Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description
Christenson, S.C.; Parkhurst, D.L.
1987-01-01
In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium, selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.
ERIC Educational Resources Information Center
Kerns, Waldon R., Ed.
This publication contains the papers presented at a National Conference on Ground Water Quality Protection Policy held in April of 1977. Paper titles include: (1) Magnitude of the Ground-Water Contamination Problem; (2) Limited Degredation as a Ground-Water Quality Policy; (3) Surface and Subsurface Mining: Policy Implications; (4) Oil Well…
,
1949-01-01
The groundwater resources of Wood County, Wisconsin, are described. Groundwater is pumped only from wells drilled in Precambrian rock in the northern two-thirds of the county. The generally low permeability of this rock limits the availability of groundwater in this area. Saturated deposits of sand and gravel yield more than 500 gal/min to wells in the southern part of the county. Background groundwater quality and indicators of groundwater-quality problems, such as elevated concentrations of nitrate, chloride, hardness, and iron, are compared by aquifer for the entire county. An elevated concentration of iron is the major water quality problem in the county. Results of water quality analysis from observation wells drilled next to abandoned landfills throughout the county indicate that groundwater in the immediate vicinity of these landfills has been affected by leachate. The report includes maps of the thickness and saturated thickness of unconsolidated deposits, a water-table map, and tables of aquifer-production and well-production data from about 1,500 drillers ' well-construction reports. (USGS)
NASA Astrophysics Data System (ADS)
Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong
2009-04-01
Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS
The Grand Challenge of Basin-Scale Groundwater Quality Management Modelling
NASA Astrophysics Data System (ADS)
Fogg, G. E.
2017-12-01
The last 50+ years of agricultural, urban and industrial land and water use practices have accelerated the degradation of groundwater quality in the upper portions of many major aquifer systems upon which much of the world relies for water supply. In the deepest and most extensive systems (e.g., sedimentary basins) that typically have the largest groundwater production rates and hold fresh groundwaters on decadal to millennial time scales, most of the groundwater is not yet contaminated. Predicting the long-term future groundwater quality in such basins is a grand scientific challenge. Moreover, determining what changes in land and water use practices would avert future, irreversible degradation of these massive freshwater stores is a grand challenge both scientifically and societally. It is naïve to think that the problem can be solved by eliminating or reducing enough of the contaminant sources, for human exploitation of land and water resources will likely always result in some contamination. The key lies in both reducing the contaminant sources and more proactively managing recharge in terms of both quantity and quality, such that the net influx of contaminants is sufficiently moderate and appropriately distributed in space and time to reverse ongoing groundwater quality degradation. Just as sustainable groundwater quantity management is greatly facilitated with groundwater flow management models, sustainable groundwater quality management will require the use of groundwater quality management models. This is a new genre of hydrologic models do not yet exist, partly because of the lack of modeling tools and the supporting research to model non-reactive as well as reactive transport on large space and time scales. It is essential that the contaminant hydrogeology community, which has heretofore focused almost entirely on point-source plume-scale problems, direct it's efforts toward the development of process-based transport modeling tools and analyses capable of appropriately upscaling advection-dispersion and reactions at the basin scale (10^2 km). A road map for research and development in groundwater quality management modeling and its application toward securing future groundwater resources will be discussed.
Impact of Past Land Use Changes on Drinking Water Quantity and Quality in Ljubljana Aquifer
NASA Astrophysics Data System (ADS)
Bracic Zeleznik, Branka; Cencur Curk, Barbara
2010-05-01
Most of the practical problems that we face today with the on-site management of drinking water sources and distribution of healthy drinking water, originate from past actions, interventions and political decisions. In Ljubljana, the capital of the Republic of Slovenia, underlying groundwater is the main drinking water source. The main threat to drinking water sources is constant input of pollutant loads from roads, roofs, sewers, industry and agricultural areas. The main problems are directly and indirectly related to the significant decrease of groundwater level and deterioration of groundwater quality observed in the last decades as an effect of land use practices under varying climate conditions. The Vodovod-Kanalizacija Public Utility is responsible for water supply of the city residents as well as for management of the water supply system, its surveillance and maintenance. In the past, the Ljubljana Municipality was responsible for the protection of water resources and the first delineation of groundwater protection areas was issued in Decree in 1955. In 2004 a Decree on the water protection zones for the aquifer of Ljubljansko polje on the state level was issued and passed the competences of proclamation of the water protection zones to the state. Spatial planning is a domain of The Municipality and land use is limited according to water protection legislation. For several observation wells long-time data sets about groundwater levels and quality are available, which enable us to analyse changes in groundwater quantity and quality parameters. From the data it is obvious that climate variations are affecting groundwater recharge. In addition, changing of land use affects groundwater quality. In spite of the Decree on the water protection there is a heavy pressure of investors to change land use plans and regulations on protection zones, which causes every day problems in managing the drinking water source. Groundwater management in Ljubljana demands strong and effective co-operation between state, municipality, public water supply company and consumers.
Groundwater: A Community Action Guide.
ERIC Educational Resources Information Center
Boyd, Susan, Ed.; And Others
Designed to be a guide for community action, this booklet examines issues and trends related to groundwater contamination. Basic concepts about groundwater and information about problems affecting it are covered under the categories of (1) what is groundwater? (2) availability and depletion; (3) quality and contamination; (4) public health…
Ground-water quality in selected areas of Wisconsin
Hindall, S.M.
1979-01-01
Analysis of 2,071 ground-water samples from 970 wells throughout Wisconsin indicate large variations in ground-water quality. Ground water in Wisconsin is generally suitable for most uses, but in some areas concentrations of chemical constituents exceed recommended drinking-water standards. Iron, manganese, and nitrate commonly exceed recommended drinking-water standards and dissolved solids, sulfate, heavy metals, and phenolic materials may present local problems. (USGS)
GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES
An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...
NASA Astrophysics Data System (ADS)
Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng
2016-02-01
Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
A Review of Distributed Parameter Groundwater Management Modeling Methods
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Schiffer, D.M.
1989-01-01
Water quality of the surficial aquifer system in central Florida was evaluated at one exfiltration pipe, two ponds (detention and retention), and two swales in central Florida, representing three runoff-detention methods, to detect any effect from infiltrating highway runoff. Concentrations of major ions, metals, and nutrients in groundwater and bottom sediments were measured from 1984 through 1986. At each study area, constituent concentrations in groundwater near the structure were compared to concentrations in groundwater from an upgradient control site. Groundwater quality data were also pooled by detention method and statistically compared to detect any significant differences between methods. Significantly greater mean phosphorus concentrations in groundwater near the exfiltration pipe than those in the control well was the only evidence of increasing constituent concentrations in groundwater near structures. The quality of water was more variable, and had greater constituent concentrations in the unsaturated zone than in the saturated zone near the exfiltration pipe. Values of water quality variables measured in groundwater at all study areas generally were within State drinking water standards. The main exception was dissolved iron, which commonly exceeded 300 micrograms/L at one swale and the detention pond. Results of the study indicate that natural processes occurring in soils attenuate inorganic constituent concentrations prior to reaching the receiving groundwater. However, organic compounds detected in bottom sediments at the retention pond indicate a potential problem that may eventually affect the quality of the receiving groundwater. (USGS)
NASA Astrophysics Data System (ADS)
Brindha, K.; Neena Vaman, K. V.; Srinivasan, K.; Sathis Babu, M.; Elango, L.
2014-06-01
Large cities face water quality and quantity problems due to increasing population and improper disposal of solid and liquid wastes. It is essential to monitor the water quality to take corrective measures. This study was carried out in one of the densely populated metropolitan cities in India to ascertain the suitability of groundwater for drinking and irrigation activity, identify the processes controlling the geochemistry of groundwater and the impact of Adyar River on the groundwater quality. Magnesium and pH concentration in groundwater of this area were within the maximum permissible limits of WHO standards. Sodium and potassium concentration of groundwater were greater than the permissible limit in 30.8 % and in 50 % of the samples, respectively. About 35 % of the groundwater samples were not permissible for drinking based on the electrical conductivity (EC). The EC of groundwater was increasing towards the coast. In general, the quality of groundwater for irrigation purpose vary from moderate to good based on Na%, magnesium hazard, residual sodium carbonate, sodium absorption ratio, permeability index, and USDA classification. Na-Cl and Ca-Mg-Cl were the dominant groundwater and surface water type. Increased ionic concentration of groundwater towards the eastern part of the study area is due to the discharge of industrial effluents and domestic sewage into the Adyar River. Seawater intrusion is also one of the reasons for Na-Cl dominant groundwater near the coast. Evaporation and ion exchange were the major processes controlling groundwater chemistry in this area. The groundwater quality of this region is affected by the contaminated surface water.
Geospatial Modelling for Micro Zonation of Groundwater Regime in Western Assam, India
NASA Astrophysics Data System (ADS)
Singh, R. P.
2016-12-01
Water, most precious natural resource on earth, is vital to sustain the natural system and human civilisation on the earth. The Assam state located in north-eastern part of India has a relatively good source of ground water due to their geographic and physiographic location but there is problem deterioration of groundwater quality causing major health problem in the area. In this study, I tried a integrated study of remote sensing and GIS and chemical analysis of groundwater samples to throw a light over groundwater regime and provides information for decision makers to make sustainable water resource management. The geospatial modelling performed by integrating hydrogeomorphic features. Geomorphology, lineament, Drainage, Landuse/landcover layer were generated through visual interpretation on satellite image (LISS III) based on tone, texture, shape, size, and arrangement of the features. Slope layer was prepared by using SRTM DEM data set .The LULC of the area were categories in to 6 classes of Agricultural field, Forest area ,River, Settlement , Tree-clad area and Wetlands. The geospatial modelling performed through weightage and rank method in GIS, depending on the influence of the features on ground water regime. To Assess the ground water quality of the area 45 groundwater samples have been collected from the field and chemical analysis performed through the standard method in the laboratory. The overall assessment of the ground water quality of the area analyse through Water Quality Index and found that about 70% samples are not potable for drinking purposes due to higher concentration Arsenic, Fluoride and Iron. It appears that, source of all these pollutants geologically and geomorphologically derived. Interpolated layer of Water Quality Index and geospatial modelled Groundwater potential layer provides a holistic view of groundwater scenario and provide direction for better planning and groundwater resource management. Study will be discussed in details during the conference.
Kammerer, P.A.
1998-01-01
A cooperative project between the U.S. Geological Survey (USGS) and the Wisconsin Department of Natural Resources (DNR) was begun with the objectives of describing water quality and its relation to the hydrology of Wisconsin's principal aquifers and summarizing instances of ground-water contamination and quality problems from information available in DNR files. The first objective was met by a hydrologic investigation done by the USGS, and the second, by preparation of a report by the DNR, for their internal use, that describes the State's water resources and known ground-water quality and contamination problems and makes policy recommendations for ground-water management.The USGS investigation was divided into two phases. The first phase consisted of compiling available water-quality and hydrogeologic data and collecting new data to describe general regional water-quality and hydrogeologic relations within and between Wisconsin aquifers. The second phase began concurrently with the later part of the first phase and consisted of an areal description of water quality and flow in the State's shallow aquifer system (Kammerer, 1995). The overall purpose of this investigation was to provide a regional framework that could serve as a basis for intensive local and site specific ground-water investigations by State and local government agencies.This report presents the results of the first phase of the USGS investigation. Regional hydrogeologic and water-quality relations within and between aquifers are shown along 15 hydrogeologic sections that traverse the State. Maps are used to show surficial geology of bedrock and unconsolidated deposits and horizontal direction of ground-water flow. Interpretations on the maps and hydrogeologic sections are based on data from a variety of sources and provide the basis for the areal appraisal of water quality in the State's shallow aquifer system in the second phase of the investigation.
Potential uses of pumped urban groundwater: a case study in Sant Adrià del Besòs (Spain)
NASA Astrophysics Data System (ADS)
Jurado, Anna; Vázquez-Suñé, Enric; Pujades, Estanislao
2017-09-01
Urban groundwater has often been over-exploited for industrial uses. Now, this usage tends to be reduced or the resource abandoned due to pollution and/or changes in land use. The use and the subsequent disuse of groundwater has resulted in rising water tables that damage underground structures (e.g., building basements and underground car parks and tunnels), leading to the need for additional pumping in urban areas. In the case of the underground parking lot of Sant Adrià del Besòs (Barcelona, NE Spain), large amounts of urban groundwater are pumped to avoid seepage problems. Can this pumped groundwater be used for other purposes (e.g., drinking water and urban irrigation) instead of wasting this valuable resource? To answer this question, it was necessary to quantify the groundwater recharge and to assess the evolution of groundwater quality. The limiting factor at this study site is the groundwater quality because ammonium and some metals (iron and manganese) are present at high concentrations. Hence, further treatment would be needed to meet drinking water requirements. The pumped groundwater could also be used for supplementing river flow for ecological benefit and/or for mitigating seawater intrusion problems. Currently, only a small amount of this urban groundwater is used for cleaning public areas and watering public gardens. This situation highlighted the urgent need to manage this resource in a responsible and more efficient manner, especially in moments of high water demand such as drought periods.
NASA Astrophysics Data System (ADS)
Salifu, Musah; Yidana, Sandow Mark; Anim-Gyampo, Maxwell; Appenteng, Michael; Saka, David; Aidoo, Felix; Gampson, Enoch; Sarfo, Mark
2017-06-01
This work is to establish the hydrochemistry and origin of groundwater in some parts of the Gushegu district of the Northern Region of Ghana. Hydrochemical data from 19 groundwater and 7 rock samples have been used to evaluate water quality, water types, and sources of various ions as well as origin of the groundwater. The study results show that the quality of groundwater from the area is generally not good due to their fluoride (F-), bicarbonate (HCO3 -) and electrical conductivity (EC) concentrations. The F- contents of the groundwater have values as high as 1.97 mg/L, with 53 % of the groundwater having concentrations of F- exceeding the WHO recommended allowable limits. These high F- values have the potential of causing serious health problems such as kidney failure, dental and skeletal fluorosis, reproductive problem and reduction in intelligent quotient of consumers. A plot of Gibbs diagram reveals that rock weathering and precipitation are the major hydrogeochemical processes regulating the water chemistry of the study area. Petrographic thin-section analyses of rock samples identify minerals present to be muscovite, plagioclase feldspars, quartz, sericite and iron oxide. Stable isotope (18O and 2H) composition of the waters reveals that most of the groundwater is likely to be recharged from local precipitation, indicating their meteoric origin. Some samples, however, showed considerable evaporation.
NASA Astrophysics Data System (ADS)
Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.
2015-12-01
Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.
Fresh Groundwater Resources in Georgia and Management Problems
NASA Astrophysics Data System (ADS)
Gaprindashvili, George; Gaprindashvili, Merab
2015-04-01
Fresh water represents conditioned factor for human body's life. That's why the superiority of drinking water is recognized as human body's priority according to the international declarations. World is experiencing deficit of quality water. Natural Disasters caused by the pollution of the fresh groundwater is also very painful and acute, because it needed more time, more material and financial means for the liquidation of their results, and what the most important practically is, it is impossible to renew the initial natural conditions completely. All these conditions that the rational use of fresh groundwater passed by the interests of separate countries and became worldwide, international problem - fresh water became as considerable raw material for the worlds import and export. The fresh groundwater place the important role among the water recourses of Georgia. Their existing is considerably connected to the development of industry and agriculture, also with water supply issue of populated area. Groundwater management requires precise knowledge of sources (aquifers). Monitoring of Georgia's most important aquifers started many years ago and has provided large amount of data. This was interrupted at the beginning of the 1990s. It could be noted that fresh water existing in the country is distinguished with high quality. According to the mineralization and temperature parameters groundwater is generally divided into the following groups: 1) Fresh drinking waters (mineralization not exceeding 1.0 g/l); 2) Mineral waters (mineralization over 1.0 g/l); 3) Thermal waters -- healing (20˚C - 35˚C), Geothermal (40˚C - 108˚C). Below we present briefly review about the situation of fresh groundwater resources, started recovery of groundwater monitoring network and the analysis of the management problems.
Inverse models: A necessary next step in ground-water modeling
Poeter, E.P.; Hill, M.C.
1997-01-01
Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.
NASA Astrophysics Data System (ADS)
Sylus, K. J.; H., Ramesh
2018-04-01
In the coastal aquifer, seawater intrusion considered the major problem which contaminates freshwater and reduces its quality for domestic use. In order to find seawater intrusion, the groundwater quality analysis for the different chemical parameter was considered as the basic method to find out contamination. This analysis was carried out as per Bureau of Indian standards (2012) and World Health Organisations (1996). In this study, Bicarbonate parameter was considered for groundwater quality analysis which ranges the permissible limit in between 200-600 mg/l. The groundwater system was modelled using Groundwater modelling software (GMS) in which the FEMWATER package used for flow and transport. The FEMWATER package works in the principle of finite element method. The base input data of model include elevation, Groundwater head, First bottom and second bottom of the study area. The modelling results show the spatial occurrence of contamination in the study area of Netravathi and Gurpur river confluence at the various time period. Further, the results of the modelling also show that the contamination occurs up to a distance of 519m towards the freshwater zone of the study area.
NASA Astrophysics Data System (ADS)
Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.
2014-04-01
In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.
Ground-water quality atlas of Wisconsin
Kammerer, Phil A.
1981-01-01
This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.
Assessment and uncertainty analysis of groundwater risk.
Li, Fawen; Zhu, Jingzhao; Deng, Xiyuan; Zhao, Yong; Li, Shaofei
2018-01-01
Groundwater with relatively stable quantity and quality is commonly used by human being. However, as the over-mining of groundwater, problems such as groundwater funnel, land subsidence and salt water intrusion have emerged. In order to avoid further deterioration of hydrogeological problems in over-mining regions, it is necessary to conduct the assessment of groundwater risk. In this paper, risks of shallow and deep groundwater in the water intake area of the South-to-North Water Transfer Project in Tianjin, China, were evaluated. Firstly, two sets of four-level evaluation index system were constructed based on the different characteristics of shallow and deep groundwater. Secondly, based on the normalized factor values and the synthetic weights, the risk values of shallow and deep groundwater were calculated. Lastly, the uncertainty of groundwater risk assessment was analyzed by indicator kriging method. The results meet the decision maker's demand for risk information, and overcome previous risk assessment results expressed in the form of deterministic point estimations, which ignore the uncertainty of risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Water-resources activities in New York, 1987-88
Marshall, Mary P.; Finch, Anne J.
1988-01-01
The U.S. Geological Survey conducted more than 35 water resources projects in New York in 1987-88. These studies, done largely through cooperative joint-funding programs with the state, County, and local agencies, encompass statewide networks of measurement stations that provide continuous records of streamflow, groundwater levels, and water quality; they also address regional and local problems as well as critical problems of national scope. Some of the questions addressed by these studies are the effect of sewers on groundwater levels and streamflow on Long Island; the occurrence and transport of PCB residues within the upper Hudson River basin; the effect of acid rain on streams in the Catskill Mountains; the frequency and magnitude of floods statewide; the role of wetlands in improving the chemical quality of landfill leachate; the direction of groundwater movement from waste disposal sites near the Niagara River; and the location and potential well yields of stratified-drift aquifers in upstate New York. (USGS)
NASA Astrophysics Data System (ADS)
Bondu, Raphaël; Cloutier, Vincent; Rosa, Eric
2018-04-01
Nineteen private wells were investigated in order to evaluate the groundwater quality and the issues associated with well water use in a fractured metasedimentary aquifer of the Canadian Shield, in western Quebec (Canada). Groundwater sampling and analysis reveal that the quality of well water is both a potential aesthetic and health concern for the residents. Aesthetic problems are mainly related to the high levels of hardness and dissolved iron and manganese. Potential health risks are associated with the occurrence of brackish groundwater, high manganese concentrations, and arsenic concentrations exceeding the Canadian guideline value of 10 μg/l. Brackish groundwater is suspected to be derived from the mixing of fresh groundwaters with deep calcium-sodium-chloride brines of the Canadian Shield. The occurrences of iron, manganese and arsenic, primarily derived from the natural weathering of bedrock, are highly dependent on the geochemical conditions in groundwater, particularly the redox potential. Arsenic occurs mainly as arsenite (As(III)) and is thought to be released by the dissolution of iron and manganese oxyhydroxides under reducing conditions. Information obtained from well owners indicates that most households use ion exchange water softeners to minimize aesthetic problems of excessive hardness and dissolved iron and manganese concentrations. Homeowners generally take protective measures to reduce their exposure to arsenic when they are aware of the contamination. The exposure to arsenic and manganese may pose health risks for residents that do not take protective measures. The quality of well water is of paramount importance for human health in rural areas. Information on the contaminant sources and individual mitigation measures is essential to assess the health risks associated with groundwater consumption and to ensure the protection of public health.
NASA Astrophysics Data System (ADS)
Vijith, H.; Satheesh, R.
2007-09-01
Hydrogeochemistry of groundwater in upland sub-watersheds of Meenachil river, parts of Western Ghats, Kottayam, Kerala, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. The study area is dominated by rocks of Archaean age, and Charnonckite is dominated over other rocks. Rubber plantation dominated over other types of the vegetation in the area. Though the study area receives heavy rainfall, it frequently faces water scarcity as well as water quality problems. Hence, a Geographical Information System (GIS) based assessment of spatiotemporal behaviour of groundwater quality has been carried out in the region. Twenty-eight water samples were collected from different wells and analysed for major chemical constituents both in monsoon and post-monsoon seasons to determine the quality variation. Physical and chemical parameters of groundwater such as pH, dissolved oxygen (DO), total hardness (TH), chloride (Cl), nitrate (NO3) and phosphate (PO4) were determined. A surface map was prepared in the ArcGIS 8.3 (spatial analyst module) to assess the quality in terms of spatial variation, and it showed that the high and low regions of water quality varied spatially during the study period. The influence of lithology over the quality of groundwater is negligible in this region because majority of the area comes under single lithology, i.e. charnockite, and it was found that the extensive use of fertilizers and pesticides in the rubber, tea and other agricultural practices influenced the groundwater quality of the region. According to the overall assessment of the basin, all the parameters analysed are below the desirable limits of WHO and Indian standards for drinking water. Hence, considering the pH, the groundwater in the study area is not suitable for drinking but can be used for irrigation, industrial and domestic purposes. The spatial analysis of groundwater quality patterns of the study area shows seasonal fluctuations and these spatial patterns of physical and chemical constituents are useful in deciding water use strategies for various purposes.
Groundwater hydrogeochemical characteristics in rehabilitated coalmine spoils
NASA Astrophysics Data System (ADS)
Gomo, M.; Masemola, E.
2016-04-01
The investigation aims to identify and describe hydrogeochemical processes controlling the evolution of groundwater chemistry in rehabilitated coalmine spoils and their overall influence on groundwater quality at a study area located in the Karoo basin of South Africa. A good understanding of the processes that controls the evolution of the mine water quality is vital for the planning, application and management of post-mining remedial actions. The study utilises scatter plots, statistical analysis, PHREEQC hydrogeochemical modelling, stoichiometric reaction ratios analysis, and the expanded Durov diagram as complimentary tools to interpret the groundwater chemistry data collected from monitoring boreholes from 1995 to 2014. Measured pH ranging between 6-8 and arithmetic mean of 7.32 shows that the groundwater system is characterised by circumneutral hydrogeochemical conditions period. Comparison of measured groundwater ion concentrations to theoretical reaction stoichiometry identifies Dolomite-Acid Mine Drainage (AMD) neutralisation as the main hydrogeochemical process controlling the evolution of the groundwater chemistry. Hydrogeochemical modelling shows that, the groundwater has temporal variations of calcite and dolomite saturation indices characterised by alternating cycles of over-saturation and under-saturation that is driven by the release of sulphate, calcium and magnesium ions from the carbonate-AMD neutralization process. Arithmetic mean concentrations of sulphate, calcium and magnesium are in the order of 762 mg/L, 141 mg/L and 108 mg/L. Calcium and magnesium ions contribute to very hard groundwater quality conditions. Classification based on total dissolved solids (TDS), shows the circumneutral water is of poor to unacceptable quality for drinking purposes. Despite its ability to prevent AMD formation and leaching of metals, the dolomite-AMD neutralisation process can still lead to problems of elevated TDS and hardness which mines should be aware of when developing water quality management plans.
Quality of groundwater resources in Afghanistan.
Hayat, Ehsanullah; Baba, Alper
2017-07-01
Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.
NASA Astrophysics Data System (ADS)
Gidey, Amanuel
2018-06-01
Determining suitability and vulnerability of groundwater quality for irrigation use is a key alarm and first aid for careful management of groundwater resources to diminish the impacts on irrigation. This study was conducted to determine the overall suitability of groundwater quality for irrigation use and to generate their spatial distribution maps in Elala catchment, Northern Ethiopia. Thirty-nine groundwater samples were collected to analyze and map the water quality variables. Atomic absorption spectrophotometer, ultraviolet spectrophotometer, titration and calculation methods were used for laboratory groundwater quality analysis. Arc GIS, geospatial analysis tools, semivariogram model types and interpolation methods were used to generate geospatial distribution maps. Twelve and eight water quality variables were used to produce weighted overlay and irrigation water quality index models, respectively. Root-mean-square error, mean square error, absolute square error, mean error, root-mean-square standardized error, measured values versus predicted values were used for cross-validation. The overall weighted overlay model result showed that 146 km2 areas are highly suitable, 135 km2 moderately suitable and 60 km2 area unsuitable for irrigation use. The result of irrigation water quality index confirms 10.26% with no restriction, 23.08% with low restriction, 20.51% with moderate restriction, 15.38% with high restriction and 30.76% with the severe restriction for irrigation use. GIS and irrigation water quality index are better methods for irrigation water resources management to achieve a full yield irrigation production to improve food security and to sustain it for a long period, to avoid the possibility of increasing environmental problems for the future generation.
Review: Groundwater resources and related environmental issues in China
NASA Astrophysics Data System (ADS)
Hao, Aibing; Zhang, Yilong; Zhang, Eryong; Li, Zhenghong; Yu, Juan; Wang, Huang; Yang, Jianfeng; Wang, Yao
2018-05-01
As an important component of water resources, groundwater plays a crucial role in water utilization in China and an irreplaceable role in supporting economic and social development, especially in the northern arid and semi-arid plains and basin areas, which are densely populated and relatively short of surface-water resources. This paper comprehensively reviews and discusses the regional hydrogeological conditions, the temporal and spatial distribution of groundwater, the groundwater quality, and the actuality of groundwater exploitation and utilization in China. Meanwhile, aiming at the environmental problems induced by overexploitation to meet the sharply increasing water demand, this paper puts forward the major tasks for the next few years in terms of groundwater exploitation control, conservation and management.
Transfer of European Approach to Groundwater Monitoring in China
NASA Astrophysics Data System (ADS)
Zhou, Y.
2007-12-01
Major groundwater development in North China has been a key factor in the huge economic growth and the achievement of self sufficiency in food production. Groundwater accounts for more than 70 percent of urban water supply and provides important source of irrigation water during dry period. This has however caused continuous groundwater level decline and many associated problems: hundreds of thousands of dry wells, dry river beds, land subsidence, seawater intrusion and groundwater quality deterioration. Groundwater levels in the shallow unconfined aquifers have fallen 10m up to 50m, at an average rate of 1m/year. In the deep confined aquifers groundwater levels have commonly fallen 30m up to 90m, at an average rate of 3 to 5m/year. Furthermore, elevated nitrate concentrations have been found in shallow groundwater in large scale. Pesticides have been detected in vulnerable aquifers. Urgent actions are necessary for aquifer recovery and mitigating groundwater pollution. Groundwater quantity and quality monitoring plays a very important role in formulating cost-effective groundwater protection strategies. In 2000 European Union initiated a Water Framework Directive (2000/60/EC) to protect all waters in Europe. The objective is to achieve good water and ecological status by 2015 cross all member states. The Directive requires monitoring surface and groundwater in all river basins. A guidance document for monitoring was developed and published in 2003. Groundwater monitoring programs are distinguished into groundwater level monitoring and groundwater quality monitoring. Groundwater quality monitoring is further divided into surveillance monitoring and operational monitoring. The monitoring guidance specifies key principles for the design and operation of monitoring networks. A Sino-Dutch cooperation project was developed to transfer European approach to groundwater monitoring in China. The project aims at building a China Groundwater Information Centre. Case studies in 3 pilot areas have been conducted to build research capacities of the central and provincial groundwater information centers in providing groundwater information services to decision makers and public. Groundwater regime zoning and pollution risk maps were used to lay-out groundwater quantity and quality monitoring networks, respectively. Automatic groundwater recorders were installed in selected observation wells. ArcGIS based regional groundwater information systems were constructed and used to create groundwater regime zoning and pollution risk maps. Steady state groundwater models have been constructed and calibrated. Transient groundwater models are under calibration. Groundwater resources development scenarios were formulated. The model will be used to predict what will be consequences in next 20 years if current situation continues as business as usual. Possibilities of reducing groundwater abstraction and opportunities of artificially enhanced groundwater recharge will be analyzed. Combination of decreasing abstraction and increasing recharge may lead to a sustainable plan of future groundwater resources development.
NASA Astrophysics Data System (ADS)
Bruce, J. P.
2009-05-01
The Expert Panel on Groundwater was established in response to a request from the Minister of Natural Resources Canada, asking the Council of Canadian Academies to assess what is needed to achieve sustainable management of Canada's groundwater resources, from a science perspective. To this end, the Council of Canadian Academies assembled an interdisciplinary panel of experts who interpreted science, in the context of this assessment, to include natural and social sciences as well as local, provincial, and federal governance. The panel's report, released on May 11th 2009, noted that nearly 10 million Canadians rely on groundwater for household purposes, in addition to uses for agriculture and industry. Both media and public have expressed many recent concerns about water supplies and their quality. The concept of groundwater sustainability developed by the panel encompasses five interrelated goals: three that involve primarily the physical sciences and engineering, and two that are essentially socio-economic in nature. These goals are as follows: i. Protection of groundwater supplies from depletion ii. Protection of groundwater quality from contamination iii. Protection of ecosystem viability iv. Achievement of economic and social well-being v. Application of good governance The achievement of groundwater sustainability requires a careful analysis and balancing of the five goals; a comprehensive sustainability framework for groundwater has not yet been implemented in Canada. Adoption by federal, provincial and local jurisdictions of such a framework, based on the goals outlined above, would be invaluable in guiding efforts to improve the understanding and management of groundwater. To contextualize the components of the sustainability framework, the panel examined a series of case studies that typify examples along a spectrum, from near-sustainable, to situations that are fail to meet the outlined criteria. The panel identified the fragmentation of water management at all levels, between groundwater and surface water and between quantity and quality, as a major hindrance to the sustainable management of groundwater in Canada. Several problem areas were highlighted in the report, including the need for a cooperative data management system; inadequate numbers of well-trained hydrogeologists and other water specialists; and a frequent failure to consider groundwater as part of the hydrological cycle in watersheds or ground-watersheds. A series of recommendations to address these, and other problems, were developed by the Panel and will be outlined in the presentation.
A versatile method for groundwater vulnerability projections in future scenarios.
Stevenazzi, Stefania; Bonfanti, Marianna; Masetti, Marco; Nghiem, Son V; Sorichetta, Alessandro
2017-02-01
Water scarcity and associated risks are serious societal problems. A major challenge for the future will be to ensure the short-term and long-term provision of accessible and safe freshwater to meet the needs of the rapidly growing human population and changes in land cover and land use, where conservation and protection play a key role. Through a Bayesian spatial statistical method, a time-dependent approach for groundwater vulnerability assessment is developed to account for both the recent status of groundwater contamination and its evolution, as required by the European Union (Groundwater Directive, 2006/118/EC). This approach combines natural and anthropogenic factors to identify areas with a critical combination of high levels and increasing trends of nitrate concentrations, together with a quantitative evaluation of how different future scenarios would impact the quality of groundwater resources in a given area. In particular, the proposed approach can determine potential impacts on groundwater resources if policies are maintained at the status quo or if new measures are implemented for safeguarding groundwater quality, as natural factors are changing under climatic or anthropogenic stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Surface water and groundwater contamination by herbicides and fertilizers continues to be a major water quality problem in central Missouri. The purpose of this study was to examine spatial variability of water quality among three different headwater catchments – Goodwater Creek Experimental Watersh...
U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985
NASA Astrophysics Data System (ADS)
Ragone, Stephen E.
1986-09-01
In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program
NASA Astrophysics Data System (ADS)
Neves, O.; Matias, M. J.
2008-02-01
The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5 5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50 120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.
NASA Astrophysics Data System (ADS)
Husain, I.; Husain, J.; Arif, M.
2014-09-01
Rajasthan is well known for its Great Thar desert. Central Rajasthan has an arid to semi-arid environment. The area faces either scarcity of water or poor quality of drinking water. In some areas water is transported 2 km or more, which uses time, energy and money. Rich people have their own sources, which is restricted for use by others. Such conditions are affecting socially-deprived communities, both socially and economically. Groundwater is a major source of drinking water due to the unavailability of surface water. There is a lack of groundwater quality knowledge in the community and the data available is hard to understand by consumers. The CCME Water Quality Index is a tool to simplify the water quality report by rating the water on quality standards. It provides meaningful summaries of overall water quality and trends, which is accessible to non-technical lay people. In the present study the objective is to examine the groundwater quality of six districts (Ajmer, Bhilwara, Pali, Rajasamand, Nagaur and Jodhpur), centrally located in Rajasthan, with arid and semi-arid conditions. CCME WQI is also evaluated to produce quality data in a form to be understood by the community. A total of 4369 groundwater sources in 1680 villages from six districts (76 546 km2) were collected and examined. Results are outlined in the Bureau of Indian Standards (BIS: 10500, 2012) and 2952 sources are unsafe for drinking. According to CCME WQI groundwater of 93 villages is poor, 343 villages are marginal, and 369 villages are fair in quality. Toxicological studies of unsafe drinking water and their remedial measures are also discussed. A tentative correlation between prevailing water-borne diseases and quality parameter has also been shown
Groundwater-quality monitoring program in Chester County, Pennsylvania, 1980-2008
Senior, Lisa A.; Sloto, Ronald A.
2010-01-01
The U.S. Geological Survey in cooperation with the Chester County Water Resources Authority and the Chester County Health Department began a groundwater-quality monitoring program in 1980 in Chester County, Pa., where a large percentage of the population relies on wells for drinking-water supply. This report documents the program and serves as a reference for data collected through the program from 1980 through 2008. The initial focus of the program was to collect data on groundwater quality near suspected localized sources of contamination, such as uncontrolled landfills and suspected industrial wastes, to determine if contaminants were present that might pose a health risk to those using the groundwater. Subsequently, the program was expanded to address the effects of widely distributed contaminant sources associated with agricultural and residential land uses on groundwater quality and to document naturally occurring constituents, such as radium, radon, and arsenic, that are potential hazards in drinking water. Since 2000, base-flow stream samples have been collected in addition to well-water and spring samples in a few small drainage areas to investigate the relation between groundwater quality measured in well samples and streams. The program has primarily consisted of spatial assessment with limited temporal data collected on groundwater quality. Most data were collected through the monitoring program for reconnaissance purposes to identify and locate groundwater-quality problems and generally were not intended for rigorous statistical analyses that might determine land-use or geochemical factors affecting groundwater quality in space or through time. Results of the program found several contaminants associated with various land uses and human activities in groundwater in Chester County. Volatile organic compounds (such as trichloroethylene) were measured in groundwater near suspected localized contaminant sources in concentrations that exceeded drinking-water standards. Groundwater in some agricultural areas had concentrations of nitrate and some pesticides that exceeded drinking-water standards. Elevated concentrations of chloride were measured near salt storage areas and highways. Formaldehyde was detected in groundwater near cemeteries. In residential areas with on-site wastewater disposal, effects on groundwater quality included elevated nitrate concentrations and low concentrations of volatile organic compounds and wastewater compounds, such as antibiotics and detergents. Base-flow samples indicated that groundwater discharge to streams carried contaminants such as nitrate, pesticides, wastewater compounds, and other contaminants. Radionuclides, including radium-226, radium-228, radium-224, and radon-222, and gross alpha-particle activity were measured in groundwater at levels above established and proposed drinking-water standards in some geologic units, particularly in quartzite and quartzite schists. Arsenic concentrations above drinking-water standards were measured in a few samples and were most likely to occur in groundwater in the shales and sandstones in the northern part of the county. Other potential natural hazards, such as lead from aquifer materials or leached from plumbing because of pH, were present in concentrations above drinking-water standards infrequently (less than 10 percent of samples). Limited temporal sampling suggested that chloride concentrations in groundwater increased in the county since the program began in 1980 through 2008, reflecting increasing population and urbanization in that period.
Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively
Gleeson, T.; Alley, W.M.; Allen, D.M.; Sophocleous, M.A.; Zhou, Y.; Taniguchi, M.; Vandersteen, J.
2012-01-01
The sustainability of crucial earth resources, such as groundwater, is a critical issue. We consider groundwater sustainability a value-driven process of intra- and intergenerational equity that balances the environment, society, and economy. Synthesizing hydrogeological science and current sustainability concepts, we emphasize three sustainability approaches: setting multigenerational sustainability goals, backcasting, and managing adaptively. As most aquifer problems are long-term problems, we propose that multigenerational goals (50 to 100 years) for water quantity and quality that acknowledge the connections between groundwater, surface water, and ecosystems be set for many aquifers. The goals should be set by a watershed- or aquifer-based community in an inclusive and participatory manner. Policies for shorter time horizons should be developed by backcasting, and measures implemented through adaptive management to achieve the long-term goals. Two case histories illustrate the importance and complexity of a multigenerational perspective and adaptive management. These approaches could transform aquifer depletion and contamination to more sustainable groundwater use, providing groundwater for current and future generations while protecting ecological integrity and resilience. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Analysis of Groundwater Reserved in Dusun Ngantru Sekaran Village East Java
NASA Astrophysics Data System (ADS)
Pandjaitan, N. H.; Waspodo, R. S. B.; Karunia, T. U.; Mustikasari, N.
2018-05-01
Limited capacity of fresh water in some areas in Indonesia made some regions had drought problem or lack of surface water. One of the solutions was increasing ground water used. This research aimed to identify aquifer and the pattern of ground water flow and also to determine potential of groundwater reserved in Dusun Ngantru. The result would be use to find the right location to be used as groundwater wells. The method used in this research was geoelectric method. This method was used to determine the condition of aquifer and rocks under the soil and to define hydrogeological condition of Dusun Ngantru.The analysis results can be used as a reference of where and what kind of groundwater runs underneath, in order to be optimally utilized. The results of hydrogeological studies and the distribution of aquifer showed that there were unconfined and semi aquifers. The direction of the groundwater flow in the study site varied greatly as the lithologic arrangement varied just as much. In the study locations there were Ledok formation, Mundu formation, and Lidah formation. Groundwater potential ware predicted of 55.33 m3/day or 0.64 lt/s. Based on water quality standard in Indonesia, the water quality of wells were classified as first class quality.
Are Industrial Towns Safe for Human Dwelling?
NASA Astrophysics Data System (ADS)
Singla, C.; Garg, S.; Aggarwal, R.; Jutla, A. S.
2012-12-01
Water resources in the developing countries are under severe stress with multiple stakeholders claiming rights to it. Regional industries, in absence to strict regulations, are responsible for dumping toxic wastes to rivers, ponds and other waterway which have devastating effects on water habitat as well as population that derives water for its daily needs. Key methodological challenges remain in connecting environment to levels of pollution and its relationship with diseases that affect humans. We present a case study from one of the highly industrialized town of South Asia. Ludhiana is the largest city and the largest urban settlement in Punjab, India. With the development of industry, agriculture and the growth of urban population, its water pollution has become a serious problem. Here, we will show how the distribution of heavy metals for groundwater affects its quality and role of regional hydrology on it. We will start with one of the major waterways in the Ludhiana district. Groundwater water samples including sewage water sample were collected within its vicinity of 2.0 km along the waterway (Buddha Nala). The concentration of nickel(Ni) and iron(Fe) in sewage water as well as in groundwater samples was much higher than the maximum permissible limits at a distance of 1.0 Km away from Buddha Nala. In general, all the groundwater samples collected beyond 1.0 Km away from Buddha Nala were found to be having normal concentrations of arsenic and Fe. We will also demonstrate regional health problems resulting from poor groundwater quality. Role of regional hydrology in modulating water quality will be discussed.
U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985
Ragone, S.E.
1986-01-01
In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program ?? 1986 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Dochartaigh, B. É. Ó.; Fordyce, F. M.; Ander, E. L.; Bonsor, H. C.
2009-04-01
The protection of groundwater and related surface water quality is a key aspect of the European Union Water Framework Directive and environmental legislation in many countries worldwide. Globally, the protection of urban groundwater resources and related ecosystem services is of growing concern as urbanisation increases. Although urban areas are often where groundwater resources are most in need of protection, there is frequently a lack of information about threats to groundwater quality. Most studies of soil and groundwater contamination, although detailed, are site-specific, and city-wide overviews are generally lacking. The British Geological Survey (BGS) is currently undertaking the Clyde Urban Super-Project (CUSP), delivering multi-disciplinary geoscience products for the Glasgow conurbation. Under this project, a GIS-based prioritisation tool known as GRASP (GRoundwater And Soil Pollutants) has been trialled to aid urban planning and sustainable development by providing a broad-scale assessment of threats to groundwater quality across the conurbation. GRASP identifies areas where shallow groundwater quality is at greatest threat from the leaching and downward movement of potentially harmful metals in the soil. Metal contamination is a known problem in many urban centres including Glasgow, which has a long industrial heritage and associated contamination legacy, notably with respect to Cr. GRASP is based primarily upon an existing British Standard - International Standards Organisation methodology to determine the leaching potential of metals from soils, which has been validated for 11 metals: Al, Fe, Cd, Co, Cr, Cu, Hg, Ni, Mn, Pb and Zn (BS-ISO 15175:2004). However, the GRASP tool is innovative as it combines assessments of soil leaching potential with soil metal content data to highlight threats to shallow groundwater quality. The input parameters required for GRASP (soil pH, clay, organic matter, sesquioxide and metal content) are based upon a systematic geochemical dataset of 1600 soils (4 per km2) collected across Glasgow as part of the BGS Geochemical Baseline Survey of the Environment (G-BASE) project. These parameters are combined with assessments of climate, groundwater levels and the leaching potential of unsaturated Quaternary deposits to produce maps that prioritise the likely threats to shallow groundwater quality. Data processing for the GRASP methodology is carried out in five steps in Microsoft Excel®, using Visual Basic® programming language, and ArcGIS® software. The GRASP prioritisation tool is in the process of development; however, the rationale and initial derivation of the methodology for the city of Glasgow will be presented.
Water resources of the Tulalip Indian Reservation, Washington
Drost, B.W.
1983-01-01
Water will play a significant role in the future development of the Tulalip Indian Reservation. Ground-water resources are sufficient to supply several times the 1978 population. Potential problems associated with increased ground-water development are saltwater encroachment in the coastal areas and septic-tank contamination of shallow aquifers. There are sufficient good-quality surface-water resources to allow for significant expansion of the tribe)s fisheries activities. The tribal well field is the only place where the ground-water system has been stressed) resulting in declining water levels (1,5 feet per year), The well field has a useful life of at least 1.5-20 years, This can be increased by drilling additional wells to expand the present well field, Inflow of water to the reservation is in the form of precipitation (103 cubic feet per second) ft3/s)) surface-water inflow (13 ft3/s)) and ground-water inflow (4 ft3/s), Outflow is as evapotranspiration (62 ft3/s)) surface-water outflow (40 ft3/s)) and ground-water outflow (18 ft3/s), Total inflow and outflow are equal (120 ft3/s). Ground water is generally suitable for domestic use without treatment) but a serious quality problem is the presence of coliform bacteria in some shallow wells, High values of turbidity and color and large concentrations of iron and manganese are common problems regarding the esthetic quality of the water, In a few places, large concentrations of chloride and dissolved solids indicate the possibility of saltwater encroachment, but no ongoing trend has been identified, Surface waters have been observed to contain undesirably high concentrations of total phosphorus and total and fecal-coliform bacteria) and to have temperatures too high for fish-rearing. The concentration of nutrients appears to be related to flow conditions. Nitrate and total nitrogen are greater in wet-season runoff than during low-flow periods) and total phosphorus shows an inverse relationship. Total phosphorus and ammonia concentrations are greatest in dry-season storm runoff. Generally) surface-water quality is adequate for fish-rearing and (with treatment) for public supply,
A model for managing sources of groundwater pollution
Gorelick, Steven M.
1982-01-01
The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.
Sorenson, S.K.; Cascos, P.V.; Glass, R.L.
1984-01-01
A program to monitor the ground- and surface water quality in the Livermore-Amador Valley has been operated since 1976. As of 1982, this monitoring network consisted of approximately 130 wells, about 100 of which were constructed specifically for this program, and 9 surface water stations. Increased demand on the groundwater for municipal and industrial water supply in the past has caused a decline in water levels and a gradual buildup of salts from natural surface-water recharge and land disposal of treated wastewater from waste treatment plants. Results of this study identify the salt buildup to be the major problem with the groundwater quality. Established water quality objectives for dissolved solids are exceeded in 52 of 130 wells. Concentrations of dissolved nitrate are also in excess of basin objectives and health standards. Water quality in both surface and groundwater is highly variable areally. Magnesium to calcium magnesium bicarbonate groundwater are found in the areas where most of the high volume municipal wells are located. Large areas of sodium bicarbonate water occur in the northern part of the valley. Except for two stations on Arroyo Las Positas which has sodium chloride water, surface water is mixed-cation bicarbonate water. (USGS)
Socio-hydrogeology and low-income countries: taking science to rural society
NASA Astrophysics Data System (ADS)
Limaye, Shrikant Daji
2017-11-01
Rural societies in low-income, high-population countries often faces scarcity of water of suitable quality for domestic use and agriculture. Hydrogeologists should therefore orientate their research work towards solving practical problems and impart basic knowledge about the hydrogeology of local watersheds to the village councils and communities so as to ensure their participation in better management of groundwater resources. Such cooperation between the hydrogeologists and villagers is the foundation of socio-hydrogeology, which aims at broader dissemination of information and discussions with hydrogeologists at village meetings regarding watershed management such as recharge augmentation, groundwater quality issues and prudent use of groundwater. Socio-hydrogeology implies improved accessibility of rural society to hydrogeological experts and better communication through the use of more appropriate and understandable language.
Water quality modeling using geographic information system (GIS) data
NASA Technical Reports Server (NTRS)
Engel, Bernard A
1992-01-01
Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. The potential for surface and ground water quality problems resulting from non-point sources of pollution was examined using models. Since spatial variation of parameters required was important, geographic information systems (GIS) and their data were used. The potential for groundwater contamination was examined using the SEEPAGE (System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments) model. A watershed near the VAB was selected to examine potential for surface water pollution and erosion using the AGNPS (Agricultural Non-Point Source Pollution) model.
NASA Astrophysics Data System (ADS)
Nelson, Rebecca L.
2012-01-01
Groundwater pumping has caused excessive groundwater depletion around the world, yet regulating pumping remains a profound challenge. California uses more groundwater than any other U.S. state, and serves as a microcosm of the adverse effects of pumping felt worldwide—land subsidence, impaired water quality, and damaged ecosystems, all against the looming threat of climate change. The state largely entrusts the control of depletion to the local level. This study uses internationally accepted water resources planning theories systematically to investigate three key aspects of controlling groundwater depletion in California, with an emphasis on local-level action: (a) making decisions and engaging stakeholders; (b) monitoring groundwater; and (c) using mandatory, fee-based and voluntary approaches to control groundwater depletion (e.g., pumping restrictions, pumping fees, and education about water conservation, respectively). The methodology used is the social science-derived technique of content analysis, which involves using a coding scheme to record these three elements in local rules and plans, and State legislation, then analyzing patterns and trends. The study finds that Californian local groundwater managers rarely use, or plan to use, mandatory and fee-based measures to control groundwater depletion. Most use only voluntary approaches or infrastructure to attempt to reduce depletion, regardless of whether they have more severe groundwater problems, or problems which are more likely to have irreversible adverse effects. The study suggests legal reforms to the local groundwater planning system, drawing upon its empirical findings. Considering the content of these recommendations may also benefit other jurisdictions that use a local groundwater management planning paradigm.
NASA Astrophysics Data System (ADS)
Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza
2017-08-01
Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.
Transient electromagnetic sounding for groundwater
Fitterman, David V.; Stewart, Mark T.
1986-01-01
The feasibility of using the transient electromagnetic sounding (TS or TDEM) method for groundwater exploration can be studied by means of numerical models. As examples of its applicability to groundwater exploration, we study four groundwater exploration problems: (1) mapping of alluvial fill and gravel zones over bedrock; (2) mapping of sand and gravel lenses in till; (3) detection of salt or brackish water interfaces in freshwater aquifers; and (4) determination of hydrostratigraphy. These groundwater problems require determination of the depth to bedrock; location of resistive, high‐porosity zones associated with fresh water; determination of formation resistivity to assess water quality; and determination of lithology and geometry, respectively. The TS method is best suited for locating conductive targets, and has very good vertical resolution. Unlike other sounding techniques where the receiver‐transmitter array must be expanded to sound more deeply, the depth of investigation for the TS method is a function of the length of time the transient is recorded. Present equipment limitations require that exploration targets with resistivities of 50 Ω ⋅ m or more be at least 50 m deep to determine their resistivity. The maximum depth of exploration is controlled by the geoelectrical section and background electromagnetic (EM) noise. For a particular exploration problem, numerical studies are recommended to determine if the target is detectable.
Heisig, Paul M.
2015-01-01
Valley-fill aquifers are modest resources within the area, as indicated by the common practice of completing supply wells in the underlying bedrock rather than the overlying glacial deposits. Groundwater turbidity problems curtail use of the resource. However, additional groundwater resources have been identified by test drilling, and there are remaining untested areas. New groundwater supplies that stress localized aquifer areas will alter the groundwater flow system. Considerations include potential water-quality degradation from nearby land use(s) and, where withdrawals induce infiltration of surface-water, balancing withdrawals with flow requirements for downstream users or for maintenance of stream ecological health.
Robson, Stanley G.
1978-01-01
This study investigated the use of a two-dimensional profile-oriented water-quality model for the simulation of head and water-quality changes through the saturated thickness of an aquifer. The profile model is able to simulate confined or unconfined aquifers with nonhomogeneous anisotropic hydraulic conductivity, nonhomogeneous specific storage and porosity, and nonuniform saturated thickness. An aquifer may be simulated under either steady or nonsteady flow conditions provided that the ground-water flow path along which the longitudinal axis of the model is oriented does not move in the aquifer during the simulation time period. The profile model parameters are more difficult to quantify than are the corresponding parameters for an areal-oriented water-fluality model. However, the sensitivity of the profile model to the parameters may be such that the normal error of parameter estimation will not preclude obtaining acceptable model results. Although the profile model has the advantage of being able to simulate vertical flow and water-quality changes in a single- or multiple-aquifer system, the types of problems to which it can be applied is limited by the requirements that (1) the ground-water flow path remain oriented along the longitudinal axis of the model and (2) any subsequent hydrologic factors to be evaluated using the model must be located along the land-surface trace of the model. Simulation of hypothetical ground-water management practices indicates that the profile model is applicable to problem-oriented studies and can provide quantitative results applicable to a variety of management practices. In particular, simulations of the movement and dissolved-solids concentration of a zone of degraded ground-water quality near Barstow, Calif., indicate that halting subsurface disposal of treated sewage effluent in conjunction with pumping a line of fully penetrating wells would be an effective means of controlling the movement of degraded ground water.
Peng, Cong; He, Jiang-Tao; Wang, Man-Li; Zhang, Zhen-Guo; Wang, Lei
2018-02-01
In the face of rapid economic development and increasing human activity, the deterioration of groundwater quality has seriously affected the safety of the groundwater supply in eastern China. Identifying and assessing the impact of human activities is key to finding solutions to this problem. This study is an effort to scientifically and systematically identify and assess the influence of human activities on groundwater based on irregularities in hydrochemical properties and water contamination, which are considered to directly result from anthropogenic activity. The combination of the hydrochemical anomaly identification (HAI) and the contaminant identification (CI) was proposed to identify the influence of human activities on groundwater quality. And the degree of abnormality was quantified by the background threshold value. The principal component analysis (PCA) and land use map were used to verify the reliability of the identification result. The final result show that the strong influence areas mainly distributed in the south of the basin and the affected indicators contained the major elements and NO 3 - , NH 4 + , COD. Impacts from anthropogenic activities can be divided into two types: mine drainage that disrupts natural water-rock interaction processes, agricultural cultivation, and sewage emissions that contribute to nitrate pollution.
USGS California Water Science Center water programs in California
Shulters, Michael V.
2005-01-01
California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.
Khazaei, E.; Mackay, R.; Warner, J.W.
2004-01-01
This paper investigates the impacts of urban growth on groundwater quality and quantity in the Zahedan aquifer, which is the sole source of water supply for the city of Zahedan, Iran. The investigation is based on the collection of available historical data, supplemented by field and laboratory investigations. Groundwater levels in 40 wells were measured in December 2000. In addition, 102 water samples were taken in two periods during November and December 2000. Of these, 43 samples were analyzed for major ions, 32 samples were analyzed for nitrogen and phosphorus and the remainder for bacteriological contamination. The water level data show that there has been a general decline since 1977 due to over-abstraction. The magnitude of this decline has reached about 20 m in some places. However, in one area over the same period, a rise of about 3 m has been observed. This occurs as a result of the local hydrogeological conditions of shallow bedrock and relatively low permeability materials down stream of this area that limits the flow of groundwater towards the northeastern part of the aquifer. The general fall in groundwater levels has been accompanied by a change in the direction of the groundwater flow and an overall reduction of the areal extent of the saturated region of the aquifer. The city now has a serious problem such that even if the abstracted groundwater is rationed, water is not available for long periods because the demand far exceeds the supply. The heavy impact of urbanization on the groundwater quality is shown through the observed high nitrate (up to 295 mg/l as nitrate) and high phosphorus values (about 0.1 mg/l as P). Significant changes in the chloride concentration are also observed in two areas: increasing from 100 mg/l to 1,600 mg/l and from 2,000 mg/l to 4,000 mg/l, respectively. Furthermore, the bacteriological investigations show that 33 percent of the 27 collected groundwater samples are positive for total coliform and 11 percent of the samples contained fecal coliforms indicating that local sources are strongly influencing the observed chemical data. Greater depths to groundwater reduce the observation of coliform contamination. In general, the unplanned urban development in Zahedan has significantly degraded the region's water resources and significant actions such as upgrading the sewage waste disposal system, locating other sources of water supply, and strict groundwater management will all be needed to resolve the problems that have arisen.
Zhang, Wenjie; Chen, Xi; Tan, Hongbing; Zhang, Yanfei; Cao, Jifu
2015-04-15
The decline of groundwater table and deterioration of water quality related to seawater have long been regarded as a crucial problem in coastal regions. In this work, a hydrogeologic investigation using combined hydrochemical and isotopic approaches was conducted in the coastal region of the South China Sea near the Leizhou peninsular to provide primary insight into seawater intrusion and groundwater circulation. Hydrochemical and isotopic data show that local groundwater is subjected to anthropogenic activities and geochemical processes, such as evaporation, water-rock interaction, and ion exchange. However, seawater intrusion driven by the over-exploitation of groundwater and insufficient recharge is the predominant factor controlling groundwater salinization. Systematic and homologic isotopic characteristics of most samples suggest that groundwater in volcanic area is locally recharged and likely caused by modern precipitation. However, very depleted stable isotopes and extremely low tritium of groundwater in some isolated aquifers imply a dominant role of palaeowater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Classification management plan of groundwater quality in Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chun Ming; Chen, Yu Ying; Pan, Shih Cheng; Li, Hui Jun; Hsiao, Fang Ke
2017-04-01
Taiwan Environmental Protection Administration has been monitoring regional water quality for 14 years. Since the beginning of 2002 till now, there are 453 regional groundwater monitoring wells in ten groundwater subregions in Taiwan, and the monitoring of groundwater quality has been carried out for a long time. Currently, water quality monitoring project has reached 50 items, while the number of water quality monitoring data has reached more than 20,000. In order to use the monitoring data efficiently, this study constructed the localized groundwater quality indicators of Taiwan. This indicator takes into account the different users' point of view, incorporating the Taiwan groundwater pollution monitoring standards (Category II), irrigation water quality standard and drinking water source water quality standard. 50 items of water quality monitoring projects were simplified and classified. The groundwater quality parameters were divided into five items, such as potability for drinking water, salting, external influence, health influences and toxicity hazard. The weight of the five items of groundwater was calculated comprehensively, and the groundwater quality of each monitoring well was evaluated with three grades of good, ordinary, and poor. According to the monitoring results of the groundwater monitoring wells in October to December of 2016, about 70% of groundwater quality in Taiwan is in good to ordinary grades. The areas with poor groundwater quality were mostly distributed in coastal, agriculture and part of the urban areas. The conductivity or ammonia nitrogen concentration was higher in those regions, showing that groundwater may be salinized or affected by external influences. Groundwater quality indicators can clearly show the current comprehensive situation of the groundwater environment in Taiwan and can be used as a tool for groundwater quality classification management. The indicators can coordinate with the Taiwan land planning policy in the future, and will be able to effectively grasp the changes of the national sub-regional environmental resources, which can serve as one of the important references in national land zoning according to environmental resources. Keywords: Groundwater Quality Indicators, Groundwater Quality Classification management
Overview of groundwater management approaches at salinisation risk
NASA Astrophysics Data System (ADS)
Polemio, Maurizio; Zuffianò, Livia Emanuela
2013-04-01
All natural waters contain dissolved minerals from interactions with atmospheric and soil gases, mixing with other solutions, and/or interactions with the biosphere and lithosphere. In many cases, these processes result in natural waters containing solute or salinity above concentrations recommended for a specified use, which creates significant social and economic problems. Groundwater salinisation can be caused by natural phenomena and anthropogenic activities. For the former case, we can distinguish terrestrial and marine phenomena. Approximately 16% of the total area of continental earth is potentially involved in groundwater salinisation. Seawater intrusion can be considered to be the primary phenomenon to be studied in terms of groundwater salinisation. Three schematic approaches to the protection of groundwater via salinisation mitigation and/or groundwater salinity improvement are described based on the classifications of the primary salinisation sources and focusing on the effect of seawater intrusion. The complexity of these approaches generally increases due to difficulties caused by groundwater quality and quantity degradation and increased demand for quality water. In order from the lowest to the highest complexity, these approaches are the engineering approach, the discharge management approach, and the water and land management approach. The engineering approach is realised on the local or detailed scale with the purpose of controlling the salinisation, optimising the well discharge with specific technical solutions and/or completing works to improve the quality and/or quantity of the discharged fresh groundwater. The discharge management approach encompasses at least an entire coastal aquifer and defines rules concerning groundwater utilisation and well discharge. The water and land management approach should be applied on the regional scale. Briefly, this approach becomes necessary when one or more need creates an overall framework of high-quality water scarcity. These conditions, sometimes combined with an awareness of negative environmental effects, force people to accept new water saving practices and land use modifications. As the natural effects of salinisation can be enhanced by a multiplicity of human actions, the discharge management approach and the water and land management approach should generally be applied by water authorities or institutional and governmental organisations that are responsible for groundwater quality and availability. The practical study of Apulian karstic coastal aquifers is discussed in detail. Previously experienced management difficulties are described, as well as a proposed multi-methodological approach based on monitoring networks, the spatiotemporal analysis of groundwater quality changes, and multiparameter well logging. The core of this approach is the definition of the salinity threshold value between pure fresh groundwater and any fresh and saline groundwater mixture. The basic or single tools were defined to be simple, quick and cost-effective to be applicable to the widest range of situations.
NASA Astrophysics Data System (ADS)
Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia; Sweya, Lukuba Ngalya; Luciani, Giulia
2015-05-01
Groundwater is the major source to meet domestic, industrial and agricultural needs in the city of Dar es Salaam, Tanzania. However, population growth, increasing urbanization, industrialization and tourism, and climatic changes have caused an intensive exploitation of groundwater resources leading the aquifers become more vulnerable to seawater intrusion. The aim of this study is to examine the variations of groundwater chemistry (as resulting from natural and anthropogenic inputs) depending on seasonal changes, in order to evaluate water quality for drinking and irrigation purposes. Physical and chemical data come from the analysis of groundwater samples, collected from 72 wells, used for the evaluation of water quality parameters, during a year of monitoring. Pattern diagrams, geochemical modeling techniques and Principal Component Analysis (PCA) have been used to identify the main factors influencing groundwater composition. Based on the hydrochemistry, the groundwater was classified into three types: (a) Na-Cl, (b) Ca-Cl, (c) mixed Ca-Na-HCO3-Cl (d) mixed Ca-Mg-Cl-SO4. The geochemical modeling results show that groundwater chemistry is mainly influenced by evaporation process, as it is suggested by the increase of Na and Cl ions concentrations. According to irrigation water quality assessment diagrams of USDA, most water samples from dry and rainy seasons, distributed in category C2-S1, C3-S1, C3-S2, C4-S2 highlighting medium to very high salinity hazard and low to medium sodium content class. PCA evidenced the role of seawater intrusion, evaporation process and anthropogenic pollution (i.e. high NO3 levels due to agricultural activities), as the major factors that influenced the water chemistry, and hence the water quality. Based on Pearson correlation matrix, the presence of high correlations (>0.8) among Na, Cl, Mg and SO4, in association with EC, were interpreted as the seawater intrusion effects. In this area groundwater quality is generally low, and often exceeds permissible limits of standard guideline values of WHO and FAO, referred to EC and chloride values. The high salinity and the groundwater level depletion create serious problems for current use of water supplies as well as future exploitation.
Reimann, Clemens; Banks, David
2004-10-01
Clean and healthy drinking water is important for life. Drinking water can be drawn from streams, lakes and rivers, directly collected (and stored) from rain, acquired by desalination of ocean water and melting of ice or it can be extracted from groundwater resources. Groundwater may reach the earth's surface in the form of springs or can be extracted via dug or drilled wells; it also contributes significantly to river baseflow. Different water quality issues have to be faced when utilising these different water resources. Some of these are at present largely neglected in water quality regulations. This paper focuses on the inorganic chemical quality of natural groundwater. Possible health effects, the problems of setting meaningful action levels or maximum admissible concentrations (MAC-values) for drinking water, and potential shortcomings in current legislation are discussed. An approach to setting action levels based on transparency, toxicological risk assessment, completeness, and identifiable responsibility is suggested.
Hanford Site ground-water monitoring for 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresel, P.E.; Luttrell, S.P.; Evans, J.C.
This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporatedmore » to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.« less
Price, Don
1961-01-01
An investigation of the ground-water resources of the northern Willamette Valley was begun in 1960 as a cooperative program between the Ground Water Branch, U.S. Geological Survey, and the Oregon State Engineer. The northern Willamette Valley area is one of the fastest growing areas of ground-water use within the state. The purpose of the investigation is to obtain an understanding of the availability, movement, and chemical quality of the ground-water resources of the area. This information is needed to attain an optimum development of the ground-water resources of the area and to aid in the prevention of problems of overdevelopment and pollution. The first phase of the program was the collection of well records, water level records, and chemical quality data in the central part of this area, which is known as the French Prairie-Mission Bottom area. The records collected in this phase of the study are essential in the preparation of an interpretive report describing the occurrence and movement of ground-water in the French Prairie-Mission Bottom area. These records, which will not be included in the interpretive report that is being prepared at this time, are being made available in this publication to aid in the location and the development of the ground-water resources of the area, and to serve as a supplement to the forthcoming interpretive report.
Ground-water monitoring in the Albuquerque area
Thorn, Condé R.
1996-01-01
At present (1996), all drinking water for Albuquerque residents comes from ground-water reserves. The Albuquerque area is the largest population center in the State and the largest consumer of ground water. Recent reports concerning the water resources of the Albuquerque area suggest that the Albuquerque Basin may soon face serious water-availability and water-quality problems due to anticipated ground-water development. Recent studies completed by the U.S. Geological Survey (USGS) have improved the understanding of the ground-water resources in the Albuquerque Basin. These studies have indicated that the more permeable units within the aquifer system--the upper Santa Fe Group--are less extensive than previously thought, and that water-levels have declined as much as 160 feet.
Li, Peiyue; Tian, Rui; Xue, Chenyang; Wu, Jianhua
2017-05-01
Groundwater quality research is extremely important for supporting the safety of the water supply and human health in arid and semi-arid areas of China. This review article was constructed to report the latest research progress of groundwater quality in western China where groundwater quality is undergoing fast deterioration because of fast economic development and extensive anthropogenic activities. The opportunities brought by increasing public awareness of groundwater quality protection were also highlighted and discussed. To guide and promote further development of groundwater quality research in China, especially in western China, ten key groundwater quality research fields were proposed. The review shows that the intensification of human activities and the associated impacts on groundwater quality in China, especially in western China, has made groundwater quality research increasingly important, and has caught the attention of local, national, and international agencies and scholars. China has achieved some progress in groundwater quality research in terms of national and regional laws, regulations, and financial supports. The future of groundwater quality research in China, especially in western China, is promising reflected by the opportunities highlighted. The key research fields proposed in this article may also inform groundwater quality protection and management at the national and international level.
NASA Astrophysics Data System (ADS)
Moyo, N. A. G.
Groundwater from boreholes and shallow wells is a major source of drinking water in most rural areas of Zimbabwe. The quality of groundwater has been taken for granted and the status and the potential threats to groundwater quality have not been investigated on a large scale in Zimbabwe. A borehole and shallow well water quality survey was undertaken between January, 2009 and February, 2010 to determine the chemical and microbial aspects of drinking water in three catchment areas. Groundwater quality physico-chemical indicators used in this study were nitrates, chloride, water hardness, conductivity, alkalinity, total dissolved solids, iron, magnesium, manganese, potassium, calcium, fluoride, sulphates, sodium and pH. The microbiological indicators were total coliforms, faecal coliforms and heterotrophs. Principal component analysis (PCA) showed that most of the variation in ground water quality in all catchment areas is accounted for by Total Dissolved Solids (TDS), electrical conductivity (EC), sodium, bicarbonate and magnesium. The principal dissolved constituents in ground water are in the form of electrically charged ions. Nitrate is a significant problem as the World Health Organization recommended levels were exceeded in 36%, 37% and 22% of the boreholes in the Manyame, Mazowe and Gwayi catchment areas respectively. The nitrate levels were particularly high in commercial farming areas. Iron and manganese also exceeded the recommended levels. The probable source of high iron levels is the underlying geology of the area which is dominated by dolerites. Dolerites weather to give soils rich in iron and other mafic minerals. The high level of manganese is probably due to the lithology of the rock as well as mining activity in some areas. Water hardness is a problem in all catchment areas, particularly in the Gwayi catchment area where a value of 2550 mg/l was recorded in one borehole. The problems with hard water use are discussed. Chloride levels exceeded the recommended levels in a few areas under irrigation. Most of the chloride is probably from agricultural activity particularly the application of potassium chloride. Fluoride levels were particularly elevated in the Gwayi catchment area and this is because of the geology of the area. There was no evidence of microbial contamination in all the boreholes sampled as the total coliform, faecal coliforms, heterotrophs count was nil. However, severe microbial contamination was found in the wells especially those in clay areas.
El Alfy, Mohamed; Lashin, Aref; Abdalla, Fathy; Al-Bassam, Abdulaziz
2017-10-01
Rapid economic expansion poses serious problems for groundwater resources in arid areas, which typically have high rates of groundwater depletion. In this study, integration of hydrochemical investigations involving chemical and statistical analyses are conducted to assess the factors controlling hydrochemistry and potential pollution in an arid region. Fifty-four groundwater samples were collected from the Dhurma aquifer in Saudi Arabia, and twenty-one physicochemical variables were examined for each sample. Spatial patterns of salinity and nitrate were mapped using fitted variograms. The nitrate spatial distribution shows that nitrate pollution is a persistent problem affecting a wide area of the aquifer. The hydrochemical investigations and cluster analysis reveal four significant clusters of groundwater zones. Five main factors were extracted, which explain >77% of the total data variance. These factors indicated that the chemical characteristics of the groundwater were influenced by rock-water interactions and anthropogenic factors. The identified clusters and factors were validated with hydrochemical investigations. The geogenic factors include the dissolution of various minerals (calcite, aragonite, gypsum, anhydrite, halite and fluorite) and ion exchange processes. The anthropogenic factors include the impact of irrigation return flows and the application of potassium, nitrate, and phosphate fertilizers. Over time, these anthropogenic factors will most likely contribute to further declines in groundwater quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter
2018-01-01
The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.
Impact of Spatial Pumping Patterns on Groundwater Management
NASA Astrophysics Data System (ADS)
Yin, J.; Tsai, F. T. C.
2017-12-01
Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.
Ground-water conditions in the central Virgin River basin, Utah
Cordova, R.M.; Sandberg, G.W.; McConkie, Wilson
1972-01-01
Water-rights problems have occurred in the central Virgin River basin and are expected to increase as development of the water resources increases. The Utah State Engineer needs a basic knowledge of ground-water conditions and of the relation of ground water to surface water as a first step to understanding and resolving the problems. Accordingly, the State Engineer requested the U. S. Geological Survey to make a ground-water investigation of the central Virgin River basin as part of the Statewide cooperative agreement with the Utah Department of Natural Resources. The investigation was begun July 1, 1968, and fieldwork was completed in August 1970. Detailed information was obtained for the principal aquifers and for recharge, movement, discharge, storage, utilization, and chemical quality of ground water. A progress report (Cordova, Sandberg, and McConkie, 1970) describes the general findings in the first year of the investigation.
NASA Astrophysics Data System (ADS)
Park, D. K.; Bae, G. O.; Lee, K. K.
2014-12-01
The open-loop geothermal system directly uses a relatively stable temperature of groundwater for cooling and heating in buildings and thus has been known as an eco-friendly, energy-saving, and cost-efficient technique. The facility for this system was installed at a site located near Paldang-dam in Han-river, Korea. Because of the well-developed alluvium, the site might be appropriate to application of this system requiring extraction and injection of a large amount of groundwater. A simple numerical experiment assuming various hydrogeologic conditions demonstrated that regional groundwater flow direction was the most important factor for efficient operation of facility in this site having a highly permeable layer. However, a comparison of river stage data and groundwater level measurements showed that the daily and seasonal controls of water level at Paldang-dam have had a critical influence on the regional groundwater flow in the site. Moreover, nitrate concentrations measured in the monitoring wells gave indication of the effect of agricultural activities around the facility on the groundwater quality. The facility operation, such as extraction and injection of groundwater, will obviously affect transport of the agricultural contaminant and, maybe, it will even cause serious problems in the normal operation. Particularly, the high-permeable layer in this aquifer must be a preferential path for quick spreadings of thermal and contaminant plumes. The objective of this study was to find an efficient, safe and stable operation plan of the open-loop geothermal system installed in this site having the complicated conditions of highly permeable layer, variable regional groundwater flow, and agricultural contamination. Numerical simulations for groundwater flow, heat and solute transport were carried out to analyze all the changes in groundwater level and flow, temperature, and quality according to the operation, respectively. Results showed that an operation plan for only the thermal efficiency of system cannot be the best in aspect of safe and stable operation related to groundwater quality. All these results concluded that it is essential to understand various and site-specific conditions of the site in a more integrated approach for the successful application of the open-loop geothermal system.
Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth
2016-06-20
Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.
Urban and rural groundwater use in Zhengzhou, China: challenges in joint management
NASA Astrophysics Data System (ADS)
Sun, Ronglin; Jin, Menggui; Giordano, Mark; Villholth, Karen G.
2009-09-01
Groundwater plays an important role in the total water supply of much of China, particularly in the north. It has contributed substantially to both agricultural growth and urban and industrial expansion. However, overexploitation and poor management have contributed to infamous groundwater depletion problems and less publicized groundwater quality deterioration. One of the key challenges for China will be how to make groundwater use sustainable while still meeting increased food needs as well as the industrial and domestic demands of a rapidly urbanizing society. Zhengzhou City, one of China’s test cities for building a “water saving society” highlights both the difficulties and potential solutions to northern China’s joint rural and urban groundwater challenges. Based on secondary data and a primary survey of groundwater management in the region, this report provides an overview of Zhengzhou’s groundwater development and use as well as the ongoing institutional and policy reform processes within the water sector. The results highlight how a deepening of ongoing reforms, which simultaneously consider groundwater as an integral rural and urban issue and a fundamental economic and social asset, may improve groundwater outcomes, not only in Zhengzhou but in China, as the country’s economy and demography continue to change.
