmental advantages. Major concerns over the possible threat to human health as a result of the large-scale use of such systems are as yet unresolved. One such concern involves the potential for viral contamination of groundwater systems which currently supply the drinking-water needs of half the United States population. While no groundwater-borne disease outbreaks of viral etiology have as yet been associated with land treatment use, the potential for their occurrence has been clearly indicated by epidemiological studies of outbreaks associated with groundwater pollution from unintentional modes of soil application. Epidemiological evidence has been supported by an increasing number of field studies which have demonstrated viral contamination of shallow aquifers resulting from the use of various land treatment modes, such as rapid infiltration/recharge systems. More recent studies have indicated that soil-associated microbial pollution of groundwater may be abated by the use of systems management practices based upon an understanding of the physical and chemical factors which influence viral retention in soil including: temperature; pH; moisture, clay and ion content; depth to groundwater; infiltration rate; and soil continuity. The proper manipulation of these principles in the operation of land treatment schemes which utilize high-quality wastewater effluents should provide the means for significantly diminishing the likelihood of viral movement to groundwater systems.

  18. Compendium of ordinances for groundwater protection

    SciTech Connect

    Not Available

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  19. UNCERTAINTY IN LEACHING POTENTIAL OF NONPOINT SOURCE POLLUTANTS WITH APPLICATION TO GIS

    EPA Science Inventory

    This paper presents a stochastic framework for the assessment of groundwater pollution potential of nonpoint source pesticides. A conceptual relationship is presented that relates seasonally averaged groundwater recharge to soil properties and depths to the water table. The analy...

  20. UNCERTAINTY IN LEACHING POTENTIAL OF NONPOINT SOURCE POLLUTANTS WITH APPLICATION TO A GIS

    EPA Science Inventory

    This paper presents a stochastic framework for the assessment of groundwater pollution potential of nonpoint source pesticides. A conceptual relationship is presented that relates seasonally averaged groundwater recharge to soil properties and depths to the water table. The analy...

  1. Ground-water program in Alabama

    USGS Publications Warehouse

    LaMoreaux, P.E.

    1955-01-01

    Several recent years of drought have emphasized the importance of Alabama's ground-water supplies, a matter of concern to us all.  So far we have been blessed in Alabama with ample ground-water, although a combination of increased use, waste, pollution, and drought has brought about critical local water shortages.  These problems serve as a fair warning of what lies ahead if we do not take the necessary steps to obtan adequate knowledge of our ground-water resources.

  2. DETERMINING EOSIN AS A GROUNDWATER MIGRATION TRACER BY CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE USING A MULTIWAVELENGTH LASER

    EPA Science Inventory

    Groundwater migration remains an important contributor in determining the distribution and fate of environmental pollutants originating from various waste sites or in understanding fate and transport .[ 1- 3] .Groundwater tracers are often used to determine the flow of groundwa...

  3. Analytical tools for groundwater pollution assessment

    SciTech Connect

    Hantush, M.M.; Islam, M.R.; Marino, M.A.

    1998-06-01

    This paper deals with the development of analytical screening-exposure models (indices) and their potential application to regulate the use of hazardous chemicals and the design of ground water buffer strips. The indices describe the leaching of solutes below the root zone (mass fraction), emissions to the water table, and mass fraction of the contaminant intercepted by a well or a surface water body.

  4. Handbook for the identification, location and investigation of pollution sources affecting ground water

    SciTech Connect

    Oudijk, G.; Mujica, K.

    1989-01-01

    Due to environmental pollution associated with increased urbanization and industrial development in wellhead areas, many public and domestic supply wells are becoming polluted at an ever-increasing rate. To prevent continued pollution of underground drinking water supplies, investigations must be conducted to locate and identify the sources of pollution. To conduct such investigations requires a diverse knowledge of hydrogeology, chemistry, urban planning, industrial and commercial processes, environmental law, and many other disciplines. Groundwater pollution investigations can be subdivided into the following five phases: (1) the background investigation (historical land usage, aerial photographs, pollutant characteristics, local hydrogeology); (2) the field pollution survey (site inspections, initial waste characterization); (3) the site-specific groundwater pollution investigation (monitoring wells, groundwater sampling); (4) data analysis (groundwater elevation contour maps, statistical analysis); and (5) source identification. This process may be used by investigators in order to locate pollution sources affecting aquifers, potable wells, and/or well fields.

  5. Marine pollution

    SciTech Connect

    Albaiges, J. )

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants.

  6. Global-scale modeling of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Döll, P.; Fiedler, K.

    2007-11-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  7. Global-scale modeling of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  8. Groundwater Contamination. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Cole, Charles A.

    Described is a presentation and learning session on groundwater, which is intended to educate advisory groups interested in improving water quality decision making. Among the areas addressed are the importance of groundwater, sources of contamination, and groundwater pollution control programs. These materials are part of the Working for Clean…

  9. Groundwater management and protection Madison County, Alabama

    SciTech Connect

    French, J.H.; Strunk, J.W.

    1990-07-01

    Groundwater is extremely important to Madison County as it provides nearly three quarters of the county's drinking water. In recent years, Madison County has increasingly recognized the need to protect its groundwater resource. A supply of usable groundwater is one element of a high quality environment, which can help spur economic development and provide for the needs of a growing population. Without planning protection and understanding of possible consequences, however, economic development and population pressures can cause a gradual degradation of groundwater. In April 1987, the Tennessee Valley Authority (TVA) convened a local groundwater steering group in Madison County. At the first meeting the ground agreed upon these goals: (1) to seek incorporate groundwater protection into the planning and development process for Madison County, (2) to support efforts by Madison County to obtain authority to adopt zoning ordinances and subdivision regulations, and (3) to develop a groundwater management plan for the county. This report provides essential information needed in developing a plan and is based on the following assumptions: the citizens of Madison County value the environment in which they live and wish to protect it from pollution; continued economic development is necessary for a healthy local economy; and a healthy economy can be sustained and nurtured, without degradation of the groundwater resource, through countywide planning, education, and participation.

  10. A Coordinate Transformation Model for Overlap Distribution: An Application to Groundwater Protection

    DTIC Science & Technology

    1988-01-01

    uncertainties associated with the groundwater pollution process tend to complicate matters. Initially, one might assume that the protective measures should...Washington D.C. I 11 I, , 1’ 95 Merchant, J.W., D.O. Whittemore, J.L. Whistler, C.D. McElwee and J.J. Woods, 1987: Groundwater Pollution Hazard

  11. Assessment and Management of Groundwater Used in Aquacultural Fishponds Based on the Spatial Variability of Groundwater Quality and Quantity

    NASA Astrophysics Data System (ADS)

    Liang, C.-P.; Jang, C.-S.; Wang, S.-W.

    2012-04-01

    Aquaculture is a general landscape in western and southwestern coastal areas, Taiwan. Aquaculture industries frequently require the huge quantity of water resources. However, surface water resources are limited in the regions. Therefore, fishers abundantly pump groundwater to cultivate fish and shellfish, resulting in substantial decreases in groundwater levels and the occurrence of seawater intrusion over several decades. . To reduce adverse effects on fish growth and potential land subsidence due to pumping, this work combined the spatial variability of groundwater quality and quantity parameters to assess zones of suitable groundwater used in aquacultural fishponds in the Pingtung plain, Taiwan. First, according to an aquacultural water quality standard in Taiwan, two pollutants in groundwater - manganese and ammonium-nitrogen - were considered. Sequential indicator simulation (SIS) was adopted to characterize realizations of the pollutants and to probabilistically determine four roles in the groundwater utilization ratio (UR) - UR<0.1 (strictly limited), 0.1≦UR<0.5 (minor), 0.5≦UR<1 (major) and UR=1 (completely used). A safe groundwater UR was determined from the two pollutants based on dominant estimated probabilities. Then, SIS also was used to grade transmissivity fields representing the pumping capacity of aquifers. Finally, recommended combinations of different levels of groundwater quality and quantity in fishponds were spatially delineated based on estimated probabilities and provided decision makers with detailed information to wisely select a reliable scheme of groundwater management. The analyzed results indicate that the recommended pumping zones for aquaculture are mainly distributed in the northeastern, southwestern and partial southeastern aquifers. The factor of groundwater quantity is more important than that of groundwater quality for aquaculture in this plain. Therefore, a development and management scheme of groundwater resources in

  12. Water Pollution

    ERIC Educational Resources Information Center

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  13. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  14. Transfer of European Approach to Groundwater Monitoring in China

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2007-12-01

    Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies

  15. A review of groundwater contamination near municipal solid waste landfill sites in China.

    PubMed

    Han, Zhiyong; Ma, Haining; Shi, Guozhong; He, Li; Wei, Luoyu; Shi, Qingqing

    2016-11-01

    Landfills are the most widely used method for municipal solid waste (MSW) disposal method in China. However, these facilities have caused serious groundwater contamination due to the leakage of leachate. This study, analyzed 32 scientific papers, a field survey and an environmental assessment report related to groundwater contamination caused by landfills in China. The groundwater quality in the vicinity of landfills was assessed as "very bad" by a comprehensive score (FI) of 7.85 by the Grading Method in China. Variety of pollutants consisting of 96 groundwater pollutants, 3 organic matter indicators, 2 visual pollutants and 6 aggregative pollutants had been detected in the various studies. Twenty-two kinds of pollutants were considered to be dominant. According to the Kruskal-Wallis test and the median test, groundwater contamination differed significantly between regions in China, but there were no significant differences between dry season and wet season measurements, except for some pollutants in a few landfill sites. Generally, the groundwater contamination appeared in the initial landfill stage after five years and peaked some years afterward. In this stage, the Nemerow Index (PI) of groundwater increased exponentially as landfill age increased at some sites, but afterwards decreased exponentially with increasing age at others. After 25years, the groundwater contamination was very low at selected landfills. The PI values of landfills decreased exponentially as the pollutant migration distance increased. Therefore, the groundwater contamination mainly appeared within 1000m of a landfill and most of serious groundwater contamination occurred within 200m. The results not only indicate that the groundwater contamination near MSW landfills should be a concern, but also are valuable to remediate the groundwater contamination near MSW landfills and to prevent the MSW landfill from secondary pollutions, especially for developing countries considering the similar

  16. Groundwater recharge in an endoreic basin with reclaimed municipal wastewater.

    PubMed

    De Feo, G; Galasso, M; Belgiorno, V

    2007-01-01

    The aim of this paper was to evaluate the groundwater pollution in an endoreic basin in southern Italy. The aquifer circulation was carried out on two different levels: a shallow groundwater, with a water table of about 10 m, and a deep groundwater in a karst aquifer, with a water table of 140-190 m. Reclaimed municipal wastewater and superficial water collected in the catchment area were both drained in a swallow hole linked with the deep groundwater. The agricultural practice conducted in the endoreic basin produced an excess of nitrate in the soil. Nitrate was subsequently washed out and displaced in the groundwater. With regard to the EU Drinking Water Directive (98/83/EC), the research activity conducted during 2003 showed the absence of pollution in the deep groundwater used for drinking water supply. The shallow groundwater, instead, was strongly influenced by agricultural and pasture activities, with detectable levels of nitrates and bacteria. In order to reduce the load of pollution entering the swallow hole and then in the deep groundwater, the realisation of a constructed wetland plant was proposed to improve the quality of reclaimed wastewater, as well as to pursue the wastewater reuse in agriculture.

  17. Anatomy of a groundwater contamination episode

    SciTech Connect

    Shechter, M.

    1985-03-01

    Using the contamination episode at Price Landfill, New Jersey, as a case study, major analytical and informational issues characterizing groundwater pollution, with special emphasis on uncertainty associated with the environmental medium, especially solute-transport processes, and the valuation of health risks, principally dose-response relationships, are addressed. Alternative approaches to modeling the physical-chemical processes are described and subsequently coupled with mortality risk predictions to derive estimates of expected pollution costs: reduced longevity (pollution damage costs) and cost of control and remedial measures (damage reductions costs.). 29 references, 1 figure, 4 tables.

  18. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  19. Groundwater Resources: Investigation and Development

    NASA Astrophysics Data System (ADS)

    Anderson, Mary P.

    A glance through the table of contents of this volume might suggest that it is yet another introductory text on principles of groundwater hydrology. All of the usual basic topics are covered including definitions of terms and concepts, aquifer types, drilling methods, and pumping tests. But partly because this book is intended for practicing groundwater consultants rather than students, other less elementary topics such as environmental isotope techniques, geochemical methods, interpretation and utilization of spring flow, geophysical methods, and groundwater balances are also included.According to the preface, ‘practical applicability’ is stressed ‘to show how groundwater investigations should be conducted using a systematic, well-directed effort’ and to describe ‘… what to do, what to avoid, and what kind of results one can reasonably expect …’ While this book was published as part of a series of monographs on water pollution, it is more in the nature of a handbook than a true monograph. That is, it is not an in-depth treatment of a single topic but presents a broad introduction to the ways in

  20. How does the Danish Groundwater Monitoring Programme support statistical consistent nitrate trend analyses in groundwater?

    NASA Astrophysics Data System (ADS)

    Hansen, Birgitte; Thorling, Lærke; Sørensen, Brian; Dalgaard, Tommy; Erlandsen, Mogens

    2013-04-01

    The overall aim of performing nitrate trend analyses in oxic groundwater is to document the effect of regulation of Danish agriculture on N pollution. The design of the Danish Groundwater Monitoring Programme is presented and discussed in relation to performance of statistical consistence nitrate trend analyses. Three types of data are crucial. Firstly, long and continuous time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 from Denmark Statistics is used as an indicator of the potential loss of N. Thirdly, groundwater recharge age determination are performed in order to allow linking of the first two dataset. Recent results published in Hansen et al. (2011 & 2012) will be presented. Since the 1980s, regulations implemented by Danish farmers have succeeded in optimizing the N (nitrogen) management at farm level. As a result, the upward agricultural N surplus trend has been reversed, and the N surplus has reduced by 30-55% from 1980 to 2007 depending on region. The reduction in the N surplus served to reduce the losses of N from agriculture, with documented positive effects on nature and the environment in Denmark. In groundwater, the upward trend in nitrate concentrations was reversed around 1980, and a larger number of downward nitrate trends were seen in the youngest groundwater compared with the oldest groundwater. However, on average, approximately 48% of the oxic monitored groundwater has nitrate concentrations above the groundwater and drinking water standards of 50 mg/l. Furthermore, trend analyses show that 33% of all the monitored groundwater has upward nitrate trends, while only 18% of the youngest groundwater has upward nitrate trends according to data sampled from 1988-2009. A regional analysis shows a correlation between a high level of N

  1. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain.

    PubMed

    Hu, Kelin; Huang, Yuangfang; Li, Hong; Li, Baoguo; Chen, Deli; White, Robert Edlin

    2005-08-01

    In recent years, nitrate (NO3) contamination of groundwater has become a growing concern for people in rural areas in North China Plain (NCP) where groundwater is used as drinking water. The objective of this study was to evaluate groundwater resource level, to determine groundwater quality and to assess the risk of NO3 pollution in groundwater in Quzhou County in the NCP. Ordinary Kriging (OK) method was used to analyze the spatial variability of shallow groundwater level, groundwater electrical conductivity (EC) and NO3-N concentrations, and Indictor Kriging (IK) method was used to analyze the data with NO3-N concentrations equal or greater than the groundwater NO3 pollution threshold (20 mg L(-1)). The results indicated that groundwater level averaged 9.81 m, a level 6 m lower than in 1990. The spatial correlation distances for groundwater level, EC and NO3-N concentration were 21.93, 2.19 and 3.55 km, respectively. The contour map showed that shallow groundwater level areas extended from north to south across the County. Groundwater EC was above 3 dS m(-1) in the most part of the northern county. Groundwater NO3 pollution (NO3-N> or =20 mg L(-1)) mainly occurred in the County Seat areas due to wastewater irrigation and excessive fertilizer leaching from agricultural fields. At Henantuang town, besides suburban of the County Seat, groundwater was also contaminated by NO3 shown by the map generated using the IK method, which was not reflected in the map generated using the OK method. The map generated using the OK method could not reflect correctly the groundwater NO3 pollution status. The IK method is useful to assess the risk of NO3 pollution by giving the conditional probability of NO3 concentration exceeding the threshold value. It is suggested that risk assessment of NO3 pollution is useful for better managing groundwater resource, preventing soil salinization and minimizing NO3 pollution in groundwater.

  2. Protecting groundwater resources at biosolids recycling sites.

    PubMed

    McFarland, Michael J; Kumarasamy, Karthik; Brobst, Robert B; Hais, Alan; Schmitz, Mark D

    2013-01-01

    In developing the national biosolids recycling rule (Title 40 of the Code of Federal Regulation Part 503 or Part 503), the USEPA conducted deterministic risk assessments whose results indicated that the probability of groundwater impairment associated with biosolids recycling was insignificant. Unfortunately, the computational capabilities available for performing risk assessments of pollutant fate and transport at that time were limited. Using recent advances in USEPA risk assessment methodology, the present study evaluates whether the current national biosolids pollutant limits remain protective of groundwater quality. To take advantage of new risk assessment approaches, a computer-based groundwater risk characterization screening tool (RCST) was developed using USEPA's Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment program. The RCST, which generates a noncarcinogenic human health risk estimate (i.e., hazard quotient [HQ] value), has the ability to conduct screening-level risk characterizations. The regulated heavy metals modeled in this study were As, Cd, Ni, Se, and Zn. Results from RCST application to biosolids recycling sites located in Yakima County, Washington, indicated that biosolids could be recycled at rates as high as 90 Mg ha, with no negative human health effects associated with groundwater consumption. Only under unrealistically high biosolids land application rates were public health risks characterized as significant (HQ ≥ 1.0). For example, by increasing the biosolids application rate and pollutant concentrations to 900 Mg ha and 10 times the regulatory limit, respectively, the HQ values varied from 1.4 (Zn) to 324.0 (Se). Since promulgation of Part 503, no verifiable cases of groundwater contamination by regulated biosolids pollutants have been reported.

  3. Environmental Pollution

    ERIC Educational Resources Information Center

    Breitbeil, Fred W., III

    1973-01-01

    Presents a thorough overview of the many factors contributing to air and water pollution, outlines the chemical reactions involved in producing toxic end-products, and describes some of the consequences of pollutants on human health and ecosystems. (JR)

  4. Water Pollution

    MedlinePlus

    ... adjust the font size, or print this page. Water Pollution Table of Contents Health Studies & Clinical Trials ... Trials GuLF Study What NIEHS is Doing on Water Pollution Survival of the resilient: rapid killifish evolution ...

  5. [Effects of reclaimed water recharge on groundwater quality: a review].

    PubMed

    Chen, Wei-Ping; Lü, Si-Dan; Wang, Mei-E; Jiao, Wen-Tao

    2013-05-01

    Reclaimed water recharge to groundwater is an effective way to relieve water resource crisis. However, reclaimed water contains some pollutants such as nitrate, heavy metals, and new type contaminants, and thus, there exists definite environmental risk in the reclaimed water recharge to groundwater. To promote the development of reclaimed water recharge to groundwater and the safe use of reclaimed water in China, this paper analyzed the relevant literatures and practical experiences around the world, and summarized the effects of different reclaimed water recharge modes on the groundwater quality. Surface recharge makes the salt and nitrate contents in groundwater increased but the risk of heavy metals pollution be smaller, whereas well recharge can induce the arsenic release from sedimentary aquifers, which needs to be paid more attention to. New type contaminants are the hotspots in current researches, and their real risks are unknown. Pathogens have less pollution risks on groundwater, but some virus with strong activity can have the risks. Some suggestions were put forward to reduce the risks associated with the reclaimed water recharge to groundwater in China.