NASA Astrophysics Data System (ADS)
Switzman, Harris; Salem, Boshra; Gad, Mohamed; Adeel, Zafar; Coulibaly, Paulin
2018-05-01
In drylands, groundwater is often the sole source of freshwater for industrial, domestic and agricultural uses, while concurrently supporting ecosystems. Many dryland aquifers are becoming depleted due to over-pumping and a lack of natural recharge, resulting in loss of storage and future water supplies, water-level declines that reduce access to freshwater, water quality problems, and, in extreme cases, geologic hazards. Conservation is often proposed as a strategy for managing groundwater to reduce or reverse the depletion, although there is a need to better understand its potential effectiveness and benefits at the local scale. This study assesses the impact of water-conservation planning strategies on groundwater resources in the Wadi El Natrun (WEN) area of northern Egypt. WEN has been subjected to groundwater depletion and quality degradation since the 1990s, attributed to agricultural and industrial groundwater usage. Initiatives have been proposed to increase the sustainability of the groundwater resource in the study area, but they have yet to be evaluated. Simultaneously, there are also proposals to increase the extent of arable land and thus demand for freshwater. In this study, three water management scenarios are developed and assessed to the 2060s for their impact on groundwater resources using a hydrogeologic model. Results demonstrate that demand management implemented through an optimized irrigation and crop rotation strategy has the greatest potential to significantly reduce risk of groundwater depletion compared to the other two scenarios—"business as usual" and "30% water-use reduction"—that were evaluated.
Suitability Evaluation on River Bank Filtration of the Second Songhua River, China
NASA Astrophysics Data System (ADS)
Wang, Lixue; Ye, Xueyan; Du, Xinqiang
2016-04-01
The Second Songhua River is the biggest river with the most economic value in Jilin Province, China. In recent years, with the rapid development of economy, water resources and water environment problem is getting prominent, including surface water pollution and over exploitation of groundwater resources, etc. By means of bank filtration, the Second Songhua River basin might realize the combined utilization of regional groundwater and surface water, and thus has important significance for the guarantee of water demand for industrial and agricultural production planning in the basin. The following steps were adopted to evaluate the suitability of bank filtration nearby the Scond Songhua River : Firstly, in order to focus on the most possible area, the evaluation area was divided based on the aspects of natural geographical conditions and hydraulic connection extent between river water and groundwater. Second, the main suitability indexes including water quantity, water quality, interaction intensity between surface water and groundwater, and the exploitation condition of groundwater resource, and nine sub-indexes including hydraulic conductivity, aquifer thickness, river runoff, the status of groundwater quality, the status of surface water quality, groundwater hydraulic gradient, possible influence zone width of surface water under the condition of groundwater exploitation, permeability of riverbed layer and groundwater depth were proposed to establish an evaluation index system for the suitability of river bank filtration. Thirdly, Combined with the natural geography, geology and hydrogeology conditions of the Second Songhua River basin, the ArcGIS technology is used to complete the evaluation of the various indicators. According to the weighted sum of each index, the suitability of river bank filtration in the study area is divided into five grades. The evaluation index system and evaluation method established in this article are applicable to the Second Songhua River basin, which have clear pertinence and limitation. For future generalization of the evaluation index system, the specific evaluation index and its scoring criteria should be modified appropriately based on local conditions.
NASA Astrophysics Data System (ADS)
Crane, P.; Silliman, S. E.; Boukari, M.; Atoro, I.; Azonsi, F.
2005-12-01
Deteriorating groundwater quality, as represented by high nitrates, in the Colline province of Benin, West Africa was identified by the Benin national water agency, Direction Hydraulique. For unknown reasons the Colline province had consistently higher nitrate levels than any other region of the country. In an effort to address this water quality issue, a collaborative team was created that incorporated professionals from the Universite d'Abomey-Calavi (Benin), the University of Notre Dame (USA), Direction l'Hydraulique (a government water agency in Benin), Centre Afrika Obota (an educational NGO in Benin), and the local population of the village of Adourekoman. The goals of the project were to: (i) identify the source of nitrates, (ii) test field techniques for long term, local monitoring, and (iii) identify possible solutions to the high levels of groundwater nitrates. In order to accomplish these goals, the following methods were utilized: regional sampling of groundwater quality, field methods that allowed the local population to regularly monitor village groundwater quality, isotopic analysis, and sociological methods of surveys, focus groups, and observations. It is through the combination of these multi-disciplinary methods that all three goals were successfully addressed leading to preliminary identification of the sources of nitrates in the village of Adourekoman, confirmation of utility of field techniques, and initial assessment of possible solutions to the contamination problem.
Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England.
Lapworth, D J; Gooddy, D C
2006-12-01
Pesticide contamination in groundwater is an increasing problem that poses a significant long-term threat to water quality. Following the detection of elevated concentrations of diuron in boreholes in a semi-confined chalk aquifer from southeast England, a sampling programme was undertaken. Between 2003 and 2004 diuron was observed in 90% of groundwaters analysed. In 60% of groundwater samples metabolites of diuron were more prevalent than the parent compound. Longer-term (1989-2005) monitoring shows that pollution of the aquifer by atrazine, simazine, and more recently diuron, shows a positive correlation with periods of high groundwater levels. Results from groundwater residence time indicators suggest that the highest diuron concentrations are associated with waters containing the greatest proportion of recent recharge. There is some evidence to indicate that diuron occurrence can be spatially related to areas of urban and industrial development and is probably correlated with amenity usage.
Large Scale Groundwater Flow Model for Ho Chi Minh City and its Catchment Area, Southern Vietnam
NASA Astrophysics Data System (ADS)
Sigrist, M.; Tokunaga, T.; Takizawa, S.
2005-12-01
Ho Chi Minh City (HCMC) has become a fast growing city in recent decades and is still growing at a high pace. The water demand for more than 7 million people has increased tremendously, too. Beside surface water, groundwater is used in big amounts to satisfy the need of water. By now, more than 200,000 wells have been developed with very little control. To investigate the sustainability of the water abstraction, a model had been built for the HCMC area and its surrounding. On the catchment scale (around 24,000km2); however, many questions have remained unsolved. In this study, we first gathered and complied geological and hydrogeological information as well as data on groundwater quality to get an idea on regional groundwater flow pattern and problems related to the temporal change of the groundwater situation. Two problems have been depicted by this study. One is the construction of a water reservoir upstream of the Saigon River. This construction has probably changed the water table of the unconfined aquifer, and hence, has significantly changed the properties of soils in some areas. The other problem is the distribution of salty groundwater. Despite the distance of more than 40km from the seashore, groundwater from some wells in and around HCMC shows high concentrations of chloride. Several wells started to produce non-potable water. The chloride concentrations show a complicated and patchy distribution below HCMC, suggesting the possibility of the remnant saltwater at the time of sediment deposition. On the other hand, seawater invades along the streams far beyond HCMC during the dry season and this might be one of the possible sources of salty groundwater by vertical infiltration. A large-scale geological model was constructed and transformed into a hydrogeological model to better understand and quantify the groundwater flow system and the origin of saltwater. Based on the constructed model and numerical calculation, we discuss the influence of reservoir construction on the groundwater situation at the upstream Saigon River, and possible factors for the existence of salty groundwater underneath HCMC.
NASA Astrophysics Data System (ADS)
Thomas, M. A.
2016-12-01
The Waste Isolation Pilot Plant (WIPP) is the only deep geological repository for transuranic waste in the United States. As the Science Advisor for the WIPP, Sandia National Laboratories annually evaluates site data against trigger values (TVs), metrics whose violation is indicative of conditions that may impact long-term repository performance. This study focuses on a groundwater-quality dataset used to redesign a TV for the Culebra Dolomite Member (Culebra) of the Permian-age Rustler Formation. Prior to this study, a TV violation occurred if the concentration of a major ion fell outside a range defined as the mean +/- two standard deviations. The ranges were thought to denote conditions that 95% of future values would fall within. Groundwater-quality data used in evaluating compliance, however, are rarely normally distributed. To create a more robust Culebra groundwater-quality TV, this study employed the randomization test, a non-parametric permutation method. Recent groundwater compositions considered TV violations under the original ion concentration ranges are now interpreted as false positives in light of the insignificant p-values calculated with the randomization test. This work highlights that the normality assumption can weaken as the size of a groundwater-quality dataset grows over time. Non-parametric permutation methods are an attractive option because no assumption about the statistical distribution is required and calculating all combinations of the data is an increasingly tractable problem with modern workstations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2016-7306A
NITRATE POLLUTION IN SHALLOW GROUNDWATER OF A HARD ROCK REGION IN SOUTH CENTRAL INDIA
NASA Astrophysics Data System (ADS)
Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L.
2009-12-01
Groundwater forms a major source of drinking water in most parts of the world. Due to the lack of piped drinking water supply, the population in rural areas depend on the groundwater resources for domestic purposes. Hence, the quality of groundwater in such regions needs to be monitored regularly. Presence of high concentration of nitrate in groundwater used for drinking is a major problem in many countries as it causes health related problems. Most often infants are affected by the intake of high nitrate in drinking water and food. The present study was carried out with the objective of assessing the nitrate concentration in groundwater and determining the causes for nitrate in groundwater in parts of Nalgonda district in India which is located at a distance of about 135 km towards ESE direction from Hyderabad. Nitrate concentration in groundwater of this area was analysed by collecting groundwater samples from forty six representative wells. Samples were collected once in two months from March 2008 to March 2009. A total of 244 groundwater samples were collected during the study. Soil samples were collected from fifteen locations during May 2009 and the denitrifying bacteria were isolated from the soil using spread plate method. The nitrate concentration in groundwater samples were analysed in the laboratory using Metrohm 861 advanced compact ion chromatograph using appropriate standards. The highest concentration of nitrate recorded during the sampling period was 879.65mg/l and the lowest concentration was below detection limit. The maximum permissible limit of nitrate for drinking water as per Bureau of Indian Standards is 45mg/l. About 13% of the groundwater samples collected from this study area possessed nitrate concentration beyond this limit. The nitrate concentration was high in the southeastern part of the study area. This implies that the nitrate concentration in groundwater tends to increase along the flow direction. Application of fertilizers is one of the sources for nitrate in groundwater. The recharge of rainwater through the indiscriminately dumped animal wastes also adds to nitrate in groundwater. As the population of denitrifying microbes (Agrobacterium sp.) in the topsoil increased, the nitrate concentration in groundwater decreased. The wells in the investigated region have been demarcated into safe and unsafe wells for consumption of water with respect to nitrate. The quality of groundwater in this region must be improved by denitrifying the groundwater before using it for consumption. Reduced dependence on nitrogen-rich fertilizers can also lower the influx of nitrates to a large extent. As the dumping of animal waste is also a reason behind high nitrate in groundwater, it would be better to use them as a biofertilizer. Due to the detrimental biological effects of nitrate, treatment and prevention methods must be considered to protect groundwater aquifers from nitrate leaching. Moreover, it is also important to educate the local population about keeping their surroundings clean, alternate use of the animal waste (as fuel) and to follow hygienic sanitation practices.
Ground-water quality protection; why it's important to you
Webbers, Ank
1995-01-01
Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.
Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H
2016-12-15
Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy indices developed in this research are reliable and flexible when used in groundwater quality assessment for drinking purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arnold, Terri L.; Bexfield, Laura M.; Musgrove, MaryLynn; Lindsey, Bruce D.; Stackelberg, Paul E.; Barlow, Jeannie R.; Desimone, Leslie A.; Kulongoski, Justin T.; Kingsbury, James A.; Ayotte, Joseph D.; Fleming, Brandon J.; Belitz, Kenneth
2017-10-05
Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality; major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply; and enhanced trends networks, which are used to evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, radionuclides, and some constituents of special interest (arsenic speciation, chromium [VI] and perchlorate). These groundwater-quality data, along with data from quality-control samples, are tabulated in this report and in an associated data release.
NASA Astrophysics Data System (ADS)
Cameron, Enrico; Pilla, Giorgio; Stella, Fabio A.
2018-06-01
The application of statistical classification methods is investigated—in comparison also to spatial interpolation methods—for predicting the acceptability of well-water quality in a situation where an effective quantitative model of the hydrogeological system under consideration cannot be developed. In the example area in northern Italy, in particular, the aquifer is locally affected by saline water and the concentration of chloride is the main indicator of both saltwater occurrence and groundwater quality. The goal is to predict if the chloride concentration in a water well will exceed the allowable concentration so that the water is unfit for the intended use. A statistical classification algorithm achieved the best predictive performances and the results of the study show that statistical classification methods provide further tools for dealing with groundwater quality problems concerning hydrogeological systems that are too difficult to describe analytically or to simulate effectively.
NASA Astrophysics Data System (ADS)
Widiastuti, Atika; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma
2018-03-01
The problems arising from landfill activity is leaked leachate that is not absorbed well into leachate stabilization pond which furthermore contaminates shallow groundwater around landfill, include Cipayung landfill. The aims of this study is to determine the characteristics of leachate and their effect on shallow groundwater quality around landfill based on temperature, pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), Mercury (Hg), and fecal coliform. Data were analyzed based on leachate samples at influent point, effluent point, and 7 sampling points of residents’s well with distance variation every 100 meters within 300 meters radius having leachate stabilization pond as benchmark. According to the standard of Indonesia’s Ministry of Environment and Forestry law No. 59 of 2016, the results showed that leachate quality was still above the standard of BOD, COD, and Total Nitrogen parameters; 4178.0 mg/L, 70556.0 mg/L and 373.3 mg/L for influent point, and 3142.0 mg/L, 9055.2 mg/L, and 350 mg/L for the effluent point. Pollution Index of shallow groundwater is between lightly and moderately contaminated. This study showed that the further the distance between sampling point and leachate stabilization pond is, the lower the Polution Index is.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tompson, Andrew F.B.; Maxwell, Reed M.; Richardson, Jeffrey H.
2003-07-17
It is well recognized that half the countries in the world will face significant fresh water shortages in the next 20 years, due largely to growing populations and increased agricultural and industrial demands (Gleick, 1997). These shortages will significantly limit economic growth, decrease the quality of life and human health for billions of people, and could potentially lead to violence and conflict over securing scarce supplies of water. In the Middle East, groundwater represents an important part of water supply in most locations, yet it is the least understood and one of the most fragile components of the entire watermore » resource system. The occurrence of water underground contributes to the illusion of an infinite resource that is immune to anthropogenic activities. Nevertheless, as has been learned in the West, it can become highly impaired through the actions of man--through the disposal of human, animal, or industrial wastes, from excessive irrigation and fertilization practices in agriculture, or from simple overproduction and overexploitation--and can remain so for decades or even centuries. Finding solutions to groundwater resource and quality problems can be complex, time consuming, and costly. As is the case in many places in the world, but especially in the Middle East, there is a large gap between professionals, policy makers, and the general population with respect to their understanding of groundwater, its abundance, distribution, movement, and pollution. In a region where water supply and quality problems can be extremely acute, it becomes that much more necessary to protect and preserve the water that does exist. To sustain groundwater as a long-term reliable resource, increased understanding of factors affecting both the quality and quantity of groundwater must be better understood by all aspects of society. This report describes the outcome of a collaborative project between Lawrence Livermore National Laboratory (LLNL) in the US and the Jordan University of Science and Technology (JUST), the Ministry of Water and Irrigation (MWI), and the Royal Society for the Conservation of Nature (RSCN), all in Jordan. The project was funded by the United States Information Agency (now known as the Bureau of Educational and Cultural Affairs of the US Department of State) and the Lawrence Livermore National Laboratory, University of California. It was designed to develop, utilize, and distribute a series of educational tools across a wide spectrum of the population in Jordan to illustrate the impact of human activities and policies on the use and preservation of groundwater as an increasingly precious resource. The educational tools involved (1) portable, two-dimensional physical groundwater models for use in educating primary-aged children, laypersons, academic, government, other technical professionals, and farming communities on basic groundwater issues, and (2) computer-based simulation software, which can be used to assess the accrual and movement of groundwater in actual geologic formations, as well as the fate of contaminants that reach and dissolve within groundwater. These tools have an uncommon capacity to illustrate the impact of human activities and policies to a broad spectrum of the population that includes school children, college and post-graduate students, government officials, civic groups, professional organizations, and all, citizens.« less
Munday, Cathy; Domagalski, Joseph L.
2003-01-01
Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near the reporting limit. Surrogate recoveries for pesticides analyzed by gas chromatography/mass spectrometry (GC/MS), pesticides analyzed by high performance liquid chromatography (HPLC), and volatile organic compounds in ground- and surface-water samples were within the acceptable limits of 70 to 130 percent and median recovery values between 82 and 113 percent. The recovery percentages for surrogate compounds analyzed by HPLC had the highest standard deviation, 20 percent for ground-water samples and 16 percent for surface-water samples, and the lowest median values, 82 percent for ground-water samples and 91 percent for surface-water samples. Results were consistent with the recovery results described for the analytical methods. Field matrix spike recoveries for pesticide compounds analyzed using GC/MS in ground- and surface-water samples were comparable with published recovery data. Recoveries of carbofuran, a critical constituent in ground- and surface-water studies, and desethyl atrazine, a critical constituent in the ground-water study, could not be calculated because of problems with the analytical method. Recoveries of pesticides analyzed using HPLC in ground- and surface-water samples were generally low and comparable with published recovery data. Other methodological problems for HPLC analytes included nondetection of the spike compounds and estimated values of spike concentrations. Recovery of field matrix spikes for volatile organic compounds generally were within the acceptable range, 70 and 130 percent for both ground- and surface-water samples, and median recoveries from 62 to 127 percent. High or low recoveries could be related to errors in the field, such as double spiking or using spike solution past its expiration date, rather than problems during analysis. The methodological changes in the field spike protocol during the course of the Sacramento River Basin study, which included decreasing the amount of spike solu
Rationales behind irrationality of decision making in groundwater quality management.
Ronen, Daniel; Sorek, Shaul; Gilron, Jack
2012-01-01
This issue paper presents how certain policies regarding management of groundwater quality lead to unexpected and undesirable results, despite being backed by seemingly reasonable assumptions. This happened in part because the so-called reasonable decisions were not based on an integrative and quantitative methodology. The policies surveyed here are: (1) implementation of a program for aquifer restoration to pristine conditions followed, after failure, by leaving it to natural attenuation; (2) the "Forget About The Aquifer" (FATA) approach, while ignoring possible damage that contaminated groundwater can inflict on the other environmental systems; (3) groundwater recharge in municipal areas while neglecting the presence of contaminants in the unsaturated zone and conditions exerted by upper impervious surfaces; (4) the Soil Aquifer Treatment (SAT) practice considering aquifers to be "filters of infinite capacity"; and (5) focusing on well contamination vs. aquifer contamination to conveniently defer grappling with the problem of the aquifer as a whole. Possible reasons for the failure of these seemingly rational policies are: (1) the characteristic times of processes associated with groundwater that are usually orders of magnitude greater than the residence times of decision makers in their managerial position; (2) proliferation of improperly trained "groundwater experts" or policymakers with sectoral agendas alongside legitimate differences of opinion among groundwater scientists; (3) the neglect of the cyclic nature of natural phenomena; and (4) ignoring future long-term costs because of immediate costs. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Environmental impact of leachate characteristics on water quality.
Cumar, Sampath Kumar Mandyam; Nagaraja, Balasubramanya
2011-07-01
Improper urbanization and industrialization are causing a critical stress on groundwater quality in urban areas of the developing countries. The present study under investigation describes the pollution caused by leachate from a waste management site in southwestern Bangalore city causing pollution of the surface water and groundwater reserves. The characterization of 20 groundwater samples and Haralukunte lake sample indicated high pollution of these water reserves by leachate entry into the groundwater and surface water sources. The study area focuses around the solid waste management site, carrying out bio-composting and vermi-composting of municipal solid waste. Further investigations on the severe health problems faced by the public in the study area has revealed a clear pointer towards the usage of polluted water for rearing live-stock, farming, and domestic activities. The characterization of the leachate with high values of BOD at 1,450 mg/l, TDS at 17,200 mg/l, nitrates at 240 mg/l, and MPN at 545/100 ml indicates a clear nuisance potential, which has been substantiated by the characterization of lake water sample with chlorides at 3,400 mg/l, TDS at 8,020 mg/l, and lead and cadmium at 0.18 and 0.08 mg/l, respectively. Analysis of groundwater samples shows alarming physicochemical values closer to the waste disposal site and relatively reduced values away from the source of the waste management site. Bureau of Indian Standards have been adapted as the benchmark for the analysis and validation of observed water quality criteria.
Shyu, Guey-Shin; Cheng, Bai-You; Chiang, Chi-Ting; Yao, Pei-Hsuan; Chang, Tsun-Kuo
2011-01-01
In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH3-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy. PMID:21695030
Groundwater quality surrounding Lake Texoma during short-term drought conditions
Kampbell, D.H.; An, Y.-J.; Jewell, K.P.; Masoner, J.R.
2003-01-01
Water quality data from 55 monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. During the drought month of October, water table levels were three feet (0.9 m) lower compared with several months earlier under predrought climate conditions. Detection frequencies of nitrate (> 0.1 mg/l), orthophosphates (> 0.1 mg/l), chlorides (> MCL), and sulfates (> MCL) all increased during drought. Orthophosphate level was higher during drought. Largest increases in concentration were nitrate under both agriculture lands and in septic tank areas. An increase in ammonium-nitrogen was only detected in the septic tank area. The study showed that stressors such as nitrate and total salts could potentially become a health or environmental problem during drought.
Hérivaux, Cécile; Orban, Philippe; Brouyère, Serge
2013-10-15
In Europe, 30% of groundwater bodies are considered to be at risk of not achieving the Water Framework Directive (WFD) 'good status' objective by 2015, and 45% are in doubt of doing so. Diffuse agricultural pollution is one of the main pressures affecting groundwater bodies. To tackle this problem, the WFD requires Member States to design and implement cost-effective programs of measures to achieve the 'good status' objective by 2027 at the latest. Hitherto, action plans have mainly consisted of promoting the adoption of Agri-Environmental Schemes (AES). This raises a number of questions concerning the effectiveness of such schemes for improving groundwater status, and the economic implications of their implementation. We propose a hydro-economic model that combines a hydrogeological model to simulate groundwater quality evolution with agronomic and economic components to assess the expected costs, effectiveness, and benefits of AES implementation. This hydro-economic model can be used to identify cost-effective AES combinations at groundwater-body scale and to show the benefits to be expected from the resulting improvement in groundwater quality. The model is applied here to a rural area encompassing the Hesbaye aquifer, a large chalk aquifer which supplies about 230,000 inhabitants in the city of Liege (Belgium) and is severely contaminated by agricultural nitrates. We show that the time frame within which improvements in the Hesbaye groundwater quality can be expected may be much longer than that required by the WFD. Current WFD programs based on AES may be inappropriate for achieving the 'good status' objective in the most productive agricultural areas, in particular because these schemes are insufficiently attractive. Achieving 'good status' by 2027 would demand a substantial change in the design of AES, involving costs that may not be offset by benefits in the case of chalk aquifers with long renewal times. Copyright © 2013 Elsevier Ltd. All rights reserved.
Groundwater quality assessment for drinking and agriculture purposes in Abhar city, Iran.
Jafari, Khadijeh; Asghari, Farzaneh Baghal; Hoseinzadeh, Edris; Heidari, Zahra; Radfard, Majid; Saleh, Hossein Najafi; Faraji, Hossein
2018-08-01
The main objective of this study is to assess the quality of groundwater for drinking consume and agriculture purposes in abhar city. The analytical results shows higher concentration of electrical conductivity (100%), total hardness (66.7%), total dissolved solids (40%), magnesium (23%), Sulfate (13.3%) which indicates signs of deterioration as per WHO and Iranian standards for drinking consume. Agricultural index, in terms of the hardness index, 73.3% of the samples in hard water category and 73.3% in sodium content were classified as good. Therefore, the main problem in the agricultural sector was the total hardness Water was estimated. For the RSC index, all 100% of the samples were desirable. In the physicochemical parameters of drinking water, 100% of the samples were undesirable in terms of electrical conductivity and 100% of the samples were desirable for sodium and chlorine parameters. Therefore, the main water problem in Abhar is related to electrical conductivity and water total hardness.
Groundwater quality in the San Francisco Bay groundwater basins, California
Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.
Quality of ground water in Idaho
Yee, Johnson J.; Souza, William R.
1987-01-01
The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.
NASA Astrophysics Data System (ADS)
Gailey, Robert M.
2018-02-01
Contaminant migration through inactive supply wells can negatively affect groundwater quality and the combined effects from groups of such wells may cause greater impacts. Because the number of wells in many basins is often large and the geographic areas involved can be vast, approaches are needed to estimate potential impacts and focus limited resources for investigation and corrective measures on the most important areas. One possibility is to evaluate the geographic distribution of well-screen depths relative to hydrogeologic conditions and assess where contaminant migration through wells may be impacting groundwater quality. This approach is demonstrated for a geographically extensive area in the southern Central Valley of California, USA. The conditions that lead to wells acting as conduits for contaminant migration are evaluated and areas where the problem likely occurs are identified. Although only a small fraction of all wells appear to act as conduits, potential impacts may be significant considering needs to control nonpoint-source pollution and improve drinking water quality for rural residents. Addressing a limited number of areas where contaminant migration rates are expected to be high may cost-effectively accomplish the most beneficial groundwater quality protection and improvement. While this work focuses on a specific region, the results indicate that impacts from groups of wells may occur in other areas with similar conditions. Analyses similar to that demonstrated here may guide efficient investigation and corrective action in such areas with benefits occurring for groundwater quality. Potential benefits may justify expenditures to develop the necessary data for performing the analyses.
Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study
Ying Ouyang; Jia-En Zhang; Prem Parajuli
2013-01-01
Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land...
Evaluation of water resources in part of central Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, B.; Duffin, G.; Flores, R.
1990-01-01
Water resources in the Brazos, Red, Colorado, and Trinity River basins, in central Texas, were evaluated. In 1985 there was a little less than 81,000 acre-ft of groundwater pumped from all aquifers in the study area, with a little less than 77,000 acre-ft of groundwater pumped from the Trinity Group aquifer. Irrigation accounted for about 56% of all groundwater pumped. A serious problem associated with the development of groundwater from the Trinity Group aquifer is the decline of artesian pressure in areas of large groundwater withdrawals. Degradation of groundwater within the Antlers and Travis Peak Formations from oil-field brines andmore » organic material are problems in several counties. The deterioration of water qualify for the City of Blum has occurred over a 26-year period and is associated with water level declines in the Hensell Member of the Travis Peak Formation. The Woodbine Group yields good quality water at or near the outcrop; however, the residual sodium carbonate and percent sodium limits its use for irrigation, while high iron and fluoride content restricts its use for public supply. Existing surface reservoirs in the study area alone can supply 296,400 acre-ft of water under 2010 conditions. Nearly all of this water is either currently owned or under contract to supply current and future needs. An additional 176,000 acre-ft of surface water could become available with the development of the proposed Lake Bosque and Paluxy Reservoir projects and with reallocation of storage in existing Lakes Waco and Whitney. The amount of groundwater currently pumped exceeds the estimated annual effective recharge to the Trinity Group aquifer; the groundwater supply for the area will continue to be drawn from storage within the aquifer. 84 refs., 21 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Houari, Idir Menad; Nezli, Imed Eddine; Belksier, Mohamed Salah
2018-05-01
The groundwater resources in the Northern Sahara are represented by two superimposed major aquifer systems: the Intercalary Continental (CI) and the Terminal Complex (CT). The waters of these aquifers pose serious physical and chemical quality problems; they are highly mineralized and very hard. The present work aims to describe the water's geochemical evolution of sand groundwater (Mio-Pliocene) of the Terminal Complex in the area of Djamaa, by the research of the relationship between water's chemical composition and lithology of aquifer formations through. The results obtained show that the water's chemistry is essentially governed by the dissolution of evaporate formations, which gives to, waters an excessive mineralization expressed by high concentrations of sulfates, chlorides and sodium.
Presence of faecal indicator bacteria in groundwaters in Kathmandu Valley, Nepal
NASA Astrophysics Data System (ADS)
Nishida, K.; Shrestha, S.; Tanaka, Y.; Haramoto, E.; Nakamura, T.; Osaka, K.; Chapagain, S.
2010-12-01
Groundwater quality is a critical problem in Kathmandu Valley, Nepal. The population of the city increased 6 times in the last six decades and more than half of water demand depends on groundwater resource. Nevertheless, few data of microorganism presence have been reported qualitatively in the central area of the valley. We investigated distribution of faecal indicator bacteria (Total coliforms and Escherichia coli) detected in wells and analyzed the variations of the concentrations. Groundwater samples were collected from 12 deep tube wells (170-300m depths) and 36 shallow tube wells and dug wells (3-20m depths) in Aug 2008, Jan 2009, Aug 2009 and Aug 2010. River waters were also collected for analyzing effect on groundwater quality. E. coli was detected from most of all wells; the concentrations were within 1 log cfu/100mL in deep tube wells and shallow tube wells while those in dug wells ranged from 1 to 3 log cfu/100mL. E. coli was detected at extremely high level in river water, from 5 to 7 log cfu/100mL, however, no clear relation was observed between E. coli concentrations in any types of groundwaters and distance of wells from adjacent rivers. These results indicate that both types of tube wells were rather protected and dug wells were most vulnerable for faecal contamination at very local scale. Genetic analysis of bacterial communities for deep well samples showed the existence of Enterobacter, Acinetobacter as well as Methane-metabolizing groups which provide information of possible indicators other than total coliforms or E. coli for groundwater management in the valley.
NASA Astrophysics Data System (ADS)
Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.
2016-12-01
Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.
Kolpin, D.W.; Sneck-Fahrer, D.; Hallberg, G.R.; Libra, R.D.
1997-01-01
Since 1982, the Iowa Groundwater Monitoring (IGWM) Program has been used to sample untreated groundwater from Iowa municipal wells for selected agricultural chemicals. This long-term database was used to determine if concentrations of select agricultural chemicals in groundwater have changed with time. Nitrate, alachlor [2-chloro-2′-6′-diethyl-N-(methoxymethyl)-acetanilide], atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile)], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were selected for this temporal analysis of the data. Conclusive temporal changes in frequency of detection and median chemical concentrations were found only for atrazine (decrease) and metolachlor (increase). The greatest temporal chemical changes occurred in the shallowest wells and in alluvial aquifers—both relating to groups of wells generally having the youngest groundwater age. The temporal patterns found for atrazine and metolachlor are consistent with their patterns of chemical use and/or application rates and are suggestive of a causal relation. Only continued data collection, however, will indicate if the trends in chemical concentrations described here represent long-term temporal patterns or only short-term changes in groundwater. No definitive answers could be made in regards to the question of overall improvements in groundwater quality with respect to agricultural chemical contamination and time, due to the inherent problems with the simplistic measurement of overall severity (summation of alachlor + atrazine + cyanazine + metolachlor concentrations) examined for this study. To adequately determine if there is an actual decreasing trend in the overall severity of contamination (improving groundwater quality), the collection of additional water-chemistry data and the investigation of other measures of severity are needed.
Modelling of lindane transport in groundwater of metropolitan city Vadodara, Gujarat, India.
Sharma, M K; Jain, C K; Rao, G Tamma; Rao, V V S Gurunadha
2015-05-01
Migration pattern of organochloro pesticide lindane has been studied in groundwater of metropolitan city Vadodara. Groundwater flow was simulated using the groundwater flow model constructed up to a depth of 60 m considering a three-layer structure with grid size of 40 × 40 × 40 m(3). The general groundwater flow direction is from northeast to south and southwest. The river Vishwamitri and river Jambua form natural hydrologic boundary. The constant head in the north and south end of the study area is taken as another boundary condition in the model. The hydraulic head distribution in the multilayer aquifer has been computed from the visual MODFLOW groundwater flow model. TDS has been computed though MT3D mass transport model starting with a background concentration of 500 mg/l and using a porosity value of 0.3. Simulated TDS values from the model matches well with the observed data. Model MT3D was run for lindane pesticide with a background concentration of 0.5 μg/l. The predictions of the mass transport model for next 50 years indicate that advancement of containment of plume size in the aquifer system both spatially and depth wise as a result of increasing level of pesticide in river Vishwamitri. The restoration of the aquifer system may take a very long time as seen from slow improvement in the groundwater quality from the predicted scenarios, thereby, indicating alarming situation of groundwater quality deterioration in different layers. It is recommended that all the industries operating in the region should install efficient effluent treatment plants to abate the pollution problem.
Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari
2015-01-01
Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.
NASA Astrophysics Data System (ADS)
Grundmann, J.; Schütze, N.; Heck, V.
2014-09-01
Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.
Alterations to groundwater recharge due to anthropogenic landscape change
NASA Astrophysics Data System (ADS)
Han, Dongmei; Currell, Matthew J.; Cao, Guoliang; Hall, Benjamin
2017-11-01
The impacts of anthropogenic modifications to the landscape on groundwater recharge rates, locations, and mechanisms are reviewed. The two major categories of change examined are conversion of land for agriculture and urbanization, both of which have significant effects on groundwater recharge. Techniques for identifying and quantifying the changes in recharge due to these impacts are discussed. Land-clearing for agriculture and surface water transfer for irrigation have resulted in order of magnitude increases in recharge rates in many semi-arid regions worldwide, causing ongoing land and water salinization and water-logging problems. While increased recharge by irrigation return flow may alleviate shallow groundwater depletion in some settings, this is complicated by the effect of unsaturated zone thickening, which reduces the fraction of potential recharge becoming actual recharge, and may result in new water quality risks such as nitrate contamination. Expansion of urban and peri-urban land and their associated surface and sub-surface infrastructure results in complex water balance changes that re-distribute groundwater recharge locations, modify recharge mechanism(s) and result in variable impacts on recharge rates (e.g., overall net decrease, increase or minimal change) and quality. While changes to groundwater recharge resulting from conversion of land for agriculture are relatively well understood, less is documented about the changes resulting from urbanization, due to a paucity of data from field-based studies. Two case studies from Beijing, China and Melbourne Australia are examined, which highlight these impacts and demonstrate some potential methodological techniques for this topic.
NASA Astrophysics Data System (ADS)
Gholami, V.; Khaleghi, M. R.; Sebghati, M.
2017-11-01
The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.
Fluoride, Nitrate, and Dissolved-Solids Concentrations in Ground Waters of Washington
Lum, W. E.; Turney, Gary L.
1984-01-01
This study provides basic data on ground-water quality throughout the State. It is intended for uses in planning and management by agencies and individuals who have responsibility for or interest in, public health and welfare. It also provides a basis for directing future studies of ground-water quality toward areas where ground-water quality problems may already exist. The information presented is a compilation of existing data from numerous sources including: the Washington Departments of Ecology and Social and Health Services, the Environmental Protection Agency, as well as many other local, county, state and federal agencies and private corporations. Only data on fluoride, nitrate, and dissolved-solids concentrations in ground water are presented, as these constituents are among those commonly used to determine the suitability of water for drinking or other purposes. They also reflect both natural and man-imposed effects on water quality and are the most readily available water-quality data for the State of Washington. The percentage of wells with fluoride, nitrate, or dissolved-solids concentrations exceeding U.S. Environmental Protection Agency Primary and Secondary Drinking Water Regulations were about 1, about 3, and about 3, respectively. Most high concentrations occurred in widely separated wells. Two exceptions were: high concentrations of nitrate and dissolved solids in wells on the Hanford Department of Energy Facility and high concentrations of nitrate in the lower Yakima River basin. (USGS)
Wyoming groundwater-quality monitoring network
Boughton, Gregory K.
2011-01-01
A wide variety of human activities have the potential to contaminate groundwater. In addition, naturally occurring constituents can limit the suitability of groundwater for some uses. The State of Wyoming has established rules and programs to evaluate and protect groundwater quality based on identified uses. The Wyoming Groundwater-Quality Monitoring Network (WGQMN) is a cooperative program between the U.S. Geological Survey (USGS) and the Wyoming Department of Environmental Quality (WDEQ) and was implemented in 2009 to evaluate the water-quality characteristics of the State's groundwater. Representatives from USGS, WDEQ, U.S. Environmental Protection Agency (USEPA), Wyoming Water Development Office, and Wyoming State Engineer's Office formed a steering committee, which meets periodically to evaluate progress and consider modifications to strengthen program objectives. The purpose of this fact sheet is to describe the WGQMN design and objectives, field procedures, and water-quality analyses. USGS groundwater activities in the Greater Green River Basin also are described.
Characterization of shallow groundwater quality in the Lower St. Johns River Basin: a case study.
Ouyang, Ying; Zhang, Jia-En; Parajuli, Prem
2013-12-01
Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land uses using field measurements and two-dimensional kriging analysis. Comparison of the concentrations of groundwater quality constituents against the US EPA's water quality criteria showed that the maximum nitrate/nitrite (NO x ) and arsenic (As) concentrations exceeded the EPA's drinking water standard limits, while the maximum Cl, SO 4 (2-) , and Mn concentrations exceeded the EPA's national secondary drinking water regulations. In general, high kriging estimated groundwater NH 4 (+) concentrations were found around the agricultural areas, while high kriging estimated groundwater NO x concentrations were observed in the residential areas with a high density of septic tank distribution. Our study further revealed that more areas were found with high estimated NO x concentrations in summer than in spring. This occurred partially because of more NO x leaching into the shallow groundwater due to the wetter summer and partially because of faster nitrification rate due to the higher temperature in summer. Large extent and high kriging estimated total phosphorus concentrations were found in the residential areas. Overall, the groundwater Na and Mg concentration distributions were relatively more even in summer than in spring. Higher kriging estimated groundwater As concentrations were found around the agricultural areas, which exceeded the EPA's drinking water standard limit. Very small variations in groundwater dissolved organic carbon concentrations were observed between spring and summer. This study demonstrated that the concentrations of groundwater quality constituents varied from location to location, and impacts of land uses on groundwater quality variation were profound.
Groundwater quality in the South Coast Range Coastal groundwater basins, California
Burton, Carmen A.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The coastal basins in the Southern Coast Ranges constitute one of the study units being evaluated.
Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry
NASA Astrophysics Data System (ADS)
Kagabu, Makoto; Shimada, Jun; Delinom, Robert; Tsujimura, Maki; Taniguchi, Makoto
2011-01-01
In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br -:Cl - ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca-HCO 3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20-30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.
Groundwater quality in the Northern Sacramento Valley, California
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.
Groundwater quality in the Southern Sacramento Valley, California
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.
Groundwater quality in the Santa Barbara Coastal Plain, California
Davis, Tracy A.; Belitz, Kenneth
2016-10-03
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.
Groundwater quality in the Klamath Mountains, California
Bennett, George L.; Fram, Miranda S.
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.
Yang, Qingchun; Li, Zijun; Ma, Hongyun; Wang, Luchen; Martín, Jordi Delgado
2016-11-01
Insufficient understanding of the hydrogeochemistry of aquifers makes it necessary to conduct a preliminary water quality assessment in the southern region of Ordos Basin, an arid area in the world. In this paper, the major ions of groundwater have been studied aiming at evaluating the hydrogeochemical processes that probably affect the groundwater quality using 150 samples collected in 2015. The two prevalent hydrochemical facies, HCO 3 Mg·Na·Ca and HCO 3 Mg·Ca·Na type water, have been identified based on the hydrochemical analysis from Piper trilinear diagram. Compositional relations have been used to assess the origin of solutes and confirm the predominant hydrogeochemical processes responsible for the various ions in the groundwater. The results show that the ions are derived from leaching effect, evaporation and condensation, cation exchange, mixing effect and human activities. Finally groundwater quality was assessed with single factor and set pair methods, the results indicate that groundwater quality in the study region is generally poor in terms of standard of national groundwater quality. The results obtained in this study will be useful to understand the groundwater quality status for effective management and utilization of the groundwater resource. Copyright © 2016 Elsevier Ltd. All rights reserved.
Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology
Smith, Kirk P.; Granato, Gregory E.
1998-01-01
Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.
Groundwater quality in the Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.
Groundwater quality in the Tahoe and Martis Basins, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.
Groundwater quality in the South Coast Interior Basins, California
Parsons, Mary C.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The South Coast Interior Basins constitute one of the study units being evaluated.
Groundwater quality in the western San Joaquin Valley, California
Fram, Miranda S.
2017-06-09
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated.
NASA Astrophysics Data System (ADS)
Straskraba, V.
1984-03-01
In certain circumstances, ground-water causes geotechnical problems and can be considered a nuisance rather than a blessing. The cases where ground-water creates considerable complications include construction, tunnelling, mining, landslides, and land subsidence. The development of hydrogeology as a science has proved over the years to substantially reduce the severe problems and disasterous problems caused by ground-water.
Fram, Miranda S.
2017-01-18
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.
NASA Astrophysics Data System (ADS)
Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin
2014-05-01
As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.
Entering the policy debate: An economic evaluation of groundwater policy in flux
NASA Astrophysics Data System (ADS)
Livingston, Marie Leigh; Garrido, Alberto
2004-12-01
This is an age of transition in groundwater policy. The ownership and control of aquifers, changing groundwater quality, and the impact of groundwater on the environment command the attention of policy makers around the globe. Substantial pressure exists for change in the laws and regulations governing groundwater, which are critical to the management of this critical resource. The objective of this paper is to contribute to the practical policy debate from an economic perspective. This study begins by outlining the basic stages of change in groundwater policy and their economic relevance. A set of physical, economic, and institutional indicators are suggested that may help to understand various country issues. The indicators are used to describe some actual experiences in groundwater policy in the United States and Spain that are examined for insights into common policy questions. This study suggests that the public authority to initiate groundwater policy innovations often results from the physical ties between surface and groundwater. In contexts rich with spatial and temporal externalities the situation is more complex, but this increases the social benefits that result from successful reform. A credible threat of losing rights is often necessary to create enough incentives to firm existing rights. Reductions in overall use are better achieved through purchasing and retiring rights, rather than through compensation for nonuse. Finally, the policy issues important to groundwater are often more fundamental than pricing alone. These insights may help policy makers adapt to emerging groundwater management problems.
The contamination of the subsurface environment by dense non-aqueous phase liquids (DNAPL) is a wide-spread problem that poses a significant threat to soil and groundwater quality. Implementing different remediation techniques can lead to the removal of a high fraction of the DNA...
Groundwater quality in the North San Francisco Bay shallow aquifer, California
Bennett, George L.; Fram, Miranda S.
2018-02-23
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The North San Francisco Bay Shallow Aquifer constitutes one of the study units being evaluated.
Parsons, Mary C.; Belitz, Kenneth
2014-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts constitute one of the study units being evaluated.
Burton, Carmen
2018-05-30
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.
Estimating impacts of land use on groundwater quality using trilinear analysis
Ying Ouyang; Jia-En Zhang; Lihua Cui
2014-01-01
Groundwater is connected to the landscape above and is thus affected by the overlaying land uses. This study evaluated the impacts of land uses upon groundwater quality using trilinear analysis. Trilinear analysis is a display of experimental data in a triangular graph. Groundwater quality data collected from agricultural, septic tank, forest, and wastewater land uses...
Halford, Keith J.
2006-01-01
MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.
Technology Transfer Opportunities: Automated Ground-Water Monitoring
Smith, Kirk P.; Granato, Gregory E.
1997-01-01
Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.
Quality assessment of groundwater from the south-eastern Arabian Peninsula.
Zhang, H W; Sun, Y Q; Li, Y; Zhou, X D; Tang, X Z; Yi, P; Murad, A; Hussein, S; Alshamsi, D; Aldahan, A; Yu, Z B; Chen, X G; Mugwaneza, V D P
2017-08-01
Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.
Islam, Abu Reza Md Towfiqul; Ahmed, Nasir; Bodrud-Doza, Md; Chu, Ronghao
2017-12-01
Drinking water is susceptible to the poor quality of contaminated water affecting the health of humans. Thus, it is an essential study to investigate factors affecting groundwater quality and its suitability for drinking uses. In this paper, the entropy theory, multivariate statistics, spatial autocorrelation index, and geostatistics are applied to characterize groundwater quality and its spatial variability in the Sylhet district of Bangladesh. A total of 91samples have been collected from wells (e.g., shallow, intermediate, and deep tube wells at 15-300-m depth) from the study area. The results show that NO 3 - , then SO 4 2- , and As are the most contributed parameters influencing the groundwater quality according to the entropy theory. The principal component analysis (PCA) and correlation coefficient also confirm the results of the entropy theory. However, Na + has the highest spatial autocorrelation and the most entropy, thus affecting the groundwater quality. Based on the entropy-weighted water quality index (EWQI) and groundwater quality index (GWQI) classifications, it is observed that 60.45 and 53.86% of water samples are classified as having an excellent to good qualities, while the remaining samples vary from medium to extremely poor quality domains for drinking purposes. Furthermore, the EWQI classification provides the more reasonable results than GWQIs due to its simplicity, accuracy, and ignoring of artificial weight. A Gaussian semivariogram model has been chosen to the best fit model, and groundwater quality indices have a weak spatial dependence, suggesting that both geogenic and anthropogenic factors play a pivotal role in spatial heterogeneity of groundwater quality oscillations.
Groundwater quality in the Central Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.
Groundwater quality in the Southern Sierra Nevada, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.
Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California
Mathany, Timothy; Burton, Carmen; Fram, Miranda S.
2017-06-20
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.
Ellins, K.K.; Roman-Mas, Angel; Lee, Roger W.; Quinones, Ferdinand; Sanchez, A.V.; Smith, H.
1986-01-01
Water has become a critical commodity in the Caribbean Region. In spite of a relative abundance of rainfall even on the smaller islands, the region is faced with severe seasonal shortages as well as increasing water quality problems. The supply of thewater needs in the area will become even more critical as economic development accelerates and the population continues to increase. The development of the necessary infrastructure to supply the water needs of the next 30 years will require large capital investments. Perhaps even more important, it will require training of scientists and technicians in the investigation and management of the limited waterresources. The lack of trained personnel could be the most important factor in the solution of the water resources problems in the region. The principal objectives of this ' Third Caribbean Islands Water Resources Congress ', were to provide a focus for the transfer of technology on hydrology and water resources investigations in the region. The severe quality problems that affect water supplies in the U.S. Virgin Islands are the subject of two papers. The importance of a reliable data base on water use in small islands is considered in a paper on water use in St. Croix. Advanced techniques are discussed on how to measure groundwater contributions to runoff, use of geochemical techniques for interpretation of water quality characteristics, use of dye tracers in karst areas, simulation of small island 's aquifers, and use of borehole geophysical tools to estimate moisture. The contamination of groundwater resources is discussed in several papers focusing on monitoring, sludge management, and environmental assessment. (See W89-04666 thru W89-04682) (Lantz-PTT)
Implementations of Riga city water supply system founded on groundwater sources
NASA Astrophysics Data System (ADS)
Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.
2017-10-01
Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.
Occurrence of nitrate in Tanzanian groundwater aquifers: A review
NASA Astrophysics Data System (ADS)
Elisante, Eliapenda; Muzuka, Alfred N. N.
2017-03-01
More than 25 % of Tanzanian depends on groundwater as the main source of water for drinking, irrigation and industrial activities. The current trend of land use may lead to groundwater contamination and thus increasing risks associated with the usage of contaminated water. Nitrate is one of the contaminants resulting largely from anthropogenic activities that may find its way to the aquifers and thus threatening the quality of groundwater. Elevated levels of nitrate in groundwater may lead to human health and environmental problems. The current trend of land use in Tanzania associated with high population growth, poor sanitation facilities and fertilizer usage may lead to nitrate contamination of groundwater. This paper therefore aimed at providing an overview of to what extent human activities have altered the concentration of nitrate in groundwater aquifers in Tanzania. The concentration of nitrate in Tanzanian groundwater is variable with highest values observable in Dar es Salaam (up to 477.6 mg/l), Dodoma (up to 441.1 mg/l), Tanga (above 100 mg/l) and Manyara (180 mg/l). Such high values can be attributed to various human activities including onsite sanitation in urban centres and agricultural activities in rural areas. Furthermore, there are some signs of increasing concentration of nitrate in groundwater with time in some areas in response to increased human activities. However, reports on levels and trends of nitrate in groundwater in many regions of the country are lacking. For Tanzania to appropriately address the issue of groundwater contamination, a deliberate move to determine nitrate concentration in groundwater is required, as well as protection of recharge basins and improvement of onsite sanitation systems.
Conjunctive management of multi-reservoir network system and groundwater system
NASA Astrophysics Data System (ADS)
Mani, A.; Tsai, F. T. C.
2015-12-01
This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.
NASA Astrophysics Data System (ADS)
Kolosionis, Konstantinos; Papadopoulou, Maria P.
2017-04-01
Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.
NASA Astrophysics Data System (ADS)
Weber, M. C.; Ward, A. S.; Muste, M.
2014-12-01
The salinization of groundwater resources is a widespread problem in arid agricultural environments. In Mewat District (Haryana, India), groundwater salinity has rendered much of the accessible supply unfit for human consumption or agriculture. Historically, this closed basin retained fresh pockets of water at the foothills of the Aravalli Hills, where monsoonal precipitation runoff from the mountains was recharged through infiltration or facilitated by man-made structures. To date, an increasing number of pumps supply the region with fresh water for consumption and agriculture leading to shrinking the freshwater zone at an accelerated pace. The potential for increased human consumption corroborated with the effects of climate change bring uncertainty about the future of water security for the Mewat communities, most of them critically bound to the existence of local water. This study addresses the sustainability of the freshwater supply under a range of land interventions and climate scenarios, using a 2-D groundwater flow and transport model. Our results quantify potential futures for this arid, groundwater-dependent location, using numerical groundwater modeling to quantify interactions between human water use, infrastructure, and climate. Outcomes of this modeling study will inform an NGO active in the area on sustainable management of groundwater resources.
Groundwater quality in the Yuba River and Bear River Watersheds, Sierra Nevada, California
Fram, Miranda S.; Jasper, Monica; Taylor, Kimberly A.
2017-09-27
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Yuba River and Bear River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking water supplies.
Fram, Miranda S.; Shelton, Jennifer L.
2018-03-23
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking water supply and increases public access to groundwater-quality information. In the Mokelumne, Cosumnes, and American River Watersheds of the Sierra Nevada, many rural households rely on private wells for their drinking-water supplies.
Ground-water geochemistry of the Albuquerque-Belen Basin, central New Mexico
Anderholm, S.K.
1988-01-01
The purpose of this study was to define the areal distribution of different water types, use the distribution to help define the groundwater flow system, and identify processes resulting in differences in groundwater quality in the Albuquerque-Belen Basin in central New Mexico. The chemistry of surface water inflow from adjacent areas, which infiltrates and recharges the aquifer along the basin margin, affects the groundwater quality in the eastern and southeastern areas of the basin. Groundwater in the eastern area generally has a specific conductance less than 400 microsiemens, and calcium and bicarbonate are the dominant ions. Mixing of recharge, groundwater inflow, and surface inflow from adjacent areas, which have different chemical compositions, is the major process affecting groundwater quality in the southwestern, western, and northern areas of the basin. In these areas, there is a large range in specific conductance and distribution of dissolved ions. Groundwater quality in the Rio Grande valley is affected by the infiltration of excess irrigation water. The excess irrigation water generally has a larger specific conductance than other groundwater in the valley, so mixing of these waters results in shallow groundwater generally having larger specific conductance than the deeper groundwater. (USGS)
NASA Astrophysics Data System (ADS)
Mohamed, Adam Khalifa; Liu, Dan; Mohamed, Mohamed A. A.; Song, Kai
2018-05-01
The present study was carried out to assess the groundwater quality for drinking purposes in the Quaternary Unconsolidated Sedimentary Basin of the North Chengdu Plain, China. Six groups of water samples (S1, S2, S3, S4, S5, and S6) are selected in the study area. These samples were analyzed for 19 different physicochemical water quality parameters to assess groundwater quality. The physicochemical parameters of groundwater were compared with China's Quality Standards for Groundwater (GB/T14848-93). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. Total hardness and total dissolved solid values show that the investigated water is classified as very hard and fresh water, respectively. The sustainability of groundwater for drinking purposes was assessed based on the fuzzy mathematics evaluation (FME) method. The results of the assessment were classified into five groups based on their relative suitability for portable use (grade I = most suitable to grade V = least suitable), according to (GB/T 14848-93). The assessment results reveal that the quality of groundwater in most of the wells was class I, II and III and suitable for drinking purposes, but well (S2) has been found to be in class V, which is classified as very poor and cannot be used for drinking. Also, the FME method was compared with the comprehensive evaluation method. The FME method was found to be more comprehensive and reasonable to assess groundwater quality. This study can provide an important frame of reference for decision making on improving groundwater quality in the study area and nearby surrounding.
The principle of superposition and its application in ground-water hydraulics
Reilly, T.E.; Franke, O.L.; Bennett, G.D.
1984-01-01
The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)
A conceptual ground-water-quality monitoring network for San Fernando Valley, California
Setmire, J.G.
1985-01-01
A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)
Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.
2015-01-01
Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.
National water summary 1986; Hydrologic events and ground-water quality
Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.
1988-01-01
Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad-scale, or nonpoint, sources of contamination such as agricultural activities or highdensity domestic waste disposal (septic systems) in urban centers. At present, only a very small percentage of the total volume of potable ground water in the United States is contaminated from both point and nonpoint sources; however, available data, especially data about the occurrence of synthetic organic and toxic substances, generally are inadequate to determine the full extent of ground-water contamination in the Nation's aquifers or to define trends in groundwater quality. Most information about the occurrence of these substances has come from the study of individual sites or areas where contamination had already been detected or suspected.Management and protection of ground water present a major challenge to the Nation. Current and projected costs of detection and cleanup of existing ground-water contamination are staggering and, even so, complete removal of pollutants from ground water in the vicinity of some waste sites might not be technically feasible. At all levels of government, the task of protecting the resource for its most beneficial uses is difficult and controversial.Despite increasing awareness that some of the Nation's ground water is contaminated with a variety of toxic metals, synthetic organic chemicals, radionuclides, pesticides, and other contaminants that might present a long-term risk to human health, public policy towards ground-water protection is still in the formative stages. Despite increasing efforts devoted to ground-water protection by State and Federal regulatory and resource-management agencies, the extent of ground-water contamination is likely to appear to increase over the next few years because more agencies will be searching for evidence of contamination, and they will be using increasingly sensitive analytical procedures. Increased technology and expanded monitoring activities probably will detect the effects of past contamination and land uses on water quality. The significant time lag between a waterquality change in one part of an aquifer system and the effects of that change at a downgradient site, such as a well, results from the generally slow movement of ground water. This lag between cause and observed effect needs to be considered in evaluating the effectiveness of current and future ground-water policies and remedial measures.Conclusive answers to questions about the location, extent, and severity of ground-water contamination, and about trends in ground-water quality, must await further collection and analysis of data from the Nation's aquifers. Generalizations, however, can be made, and the 1986 National Water Summary, which describes the natural quality of ground-water resources in each State and the major contamination problems that have been identified as of 1986, provides a national perspective of the ground-water-quality situation.The 1986 National Water Summary follows the format of previous volumes. It contains three parts, and the contents of each of these parts are highlighted below.
Hamlin, S.N.
1985-01-01
Groundwater quality in the upper Santa Ynez River Valley in Santa Barbara County has degraded due to both natural and anthropogenic causes. The semiarid climate and uneven distribution of rainfall has limited freshwater recharge and caused salt buildup in water supplies. Tertiary rocks supply mineralized water. Agricultural activities (irrigation return flow containing fertilizers and pesticides, cultivation, feedlot waste disposal) are a primary cause of water quality degradation. Urban development, which also causes water quality degradation (introduced contaminants, wastewater disposal, septic system discharge, and land fill disposal of waste), has imposed stricter requirements on water supply quality. A well network was designed to monitor changes in groundwater quality related to anthropogenic activities. Information from this network may aid in efficient management of the groundwater basins as public water supplies, centered around three basic goals. First is to increase freshwater recharge to the basins by conjunctive surface/groundwater use and surface-spreading techniques. Second is to optimize groundwater discharge by efficient timing and spacing of pumping. Third is to control and reduce sources of groundwater contamination by regulating wastewater quality and distribution and, preferably, by exporting wastewaters from the basin. (USGS)
Cost Effective Instrumentation for Developing Autonomous Groundwater Monitoring Networks
NASA Astrophysics Data System (ADS)
Viti, T. M.; Garmire, D. G.
2017-12-01
Despite a relatively poor understanding of Hawaiian groundwater systems, the State of Hawaii depends almost exclusively on groundwater for its public water supply. Ike Wai, an NSF funded project (EPSCoR Program Award OIA #1557349) at the University of Hawaii, aims to develop new groundwater models for Hawaii's aquifers, including water quality and transport processes. To better understand aquifer properties such as capacity and hydraulic conductivity, we are developing well-monitoring instruments that can autonomously record water parameters such as conductivity, temperature, and hydraulic head level, with sampling frequencies on the order of minutes. We are currently exploring novel methods and materials for solving classical design problems, such as applying dielectric spectroscopy techniques for measuring salinity, and using recycled materials for producing custom cable assemblies. System components are fabricated in house using rapid prototyping (e.g. 3D printing, circuit board milling, and laser cutting), and traditional manufacturing techniques. This approach allows us to produce custom components while minimizing development cost, and maximizing flexibility in the overall system's design.
Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.
Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando
2018-01-01
This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activitiesmore » in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.« less
Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion
NASA Astrophysics Data System (ADS)
Kim, C.
2016-12-01
A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.
Chakraborty, Shubhrasekhar; Kumar, R Naresh
2016-06-01
Landfill leachate generated from open MSW dumpsite can cause groundwater contamination. The impact of open dumping of MSW on the groundwater of adjacent area was studied. To assess the spatial and temporal variations in groundwater quality, samples were collected around an open MSW dumping site in Ranchi city, Jharkhand, India. Groundwater samples were analysed for various physicochemical and bacteriological parameters for 1 year. Results indicated that the groundwater is getting contaminated due to vertical and horizontal migration of landfill leachate. Extent of contamination was higher in areas closer to the landfill as indicated by high alkalinity, total dissolved solids and ammonia concentration. Metals such as lead, iron, and manganese were present at concentrations of 0.097, 0.97 and 0.36 mg/L, respectively exceeding the Bureau of Indian Standards (BIS) 10,500 for drinking water. Enterobacteriaceae were also detected in several groundwater samples and highest coliform count of 2.1×10(4) CFU/mL was recorded from a dug well. In order to determine the overall groundwater quality, water quality index (WQI) was calculated using weighted arithmetic index method and this index was further modified by coupling with the analytical hierarchy process (AHP) to get specific information. WQI values indicated that the overall groundwater quality of the region came under "poor" category while zone wise classification indicated the extent of impact of landfill leachate on groundwater.
Tirumalesh, K; Shivanna, K; Sriraman, A K; Tyagi, A K
2010-04-01
This paper summarizes the findings obtained in a monitoring study to understand the sources and processes affecting the quality of shallow and deep groundwater near central air conditioning plant site in Trombay region by making use of physicochemical and biological analyses. All the measured parameters of the groundwaters indicate that the groundwater quality is good and within permissible limits set by (Indian Bureau of Standards 1990). Shallow groundwater is dominantly of Na-HCO(3) type whereas deep groundwater is of Ca-Mg-HCO(3) type. The groundwater chemistry is mainly influenced by dissolution of minerals and base exchange processes. High total dissolved solids in shallow groundwater compared to deeper ones indicate faster circulation of groundwater in deep zone preferably through fissures and fractures whereas groundwater flow is sluggish in shallow zone. The characteristic ionic ratio values and absence of bromide point to the fact that seawater has no influence on groundwater system.
1984-11-01
CONTENTS Section Title Page 4.3 Water Chemistry Conditions 4-10 4.3.1 Groundwater Quality Results 4-10 0 4.4 Water Quality - General 4-11 4.4.1 Water...Quality - General 4-11 4.4.2 Water Quality at LAFB 4-11 4.4.3 Soil Quality - General 4-15 0 4.4.4 Soil Quality at LAFB 4-15 4.4.5 Conclusions 4-16 5...ALTERNATIVE MEASURES 5-1 5.1 General 5-1 0 5.1.1 Base Production Wells 5-2 5.1.2 Current and North Fire Depart- 5-2 ment Training Areas 5.2 Summary 5
Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin
2017-10-01
The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Emergy assessment of ecological compensation of groundwater overexploitation in Xuchang city
NASA Astrophysics Data System (ADS)
Lv, C.; Ling, M.; Cao, Q.; Guo, X.
2017-12-01
In recent 30 years, the amount of groundwater extraction in China is increasing at a rate of 2.5 billion m3 per year. And the growing amount led to form a predatory exploitation in many parts, and caused serious exploitation problems, such as land subsidence, sea water intrusion, surface runoff reduction, vegetation decline, groundwater pollution, and so on. Ecological compensation of overexploitation has become an important mean to adjust the environmental benefits distribution relationship related to the groundwater system and to alleviate the problem of groundwater overexploitation. Based on the ecological economics emergy value theory and analysis method, the emergy loss value calculation method of eco-environmental problems caused by groundwater overexploitation, such as environmental land subsidence (collapse), salt (sea) water intrusion, surface runoff reduction, vegetation deterioration and groundwater pollution, is established, and the assessment method, which takes emergy loss value as the quantity of ecological compensation of groundwater overexploitation, is put forward. This method can reflect the disaster loss degree of groundwater overexploitation more intuitively, and it helps to improve, manage and restore a series of problems caused by groundwater overexploitation, construct a scientific and reasonable groundwater ecological compensation mechanism, and provide good ecological security for the sustainable and healthy development of national economy in our country. Taking Xuchang city as an application example, the results showed that the ecological economic loss of groundwater overexploitation was 109 million in 2015, accounting for 0.3% of the total GDP. Among them, the ecological economic loss of land subsidence is the largest, which was 77 million, accounting for 70.3% of the total loss, the second one is surface runoff reducing loss, which was 27 million, accounting for 24.7% of the total loss, and underground water pollution loss is the smallest, which was 5 million, accounting for only 5% of the total loss. To sum up, the ground subsidence is the most serious problem in many ecological environment problems caused by the groundwater overexploitation in Xuchang.
NASA Astrophysics Data System (ADS)
Ketabchi, Hamed; Ataie-Ashtiani, Behzad
2015-01-01
This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in coastal groundwater management problems (CGMPs). This review demonstrates that previous studies were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and its variants, to a number of specific problems. The exclusive investigation of these problems is often not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimization (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony optimization (ABC), harmony search (HS), shuffled complex evolution (SCE), and simplex simulated annealing (SIMPSA). The first application of PSO, ABC, HS, and SCE in CGMPs is reported here. Moreover, the four benchmark problems with different degree of difficulty and variety are considered to address the important issues of groundwater resources in coastal regions. Hence, the wide ranges of popular objective functions and constraints with the number of decision variables ranging from 4 to 15 are included. These benchmark problems are applied in the combined simulation-optimization model to examine the optimization scenarios. Some preliminary experiments are performed to select the most efficient parameters values for EAs to set a fair comparison. The specific capabilities of each EA toward CGMPs in terms of results quality and required computational time are compared. The evaluation of the results highlights EA's applicability in CGMPs, besides the remarkable strengths and weaknesses of them. The comparisons show that SCE, CACO, and PSO yield superior solutions among the EAs according to the quality of solutions whereas ABC presents the poor performance. CACO provides the better solutions (up to 17%) than the worst EA (ABC) for the problem with the highest decision variables and more complexity. In terms of computational time, PSO and SIMPSA are the fastest. SCE needs the highest computational time, even up to four times in comparison to the fastest EAs. CACO and PSO can be recommended for application in CGMPs, in terms of both abovementioned criteria.
NASA Astrophysics Data System (ADS)
Arneth, Jan-Dirk; Milde, Gerald; Kerndorff, Helmut; Schleyer, Ruprecht
Leachates from deposits of wastes may, in the long run, adversely influence groundwater quality. Since tipping still constitutes the most important form of waste disposal, strategies must be developed which are capable of protecting groundwater against contamination from leachates. In the first instance such protective measures must provide for a minimization of contamination by setting up optimal barriers. Since it would seem difficult to reach this goal in a forseeable future, the avoidance of substances with a high potential for groundwater hazards has to be attributed much importance. In former times, little attention was given to impermeability or avoidance of substances with a high potential for groundwater hazards contained in wastes. Therefore, results of the investigation of groundwater near abandoned sites can be used to optimize groundwater protection on future tipping sites. In the present study, the results of chemical investigation of groundwater from the vicinity of 92 waste disposal sites in the Federal Republic of Germany are presented and the changes in groundwater quality owing to the penetration of leachates are discussed separately for inorganic and organic contaminants.
Groundwater studies: principal aquifer surveys
Burow, Karen R.; Belitz, Kenneth
2014-01-01
In 1991, the U.S. Congress established the National Water-Quality Assessment (NAWQA) program within the U.S. Geological Survey (USGS) to develop nationally consistent long-term datasets and provide information about the quality of the Nation’s streams and groundwater. The USGS uses objective and reliable data, water-quality models, and systematic scientific studies to assess current water-quality conditions, to identify changes in water quality over time, and to determine how natural factors and human activities affect the quality of streams and groundwater. NAWQA is the only non-regulatory Federal program to perform these types of studies; participation is voluntary. In the third decade (Cycle 3) of the NAWQA program (2013–2023), the USGS will evaluate the quality and availability of groundwater for drinking supply, improve our understanding of where and why water quality is degraded, and assess how groundwater quality could respond to changes in climate and land use. These goals will be addressed through the implementation of a new monitoring component in Cycle 3: Principal Aquifer Surveys.
Compilation and analysis of multiple groundwater-quality datasets for Idaho
Hundt, Stephen A.; Hopkins, Candice B.
2018-05-09
Groundwater is an important source of drinking and irrigation water throughout Idaho, and groundwater quality is monitored by various Federal, State, and local agencies. The historical, multi-agency records of groundwater quality include a valuable dataset that has yet to be compiled or analyzed on a statewide level. The purpose of this study is to combine groundwater-quality data from multiple sources into a single database, to summarize this dataset, and to perform bulk analyses to reveal spatial and temporal patterns of water quality throughout Idaho. Data were retrieved from the Water Quality Portal (https://www.waterqualitydata.us/), the Idaho Department of Environmental Quality, and the Idaho Department of Water Resources. Analyses included counting the number of times a sample location had concentrations above Maximum Contaminant Levels (MCL), performing trends tests, and calculating correlations between water-quality analytes. The water-quality database and the analysis results are available through USGS ScienceBase (https://doi.org/10.5066/F72V2FBG).
Framework for a ground-water quality monitoring and assessment program for California
Belitz, Kenneth; Dubrovsky, Neil M.; Burow, Karen; Jurgens, Bryant C.; John, Tyler
2003-01-01
The State of California uses more ground water than any other State in the Nation. With a population of over 30 million people, an agricultural economy based on intensive irrigation, large urban industrial areas, and naturally elevated concentrations of some trace elements, there is a wide range of contaminant sources that have the potential to contaminate ground water and limit its beneficial uses. In response to the many-and different-potential sources of ground-water contamination, the State of California has evolved an extensive set of rules and programs to protect ground-water quality, and agencies to implement the rules and programs. These programs have in common a focus on compliance with regulations governing chemical use and (or) ground-water quality. Although appropriate for, and successful at, their specific missions, these programs do not at present provide a comprehensive view of ground-water quality in the State of California. In October 2001, The California Assembly passed a bill, AB 599, establishing the Ground-Water- Quality Monitoring Act of 2001.' The goal of AB 599 is to improve Statewide comprehensive ground-water monitoring and increase availability of information about ground-water quality to the public. AB 599 requires the State Water Resources Control Board (SWRCB), in collaboration with an interagency task force (ITF) and a public advisory committee (PAC), to develop a plan for a comprehensive ground-water monitoring program. AB 599 specifies that the comprehensive program should be capable of assessing each ground-water basin in the State through direct and other statistically reliable sampling approaches, and that the program should integrate existing monitoring programs and design new program elements, as necessary. AB 599 also stresses the importance of prioritizing ground-water basins that provide drinking water. The United States Geological Survey (USGS), in cooperation with the SWRCB, and in coordination with the ITF and PAC, has developed a framework for a comprehensive ground-water-quality monitoring and assessment program for California. The proposed framework relies extensively on previous work conducted by the USGS through its National Water-Quality Assessment (NAWQA) program. In particular, the NAWQA program defines three types of ground-water assessment: (1) status, the assessment of the current quality of the ground-water resource; (2) trends, the detection of changes in water quality, and (3) understanding, assessing the human and natural factors that affect ground-water quality. A Statewide, comprehensive ground-water quality-monitoring and assessment program is most efficiently accomplished by applying uniform and consistent study-design and data-collection protocols to the entire State. At the same time, a comprehensive program should be relevant at a variety of scales, and therefore needs to retain flexibility to address regional and local issues. Consequently, many of the program components include a predominant element that will be consistently applied in all basins, and a secondary element that may be applied in specific basins where local conditions warrant attention.
A ground-water-quality monitoring program for Nevada
Nowlin, Jon O.
1986-01-01
A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.
Plan of study for the Ohio-Indiana carbonate-bedrock and glacial- aquifer system
Bugliosi, E.F.
1990-01-01
The major aquifers of 35,000 sq mi area in western Ohio and eastern Indiana consist of Silurian and Devonian carbonate bedrock and Quaternary glacial deposits. These bedrock units and glacial deposits have been designated for study as part of the U.S. Geological Survey 's Regional Aquifer System Analysis program, a nationwide program to assess the regional hydrology, geology and water quality of the Nation 's most important aquifers. The purpose of the study is to define the hydrology, geochemistry, and geologic framework of the aquifer system within the Silurian and Devonian rocks and glacial deposits, with emphasis on describing the groundwater flow patterns and characterizing the water quality. The study, which began in 1988 , is expected to be completed in 1993. In 1980, the aquifers in the study area supplied more than 280 million gallons of water/day to industry, agriculture, and a population of more than 6.3 million people. With a projected future population growth to 7.1 million in 1990, and with intensified agricultural and industrial uses, water withdrawals from these bedrock and glacial aquifers are expected to be increased. The most significant groundwater problems in the study area result from the pronounced areal differences in availability and quality of the groundwater. These differences are related to the lateral discontinuity of many of the glacial deposits and to variations in secondary permeability of the bedrock aquifers associated with patterns of fracturing. Planned activities of the study include compilation of available geohydrologic and water quality data, such as groundwater levels, geohydrologic properties of aquifers, chemical analyses, land use and water use data, and ancillary data such as digital satellite images. Additional geohydrologic and water quality data may be collected from existing wells or wells that may be drilled for this study. A computerized, geographic information system will be used as a data base management tool and for spatial analysis and presentation of the data. A digital computer model will be developed to study the regional groundwater flow system and to investigate the effects of development on the aquifer system. (USGS)
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Daughney, Christopher J.
2012-08-01
SummaryWe identified natural baseline groundwater quality and impacts caused by land use intensification by relating groundwater chemistry with water age. Tritium, the most direct tracer for groundwater dating, including the time of water passage through the unsaturated zone, was overwhelmed over the recent decades by contamination from bomb-tritium from nuclear weapons testing in the early 1960s. In the Southern Hemisphere, this situation has changed now with the fading of the bomb-tritium, and tritium has become a tool for accurate groundwater dating. Tritium dating will become efficient also in the Northern Hemisphere over the next decade. Plotting hydrochemistry and field parameters versus groundwater age allowed us to identify those parameters that have increasing concentrations with age and are therefore from geological sources. These indicators for natural groundwater evolution are: Na, HCO3, SiO2, F, PO4, the redox-sensitive elements and compounds Fe, Mn, NH4, CH4, and pH and conductivity. In young groundwater that was recharged after the intensification of agriculture, nitrate, sulphate, CFC-11 and CFC-12, and pesticides are the most representative indicators for the impact of land-use intensification on groundwater quality, with 66% of the sites showing such an impact. Elevated concentrations of nitrate in oxic groundwater allowed us to reconstruct the timing and magnitude of the impact of land-use intensification on groundwater which in New Zealand occurred in two stages. Old pristine groundwater reflects the natural baseline quality. A transition to slightly elevated concentration due to low-intensity land-use was observed in groundwater recharged since around 1880. A sharp increase in nitrate and other agrochemicals due to high-intensity agriculture was observed in groundwater recharged since 1955. The threshold concentrations that distinguish natural baseline quality water from low-intensity land-use water, and low-intensity from high intensity land-use water, are 0.25 and 2.5 mg/L NO3-N, respectively. The change in groundwater quality from pristine baseline to low-intensity impact around 1880 coincides with the start of the meat export industry. The change in groundwater quality from low to high intensity landuse impact around 1955 coincides with the start of industrialised agriculture. No elevated levels of phosphate, a main compound in agricultural fertilisers and, together with nitrogen, a trigger of algae blooms in lakes, were found in young groundwater. This implies that fertiliser phosphate from non-point sources is still retained in the soil and has not yet reached the saturated groundwater systems. The source of elevated PO4, observed only in old groundwater, is therefore due purely to natural geochemical factors.