  6. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  8. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  9. Erratum to "Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta".

    PubMed

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2009-04-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl- concentration and delta18O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3--N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  10. Effects of intensive urbanization on the intrusion of shallow groundwater into deep groundwater: examples from Bangkok and Jakarta.

    PubMed

    Onodera, Shin-ichi; Saito, Mitsuyo; Sawano, Misa; Hosono, Takahiro; Taniguchi, Makoto; Shimada, Jun; Umezawa, Yu; Lubis, Rachmat Fajar; Buapeng, Somkid; Delinom, Robert

    2008-10-15

    Asian megacities have severe pollution problems in both coastal and urban areas. In addition, the groundwater potential has decreased and land subsidence has occurred because of intensive groundwater pumping in urban areas. To prevent the adverse effects of urbanization on groundwater quality, it is necessary to confirm the changes in groundwater flow and contaminant transport caused by urbanization. We examined the effects of urbanization on contaminant transport in groundwater. The research areas were located around Bangkok, Thailand, and Jakarta, Indonesia, cities with populations of approximately 8 and 12 million, respectively. Each metropolitan city is located on a river delta and is adjacent to a bay. We measured the water level and collected water samples at boreholes at multiple depths (100 to 200 m) in 2004 and 2006 in Bangkok and Jakarta, respectively. The current hydraulic potential is below sea level in both cities because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The Cl(-) concentration and delta(18)O distributions in groundwater suggest that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. Concentrations of Mn and NO3(-)-N in groundwater suggest the intrusion of these contaminants from shallow to deep aquifers with downward groundwater flow and implies an accumulation of contaminants in deep aquifers. Therefore, it is important to recognize the possibility of future contaminant transport with the discharge of deep groundwater into the sea after the recovery of groundwater potential in the coastal areas.

  11. Wave-Induced Groundwater Flows in a Freshwater Beach Aquifer

    NASA Astrophysics Data System (ADS)

    Malott, S. S.; Robinson, C. E.; O'Carroll, D. M.

    2014-12-01

    Wave-induced recirculation across the sediment-water interface can impact the transport of pollutants through a beach aquifer and their ultimate flux into coastal waters. The fate of nutrients (e.g. from septic and agricultural sources) and fecal indicator bacteria (e.g. E. coil) near the sediment-water interface are of particular concern as these pollutants often lead to degradation of recreational water quality and nearshore ecosystems. This paper presents detailed field measurements of groundwater flows in a freshwater beach aquifer on Lake Huron over periods of intensified wave conditions. Quantifying wave-driven processes in a freshwater beach aquifer enables wave effects to be studied in isolation from density and tidal effects that complicate groundwater flows in marine beaches. Water exchange across the sediment-water interface and groundwater flow patterns were measured using groundwater wells, arrays of vertically nested pressure transducers and manometers. Results show that wave action induces rapid infiltration/exfiltration across the sediment-water interface and a larger recirculation cell through the beach aquifer. Field data is used to validate a numerical groundwater model of wave-induced groundwater flows. While prior studies have simulated the effects of waves on beach groundwater flows, this study is the first attempt to validate these sophisticated modeling approaches. Finally, field data illustrating the impact of wave-induced groundwater flows on nutrient and bacteria fate and transport in beach aquifers will also be presented.

  12. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  13. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  14. Experiences with groundwater contamination

    SciTech Connect

    Not Available

    1984-01-01

    This book discusses developments in combating groundwater contamination. The papers include: Regulation of Groundwater; Utility Experiences Related to Existing and Proposed Drinking Water Regulations; Point-of-Use Treatment Technology to Control Organic and Inorganic Contamination; Hazardous Waste Disposal Practices and Groundwater Contamination; Reverse Osmosis Treatment to Control Inorganic and Volatile Organic Contamination; The Dilemma of New Wells Versus Treatment; Characteristics and Handling of Wastes From Groundwater Treatment Systems; and Removing Solvents to Restore Drinking Water at Darien, Connecticut.

  15. Future of groundwater modeling

    USGS Publications Warehouse

    Langevin, Christian D.; Panday, Sorab

    2012-01-01

    With an increasing need to better manage water resources, the future of groundwater modeling is bright and exciting. However, while the past can be described and the present is known, the future of groundwater modeling, just like a groundwater model result, is highly uncertain and any prediction is probably not going to be entirely representative. Thus we acknowledge this as we present our vision of where groundwater modeling may be headed.

  16. Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model

    NASA Astrophysics Data System (ADS)

    Mfumu Kihumba, Antoine; Vanclooster, Marnik; Ndembo Longo, Jean

    2017-02-01

    This study assessed the vulnerability of groundwater against pollution in the Kinshasa region, DR Congo, as a support of a groundwater protection program. The parametric vulnerability model (DRASTIC) was modified and calibrated to predict the intrinsic vulnerability as well as the groundwater pollution risk. The method uses groundwater body specific parameters for the calibration of the factor ratings and weightings of the original DRASTIC model. These groundwater specific parameters are inferred from the statistical relation between the original DRASTIC model and observed nitrate pollution for a specific period. In addition, site-specific land use parameters are integrated into the method. The method is fully embedded in a Geographic Information System (GIS). Following these modifications, the correlation coefficient between groundwater pollution risk and observed nitrate concentrations for the 2013-2014 survey improved from r = 0.42, for the original DRASTIC model, to r = 0.61 for the calibrated model. As a way to validate this pollution risk map, observed nitrate concentrations from another survey (2008) are compared to pollution risk indices showing a good degree of coincidence with r = 0.51. The study shows that a calibration of a vulnerability model is recommended when vulnerability maps are used for groundwater resource management and land use planning at the regional scale and that it is adapted to a specific area.

  17. Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal.

    PubMed

    Shrestha, Sangam; Kafle, Ranjana; Pandey, Vishnu Prasad

    2017-01-01

    This study aimed at evaluating three index-overlay methods of vulnerability assessment (i.e., DRASTIC, GOD, and SI) for estimating risk to pollution of shallow groundwater aquifer in the Kathmandu Valley, Nepal. The Groundwater Risk Assessment Model (GRAM) model was used to compute the risk to groundwater pollution. Results showed that DRASTIC and SI methods are comparable for vulnerability assessment as both methods delineate around 80% of the groundwater basin area under high vulnerable zone. From the perspective of risk to pollution results, DRASTIC and GOD methods are comparable. Nevertheless, all the three methods estimate that at least 60% of the groundwater basin is under moderate risk to NO3-N pollution, which goes up to 75% if DRASTIC or GOD-based vulnerabilities are considered as exposure pathways. Finally, based on strength and significance of correlation between the estimated risk and observed NO3-N concentrations, it was found that SI method is a better-suited one to assess the vulnerability and risk to groundwater pollution in the study area. Findings from this study are useful to design strategies and actions aimed to prevent nitrate pollution in groundwater of Kathmandu Valley in Nepal.

  18. Groundwater sustainability and urban development - a major challenge for the 21st century

    NASA Astrophysics Data System (ADS)

    Foster, Stephen

    2016-04-01

    Groundwater is a critical, but often under appreciated, resource for urban water supply, a serious and costly hazard to urban infrastructure, and the 'invisible link' between various facets of the urbanisation process. An overview is presented of the benefits of urban groundwater use, together with some insidious and persistent problems that groundwater can present (especially those related to groundwater pollution from inadequate sanitation) for urban development. Spontaneous piecemeal approaches invariably mean that 'one person's solution becomes another person's problem' - and there is a strong argument for groundwater considerations to be part of a more holistic approach to urban infrastructure planning and management. However this is not a simple task because of the widespread vacuum of institutional responsibility and accountability for groundwater in urban areas. The current state of urban groundwater management will be reviewed, and pragmatic solutions to strengthening various facets of urban groundwater governance and management presented, using examples from Latin America and South Asia.

  19. Contamination and restoration of groundwater aquifers.

    PubMed Central

    Piver, W T

    1993-01-01

    Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented. PMID:8354172

  20. Evaluating Adult Groundwater Education.

    ERIC Educational Resources Information Center

    Gerakis, Argyrios

    1998-01-01

    One-day groundwater education workshops held to educate soil conservation personnel were assessed for effect on participant knowledge using a quasiexperimental design. Participants were tested on their groundwater knowledge and attitude toward groundwater conservation before and after the training. Participant scores improved significantly in only…

  1. Optimizing the monitoring scheme for groundwater quality in the Lusatian mining region

    NASA Astrophysics Data System (ADS)

    Zimmermann, Beate; Hildmann, Christian; Haubold-Rosar, Michael

    2014-05-01

    Opencast lignite mining always requires the lowering of the groundwater table. In Lusatia, strong mining activities during the GDR era were associated with low groundwater levels in huge parts of the region. Pyrite (iron sulfide) oxidation in the aerated sediments is the cause for a continuous regional groundwater pollution with sulfates, acids, iron and other metals. The contaminated groundwater poses danger to surface water bodies and may also affect soil quality. Due to the decline of mining activities after the German reunification, groundwater levels have begun to recover towards the pre-mining stage, which aggravates the environmental risks. Given the relevance of the problem and the need for effective remediation measures, it is mandatory to know the temporal and spatial distribution of potential pollutants. The reliability of these space-time models, in turn, relies on a well-designed groundwater monitoring scheme. So far, the groundwater monitoring network in the Lusatian mining region represents a purposive sample in space and time with great variations in the density of monitoring wells. Moreover, groundwater quality in some of the areas that face pronounced increases in groundwater levels is currently not monitored at all. We therefore aim to optimize the monitoring network based on the existing information, taking into account practical aspects such as the land-use dependent need for remedial action. This contribution will discuss the usefulness of approaches for optimizing spatio-temporal mapping with regard to groundwater pollution by iron and aluminum in the Lusatian mining region.

  2. Sustainable Groundwater Management Using Economic Incentive Approach

    NASA Astrophysics Data System (ADS)

    Yan, T.; Shih, J.; Sanchirico, J. N.

    2006-12-01

    Although groundwater accounts for about 20% of the water consumption in the US, recent urban development, land use changes and agricultural activities in many regions (for example, Chesapeake Bay and eastern shore of Maryland) have resulted in deleterious impacts on groundwater quality. These impacts have dramatically increased potential human health and ecological system risks. One example is nitrogen pollution delivered to local waterways from septic systems via groundwater. Conventional approaches for nitrogen removal, such as pumping and treatment (nitrification-denitrification) process, tend to be expensive. On the other hand, economic incentive approaches (such as marketable permits) have the potential to increase the efficiency of environmental policy by reducing compliance costs for regulated entities and individuals and/or achieving otherwise uneconomical pollution reduction. The success of the sulfur dioxide trading market has led to the creation of trading markets for other pollutants, especially at the regional, state, and smaller (e.g. watershed) scales. In this paper, we develop an integrated framework, which includes a groundwater flow and transport model, and a conceptual management model. We apply this framework to a synthetic set up which includes one farm and two development areas in order to investigate the potential of using economic incentive approaches for groundwater quality management. The policy analysis is carried out by setting up the objective of the modeling framework to minimize the total cost of achieving groundwater quality goals at specific observation point using either a transferable development right (TDR) system between development areas and/or using a tax for fertilizer usage in the farm area. The TDR system consists of a planning agency delineating a region into restricted-use (e.g., agriculture, open space) and high intensity zones (e.g., residential, commercial uses). The agency then endows landowners in the restricted area

  3. Groundwater Quality in Mura Valley (Slovenia)

    NASA Astrophysics Data System (ADS)

    Zajc Benda, T.; Souvent, P.; Bračič Železnik, B.; Čenčur Curk, B.

    2012-04-01

    Groundwater quality is one of the most important parameters in drinking water supply management. For safe drinking water supply, the quality of groundwater in the water wells on the recharge area has to be controlled. Groundwater quality data will be presented for one test area in the SEE project CC-WaterS (Climate Change and Impacts on Water Supply) Mura valley, which lies in the northeastern part of Slovenia. The Mura valley is a part of the Pannonian basin tectonic unit, which is filled with Tertiary and Quaternary gravel and sand sediments. The porous aquifer is 17 m thick in average and recharges from precipitation (70 %) and from surface waters (30 %). The aquifer is the main source of drinking water in the area for almost 53.000 inhabitants. Most of the aquifer lies beneath the agricultural area what represents the risk of groundwater quality. The major groundwater pollutants in the Mura valley are nitrates, atrazine, desethyl-atrazine, trichloroethane and tetrachloroethene. National groundwater quality monitoring is carried out twice a year, so some polluting events could be missed. The nitrate concentrations in the past were up to 140 mg/l. Concentration trends are decreasing and are now below 60 mg/l. Concentrations of atrazine and desethyl-atrazine, are decreasing as well and are below 0,1 µg/l. Trichloroethene and tetrachloroethene were detected downstream of main city in Mura valley, in the maximum concentrations of 280 μg/l in June 2005 (trichloroethene) and 880 μg/l in October 1997 (tetrachloroethene). So, it can be summarized that the trends for most pollutants in the Mura valley are decreasing, what is a good prediction for the future. Input estimation of the total nitrogen (N) (mineral and organic fertilizers) in the Mura valley shows, that the risk of leaching is enlarged in the areas, where the N input is larger than 250 kg/ha, this is at 6,3 % of all agricultural areas. Prediction for the period 2021-2050 indicates that the leaching of N

  4. Impact of agriculture on groundwater in Ireland

    NASA Astrophysics Data System (ADS)

    Aldwell, C. R.; Burdon, D. J.; Sherwood, M.

    1983-03-01

    Ireland has large water resources. Only 5.3% of developable waters are as yet developed, to supply some 650 I/day/per capita to the population of some 3.37 million people. State of development varies in each of the seven water resources regions. Precipitation is fairly evenly distributed over the year, but the percentage infiltrating to form groundwater varies quite sharply. Some 61% of infiltration occurs in the four winter months November to February, when agricultural activities are low. Only 10% infiltrates in the four summer months, May to August, when agricultural activities are high. In all, annual groundwater amounts to some 24.8 km3, of which 50% is considered to be recoverable. Capital groundwater reserves must be large, but are unquantified. Under these conditions, the impact of agriculture on groundwater quantities is negligible. Of the annual extraction of some 170 × 106m3 of groundwater, some 66 × 106m3/year are used in different agricultural activities. Drainage operations, however, have effects on Irish groundwater. Such lands may overlie impermeable strata or pans, or may receive concealed or visible groundwater discharge. Their drainage will affect the groundwater in various ways. There has been a considerable impact of agriculture on groundwater quality. The effects on the atmosphere and on precipitation are not identifiable. Effects of diffuse infiltration are treated with respect to: (a) application of ground limestone (lime); (b) application of K.N.P. inorganic fertilizer; (c) spreading of organic slurries; (d) development of organic nitrogen in soils, mainly after ploughing of grasslands; and (e) residues from herbicides, fungicides, and pesticides. The infiltration of these substances spread on the land is closely related to the interaction between times of ground-water recharge and times of fertilizer application. Effects of concentrated infiltration are treated under seven sub-heads: (a) infiltration of polluted surface waters; (b

  5. Land Use and Hydrogeological Characteristics Influence Groundwater Invertebrate Communities.

    PubMed

    Tione, María Laura; Bedano, José Camilo; Blarasin, Mónica

    2016-08-01

    We examine the influence of land use and hydrogeological characteristics on the abundance, composition and structure of groundwater invertebrate communities in a loessic aquifer from Argentina. Seven wells, selected according to surrounding land use and hydrogeological characteristics, were sampled twice. Groundwater was characterized as sodium bicarbonate, bicarbonate sulfate or sulfate type. NO3(-) was detected in all samples. Land use in the area surrounding the well, unsaturated zone thickness and geochemical characteristics of groundwater influenced the abundance, composition and community structure of groundwater invertebrates. Copepoda, Oligochaeta, Cladocera, Ostracoda and Amphipoda were highly influenced by land use, particularly by point pollution sources that produced higher abundance and changes in taxonomic composition. The lowest invertebrate abundance was observed at the wells situated in areas with the thickest unsaturated zone. Groundwater salinity and geochemical type influenced the presence of certain species, particularly Stygonitocrella sp.

  6. Biological nitrification process simulation in groundwater with dissolved oxygen controller

    NASA Astrophysics Data System (ADS)

    Zuo, Jinlong

    2009-07-01

    Nowadays groundwater contamination by nitrogenous fertilizer is a globally growing problem, but groundwater always serves as an important water source, especially in rural area. In order to tackle this problem, biological nitrification and denitrification process has been widely used for removal of nitrogenous pollutants from polluted water. To improve removal efficiency, the dissolved oxygen (DO) controller is presented. And the control strategies for the activated sludge process have been developed and evaluated by simulation. The results also showed that the DO controller will be applied widely in the control and management of the decentralization water treatment.

  7. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  8. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  9. Tracing groundwater recharge in the San Luis Valley, Colorado: Groundwater contamination susceptibility in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Patel, Tanya; Hindshaw, Ruth; Singer, Michael

    2015-04-01

    Water is a vital resource in any agricultural watershed, yet in the arid western United States farming practices threaten the quality and availability of groundwater. This is a pressing concern in the San Luis Valley, southern Colorado, where agriculture comprises 30% of the local economy, and employs over half the valley population. Although 54 % of the water used for irrigation is surface water, farmers do not usually apply this water directly to their fields. Instead, the water is often diverted into pits which recharge the aquifer, and the water is subsequently pumped during the following irrigation season. The Rio Grande Water Conservation District recognises that recharge to the unconfined aquifer has been outpaced by commercial irrigation for at least four decades, resulting in a decline in groundwater levels. Recycled irrigation water, and leakage from unlined canals now represent the greatest recharge contribution to the unconfined aquifer in this region. This makes the shallow groundwater particularly susceptible to agricultural contamination. The purpose of this study is to assess groundwater contamination in the unconfined and upper confined aquifers of the San Luis Valley, which are the most susceptible to contamination due to their close proximity to the surface. Although concentrations of potentially harmful contaminants from agricultural runoff are regularly monitored, the large spatial and temporal fluctuations in values make it difficult to determine long-term trends. We have analysed δ18O, δ2H and major-ion chemistry of 57 groundwater, stream and precipitation samples, collected in June 2014, and interpreted them alongside regional stream flow data and groundwater levels. This will allow us to study the seasonality and locality of groundwater recharge to provide greater insight into the watershed's potential for pollution. A groundwater vulnerability assessment was performed using the model DRASTIC (Depth to water, Recharge, Aquifer media, Soil

  10. Hydrogeochemistry and groundwater quality assessment of Ranipet industrial area, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Rao, G. Tamma; Rao, V. V. S. Gurunadha; Ranganathan, K.

    2013-06-01

    One of the highly polluted areas in India located at Ranipet occupies around 200 tanneries and other small scale chemical industries. Partially treated industrial effluents combined with sewage and other wastes discharged on the surface cause severe groundwater pollution in the industrial belt. This poses a problem of supply of safe drinking water in the rural parts of the country. A study was carried out to assess the groundwater pollution and identify major variables affecting the groundwater quality in Ranipet industrial area. Twenty five wells were monitored during pre- and post-monsoon in 2008 and analyzed for the major physico-chemical variables. The water quality variables such as total dissolved solids (TDS), Iron (Fe2 + ), Hexavalent Chromium (Cr6 + ), at most of the sampling locations exceeded the ISI and WHO guideline levels for drinking water. Multivariate statistical techniques such as factor analysis were applied to identify the major factors (variables) corresponding to the different source of variation in groundwater quality. The water quality of groundwater is influenced by both anthropogenic and chemical weathering. The most serious pollution threat to groundwater is from TDS, Cr6 + and Fe2 + , which are associated with sewage and pollution of tannery waste. The study reveals that the groundwater quality changed due to anthropogenic and natural influences such as agricultural, natural weathering process.