Fram, Miranda S.; Shelton, Jennifer L.
2018-01-08
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.
Southwest principal aquifers regional ground-water quality assessment
Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.
2009-01-01
The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.
NASA Astrophysics Data System (ADS)
Brouyere, S.; Orban, P.; Hérivaux, C.
2009-12-01
In the next decades, groundwater managers will have to face regional degradation of the quantity and quality of groundwater under pressure of land-use and socio-economic changes. In this context, the objectives of the European Water Framework Directive require that groundwater be managed at the scale of the groundwater body, taking into account not only all components of the water cycle but also the socio-economic impact of these changes. One of the main challenges remains to develop robust and efficient numerical modeling applications at such a scale and to couple them with economic models, as a support for decision support in groundwater management. An integrated approach between hydrogeologists and economists has been developed by coupling the hydrogeological model SUFT3D and a cost-benefit economic analysis to study the impact of agricultural practices on groundwater quality and to design cost-effective mitigation measures to decrease nitrate pressure on groundwater so as to ensure the highest benefit to the society. A new modeling technique, the ‘Hybrid Finite Element Mixing Cell’ approach has been developed for large scale modeling purposes. The principle of this method is to fully couple different mathematical and numerical approaches to solve groundwater flow and solute transport problems. The mathematical and numerical approaches proposed allows an adaptation to the level of local hydrogeological knowledge and the amount of available data. In combination with long time series of nitrate concentrations and tritium data, the regional scale modelling approach has been used to develop a 3D spatially distributed groundwater flow and solute transport model for the Geer basin (Belgium) of about 480 km2. The model is able to reproduce the spatial patterns of nitrate concentrations together nitrate trends with time. The model has then been used to predict the future evolution of nitrate trends for two types of scenarios: (i) a “business as usual scenario” where current polluting pressures remain the same and (ii) two contrasted scenarios that simulate the implementation of programs of measures aiming at reaching good chemical status. The results of the hydrogeological model under the “business as usual scenario” have been used to assess the cost for the society of the continuous degradation of the groundwater quality. The results of the hydrogeological model under the two contrasted scenarios have been used to assess the economical benefit as avoided damage resulting from the decrease in the nitrate load. A cost-benefit analysis has been thus performed to assess the programme of mitigation measures which provides the largest benefits at the lowest cost.
Dillon, David B.; Davis, Tracy A.; Landon, Matthew K.; Land, Michael T.; Wright, Michael T.; Kulongoski, Justin T.
2016-12-09
Exploratory sampling of groundwater in coastal Los Angeles County and Kern and Kings Counties of the southern San Joaquin Valley was done by the U.S. Geological Survey from September 2014 through January 2015 as part of the California State Water Resources Control Board’s Water Quality in Areas of Oil and Gas Production Regional Groundwater Monitoring Program. The Regional Groundwater Monitoring Program was established in response to the California Senate Bill 4 of 2013 mandating that the California State Water Resources Control Board design and implement a groundwater-monitoring program to assess potential effects of well-stimulation treatments on groundwater resources in California. The U.S. Geological Survey is in cooperation with the California State Water Resources Control Board to collaboratively implement the Regional Groundwater Monitoring Program through the California Oil, Gas, and Groundwater Project. Many researchers have documented the utility of different suites of chemical tracers for evaluating the effects of oil and gas development on groundwater quality. The purpose of this exploratory sampling effort was to determine whether tracers reported in the literature could be used effectively in California. This reconnaissance effort was not designed to assess the effects of oil and gas on groundwater quality in the sampled areas. A suite of water-quality indicators and geochemical tracers were sampled at groundwater sites in selected areas that have extensive oil and gas development. Groundwater samples were collected from a total of 51 wells, including 37 monitoring wells at 17 multiple-well monitoring sites in coastal Los Angeles County and 5 monitoring wells and 9 water-production wells in southern San Joaquin Valley, primarily in Kern and Kings Counties. Groundwater samples were analyzed for field waterquality indicators; organic constituents, including volatile and semi-volatile organic compounds and dissolved organic carbon indicators; naturally present inorganic constituents, including trace elements, nutrients, major and minor ions, and iron species; naturally present stable and radioactive isotopes; dissolved noble gases; dissolved standard and hydrocarbon gases, δ13C of methane, ethane, and δ2 H of methane. In total, 249 constituents and water-quality indicators were measured. Four types of quality-control samples (blanks, replicates, matrix spikes, and surrogates spiked in environmental and blank samples) were collected at approximately 10 percent of the wells. The quality-control data were used to determine whether the groundwater-sample data were of sufficient quality for the measured analytes to be used as potential indicators of oil and gas effects. The data from the 51 groundwater samples and from the quality-control samples are presented in this report.
Malina, Grzegorz
2004-12-15
The environmental problems related to the former chemical plant in Tarnowskie Gory, with respect to the Quaternary and Triassic groundwater as main receptors, are described and the eco-toxicological impact is discussed. The historical use of that site included industrial mining of ores (Ag, Pb, Zn) and use of Ba, B, Sr, Al, Cu during production of pigment. The majority of used and produced substances were toxic or hazardous. The applied technologies resulted in generation of waste which were mostly dumped without any elementary protection principles. Hydrodynamic modelling showed potential hazard to water-intakes. The variations of spatial distributions of selected contaminants within the Triassic carbonate series indicate that the chemical waste dumped in vicinity of the plant are the sources of groundwater contamination of boron. The results of soil and groundwater monitoring at the constructed landfill show significant contamination, mainly due to leaching from dumped waste, but also from infiltration of non-operating underground installations, and spills of toxic substances during the plant operation. The Quaternary aquifers are heavily contaminated due to the leaching out of chemical compounds from dumping sites. This is hazardous to the Triassic reservoirs--the main sources of potable water for the region. The characteristics of the key contaminants (As, B, Ba and Sr) are provided, including their transport, fate and toxicity. The spatial and temporal distribution of contaminants in groundwater is presented, and observed trends of groundwater quality decrease, mainly with respect to the Triassic aquifers, are discussed. The groundwater risk assessment being developed for the Tarnowskie Gory site should consider the present situation, and provide an approach towards evaluation and assessment of the required remediation measures.
Putnam, James E.; Hansen, Cristi V.
2014-01-01
As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.
NASA Astrophysics Data System (ADS)
Khader, A. I.; Rosenberg, D. E.; McKee, M.
2013-05-01
Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150/person and 0.6/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is no value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300/person or the bottled water cost increases to 2.3/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by manager recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.
NASA Astrophysics Data System (ADS)
Khader, A.; Rosenberg, D.; McKee, M.
2012-12-01
Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i) ignore the health risk of nitrate contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150 $/person and 0.6 $/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is not value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300 $/person or the bottled water cost increases to 2.3 $/baby/day. Similarly, the monitoring system has value if the system can more accurately report actual aquifer concentrations and the public more fully abides by managers' recommendations to use/not use the aquifer. The system also has value if it will serve a larger population or if its installation costs can be reduced, for example using a smaller number of monitoring wells. The VOI analysis shows how monitoring system design, accuracy, installation and operating costs, public awareness of health risks, costs of alternatives, and demographics together affect the value of implementing a system to monitor groundwater quality.
Rotiroti, Marco; McArthur, John; Fumagalli, Letizia; Stefania, Gennaro A; Sacchi, Elisa; Bonomi, Tullia
2017-02-01
In aquifers 160 to 260m deep that used for public water-supply in an area ~150km 2 around the town of Cremona, in the Po Plain of Northern Italy, concentrations of arsenic (As) are increasing with time in some wells. The increase is due to drawdown of As-polluted groundwater (As ≤144μg/L) from overlying aquifers at depths 65 to 150m deep in response to large-scale abstraction for public supply. The increase in As threatens drinking-water quality locally, and by inference does so across the entire Po Plain, where natural As-pollution of groundwater (As >10μg/L) is a basin-wide problem. Using new and legacy data for Cl/Br, δ 18 O/δ 2 H and other hydrochemical parameters with groundwater from 32 wells, 9 surface waters, a sewage outfall and rainwater, we show that the deep aquifer (160-260m below ground level), which is tapped widely for public water-supply, is partly recharged by seepage from overlying aquifers (65-150m below ground level). Groundwater quality in deep aquifers appears free of anthropogenic influences and typically <10μg/L of As. In contrast, shallow groundwater and surface water in some, not all, areas are affected by anthropogenic contamination and natural As-pollution (As >10μg/L). Outfalls from sewage-treatment plants and black water from septic tanks firstly affect surface waters, which then locally infiltrate shallow aquifers under high channel-stages. Wastewater permeating shallow aquifers carries with it NO 3 and SO 4 which suppress reduction of iron oxyhydroxides in the aquifer sediments and so suppress the natural release of As to groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Appleyard, S. J.
1993-08-01
Twelve bores were sunk adjacent to three stormwater infiltration basins in the Perth metropolitan area to examine the impact of runoff from a light industrial area, a medium-density residential area, and a major arterial road on groundwater quality, and to examine the hydrological response of the aquifer to runoff recharge. Automatic and manual water level monitoring between April and November 1990 indicated that groundwater levels responded within minutes to recharge from the infiltration basins. Peak water levels of up to 2.5 m above rest levels occurred 6 24 h after the commencement of ponding in the infiltration basins. There was a marked reduction in salinity and increase in dissolved oxygen concentrations in the upper part of the aquifer downgradient of the infiltration basins. Concentrations of toxic metals, nutrients, pesticides, and phenolic compounds in groundwater near the infiltration basins were low and generally well within Australian drinking water guidelines. However, sediment in the base of an infiltration basin draining a major road contained in excess of 3500 ppm of lead. Phthalates, which are US EPA priority pollutants, were detected in all but one bore near the infiltration basins. Their detection may be a sampling artifact, but they may also be derived from the plastic litter that accumulates in the infiltration basins. The concentration of iron in groundwater near the infiltration basins appears to be controlled by dissolved oxygen concentrations, with high iron concentrations occurring where dissolved oxygen concentrations are low. Pumping bores located near infiltration basins may suffer from iron encrustation problems caused by the mixing of shallow, oxygenated groundwater with water containing higher concentrations of iron from deeper in the aquifer.
1992-03-01
I I 3 TABLE 15. SUMMARY OF THE WATER QUALITY DURING THE OLD O-FIELD GROUNDWATER PILOT SCALE TOXICITY TESTS - UNTREATED GROUNDWATER ( FRESHWATER ...SUBJECT TERMS (Coftinut on reverse of necessary and identity by block number) FIELD IGROUP SUB-GROUP Groundwater , aquatic , to*’teltyi- daphnia,--Daphnia...FATHEAD MINNOWS AND DAPHNIDS ........................................... 30 12. SUMMARY OF THE WATER QUALITY DURING THE OLD O-FIELD GROUNDWATER BENCH
Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A
2016-03-01
Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.
Nagarajan, R; Rajmohan, N; Mahendran, U; Senthamilkumar, S
2010-12-01
As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO(3)). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.
Motivation of synthesis, with an example on groundwater quality sustainability
NASA Astrophysics Data System (ADS)
Fogg, G. E.; Labolle, E. M.
2007-12-01
Synthesis of ideas and theories from disparate disciplines is necessary for addressing the major problems faced by society. Such integration happens neither via edict nor via lofty declarations of what is needed or what is best. It happens mainly through two mechanisms: limited scope collaborations (e.g., ~2-3 investigators) in which the researchers believe deeply in their need for each other's expertise and much larger scope collaborations driven by the 'big idea.' Perhaps the strongest motivation for broad, effective synthesis is the 'big idea' that is sufficiently important and inspiring to marshal the appropriate collaborative efforts. Examples include the Manhattan Project, the quest for cancer cures, predicting effects of climate change, and groundwater quality sustainability. The latter is posed as an example of a 'big idea' that would potentially unify research efforts in both the sciences and social sciences toward a common, pressing objective.
Ducci, Daniela; de Melo, M Teresa Condesso; Preziosi, Elisabetta; Sellerino, Mariangela; Parrone, Daniele; Ribeiro, Luis
2016-11-01
The natural background level (NBL) concept is revisited and combined with indicator kriging method to analyze the spatial distribution of groundwater quality within a groundwater body (GWB). The aim is to provide a methodology to easily identify areas with the same probability of exceeding a given threshold (which may be a groundwater quality criteria, standards, or recommended limits for selected properties and constituents). Three case studies with different hydrogeological settings and located in two countries (Portugal and Italy) are used to derive NBL using the preselection method and validate the proposed methodology illustrating its main advantages over conventional statistical water quality analysis. Indicator kriging analysis was used to create probability maps of the three potential groundwater contaminants. The results clearly indicate the areas within a groundwater body that are potentially contaminated because the concentrations exceed the drinking water standards or even the local NBL, and cannot be justified by geogenic origin. The combined methodology developed facilitates the management of groundwater quality because it allows for the spatial interpretation of NBL values. Copyright © 2016 Elsevier B.V. All rights reserved.
Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water
Kane, Richard L.; Fletcher, William L.; Lane, Susan L.
2004-01-01
Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.
Characteristics and factors of groundwater contamination in Asian coastal megacities
NASA Astrophysics Data System (ADS)
Saito, M.; Onodera, S. I.; Jin, G.; Shimizu, Y.; Admajaya, F. T.
2017-12-01
For the sustainable use of groundwater resources for the future, it is important to conserve its quality as well as quantity. Especially in the developing megacities, land subsidence and groundwater pollution by several contaminants (e.g. nitrogen, trace metals and organic pollutants etc.) is one of a critical environmental problems, because of the intensive extraction of groundwater and huge amount of contaminant load derived from domestic wastewater as well as agricultural and industrial wastewater. However, the process of groundwater degradation, including depletion and contamination with urbanization, has not been examined well in the previous studies. In the present study, we aim to confirm the characteristics and factors of groundwater contamination in coastal Asian megacities such as Osaka and Jakarta. In Osaka, groundwater was used as a water resource during the period of rapid population increase before 1970, and consequently groundwater resources have been degraded. Hydraulic potential of groundwater has been recovered after the regulation for abstraction. However, it is still below sea level in the deeper aquifer (>20 m) of some regions, and higher Cl-, NH4+-N and PO43-P concentrations were detected in these regions. The results also suggest that shallower aquifer (>10 m) is influenced by infiltration of sewage to groundwater. In the Jakarta metropolitan area, current hydraulic potential is below sea level in because of prior excess abstraction of groundwater. As a result, the direction of groundwater flow is now downward in the coastal area. The distribution of Cl- and Mn concentration in groundwater suggests that the decline in hydraulic potential has caused the intrusion of seawater and shallow groundwater into deep groundwater. It implies an accumulation of contaminants in deep aquifers. On the other hands, NO3-N in groundwater is suggested to be attenuated by the processes of denitrification and dilution in the coastal area.
The principle of superposition and its application in ground-water hydraulics
Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.
1987-01-01
The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.
Rational Exploitation and Utilizing of Groundwater in Jiangsu Coastal Area
NASA Astrophysics Data System (ADS)
Kang, B.; Lin, X.
2017-12-01
Jiangsu coastal area is located in the southeast coast of China, where is a new industrial base and an important coastal and Land Resources Development Zone of China. In the areas with strong human exploitation activities, regional groundwater evolution is obviously affected by human activities. In order to solve the environmental geological problems caused by groundwater exploitation fundamentally, we must find out the forming conditions of regional groundwater hydrodynamic field, and the impact of human activities on groundwater hydrodynamic field evolution and hydrogeochemical evolition. Based on these results, scientific management and reasonable exploitation of the regional groundwater resources can be provided for the utilization. Taking the coastal area of Jiangsu as the research area, we investigate and analyze of the regional hydrogeological conditions. The numerical simulation model of groundwater flow was established according to the water power, chemical and isotopic methods, the conditions of water flow and the influence of hydrodynamic field on the water chemical field. We predict the evolution of regional groundwater dynamics under the influence of human activities and climate change and evaluate the influence of groundwater dynamic field evolution on the environmental geological problems caused by groundwater exploitation under various conditions. We get the following conclusions: Three groundwater exploitation optimal schemes were established. The groundwater salinization was taken as the primary control condition. The substitution model was proposed to model groundwater exploitation and water level changes by BP network method.Then genetic algorithm was used to solve the optimization solution. Three groundwater exploitation optimal schemes were submit to local water resource management. The first sheme was used to solve the groundwater salinization problem. The second sheme focused on dual water supply. The third sheme concerned on emergency water supppy. This is the first time environment problem taken as water management objectinve in this coastal area.
Talalaj, Izabela A; Biedka, Pawel
2016-12-01
The purpose of the paper is to assess the groundwater quality near the landfill sites using landfill water pollution index (LWPI). In order to investigate the scale of groundwater contamination, three landfills (E, H and S) in different stages of their operation were taken into analysis. Samples of groundwater in the vicinity of studied landfills were collected four times each year in the period from 2004 to 2014. A total of over 300 groundwater samples were analysed for pH, EC, PAH, TOC, Cr, Hg, Zn, Pb, Cd, Cu, as required by the UE legal acts for landfill monitoring system. The calculated values of the LWPI allowed the quantification of the overall water quality near the landfill sites. The obtained results indicated that the most negative impact on groundwater quality is observed near the old Landfill H. Improper location of piezometer at the Landfill S favoured infiltration of run-off from road pavement into the soil-water environment. Deep deposition of the groundwater level at Landfill S area reduced the landfill impact on the water quality. Conducted analyses revealed that the LWPI can be used for evaluation of water pollution near a landfill, for assessment of the variability of water pollution with time and for comparison of water quality from different piezometers, landfills or time periods. The applied WQI (Water Quality Index) can also be an important information tool for landfill policy makers and the public about the groundwater pollution threat from landfill.
NASA Astrophysics Data System (ADS)
Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem
2017-04-01
Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.
Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem
2017-04-01
Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.
Arkansas Groundwater-Quality Network
Pugh, Aaron L.; Jackson, Barry T.; Miller, Roger
2014-01-01
Arkansas is the fourth largest user of groundwater in the United States, where groundwater accounts for two-thirds of the total water use. Groundwater use in the State increased by 510 percent between 1965 and 2005 (Holland, 2007). The Arkansas Groundwater-Quality Network is a Web map interface (http://ar.water.usgs.gov/wqx) that provides rapid access to the U.S. Geological Survey’s (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency’s (USEPA) STOrage and RETrieval (STORET) databases of ambient water information. The interface enables users to perform simple graphical analysis and download selected water-quality data.
NASA Astrophysics Data System (ADS)
Lachaal, Fethi; Chekirbane, Anis; Chargui, Sameh; Sellami, Haykel; Tsujimura, Maki; Hezzi, Hmida; Faycel, Jelassi; Mlayah, Ammar
2016-12-01
Information on groundwater quantity as well as quality is required by water managers and decision-makers for defining a sustainable management strategy. This requires a comprehensive assessment of the surface water and groundwater resources. This paper provides an assessment of water resources management strategy in the Grombalia region (Northeast Tunisia) and its impact on quantity and quality evolution of groundwater resources based on an approach that combines (i) hydro-climatic data, (ii) field monitoring, (iii) historic piezometric records, and (iv) geochemical and stable isotopes (δ18O and δ2H) analyses. We apply this approach to identify the origin of the various water resources and outline how the actual water management impact the quantity and quality of the groundwater in the region. As consequence of poor water resources management, the shallow groundwater levels have been disrupted: a groundwater rise is observed in the centre and a piezometric drawdown is observed in the upstream regions. Groundwater quality degradation was registered especially in the centre and downstream zones.
Jangam, Chandrakant; Ramya Sanam, S; Chaturvedi, M K; Padmakar, C; Pujari, Paras R; Labhasetwar, Pawan K
2015-10-01
The present case study has been undertaken to investigate the impact of on-site sanitation on groundwater quality in alluvial settings in Lucknow City in India. The groundwater samples have been collected in the areas of Lucknow City where the on-site sanitation systems have been implemented. The groundwater samples have been analyzed for the major physicochemical parameters and fecal coliform. The results of analysis reveal that none of the groundwater samples exceeded the Bureau of Indian Standards (BIS) limits for all the parameters. Fecal coliform was not found in majority of the samples including those samples which were very close to the septic tank. The study area has a thick alluvium cover as a top layer which acts as a natural barrier for groundwater contamination from the on-site sanitation system. The t test has been performed to assess the seasonal effect on groundwater quality. The statistical t test implies that there is a significant effect of season on groundwater quality in the study area.
Ground-water flow and water quality in the sand aquifer of Long Beach Peninsula, Washington
Thomas, B.E.
1995-01-01
This report describes a study that was undertaken to improve the understanding of ground-water flow and water quality in the coastal sand aquifer of the Long Beach Peninsula of southwestern Washington. Data collected for the study include monthly water levels at 103 wells and 28 surface-water sites during 1992, and water-quality samples from about 40 wells and 13 surface-water sites in February and July 1992. Ground water generally flows at right angles to a ground-water divide along the spine of the low-lying peninsula. Historical water-level data indicate that there was no long-term decline in the water table from 1974 to 1992. The water quality of shallow ground water was generally good with a few local problems. Natural concentrations of dissolved iron were higher than 0.3 milligrams per liter in about one-third of the samples. The dissolved-solids concentrations were generally low, with a range of 56 to 218 milligrams per liter. No appreciable amount of seawater has intruded into the sand aquifer, chloride concentrations were low, with a maximum of 52 milligrams per liter. Agricultural activities do not appear to have significantly affected the quality of ground water. Concentrations of nutrients were low in the cranberry-growing areas, and selected pesticides were not found above the analytical detection limits. Septic systems probably caused an increase in the concentration of nitrate from medians of less than 0.05 milligrams per liter in areas of low population density to 0.74 milligrams per liter in areas of high density.
NASA Astrophysics Data System (ADS)
Dentoni, Marta; Deidda, Roberto; Paniconi, Claudio; Qahman, Khalid; Lecca, Giuditta
2015-03-01
Seawater intrusion is one of the major threats to freshwater resources in coastal areas, often exacerbated by groundwater overexploitation. Mitigation measures are needed to properly manage aquifers, and to restore groundwater quality. This study integrates three computational tools into a unified framework to investigate seawater intrusion in coastal areas and to assess strategies for managing groundwater resources under natural and human-induced stresses. The three components are a three-dimensional hydrogeological model for density-dependent variably saturated flow and miscible salt transport, an automatic calibration procedure that uses state variable outputs from the model to estimate selected model parameters, and an optimization module that couples a genetic algorithm with the simulation model. The computational system is used to rank alternative strategies for mitigation of seawater intrusion, taking into account conflicting objectives and problem constraints. It is applied to the Gaza Strip (Palestine) coastal aquifer to identify a feasible groundwater management strategy for the period 2011-2020. The optimized solution is able to: (1) keep overall future abstraction from municipal groundwater wells close to the user-defined maximum level, (2) increase the average groundwater heads, and (3) lower both the total mass of salt extracted and the extent of the areas affected by seawater intrusion.
Integrated groundwater management: An overview of concepts and challenges
Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew
2016-01-01
Managing water is a grand challenge problem and has become one of humanity’s foremost priorities. Surface water resources are typically societally managed and relatively well understood; groundwater resources, however, are often hidden and more difficult to conceptualize. Replenishment rates of groundwater cannot match past and current rates of depletion in many parts of the world. In addition, declining quality of the remaining groundwater commonly cannot support all agricultural, industrial and urban demands and ecosystem functioning, especially in the developed world. In the developing world, it can fail to even meet essential human needs. The issue is: how do we manage this crucial resource in an acceptable way, one that considers the sustainability of the resource for future generations and the socioeconomic and environmental impacts? In many cases this means restoring aquifers of concern to some sustainable equilibrium over a negotiated period of time, and seeking opportunities for better managing groundwater conjunctively with surface water and other resource uses. However, there are many, often-interrelated, dimensions to managing groundwater effectively. Effective groundwater management is underpinned by sound science (biophysical and social) that actively engages the wider community and relevant stakeholders in the decision making process. Generally, an integrated approach will mean “thinking beyond the aquifer”, a view which considers the wider context of surface water links, catchment management and cross-sectoral issues with economics, energy, climate, agriculture and the environment. The aim of the book is to document for the first time the dimensions and requirements of sound integrated groundwater management (IGM). The primary focus is on groundwater management within its system, but integrates linkages beyond the aquifer. The book provides an encompassing synthesis for researchers, practitioners and water resource managers on the concepts and tools required for defensible IGM, including how IGM can be applied to achieve more sustainable socioeconomic and environmental outcomes, and key challenges of IGM. The book is divided into five parts: integration overview and problem settings; governance; socioeconomics; biophysical aspects; and modelling and decision support. However, IGM is integrated by definition, thus these divisions should be considered a convenience for presenting the topics rather than hard and fast demarcations of the topic area.
Assessing groundwater quality in Greece based on spatial and temporal analysis.
Dokou, Zoi; Kourgialas, Nektarios N; Karatzas, George P
2015-12-01
The recent industrial growth together with the urban expansion and intensive agriculture in Greece has increased groundwater contamination in many regions of the country. In order to design successful remediation strategies and protect public health, it is very important to identify those areas that are most vulnerable to groundwater contamination. In this work, an extensive contamination database from monitoring wells that cover the entire Greek territory during the last decade (2000-2008) was used in order to study the temporal and spatial distribution of groundwater contamination for the most common and serious anionic and cationic trace element pollutants (heavy metals). Spatial and temporal patterns and trends in the occurrence of groundwater contamination were also identified highlighting the regions where the higher groundwater contamination rates have been detected across the country. As a next step, representative contaminated aquifers in Greece, which were identified by the above analysis, were selected in order to analyze the specific contamination problem in more detail. To this end, geostatistical techniques (various types of kriging, co-kriging, and indicator kriging) were employed in order to map the contaminant values and the probability of exceeding critical thresholds (set as the parametric values of the contaminant of interest in each case). The resulting groundwater contamination maps could be used as a useful tool for water policy makers and water managers in order to assist the decision-making process.
DeSimone, Leslie A.; McMahon, Peter B.; Rosen, Michael R.
2015-01-01
About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminants come from the rocks and sediments of the aquifers themselves, and others are chemicals that we use in agriculture, industry, and day-to-day life. When groundwater supplies are contaminated, millions of dollars can be required for treatment so that the supplies can be usable. Contaminants in groundwater can also affect the health of our streams and valuable coastal waters. By knowing where contaminants occur in groundwater, what factors control contaminant concentrations, and what kinds of changes in groundwater quality might be expected in the future, we can ensure the availability and quality of this vital natural resource in the future.
Detecting groundwater contamination of a river in Georgia, USA using baseflow sampling
NASA Astrophysics Data System (ADS)
Reichard, James S.; Brown, Chandra M.
2009-05-01
Algal blooms and fish kills were reported on a river in coastal Georgia (USA) downstream of a poultry-processing plant, prompting officials to conclude the problems resulted from overland flow associated with over-application of wastewater at the plant’s land application system (LAS). An investigation was undertaken to test the hypothesis that contaminated groundwater was also playing a significant role. Weekly samples were collected over a 12-month period along an 18 km reach of the river and key tributaries. Results showed elevated nitrogen concentrations in tributaries draining the plant and a tenfold increase in nitrate in the river between the tributary inputs. Because ammonia concentrations were low in this reach, it was concluded that nitrate was entering via groundwater discharge. Data from detailed river sampling and direct groundwater samples from springs and boreholes were used to isolate the entry point of the contaminant plume. Analysis showed two separate plumes, one associated with the plant’s unlined wastewater lagoon and another with its LAS spray fields. The continuous discharge of contaminated groundwater during summer low-flow conditions was found to have a more profound impact on river-water quality than periodic inputs by overland flow and tributary runoff.
Bhattacharyya, Rupa; Chatterjee, Debashis; Nath, Bibhash; Jana, Joydev; Jacks, Gunnar; Vahter, Marie
2003-11-01
The widespread occurrence of high inorganic arsenic in natural waters is attributed to human carcinogen and is identified as a major global public health issue. The scale of the problem in terms of population exposure (36 million) and geographical area coverage (173 x 10(3) Km2) to high arsenic contaminated groundwater (50-3200 microgL(-1)) compared to the National drinking water standard (50 microgL(-1)) and WHO recommended provisional limit (10 microgL(-1)) is greatest in the Holocene alluvium and deltaic aquifers of the Bengal Delta Plain (Bangladesh and West Bengal, India). This large-scale 'natural' high arsenic groundwater poses a great threat to human health via drinking water. Mobilization, metabolism and mitigation issues of high arsenic groundwater are complex and need holistic approach for sustainable development of the resource. Mobilization depends on the redox geochemistry of arsenic that plays a vital role in the release and subsequent transport of arsenic in groundwater. Metabolism narrates the biological response vis-à-vis clinical manifestations of arsenic due to various chemical and biological factors. Mitigation includes alternative source for safe drinking water supply. Drinking water quality regulatory standards as well as guidelines are yet to cover risk assessments for such metal toxicity. Lowering of the ingested inorganic arsenic level and introduction of newer treatment options (implementation of laterite, the natural material) to ensure safe water supply (arsenic free and/or low arsenic within permissible limit) are the urgent need to safe guard the mass arsenic poisoning and internal arsenic related health problems.
Groundwater-Quality Assessment, Pike County, Pennsylvania, 2007
Senior, Lisa A.
2009-01-01
Pike County, a 545 square-mile area in northeastern Pennsylvania, has experienced the largest relative population growth of any county in the state from 1990 to 2000 and its population is projected to grow substantially through 2025. This growing population may result in added dependence and stresses on water resources, including the potential to reduce the quantity and degrade the quality of groundwater and associated stream base flow with changing land use. Groundwater is the main source of drinking water in the county and is derived primarily from fractured-rock aquifers (shales, siltstones, and sandstones) and some unconsolidated glacial deposits that are recharged locally from precipitation. The principal land uses in the county as of 2005 were public, residential, agricultural, hunt club/private recreational, roads, and commercial. The public lands cover a third of the county and include national park, state park, and other state lands, much of which are forested. Individual on-site wells and wastewater disposal are common in many residential areas. In 2007, the U.S. Geological Survey, in cooperation with the Pike County Conservation District, began a study to provide current information on groundwater quality throughout the county that will be helpful for water-resource planning. The countywide reconnaissance assessment of groundwater quality documents current conditions with existing land uses and may serve as a baseline of groundwater quality for future comparison. Twenty wells were sampled in 2007 throughout Pike County to represent groundwater quality in the principal land uses (commercial, high-density and moderate-density residential with on-site wastewater disposal, residential in a sewered area, pre-development, and undeveloped) and geologic units (five fractured-rock aquifers and one glacial unconsolidated aquifer). Analyses selected for the groundwater samples were intended to identify naturally occurring constituents from the aquifer or constituents introduced by human activities that pose a health risk or otherwise were of concern in groundwater in the county. The analyses included major ions, nutrients, selected trace metals, volatile organic compounds (VOCs), selected organic wastewater compounds, gross alpha-particle and gross beta-particle activity, uranium, and radon-222. Analyses of the 20 samples were primarily for dissolved constituents, but six samples were analyzed for both dissolved and total metals. Results of the 2007 sampling indicated few water-quality problems, although concentrations of some constituents indicated influence of human activities on groundwater. No constituent analyzed exceeded any primary drinking-water standard or maximum contaminant level (MCL) established by the U.S. Environmental Protection Agency. Radon-222 levels were greater than, or equal to, the proposed MCL of 300 picocuries per liter (pCi/L) in water from 15 (75 percent) of the 20 wells. Radon-222 levels did not exceed the alternative MCL of 4,000 pCi/L in any groundwater sample. Radon-222 is naturally occurring, and the greatest concentrations (up to 2,650 pCi/L) were in water samples from wells in members of the Catskill Formation, a fractured-rock aquifer. The dissolved arsenic concentration of 3.9 micrograms per liter (ug/L) in one sample was greater than the health-advisory (HA) level of 2 ug/L but less than the MCL of 10 ug/L. Recommended or secondary maximum contaminant levels (SMCLs) were exceeded for pH, dissolved iron, and dissolved manganese. In six samples analyzed for dissolved and total concentrations of selected metals, total concentrations commonly were much greater than dissolved concentrations of iron, and to a lesser degree, for arsenic, lead, copper, and manganese. Concentrations of iron above the SMCL of 300 ug/L may be more widespread in the county for particulate iron than for dissolved iron. The total arsenic concentration in one of the six samples was greater than the HA level of
Skinner, Kenneth D.
2018-05-11
Groundwater-quality samples and water-level data were collected from 36 wells in the Jerome/Gooding County area of the eastern Snake River Plain aquifer during June 2017. The wells included 30 wells sampled for the U.S. Geological Survey’s National Water-Quality Assessment project, plus an additional 6 wells were selected to increase spatial distribution. The data provide water managers with the ability for an improved understanding of groundwater quality and flow directions in the area. Groundwater-quality samples were analyzed for nutrients, major ions, trace elements, and stable isotopes of water. Quality-assurance and quality-control measures consisted of multiple blank samples and a sequential replicate sample. All data are available online at the USGS National Water Information System.
Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5
Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.
2014-01-01
Water-quality data were synthesized to evaluate factors that affect spatial and depth variability in water quality and to assess aquifer vulnerability to contaminants from geologic materials and those of human origin. The quality of shallow groundwater in the alluvial aquifer and shallow bedrock aquifer system has been adversely affected by development of agricultural and urban areas. Land use has altered the pattern and composition of recharge. Increased recharge from irrigation water has mobilized dissolved constituents and increased concentrations in the shallow groundwater. Concentrations of most constituents associated with poor or degraded water quality in shallow groundwater decreased with depth; many of these constituents are not geochemically conservative and are affected by geochemical reactions such as oxidation-reduction reactions. Groundwater age tracers provide additional insight into aquifer vulnerability and help determine if young groundwater of potentially poor quality has migrated to deeper parts of the bedrock aquifers used for drinking-water supply. Age-tracer results were used to group samples into categories of young, mixed, and old groundwater. Groundwater ages transitioned from mostly young in the water-table wells to mostly mixed in the shallowest bedrock aquifer, the Dawson aquifer, to mostly old in the deeper bedrock aquifers. Although the bedrock aquifers are mostly old groundwater of good water quality, several lines of evidence indicate that young, contaminant-bearing recharge has reached shallow to moderate depths in some areas of the bedrock aquifers. The Dawson aquifer is the most vulnerable of the bedrock aquifers to contamination, but results indicate that the older (deeper) bedrock aquifers are also vulnerable to groundwater contamination and that mixing with young recharge has occurred in some areas. Heavy pumping has caused water-level declines in the bedrock aquifers in some parts of the Denver Basin, which has the potential to enhance the transport of contaminants from overlying units. Results of this study are consistent with the existing conceptual understanding of aquifer processes and groundwater issues in the Denver Basin and add new insight into the vulnerability of the bedrock aquifers to groundwater contamination.
Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.