  11. A groundwater quality index map for Namibia

    NASA Astrophysics Data System (ADS)

    Bergmann, Thomas; Schulz, Oliver; Wanke, Heike; Püttmann, Wilhelm

    2016-04-01

    Groundwater quality and contamination is a huge concern for the population of Namibia, especially for those living in remote areas. There, most farmers use their own wells to supply themselves and their animals with drinking water. In many cases, except for a few studies that were done in some areas, the only groundwater quality measurements that took place were taken at the time the well was drilled. These data were collected and are available through the national GROWAS-Database. Information on measurements determining the amount of contaminants such as fluoride, TDS, other major ions and nitrate for several thousand wells are provided there. The aim of this study was I) to check the database for its reliability by comparing it to results from different studies and statistical analysis, II) to analyze the database on groundwater quality using different methods (statistical-, pattern- and correlation analysis) and III) to embed our own field work that took place within a selected Namibian region into that analysis. In order to get a better understanding of the groundwater problems in different areas of Namibia, a groundwater quality index map based on GROWAS was created using GIS processing techniques. This map uses several indicators for groundwater quality in relation to selected guidelines and combines them into an index, thus enabling the assessment of groundwater quality with regard to more than one pollutant. The goal of the groundwater quality map is to help identify where the overall groundwater quality is problematic and to communicate these problems. Additionally, suggestions for an enhancement of the database and for new field surveys will be given. The field work was focusing on three farms within an area known for its problematic nitrate concentration in groundwater. There, 23 wells were probed. In order to identify the sources of the contamination, isotopic measurements were executed for three of these wells with high nitrate concentrations

  12. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-02-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  13. Groundwater sustainability strategies

    USGS Publications Warehouse

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  14. Progress in ground-water protection and restoration

    SciTech Connect

    Not Available

    1990-02-01

    Since issuing EPA's 'Ground-Water Protection Strategy' in 1984, the Agency has made significant strides in the protection of ground-water resources, both in implementing the ground-water related statutory authorities and in developing new EPA initiatives and activities. States also have made great progress in developing their own ground-water protection strategies and wellhead protection programs. Despite the progress already made in the protection and restoration of ground water, as documented in the report, much remains to be done--especially with respect to preventing pollution of ground-water resources. On July 18, 1989, a ground-water task force with the primary goal to develop a strategy for the direction EPA will take in ground-water protection. The strategy will incorporate recommendations and initiatives to ensure effective and consistent decision-making in all Agency actions affecting the resource, guide us as we deal with future ground-water issues, and assure that a clean and safe source of water will be available to all Americans and to the ecological systems on which we depend.

  15. Composite multiphase groundwater model

    SciTech Connect

    Kim, Joon Hyun.

    1989-01-01

    A general comprehensive mathematical model using the composite multi-phase approach to describe groundwater flow and pollution was developed. The comprehensive governing equation was derived from the simple mass balance of chemical species over all the phases in schematic elementary volume, and traditional ground water governing equations are explained from it. An attempt was made to include the complicated aspects of physical chemical and biological processes such as mass fraction, compressibility, capillarity, dispersion, gravity, relative permeability, viscosity, sorption, interfacial mass change and chemical and biological reactions. To make the analysis possible, assumptions have been made for continuous flow of each phase and instantaneous equilibrium for partition. The resulting system of nonlinear governing and constitutive equations was solved numerically. To handle the irregular geometry, complex boundary conditions and many different governing equations with simple modifications, the upstream weighted finite element method was adopted. By using the dynamic allocation of arrays, the code is flexible to work on an IBM 3090 Vector Facility, workstations and PC's for one, two and three dimensional problems. To reduce the computation time and storage requirements, decoupling of the system equations, banded global matrix and vector and parallel processing were used. The program was structured to facilitate inclusion of additional future constitutive equations. To demonstrate the model's versatility, several hypothetical problems were simulated: unsaturated flow through an embankment; one and two dimensional solute transport; one, two, three dimensional multiphase flow; composite multiphase flow and contaminant migration. The instability and convergence criteria of the nonlinear problems were studied. Parameter dependency of the model was also studied.

  16. Geophysical Detection of Groundwater.

    DTIC Science & Technology

    1982-04-01

    was also given to deriving a method that would be both innovative and would directly detect groundwater. Currently, there is no " black box" that uses...either the refraction method or the resistivity method to deter- mine the depth to this interface. Unless a " black box" is developed in the near...and software to be developed for groundwater exploration. Unless a " black box" is developed in the near future, the best hope for locating groundwater

  17. Inclusion of emerging organic contaminants in groundwater monitoring plans.

    PubMed

    Lamastra, Lucrezia; Balderacchi, Matteo; Trevisan, Marco

    2016-01-01

    Groundwater is essential for human life and its protection is a goal for the European policies. All the anthropogenic activities could impact on water quality. •Conventional pollutants and more than 700 emerging pollutants, resulting from point and diffuse source contamination, threat the aquatic ecosystem.•Policy-makers and scientists will have to cooperate to create an initial groundwater emerging pollutant priority list, to answer at consumer demands for safety and to the lack of conceptual models for emerging pollutants in groundwater.•Among the emerging contaminants and pollutants this paper focuses on organic wastewater contaminants (OWCs) mainly released into the environment by domestic households, industry, hospitals and agriculture. This paper starts from the current regulatory framework and from the literature overview to explain how the missing conceptual model for OWCs could be developed.•A full understanding of the mechanisms leading to the contamination and the evidence of the contamination must be the foundation of the conceptual model. In this paper carbamazepine, galaxolide and sulfamethozale, between the OWCs, are proposed as "environmental tracers" to identify sources and pathways ofcontamination/pollution.

  18. Ozone Pollution

    EPA Pesticide Factsheets

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  19. Light Pollution

    ERIC Educational Resources Information Center

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  20. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  1. Deep challenges for China's war on water pollution.

    PubMed

    Han, Dongmei; Currell, Matthew J; Cao, Guoliang

    2016-11-01

    China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO3N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ(15)N and δ(18)ONO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort.

  2. Groundwater Vulnerability Assessment of the Pingtung Plain in Southern Taiwan

    PubMed Central

    Liang, Ching-Ping; Jang, Cheng-Shin; Liang, Cheng-Wei; Chen, Jui-Sheng

    2016-01-01

    In the Pingtung Plain of southern Taiwan, elevated levels of NO3−-N in groundwater have been reported. Therefore, efforts for assessing groundwater vulnerability are required as part of the critical steps to prevent and control groundwater pollution. This study makes a groundwater vulnerability assessment for the Pingtung Plain using an improved overlay and index-based DRASTIC model. The improvement of the DRASTIC model is achieved by reassigning the weighting coefficients of the factors in this model with the help of a discriminant analysis statistical method. The analytical results obtained from the improved DRASTIC model provide a reliable prediction for use in groundwater vulnerability assessment to nitrate pollution and can correctly identify the groundwater protection zones in the Pingtung Plain. Moreover, the results of the sensitivity analysis conducted for the seven parameters in the improved DRASTIC model demonstrate that the aquifer media (A) is the most sensitive factor when the nitrate-N concentration is below 2.5 mg/L. For the cases where the nitrate-N concentration is above 2.5 mg/L, the aquifer media (A) and net recharge (R) are the two most important factors. PMID:27886103

  3. Regional assessment of groundwater quality for drinking purpose.

    PubMed

    Jang, Cheng-Shin

    2012-05-01

    Owing to limited surface water during a long-term drought, this work attempted to locate clean and safe groundwater in the Choushui River alluvial fan of Taiwan based on drinking-water quality standards. Because aquifers contained several pollutants, multivariate indicator kriging (MVIK) was adopted to integrate the multiple pollutants in groundwater based on drinking- and raw-water quality standards and to explore spatial uncertainty. According to probabilities estimated by MVIK, safe zones were determined under four treatment conditions--no treatment; ammonium-N and iron removal; manganese and arsenic removal; and ammonium-N, iron, manganese, and arsenic removal. The analyzed results reveal that groundwater in the study area is not appropriate for drinking use without any treatments because of high ammonium-N, iron, manganese, and/or arsenic concentrations. After ammonium-N, iron, manganese, and arsenic removed, about 81.9-94.9% of total areas can extract safe groundwater for drinking. The proximal-fan, central mid-fan, southern mid-fan, and northern regions are the excellent locations to pump safe groundwater for drinking after treatment. Deep aquifers of exceeding 200 m depth have wider regions to obtain excellent groundwater than shallow aquifers do.

  4. Protecting groundwater quality with high frequency subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate pollution from agriculture is a significant problem in the groundwater of the San Joaquin Valley of California (SJV). Nitrate is very mobile in water and transport is directly related to both water and fertilizer management on a crop. Surface irrigation is the principal method used in the SJ...

  5. Soil and groundwater remediation: Asia, Oceania, and Africa

    SciTech Connect

    Huang, P.M.; Islandar, I.K.

    1999-11-01

    This book covers information on metals, radionuclides, other inorganics, pesticides, and other anthropogenic organic compounds in soil environments in Asia, Oceania, and Africa. It addresses the current status and future prospects on soil and groundwater pollution and the remediation strategies for years to come.

  6. Nitrate leaching from intensive organic farms to groundwater

    NASA Astrophysics Data System (ADS)

    Dahan, O.; Babad, A.; Lazarovitch, N.; Russak, E. E.; Kurtzman, D.

    2013-07-01

    It is commonly presumed that organic agriculture causes only minimal environmental pollution. In this study, we measured the quality of percolating water in the vadose zone, underlying both organic and conventional intensive greenhouses. Our study was conducted in newly established farms where the subsurface underlying the greenhouses has been monitored continuously from their establishment. Surprisingly, intensive organic agriculture relying on solid organic matter, such as composted manure that is implemented in the soil prior to planting as the sole fertilizer, resulted in significant down leaching of nitrate through the vadose zone to the groundwater. On the other hand, similar intensive agriculture that implemented liquid fertilizer through drip irrigation, as commonly practiced in conventional agriculture, resulted in much lower rates of pollution of the vadose zone and groundwater. It has been shown that accurate fertilization methods that distribute the fertilizers through the irrigation system, according to plant demand, during the growing season dramatically reduce the potential for groundwater contamination.

  7. Arsenic concentrations in groundwaters of Cyprus

    NASA Astrophysics Data System (ADS)

    Christodoulidou, M.; Charalambous, C.; Aletrari, M.; Nicolaidou Kanari, P.; Petronda, A.; Ward, N. I.

    2012-10-01

    SummaryCyprus being a Mediterranean island with long dry summers and mild winters suffers from water deficiency and over exploitation of its water resources. Groundwater in Cyprus is a valuable natural resource as approximately 50% of the total water needs come from underground water supplies. According to the Directive 118/2006/EC, groundwater should be protected from deterioration and chemical pollution, this is particularly important for groundwater dependent ecosystems and for the use of groundwater as a water supply for human consumption. During 2007 to 2009, as part of a national monitoring programme, 84 boreholes were sampled in Cyprus and subsequently analysed for total arsenic by inductively coupled plasma mass spectrometry (ICP-MS). The groundwater concentrations ranged from <0.3 to 41 μg/L As. Several boreholes located in a rural farming district near Nicosia had concentrations above the World Health Organisation (WHO) Drinking Water Guideline limit of 10 μg/L As. Evaluation of the groundwater sampling procedure for boreholes provided data recommending that water samples should be collected after an initial borehole washout for 5 min. Further sampling of these boreholes in 2010, revealed total arsenic concentrations of <0.3-64.2 μg/L As, with the predominant arsenic species (determined using a novel field-based methodology) being arsenate (AsV). The maximum total arsenic concentration is 6-fold higher than the WHO Drinking Water Guideline limit (10 μg/L As) and approximately half of the United Nations Food and Agriculture Organisation (UN-FAO) irrigational limit of 100 μg/L As.

  8. Groundwater in Science Education

    ERIC Educational Resources Information Center

    Dickerson, Daniel L.; Penick, John E.; Dawkins, Karen R.; Van Sickle, Meta

    2007-01-01

    Although clean, potable groundwater constitutes one of our most valuable resources, few students or science educators hold complete and appropriate understandings regarding the concept. Recent studies that focus on secondary students' and preservice science teachers' understandings of groundwater found little difference between the groups'…

  9. Groundwater and Distribution Workbook.

    ERIC Educational Resources Information Center

    Ekman, John E.

    Presented is a student manual designed for the Wisconsin Vocational, Technical and Adult Education Groundwater and Distribution Training Course. This program introduces waterworks operators-in-training to basic skills and knowledge required for the operation of a groundwater distribution waterworks facility. Arranged according to the general order…

  10. Urban pollution.

    PubMed

    Sancini, Angela; Tomei, Francesco; Tomei, Gianfranco; Caciari, Tiziana; Di Giorgio, Valeria; André, Jean-Claude; Palermo, Paola; Andreozzi, Giorgia; Nardone, Nadia; Schifano, Maria Pia; Fiaschetti, Maria; Cetica, Carlotta; Ciarrocca, Manuela

    2012-01-01

    Air pollution represents a health risk for people living in urban environment. Urban air consists in a complex mixture of chemicals and carcinogens and its effects on health can be summarized in acute respiratory effects, neoplastic nonneoplastic (e.g. chronic bronchitis) chronic respiratory effects, and effects on other organs and systems. Air pollution may be defined according to origin of the phenomena that determine it: natural causes (natural fumes, decomposition, volcanic ash) or anthropogenic causes which are the result of human activities (industrial and civil emissions). Transport is the sector that more than others contributes to the deterioration of air quality in cities. In this context, in recent years, governments of the territory were asked to advance policies aimed at solving problems related to pollution. In consideration of the many effects on health caused by pollution it becomes necessary to know the risks from exposure to various environmental pollutants and to limit and control their effects. Many are the categories of "outdoor" workers, who daily serve the in urban environment: police, drivers, newsagents, etc.

  11. Groundwater and organic chemicals

    SciTech Connect

    Dawson, H.E.

    1995-12-01

    Groundwater is a major source of drinking water for many communities. Unfortunately, organic chemicals such as dry cleaning fluids, solvent, fuels, and pesticides have contaminated groundwater in many areas, rendering the groundwater useless as a drinking water resource. In many cases, the groundwater cannot be cleaned up with current technologies, particularly if the groundwater has been contaminated with immiscible (low solubility) organic liquids. In this talk, I will describe the path I have followed from geologist to geochemist and finally to environmental engineer. As a geologist, I studied the chemistry of rock metamorphosis. As a geochemist, I explored for gold and other metals. Now as an environmental engineer, I investigate the behavior of organic liquids in the subsurface. While these fields all appear very different, in reality I have always focused on the interaction of rocks or sediments with the fluids with which they come in contact.

  12. Groundwater-surface water interactions: the behavior of a small lake connected to groundwater

    NASA Astrophysics Data System (ADS)

    Arnoux, Marie; Barbecot, Florent; Gibert-Brunet, Elisabeth

    2016-04-01

    Interactions between lakes and groundwater have been under concern in recent years and are still not well understood. Exchange rates are both spatially and temporally highly variable and are generally underestimated. However these interactions are of utmost importance for water resource management and need to be better understood since (i) the hydrogeological and geochemical equilibria within the lake drive the evolution of lakes' ecology and quality, and (ii) groundwater inflow, even in low rate, can be a key element in both the lake nutrient balance (and therefore in lake's eutrophication) and vulnerability to pollution. In many studies two main geochemical tracers, i.e. water stable isotopes and radon-222, are used to determine these interactions. However there are still many uncertainties on their time and space variations and their reliability to determine the lake budget. Therefore, a lake connected to groundwater on a small catchment was chosen to quantify groundwater fluxes change over time and the related influences on the lake's water geochemistry. Through analyse in time and space of both tracers and a precise instrumentation of the lake, their variations linked to groundwater inflows are determined. The results show that each tracer provides additional information for the lake budget with the interest to well determine the information given by each measurement: the radon-222 gives information on the groundwater inflows at a point in space and time while water stable isotopes highlight the dominant parameters of the yearly lake budget. The variation in groundwater inflows allow us to discuss lake's evolution regarding climate and environmental changes.

  13. Residential exposure to chlorinated hydrocarbons from groundwater contamination and the impairment of renal function-An ecological study

    NASA Astrophysics Data System (ADS)

    Chen, Hui-Ming; Wu, Ming-Tsang

    2017-01-01

    Groundwater pollution from the petrochemical industry causes serious deterioration of soil and groundwater quality and impacts on human health worldwide. However, few studies have examined the effect of residential exposure to petrochemical chlorinated hydrocarbon-contaminated groundwater on renal function impairment in humans. We conducted an ecological study to investigate the two. A polyvinyl chloride (PVC) plant was located in one of the six villages, the study area, in Kaohsiung city of southwestern Taiwan. Based on the direction of groundwater flow and previous groundwater measurements of chlorinated hydrocarbons from Taiwan Environmental Protection Bureau, we divided the six villages into highly-polluted villages, moderately-polluted villages, and a non-polluted village. All inhabitants in those six villages were invited to receive free health examinations between May-June, 2010. In total, 4,432 study subjects ≥18 yrs old were analyzed. Compared to those in the non-polluted village, subjects in highly-polluted villages had 1.89- and 1.46-fold the risk of impaired estimated glomerular filtration rate (eGFR) and proteinuria (95% CI = 1.15–1.85 and 1.09–3.28, respectively) after adjusting for other covariates. Given this relative large sample size, we found that groundwater chlorinated hydrocarbon pollution can cause kidney damage in adults.

  14. Residential exposure to chlorinated hydrocarbons from groundwater contamination and the impairment of renal function-An ecological study

    PubMed Central

    Chen, Hui-Ming; Wu, Ming-Tsang

    2017-01-01

    Groundwater pollution from the petrochemical industry causes serious deterioration of soil and groundwater quality and impacts on human health worldwide. However, few studies have examined the effect of residential exposure to petrochemical chlorinated hydrocarbon-contaminated groundwater on renal function impairment in humans. We conducted an ecological study to investigate the two. A polyvinyl chloride (PVC) plant was located in one of the six villages, the study area, in Kaohsiung city of southwestern Taiwan. Based on the direction of groundwater flow and previous groundwater measurements of chlorinated hydrocarbons from Taiwan Environmental Protection Bureau, we divided the six villages into highly-polluted villages, moderately-polluted villages, and a non-polluted village. All inhabitants in those six villages were invited to receive free health examinations between May-June, 2010. In total, 4,432 study subjects ≥18 yrs old were analyzed. Compared to those in the non-polluted village, subjects in highly-polluted villages had 1.89- and 1.46-fold the risk of impaired estimated glomerular filtration rate (eGFR) and proteinuria (95% CI = 1.15–1.85 and 1.09–3.28, respectively) after adjusting for other covariates. Given this relative large sample size, we found that groundwater chlorinated hydrocarbon pollution can cause kidney damage in adults. PMID:28067285

  15. Groundwater: the processes and global significance of aquifer degradation.

    PubMed Central

    Foster, S S D; Chilton, P J

    2003-01-01

    The exploitation of groundwater resources for human use dates from the earliest civilizations, but massive resource development has been largely restricted to the past 50 years. Although global in scope, the emphasis of this paper is on groundwater-based economies in a developing nation context, where accelerated resource development has brought major social and economic benefits over the past 20 years. This results from groundwater's significant role in urban water supply and in rural livelihoods, including irrigated agriculture. However, little of the economic benefit of resource development has been reinvested in groundwater management, and concerns about aquifer degradation and resource sustainability began to arise. A general review, for a broad-based audience, is given of the mechanisms and significance of three semi-independent facets of aquifer degradation. These are (i) depletion of aquifer storage and its effects on groundwater availability, terrestrial and aquatic ecosystems; (ii) groundwater salinization arising from various different processes of induced hydraulic disturbance and soil fractionation; and (iii) vulnerability of aquifers to pollution from land-use and effluent discharge practices related to both urban development and agricultural intensification. Globally, data with which to assess the status of aquifer degradation are of questionable reliability, inadequate coverage and poor compilation. Recourse has to be made to 'type examples' and assumptions about the extension of similar hydrogeological settings likely to be experiencing similar conditions of groundwater demand and subsurface contaminant load. It is concluded that (i) aquifer degradation is much more than a localized problem because the sustainability of the resource base for much of the rapid socio-economic development of the second half of the twentieth century is threatened on quite a widespread geographical basis; and (ii) major (and long overdue) investments in groundwater

  16. Aeration of groundwater at a superfund site

    SciTech Connect

    Connors, P.

    1992-07-01

    One of the promising environmental cleanup activities underway at Lawrence Livermore National Laboratory is remediation of groundwater pollution by aeration techniques at the laboratory`s Site 300. The treatment facility extracts groundwater from a shallow aquifer and contaminants are removed by spraying the water into one end of a trailer mounted, polyethylene air-sparging tank. As the water passes through the tank, it is subjected to vigorous aeration from a large blower. By the time the water reaches the other end of the sparging tank, it has been stripped of volatile organic compounds(VOCs). The VOCs are stripped into the air and then collected by passing the air through two in-series, granular, activated-carbon canisters.

  17. Spatial distribution of pollution in an urban stormwater infiltration basin.

    PubMed

    Dechesne, Magali; Barraud, Sylvie; Bardin, Jean-Pascal

    2004-08-01

    Infiltration basins are frequently used for stormwater drainage. Because stormwater is polluted in highly toxic compounds, assessment of pollution retention by infiltration basins is necessary. Indeed, if basins are not effective in trapping pollution, deep soil and groundwater may be contaminated. This study's objective is to investigate soil pollution in infiltration basins: spatial distribution of soil pollution, optimisation of the number of soil samples and a contamination indicator are presented. It is part of a global project on long-term impact of stormwater infiltration on groundwater. Soil sampling was done on a basin in suburban Lyon (France). Samples were collected at different depths and analysed for nutrients, heavy metals, hydrocarbons and grain size. Pollutant concentrations decrease rapidly with depth while pH, mineralisation and grain size increase. Sustainable metal concentrations are reached at a 30-cm depth, even after 14 years of operation; hydrocarbon pollution is deeper. Principal component analysis shows how pollutants affect each level. The topsoil is different from other levels. Three specifically located points are enough to estimate the mass of pollution trapped by the basin with a 26% error. The proposed contamination indicator is calculated using either average level concentrations or maximum level concentrations. In both cases, the topsoil layer appears polluted but evaluation of lower levels is dependent on the choice of input concentrations.

  18. Groundwater quality in the San Francisco Bay groundwater basins, California

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.

  19. Particle Pollution

    MedlinePlus

    ... Index from the U.S. Environmental Protection Agency (EPA). Air Quality Index (AQI) The EPA Air Quality Index (AQI) tells you when air pollution is ... For more tools to help you learn about air quality, visit Tracking Air Quality . Top of Page File ...

  20. Pollution Solution

    ERIC Educational Resources Information Center

    Vannan, Donald A.

    1972-01-01

    Stresses briefly the need for individuals' actions for controlling the environmental pollution. A number of projects are suggested for teachers to involve children in this area. Simulated discussion groups of sellers'' and consumers, use of pictures, onion juice, and a water filtration contest are a few of the sources used. (PS)

  1. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  2. Water Pollution

    MedlinePlus

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  3. ON THE USE OF NEXRAD STAGE IV DATA IN THE MULTIMEDIA MODELING OF POLLUTANT TRANSPORT

    EPA Science Inventory

    The Environmental Protection Agency (EPA) is designing the Multimedia Integrated Modeling System (MIMS) to model the cycling of pollutants and nutrients between the atmosphere and the earth's surface, including water bodies and groundwater. Our ability to accurately model both ...

  4. Air pollution.

    PubMed

    Le, Nhu D; Sun, Li; Zidek, James V

    2010-01-01

    Toxic air pollutants are continuously released into the air supply. Various pollutants come from chemical facilities and small businesses, such as automobile service stations and dry cleaning establishments. Others, such as nitrogen oxides, carbon monoxide and other volatile organic chemicals, arise primarily from the incomplete combustion of fossil fuels (coal and petroleum) and are emitted from sources that include car exhausts, home heating and industrial power plants. Pollutants in the atmosphere also result from photochemical transformations; for example, ozone is formed when molecular oxygen or nitrogen interacts with ultraviolet radiation. An association between air pollution exposure and lung cancer has been observed in several studies. The evidence for other cancers is far less conclusive. Estimates of the population attributable risk of cancer has varied substantially over the last 40 years, reflecting the limitations of studies; these include insufficient information on confounders, difficulties in characterizing associations due to a likely lengthy latency interval, and exposure misclassification. Although earlier estimates were less than one percent, recent cohort studies that have taken into account some confounding factors, such as smoking and education amongst others, suggest that approximately 3.6% of lung cancer in the European Union could be due to air pollution exposure, particularly to sulphate and fine particulates. A separate cohort study estimated 5-7% of lung cancers in European never smokers and ex-smokers could be due to air pollution exposure. Therefore, while cigarette smoking remains the predominant risk factor, the proportion of lung cancers attributable to air pollution may be higher than previously thought. Overall, major weaknesses in all air-pollution-and-cancer studies to date have been inadequate characterization of long-term air pollution exposure and imprecise or no measurements of covariates. It has only been in the last

  5. Groundwater contamination in Japan

    NASA Astrophysics Data System (ADS)

    Tase, Norio

    1992-07-01

    Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.

  6. Groundwater data network interoperability

    USGS Publications Warehouse

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  7. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  8. The Groundwater Geochemistry of Waste Disposal Facilities

    NASA Astrophysics Data System (ADS)

    Bjerg, P. L.; Albrechtsen, H.-J.; Kjeldsen, P.; Christensen, T. H.; Cozzarelli, I. M.

    2003-12-01

    Landfills of solid waste are abundant sources of groundwater pollution. The potential for generatingstrongly contaminated leachate from landfill waste is very substantial. Even for small landfills the timescale can be measured in decades or centuries. This indicates that waste dumps with no measures to control leachate entrance into the groundwater may constitute a source of groundwater contamination long after dumping has ceased. In addition to these dumps, engineered landfills with liners and leachate collection systems may also constitute a source of groundwater contamination due to inadequate design, construction, and maintenance, resulting in the leakage of leachate.Landfills may pose several environmental problems (explosion hazards, vegetation damage, dust and air emissions, etc.), but groundwater pollution by leachate is considered to be the most important one and the focus of this chapter. Landfills differ significantly depending on the waste they receive: mineral waste landfills for combustion ashes, hazardous waste landfills, specific industrial landfills serving a single industry, or municipal waste landfills receiving a mixture of municipal waste, construction, and demolition waste, waste from small industries and minor quantities of hazardous waste. The latter type of landfill (termed "old landfills" in this chapter) is very common all over the world. Municipal landfills are characterized by a high content of organic waste that affects the biogeochemical processes in the landfill body and the generation of strongly anaerobic leachate with a high content of dissolved organic carbon, salts, ammonium, and organic compounds and metals released from the waste.This chapter describes the biogeochemistry of a landfill leachate plume as it emerges from the bottom of a landfill and migrates in an aquifer. The landfill hydrology, source composition, and spreading of contaminants are described in introductory sections. The focus of this chapter is on

  9. Estimating groundwater recharge

    USGS Publications Warehouse

    Stonestrom, David A.

    2011-01-01

    Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier "saturated" indicating that the pressure of the pore water is greater than atmospheric.

  10. Identifying the hydrochemical characteristics of rivers and groundwater by multivariate statistical analysis in the Sanjiang Plain, China

    NASA Astrophysics Data System (ADS)

    Cao, Yingjie; Tang, Changyuan; Song, Xianfang; Liu, Changming; Zhang, Yinghua

    2016-06-01

    Two multivariate statistical technologies, factor analysis (FA) and discriminant analysis (DA), are applied to study the river and groundwater hydrochemistry and its controlling processes in the Sanjiang Plain of the northeast China. Factor analysis identifies five factors which account for 79.65 % of the total variance in the dataset. Four factors bearing specific meanings as the river and groundwater hydrochemistry controlling processes are divided into two groups, the "natural hydrochemistry evolution" group and the "pollution" group. The "natural hydrochemistry evolution" group includes the salinity factor (factor 1) caused by rock weathering and the residence time factor (factor 2) reflecting the groundwater traveling time. The "pollution" group represents the groundwater quality deterioration due to geogenic pollution caused by elevated Fe and Mn (factor 3) and elevated nitrate (NO3 -) introduced by human activities such as agriculture exploitations (factor 5). The hydrochemical difference and hydraulic connection among rivers (surface water, SW), shallow groundwater (SG) and deep groundwater (DG) group are evaluated by the factor scores obtained from FA and DA (Fisher's method). It is showed that the river water is characterized as low salinity and slight pollution, and the shallow groundwater has the highest salinity and severe pollution. The SW is well separated from SG and DG by Fisher's discriminant function, but the SG and DG can not be well separated showing their hydrochemical similarities, and emphasize hydraulic connections between SG and DG.

  11. High-fluoride groundwater.

    PubMed

    Rao, N Subba

    2011-05-01

    Fluoride (F(-)) is essential for normal bone growth, but its higher concentration in the drinking water poses great health problems and fluorosis is common in many parts of India. The present paper deals with the aim of establishment of facts of the chemical characteristics responsible for the higher concentration of F(-) in the groundwater, after understanding the chemical behavior of F(-) in relation to pH, total alkalinity (TA), total hardness (TH), carbonate hardness (CH), non-carbonate hardness (NCH), and excess alkalinity (EA) in the groundwater observed from the known areas of endemic fluorosis zones of Andhra Pradesh that have abundant sources of F(-)-bearing minerals of the Precambrians. The chemical data of the groundwater shows that the pH increases with increase F(-); the concentration of TH is more than the concentration of TA at low F(-) groundwater, the resulting water is represented by NCH; the TH has less concentration compared to TA at high F(-) groundwater, causing the water that is characterized by EA; and the water of both low and high concentrations of F(-) has CH. As a result, the F(-) has a positive relation with pH and TA, and a negative relation with TH. The operating mechanism derived from these observations is that the F(-) is released from the source into the groundwater by geochemical reactions and that the groundwater in its flowpath is subjected to evapotranspiration due to the influence of dry climate, which accelerates a precipitation of CaCO(3) and a reduction of TH, and thereby a dissolution of F(-). Furthermore, the EA in the water activates the alkalinity in the areas of alkaline soils, leading to enrichment of F(-). Therefore, the alkaline condition, with high pH and EA, and low TH, is a more conducive environment for the higher concentration of F(-) in the groundwater.

  12. Food pollution.

    PubMed

    Trevino, R J

    1999-06-01

    Food can influence the human body in many ways, both positively and negatively. Several key elements of contemporary food cultivation and production are presented, along with their potential consequences to our health. The history of food cultivation and consumption is contrasted between early hunter-gatherer societies and modern day societies. Natural nutrient-rich foods produced from the soil in early societies have been replaced with artificial supplements and treated with pesticides and herbicides to control plant disease. The evolution of pesticides is chronicled from the synthesis of DDT in 1870 to present day. Several commonly used chemicals are described along with their documented side effects. A number of methods of pest control from ancient to modern day are offered as alternatives to polluting chemicals. Integrated pest management is proposed as a promising, economically feasible method of pest management, reducing pollution and risk to wildlife and human health.

  13. Applications of Groundwater Helium

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.

    2011-01-01

    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  14. Methodology for mapping shallow groundwater quality in urbanized areas: A case study from Lithuania

    NASA Astrophysics Data System (ADS)

    Klimas, A. A.

    1996-06-01

    Cities have a negative impact on the quality of shallow groundwater. Many of Lithuania's urban residents drink water from dug wells. Moreover, polluted shallow groundwater contaminates deeper aquifers of fresh drinking water. Therefore, this situation should be controlled and managed, as far as possible. In order to evaluate the quality of shallow groundwater in an urban area and to create an optimal monitoring system, an original methodology for groundwater mapping has been proposed. It resembles the GIS (geographical information system) technologies. The set of maps, laid one over another, consists of the following: (1) urbanization map, (2) geological-hydrogeological map, (3) groundwater chemistry map, (4) resulting groundwater chemistry factorial analysis map, and (5) pollution and pollutant transport map. The data obtained from studies on dug and geotechnical wells have been used for compilation of the maps. The system for shallow groundwater monitoring in the city with an area of 70 sq km and a population of 140,000 is proposed to consist of about 30 monitoring wells and several dug wells.

  15. Holocene estuarine sediments as a source of arsenic in Pleistocene groundwater in suburbs of Hanoi, Vietnam

    NASA Astrophysics Data System (ADS)

    Kuroda, Keisuke; Hayashi, Takeshi; Funabiki, Ayako; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Takizawa, Satoshi

    2017-01-01

    Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25-40 m depth, 9.6-4.8 cal ka uc(BP)) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25-94 μg/L) than in the HUA (5.2-42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.

  16. Water Pollution. Project COMPSEP.

    ERIC Educational Resources Information Center

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  17. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    PubMed

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined.

  18. Linear dynamic system approach to groundwater solute transport equation

    SciTech Connect

    Cho, W.C.

    1984-01-01

    Groundwater pollution in the United States has been recognized in the 1980's to be extensive both in degree and geographic distribution. It has been recognized that in many cases groundwater pollution is essentially irreversible from the engineering or economic viewpoint. Under the best circumstance the problem is complicated by insufficient amounts of field data which is costly to obtain. In general, the governing partial differential equation of solute transport is spatially discretized either using finite difference or finite element scheme. The time derivative is also approximated by finite difference. In this study, only the spatial discretization is performed using finite element method and the time derivative is retained in continuous form. The advantage is that special features of finite element are maintained but most important of all is that the equation can be rearranged to be in a standard form of linear dynamic system. Two problems were studied in detail: one is the determination of the locatio of groundwater pollution source(s). The problem is equivalent to identifying an input to the dynamic system and is solved by using the sensitivity theorem. The other one is the prediction of pollutant concentration at a given time at a given location. The eigenvalue technique was employed to solve this problem and the detailed procedures of the computation were delineated.

  19. Simplified Method for Groundwater Treatment Using Dilution and Ceramic Filter

    NASA Astrophysics Data System (ADS)

    Musa, S.; Ariff, N. A.; Kadir, M. N. Abdul; Denan, F.

    2016-07-01

    Groundwater is one of the natural resources that is not susceptible to pollutants. However, increasing activities of municipal, industrial, agricultural or extreme land use activities have resulted in groundwater contamination as occured at the Research Centre for Soft Soil Malaysia (RECESS), Universiti Tun Hussein Onn Malaysia (UTHM). Thus, aims of this study is to treat groundwater by using rainwater and simple ceramic filter as a treatment agent. The treatment uses rain water dilution, ceramic filters and combined method of dilute and filtering as an alternate treatment which are simple and more practical compared to modern or chemical methods. The water went through dilution treatment processes able to get rid of 57% reduction compared to initial condition. Meanwhile, the water that passes through the filtering process successfully get rid of as much as 86% groundwater parameters where only chloride does not pass the standard. Favorable results for the combination methods of dilution and filtration methods that can succesfully eliminate 100% parameters that donot pass the standards of the Ministry of Health and the Interim National Drinking Water Quality Standard such as those found in groundwater in RECESS, UTHM especially sulfate and chloride. As a result, it allows the raw water that will use clean drinking water and safe. It also proves that the method used in this study is very effective in improving the quality of groundwater.

  20. Characterization and assessment of contaminated soil and groundwater at an organic chemical plant site in Chongqing, Southwest China.

    PubMed

    Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin

    2016-04-01

    Contamination from organic chemical plants can cause serious pollution of soil and groundwater ecosystems. To characterize soil contamination and to evaluate the health risk posed by groundwater at a typical organic chemical plant site in Chongqing, China, 91 soil samples and seven groundwater samples were collected. The concentrations of different contaminants and their three-dimensional distribution were determined based on the 3D-krige method. Groundwater chemistry risk index (Chem RI) and cancer risk were calculated based on TRIAD and RBCA models. The chemistry risk indices of groundwater points SW5, SW18, SW22, SW39, SW52, SW80, and SW82 were 0.4209, 0.9972, 0.9324, 0.9990, 0.9991, 1.0000, and 1.0000, respectively, indicating that the groundwater has poor environmental status. By contrast, the reference Yangtse River water sample showed no pollution with a Chem RI of 0.1301. Benzene and 1,2-dichloroethane were the main contaminants in the groundwater and were responsible for the elevated cancer risk. The cumulative health risk of groundwater points (except SW5 and SW18) were all higher than the acceptable baselines of 10(-6), which indicates that the groundwater poses high cancer risk. Action is urgently required to control and remediate the risk for human health and groundwater ecosystems.

  1. Limits to Global Groundwater Consumption

    NASA Astrophysics Data System (ADS)

    Graaf, I. D.; Van Beek, R.; Sutanudjaja, E.; Wada, Y.; Bierkens, M. F.

    2015-12-01

    In regions with frequent water stress and large aquifer systems, groundwater is often used as an additional fresh water source. For many regions of the world groundwater abstraction exceeds groundwater recharge and persistent groundwater depletion occurs. The most direct effect of groundwater depletion is declining of water tables, leading to reduced groundwater discharge needed to sustain base-flow to e.g. rivers. Next to that, pumping costs increase, wells dry up and land subsidence occurs. These problems are expected to increase in the near future due to growing population and climate changes. This poses the urgent question of what the limits are of groundwater consumption worldwide. We simulate global water availability (5 arc-minute resolution, for 1960-2050) using the hydrological model PCR-GLOBWB (van Beek et al. 2011), coupled to a groundwater model based on MODFLOW (de Graaf et al. 2015), allowing for groundwater - surface water interactions. The groundwater model includes a parameterization of world's confined and unconfined aquifer systems needed for a realistic simulation of groundwater head dynamics. Water demands are included (from Wada et al. 2014). We study the limits to water consumption, focusing on locally attainable groundwater and groundwater levels critical to rivers to sustain low flows. We show an increasing trend (1960-2050) in groundwater head declines, due to increase in groundwater demand. Also, stream flow will decrease and low flow conditions will occur more frequent and will be longer in duration in the near future, especially for irrigated areas. Next to that, we provide a global overview of the years it takes until groundwater gets unattainable for e.g. a local farmer (100 m below land-surface used as a proxy), and estimate the increase in pumping cost for the near future. The results show where and when limits of groundwater consumption are reached globally.

  2. Age Distribution of Groundwater

    NASA Astrophysics Data System (ADS)

    Morgenstern, U.; Daughney, C. J.

    2012-04-01

    Groundwater at the discharge point comprises a mixture of water from different flow lines with different travel time and therefore has no discrete age but an age distribution. The age distribution can be assessed by measuring how a pulse shaped tracer moves through the groundwater system. Detection of the time delay and the dispersion of the peak in the groundwater compared to the tracer input reveals the mean residence time and the mixing parameter. Tritium from nuclear weapons testing in the early 1960s resulted in a peak-shaped tritium input to the whole hydrologic system on earth. Tritium is the ideal tracer for groundwater because it is an isotope of hydrogen and therefore is part of the water molecule. Tritium time series data that encompass the passage of the bomb tritium pulse through the groundwater system in all common hydrogeologic situations in New Zealand demonstrate a semi-systematic pattern between age distribution parameters and hydrologic situation. The data in general indicate high fraction of mixing, but in some cases also indicate high piston flow. We will show that still, 45 years after the peak of the bomb tritium, it is possible to assess accurately the parameters of age distributions by measuring the tail of the bomb tritium.