2010-01-01
As part of the National Water-Quality Assessment Program, the U.S. Geological Survey collected and analyzed groundwater samples during 1996-2006 from the San Antonio segment of the Edwards aquifer of central Texas, a productive karst aquifer developed in Cretaceous-age carbonate rocks. These National Water-Quality Assessment Program studies provide an extensive dataset of groundwater geochemistry and water quality, consisting of 249 groundwater samples collected from 136 sites (wells and springs), including (1) wells completed in the shallow, unconfined, and urbanized part of the aquifer in the vicinity of San Antonio (shallow/urban unconfined category), (2) wells completed in the unconfined (outcrop area) part of the regional aquifer (unconfined category), and (3) wells completed in and springs discharging from the confined part of the regional aquifer (confined category). This report evaluates these data to assess geochemical evolution processes, including local- and regional-scale processes controlling groundwater geochemistry, and to make water-quality observations pertaining to sources and distribution of natural constituents and anthropogenic contaminants, the relation between geochemistry and hydrologic conditions, and groundwater age tracers and travel time. Implications for monitoring water-quality trends in karst are also discussed. Geochemical and isotopic data are useful tracers of recharge, groundwater flow, fluid mixing, and water-rock interaction processes that affect water quality. Sources of dissolved constituents to Edwards aquifer groundwater include dissolution of and geochemical interaction with overlying soils and calcite and dolomite minerals that compose the aquifer. Geochemical tracers such as magnesium to calcium and strontium to calcium ratios and strontium isotope compositions are used to evaluate and constrain progressive fluid-evolution processes. Molar ratios of magnesium to calcium and strontium to calcium in groundwater typically increase along flow paths; results for samples of Edwards aquifer groundwater show an increase from shallow/urban unconfined, to unconfined, to confined groundwater categories. These differences are consistent with longer residence times and greater extents of water-rock interaction controlling fluid compositions as groundwater evolves from shallow unconfined groundwater to deeper confined groundwater. Results for stable isotopes of hydrogen and oxygen indicate specific geochemical processes affect some groundwater samples, including mixing with downdip saline water, mixing with recent recharge associated with tropical cyclonic storms, or mixing with recharge water than has undergone evaporation. The composition of surface water recharging the aquifer, as well as mixing with downdip water from the Trinity aquifer or the saline zone, also might affect water quality. A time-series record (1938-2006) of discharge at Comal Springs, one of the major aquifer discharge points, indicates an upward trend for nitrate and chloride concentrations, which likely reflects anthropogenic activities. A small number of organic contaminants were routinely or frequently detected in Edwards aquifer groundwater samples. These were the pesticides atrazine, its degradate deethylatrazine, and simazine; the drinking-water disinfection byproduct chloroform; and the solvent tetrachloroethene. Detection of these contaminants was most frequent in samples of the shallow/urban unconfined groundwater category and least frequent in samples of the unconfined groundwater category. Results indicate that the shallow/urban unconfined part of the aquifer is most affected by anthropogenic contaminants and the unconfined part of the aquifer is the least affected. The high frequency of detection for these anthropogenic contaminants aquifer-wide and in samples of deep, confined groundwater indicates that the entire aquifer is susceptible to water-quality changes as a result of anthropogenic activities. L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).
NASA Astrophysics Data System (ADS)
Khan, Arina; Khan, Haris Hasan; Umar, Rashid
2017-12-01
In this study, groundwater quality of an alluvial aquifer in the western Ganges basin is assessed using a GIS-based groundwater quality index (GQI) concept that uses groundwater quality data from field survey and laboratory analysis. Groundwater samples were collected from 42 wells during pre-monsoon and post-monsoon periods of 2012 and analysed for pH, EC, TDS, Anions (Cl, SO4, NO3), and Cations (Ca, Mg, Na). To generate the index, several parameters were selected based on WHO recommendations. The spatially variable grids of each parameter were modified by normalizing with the WHO standards and finally integrated into a GQI grid. The mean GQI values for both the season suggest good groundwater quality. However, spatial variations exist and are represented by GQI map of both seasons. This spatial variability was compared with the existing land-use, prepared using high-resolution satellite imagery available in Google earth. The GQI grids were compared to the land-use map using an innovative GIS-based method. Results indicate that the spatial variability of groundwater quality in the region is not fully controlled by the land-use pattern. This probably reflects the diffuse nature of land-use classes, especially settlements and plantations.
Zhang, Qianqian; Wang, Huiwei; Wang, Yanchao; Yang, Mingnan; Zhu, Liang
2017-07-01
Deterioration in groundwater quality has attracted wide social interest in China. In this study, groundwater quality was monitored during December 2014 at 115 sites in the Hutuo River alluvial-pluvial fan region of northern China. Results showed that 21.7% of NO 3 - and 51.3% of total hardness samples exceeded grade III of the national quality standards for Chinese groundwater. In addition, results of gray relationship analysis (GRA) show that 64.3, 10.4, 21.7, and 3.6% of samples were within the I, II, IV, and V grades of groundwater in the Hutuo River region, respectively. The poor water quality in the study region is due to intense anthropogenic activities as well as aquifer vulnerability to contamination. Results of principal component analysis (PCA) revealed three major factors: (1) domestic wastewater and agricultural runoff pollution (anthropogenic activities), (2) water-rock interactions (natural processes), and (3) industrial wastewater pollution (anthropogenic activities). Using PCA and absolute principal component scores-multivariate linear regression (APCS-MLR), results show that domestic wastewater and agricultural runoff are the main sources of groundwater pollution in the Hutuo River alluvial-pluvial fan area. Thus, the most appropriate methods to prevent groundwater quality degradation are to improve capacities for wastewater treatment and to optimize fertilization strategies.
NASA Astrophysics Data System (ADS)
Shanahan, M.; Wilson, A. M.; Smith, E. M.
2017-12-01
Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.
D.S. Segal; D.G. Neary; G.R. Best; J.L. Michael
1987-01-01
Groundwater levels and associated water quality parameters were studied in a young slash pine (Pinus elliottii Engelm.) plantation following ditching, fertilization, and herbicide application. Drainage ditches surrounding each watershed significantly lowered groundwater levels up to 45 m from the ditch for mean and high water table conditions....
Bobay, K.E.
1988-01-01
The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons.
Field trip guidebook to the hydrogeology of the Rock-Fox River basin of Southeastern Wisconsin
Holt, C. L. R.; Cotter, R.D.; Green, J.H.; Olcott, P.G.
1970-01-01
On this trip we will examine some hydrogeologic characteristics of glacial features and emphasize ground-water management within the Rock-Fox River basin. Field stops will include the hydrogeology of a classical glacial terrane--the Kettle moraine--and the management of ground-water resources for industrial, municipal, agricultural, and fish-culture purposes. Descriptions of the geology, soils, water availability and characteristics, water quality, water use, and water problems within the basin are given in the accompanying U.S. Geological Survey Hydrologic Atlas (HA-360). This atlas is a product of the cooperative program of University Extension--the University of Wisconsin Geological and Natural History Survey.
Groundwater quality in the glacial aquifer system, United States
Stackelberg, Paul E.
2017-12-07
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The glacial aquifer system constitutes one of the important areas being evaluated.
Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth
2012-01-01
Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.
Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface
NASA Astrophysics Data System (ADS)
van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype
2014-05-01
Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone, with Fe(II) oxidation taking place in the soil surrounding the ditch during summer and in the surface water during winter. The dynamics in Fe(II) oxidation did not affect the dissolved P concentrations. The dissolved P concentrations of the in-stream reservoirs water were an order of magnitude lower than observed in the groundwater and have no seasonal trend. Our data showed preferential binding of P during initial stage of the Fe(II) oxidation process, indicating the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at the groundwater-surface water interface is an important geochemical mechanism in the transformation of dissolved phosphate to particulate phosphate and therefore a major control on the P retention in natural waters that drain anaerobic aquifers.
NASA Astrophysics Data System (ADS)
Han, Dongmei; Zhou, Tiantian
2018-04-01
Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.
Kozar, Mark D.; Kahle, Sue C.
2013-01-01
This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data collected as part of long-term water-level monitoring networks.
Water pollution in Pakistan and its impact on public health--a review.
Azizullah, Azizullah; Khattak, Muhammad Nasir Khan; Richter, Peter; Häder, Donat-Peter
2011-02-01
Water pollution is one of the major threats to public health in Pakistan. Drinking water quality is poorly managed and monitored. Pakistan ranks at number 80 among 122 nations regarding drinking water quality. Drinking water sources, both surface and groundwater are contaminated with coliforms, toxic metals and pesticides throughout the country. Various drinking water quality parameters set by WHO are frequently violated. Human activities like improper disposal of municipal and industrial effluents and indiscriminate applications of agrochemicals in agriculture are the main factors contributing to the deterioration of water quality. Microbial and chemical pollutants are the main factors responsible exclusively or in combination for various public health problems. This review discusses a detailed layout of drinking water quality in Pakistan with special emphasis on major pollutants, sources of pollution and the consequent health problems. The data presented in this review are extracted from various studies published in national and international journals. Also reports released by the government and non-governmental organizations are included. Copyright © 2010 Elsevier Ltd. All rights reserved.
Groundwater quality from a part of Prakasam District, Andhra Pradesh, India
NASA Astrophysics Data System (ADS)
Subba Rao, N.
2018-03-01
Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ( {HCO}3^{ - } ), chloride (Cl-), sulphate ( {SO}4^{2 - } ), nitrate ( {NO}3^{ - } ) and fluoride (F-). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+- {HCO}3^{ - } and Na+-Cl- facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, {HCO}3^{ - } , Cl-, {SO}4^{2 - } , {NO}3^{ - } and F-) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly's ratio were computed and USSL, Wilcox and Doneen's diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, {HCO}3^{ - } , Cl- and {SO}4^{2 - } were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.
Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 860-square-mile Madera-Chowchilla study unit (MADCHOW) was investigated in April and May 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within MADCHOW, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 35 wells in Madera, Merced, and Fresno Counties. Thirty of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and five more were selected to provide additional sampling density to aid in understanding processes affecting groundwater quality (flow-path wells). Detection summaries in the text and tables are given for grid wells only, to avoid over-representation of the water quality in areas adjacent to flow-path wells. Groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], low-level 1,2-dibromo-3-chloropropane [DBCP] and 1,2-dibromoethane [EDB], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA], perchlorate, and low-level 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (uranium isotopes, and gross alpha and gross beta particle activities). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 300 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at approximately 11 percent of the wells sampled for each analysis, and the results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from MADCHOW wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides
Spatio-temporal variation of stream-aquifer interaction: Effect of a weir construction in Korea
NASA Astrophysics Data System (ADS)
Lee, Hyeonju; Koo, Min-Ho; Kim, Kisu; Kim, Yongcheol
2015-04-01
The Four Major Rivers Restoration Project was conducted to secure sufficient water resources, introduce comprehensive flood control measures, and improve water quality while restore the river ecosystem in Korea. The dredging of river bed and the installation of 16 weirs were done in Han, Geum, Yeongsan, and Nakdong rivers from late 2010 to early 2012 as a part of the project. Groundwater data obtained from 213 groundwater monitoring wells near the four major rivers were used to analyze the impacts of weir construction on the nearby groundwater flow system. The groundwater level and chemical characteristics were analyzed to investigate how the groundwater flow system and water quality changed after the weir construction. The results showed that groundwater level rose immediately following the rise of stream stage after the weir construction. Also, the hydrologic condition of the stream in some upland of the weirs was changed from a gaining to a losing stream. Consequently, the direction of groundwater flow was changed from perpendicular to parallel to the stream, and it swapped the groundwater in the downstream of the weir for the water recharged from the stream. Considering the results, some groundwater quality is expected to be changed and become similar to that of the stream, although the change has been not observed yet. Therefore, both further monitoring of the groundwater quality and hydrogeochemical analysis are required for quantitatively evaluating the effect of the weir.
Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.
2005-01-01
The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling frequency, and a simple water-table level observation well network.
Scanlon, Bridget R.; Stonestrom, David A.; Reedy, Robert C.; Leaney, Fred W.; Gates, John; Cresswell, Richard G.
2009-01-01
Unsaturated zone salt reservoirs are potentially mobilized by increased groundwater recharge as semiarid lands are cultivated. This study explores the amounts of pore water sulfate and fluoride relative to chloride in unsaturated zone profiles, evaluates their sources, estimates mobilization due to past land use change, and assesses the impacts on groundwater quality. Inventories of water‐extractable chloride, sulfate, and fluoride were determined from borehole samples of soils and sediments collected beneath natural ecosystems (N = 4), nonirrigated (“rain‐fed”) croplands (N = 18), and irrigated croplands (N = 6) in the southwestern United States and in the Murray Basin, Australia. Natural ecosystems contain generally large sulfate inventories (7800–120,000 kg/ha) and lower fluoride inventories (630–3900 kg/ha) relative to chloride inventories (6600–41,000 kg/ha). Order‐of‐magnitude higher chloride concentrations in precipitation and generally longer accumulation times result in much larger chloride inventories in the Murray Basin than in the southwestern United States. Atmospheric deposition during the current dry interglacial climatic regime accounts for most of the measured sulfate in both U.S. and Australian regions. Fluoride inventories are greater than can be accounted for by atmospheric deposition in most cases, suggesting that fluoride may accumulate across glacial/interglacial climatic cycles. Chemical modeling indicates that fluorite controls fluoride mobility and suggests that water‐extractable fluoride may include some fluoride from mineral dissolution. Increased groundwater drainage/recharge following land use change readily mobilized chloride. Sulfate displacement fronts matched or lagged chloride fronts by up to 4 m. In contrast, fluoride mobilization was minimal in all regions. Understanding linkages between salt inventories, increased recharge, and groundwater quality is important for quantifying impacts of anthropogenic activities on groundwater quality and is required for remediating salinity problems.
Impacts of a Rural Subdivision on Groundwater Quality: Results of Long-Term Monitoring.
Rayne, Todd W; Bradbury, Kenneth R; Krause, Jacob J
2018-03-30
A rural subdivision in south central Wisconsin was instrumented with monitoring wells and lysimeters before, during, and after its construction to examine the impacts of the unsewered subdivision on groundwater quality and quantity. Prior to construction, the 78-acre (32 ha) site was farmland. Sixteen homes were constructed beginning in 2003. Initial monitoring from 2002 to 2005 showed that groundwater beneath the site had been impacted by previous agricultural use, with nitrate-N values as high as 30 mg/L and some detections of the herbicide atrazine. Our 12-year study shows that the transition from agricultural to residential land use has changed groundwater quality in both negative and positive ways. Although groundwater elevations showed typical seasonal fluctuations each year, there were no measurable changes in groundwater levels or general flow directions during the 12-year study period. Chloride values increased in many wells, possibly as a result of road salting or water softener discharge. Nitrate concentrations varied spatially and temporally over the study period, with some initial concentrations substantially above the drinking water standard. In some wells, nitrate and atrazine levels have declined substantially since agriculture ceased. However, atrazine was still present at trace concentrations throughout the site in 2014. Wastewater tracers show there are small but detectable impacts from septic effluent on groundwater quality. Particle traces based on a groundwater flow model are consistent with the hypothesis that septic leachate has impacted groundwater quality. © 2018, National Ground Water Association.
Moreland, Joe A.; Wood, Wayne A.
1982-01-01
Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system.Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant.Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts.
Groundwater Ecosystems Vary with Land Use across a Mixed Agricultural Landscape.
Korbel, K L; Hancock, P J; Serov, P; Lim, R P; Hose, G C
2013-01-01
Changes in surface land use may threaten groundwater quality and ecosystem integrity, particularly in shallow aquifers where links between groundwater and surface activities are most intimate. In this study we examine the response of groundwater ecosystem to agricultural land uses in the shallow alluvial aquifer of the Gwydir River valley, New South Wales, Australia. We compared groundwater quality and microbial and stygofauna assemblages among sites under irrigated cropping, non-irrigated cropping and grazing land uses. Stygofauna abundance and richness was greatest at irrigated sites, with the composition of the assemblage suggestive of disturbance. Microbial assemblages and water quality also varied with land use. Our study demonstrates significant differences in the composition of groundwater ecosystems in areas with different surface land use, and highlights the utility of groundwater biota for biomonitoring, particularly in agricultural landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Groundwater quality in the Rio Grande aquifer system, southwestern United States
Musgrove, MaryLynn; Bexfield, Laura M.
2017-12-07
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Rio Grande aquifer system constitutes one of the important areas being evaluated.
Groundwater quality in the Cambrian-Ordovician aquifer system, midwestern United States
Stackelberg, Paul E.
2017-12-07
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Cambrian-Ordovician aquifer system constitutes one of the important areas being evaluated.
Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards
NASA Astrophysics Data System (ADS)
Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.
2011-12-01
We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered as a source of safe and sustainable water supply. In such a situation, a number of scientists consider that the population's water supply must be achieved through a more comprehensive use of fresh and even subsaline groundwater resources from the coastal aquifers. The 2004 tsunami in the Indian Ocean caused imbalance in groundwater-surface water interactions and a disaster affecting thousands of kilometers of coastal zone in SE Asia. Many coastal wetlands were affected in the short term by the large inflow of salt seawater and littoral sediment deposited during the tsunami, and in the longer-term by changes in their hydrogeology caused by changes to coastlines and damage to sea-defenses. Many water quality and associated problems were generated by the tsunami. The tsunami has created imbalance in groundwater-surface water interactions and an accelerating process of salt-water intrusion and fresh-water contaminations in affected regions that now require drastic remediation measures.
Yang, Yonggang; Guo, Tingting; Jiao, Wentao
2018-06-01
There is less research on the hydrological system and its destruction processes mechanism in the mining areas, especially combined application of isotope technology and chemical signals, which is a key scientific problem that need to be solved. This study takes Jinci spring area in Shanxi as a case study. It is based on the data of hydrology and mining condition from 1954 to 2015, combining monitoring experiments, O 18 , D, S 34 and N 15 tracing, chemical and model simulation. This study investigates the hydrological regularity and impacts of mining activities on water quantity and quality, and reveals the destruction process of hydrological system. The results show that: (1) Water chemical type shows an evolutionary trend of HCO 3 - -Ca 2+ -Mg 2+ →SO 4 2- -HCO 3 - -Ca 2+ -Mg 2+ →SO 4 2- -Ca 2+ -Mg 2+ , due to the influence of exploitation and fault zones. Isotope tracer shows that mine pit water is formed by a mixture of pore water, karst water and surface water. (2) Although precipitation and seepage have a certain impact on the reducing of groundwater quantity, over-exploitation of water resource is still the main reason for reducing of groundwater quantity. Under the conditions of keeping the exploitation intensity at the current level or reducing it by 10%, groundwater level shows a declining trend. Under the condition of reducing it by 30%, groundwater level starts to rise up. When reducing by 50%, groundwater level reaches its highest point. Coalmining changes the runoff, recharge and discharge paths. (3) From 1985 to 2015, Water quality in the mining area is worsening. Ca 2+ increases by 35.30%, SO 4 2- increases by 52.80%, and TDS (Total Dissolved Solid) increases by 67.50%. Nitrates come from the industrial and domestic wastewater, which is generated by mining. The percentage of groundwater coming from gypsum dissolusion is 67.51%, and the percentage from coal measure strata water is 34.49%. The water qualities of river branches are generally deteriorated. Copyright © 2018 Elsevier Ltd. All rights reserved.
A methodology for space-time classification of groundwater quality.
Passarella, G; Caputo, M C
2006-04-01
Safeguarding groundwater from civil, agricultural and industrial contamination is matter of great interest in water resource management. During recent years, much legislation has been produced stating the importance of groundwater as a source for drinking water supplies, underlining its vulnerability and defining the required quality standards. Thus, schematic tools, able to characterise the quality and quantity of groundwater systems, are of very great interest in any territorial planning and/or water resource management activity. This paper proposes a groundwater quality classification method which has been applied to a real aquifer, starting from several studies published by the Italian National Hydrogeologic Catastrophe Defence Group (GNDCI). The methodology is based on the concentration values of several parameters used as indexes of the natural hydro-chemical water condition and of potential man-induced modifications of groundwater quality. The resulting maps, although representative of the quality, do not include any information on its evolution in time. In this paper, this "stationary" classification method has been improved by crossing the quality classes with three indexes of temporal behaviour during recent years. It was then applied to data from monitoring campaigns, performed in spring and autumn, from 1990 to 1996, in the plain of Modena aquifer (central Italy). The results are reported in the form of space-time classification table and maps.
NASA Astrophysics Data System (ADS)
Brantley, S. L.; Wendt, A.; Sowers, T. A.
2016-12-01
The recent controversies concerning the role of hydraulic fracturing in impacting water quality in the United States document that decision-making must include both scientists and nonscientists. The most common water quality problem documented in Pennsylvania with respect to shale gas well development is the occasional migration of methane into private groundwater wells. Assessing the rate of migration is difficult and has led to controversial estimates. We explore the use of nonscientists in helping to collect data from streams for comparison to groundwater data collected by government and academic scientists. Stream waters in upland landscapes generally act as collectors for upwelling groundwater, including both natural and anthropogenic methane. Collection of stream water for methane analysis is simple and robust and can be completed by nonscientists throughout the state. We have discovered several locations in the state where new or legacy gas or oil wells are leaking methane into aquifers and into streams. Methane also seeps out of landfills and from natural sources. We present stream methane data from across the oil and gas development region in Pennsylvania, including sites of release of biogenic gas, natural thermogenic gas, legacy oil/gas well leakage, shale gas well leakage, and landfill leakage, and we assess the natural background of methane in stream water in the state. In some locations we compare methane in streams to methane in groundwater. As the state with the oldest oil wells in the U.S.A., Pennsylvania is a natural laboratory to understand not only the science of methane migration but also how to incorporate citizens into strategies to understand water quality impacts related to hydrocarbon development.
Validation of The Scenarios Designed For The Eu Registration of Pesticides
NASA Astrophysics Data System (ADS)
Piñeros Garcet, J. D.; de Nie, D.; Vanclooster, M.; Tiktak, A.; Klein, M.
As part of recent efforts to harmonise registration procedures for pesticides within the EU, a set of uniform principles were developed, setting out the detailed evaluation and decision making criteria for pesticide registration. The EU directive 91/414/EEC places great importance on the use of validated models to calculate Predicted Envi- ronmental Concentrations (PECs), as a basis for assessing the environmental risks and health effects. To be used in a harmonised registration process, the quality of PEC modelling needs to be assured. Quality assurance of mathematical modelling implies, amongst others, the validation of the environmental modelling scenarios. The FOrum for the CO-ordination of pesticide fate models and their USe (FOCUS), is the cur- rent platform where common modelling methodologies are designed and subjected for approval to the European authorities. In 2000, the FOCUS groundwater scenarios working group defined the procedures for realising tier 1 PEC groundwater calcula- tions for the active substances of plant protection products at the pan-european level. The procedures and guidelines were approved by the Standing Committee on Plant Health, and are now recommended for tier 1 PEC groundwater calculations in the reg-istration dossier. Yet, the working group also identified a range of uncertainties related to the validity of the present leaching scenarios. To mitigate some of these problems,the EU R&D project APECOP was designed and approved for support in the frame-work of the EU-FP5-Quality of Life Programme. One of the objectives of the project is to evaluate the appropriateness of the current Tier 1 groundwater scenarios. In this paper, we summarise the methodology and results of the scenarios validation.
Validation of The Scenarios Designed For The Eu Registration of Pesticides
NASA Astrophysics Data System (ADS)
Piñeros Garcet, J. D.; de Nie, D.; Vanclooster, M.; Tiktak, A.; Klein, M.; Jones, A.
As part of recent efforts to harmonise registration procedures for pesticides within the EU, a set of uniform principles were developed, setting out the detailed evaluation and decision making criteria for pesticide registration. The EU directive 91/414/EEC places great importance on the use of validated models to calculate Predicted Envi- ronmental Concentrations (PECs), as a basis for assessing the environmental risks and health effects. To be used in a harmonised registration process, the quality of PEC modelling needs to be assured. Quality assurance of mathematical modelling implies, amongst others, the validation of the environmental modelling scenarios. The FOrum for the CO-ordination of pesticide fate models and their USe (FOCUS), is the cur- rent platform where common modelling methodologies are designed and subjected for approval to the European authorities. In 2000, the FOCUS groundwater scenarios working group defined the procedures for realising tier 1 PEC groundwater calcula- tions for the active substances of plant protection products at the pan-european level. The procedures and guidelines were approved by the Standing Committee on Plant Health, and are now recommended for tier 1 PEC groundwater calculations in the reg- istration dossier. Yet, the working group also identified a range of uncertainties related to the validity of the present leaching scenarios. To mitigate some of these problems, the EU R&D project APECOP was designed and approved for support in the frame- work of the EU-FP5-Quality of Life Programme. One of the objectives of the project is to evaluate the appropriateness of the current Tier 1 groundwater scenarios. In this paper, we summarise the methodology and results of the scenarios validation.
NASA Astrophysics Data System (ADS)
Azizur Rahman, M.; Rusteberg, Bernd; Sauter, Martin
2010-05-01
The population of Dhaka City is presently about 12 million and according to present trends in population growth, that number will most likely increase to 17.2 million by the year 2025. A serious water crisis is expected due to the extremely limited quality and quantity of water resources in the region. Previous studies have shown that the current trend in groundwater resource development is non-sustainable due to over-exploitation of the regional aquifer system, resulting in rapidly decreasing groundwater levels of about 2 to 3 meters per year. Today, annual groundwater extraction clearly exceeds natural groundwater recharge. New water management strategies are needed to guarantee future generations of Dhaka City a secured and sustained water supply as well as sustainable development of the city. The implementation of groundwater artificial recharge (AR) is one potential measure. As the first step towards a new water management strategy for Dhaka City, the authors report on the hydrogeological conditions of the greater Dhaka region and from this are able to present the location of potential recharge sites and identify appropriate recharge technologies for AR implementation. The aquifers of greater Dhaka can be grouped in three major categories: Holocene Deposit, Pleistocene Deposit and Plio-Pleistocene Deposit. The aquifers are generally thick and multilayered with relatively high transmissivity and storage coefficients. AR is considered feasible due to the fact these aquifers are alluvium deposit aquifers which characteristically have moderate to high hydraulic conductivity. Low costs for recovery of recharged water and large recharge volume capacity are generally associated with aquifers of unconsolidated sediments. Spatial analysis of the region has shown that Karaniganj, Kotoali, Savar, Dhamrai, Singair upazila, which are situated in greater Dhaka region and close to Dhaka City, could serve as recharge sites to the subsurface by pond infiltration technique. A study involving the use of a 3-D mathematical model shows that the abstraction or recharge in the area within and around Dhaka City does not affect the groundwater level below the city. Therefore, in order to improve the groundwater level, artificial groundwater recharge directly at the city area would be mostly appropriate. As the thickness of the surface impermeable layer varies from 5 m to 45 m, the combination of infiltration and injection technology would be a proper choice. Detailed studies are required using the most appropriate state of the art spatial analysis to support the final selection and ranking of suitable locations for the AR facilities, according to flood risk, urbanization, underground characteristics, water sources, AR technology and later use of the recovered water. Groundwater quality data reveal that the upper aquifer below Dhaka City contains relatively high concentrations of dissolved ions, quite variable in space. The ground water is predominantly of Ca-Mg-HCO3 type. Cation exchange and oxidation may enhance the biogeochemical processes in the aquifer under the existing prevailing conditions. Many reports conclude that that the groundwater chemistry of the upper aquifer has been influenced by various anthropogenic processes, showing wide variations of groundwater quality depending on the area, which would complicate the implementation of AR projects. The preliminary evaluation of the potential for AR implementation, considering environmental and social impacts, as well as the available water sources for infiltration and injection (conventional or non-conventional), AR may be considered a viable response measure with regards to the problems Dhaka City is facing. Without the implementation of groundwater artificial recharge or similar measures, groundwater availability and groundwater quality will further decrease and serious water crisis are to be expected. Measures to avoid groundwater contamination must also be taken to complement the benefits provided by AR implementation.
Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area.
Rabeiy, Ragab ElSayed
2017-04-04
The continuous growth and development of population need more fresh water for drinking, irrigation, and domestic in arid countries like Egypt. Evaluation the quality of groundwater is an essential study to ensure its suitability for different purposes. In this study, 812 groundwater samples were taken within the middle area of Upper Egypt (Sohag Governorate) to assess the quality of groundwater for drinking and irrigation purposes. Eleven water parameters were analyzed at each groundwater sample (Na + , K + , Ca 2+ , Mg 2+ , HCO 3 - SO 4 2- , Fe 2+ , Mn 2+ , Cl - , electrical conductivity, and pH) to exploit them in water quality evaluation. A classical statistics were applied for the raw data to examine the distribution of physicochemical parameters in the investigated area. The relationship between groundwater parameters was tested using the correlation coefficient where a strong relationship was found between several water parameters such as Ca 2+ and Cl - . Water quality index (WQI) is a mathematical model used to transform many water parameters into a single indicator value which represents the water quality level. Results of WQI showed that 20% of groundwater samples are excellent, 75% are good for drinking, and 7% are very poor water while only 1% of samples are unsuitable for drinking. To test the suitability of groundwater for irrigation, three indices are used; they are sodium adsorption ration (SAR), sodium percentage (Na%), and permeability index (PI). For irrigation suitability, the study proved that most sampling sites are suitable while less than 3% are unsuitable for irrigation. The spatial distribution of the estimated values of WQI, SAR, Na%, PI, and each groundwater parameter was spatially modeled using GIS.
NASA Astrophysics Data System (ADS)
Shuler, C. K.; El-Kadi, A. I.; Dulaiova, H.; Glenn, C. R.; Fackrell, J.
2015-12-01
The quality of municipal groundwater supplies on Tutuila, the main island in American Samoa, is currently in question. A high vulnerability for contamination from surface activities has been recognized, and there exists a strong need to clearly identify anthropogenic sources of pollution and quantify their influence on the aquifer. This study examines spatial relationships and time series measurements of nutrients and other tracers to identify predominant pollution sources and determine the water quality impacts of the island's diverse land uses. Elevated groundwater nitrate concentrations are correlated with areas of human development, however, the mixture of residential and agricultural land use in this unique village based agrarian setting makes specific source identification difficult using traditional geospatial analysis. Spatial variation in anthropogenic impact was assessed by linking NO3- concentrations and δ15N(NO3) from an extensive groundwater survey to land-use types within well capture zones and groundwater flow-paths developed with MODFLOW, a numerical groundwater model. Land use types were obtained from high-resolution GIS data and compared to water quality results with multiple-regression analysis to quantify the impact that different land uses have on water quality. In addition, historical water quality data and new analyses of δD and δ18O in precipitation, groundwater, and mountain-front recharge waters were used to constrain the sources and mechanisms of contamination. Our analyses indicate that groundwater nutrient levels on Tutuila are controlled primarily by residential, not agricultural activity. Also a lack of temporal variation suggests that episodic pollution events are limited to individual water sources as opposed to the entire aquifer. These results are not only valuable for water quality management on Tutuila, but also provide insight into the sustainability of groundwater supplies on other islands with similar hydrogeology and land use history.
NASA Astrophysics Data System (ADS)
Massuel, Sylvain; Riaux, Jeanne
2017-09-01
In many parts of the world, groundwater users regularly face serious resource-depletion threat. At the same time, "groundwater overexploitation" is massively cited when discussing groundwater management problems. A kind of standard definition tends to relegate groundwater overexploitation only as a matter of inputs and outputs. However, a thorough state-of-the-art analysis shows that groundwater overexploitation is not only a matter of hydrogeology but also a qualification of exploitation based on political, social, technical, economic or environmental criteria. Thus, an aquifer with no threat to groundwater storage can rightly be considered as overexploited because of many other prejudicial aspects. So, why is groundwater overexploitation so frequently only associated with resource-depletion threat and so rarely related to other prejudicial aspects? In that case, what really lies behind the use of the overexploitation concept? The case of the Kairouan plain aquifer in central Tunisia was used to analyze the way that the overexploitation message emerges in a given context, how groundwater-use stakeholders (farmers, management agencies and scientists) each qualify the problem in their own way, and how they see themselves with regard to the concept of overexploitation. The analysis shows that focusing messages on overexploitation conceals the problems encountered by the various stakeholders: difficulties accessing water, problems for the authorities in controlling the territory and individual practices, and complications for scientists when qualifying hydrological situations. The solutions put forward to manage overexploitation are at odds with the problems that arise locally, triggering tensions and leading to misunderstandings between the parties involved.
NASA Astrophysics Data System (ADS)
Buvaneshwari, Sriramulu; Riotte, Jean; Ruiz, Laurent; Sekhar, Muddu; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Braun, Jean Jacques; Mohan Kumar, Mandalagiri S.
2017-04-01
Irrigated agriculture has large impacts on groundwater resources, both in terms of quantity and quality: when combined with intensive chemical fertilizer application, it can lead to progressive groundwater salinization. Mapping the spatial heterogeneity of groundwater quality is not only essential for assessing the impacts of different types of agricultural systems but also for identifying hotspots of water quality degradation that are posing a risk to human and ecosystem health. In peninsular India the development of minor irrigation led to high density of borewells which constitute an ideal situation for studying the heterogeneity of groundwater quality. The annual groundwater abstraction reaches 400 km3, which leads to depletion of the resource and degradation of water quality. In the agricultural Berambadi catchment (84km2, Southern India, part of the environmental observatory BVET/ Kabini CZO) the groundwater table level and chemistry are monitored in 200 tube wells. We recently demonstrated that in this watershed, irrigation history and groundwater depletion can lead to hot spots of NO3 concentration in groundwater, up to 360 ppm (Buvaneshwari et al., 2017). Here we focus on the respective roles of evapotranspiration, groundwater recycling and chemical fertilizer application on chlorine concentration [Cl] in groundwater. Groundwater [Cl] in Berambadi spans over two orders of magnitude with hotspots up to 380 ppm. Increase in groundwater [Cl] results from evapotranspiration and recycling, that concentrates the rain Cl inputs ("Natural [Cl]") and/or from KCl fertilization ("Anthropogenic [Cl]"). To quantify the origin of Cl in each tube well, we used a novel method based on (1) a reference element, sodium, originating only from atmosphere and Na-plagioclase weathering and (2) data from a nearby pristine site, the Mule Hole forested watershed (Riotte et al., 2014). In the forested watershed, the ranges of Cl concentration and Na/Cl molar ratio are 9-23 ppm and 2.5-6, respectively, while in Berambadi Na/Cl drops down to 0.3 due to the addition of KCl-chlorine. Natural [Cl] estimated in Berambadi groundwater was on average 44 ppm (from 8 to 170 ppm). This means that on average, evapotranspiration and recycling in Berambadi groundwater was 2 to 4 times greater than evapotranspiration in the nearby forest. Hot spots (8 to 20 times forest ET) were all located along the stream, associated with Vertisols and long irrigation history. Anthropogenic [Cl] ranged from 0 to 270 ppm, accounting for up to 90% of the total Cl in some wells. Hotspots were also associated with long irrigation history, however extreme values were found in the severely depleted groundwater area, associated with the nitrate hotspot. Our approach allowed to quantify the respective contributions of groundwater recycling and chemical fertilizer inputs to the progressive salinization of groundwater. Using the AICHA model coupling the crop model STICS and a groundwater model under different climate scenarios, we show that the development of contamination hot spots can be mitigated by adequate management options. Keywords: Groundwater quality; salinization; agriculture; hot spots
Shelton, Jennifer L.; Fram, Miranda S.; Munday, Cathy M.; Belitz, Kenneth
2010-01-01
Groundwater quality in the approximately 25,500-square-mile Sierra Nevada study unit was investigated in June through October 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Sierra Nevada study was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in the study unit, and to facilitate statistically consistent comparisons of groundwater quality throughout California. The primary aquifer systems (hereinafter, primary aquifers) are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for public and community drinking-water supplies. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. In the Sierra Nevada study unit, groundwater samples were collected from 84 wells (and springs) in Lassen, Plumas, Butte, Sierra, Yuba, Nevada, Placer, El Dorado, Amador, Alpine, Calaveras, Tuolumne, Madera, Mariposa, Fresno, Inyo, Tulare, and Kern Counties. The wells were selected on two overlapping networks by using a spatially-distributed, randomized, grid-based approach. The primary grid-well network consisted of 30 wells, one well per grid cell in the study unit, and was designed to provide statistical representation of groundwater quality throughout the entire study unit. The lithologic grid-well network is a secondary grid that consisted of the wells in the primary grid-well network plus 53 additional wells and was designed to provide statistical representation of groundwater quality in each of the four major lithologic units in the Sierra Nevada study unit: granitic, metamorphic, sedimentary, and volcanic rocks. One natural spring that is not used for drinking water was sampled for comparison with a nearby primary grid well in the same cell. Groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA] and perchlorate), naturally occurring inorganic constituents (nutrients, major ions, total dissolved solids, and trace elements), and radioactive constituents (radium isotopes, radon-222, gross alpha and gross beta particle activities, and uranium isotopes). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen and oxygen in water, stable isotopes of carbon, carbon-14, strontium isotopes, and tritium), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at approximately 10 percent of the wells sampled for each analysis, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection, handling, and analytical procedures was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples were within acceptable ranges, with few exceptions. Matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory benchmarks apply to finished drinking water that is served to the consumer, not to untre
40 CFR 265.91 - Ground-water monitoring system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sufficient to yield ground-water samples that are: (i) Representative of background ground-water quality in... not required provided that provisions for sampling upgradient and downgradient water quality will... perforated, and packed with gravel or sand where necessary, to enable sample collection at depths where...
Assessment of Groundwater quality in Krishnagiri and Vellore Districts in Tamil Nadu, India
NASA Astrophysics Data System (ADS)
Shanmugasundharam, A.; Kalpana, G.; Mahapatra, S. R.; Sudharson, E. R.; Jayaprakash, M.
2017-07-01
Groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural and industrial purposes. The suitability of groundwater for drinking and irrigation has been assessed in north and eastern part of Krishnagiri district, South-western part of Vellore district and contiguous with Andhra Pradesh states, India. A total of 31 groundwater samples were collected in the study area. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, {HCO}3^{ - }, Cl-, {SO}4^{2 - }, Ca2+, Mg2+, Na+ and K+. The dominant cations are in the order of Na+ > K+ > Ca2+ > Mg2+ while the dominant anions have the trends of Cl- > {HCO}3^{ - } > {SO}4^{2 - } > CO3. The quality of the water is evaluated using Wilcox diagram and the results reveals that most of the samples are found to be suitable for irrigation. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose.
The comparison of rapid bioassays for the assessment of urban groundwater quality.
Dewhurst, R E; Wheeler, J R; Chummun, K S; Mather, J D; Callaghan, A; Crane, M
2002-05-01
Groundwater is a complex mixture of chemicals that is naturally variable. Current legislation in the UK requires that groundwater quality and the degree of contamination are assessed using chemical methods. Such methods do not consider the synergistic or antagonistic interactions that may affect the bioavailability and toxicity of pollutants in the environment. Bioassays are a method for assessing the toxic impact of whole groundwater samples on the environment. Three rapid bioassays, Eclox, Microtox and ToxAlert, and a Daphnia magna 48-h immobilisation test were used to assess groundwater quality from sites with a wide range of historical uses. Eclox responses indicated that the test was very sensitive to changes in groundwater chemistry; 77% of the results had a percentage inhibition greater than 90%. ToxAlert, although suitable for monitoring changes in water quality under laboratory conditions, produced highly variable results due to fluctuations in temperature and the chemical composition of the samples. Microtox produced replicable results that correlated with those from D. magna tests.
There's Something in the Water
ERIC Educational Resources Information Center
Smith, Steven; Roemmele, Christopher; Miller, Bridget T.; Frisbee, Marty D.
2018-01-01
Groundwater contamination is a serious environmental problem, given that all living things depend on this essential resource. Groundwater represents less than 1% of all water found on Earth, but nearly 90% of the freshwater used comes from groundwater (USGS 2016). The problem-based activity described in this article actively engages students in…
Groundwater quality in the Piedmont and Blue Ridge crystalline-rock aquifers, eastern United States
Lindsey, Bruce
2017-12-07
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Piedmont and Blue Ridge crystalline-rock aquifers constitute one of the important areas being evaluated.
Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 653-square-mile South Coast Interior Basins (SCI) study unit was investigated from August to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to Legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater-Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater used as public supply for municipalities in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). SCI was the 27th study unit to be sampled as part of the GAMA Priority Basins Project. This study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies within SCI, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 54 wells within the three study areas [Livermore, Gilroy, and Cuyama] of SCI in Alameda, Santa Clara, San Benito, Santa Barbara, Ventura, and Kern Counties. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds], constituents of special interest [perchlorate and N-nitrosodimethylamine (NDMA)], naturally occurring inorganic constituents [trace elements, nutrients, major and minor ions, silica, total dissolved solids (TDS), and alkalinity], and radioactive constituents [gross alpha and gross beta radioactivity and radon-222]. Naturally occurring isotopes [stable isotopes of hydrogen, oxygen, and carbon, and activities of tritium and carbon-14] and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 288 constituents and water-quality indicators (field parameters) were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) each were collected at approximately 4-11 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data obtained from the groundwater samples. Differences between replicate samples generally were less than 10 percent relative standard deviation, indicating acceptable analytical reproducibility. Matrix spike recoveries were within the acceptable range (70 to 130 percent) for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and/or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH), and to nonregulatory thresholds established for aesthetic and technical concerns by CDPH. Comparisons between data collected for this study and thresholds for drinking water are for illustrative purposes only, and are not indicative of complia
Fitzgerald, S.A.
1997-01-01
This report contains the quality control results of the Western Lake Michigan Drainages study unit of the National Water Quality Assessment Program. Quality control samples were collected in the same manner and contemporaneously with environmental samples during the first highintensity study phase in the unit (1992 through 1995) and amounted to approximately 15 percent of all samples collected. The accuracy and precision of hundreds of chemical analyses of surface and ground-water, bed sediment, and tissue was determined through the collection and analysis of field blanks, field replicates and splits, matrix spikes, and surrogates. Despite the several detections of analytes in the field blanks, the concentrations of most constituents in the environmental samples will likely be an order of magnitude or higher than those in the blanks. However, frequent detections, and high concentrations, of dissolved organic carbon (DOC) in several surface and ground-water blanks are probably significant with respect to commonly measured environmental concentrations, and the environmental data will have to be qualified accordingly. The precision of sampling of water on a percent basis, as determined from replicates and splits, was generally proportional to the concentration of the constituents, with constituents present in relatively high concentrations generally having less sampling variability than those with relatively low concentrations. In general, analytes with relatively high variability between replicates were present at concentrations near the reporting limit or were associated with relatively small absolute concentration differences, or both. Precision of replicates compared to that for splits in bed sediment samples was similar, thus eliminating sampling as a major source of variability in analyte concentrations. In the case the phthalates in bed sediment, contamination in either the field or laboratory could have caused the relatively large variability between replicate samples and between split samples.Variability of analyte concentrations in tissue samples was relatively low, being 29 percent or less for all constituents. Recoveries of most laboratory schedule 2001/2010 pesticide spike compounds in surfacewater samples were reasonably good. Low intrinsic method recovery resulted in relatively low recovery forp,p'-DDE, metribuzin, and propargite. In the case of propargite, decomposition with the environmental sample matrices was also indicated. Recoveries of two compounds, cyanazine and thiobencarb, might have been biased high due to interferences. The one laboratory schedule 2050/2051 field matrix pesticide spike indicated numerous operational problems with this method that biased recoveries either low or high. Recoveries of pesticides from both pesticide schedules in field spikes of ground-water samples generally were similar to those of field matrix spikes of surface- water samples. High maximum recoveries were noted for tebuthiuron, disulfoton, DCPA, and permethrin, which indicates the possible presence of interferents in the matrices for these compounds. Problems in the recoveries of pesticides on schedule 2050/2051 from ground-water samples generally were the same as those for surfacewater samples. Recoveries of VOCs in field matrix spikes were reasonable when consideration was given for the use of the micropipettor that delivered only about 80 percent on average of the nominal mass of spiked analytes. Finally, the recoveries of most surrogate compounds in surface and ground-water samples were reasonable. Problems in sample handling (for example, spillage) were likely not the cause of any of the low recoveries of spiked compounds.
Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying
2015-10-05
This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10(-4). However, the annual risk arising from P. aeruginosa was 9.55 × 10(-4), slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better agricultural management practices are needed alongside groundwater treatment strategies to improve food safety.
Alsalah, Dhafer; Al-Jassim, Nada; Timraz, Kenda; Hong, Pei-Ying
2015-01-01
This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10−4. However, the annual risk arising from P. aeruginosa was 9.55 × 10−4, slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better agricultural management practices are needed alongside groundwater treatment strategies to improve food safety. PMID:26445052
,
2013-01-01
The California State Water Resources Control Board’s (SWRCB) GAMA Program is a comprehensive assessment of statewide groundwater quality in California. From 2004 to 2012, the GAMA Program’s Priority Basin Project focused on assessing groundwater resources used for public drinking-water supplies. More than 2,000 public-supply wells were sampled by U.S. Geological Survey (USGS) for this effort. Starting in 2012, the GAMA Priority Basin Project began an assessment of water resources in shallow aquifers in California. These shallow aquifers provide water for domestic and small community-supply wells, which are often drilled to shallower depths in the groundwater system than public-supply wells. Shallow aquifers are of interest because shallow groundwater may respond more quickly and be more susceptible to contamination from human activities at the land surface, than the deeper aquifers. The SWRCB’s GAMA Program was developed in response to the Groundwater Quality Monitoring Act of 2001 (Water Code sections 10780-10782.3): a public mandate to assess and monitor the quality of groundwater resources used for drinking-water supplies, and to increase the availability of information about groundwater quality to the public. The U.S. Geological Survey is the technical lead of the Priority Basin Project. Stewardship of California’s groundwater resources is a responsibility shared between well owners, communities, and the State. Participants and collaborators in the GAMA Program include Regional Water Quality Control Boards, Department of Water Resources, Department of Public Health, local and regional groundwater management entities, county and local water agencies, community groups, and private citizens. Well-owner participation in the GAMA Program is entirely voluntary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strietelmeier, E. A.; Nuttall, H. Eric; Hatzinger, Paul
Nitrate and perchlorate are growing worldwide problems as mobile anionic groundwater contaminants. Biological rduction of nitrate and perchlorate in groundwater is under development as a technology to address these problems.
Ground water in the Piedmont Upland of central Maryland
Richardson, Claire A.
1980-01-01
Aquifers in a 130-square-mile area of the central Maryland and Piedmont, are shown to be the sole or principal source of water. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The groundwater is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most groundwater occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in groundwater storage. A few wells yield more than 100 gallons per minute, but about 70% of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The groundwater quality is generally satisfactory without treatment and there are no known widespread pollution problems. Estimated daily figures on groundwater use are as follows; 780,000 gallons for domestic purposes; 55,000 for commercial purposes; and 160,000 for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of those and other public-supply water mains, much of the rural population is dependent on the groundwater available from private wells tapping the single aquifer that underlies any given location. Neither the groundwater conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province. (USGS)
Dieter, Cheryl A.; Campo, Kimberly W.; Baker, Anna C.
2012-01-01
The Naval Air Station Patuxent River in southern Maryland has continued to expand in the first decade of the 21st century, contributing to rapid population growth in the surrounding area. The increase in population has caused State and County water managers and others to be concerned about the impact of population growth on the quantity and quality of groundwater supplies. The U.S. Geological Survey has been investigating the groundwater resources of the air station since 1998. As part of that ongoing investigation, groundwater was sampled in 2008 in six wells in the Aquia aquifer and two wells in the Upper Patapsco aquifer in the vicinity of Naval Air Station Patuxent River and Webster Outlying Field. Groundwater samples were analyzed for basic chemistry (field parameters, major ions, and nutrients) as well as several water-quality issues of concern including the occurrence of arsenic and tungsten, and saltwater intrusion. The results of the 2008 groundwater-quality sampling indicate that the overall quality of groundwater in the Aquia aquifer has not changed since 1943; data are too limited to determine if groundwater quality has changed in the Upper Patapsco aquifer. At one well in the Aquia aquifer, the arsenic concentration exceeded the U.S. Environmental Protection Agency standard for drinking water. Arsenic was not detected in samples from the Upper Patapsco aquifer. Tungsten concentrations were detected at low concentrations near the laboratory reporting level in all eight samples. There was no evidence of saltwater intrusion in any of the wells.
Ahlfeld, David P.; Barlow, Paul M.; Baker, Kristine M.
2011-01-01
Many groundwater-management problems are concerned with the control of one or more variables that reflect the state of a groundwater-flow system or a coupled groundwater/surface-water system. These system state variables include the distribution of heads within an aquifer, streamflow rates within a hydraulically connected stream, and flow rates into or out of aquifer storage. This report documents the new State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005). The new package provides a means to explicitly represent heads, streamflows, and changes in aquifer storage as state variables in a GWM-2005 simulation. The availability of these state variables makes it possible to include system state in the objective function and enhances existing capabilities for constructing constraint sets for a groundwater-management formulation. The new package can be used to address groundwater-management problems such as the determination of withdrawal strategies that meet water-supply demands while simultaneously maximizing heads or streamflows, or minimizing changes in aquifer storage. Four sample problems are provided to demonstrate use of the new package for typical groundwater-management applications.
Zhai, Yuanzheng; Lei, Yan; Zhou, Jun; Li, Muzi; Wang, Jinsheng; Teng, Yanguo
2015-02-01
The aquifer in the Beijing Plain is intensively used as a primary source to meet the growing needs of the various sectors (drinking, agricultural, and industrial purposes). The analysis of groundwater chemical characteristics provides much important information useful in water resources management. To characterize the groundwater chemistry, reveal its spatial and seasonal variability, and determine its quality suitability for domestic and agricultural uses, a total of 200 groundwater samples were collected in June and October 2012 from 100 exploited wells in Daxing District, Beijing, China. All of the indices (39 items) listed in the Quality Standard for Groundwater of China (QSGC) as well as eight additional common parameters were tested and analyzed for all samples, based on which research target was achieved. The seasonal effect on the groundwater chemistry and quality was very slight, whereas the spatial changes were very obvious. The aquifer is mainly dominated by HCO3-Ca·Mg-type water. Of the 39 quality indices listed in QSGC, 28 indices of all of the samples for the 2 months can be classified into the excellent level, whereas the remaining 11 indices can be classified into different levels with the total hardness, NO3, NO2, and Fe being the worst, mainly distributed in the residential and industrial land. According to the general quality index, the groundwater can be classified from good to a relatively poor level, mainly from southeast to northwest. Furthermore, the relatively poor-level area in the northwest expands to the southeast more than in the past years, to which people should pay attention because this reverse spatial distribution relative to the natural law indicates an obvious, anthropogenic impact on the groundwater. In addition, the groundwater in this area is generally very suitable for irrigation year-round. Nevertheless, we recommend performing agricultural water-saving measures for the sustainable development of water and urbanization, groundwater recovery, and ecological safety.
NASA Astrophysics Data System (ADS)
Kaur, Tajinder; Bhardwaj, Renu; Arora, Saroj
2017-10-01
Deterioration of groundwater quality due to anthropogenic activities is increasing at an alarming rate in most parts of the Punjab, but limited work has been carried out on groundwater quality and monitoring. This paper highlights the groundwater quality and compares its suitability for drinking and irrigation purpose in Malwa region, a southwestern part of Punjab. The Malwa region makes up the most cultivated area of Punjab with high consumption of pesticides and fertilizers. Twenty-four water samples representing groundwater sources were collected and analyzed for almost all major cations, anions and other physicochemical parameters. Analytical results of physicochemical analysis showed majority of the samples above the permissible limits of the Indian standards. The groundwater of the study area was very hard and the relative abundance of major cations and anions was Na+ > Ca2+ > Mg2+ > K+ and HCO3 - > SO4 2- > Cl-. Fluoride content was higher than permissible limit in 75 % of the samples. The mean concentration of arsenic in groundwater was 9.37 and 11.01µg/L during summer and winter season, respectively. The parameters like sodium adsorption ratio and sodium percentage (Na%) revealed good quality of groundwater for irrigation purposes, whereas magnesium ratio and corrosivity ratio values showed that water is not suitable for agriculture and domestic use. The dominant hydrochemical facies of groundwater was Ca-Mg-HCO3 and Ca-Mg-SO4-Cl. Chloro alkaline indices 1 and 2 indicated that reverse ion exchange is dominant in the region. The samples fall in rock dominance and evaporation dominance fields as indicated by Gibbs diagram. The saturation index shows that all the water samples were supersaturated with respect to carbonate minerals. This work thus concludes that groundwater in the study area is chemically unsuitable for domestic and agricultural uses. It is recommended to carry out a continuous water quality monitoring program and development of effective management practices for utilization of water resources.
ERIC Educational Resources Information Center
Braids, Olin C.; Gillies, Nola P.
1978-01-01
Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)
Mathany, Timothy M.; Burton, Carmen A.; Land, Michael; Belitz, Kenneth
2010-01-01
Groundwater quality in the approximately 766-square-mile South Coast Range-Coastal (SCRC) study unit was investigated from May to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The SCRC study unit was the 25th study unit to be sampled as part of the GAMA Priority Basins Project. The SCRC study unit was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the SCRC study unit, groundwater samples were collected from 70 wells in two study areas (Basins and Uplands) in Santa Barbara and San Luis Obispo Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 15 wells were selected to aid in evaluation of specific water-quality issues (understanding wells). In addition to the 70 wells sampled, 3 surface-water samples were collected in streams near 2 of the sampled wells in order to better comprehend the interaction between groundwater and surface water in the area. The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-TCP), naturally occurring inorganic constituents (trace elements, nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and alkalinity), and radioactive constituents (gross alpha and gross beta radioactivity). Naturally occurring isotopes (stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in dissolved nitrate, stable isotopes of sulfur in dissolved sulfate, stable isotopes of carbon in dissolved inorganic carbon, activities of tritium, and carbon-14 abundance), and dissolved gases (including noble gases) also were measured to help identify the sources and ages of the sampled groundwater. In total, 298 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and matrix-spikes) were collected at approximately 3 to 12 percent of the wells in the SCRC study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples generally were less than 10 percent relative and/or standard deviation, indicating acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 84
Study of water-table behaviour for the Indian Punjab using GIS.
Kaur, Samanpreet; Aggarwal, Rajan; Soni, Ashwani
2011-01-01
The state of Punjab (India) has witnessed a spectacular increase in agricultural production in the last few decades. This has been possible due to high use of fertilizers, good quality seeds and increased use of water resources. This increased demand of water resources has resulted in extensive use of groundwater in the central districts of the state and surface water (canals) in South-West Punjab, where groundwater is of poor quality in general. The state has been facing the twin problem of water table decline/rise in different parts. Efficient management relies on comprehensive database and regular monitoring of the resources. GIS is one of the important tools for integrating and analyzing spatial information from different sources or disciplines. It helps to integrate, analyze and represent spatial information and database of any resource, which could be easily used for planning of resource development, environmental protection and scientific researches and investigations. Geographical Information Systems (GIS) have been used for a variety of groundwater studies. Groundwater level change maps are useful in determining areas of greatest changes in storage in the regional systems. In this study, an attempt has been made to assess the long term groundwater behaviour of the state using GIS to visually and spatially analyze water level data obtained from the state and central agencies. The data was analysed for 0-3 m, 3-10 m, 10-20 m and beyond 20 m. The study revealed that per cent area with water table depth > 10 m was 20% in 1998 and has increased to 58% by 2006 which is critical limit for shifting from centrifugal pump to submersible pump.
NASA Astrophysics Data System (ADS)
Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.
2009-05-01
Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase downstream of the stream. In order to confirm the obtained Mcp's concentrations of additional measurements in the investigated stream were compared with the concentrations in the groundwater up- and downstream of the stream section. The results revealed increased Mcp's downstream of the stream section for chloride, potassium and nitrate, whereas Mcp of sulfate was decreased. Micropollutants caffeine and technical-nonylphenol showed decreased Mcp's downstream of the stream section in 75 % of the cases. Values of Mex could only be given for chloride, potassium, nitrate and caffeine. The comparison of concentrations in the stream with those in the groundwater points to the streambed as a zone where mass accumulation and degradation processes occur. The obtained results imply that the applied method can provide reliable data about the influence of losing streams on groundwater quality.
Human interactions with ground-water
Zaporozec, A.
1983-01-01
Ground-Water could be considered as an immense reservoir, from which only a certain amount of water can be withdrawn without affecting the quantity and quality of water. This amount is determined by the characteristics of the environment in which ground-water occurs and by the interactions of ground-water with precipitation, surface water, and people. It should be recognized that quantity and quality of ground-water are intimately related and should be considered accordingly. Quantity refers to usable water and water is usable for any specific purpose only so long as its quality has not deteriorated beyond acceptable limits. Thus an overall quantitative and qualitative management of ground water is inevitable, and its should also involve the uses of ground-water reservoirs for purposes other than water supply. The main objective of ground-water management is to ensure that ground-water resources will be available in appropriate time and in appropriate quantity and quality to meet the most important demands of our society. Traditional, and obvious uses of ground-water are the extraction of water for water supplies (domestic, municipal, agricultural, and industrial) and the natural discharge feeding lakes and maintaining base flow of streams. Not so obvious are the uses of ground-water reservoirs, the very framework within which ground-water occurs and moves, and in which other fluids or materials can be stored. In the last two decades, ground-water reservoirs have been intensively considered for many other purposes than water supplies. Diversified and very often conflicting uses need to be evaluated and dealt with in the most efficient way in order to determine the importance of each possible use, and to assign priorities of these uses. With rising competition for the use of ground-water reservoirs, we will also need to increase the potential for effective planning of ground-water development and protection. Man's development and use of ground-water necessarily modifies the natural conditions and the total natural system must be successfully blended with the unnatural stresses placed upon it. This can be accomplished by introducing new methods (such as ground-water zoning) in and by developing alternative strategies for ground-water management and protection. ?? 1983 D. Reidel Publishing Company.
Lundgren, Robert F.; Vining, Kevin C.
2013-01-01
The Turtle Mountain Indian Reservation relies on groundwater supplies to meet the demands of community and economic needs. The U.S. Geological Survey, in cooperation with the Turtle Mountain Band of Chippewa Indians, examined historical groundwater-level and groundwater-quality data for the Fox Hills, Hell Creek, Rolla, and Shell Valley aquifers. The two main sources of water-quality data for groundwater were the U.S. Geological Survey National Water Information System database and the North Dakota State Water Commission database. Data included major ions, trace elements, nutrients, field properties, and physical properties. The Fox Hills and Hell Creek aquifers had few groundwater water-quality data. The lack of data limits any detailed assessments that can be made about these aquifers. Data for the Rolla aquifer exist from 1978 through 1980 only. The concentrations of some water-quality constituents exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. No samples were analyzed for pesticides and hydrocarbons. Numerous water-quality samples have been obtained from the Shell Valley aquifer. About one-half of the water samples from the Shell Valley aquifer had concentrations of iron, manganese, sulfate, and dissolved solids that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant levels. Overall, the data did not indicate obvious patterns in concentrations.
Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.
2018-06-07
As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide concentrations. The continuum of water quality from unconfined rural groundwater sites (least affected by anthropogenic contamination) to unconfined urban groundwater sites (most affected by anthropogenic contamination) demonstrates enhanced vulnerability of urban versus rural land cover. Differences in contaminant occurrences and concentration among unconfined urban wells indicate that the urban parts of the aquifer are not uniformly vulnerable, but rather are affected by spatial differences in the sources of nutrients and pesticides. In urban areas, the shallow, unconfined groundwater sites showed greater temporal variability in both nutrient and pesticide concentrations, as well as a greater degree of contamination, than did deeper, confined groundwater sites. In comparison to that of the shallow, unconfined groundwater sites, the water quality of the deeper, confined groundwater sites was relatively invariant during this multiyear study. Although aquifer hydrogeology is an important factor related to aquifer vulnerability, land cover likely has a greater influence on pesticide contamination of groundwater. Temporal variability in hydrologic conditions for the Edwards aquifer is apparent in data for surface water as a source of groundwater recharge, water-level altitude in wells, spring discharge, and groundwater quality. This temporal variability affects recharge sources, recharge amounts, groundwater traveltimes, flow routing, water-rock interaction processes, dilution, mixing, and, in turn, water quality. Relations of land cover, aquifer hydrogeology, and changing hydrologic conditions to water quality are complex but provide insight into the vulnerability of Edwards aquifer groundwater—a vital drinking-water resource.
Groundwater conditions in Utah, spring of 2014
Burden, Carole B.; Birken, Adam S.; Gerner, Steven J.; Carricaburu, John P.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.
2014-01-01
This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf
Groundwater conditions in Utah, Spring of 2017
Burden, Carole B.
2017-01-01
This is the fifty-fourth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2016. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2017.pdf. Groundwater conditions in Utah for calendar year 2015 are reported in Burden and others (2016) and are available online at http://ut.water.usgs.gov/publications/GW2016.pdf.
Groundwater conditions in Utah, spring of 2014
Burden, Carole B.
2014-01-01
This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf
Groundwater conditions in Utah, spring of 2013
Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.
2013-01-01
This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf
Groundwater conditions in Utah, spring of 2012
Burden, Carole B.; Allen, David V.; Holt, Christopher M.; Fisher, Martel J.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.
2012-01-01
This is the forty-ninth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2011. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2012.pdf. Groundwater conditions in Utah for calendar year 2010 are reported in Burden and others (2011) and available online at http://ut.water.usgs.gov/ publications/GW2011.pdf.
Groundwater conditions in Utah, spring of 2016
Burden, Carole B.
2016-01-01
This is the fifty-third in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2015. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2016.pdf. Groundwater conditions in Utah for calendar year 2014 are reported in Burden and others (2015) and are available online at http://ut.water.usgs.gov/publications/GW2015.pdf
Groundwater regulation and integrated planning
Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.
2016-01-01
The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.
Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R
2013-04-01
Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.
NASA Astrophysics Data System (ADS)
Aryanto, Daniel Eko; Hardiman, Gagoek
2018-02-01
Floods and droughts in Purworejo regency are an indication of problems in groundwater management. The current development progress has led to land conversion which has an impact on the problem of water infiltration in Purworejo regency. This study aims to determine the distribution of groundwater recharge potential zones by using geographic information system as the basis for ground water management. The groundwater recharge potential zone is obtained by overlaying all the thematic maps that affect the groundwater infiltration. Each thematic map is weighted according to its effect on groundwater infiltration such as land-use - 25%, rainfall - 20%, litology - 20%, soil - 15%, slope - 10%, lineament - 5%, and river density - 5% to find groundwater recharge potential zones. The groundwater recharge potential zones thus obtained were divided into five categories, viz., very high, high, medium, low and very low zones. The results of this study may be useful for better groundwater planning and management.
Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)
NASA Astrophysics Data System (ADS)
De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara
2014-05-01
The Mediterranean region is characterized by a strong development of coastal areas with a high concentration of water-demanding human activities, resulting in weakly controlled withdrawals of groundwater which accentuate the saltwater intrusion phenomenon. The worsening of groundwater quality is a huge problem especially for those regions, like Salento (southern Italy), where a karst aquifer system represents the most important water resource because of the deficiency of a well developed superficial water supply. In this frame, the first 2D numerical model describing the groundwater flow in the karst aquifer of Salento peninsula was developed by Giudici et al. [1] at the regional scale and then improved by De Filippis et al. [2]. In particular, the estimate of the saturated thickness of the deep aquifer highlighted that the Taranto area is particularly sensitive to the phenomenon of seawater intrusion, both for the specific hydrostratigraphic configuration and for the presence of highly water-demanding industrial activities. These remarks motivate a research project which is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area. In this context, the CINFAI operative unit aims at providing a contribution to the characterization of groundwater in the study area. The specific objectives are: a. the reconstruction of the groundwater dynamic (i.e., the preliminary identification of a conceptual model for the aquifer system and the subsequent modeling of groundwater flow in a multilayered system which is very complex from the hydrostratigraphical point of view); b. the characterization of groundwater outflows through submarine and subaerial springs and the water exchanges with the shallow coastal water bodies (e.g. Mar Piccolo) and the off-shore sea; c. the modeling of seawater intrusion in the coastal aquifer system. The first objective is achieved through the analysis of hydrostratigraphic reconstructions obtained from different data sets: well logs, published geological field maps, studies for the characterization of contaminated sites. The hydrostratigraphic setup is merged with maps of land use, hydraulic head maps, data on water extraction and source discharge, in order to identify the conceptual model. For the numerical simulations, the computer code YAGMod, which was originally developed to perform 3D groundwater flow simulation with a simplified treatment of unsaturated/saturated conditions and the effects of strong aquifer exploitation (i.e., high well pumping rates), is extended to the case of a variable density flow. The results will be compared with those obtained with other modeling software (e.g., Tough2). [1] Giudici M., Margiotta S., Mazzone F., Negri S., Vassena C., 2012. Modelling Hydrostratigraphy and groundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeastern Italy), Environmental Earth Sciences. doi: 10.1007/s12665-012-1631-1 [2] De Filippis G., Giudici M., Margiotta S., Mazzone F., Negri S., Vassena C., 2013. Numerical modeling of the groundwater flow in the fractured and karst aquifer of the Salento peninsula (Southern Italy), Acque Sotterranee, 2:17-28. doi: 10.7343/AS-016-013-0040
Trace elements in groundwater used for water supply in Latvia
NASA Astrophysics Data System (ADS)
Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads
2014-05-01
Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name "GeoVipum". This study is supported by the European Social Fund project Nr.2013/0054/2DP/2.1.1.1.0/13/APIA/VIAA/007 in Latvia and European Social Fund Mobilitas grant No MJD309 in Estonia. Reference: Levins I., Gosk, E. 2007. Trace elements in groundwater as indicators of anthropogenic impact. Environmental Geology, 55, 285-290.
2012-01-01
Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city. PMID:23369323
Applicability of ELISA-based Determination of Pesticides for Groundwater Quality Monitoring
NASA Astrophysics Data System (ADS)
Tsuchihara, Takeo; Yoshimoto, Shuhei; Ishida, Satoshi; Imaizumi, Masayuki
The principals and procedures of ELISA (Enzyme-linked Immunosorbent Assay)-based determination of pesticides (Fenitrothion) in environmental samples were reviewed, and the applicability of the ELISA method for groundwater quality monitoring were validated through the experimental tracer tests in soil columns and the field test in Okinoerabu Island. The test results showed that the ELISA method could be useful not only for screening but also for quantitative analysis of pesticides. In the experimental tracer tests in soil columns, the retardation of pesticides leaching compared with conservative tracers were observed. In the field test, the contamination of the pesticide was detected in groundwater samples in Okinoerabu Island, even though the targeted pesticide was considered to be applied to the upland field 4 months ago. In order to investigate the transport and fate of pesticides in groundwater taking into account retardation from the field to groundwater table and the residue in groundwater, continuous observations of pesticides in groundwater are in a strong need, and the ELISA method is applicable to the long-term quality groundwater monitoring.
Landon, M.K.; Delin, G.N.; Nelson, K.J.; Regan, C.P.; Lamb, J.A.; Larson, S.J.; Capel, P.D.; Anderson, J.L.; Dowdy, R.H.
1997-01-01
The Minnesota Management Systems Evaluation Area (MSEA) project was part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area was located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consisted of 73 observation wells and 25 multiport wells. The primary objectives of the ground-water monitoring program at the Minnesota MSEA were to: (1) determine the effects of three farming systems on ground-water quality, and (2) understand the processes and factors affecting the loading, transport, and fate of agricultural chemicals in ground water at the site. This report presents well construction, geologic, water-level, chemical application, water-quality, and quality-assurance data used to evaluate the effects of farming systems on ground-water quality during 1991-95.
Evaluating groundwater depletion as computed by a global water model
NASA Astrophysics Data System (ADS)
Schuh, Carina; Doell, Petra; Mueller Schmied, Hannes; Portmann, Felix
2013-04-01
When groundwater abstraction occurs faster than its replenishment over a long time and in a large area, the result is an overexploitation or depletion of groundwater. The problem is aggravated in areas where a growing population relies on freshwater resources for an intensive irrigation agriculture that is meant to guarantee food security. Especially in semi-arid and arid regions, the dominant use for groundwater is irrigation, reaching more than 95% of total water use. Therefore, the hot spots for groundwater depletion are the world's major irrigation areas like the central United States, north-western India and north China. Groundwater depletion presents a major threat to securing agricultural productivity and domestic water supply in these parts of the world. Besides, the environmental consequences that accompany the abstraction of groundwater are severe. Within the scientific community there is a common understanding that high-quality data on globally existing groundwater resources are deficient. In order to allow a sustainable management of the world's available groundwater resources, especially in areas under current water stress, the quantification of groundwater depletion is of high importance. WaterGAP (Water - Global Assessment and Prognosis) is a global model of water availability and water use which can serve to estimate the impact of groundwater and surface water withdrawals on groundwater storage. The new WaterGAP version 2.2a was modified to allow for an improved analysis of groundwater storage changes in semi-arid and arid regions. Now, groundwater recharge from surface water bodies is simulated in semi-arid and arid areas. Estimation of net groundwater abstractions was modified with respect of irrigation water use efficiency for groundwater and return flow fractions. In addition, irrigation consumptive use has been set to 70% of optimal irrigation consumptive use, assuming deficit irrigation to prevail in these parts of the world. Based on time series of groundwater storage as computed by WaterGAP, the yearly groundwater depletion rates for the period 1901-2009 have been determined and compared to independent estimates (well observations and GRACE satellite data). So far, the results show that the former WaterGAP standard version overestimates groundwater storage losses considerably in all of the study regions (USA, north-western India, and North China Plain) whereas the improved WaterGAP 2.2a mimics observed groundwater depletion to a high degree.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolutionmore » than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less
Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui
2015-09-01
High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.
NASA Astrophysics Data System (ADS)
Harmsen, Eric W.; Converse, James C.; Anderson, Mary P.; Hoopes, John A.
1991-09-01
Effluent from septic tank-drainfields can degrade groundwater quality and contaminate nearby water-supply wells. Such groundwater contamination is a problem in the unsewered subdivisions of the sand plain of central Wisconsin, for example. To help planners minimize the risk of direct contamination of a water-supply well by a septic system, a model was developed to estimate the location of the critical dividing pathline between a rectangular contaminant source (the septic tank drainfield) and a partially penetrating pumping well. The model is capable of handling three-dimensional, transient flow in an unconfined, homogeneous, anisotropic aquifer of infinite areal extent, under a regional horizontal hydraulic gradient. Model results are in very good agreement with several other numerical and analytical models. Examples are given for which the safe, horizontal and vertical separation distances to avoid well water contamination are determined for typical central Wisconsin sand plain conditions. A companion paper (Harmsen et al., 1991) describes the application of this model, using a Monte-Carlo analysis, to study the variation of these separation distances in the Wisconsin sand plain. The model can also be applied to larger scale problems and, therefore, could be useful in implementing the U.S. Environmental Protection Agency's new well head protection program.
Case studies in organic contaminant hydrogeology
NASA Astrophysics Data System (ADS)
Baker, John A.
1989-07-01
The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences over the world. This series of case studies of organic contaminants from both solid and hazardous waste disposal facilities provides examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The results of these studies and investigations by Waste Management Inc. (WMI) and its consultants have shown certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic charac teristics of each facility. In each of the case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells at the request of regulatory agencies. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of the organic compounds detected and these data are evaluated in each case study. The case studies are on disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. A brief discussion of groundwater quality impacts and remedial measures also is included.
NASA Astrophysics Data System (ADS)
Kohlhepp, Bernd; Lehmann, Robert; Seeber, Paul; Küsel, Kirsten; Trumbore, Susan E.; Totsche, Kai U.
2017-12-01
The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface-subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate-siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water-rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.
Mor, Suman; Singh, Surender; Yadav, Poonam; Rani, Versha; Rani, Pushpa; Sheoran, Monika; Singh, Gurmeet; Ravindra, Khaiwal
2009-12-01
Various physico-chemical parameters, including fluoride (F(-)), were analyzed to understand the hydro-geochemistry of an aquifer in a semi-arid region of India. Furthermore, the quality of the shallow and deep aquifer (using tube well and hand pumps) was also investigated for their best ecological use including drinking, domestic, agricultural and other activities. Different multivariate techniques were applied to understand the groundwater chemistry of the aquifer. Findings of the correlation matrix were strengthened by the factor analysis, and this shows that salinity is mainly caused by magnesium salts as compared to calcium salts in the aquifer. The problem of salinization seems mainly compounded by the contamination of the shallow aquifers by the recharging water. High factor loading of total alkalinity and bicarbonates indicates that total alkalinity was mainly due to carbonates and bicarbonates of sodium. The concentration of F(-) was found more in the deep aquifer than the shallow aquifer. Further, only a few groundwater samples lie below the permissible limit of F(-), and this indicates a risk of dental caries in the populace of the study area. The present study indicates that regular monitoring of groundwater is an important step to avoid human health risks and to assess its quality for various ecological purposes.