  3. Artificial recharge of groundwater: hydrogeology and engineering

    NASA Astrophysics Data System (ADS)

    Bouwer, Herman

    2002-02-01

    Artificial recharge of groundwater is achieved by putting surface water in basins, furrows, ditches, or other facilities where it infiltrates into the soil and moves downward to recharge aquifers. Artificial recharge is increasingly used for short- or long-term underground storage, where it has several advantages over surface storage, and in water reuse. Artificial recharge requires permeable surface soils. Where these are not available, trenches or shafts in the unsaturated zone can be used, or water can be directly injected into aquifers through wells. To design a system for artificial recharge of groundwater, infiltration rates of the soil must be determined and the unsaturated zone between land surface and the aquifer must be checked for adequate permeability and absence of polluted areas. The aquifer should be sufficiently transmissive to avoid excessive buildup of groundwater mounds. Knowledge of these conditions requires field investigations and, if no fatal flaws are detected, test basins to predict system performance. Water-quality issues must be evaluated, especially with respect to formation of clogging layers on basin bottoms or other infiltration surfaces, and to geochemical reactions in the aquifer. Clogging layers are managed by desilting or other pretreatment of the water, and by remedial techniques in the infiltration system, such as drying, scraping, disking, ripping, or other tillage. Recharge wells should be pumped periodically to backwash clogging layers. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10040-001-0182-4.

  4. Groundwater protection in Mediterranean countries after the European water framework directive

    NASA Astrophysics Data System (ADS)

    Martínez Navarrete, C.; Grima Olmedo, J.; Durán Valsero, J. J.; Gómez Gómez, J. D.; Luque Espinar, J. A.; de La Orden Gómez, J. A.

    2008-04-01

    The European Water Framework Directive (WFD) has driven the protection of groundwater and characterization of water bodies. Development of appropriate and efficient approaches which consider the special features of the hydrologic regime is essential. The results of different projects that have been carried out to integrate characterization and protection of water bodies are summarized herein. In the Les eaux de la Mediterranée (AQUAMED) Project, applicability to the Mediterranean Region of guidelines provided by the European Commission to facilitate the WFD implementation has been verified. The Background criteria for the identification of groundwater thresholds (BRIDGE) Project developed a methodology to establish threshold values of pollutants contributing to the chemical status of groundwater bodies. This method has been applied to pollutants used to classify groundwater bodies as at risk of not achieving objectives of the WFD. Selected features of protection areas for drinking water and safeguard zones are analyzed, as well as the possibility of using wellhead protection areas.

  5. Groundwater: Climate-induced pumping

    NASA Astrophysics Data System (ADS)

    Gurdak, Jason J.

    2017-01-01

    Groundwater resources are directly affected by climate variability via precipitation, evapotranspiration and recharge. Analyses of US and India trends reveal that climate-induced pumping indirectly influences groundwater depletion as well.

  6. Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study.

    PubMed

    Ouyang, Ying; Zhang, Jia-En; Parajuli, Prem

    2013-12-01

    Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land uses using field measurements and two-dimensional kriging analysis. Comparison of the concentrations of groundwater quality constituents against the US EPA's water quality criteria showed that the maximum nitrate/nitrite (NO x ) and arsenic (As) concentrations exceeded the EPA's drinking water standard limits, while the maximum Cl, SO 4 (2-) , and Mn concentrations exceeded the EPA's national secondary drinking water regulations. In general, high kriging estimated groundwater NH 4 (+) concentrations were found around the agricultural areas, while high kriging estimated groundwater NO x concentrations were observed in the residential areas with a high density of septic tank distribution. Our study further revealed that more areas were found with high estimated NO x concentrations in summer than in spring. This occurred partially because of more NO x leaching into the shallow groundwater due to the wetter summer and partially because of faster nitrification rate due to the higher temperature in summer. Large extent and high kriging estimated total phosphorus concentrations were found in the residential areas. Overall, the groundwater Na and Mg concentration distributions were relatively more even in summer than in spring. Higher kriging estimated groundwater As concentrations were found around the agricultural areas, which exceeded the EPA's drinking water standard limit. Very small variations in groundwater dissolved organic carbon concentrations were observed between spring and summer. This study demonstrated that the concentrations of groundwater quality constituents varied from location to location

  7. 77 FR 46009 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...-; FRL-9704-3] National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List... National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The EPA and the State of Maine... all Site media (including soil and groundwater). DATES: Comments must be received by September 4,...

  8. 75 FR 43115 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... AGENCY 40 CFR Part 300 National Oil and Hazardous Substances Pollution Contingency Plan; National... Substances Pollution Contingency Plan (NCP). The EPA and the Commonwealth of Pennsylvania, through the... partial deletion pertains to the soil and groundwater of parcels 24, 27, 28, 2-53, 2-53L, 2-54, 2-54L,...

  9. Patterns in groundwater chemistry resulting from groundwater flow

    NASA Astrophysics Data System (ADS)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  10. In situ groundwater bioremediation

    SciTech Connect

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  11. Groundwater-Seepage Meter

    NASA Technical Reports Server (NTRS)

    Walthall, Harry G.; Reay, William G.

    1993-01-01

    Instrument measures seepage of groundwater into inland or coastal body of water. Positioned at depth as great as 40 meters, and measures flow at low rate and low pressure differential. Auxiliary pressure meter provides data for correlation of flow of groundwater with tides and sea states. Seepage meter operates independently for several weeks. Its sampling rate adjusted to suit hydrologic conditions; to measure more frequently when conditions changing rapidly. Used in water-quality management and for biological and geological research. Potential industrial uses include measurement of seepage of caustic and corrosive liquids.

  12. Chemical and biological tracers to determine groundwater flow in karstic aquifer, Yucatan Peninsula

    NASA Astrophysics Data System (ADS)

    Lenczewski, M.; Leal-Bautista, R. M.; McLain, J. E.

    2013-05-01

    Little is known about the extent of pollution in groundwater in the Yucatan Peninsula; however current population growth, both from international tourism and Mexican nationals increases the potential for wastewater release of a vast array of contaminants including personal care products, pharmaceuticals (Rx), and pathogenic microorganisms. Pathogens and Rx in groundwater can persist and can be particularly acute in this region where high permeability of the karst bedrock and the lack of top soil permit the rapid transport of contaminants into groundwater aquifers. The objective of this research is to develop and utilize novel biological and chemical source tracking methods to distinguish between different sources of anthropogenic pollution in degraded groundwater. Although several methods have been used successfully to track fecal contamination sources in small scale studies, little is known about their spatial limitations, as source tracking studies rarely include sample collection over a wide geographical area and with different sources of water. In addition, although source tracking methods to distinguish human from animal fecal contamination are widely available, this work has developed source tracking distinguish between separate human populations is highly unique. To achieve this objective, we collected water samples from a series of drinking wells, cenotes (sinkholes), wastewater treatment plants, and injection wells across the Yucatan Peninsula and examine potential source tracers within the collected water samples. The result suggests that groundwater sources impacted by tourist vs. local populations contain different chemical stressors. This work has developed a more detailed understanding of the presence and persistence of personal care products, pharmaceuticals, and fecal indicators in a karstic system; such understanding will be a vital component for the protection Mexican groundwater and human health. Quantification of different pollution sources

  13. Record of Decision Tank Farm Soil and INTEC Groundwater

    SciTech Connect

    L. S. Cahn

    2007-05-01

    This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact of groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank far soil and groundwater at INTEC.

  14. Groundwater: A Community Action Guide.

    ERIC Educational Resources Information Center

    Boyd, Susan, Ed.; And Others

    Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…

  15. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  16. A groundwater management plan for Stuttgart.

    PubMed

    Vasin, Sandra; Carle, Achim; Lang, Ulrich; Kirchholtes, Hermann Josef

    2016-09-01

    In general, groundwater in urban areas is exposed to anthropogenic influence and suffers from concentrations of contaminants. Stuttgart, as a highly industrialized city, has more than 5000 contaminated sites which might influence the Stuttgart's mineral water quality. Despite tremendous efforts and intensive single site orientated remediation since 1984 in downtown, the mineral springs were still affected with chlorinated hydrocarbons at low concentrations. Therefore, the applied practices of environmental management and measures for mitigation of pollution sources were not sufficient and had to be adjusted. The main goal of this study is to define an integral remediation plan (a groundwater management plan), focusing on the key sources of chlorinated solvents which are relevant for the mineral springs. For the large-scale investigated area of 26.6km(2) and eight aquifers, an extensive investigation and characterization methods were used in order to delineate the contamination plumes. By means of a 3D numerical model, the prioritization of the contaminated sites could be performed. Five contaminated sites with high remediation priority and need for optimized or additional remediation efforts were determined. For those five contaminated sites feasibility studies were performed which resulted in recommendation of remediation measures with total costs of more than 12.5 million euros. The proposed strategy and approach are suitable for multiple sources of contamination. Only in this way, the contributions of single contaminated sites to the total groundwater contamination can be identified and local remediation measures with their spatial impact simulated. Due to very complex geological conditions, technically there is no alternative to this strategy in order to achieve the contamination reduction in groundwater.

  17. Palaeosol Control of Arsenic Pollution: The Bengal Basin in West Bengal, India.

    PubMed

    Ghosal, U; Sikdar, P K; McArthur, J M

    2015-01-01

    Groundwater in the Bengal Basin is badly polluted by arsenic (As) which adversely affects human health. To provide low-As groundwater for As mitigation, it was sought across 235 km(2) of central West Bengal, in the western part of the basin. By drilling 76 boreholes and chemical analysis of 535 water wells, groundwater with <10 µg/L As in shallow aquifers was found under one-third of a study area. The groundwater is in late Pleistocene palaeo-interfluvial aquifers of weathered brown sand that are capped by a palaeosol of red clay. The aquifers form two N-S trending lineaments that are bounded on the east by an As-polluted deep palaeo-channel aquifer and separated by a shallower palaeo-channel aquifer. The depth to the top of the palaeo-interfluvial aquifers is mostly between 35 and 38 m below ground level (mbgl). The palaeo-interfluvial aquifers are overlain by shallow palaeo-channel aquifers of gray sand in which groundwater is usually As-polluted. The palaeosol now protects the palaeo-interfluvial aquifers from downward migration of As-polluted groundwater in overlying shallow palaeo-channel aquifers. The depth to the palaeo-interfluvial aquifers of 35 to 38 mbgl makes the cost of their exploitation affordable to most of the rural poor of West Bengal, who can install a well cheaply to depths up to 60 mbgl. The protection against pollution afforded by the palaeosol means that the palaeo-interfluvial aquifers will provide a long-term source of low-As groundwater to mitigate As pollution of groundwater in the shallower, heavily used, palaeo-channel aquifers. This option for mitigation is cheap to employ and instantly available.

  18. Isotopic constraints on water source mixing, network leakage and contamination in an urban groundwater system.

    PubMed

    Grimmeisen, F; Lehmann, M F; Liesch, T; Goeppert, N; Klinger, J; Zopfi, J; Goldscheider, N

    2017-04-01

    Water supply in developing countries is prone to large water losses due to leaky distribution networks and defective sewers, which may affect groundwater quality and quantity in urban areas and result in complex subsurface mixing dynamics. In this study, a multi-stable isotope approach was used to investigate spatiotemporal fluctuations of surface and sub-surface water source partitioning and mixing, and to assess nitrogen (N) contamination in the urban water cycle of As-Salt, Jordan. Water import from the King Abdullah Canal (KAC), mains waters from the network, and wastewater are characterized by distinct isotopic signatures, which allowed us to quantify city effluents into the groundwater. Temporal variations in isotopic signatures of polluted groundwater are explained by seasonally fluctuating inflow, and dilution by water that originates from Lake Tiberias and enters the urban water cycle via the KAC. Isotopic analysis (N and O) and comparison between groundwater nitrate and nitrate from mains water, water imports and wastewater confirmed that septic waste from leaky sewers is the main contributor of nitrate contamination. The nitrate of strongly contaminated groundwater was characterized by highest δ(15)NNO3 values (13.3±1.8‰), whereas lowest δ(15)NNO3 values were measured in unpolluted groundwater (6.9‰). Analogously, nitrate concentration and isotopic ratios were used for source partitioning and qualitatively confirmed δDH2O and δ(18)OH2O-based estimates. Dual water isotope endmember mixing calculations suggest that city effluents from leaky networks and sewers contribute 30-64% to the heavily polluted groundwater. Ternary mixing calculations including also chloride revealed that 5-18% of the polluted groundwater is wastewater. Up to two thirds of the groundwater originates from mains, indicating excessive water loss from the network, and calling for improved water supply management.

  19. Tile Drainage Density Reduces Groundwater Travel Times and Compromises Riparian Buffer Effectiveness.

    PubMed

    Schilling, Keith E; Wolter, Calvin F; Isenhart, Thomas M; Schultz, Richard C

    2015-11-01

    Strategies to reduce nitrate-nitrogen (nitrate) pollution delivered to streams often seek to increase groundwater residence time to achieve measureable results, yet the effects of tile drainage on residence time have not been well documented. In this study, we used a geographic information system groundwater travel time model to quantify the effects of artificial subsurface drainage on groundwater travel times in the 7443-ha Bear Creek watershed in north-central Iowa. Our objectives were to evaluate how mean groundwater travel times changed with increasing drainage intensity and to assess how tile drainage density reduces groundwater contributions to riparian buffers. Results indicate that mean groundwater travel times are reduced with increasing degrees of tile drainage. Mean groundwater travel times decreased from 5.6 to 1.1 yr, with drainage densities ranging from 0.005 m (7.6 mi) to 0.04 m (62 mi), respectively. Model simulations indicate that mean travel times with tile drainage are more than 150 times faster than those that existed before settlement. With intensive drainage, less than 2% of the groundwater in the basin appears to flow through a perennial stream buffer, thereby reducing the effectiveness of this practice to reduce stream nitrate loads. Hence, strategies, such as reconnecting tile drainage to buffers, are promising because they increase groundwater residence times in tile-drained watersheds.

  20. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China.

    PubMed

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P<0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  1. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China

    NASA Astrophysics Data System (ADS)

    Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi

    2015-11-01

    Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P < 0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.

  2. Impacts of Groundwater Recharge from Rubber Dams on the Hydrogeological Environment in Luoyang Basin, China

    PubMed Central

    Dong, Shaogang; Liu, Baiwei; Liu, Huamin; Wang, Shidong; Wang, Lixin

    2014-01-01

    In the rubber dam's impact area, the groundwater total hardness (TH) has declined since 2000, ultimately dropping to 100–300 mg/L in 2012. pH levels have shown no obvious changes. NH4-N concentration in the groundwater remained stable from 2000 to 2006, but it increased from 2007 to 2012, with the largest increase up to 0.2 mg/L. NO3-N concentration in the groundwater generally declined in 2000–2006 and then increased from 2007; the largest increase was to 10 mg/L in 2012. Total dissolved solids (TDS) of the groundwater showed a general trend of decline from 2000 to 2009, but levels increased after 2010, especially along the south bank of the Luohe River where the largest increase recorded was approximately 100 mg/L. This study has shown that the increases in the concentrations of NH4-N and NO3-N were probably caused by changes in groundwater levels. Nitrates adsorbed by the silt clay of aeration zone appear to have entered the groundwater through physical and chemical reactions. TDS increased because of groundwater evaporation and some soluble ions entered the groundwater in the unsaturated zone. The distance of the contaminant to the surface of the aquifer became shorter due to the shallow depth of groundwater, resulting in the observed rise in pollutant concentrations more pronounced. PMID:25126593

  3. Groundwater recharge and agricultural contamination in alluvial fan of Eastern Kofu basin, JAPAN

    NASA Astrophysics Data System (ADS)

    Nakamura, T.

    2009-12-01

    in the Yamanashi prefecture and its effects on the groundwater pollution. Int. Envir. Science Vol. 15:293-298. (in Japanese) Sakamoto Y, Nakamura F, Kazama F (1990) Spatial Distribution of Nitrate Concentration in Groundwater-Derived Potable. Reports of the Faculty of Engineering Yamanashi University Vol.41:139-144. (in Japanese) Nakamura T, Satake H, Kazama F (2007) Effects of groundwater recharge on nitrate-nitrogen loadings. Journal of Water and Environment Technology Vol.5:87-93.

  4. Copper Doping Improves Hydroxyapatite Sorption for Arsenate in Simulated Groundwaters

    DTIC Science & Technology

    2010-02-15

    J.; Feurrung, L. Evaluation of heavy metal remediation using mineral apatite . Water Air Soil Pollut. 1997, 98, 57–78. (5) Seaman, J. C.; Arey, J. S...Vicksburg, MS, 2004. (8) Conca, J. L.; Wright, J. An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb, and Cd. Appl...1480. (11) Chen, X.; Wright, J.; Conca, J.; Peurrung, L. Effect of pH on heavy metal sorption on mineral apatite . Environ. Sci. Technol. 1997, 31

  5. Urban Groundwater Mapping - Bucharest City Area Case Study

    NASA Astrophysics Data System (ADS)

    Gaitanaru, Dragos; Radu Gogu, Constantin; Bica, Ioan; Anghel, Leonard; Amine Boukhemacha, Mohamed; Ionita, Angela

    2013-04-01

    Urban Groundwater Mapping (UGM) is a generic term for a collection of procedures and techniques used to create targeted cartographic representation of the groundwater related aspects in urban areas. The urban environment alters the physical and chemical characteristics of the underneath aquifers. The scale of the pressure is controlled by the urban development in time and space. To have a clear image on the spatial and temporal distribution of different groundwater- urban structures interaction we need a set of thematic maps is needed. In the present study it is described the methodological approach used to obtain a reliable cartographic product for Bucharest City area. The first step in the current study was to identify the groundwater related problems and aspects (changes in the groundwater table, infiltration and seepage from and to the city sewer network, contamination spread to all three aquifers systems located in quaternary sedimentary formations, dewatering impact for large underground structures, management and political drawbacks). The second step was data collection and validation. In urban areas there is a big spectrum of data providers related to groundwater. Due to the fact that data is produced and distributed by different types of organizations (national agencies, private companies, municipal water regulator, etc) the validation and cross check process is mandatory. The data is stored and managed by a geospatial database. The design of the database follows an object-orientated paradigm and is easily extensible. The third step consists of a set of procedures based on a multi criteria assessment that creates the specific setup for the thematic maps. The assessment is based on the following criteria: (1) scale effect groundwater is interacting with urban structures >, (2) time pollution aspects>, (3) vertical distribution and (4) type of the groundwater related problem. The final

  6. Automated Groundwater Screening

    SciTech Connect

    Taylor, Glenn A.; Collard, Leonard, B.

    2005-10-31

    The Automated Intruder Analysis has been extended to include an Automated Ground Water Screening option. This option screens 825 radionuclides while rigorously applying the National Council on Radiation Protection (NCRP) methodology. An extension to that methodology is presented to give a more realistic screening factor for those radionuclides which have significant daughters. The extension has the promise of reducing the number of radionuclides which must be tracked by the customer. By combining the Automated Intruder Analysis with the Automated Groundwater Screening a consistent set of assumptions and databases is used. A method is proposed to eliminate trigger values by performing rigorous calculation of the screening factor thereby reducing the number of radionuclides sent to further analysis. Using the same problem definitions as in previous groundwater screenings, the automated groundwater screening found one additional nuclide, Ge-68, which failed the screening. It also found that 18 of the 57 radionuclides contained in NCRP Table 3.1 failed the screening. This report describes the automated groundwater screening computer application.

  7. Hanford Groundwater Remediation

    SciTech Connect

    Charboneau, B.; Thompson, K. M.; Wilde, R.; Ford, B.; Gerber, M.

    2006-07-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70 E+12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  8. HANFORD GROUNDWATER REMEDIATION

    SciTech Connect

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and geographically dispersed community is

  9. Well data and groundwater flow direction problem: Steuben County, Indiana case study

    SciTech Connect

    Goings, M.H. ); Isiorho, S.A. . Dept. of Geosciences)

    1994-04-01

    The rapid industrial growth in Northeastern Indiana has lead to the demand for more complete geologic information for Steuben County, Indiana by the citizenry. The information would allow environmental scientists, geologists and engineers to more accurately predict the potential migration and impact of pollutants on the soil and groundwater. As part of ongoing environmental site investigations in Steuben County, well data were collected from Indiana Department of Environmental management (IDEM) and the State of Indiana Department of Natural Resources to determine local and regional groundwater flow directions. Of the 162 registered wells in the study area, only 67 of them, that is, 41% of the data could be used. The remaining well data could not be used because of poor, inaccurate or incomplete information on the forms (i.e., location description, well log, elevation, etc.). The regional groundwater flow direction was northwest as would be expected from the topography. A groundwater divide or ridge that was implied from the local groundwater flow directions could not be confirmed due to poor well data. The determination of groundwater flow direction was made more complicated due to incomplete well logs from drillers. Increased industrial activities in the region could lead to greater potential for surface and groundwater pollution problems. It is recommended that well data be collected by qualified personnel (field geologists) during well drilling.

  10. Impacts of Human Activities on Groundwater Quality of an Alluvial Aquifer: A Case Study of the Eskişehir Plain, Turkey

    NASA Astrophysics Data System (ADS)

    Kaçaroğlu, Fikret; Günay, Gültekin

    1997-04-01

    Hydrochemical and water-quality (except biological) data obtained through a two-year sampling and analysis program indicate that the highest concentrations of groundwater pollution occur in the central and eastern parts of Eskişehir city. Groundwater quality degradation outside the urban area results from agricultural activities. The most serious pollution of groundwater in the Eskişehir plain is from nitrogen compounds (ammonia, nitrite, and nitrate). The concentrations of ammonia, nitrite, and nitrate of the 51 surveyed water wells range from 0.01-1.65 mg/L, 0.01-1.80 mg/L, and 1.1-257.0 mg/L, respectively. Orthophosphate concentrations in groundwater range from 0.01-1.25 mg/L. Considerable seasonal fluctuation in the groundwater quality was observed. In general, the groundwater quality in wet seasons was better than the quality in dry seasons.

  11. Drinking Water Criteria for the Groundwater Pollutant Diisopropyl Methylphosphonate (DIMP).

    DTIC Science & Technology

    1987-07-01

    moderate corneal opacity lasting seven days, some conjunctival irritation, but no iritis . The aqueous suspension of DIMP produced no acute irritation...irritation studies conducted by the method of Draize show that technical grade DIMP produces moderate corneal opacity lasting seven days. No iritis was

  12. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Ho

    2001-11-01

    Taejon Metropolitan City located in the central part of South Korea has grown and urbanized rapidly. The city depends heavily on groundwater as a water resource. Because of ubiquitous pollution sources, the quality and contamination have become important issues for the urban groundwater supply. This study has investigated the chemical characteristics and the contamination of groundwater in relation to land use. An attempt was made to distinguish anthrophogenic inputs from the influence of natural chemical weathering on the chemical composition of groundwater at Taejon. Groundwater samples collected at 170 locations in the Taejon area show very variable chemical composition of groundwater, e.g. electrical conductance ranges from 65 to 1,290 μS/cm. Most groundwater is weakly acidic and the groundwater chemistry is more influenced by land use and urbanization than by aquifer rock type. Most groundwater from green areas and new town residential districts has low electrical conductance, and is of Ca-HCO 3 type, whereas the chemical composition of groundwater from the old downtown and industrial district is shifted towards a Ca-Cl (NO 3+SO 4) type with high electrical conductance. A number of groundwater samples in the urbanized area are contaminated by high nitrate and chlorine, and exhibit high hardness. The EpCO 2, that is the CO 2 content of a water sample relative to pure water, was computed to obtain more insight into the origin of CO 2 and bicarbonate in the groundwater. The CO 2 concentration of groundwater in the urbanized area shows a rough positive relationship with the concentration of major inorganic components. The sources of nitrate, chlorine and excess CO 2 in the groundwater are likely to be municipal wastes of unlined landfill sites, leaky latrines and sewage lines. Chemical data of commercial mineral water from other Jurassic granite areas were compared to the chemical composition of the groundwater in the Taejon area. Factor analysis of the chemical

  13. The nature and role of physical models in enhancing sixth grade students' mental models of groundwater and groundwater processes

    NASA Astrophysics Data System (ADS)

    Duffy, Debra Lynne Foster

    Through a non-experimental descriptive and comparative mixed-methods approach, this study investigated the experiences of sixth grade earth science students with groundwater physical models through an extended SE learning cycle format. The data collection was based on a series of quantitative and qualitative research tools intended to investigate students' ideas and changes in ideas rather than measure their achievement. The measures included a groundwater survey, classroom observations, and one-on-one follow-up student interviews for triangulation of data sources. The research was carried out at a K-12 independent school in eastern Virginia using two classes of sixth grade earth science students (n=30). The findings suggest that physical models help students identify the components porosity and permeability with respect to water flow in groundwater systems. Higher levels of system thinking were best demonstrated in model components that allowed students to experience groundwater pollution activities and pumping groundwater wells. However, the results also indicated that due to model constraints, students can develop misconceptions during the use of physical models, specifically more complex physical models as in the Groundwater Exploration Activity Model. A pure discovery learning format while using physical models without guidance or formative assessment probes can lead to misconceptions about groundwater processes as well as confusion between model attributes and real world groundwater systems. The implications of this study relate directly to the inclusion of groundwater in the new national science standards released in 2011; A Framework for K-12 Science Standard; Practices, Crosscutting Concepts, and Core Ideas (NRC, 2011). The new national standards, as in other educational reform efforts, will have the ability to affect curricular and instructional strategies in science education. From the results of this study, it was concluded that best practices for using

  14. Nitrate contamination of groundwater in the catchment of Goczałkowice reservoir

    NASA Astrophysics Data System (ADS)

    Czekaj, Joanna; Witkowski, Andrzej J.

    2014-05-01

    Goczałkowice dammed reservoir (area - 26 km2 , volume - 100 million m3 at a typical water level) is a very important source of drinking water for Upper Silesian agglomeration. At the catchment of the reservoir there are many potential sources of groundwater pollution (agriculture, bad practices in wastewater management, intensive fish farming). Thus local groundwater contamination, mainly by nitrogen compounds. The paper presents groundwater monitoring system and preliminary results of the research carried on at Goczałkowice reservoir and its catchment in 2010 - 2014 within the project "Integrated system supporting management and protection of dammed reservoir (ZiZoZap)'. The main objective for hydrogeologists in the project is to assess the role of groundwater in total water balance of the reservoir and the influence of groundwater on its water quality. During research temporal variability of groundwater - surface water exchange has been observed. Monitoring Network of groundwater quality consists of 22 observation wells (nested piezometers included) located around the reservoir - 13 piezometers is placed in two transects on northern and southern shore of reservoir. Sampling of groundwater from piezometers was conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate, nitrite and ammonium were 255 mg/L, 0,16 mg/L and 3,48 mg/L, respectively. Surface water in reservoir (8 points) has also been sampled. Concentrations of nitrate in groundwater are higher than in surface water. Nitrate and ammonium concentrations exceeding standards for drinking water were reported in 18% and 50% of monitored piezometers, respectively. High concentration of nitrate (exceeding more than 5 times maximal admissible concentration) have been a significant groundwater contamination problem in the catchment of the reservoir. Periodically decrease of surface water quality is possible. Results of hydrogeological research indicate substantial spatial

  15. Evaluation of groundwater dynamic regime with groundwater depth evaluation indexes.

    PubMed

    Genxu, Wang; Jian, Zhou; Kubota, Jumpei; Jianping, Su

    2008-06-01

    An accurate quantitative evaluation of anthropogenic effects on regional groundwater dynamics is critical to the rational planning, management, and use of such resources and in maintaining the sustainability of groundwater-dependent ecosystems. Based on groundwater dynamics, a series of groundwater depth evaluation indexes were created to quantitatively evaluate the effects of anthropogenic activities on the groundwater system. These indexes were based on mathematical relationships relating groundwater depth to surface runoff (gammat), precipitation (rhot), and extraction (deltat). The anthropogenic effects on these relationships were evaluated statistically, with respect to both temporal and spatial variation. The anthropogenic effects on groundwater dynamics within the arid Zhangye Basin, located in the middle reaches of northwest China's Heihe River, were investigated. River valley plains in the western portion of the basin excepted, anthropogenic activities have, since 1995, dramatically altered the basin's groundwater dynamics; in particular, in the mid-upper and lower portions of alluvial-diluvial fans and in localized northerly fine-soil plains regions, the relationship of groundwater to surface runoff and atmospheric precipitation has shifted. This and other changes indicate that anthropogenic effects on groundwater systems in this region show clear spatiotemporal variation.

  16. Use of multivariate indicator kriging methods for assessing groundwater contamination extents for irrigation.

    PubMed

    Jang, Cheng-Shin

    2013-05-01

    Multivariate geostatistical approaches have been applied extensively in characterizing risks and uncertainty of pollutant concentrations exceeding anthropogenic regulatory limits. Spatially delineating an extent of contamination potential is considerably critical for regional groundwater resources protection and utilization. This study used multivariate indicator kriging (MVIK) to determine spatial patterns of contamination extents in groundwater for irrigation and made a predicted comparison between two types of MVIK, including MVIK of multiplying indicator variables (MVIK-M) and of averaging indicator variables (MVIK-A). A cross-validation procedure was adopted to examine the performance of predicted errors, and various probability thresholds used to calculate ratios of declared pollution area to total area were explored for the two MVIK methods. The assessed results reveal that the northern and central aquifers have excellent groundwater quality for irrigation use. Results obtained through a cross-validation procedure indicate that MVIK-M is more robust than MVIK-A. Furthermore, a low ratio of declared pollution area to total area in MVIK-A may result in an unrealistic and unreliable probability used to determine extents of pollutants. Therefore, this study suggests using MVIK-M to probabilistically determine extents of pollutants in groundwater.

  17. Shallow groundwater temperature response to climate change and urbanization

    NASA Astrophysics Data System (ADS)

    Taylor, Craig A.; Stefan, Heinz G.

    2009-09-01

    SummaryGroundwater temperatures, especially in shallow (quaternary) aquifers respond to ground surface temperatures which in turn depend on climate and land use. Groundwater temperatures, therefore, are modified by climate change and urban development. In northern temperate climate regions seasonal temperature cycles penetrate the ground to depths on the order of 10-15 m. In this paper, we develop and apply analytic heat transfer relationships for 1-D unsteady effective diffusion of heat through an unsaturated zone into a flowing aquifer a short distance below the ground surface. We estimate how changes in land use (urban development) and climate change may affect shallow groundwater temperatures. We consider both long-term trends and seasonal cycles in surface temperature changes. Our analysis indicates that a fully urbanized downtown area at the latitude of Minneapolis/St. Paul is likely to have a groundwater temperature that is nearly 3 °C warmer than an undeveloped agricultural area at the same geographic location. Pavements are the main cause of this change. Data collected by the Minnesota Pollution Control Agency (MPCA) in the St. Cloud, MN area confirm that land use influences groundwater temperatures. Ground surface temperatures are also projected to rise in response to global warming. In the extreme case of a doubling of atmospheric carbon dioxide (2 × CO 2 climate scenario), groundwater temperatures in the Minneapolis/St. Paul metropolitan area could therefore rise by up to 4 °C. Compounding a land use change from "undeveloped" to "fully urbanized" and a 2 × CO 2 climate scenario, groundwater temperatures are projected to rise by about 5 °C at the latitude of Minneapolis/St. Paul.

  18. Fresh Groundwater Resources in Georgia and Management Problems

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George; Gaprindashvili, Merab

    2015-04-01

    Fresh water represents conditioned factor for human body's life. That's why the superiority of drinking water is recognized as human body's priority according to the international declarations. World is experiencing deficit of quality water. Natural Disasters caused by the pollution of the fresh groundwater is also very painful and acute, because it needed more time, more material and financial means for the liquidation of their results, and what the most important practically is, it is impossible to renew the initial natural conditions completely. All these conditions that the rational use of fresh groundwater passed by the interests of separate countries and became worldwide, international problem - fresh water became as considerable raw material for the worlds import and export. The fresh groundwater place the important role among the water recourses of Georgia. Their existing is considerably connected to the development of industry and agriculture, also with water supply issue of populated area. Groundwater management requires precise knowledge of sources (aquifers). Monitoring of Georgia's most important aquifers started many years ago and has provided large amount of data. This was interrupted at the beginning of the 1990s. It could be noted that fresh water existing in the country is distinguished with high quality. According to the mineralization and temperature parameters groundwater is generally divided into the following groups: 1) Fresh drinking waters (mineralization not exceeding 1.0 g/l); 2) Mineral waters (mineralization over 1.0 g/l); 3) Thermal waters -- healing (20˚C - 35˚C), Geothermal (40˚C - 108˚C). Below we present briefly review about the situation of fresh groundwater resources, started recovery of groundwater monitoring network and the analysis of the management problems.

  19. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  20. Criteria air pollutants and toxic air pollutants.

    PubMed Central

    Suh, H H; Bahadori, T; Vallarino, J; Spengler, J D

    2000-01-01

    This review presents a brief overview of the health effects and exposures of two criteria pollutants--ozone and particulate matter--and two toxic air pollutants--benzene and formaldehyde. These pollutants were selected from the six criteria pollutants and from the 189 toxic air pollutants on the basis of their prevalence in the United States, their physicochemical behavior, and the magnitude of their potential health threat. The health effects data included in this review primarily include results from epidemiologic studies; however, some findings from animal studies are also discussed when no other information is available. Health effects findings for each pollutant are related in this review to corresponding information about outdoor, indoor, and personal exposures and pollutant sources. Images Figure 3 Figure 8 Figure 9 PMID:10940240

  1. Monitoring and remediating groundwater

    SciTech Connect

    Vedder, M.

    1995-03-01

    Choosing the optimum groundwater remediation process is a site-specific task. A variety of factors--including soil type, water type, water flow, water table levels and contaminant type--influence sampling and treatment techniques. Because underground contaminant plumes must first be characterized and mapped, initial sampling often is a hit or miss proposition. Historical geophysical data can be obtained from many local water boards to supplement the process. Equipment used in sampling includes drilling rigs, depth probes, bailers, sample tubing and well pumps. Once samples are collected, they are preserved with ice and transported to an environmental laboratory for analysis. Common groundwater contaminants include hydrocarbons, solvents, metals and volatile organic compounds. Typical lab analysis methods include gas chromatography and spectrometry. Remediation options include air stripping, carbon adsorption, the use of bacterial cultures, chemical precipitation, ion exchange, reverse osmosis and ultrafiltration.

  2. Groundwater monitoring system

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.; Eschbach, Eugene A.; Kelley, Roy C.; Myers, David A.

    1987-01-01

    A groundwater monitoring system includes a bore, a well casing within and spaced from the bore, and a pump within the casing. A water impermeable seal between the bore and the well casing prevents surface contamination from entering the pump. Above the ground surface is a removable operating means which is connected to the pump piston by a flexible cord. A protective casing extends above ground and has a removable cover. After a groundwater sample has been taken, the cord is disconnected from the operating means. The operating means is removed for taking away, the cord is placed within the protective casing, and the cover closed and locked. The system is thus protected from contamination, as well as from damage by accident or vandalism.

  3. Oahu Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  4. [Spatial Variation of Ammonia-N, Nitrate-N and Nitrite-N in Groundwater of Dongshan Island].

    PubMed

    Wiu, Hai-yan; Fu, Shi-feng; Cai, Xiao-qiong; Tang, Kun-xian; Cao, Chao; Chen, Qing-hui; Liang, Xiu-yu

    2015-09-01

    In Dongshan Island, groundwater is the main resource of the local residents' drinking water, domestic water, agriculture irrigation and freshwater aquaculture. This study aimed to investigate the spatial distribution characteristic and its variation pattern of ammonia-N, nitrate-N and nitrite-N in groundwater, as well as its pollution source and influence factors. It is very important to understand the pollution level of ammonia-N, nitrate-N and nitrite-N in groundwater of Dongshan Island, the control and prevention of ammonia-N, nitrate-N and nitrite-N pollution, which is of great significance to the residents' health. In this study, the spatial variability characteristics of ammonia-N, nitrate-N and nitrite-N concentration in groundwater of Dongshan Island was analysed by geo- statistic method, the values of the non-observation points were determined by Kriging method, and the pollution characteristics of ammonia-N, nitrate-N and nitrite-N in groundwater of Dongshan Island was also analyzed. Our results showed that the ammonia-N and nitrite-N concentration in groundwater of Dongshan Island were at low levels, but their spatial variability were high, and their autocorrelation were poor; however, the nitrate-N concentration was general high, its spatial variability was moderate, and the autocorrelation was much good. The distribution characteristics of ammonia-N, nitrate-N and nitrite-N in groundwater of Dongshan Island were similar that the high concentration areas were all located in the coastal land. The domestic pollutants and human and animal wastes from towns and villages were the main sources of nitrogen pollution, which would be the first step to control the nitrogen pollution of Dongshan Island. Land use pattern, soil type, groundwater depth, pH, dissolved oxygen, season, and the existence of Fe2+, were the impact factors that influence the distribution and transformation of ammonia-N, nitrate-N and nitrite-N in groundwater, which could be the considerable

  5. BIOVENTING - Groundwater Aeration by Discontinuous Oxygen Gas Pulse Injections

    NASA Astrophysics Data System (ADS)

    Schirmer, M.

    2003-12-01

    Groundwater aeration by discontinuous oxygen gas pulse injections appears to be a promising concept for enhanced natural attenuation of dissolved contaminants that are susceptible for oxygenase enzyme attacks. Oxygen amendments facilitate indigenous microbiota to catabolize groundwater pollutants, such as aromatics, that are considered to be recalcitrant in absence of dissolved oxygen. As a rule, natural attenuation of many pollutants under aerobic conditions is considerably faster than under anaerobic conditions. Thus, enhancing the dissolved oxygen level appears to be worthwhile. In situ aeration of groundwater has been accomplished by air sparging, H2O2-supply, or by utilization of oxygen release compounds. However, continuous aeration of previously anaerobic groundwater is not desirable for several reasons: (a) economic efforts too high, (b) pollutant dislocation towards surface (desired only in air sparging), (c) risk of aquifer clogging (gas clogging, oxidation of ferrous iron, formation of bioslimes). In contrast, discontinuous oxygen gas sparging provides only for periodical groundwater aeration which is followed by microaerobic and suboxic conditions. Microaerobic conditions can prevail spatially (e.g., at plume fringes or within biofilms) or temporarily (e.g., at discontinuous bioventing). They still allow adapted bacteria to transform environmental pollutants to less toxic compounds, e.g., aromatic ring cleavage after dioxygenasis attack. Ring cleavage products, on the other hand, may be degraded more easily by anaerobic consortia than the initial aromatic compounds, making oxygen depletion periods highly intriguing in regard to an initiation of natural attenuation processes at plume fringes. In our work we outline the effect of oxygen depletion conditions on biodegradation of monchlorobenzene (MCB) as they occur subsequently to temporary aeration periods. For microaerobic conditions, relative to the oxygen supply, a stoichiometric transformation of MCB

  6. The origin of groundwater composition in the Pampeano Aquifer underlying the Del Azul Creek basin, Argentina.

    PubMed

    Zabala, M E; Manzano, M; Vives, L

    2015-06-15

    The Pampean plain is the most productive region in Argentina. The Pampeano Aquifer beneath the Pampean plain is used mostly for drinking water. The study area is the sector of the Pampeano Aquifer underlying the Del Azul Creek basin, in Buenos Aires province. The main objective is to characterize the chemical and isotopic compositions of groundwater and their origin on a regional scale. The methodology used involved the identification and characterization of potential sources of solutes, the study of rain water and groundwater chemical and isotopic characteristics to deduce processes, the development of a hydrogeochemical conceptual model, and its validation by hydrogeochemical modelling with PHREEQC. Groundwater samples come mostly from a two-depth monitoring network of the "Dr. Eduardo J. Usunoff" Large Plains Hydrology Institute (IHLLA). Groundwater salinity increases from SW to NE, where groundwater is saline. In the upper basin groundwater is of the HCO3-Ca type, in the middle basin it is HCO3-Na, and in the lower basin it is ClSO4-NaCa and Cl-Na. The main processes incorporating solutes to groundwater during recharge in the upper basin are rain water evaporation, dissolution of CO2, calcite, dolomite, silica, and anorthite; cationic exchange with Na release and Ca and Mg uptake, and clay precipitation. The main processes modifying groundwater chemistry along horizontal flow at 30 m depth from the upper to the lower basin are cationic exchange, dissolution of silica and anorthite, and clay precipitation. The origin of salinity in the middle and lower basin is secular evaporation in a naturally endorheic area. In the upper and middle basins there is agricultural pollution. In the lower basin the main pollution source is human liquid and solid wastes. Vertical infiltration through the boreholes annular space during the yearly flooding stages is probably the pollution mechanism of the samples at 30 m depth.

  7. Application of multivariate statistical technique for hydrogeochemical assessment of groundwater within the Lower Pra Basin, Ghana

    NASA Astrophysics Data System (ADS)

    Tay, C. K.; Hayford, E. K.; Hodgson, I. O. A.

    2017-02-01

    Multivariate statistical technique and hydrogeochemical approach were employed for groundwater assessment within the Lower Pra Basin. The main objective was to delineate the main processes that are responsible for the water chemistry and pollution of groundwater within the basin. Fifty-four (54) (No) boreholes were sampled in January 2012 for quality assessment. PCA using Varimax with Kaiser Normalization method of extraction for both rotated space and component matrix have been applied to the data. Results show that Spearman's correlation matrix of major ions revealed expected process-based relationships derived mainly from the geochemical processes, such as ion-exchange and silicate/aluminosilicate weathering within the aquifer. Three main principal components influence the water chemistry and pollution of groundwater within the basin. The three principal components have accounted for approximately 79% of the total variance in the hydrochemical data. Component 1 delineates the main natural processes (water-soil-rock interactions) through which groundwater within the basin acquires its chemical characteristics, Component 2 delineates the incongruent dissolution of silicate/aluminosilicates, while Component 3 delineates the prevalence of pollution principally from agricultural input as well as trace metal mobilization in groundwater within the basin. The loadings and score plots of the first two PCs show grouping pattern which indicates the strength of the mutual relation among the hydrochemical variables. In terms of proper management and development of groundwater within the basin, communities, where intense agriculture is taking place, should be monitored and protected from agricultural activities. especially where inorganic fertilizers are used by creating buffer zones. Monitoring of the water quality especially the water pH is recommended to ensure the acid neutralizing potential of groundwater within the basin thereby, curtailing further trace metal

  8. Total petroleum hydrocarbon distribution in soils and groundwater in Songyuan oilfield, Northeast China.

    PubMed

    Teng, Yanguo; Feng, Dan; Song, Liuting; Wang, Jinsheng; Li, Jian

    2013-11-01

    In order to investigate the distribution of the total petroleum hydrocarbons (TPH) in groundwater and soil, a total of 71 groundwater samples (26 unconfined groundwater samples, 37 confined groundwater samples, and 8 deeper confined groundwater samples) and 80 soil samples were collected in the Songyuan oilfield, Northeast China, and the vertical variation and spatial variability of TPH in groundwater and soil were assessed. For the groundwater from the unconfined aquifer, petroleum hydrocarbons were not detected in three samples, and for the other 23 samples, concentrations were in the range 0.01-1.74 mg/l. In the groundwater from the confined aquifer, petroleum hydrocarbons were not detected in two samples, and in the other 35 samples, the concentrations were 0.04-0.82 mg/l. The TPH concentration in unconfined aquifer may be influenced by polluted surface water and polluted soil; for confined aquifer, the injection wells leakage and left open hole wells may be mainly responsible for the pollution. For soils, the concentrations of TPH varied with sampling depth and were 0-15 cm (average concentration, 0.63 mg/g), >40-55 cm (average concentration, 0.36 mg/g), >100-115 cm (average concentration, 0.29 mg/g), and >500-515 cm (average concentration, 0.26 mg/g). The results showed that oil spillage and losses were possibly the main sources of TPH in soil. The consequences concluded here suggested that counter measures such as remediation and long-term monitoring should be commenced in the near future, and effective measures should be taken to assure that the oilfields area would not be a threat to human health.

  9. Bioaugmentation for Groundwater Remediation

    DTIC Science & Technology

    2010-02-01

    available to environmental professionals and stakeholders. Results for the loops inoculated with 1 L and 100 L of culture showed similar rates ...Bioaugmentation for Groundwater Remediation February 2010 ENVIRONMENTAL SECURITY TECHNOLOGY CERTIFICATION PROGRAM U.S. Department of Defense...NAME(S) AND ADDRESS(ES) Environmental Security Technology Certification Program (ESTCP),4800 Mark Center Drive, Suite 17D08,Alexandria,VA,22350-3605

  10. Estimating Vertical Groundwater Velocities Using Groundwater Thermal Gradients

    NASA Astrophysics Data System (ADS)

    Arriaga, M. A.; Leap, D. I.; Petruccione, J. L.

    2007-05-01

    An understanding of vertical groundwater flow through unconsolidated deposits is a component for predicting fate and transport of contaminants in the saturated zone. Groundwater movement through heterogeneous glacial deposits common to northern Indiana (USA) provided a test setting for determining if measured vertical groundwater thermal gradients could aid in calculating vertical groundwater velocity estimates. Field procedure was conducted by collecting stratified groundwater temperatures from a series of cased monitoring wells previously advanced through glacial till and outwash sedimentary sequences. Groundwater thermal gradients (temperature-depth profiles) were plotted and matched using automated computer modeling software (Microsoft Excel Solver) with published type curves to derive a dimensionless parameter for estimating vertical groundwater velocities. Data results matched predictions, to include an increase in vertical groundwater velocities during the seasonally wetter Spring; and, higher calculated vertical groundwater velocities for the finer-grained till aquitards when compared to aquifers comprised of coarser-grained outwash deposits. This study shows promise and has gathered interest both in the scientific community and environmental consulting practice for estimating vertical migration rates of contaminants (specifically those affected by advection) within the saturated zone. Government agencies or consultants, for instance, could also potentially apply this estimation technique to measure and map localized recharge rates for developing more accurate wellhead protection zones.

  11. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    NASA Astrophysics Data System (ADS)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards

  12. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  13. Modeling the impact of the nitrate contamination on groundwater at the groundwater body scale : The Geer basin case study (Invited)

    NASA Astrophysics Data System (ADS)

    Brouyere, S.; Orban, P.; Hérivaux, C.

    2009-12-01

    where current polluting pressures remain the same and (ii) two contrasted scenarios that simulate the implementation of programs of measures aiming at reaching good chemical status. The results of the hydrogeological model under the “business as usual scenario” have been used to assess the cost for the society of the continuous degradation of the groundwater quality. The results of the hydrogeological model under the two contrasted scenarios have been used to assess the economical benefit as avoided damage resulting from the decrease in the nitrate load. A cost-benefit analysis has been thus performed to assess the programme of mitigation measures which provides the largest benefits at the lowest cost.

  14. Enumerating Microorganism Surrogates for Groundwater Transport Studies Using Solid-Phase Cytometry.

    PubMed

    Stevenson, Margaret E; Blaschke, A Paul; Schauer, Sonja; Zessner, Matthias; Sommer, Regina; Farnleitner, Andreas H; Kirschner, Alexander K T

    2014-01-01

    Investigations on the pollution of groundwater with pathogenic microorganisms, e.g. tracer studies for groundwater transport, are constrained by their potential health risk. Thus, microspheres are often used in groundwater transport studies as non-hazardous surrogates for pathogenic microorganisms. Even though pathogenic microorganisms occur at low concentrations in groundwater, current detection methods of microspheres (spectrofluorimetry, flow cytometry and epifluorescence microscopy) have rather high detection limits and are unable to detect rare events. Solid-phase cytometry (SPC) offers the unique capability of reliably quantifying extremely low concentrations of fluorescently labelled microorganisms or microspheres in natural waters, including groundwater. Until now, microspheres have been used in combination with SPC only for instrument calibration purposes and not for environmental applications. In this study, we explored the limits of the SPC methodology for its applicability to groundwater transport studies. The SPC approach proved to be a highly sensitive and reliable enumeration system for microorganism surrogates down to a minimum size of 0.5 μm, in up to 500 ml of groundwater, and 0.75 μm, in up to 1 ml of turbid surface water. Hence, SPC is proposed to be a useful method for enumerating microspheres for groundwater transport studies in the laboratory, as well as in the field when non-toxic, natural products are used.

  15. Identifying the regional-scale groundwater-surface water interaction on the Sanjiang Plain, Northeast China.

    PubMed

    Wang, Xihua; Zhang, Guangxin; Xu, Y Jun; Sun, Guangzhi

    2015-11-01

    Assessment on the interaction between groundwater and surface water (GW-SW) can generate information that is critical to regional water resource management, especially for regions that are highly dependent on groundwater resources for irrigation. This study investigated such interaction on China's Sanjiang Plain (10.9 × 10(4) km(2)) and produced results to assist sustainable regional water management for intensive agricultural activities. Methods of hierarchical cluster analysis (HCA), principal component analysis (PCA), and statistical analysis were used in this study. One hundred two water samplings (60 from shallow groundwater, 7 from deep groundwater, and 35 from surface water) were collected and grouped into three clusters and seven sub-clusters during the analyses. The PCA analysis identified four principal components of the interaction, which explained 85.9% variance of total database, attributed to the dissolution and evolution of gypsum, feldspar, and other natural minerals in the region that was affected by anthropic and geological (sedimentary rock mineral) activities. The analyses showed that surface water in the upper region of the Sanjiang Plain gained water from local shallow groundwater, indicating that the surface water in the upper region was relatively more resilient to withdrawal for usage, whereas in the middle region, there was only a weak interaction between shallow groundwater and surface water. In the lower region of the Sanjiang Plain, surface water lost water to shallow groundwater, indicating that the groundwater was vulnerable to pollution by pesticides and fertilizers from terrestrial sources.

  16. A regional flux-based risk assessment approach for multiple contaminated sites on groundwater bodies.

    PubMed

    Jamin, P; Dollé, F; Chisala, B; Orban, Ph; Popescu, I-C; Hérivaux, C; Dassargues, A; Brouyère, S

    2012-01-01

    In the context of the Water Framework Directive (EP and CEU, 2000), management plans have to be set up to monitor and to maintain water quality in groundwater bodies in the EU. In heavily industrialized and urbanized areas, the cumulative effect of multiple contaminant sources is likely and has to be evaluated. In order to propose adequate measures, the calculated risk should be based on criteria reflecting the risk of groundwater quality deterioration, in a cumulative manner and at the scale of the entire groundwater body. An integrated GIS- and flux-based risk assessment approach for groundwater bodies is described, with a regional scale indicator for evaluating the quality status of the groundwater body. It is based on the SEQ-ESO currently used in the Walloon Region of Belgium which defines, for different water uses and for a detailed list of groundwater contaminants, a set of threshold values reflecting the levels of water quality and degradation with respect to each contaminant. The methodology is illustrated with first results at a regional scale on a groundwater body-scale application to a contaminated alluvial aquifer which has been classified to be at risk of not reaching a good quality status by 2015. These first results show that contaminants resulting from old industrial activities in that area are likely to contribute significantly to the degradation of groundwater quality. However, further investigations are required on the evaluation of the actual polluting pressures before any definitive conclusion be established.

  17. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    SciTech Connect

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  18. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China.

    PubMed

    Li, Zhen; Xiang, Xi; Li, Miao; Ma, Yeping; Wang, Jihua; Liu, Xiang

    2015-09-01

    Groundwater recharge using reclaimed water is considered a promising method to alleviate groundwater depletion. However, pollutants in reclaimed water could be recharged into groundwater during this process, thereby posing a risk to groundwater and human health. In this study, 12 cities in northern China were selected for reclaimed water and groundwater sampling. Analysis of the samples revealed the presence of nine pharmaceutical and personal care products (PPCPs) and five endocrine disrupting compounds (EDCs). In reclaimed water, all the PPCPs and EDCs were found, with sulpiride (SP) and estriol (E3) being most frequently detected. In groundwater samples, only ketoprofen (KP), mefenamic acid (MA), nalidixic acid (NA) and SP were detected among PPCPs, while bisphenol-A (BPA) was dominant among the target EDCs. The risk quotients (RQs) of all target PPCPs and EDCs except 17α-ethinyl estradiol (EE2) and E3 were below 1 in groundwater samples, indicating that EE2 and E3 deserve priority preferential treatment before recharging.

  19. Groundwater Depletion in Dhaka City, Bangladesh: A Spatio-temporal Analysis

    NASA Astrophysics Data System (ADS)

    Jerin, T.; Ishtiaque, A.

    2015-12-01

    Dhaka city, having a population of more than fifteen million, exclusively depends on groundwater as a source of quality drinking water. In recent decades the city is encountering groundwater diminution and the declining scenario is dissimilar in different parts of the city. This paper aims to discuss the groundwater depletion in different parts of Dhaka city from 1990 to 2012 along with the causes and consequences. Groundwater level data of different locations of Dhaka city were collected from Bangladesh Water Development Board (BWDB). The data were processed and analyzed using SPSS and Excel Worksheet; a contour map was generated using ArcGIS 10.0 to outline the contemporary groundwater scenario of Dhaka city and the spatial analyst tool, Inverse Distance Weighted (IDW) was used to prepare the map. In addition, experts' opinions were collected using an in-depth interview strategy in order to provide a better understanding of the causes and consequences of groundwater depletion. The research results show that groundwater in Dhaka city is depleting at an alarming rate; the central part has the worst situation followed by the south-western part. In contrast, northern part has relatively better groundwater condition. Moreover, the peripheral zone exhibits a better condition because of the existence of rivers and wetlands. The interviews reveal that population density and overexploitation are mainly responsible for groundwater depletion; however, various other factors such as the deliberate establishment of deep tube wells, reduction of recharge capacity due to rapid growth of urban structures altogether results in huge drop of water level throughout the city. Rapid decline in groundwater augments the city's exposure towards multiple risks including land subsidence, groundwater pollution and most importantly, paucity of available fresh water that might ultimately results into an urban disaster. Potential solutions to ameliorate this situation include urban greening

  20. Arkansas Groundwater-Quality Network

    USGS Publications Warehouse

    Pugh, Aaron L.; Jackson, Barry T.; Miller, Roger

    2014-01-01

    Arkansas is the fourth largest user of groundwater in the United States, where groundwater accounts for two-thirds of the total water use. Groundwater use in the State increased by 510 percent between 1965 and 2005 (Holland, 2007). The Arkansas Groundwater-Quality Network is a Web map interface (http://ar.water.usgs.gov/wqx) that provides rapid access to the U.S. Geological Survey’s (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency’s (USEPA) STOrage and RETrieval (STORET) databases of ambient water information. The interface enables users to perform simple graphical analysis and download selected water-quality data.

  1. Intensive rainfall recharges tropical groundwaters

    NASA Astrophysics Data System (ADS)

    Jasechko, Scott; Taylor, Richard G.

    2015-12-01

    Dependence upon groundwater to meet rising agricultural and domestic water needs is expected to increase substantially across the tropics where, by 2050, over half of the world’s population is projected to live. Rare, long-term groundwater-level records in the tropics indicate that groundwater recharge occurs disproportionately from heavy rainfalls exceeding a threshold. The ubiquity of this bias in tropical groundwater recharge to intensive precipitation is, however, unknown. By relating available long-term records of stable-isotope ratios of O and H in tropical precipitation (15 sites) to those of local groundwater, we reveal that groundwater recharge in the tropics is near-uniformly (14/15 sites) biased to intensive monthly rainfall, commonly exceeding the ∼70th intensity decile. Our results suggest that the intensification of precipitation brought about by global warming favours groundwater replenishment in the tropics. Nevertheless, the processes that transmit intensive rainfall to groundwater systems and enhance the resilience of tropical groundwater storage in a warming world, remain unclear.

  2. Groundwater resources impact assessment for triazine herbicides

    SciTech Connect

    Waldman, E.; Barrett, M.R.; Behl, E.

    1996-10-01

    The Environmental Fate and Ground Water Branch of EPA`s Office of Pesticide Programs (OPP) has conducted a Water Resources Impact Assessment of the potential for triazine herbicides to be transported to ground and surface waters (only ground-water is discussed in this paper). The herbicides discussed in this document include atrazine, cyanazine, simazine, and prometon. Part of OPP`s regulatory mission is to prevent contamination of ground and surface water resources resulting from the normal use of registered pesticides. OPP has recently produced several resource documents to support such activities at the federal, state, and local levels (e.g., the Pesticides and Ground-Water Strategy and the Pesticides in Ground Water Database). This Water Resources Impact Assessment will also be useful in assisting state and regional agencies in customizing risk reduction strategies and to implement proposed pollution prevention measures. Major conclusions include: Atrazine is the most frequently detected pesticide in ground water in virtually the entire Midwestern United States, and especially in Nebraska, Iowa, Illinois, and Indiana. The Pesticides in Ground Water Database 1992 Report indicates that atrazine has been detected in 32 out of the 40 states that have reported monitoring data, and in 1,512 wells (6%) of the wells sampled. Based on EPA`s National Pesticide Survey (NPS), 4.7% of rural domestic drinking water wells in the U.S. (490,000 wells) are estimated to contain atrazine, mostly at concentrations less than 0.12 {mu}g/L (the MCL for atrazine is 3 {mu}g/L). Triazine herbicides other than atrazine (simazine, cyanazine, and prometon) have had much less impact on ground-water quality than atrazine, primarily because they are less intensively used.

  3. Riverscape and Groundwater Preservation: A Choice Experiment

    NASA Astrophysics Data System (ADS)

    Tempesta, T.; Vecchiato, D.

    2013-12-01

    This study presents a quantitative approach to support policy decision making for the preservation of riverscapes, taking into account the EC Water Framework Directive (2000/60/EC) and the EC Nitrates Directive (91/676/EEC) concerning the protection of waters against nitrate pollution from agricultural sources. A choice experiment was applied to evaluate the benefits, as perceived by inhabitants, of the implementation of policies aiming to reduce the concentration of nitrates in groundwater, preserve the riverscape by maintaining a minimum water flow and increasing hedges and woods along the Serio River in central northern Italy. Findings suggested that people were particularly concerned about groundwater quality, probably because it is strongly linked to human health. Nevertheless, it was interesting to observe that people expressed a high willingness to pay for actions that affect the riverscape as a whole (such as the minimum water flow maintenance plus reforestation). This is probably due to the close connection between the riverscape and the functions of the river area for recreation, health purposes, and biodiversity preservation.

  4. The groundwater subsidy to vegetation: groundwater exchanges between landcover patches

    NASA Astrophysics Data System (ADS)

    Steven, L. I.; Gimenez, R.; Jobbagy, E. G.

    2015-12-01

    The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.

  5. Groundwater inventory and monitoring technical guide: Remote sensing of groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of remotely sensed data in conjunction with in situ data greatly enhances the ability of the USDA Forest Service to meet the demands of field staff, customers, and others for groundwater information. Generally, the use of remotely sensed data to inventory and monitor groundwater reso...

  6. Pollution Permanent Monitoring PANEL--2013 Annual Report

    NASA Astrophysics Data System (ADS)

    Everett, Lorne G.

    2014-07-01

    The following sections are included: * POLLUTION PANEL ACTIVITIES 2013 * NATIONAL ACADEMY OF SCIENCES 2013 * MTBE NEW HAMPSHIRE LITIGATION--APRIL 12, 2013 * ALTERNATIVES FOR MANAGING THE NATION's COMPLEX CONTAMINATED GROUNDWATER SITES--NATIONAL ACADEMY OF SCIENCES, 2013 * HUMAN HEALTH EFFECTS OF TRICHLOROETHYLENE: KEY FINDINGS AND SCIENTIFIC ISSUES. MARCH 1, 2013 REVIEWS * BAROMETRIC PRESSURE DRIVES SOIL-GAS CONCENTRATIONS * WATER RESOURCES--TERRORISM TARGETS * WITH A LITTLE INGENUITY THE PROBLEM IS NOT INSOLUBLE * HIGH RISE BUILDINGS * TERRORIST MATERIAL MAY DESTROY WATER TRANSMISSION INFRASTRUCTURE * WATER THREAT CONCLUSIONS * MULTINATIONAL REPOSITORIES

  7. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    NASA Astrophysics Data System (ADS)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  8. Groundwater Nitrate Contamination Risk Assessment in Canicattì area (Sicily)

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Cusimano, Gioacchino; Favara, Rocco

    2010-05-01

    Groundwaters play a dominant role in the Sicily, because as most part of Mediterranean countries this island is interested by the phenomenon of desertification and the quality of the groundwater reservoir is one of the most important aim for the management policy strategies. During last decade most of the Italian regions the nitrate levels in river and groundwaters have increased gradually over mainly as a consequence of large-scale agricultural application of manure and fertilizers, thereby threatening drinking water quality. The excessive use of chemicals and fertilizers increases the risk to pollution of surface and groundwater from diffuse source, an important reflex to human health and the environment. The studied area is located in Canicattì (central Sicily, Italy), the current land use (grape, olive grove and almond) is the main source of groundwater pollution. In order to investigate the effect of the over farming on the groundwater quality we report the study on the potential risk of contamination from nitrate of agricultural origin through the join of the application of two parametric methods: the IPNOA method (the intrinsic nitrate contamination risk from Agricultural sources) applied to define the Nitrate Vulnerable Zones and the SINTACS method applied to determine the aquifer vulnerability to contamination.

  9. Groundwater monitoring in Denmark: characteristics, perspectives and comparison with other countries

    NASA Astrophysics Data System (ADS)

    Jørgensen, Lisbeth Flindt; Stockmarr, Jens

    2009-06-01

    More than 99% of water use in Denmark is based on groundwater. Denmark has had a comprehensive national groundwater-monitoring programme since 1988 based on 74 well catchment areas and six small agricultural catchments with more than 1,500 screens at different depths for regular, mostly annual, water quality sampling. In addition, water samples from 10,000 abstraction wells are analysed every 3-5 years. The water is analysed for main components, inorganic trace elements, organic micro pollutants, and pesticides and their metabolites. A unique feature is the 20-year time-series data of inorganic pollutants. Groundwater modelling supports traditional monitoring to improve the conceptual geological understanding and to assess the quantitative status and the interaction between groundwater and surface water. The programme has been continuously adjusted to incorporate new knowledge from research programmes and meet new policy demands, currently the European Union Water Framework Directive, particularly with respect to an increased focus on quantitative aspects and on the groundwater/surface water interaction. The strengths and weaknesses of the Danish programme are assessed and compared with other national groundwater-monitoring programmes. Issues discussed include: strategic considerations for monitoring design, the link between research and monitoring, and adoption of responses to climate changes.

  10. EVALUATION OF SULFATE-REDUCING BACTERIA TO PRECIPITATE MERCURY FROM CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Several regions in the Republic of Kazakhstan are contaminated with mercury as a result of releases from industrial plants. Operations at an old chemical plant, "Khimprom", which produced chlorine and alkali in the 1970s - 1990s, resulted in significant pollution of groundwater ...

  11. HYDROLOGY AND GROUNDWATER NUTRIENT CONCENTRATIONS IN A DITCH-DRAINED AGRO-ECOSYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of nitrogen (N) and phosphorus (P) from agricultural fields is a major water pollution concern in the Chesapeake Bay watershed. Even though movement of N and P in groundwater from fields to commonly occurring open drainage ditches is an important loss pathway, it has not been studied well enoug...

  12. A meta-analysis and statistical modelling of nitrates in groundwater at the African scale

    NASA Astrophysics Data System (ADS)

    Ouedraogo, Issoufou; Vanclooster, Marnik

    2016-06-01

    Contamination of groundwater with nitrate poses a major health risk to millions of people around Africa. Assessing the space-time distribution of this contamination, as well as understanding the factors that explain this contamination, is important for managing sustainable drinking water at the regional scale. This study aims to assess the variables that contribute to nitrate pollution in groundwater at the African scale by statistical modelling. We compiled a literature database of nitrate concentration in groundwater (around 250 studies) and combined it with digital maps of physical attributes such as soil, geology, climate, hydrogeology, and anthropogenic data for statistical model development. The maximum, medium, and minimum observed nitrate concentrations were analysed. In total, 13 explanatory variables were screened to explain observed nitrate pollution in groundwater. For the mean nitrate concentration, four variables are retained in the statistical explanatory model: (1) depth to groundwater (shallow groundwater, typically < 50 m); (2) recharge rate; (3) aquifer type; and (4) population density. The first three variables represent intrinsic vulnerability of groundwater systems to pollution, while the latter variable is a proxy for anthropogenic pollution pressure. The model explains 65 % of the variation of mean nitrate contamination in groundwater at the African scale. Using the same proxy information, we could develop a statistical model for the maximum nitrate concentrations that explains 42 % of the nitrate variation. For the maximum concentrations, other environmental attributes such as soil type, slope, rainfall, climate class, and region type improve the prediction of maximum nitrate concentrations at the African scale. As to minimal nitrate concentrations, in the absence of normal distribution assumptions of the data set, we do not develop a statistical model for these data. The data-based statistical model presented here represents an important

  13. Direct assessment of groundwater vulnerability from single observations of multiple contaminants

    USGS Publications Warehouse

    Worrall, F.; Kolpin, D.W.

    2003-01-01

    Groundwater vulnerability is a central concept in pollution risk assessment, yet its estimation has been largely a matter of expert judgment. This work applies a method for the direct calculation of vulnerability from monitoring well observations of pesticide concentrations. The method has two major advantages: it is independent of the compounds being examined, and it has a direct probabilistic interpretation making it ideal for risk assessment. The methodology was applied to data from a groundwater monitoring program in the midwestern United States. The distribution of the vulnerabilities was skewed toward zero. Spatial distribution of the vulnerabilities shows them to be controlled by both regional and local factors. Methods are presented for estimating the necessary sample sizes for vulnerability studies. The further application of the approach developed in this study to understanding groundwater pollution is discussed.

  14. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  15. Nitrate leaching from intensive organic farms to groundwater

    NASA Astrophysics Data System (ADS)

    Dahan, O.; Babad, A.; Lazarovitch, N.; Russak, E. E.; Kurtzman, D.

    2014-01-01

    It is commonly presumed that organic agriculture causes only minimal environmental pollution. In this study, we measured the quality of percolating water in the vadose zone, underlying both organic and conventional intensive greenhouses. Our study was conducted in newly established farms where the subsurface underlying the greenhouses has been monitored continuously from their establishment. Surprisingly, intensive organic agriculture relying on solid organic matter, such as composted manure that is implemented in the soil prior to planting as the sole fertilizer, resulted in significant down-leaching of nitrate through the vadose zone to the groundwater. On the other hand, similar intensive agriculture that implemented liquid fertilizer through drip irrigation, as commonly practiced in conventional agriculture, resulted in much lower rates of pollution of the vadose zone and groundwater. It has been shown that accurate fertilization methods that distribute the fertilizers through the irrigation system, according to plant demand, during the growing season dramatically reduce the potential for groundwater contamination from both organic and conventional greenhouses.

  16. Is groundwater age the main control for slow turnover of nitrate in a fractured groundwater system?

    NASA Astrophysics Data System (ADS)

    Osenbrück, Karsten; Schwientek, Marc; Rügner, Hermann; Grathwohl, Peter

    2015-04-01

    Slow transformation processes are known to control the chemical, isotopic, and redox evolution of large-scale aquifers (Edmunds et al., 1982; Katz et al., 1995). However, at the field scale some of the crucial biogeochemical processes governing pollutant turnover and their interrelations with hydrology are poorly understood. Particularly, only little is known about denitrification in fractured rock aquifers. Therefore, the main objective of the presented study is to assess where and how slow turnover of nitrate ans other pollutants in the deeper subsurface take place. The studied fractured and partly karstified aquifer consisting of Triassic black limestones and dolomites is located in the catchment of the Ammer river (ca. 350 km²) close to Tübingen in southern Germany. Near the recharge area, the aquifer is covered by loess allowing intensive agriculture. Further downgradient, the cover consist of a series of mudstones and sandstones of variable permeability. The aquifer is used for drinking water purposes by regional water suppliers. Land-use is dominated by agriculture with arable land covering nearly 50% of the catchment. Over the last years a variety of groundwater samples have been collected from the groundwater system including 6 water supply wells, 4 karstic springs, and 9 monitoring wells in the recharge area. This allowed to identify spatial and temporal patterns of water quality including concentrations of major ions, dissolved organic carbon (DOC), organic pollutants (e.g., pesticides), and environmental isotopes. Groundwater age distributions at most of these locations were derived from tritium, 3He, CFCs and SF6. Groundwaters in the recharge area show high concentrations of nutrients (e.g. 20-51 mg/L of nitrate and 0.2 to 0.05 µg/L of phosphate). Of special concern are disparate nitrate concentrations ranging from below 0.4 to 20 mg/L in water supply wells although screen depths of the production wells are similar. Concentrations of dissolved

  17. Automobiles and pollution

    SciTech Connect

    Degobert, P.

    1995-12-31

    This book explores the impact automobile emissions have on air pollution, focusing objectively on the share of pollution that can actually be attributed to the use of vehicles. Automobiles and Pollution begins with a presentation of general information on atmospheric pollution, including its regulatory aspects. The book`s focus then shifts to a more in-depth analysis of how pollutants can be eliminated from car exhaust emissions. Automobiles and Pollution will serve as a thorough and up-to-date reference for the specialist, and an informative primer to the nonspecialist needing an objective opinion on the subject.

  18. Sustainable groundwater management in California

    USGS Publications Warehouse

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2015-12-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  19. Linking climate change and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Projected global change includes groundwater systems, which are linked with changes in climate over space and time. Consequently, global change affects key aspects of subsurface hydrology (including soil water, deeper vadose zone water, and unconfined and confined aquifer waters), surface-groundwat...

  20. SUPERFUND GROUNDWATER ISSUE - FACILITATED TRANSPORT

    EPA Science Inventory

    The Regional Superfund Ground Water Forum is a group of ground-water scientists representing EPA's Regional Superfund Offices, organized to exchange up to date information related to ground-water remediation at Superfund sites. Facilitated transport is an issue identified by the ...

  1. Method of degrading pollutants in soil

    DOEpatents

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  2. Method of degrading pollutants in soil

    DOEpatents

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  3. Groundwater vulnerability in the District of Abidjan (Côte d'Ivoire)

    NASA Astrophysics Data System (ADS)

    Kouame, Agnes; Jaboyedoff, Michel; Derron, Marc-Henri; Tacher, Laurent

    2014-05-01

    The District of Abidjan, located on the coastal sedimentary basin south of Côte d'Ivoire (West Africa) covers an area of 2,1 km2. This sedimentary basin is composed of continuous groundwater aquifers in Quaternary, Tertiary and Upper Cretaceous rocks. Our study focuses on the unconfined Quaternary groundwater called the Continental Terminal which formations are composed mainly of lenticular stratification of coarse sands, clays, ferruginous sandstone and iron ore. This Continental Terminal aquifer is the main source of drinking water for the city of Abidjan. Indeed, the city of Abidjan is facing various pollution problems such as illegal dumping of household waste, waste oils garages, domestic and industrial wastewater, gas stations, public discharge Akouédo and the spill of approximately 500 tons of toxic waste from the ship "Probo Koala" the night of 19 August 2006. These toxic wastes have killed more than 10 people and several infections. The infiltration of these contaminants under the influence of rainwater in the basement is a serious threat to groundwater from the District of Abidjan especially as the rains are very strong in this part of the country. What would be the fate of pollutants such as organochlorines, hydrogen sulfide, sulfides and hydrocarbons contained in toxic waste, knowing that this aquifer is the main source of supply of drinking water to the city of Abidjan? It therefore seems necessary to study the vulnerability of groundwater of Abidjan District. The overall objective of this study is to assess the risk of groundwater contamination by organochlorines, sulfides, hydrogen sulfide and hydrocarbons. This project is to develop groundwater flow and contaminant transport models such as organochlorines models, hydrogen sulfide and sulfides with two digital codes, Visual Modflow and Feflow. Then several scenarios with different pollutants are finally made to realize maps of groundwater vulnerability from Abidjan to these contaminants.

  4. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  5. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  6. Optimal pollution trading without pollution reductions

    EPA Science Inventory

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  7. Chemical substance transport in soils and its effect on groundwater quality.

    PubMed Central

    Khublarian, M G

    1989-01-01

    The problems of chemical substance applications in different spheres of industry and agriculture and their effects on groundwater quality and human health are described. Sources of groundwater contamination from industrial and municipal wastes, agricultural pollutants, etc., are listed. The experience in the application of chemical fertilizers and pesticides in the USSR is described. A brief estimation of groundwater salinity is given for various regions of the USSR where irrigation is practiced, as well as the experience in environmental protection. Special attention is given to methods of simulating water seepage and chemical substance transport in soils. Boundary problems for free-surface seepage and dissolved solids transport in porous media are stated, and methods of solution are described in the example of the hydrodynamic theory of seepage and dispersion. Some results of calculations with this method are presented. The influence of groundwater quality on the morbidity of the population is given and the main diseases and associated medical problems are listed. PMID:2559843

  8. Thermal footprints in groundwater of central European cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Blum, P.

    2014-12-01

    Atmospheric thermal pollution in densely populated areas is recognized as a severe problem with consequences for human health, and considerable efforts are being taken to mitigate heat stress in cities. However, anthropogenic activities also influence the thermal environment beneath the ground level, with commonly growing temperatures that affect groundwater ecology and geothermal use efficiency. In our work, we identify the controlling mechanisms for the long-term evolution of such urban heat islands. The shallow groundwater temperatures in several central European cities such as Cologne, Karlsruhe, Munich, Berlin and Zurich were mapped at high spatial and temporal resolution. Thermal anomalies were found to be highly heterogeneous with local hot spots showing temperatures of more than 20°C. Accordingly, these urban regions show a considerable groundwater warming in comparison to undisturbed temperatures of 8-11°C. Examination of potential heat sources by analytical modelling reveals that increased ground surface temperatures and basements of buildings act as dominant drivers for the anthropogenic heat input into the groundwater. The factors are revealed to be case-specific and they may have pronounced local or regional effects. Typical local factors are for example buried district heating networks. In selected cities we find that the average urban heat flux is around one order of magnitude higher than the elevated ground heat flux due to recent climate change. Additionally, such as observed in Zurich, naturally controlled temperature variations can be substantial and they are shown to wash out anthropogenic thermal footprints.

  9. Hydrogeology of the Kabul Basin (Afghanistan), part II: groundwater geochemistry

    NASA Astrophysics Data System (ADS)

    Houben, Georg; Tünnermeier, Torge; Eqrar, Naim; Himmelsbach, Thomas

    2009-06-01

    Shallow groundwater is the main source for drinking water in Kabul, Afghanistan. It comes from a multitude of shallow hand-pumped wells spread over the whole city area. The groundwater is characterised by slightly oxic redox conditions. Interactions with aquifer carbonates lead to near-neutral pH and high degrees of hardness. The mostly negative water budget of the Kabul Basin is the result of strong evaporation which leads to an increase in salt and also of some undesirable constituents, e.g. borate. Several years of drought have aggravated this problem. The shallow groundwater in the city has received tremendous amounts of pollution due to a lack of proper waste disposal and sewage treatment. Common indicators are elevated concentrations of nutrients such as nitrate and faecal bacteria. The high infant mortality can at least partially be attributed to the insufficient water hygiene. Acid generated during the mineralisation of the wastewater is hidden due to the strong pH buffering capacity of the groundwater system. Redox and pH conditions preclude significant mobilisation of trace metals and metalloids.

  10. Hydrogeological modelling using geophysical data in groundwater protection projects

    NASA Astrophysics Data System (ADS)

    Nyari, Zs.; Szucs, P.; Tildy, P.

    2003-04-01

    In order to avoid the pollution of groundwater resources it is essential to be familiar with the conditions of water and contamination flow in the vicinity of the aquifer. Creating the hydrogeological model of a territory is basic part of a groundwater protection project. Reliable flow and transport models generally involve different sources of geoinformation. Different geophysical methods can provide the modellers with indispensable information to delineate wellhead protection zones as well as groundwater flow regimes (recharge, discharge and transition zones). To make a reliable and accurate model it is necessary to carry out appropriate geophysical surveys. Through two interesting case histories the presentation will illustrate the joint work of geophysicists and hydrogeologists resulting the hydrodynamic flow models of the investigated areas. The two cases represent two different types of aquifers (a bank-filtered water supply reserve and a sandy groundwater reservoir) where different geophysical survey types were applied. Besides the description of geophysical data acquisition and interpretation the main steps of creating the hydrogeological models of the areas will be explained.

  11. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.; James, D.E.

    1999-01-01

    Agrichemicals (herbicides and nitrate) are significant sources of diffuse pollution to groundwater. Indirect methods are needed to assess the potential for groundwater contamination by diffuse sources because groundwater monitoring is too costly to adequately define the geographic extent of contamination at a regional or national scale. This paper presents examples of the application of statistical, overlay and index, and process-based modeling methods for groundwater vulnerability assessments to a variety of data from the Midwest U.S. The principles for vulnerability assessment include both intrinsic (pedologic, climatologic, and hydrogeologic factors) and specific (contaminant and other anthropogenic factors) vulnerability of a location. Statistical methods use the frequency of contaminant occurrence, contaminant concentration, or contamination probability as a response variable. Statistical assessments are useful for defining the relations among explanatory and res