Suthar, Surindra
2011-02-01
Access to safe drinking water is an important issue of health and development at national, regional, and local levels. The concept of safe drinking water assumes greater significance in countries like India where the majority of the population lives in villages with bare infrastructures and poor sanitation facilities. This review presents an overview of drinking water quality in rural habitations of northern Rajasthan, India. Although fluoride is an endemic problem to the groundwater of this region, recently, other anthropogenic chemicals has also been reported in the local groundwater. Recent case studies indicate that about 95% of sites of this region contain a higher fluoride level in groundwater than the maximum permissible limit as decided by the Bureau of Indian Standards. Nitrate (as NO3-) contamination has appeared as another anthropogenic threat to some intensively cultivable rural habitations of this region. Biological contamination has appeared as another issue of unsafe drinking water resources in rural areas of the state. Recent studies have claimed a wide variety of pathogenic bacteria including members of the family Enterobacteriaceae in local drinking water resources. Overall, the quality of drinking water in this area is not up to the safe level, and much work is still required to establish a safe drinking water supply program in this area.
Rao, N Subba; Rao, P Surya; Reddy, G Venktram; Nagamani, M; Vidyasagar, G; Satyanarayana, N L V V
2012-08-01
Study on chemical characteristics of groundwater and impacts of groundwater quality on human health, plant growth, and industrial sector is essential to control and improve the water quality in every part of the country. The area of the Varaha River Basin is chosen for the present study, where the Precambrian Eastern Ghats underlain the Recent sediments. Groundwater quality is of mostly brackish and very hard, caused by the sources of geogenic, anthropogenic, and marine origin. The resulting groundwater is characterized by Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-) > [Formula: see text], Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-) > [Formula: see text] > [Formula: see text], Na(+) > Mg(2+) > Ca(2+) : [Formula: see text] > Cl(-), and Na(+) > Mg(2+) > Ca(2+) : Cl(-) > [Formula: see text] > [Formula: see text] facies, following the topographical and water flow-path conditions. The genetic geochemical evolution of groundwater ([Formula: see text] and Cl(-)-[Formula: see text] types under major group of [Formula: see text]) and the hydrogeochemical signatures (Na(+)/Cl(-), >1 and [Formula: see text]/Cl(-), <1) indicate that the groundwater is of originally fresh quality, but is subsequently modified to brackish by the influences of anthropogenic and marine sources, which also supported by the statistical analysis. The concentrations of total dissolved solids (TDS), TH, Mg(2+), Na(+), K(+), [Formula: see text], Cl(-), [Formula: see text], and F(-) are above the recommended limits prescribed for drinking water in many locations. The quality of groundwater is of mostly moderate in comparison with the salinity hazard versus sodium hazard, the total salt concentration versus percent sodium, the residual sodium carbonate, and the magnesium hazard, but is of mostly suitable with respect to the permeability index for irrigation. The higher concentrations of TDS, TH, [Formula: see text], Cl(-), and [Formula: see text] in the groundwater cause the undesirable effects of incrustation and corrosion in many locations. Appropriate management measures are, therefore, suggested to improve the groundwater quality.
Agricultural conversion of floodplain ecosystems: implications for groundwater quality.
Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A
2015-04-15
With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rawat, Kishan Singh; Tripathi, Vinod Kumar
2015-06-01
Hydrological and geological aspect of the region play vital role for water resources utilization and development. Protection and management of groundwater resources are possible with the study of spatio-temporal water quality parameters. The study was undertaken to assess the deterioration in groundwater quality, through systematic sampling during post monsoon seasons of the year 2008 by collecting water samples from thirty bore wells located in Dwarka, sub-city of Delhi, India. The average concentrations of groundwater quality parameters namely Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO3 -), Chloride (Cl-), sulphate (SO4 2-), total hardness (TH), total dissolved solids (TDS), and electrical conductivity were 300, 178, 26.5, 301, 103, 483, 1042 mg/l and 1909 μS/cm respectively. Estimated physico-chemical parameters revealed that 7 % of the groundwater samples shown nitrate concentrations higher than safe limit prescribed by World Health Organization (WHO). Groundwater quality the in study region was poor due to come out result that NO3 - concentration exceeding the threshold value of 50 mg/l, and main cause is disposal of sewage and animal wastes to Najafgarh drain. Dominant cations are Mg2+, Ca2+ and anions are SO4 2- and Cl-. The abundance of the major ions in groundwater is in the order: Ca2+ > Mg2+ and Cl- > SO4 2- > NO3. TH have strong correlation with Ca2+ (r = 0.81), Mg2+ (r = 0.82), Cl- (r = 0.86) but poor correlation with TDS (r = 0.52). Knowledge of correlation values between water quality parameters is helpful to take decision of appropriate management strategy for controlling groundwater pollution.
NASA Astrophysics Data System (ADS)
Kesuma, D. A.; Purwanto, P.; Putranto, T. T.; Rahmani, T. P. D.
2017-06-01
The increase in human population as well as area development in Salatiga Groundwater Basin, Central Java Province, will increase the potency of groundwater contamination in that area. Groundwater quality, especially the shallow groundwater, is very vulnerable to the contamination from industrial waste, fertilizer/agricultural waste, and domestic waste. The first step in the conservation of groundwater quality is by conducting the mapping of the groundwater vulnerability zonation against the contamination. The result of this research was groundwater vulnerability map which showed the areas vulnerable to the groundwater contamination. In this study, groundwater vulnerability map was assessed based on the DRASTIC Method and was processed spatially using Geographic Information System. The DRASTIC method is used to assess the level of groundwater vulnerability based on weighting on seven parameters, which are: depth to the water table (D), recharge (R), aquifer material (A), soil media (S), topography (T), impact of vadose zone (I), and hydraulic conductivity (C). The higher the DRASTIC Index will result in the higher vulnerability level of groundwater contamination in that area. The DRASTIC Indexes in the researched area were 85 - 100 (low vulnerability level), 101 -120 (low to moderate vulnerability level), 121 - 140 (moderate vulnerability level), 141 - 150, (moderate to high vulnerability level), and 151 - 159 (high vulnerability level). The output of this study can be used by local authority as a tool for consideration to arrange the policy for sustainable area development, especially the development in an area affecting the quality of Salatiga Groundwater Basin.
Mathany, Timothy M.; Dawson, Barbara J.; Shelton, Jennifer L.; Belitz, Kenneth
2011-01-01
This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwa
Water resources management in karst aquifers - concepts and modeling approaches
NASA Astrophysics Data System (ADS)
Sauter, M.; Schmidt, S.; Abusaada, M.; Reimann, T.; Liedl, R.; Kordilla, J.; Geyer, T.
2011-12-01
Water resources management schemes generally imply the availability of a spectrum of various sources of water with a variability of quantity and quality in space and time, and the availability and suitability of storage facilities to cover various demands of water consumers on quantity and quality. Aquifers are generally regarded as suitable reservoirs since large volumes of water can be stored in the subsurface, water is protected from contamination and evaporation and the underground passage assists in the removal of at least some groundwater contaminants. Favorable aquifer properties include high vertical hydraulic conductivities for infiltration, large storage coefficients and not too large hydraulic gradients / conductivities. The latter factors determine the degree of discharge, i.e. loss of groundwater. Considering the above criteria, fractured and karstified aquifers appear to not really fulfill the respective conditions for storage reservoirs. Although infiltration capacity is relatively high, due to low storativity and high hydraulic conductivities, the small quantity of water stored is rapidly discharged. However, for a number of specific conditions, even karst aquifers are suitable for groundwater management schemes. They can be subdivided into active and passive management strategies. Active management options include strategies such as overpumping, i.e. the depletion of the karst water resources below the spring outflow level, the construction of subsurface dams to prevent rapid discharge. Passive management options include the optimal use of the discharging groundwater under natural discharge conditions. System models that include the superposition of the effect of the different compartments soil zone, epikarst, vadose and phreatic zone assist in the optimal usage of the available groundwater resources, while taking into account the different water reservoirs. The elaboration and implementation of groundwater protection schemes employing well established vulnerability assessment techniques ascertain the respective groundwater quality. In this paper a systematic overview is provided on karst groundwater management schemes illustrating the specific conditions allowing active or passive management in the first place as well as the employment of various types of adapted models for the design of the different management schemes. Examples are provided from karst systems in Israel/Palestine, where a large 4000sqkm basin is being managed as a whole, the South of France, where the Lez groundwater development scheme illustrates the optimal use of overpumping from the conduit system, providing additional water for the City of Montpellier during dry summers and at the same time increasing recharge and assisting in the mitigation of flooding during high winter discharge conditions. Overpumping could be an option in many Mediterranean karst catchments since karst conduit development occurred well below today's spring discharge level. Other examples include the construction of subsurface dams for hydropower generation in the Dinaric karst and reduction of discharge. Problems of leakage and general feasibility are discussed.
NASA Astrophysics Data System (ADS)
Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu
2016-04-01
The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3- in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.
Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida.
Yi, Quanghee; Stewart, Mark
2018-01-01
The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre-development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water-conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water-conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high-recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system. © 2017, National Ground Water Association.
Water quality modelling of Jadro spring.
Margeta, J; Fistanic, I
2004-01-01
Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.
NASA Astrophysics Data System (ADS)
Gosses, M. J.; Wöhling, Th.; Moore, C. R.; Dann, R.; Scott, D. M.; Close, M.
2012-04-01
Groundwater resources worldwide are increasingly under pressure. Demands from different local stakeholders add to the challenge of managing this resource. In response, groundwater models have become popular to make predictions about the impact of different management strategies and to estimate possible impacts of changes in climatic conditions. These models can assist to find optimal management strategies that comply with the various stakeholder needs. Observations of the states of the groundwater system are essential for the calibration and evaluation of groundwater flow models, particularly when they are used to guide the decision making process. On the other hand, installation and maintenance of observation networks are costly. Therefore it is important to design monitoring networks carefully and cost-efficiently. In this study, we analyse the Central Plains groundwater aquifer (~ 4000 km2) between the Rakaia and Waimakariri rivers on the Eastern side of the Southern Alps in New Zealand. The large sedimentary groundwater aquifer is fed by the two alpine rivers and by recharge from the land surface. The area is mainly under agricultural land use and large areas of the land are irrigated. The other major water use is the drinking water supply for the city of Christchurch. The local authority in the region, Environment Canterbury, maintains an extensive groundwater quantity and quality monitoring programme to monitor the effects of land use and discharges on groundwater quality, and the suitability of the groundwater for various uses, especially drinking-water supply. Current and projected irrigation water demand has raised concerns about possible impacts on groundwater-dependent lowland streams. We use predictive uncertainty analysis and the Central Plains steady-state groundwater flow model to evaluate the worth of pressure head observations in the existing groundwater well monitoring network. The data worth of particular observations is dependent on the problem-specific prediction target under consideration. Therefore, the worth of individual observation locations may differ for different prediction targets. Our evaluation is based on predictions of lowland stream discharge resulting from changes in land use and irrigation in the upper Central Plains catchment. In our analysis, we adopt the model predictive uncertainty analysis method by Moore and Doherty (2005) which accounts for contributions from both measurement errors and uncertain structural heterogeneity. The method is robust and efficient due to a linearity assumption in the governing equations and readily implemented for application in the model-independent parameter estimation and uncertainty analysis toolkit PEST (Doherty, 2010). The proposed methods can be applied not only for the evaluation of monitoring networks, but also for the optimization of networks, to compare alternative monitoring strategies, as well as to identify best cost-benefit monitoring design even prior to any data acquisition.
Interactions of water quality and integrated groundwater management: exampled from the United States
USDA-ARS?s Scientific Manuscript database
Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chap...
Sahu, Paulami; Michael, Holly A.; Voss, Clifford I.; Sikdar, Pradip K.
2013-01-01
Water supply to the world's megacities is a problem of quantity and quality that will be a priority in the coming decades. Heavy pumping of groundwater beneath these urban centres, particularly in regions with low natural topographic gradients, such as deltas and floodplains, can fundamentally alter the hydrological system. These changes affect recharge area locations, which may shift closer to the city centre than before development, thereby increasing the potential for contamination. Hydrogeological simulation analysis allows evaluation of the impact on past, present and future pumping for the region of Kolkata, India, on recharge area locations in an aquifer that supplies water to over 13 million people. Relocated recharge areas are compared with known surface contamination sources, with a focus on sustainable management of this urban groundwater resource. The study highlights the impacts of pumping on water sources for long-term development of stressed city aquifers and for future water supply in deltaic and floodplain regions of the world.
Stefania, Gennaro A; Zanotti, Chiara; Bonomi, Tullia; Fumagalli, Letizia; Rotiroti, Marco
2018-05-01
Landfills are one of the most recurrent sources of groundwater contamination worldwide. In order to limit their impacts on groundwater resources, current environmental regulations impose the adoption of proper measures for the protection of groundwater quality. For instance, in the EU member countries, the calculation of trigger levels for identifying significant adverse environmental effects on groundwater generated by landfills is required by the Landfill Directive 99/31/EC. Although the derivation of trigger levels could be relatively easy when groundwater quality data prior to the construction of a landfill are available, it becomes challenging when these data are missing and landfills are located in areas that are already impacted by historical contamination. This work presents a methodology for calculating trigger levels for groundwater quality in landfills located in areas where historical contaminations have deteriorated groundwater quality prior to their construction. This method is based on multivariate statistical analysis and involves 4 steps: (a) implementation of the conceptual model, (b) landfill monitoring data collection, (c) hydrochemical data clustering and (d) calculation of the trigger levels. The proposed methodology was applied on a case study in northern Italy, where a currently used lined landfill is located downstream of an old unlined landfill and others old unmapped waste deposits. The developed conceptual model stated that groundwater quality deterioration observed downstream of the lined landfill is due to a degrading leachate plume fed by the upgradient unlined landfill. The methodology led to the determination of two trigger levels for COD and NH 4 -N, the former for a zone representing the background hydrochemistry (28 and 9 mg/L for COD and NH 4 -N, respectively), the latter for the zone impacted by the degrading leachate plume from the upgradient unlined landfill (89 and 83 mg/L for COD and NH 4 -N, respectively). Copyright © 2018 Elsevier Ltd. All rights reserved.
Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques
NASA Astrophysics Data System (ADS)
Gulgundi, Mohammad Shahid; Shetty, Amba
2018-03-01
Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.
Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.
2010-01-01
The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in the arid to semiarid climate, cultural and economic activities in the Southwest are particularly dependent on supplies of good-quality groundwater. Irrigation and public-supply withdrawals from basin-fill aquifers in the study area account for about one quarter of the total withdrawals from all aquifers in the United States.Many factors influence the quality of groundwater in the 15 case-study basins, but some common factors emerge from the basin summaries presented in this report. These factors include the chemical composition of the recharge water, consolidated rock geology and composition of aquifer materials derived from consolidated rock, and land and water use. The major water-quality issues in many of the developed case-study basins are increased concentrations of dissolved solids, nitrate, and VOCs in groundwater as a result of human activities.The information presented and the citations listed in this report serve as a resource for those interested in the groundwater-flow systems in the NAWQA case-study basins. The summaries of water-development history, hydrogeology, conceptual understanding of the groundwater system under both predevelopment and modern conditions, and effects of natural and human-related factors on groundwater quality presented in the sections on each basin also serve as a foundation for the synthesis and modeling phases of the SWPA regional study.
Fram, Miranda S.; Munday, Cathy; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 460-square-mile Tahoe-Martis study unit was investigated in June through September 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the Tahoe-Martis study unit (Tahoe-Martis) and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 52 wells in El Dorado, Placer, and Nevada Counties. Forty-one of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 11 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, strontium isotope ratio, and stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 240 constituents and water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at 12 percent of the wells, and the results obtained from these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that data for the groundwater samples were not compromised by possible contamination during sample collection, handling or analysis. Differences between replicate samples were within acceptable ranges. Matrix spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH), and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate of compliance or noncompliance with regulatory thresholds. The concentrations of most constituents detected in groundwater samples from the Tahoe-Martis wells were below drinking-water thresholds. Organic compounds (VOCs and pesticides) were detected in about 40 percent of the samples from grid wells, and most concentrations were less than 1/100th of regulatory and nonregulatory health-based thresholds, although the conentration of perchloroethene in one sample was above the USEPA maximum contaminant level (MCL-US). Concentrations of all trace elements and nutrients in samples from grid wells were below regulatory and nonregulatory health-based thresholds, with five exceptions. Concentra
Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 1,600 square-mile Antelope Valley study unit (ANT) was investigated from January to April 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within ANT, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 57 wells in Kern, Los Angeles, and San Bernardino Counties. Fifty-six of the wells were selected using a spatially distributed, randomized, grid-based method to provide statistical representation of the study area (grid wells), and one additional well was selected to aid in evaluation of specific water-quality issues (understanding well). The groundwater samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], gasoline additives and degradates, pesticides and pesticide degradates, fumigants, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (strontium, tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 239 constituents and water-quality indicators (field parameters) were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at 12 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples generally were within acceptable ranges, indicating acceptably low variability. Matrix spike recoveries were within acceptable ranges for most compoundsThis study did not evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and non-regulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only, and are not indicative of compliance or non-compliance with drinking water standards. Most constituents that were detected in groundwater samples were found at concentrations below drinking-water thresholds. Volatile organic compounds (VOCs) were detected in about one-half of the samples and pesticides detected in about one-third of the samples; all detections of these constituents were below health-based thresholds. Most detections of trace elements and nutrients in samples from ANT wells were below health-based thresholds. Exceptions include: one detection of nitrite plus nitr
Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth
2010-01-01
Groundwater quality in the 188-square-mile Colorado River Study unit (COLOR) was investigated October through December 2007 as part of the Priority Basin Project of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and the U.S. Geological Survey (USGS) is the technical project lead. The Colorado River study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within COLOR, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 28 wells in three study areas in San Bernardino, Riverside, and Imperial Counties. Twenty wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the Study unit; these wells are termed 'grid wells'. Eight additional wells were selected to evaluate specific water-quality issues in the study area; these wells are termed `understanding wells.' The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], gasoline oxygenates and degradates, pesticides and pesticide degradates, pharmaceutical compounds), constituents of special interest (perchlorate, 1,4-dioxane, and 1,2,3-trichlorpropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents. Concentrations of naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 220 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and matrix spikes) were collected at approximately 30 percent of the wells, and the results were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a significant source of bias in the data. Differences between replicate samples were within acceptable ranges and matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw groundwater. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared to regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) and to thresholds established for aesthetic concerns by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples were below drinking-water thresholds. Volatile organic compounds (VOC) were detected in approximately 35 percent of grid well samples; all concentrations were below health-based thresholds. Pesticides and pesticide degradates were detected in about 20 percent of all samples; detections were below health-based thresholds. No concentrations of constituents of special interest or nutrients were detected above health-based thresholds. Most of the major and minor ion constituents sampled do not have health-based thresholds; the exception is chloride. Concentrations of chloride, sulfate, and total dis
Agriculture-related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin
Saad, D.A.
2008-01-01
Measuring and understanding trends in groundwater quality is necessary for determining whether changes in land-management practices have an effect on groundwater quality. This paper describes an approach that was used to measure and understand trends using data from two groundwater studies conducted in central Wisconsin as part of the USGS NAWQA program. One of the key components of this approach, determining the age of sampled groundwater, gave a temporal component to the snapshots of water quality that were obtained through synoptic-sampling efforts. This approach can be used at other locations where groundwater quality data are collected, groundwater age can be determined, and associated temporal data are available. Results of these studies indicate measured concentrations of nitrate and atrazine plus deethylatrazine were correlated to historical patterns of fertilizer and atrazine use. Concentrations of nitrate in groundwater have increased over time; concentrations of atrazine plus deethylatrazine increased and then decreased. Concentrations of nitrate also were correlated to screen depth below the water level and concentrations of dissolved O2; concentrations of atrazine plus deethylatrazine were correlated to dissolved O2 and annual precipitation. To measure trends in concentrations of atrazine plus deethylatrazine, the data, collected over a near-decadal period, were adjusted to account for changes in laboratory-reporting levels and analytical recoveries. Only after accounting for these changes was it apparent that the median concentrations of atrazine plus deethylatrazine decreased over the near-decadal interval between sampling efforts. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
U.S. Geological Survey ground-water studies in Missouri
Smith, B.J.
1993-01-01
The activities of the USGS Water Resources Division in Missouri are conducted by scientists, technicians, and support staff in offices in Rolla, Olivette, and Independence. During 1992, the USGS had cooperative or cost-sharing agreements with about 30 Federal, State, and local agencies involving 20 hydrologic investigations in Missouri; 12 of these investigations included studies of groundwater quantity and quality. Several examples of groundwater studies by the USGS that address specific groundwater issues in Missouri include the occurrence of pesticides, groundwater flow and quality in the Missouri River alluvium near Kansas City, groundwater flow in claypan soils, radioactive- and nitroaromatic-compound contami- nation at Weldon Spring, and hydrologic monitoring of a wetland complex. (USGS)
The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.
Cowdery, Timothy K.
2005-01-01
Long-term withdrawals of water for public supplies may cause a net decrease in ground-water discharge to surface water. Water that does not evaporate, or that is not exported, is discharged to the Des Moines River but with changed water quality. Because ground-water and surface-water qualities in the study area are similar, the ground-water discharge probably has little effect on river water quality.
Quality of ground water in the Payette River basin, Idaho
Parliman, D.J.
1986-01-01
As part of a study to obtain groundwater quality data in areas of Idaho were land- and water-resource development is expected to increase, water quality, geologic, and hydrologic data were collected for 74 wells in the Payette River basin, west-central Idaho, from July to October 1982. Historical (pre-1982) data from 13 wells were compiled with more recent (1982) data to define, on a reconnaissance level, water quality conditions in major aquifers and to identify factors that may have affected groundwater quality. Water from the major aquifers generally contains predominantly calcium, magnesium, and bicarbonate plus carbonate ions. Sodium and bicarbonate or sulfate are the predominant ions in groundwater from 25% of the 1982 samples. Areally, groundwater from the upper Payette River basin has proportionately lower ion concentrations than water from the lower Payette River basin. Water samples from wells < 100 ft deep generally have lower ion concentrations than samples from wells > 100 ft deep. Variations in groundwater quality probably are most affected by differences in aquifer composition and proximity to source(s) of recharge. Groundwater in the study area is generally suitable for most uses. In localized areas, pH and concentrations of hardness, alkalinity, dissolved solids, or dissolved nitrite plus nitrate as nitrogen, sulfate, fluoride, iron, or manganese exceed Federal drinking water limits and may restrict some uses of the water.
Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.
2011-01-01
The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996–2008 and 2002–08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks.Blanks and groundwater samples were collected during 2008–09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples.Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds, using less rigorous identification criteria than is required for reporting data to the National Water Information System database. For the FCS, these data are considered adequate to indicate "evidence of presence," and were used only for diagnostic purposes. Evidence of VOCs and WICs at low concentrations near or less than the long-term method detection level can indicate a contamination problem that could affect future datasets if method detection levels were ever to be lowered.
NASA Astrophysics Data System (ADS)
Vieira, João; da Conceição Cunha, Maria
2017-04-01
A multi-objective decision model has been developed to identify the Pareto-optimal set of management alternatives for the conjunctive use of surface water and groundwater of a multisource urban water supply system. A multi-objective evolutionary algorithm, Borg MOEA, is used to solve the multi-objective decision model. The multiple solutions can be shown to stakeholders allowing them to choose their own solutions depending on their preferences. The multisource urban water supply system studied here is dependent on surface water and groundwater and located in the Algarve region, southernmost province of Portugal, with a typical warm Mediterranean climate. The rainfall is low, intermittent and concentrated in a short winter, followed by a long and dry period. A base population of 450 000 inhabitants and visits by more than 13 million tourists per year, mostly in summertime, turns water management critical and challenging. Previous studies on single objective optimization after aggregating multiple objectives together have already concluded that only an integrated and interannual water resources management perspective can be efficient for water resource allocation in this drought prone region. A simulation model of the multisource urban water supply system using mathematical functions to represent the water balance in the surface reservoirs, the groundwater flow in the aquifers, and the water transport in the distribution network with explicit representation of water quality is coupled with Borg MOEA. The multi-objective problem formulation includes five objectives. Two objective evaluate separately the water quantity and the water quality supplied for the urban use in a finite time horizon, one objective calculates the operating costs, and two objectives appraise the state of the two water sources - the storage in the surface reservoir and the piezometric levels in aquifer - at the end of the time horizon. The decision variables are the volume of withdrawals from each water source in each time step (i.e., reservoir diversion and groundwater pumping). The results provide valuable information for analysing the impacts of the conjunctive use of surface water and groundwater. For example, considering a drought scenario, the results show how the same level of total water supplied can be achieved by different management alternatives with different impact on the water quality, costs, and the state of the water sources at the end of the time horizon. The results allow also the clear understanding of the potential benefits from the conjunctive use of surface water and groundwater thorough the mitigation of the variation in the availability of surface water, improving the water quantity and/or water quality delivered to the users, or the better adaptation of such systems to a changing world.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design
Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter
2012-01-01
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.
NASA Astrophysics Data System (ADS)
Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico
2016-06-01
Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and reduction of network losses from sewer leakage. Furthermore, these investigations contribute to an improved understanding of urban water cycle systems in the Middle-East which may help water managers in the region to conserve precious resources.
Automated ground-water monitoring with Robowell: case studies and potential applications
NASA Astrophysics Data System (ADS)
Granato, Gregory E.; Smith, Kirk P.
2002-02-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/
Automated ground-water monitoring with robowell-Case studies and potential applications
Granato, G.E.; Smith, K.P.; ,
2001-01-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.
Assessment of shrimp farming impact on groundwater quality using analytical hierarchy process
NASA Astrophysics Data System (ADS)
Anggie, Bernadietta; Subiyanto, Arief, Ulfah Mediaty; Djuniadi
2018-03-01
Improved shrimp farming affects the groundwater quality conditions. Assessment of shrimp farming impact on groundwater quality conventionally has less accuracy. This paper presents the implementation of Analytical Hierarchy Process (AHP) method for assessing shrimp farming impact on groundwater quality. The data used is the impact data of shrimp farming in one of the regions in Indonesia from 2006-2016. Criteria used in this study were 8 criteria and divided into 49 sub-criteria. The weighting by AHP performed to determine the importance level of criteria and sub-criteria. Final priority class of shrimp farming impact were obtained from the calculation of criteria's and sub-criteria's weights. The validation was done by comparing priority class of shrimp farming impact and water quality conditions. The result show that 50% of the total area was moderate priority class, 37% was low priority class and 13% was high priority class. From the validation result impact assessment for shrimp farming has been high accuracy to the groundwater quality conditions. This study shows that assessment based on AHP has a higher accuracy to shrimp farming impact and can be used as the basic fisheries planning to deal with impacts that have been generated.
Temporal variations of groundwater quality in the Western Jianghan Plain, China.
Niu, Beibei; Wang, Huanhuan; Loáiciga, Hugo A; Hong, Song; Shao, Wei
2017-02-01
The Western Jianghan Plain (WJHP) lies in the middle reaches of the Yangtze River. It has been impacted by anthropogenic activities during the past decades. The long-term variations of the WJHP's regional aquifer's hydrochemistry and groundwater quality have not been previously assessed. Sixteen physiochemical parameters at 29 monitoring wells within the Western Jianghan Plain were monitored during 1992-2010 and analyzed with multiple approaches. The confined groundwater is predominantly of the HCO 3 -Ca-Mg type with Cl - , SO 4 2- , NH 4 -N, and NO 3 -N showing remarkable spatial variations. Correlation analysis was used to identify the origins and contamination sources of groundwater. The seasonal Mann-Kendall test revealed that pH, NO 3 -N, and Cl - concentrations at 27, 26 and 15 wells, respectively, exhibited significant increasing trends during 1992-2010. The increase of pH may be attributed to CO 2 degassing caused by extensive groundwater extraction. Regional average NO 3 -N concentrations of groundwater increased coincidently with the increased use of fertilizer, which suggests that nitrate pollution is caused by agricultural activities. Abnormally high values of Cl - and SO 4 2- at some wells were induced by industrial chemicals. In addition, the similarity of the temporal variations of the regional average of pH, NH 4 -N, and NO 3 -N concentrations in groundwater with those in the Yangtze River at the outlet of the Three Gorges Reservoir (TGR) suggests that the variations of these parameters in the WJHP is partly due to water storage by the TGR. This study presents an analysis of temporal variations of groundwater quality in the WJHP that reveals a relation between the creation of the TGR and downstream groundwater quality. This paper's findings provide clues for measures that could be taken to protect the groundwater quality of the WJHP's aquifer. Copyright © 2016. Published by Elsevier B.V.
Sedam, A.C.; Eberts, S.M.; Bair, E.S.
1989-01-01
A newly completed municipal ground-water supply that produces from a sand and gravel aquifer in southern Franklin County, Ohio, may be susceptible to potential sources of pollution. Among these are spills of toxic substances that could enter recharge areas of the aquifer or be carried by surface drainage and subsequently enter the aquifer by induced infiltration. Ground water of degraded quality also is present in the vicinity of several landfills located upstream from the municipal supply. Local dewatering by quarrying operations has created a ground-water divide which, at present, prevents direct movement of the degraded ground water to the municipal supply. In addition, the dewatering has held water levels at the largest landfills below the base of the landfill. Should the dewatering cease, concern would be raised regarding the rise of water levels at this landfills and transport of contaminants through the aquifer to the Scioto River and subsequently by the river to the well field. From June 1984 through July 1986, the U.S. Geological Survey, in cooperation with the City of Columbus, Ohio, investigated the relations among the ground-water supply and potential sources of contamination by means of an observation-well network and a program of measuring water levels and sampling for water quality. Sample collections included those made to determine the baseline levels of organic chemicals and metals, as well as periodic sampling and analysis for common constituents to evaluate any changes taking place in the system. Finally, a steady-state, three-dimensional numerical model was used to determine ground-water flow directions and average ground-water velocities to asses potential effects of toxic-substance spills. The model also was used to simulate changes in the ground-water flow system that could result if part or all of the quarry dewatering ceased. Few of the organic-chemical and metal constituents analyzed for were present at detectable levels. With respect to chemical analysis of water and soil materials reported in earlier studies, no new problem areas were discovered as a result of either the baseline or periodic samplings. Model simulations suggest that, under March 1986 conditions, a toxic-substance spill along the major highways in the northern two-thirds of the study area eventually could discharge into one of the two quarries being dewatered or into the Scioto River. A toxic-substance spill in the southern one-third of the study area ultimately may discharge into the Scioto River, Big Walnut Creek, or possibly into the municipal ground-water supply. Model simulations also indicate that concentrated landfill leachate probably would not reach the municipal ground-water supply under current or well-field pumping conditions if dewatering ceased at either or both of the quarries.
Dettinger, M.D.
1987-01-01
As a result of rapid urban growth in Las Vegas Valley, rates of water use and wastewater disposal have grown rapidly during the last 25 years. Concern has developed over the potential water quality effects of this growth. The deep percolation of wastewater and irrigation return flow (much of which originates as imported water from Lake Mead), along with severe overdraft conditions in the principal aquifers of the valley, could combine to pose a long-term threat to groundwater quality. The quantitative investigations of groundwater quality and geochemical conditions in the valley necessary to address these concerns would include the establishment of data collection networks on a valley-wide scale that differ substantially from existing networks. The valley-wide networks would have a uniform areal distribution of sampling sites, would sample from all major depth zones, and would entail repeated sampling from each site. With these criteria in mind, 40 wells were chosen for inclusion in a demonstration monitoring network. Groundwater in the northern half of the valley generally contains 200 to 400 mg/L of dissolved solids, and is dominated by calcium, magnesium , and bicarbonate ions, reflecting a chemical equilibrium between the groundwater and the dominantly carbonate rocks in the aquifers of this area. The intermediate to deep groundwater in the southern half of the valley is of poorer quality (containing 700 to 1,500 mg/L of dissolved solids) and is dominated by calcium, magnesium, sulfate, and bicarbonate ions, reflecting the occurrence of other rock types including evaporite minerals among the still-dominant carbonate rocks in the aquifers of this part of the valley. The poorest quality groundwater in the valley is generally in the lowland parts of the valley in the first few feet beneath the water table, where dissolved solids concentrations range from 2,000 to > 7,000 mg/L , and probably reflects the effects of evaporite dissolution, secondary recharge, and evapotranspiration. The most common water quality constraint on potential groundwater use is the high salinity. No evidence of large-scale contamination of deep groundwater was found in this study. (Author 's abstract)
Effects of a constructed wetland and pond system upon shallow groundwater quality
Ying Ouyang
2013-01-01
Constructed wetland (CW) and constructed pond (CP) are commonly utilized for removal of excess nutrients and certain pollutants from stormwater. This study characterized shallow groundwater quality for pre- and post-CW and CP system conditions using data from monitoring wells. Results showed that the average concentrations of groundwater phosphorus (P) decreased from...
NASA Astrophysics Data System (ADS)
Naudascher, R. M.; Marti, B. S.; Siegfried, T.; Wolfgang, K.; Anselm, K.
2017-12-01
The Kyzylkum Irrigation Scheme lies north of the Chardara reservoir on the banks of the river Syr Darya in South Kazakhstan. It was designed as a model Scheme and developed to a size of 74'000 ha during Soviet times for rice and cotton production. However, since the 1990s only very limited funds were available for maintenance and as a result, problems like water logging and salinization of soils and groundwater are now omnipresent in the scheme. The aim of this study was to develop a numerical groundwater flow model for the region in Modflow and to evaluate the effect of various infrastructure investments on phreatic evaporation (a major driver for soil salinization). Decadal groundwater observation data from 2011 to 2015 were used to calibrate the annual model and to validate the monthly model. Scenarios simulated were (partial) lining of main and/or secondary and tertiary canal system, improvement of drainage via horizontal canals or pumps, combinations of these and a joint groundwater-surface-water use scenario. Although the annual average model is sufficient to evaluate the yearly water balance, the transient model is a prerequisite for analysing measures against water logging and salinization, both of which feature strong seasonality. The transient simulation shows that a combination of leakage reduction (lining of canals) and drainage improvement measures is needed to lower the groundwater levels enough to avoid phreatic evaporation. To save water, joint surface water and groundwater irrigation can be applied in areas where groundwater salinity is low enough but without proper lining of canals, it is not sufficient to mitigate the ongoing soil degradation due to salinization and water logging.
NASA Astrophysics Data System (ADS)
Mfumu Kihumba, Antoine; Vanclooster, Marnik
2013-04-01
Drinking water in Kinshasa, the capital of the Democratic Republic of Congo, is provided by extracting groundwater from the local aquifer, particularly in peripheral areas. The exploited groundwater body is mainly unconfined and located within a continuous detrital aquifer, primarily composed of sedimentary formations. However, the aquifer is subjected to an increasing threat of anthropogenic pollution pressure. Understanding the detailed origin of this pollution pressure is important for sustainable drinking water management in Kinshasa. The present study aims to explain the observed nitrate pollution problem, nitrate being considered as a good tracer for other pollution threats. The analysis is made in terms of physical attributes that are readily available using a statistical modelling approach. For the nitrate data, use was made of a historical groundwater quality assessment study, for which the data were re-analysed. The physical attributes are related to the topography, land use, geology and hydrogeology of the region. Prior to the statistical modelling, intrinsic and specific vulnerability for nitrate pollution was assessed. This vulnerability assessment showed that the alluvium area in the northern part of the region is the most vulnerable area. This area consists of urban land use with poor sanitation. Re-analysis of the nitrate pollution data demonstrated that the spatial variability of nitrate concentrations in the groundwater body is high, and coherent with the fragmented land use of the region and the intrinsic and specific vulnerability maps. For the statistical modeling use was made of multiple regression and regression tree analysis. The results demonstrated the significant impact of land use variables on the Kinshasa groundwater nitrate pollution and the need for a detailed delineation of groundwater capture zones around the monitoring stations. Key words: Groundwater , Isotopic, Kinshasa, Modelling, Pollution, Physico-chemical.
Water balance-based estimation of groundwater recharge in the Lake Chad Basin
NASA Astrophysics Data System (ADS)
Babamaaji, R. A.; Lee, J.
2012-12-01
Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.
NASA Astrophysics Data System (ADS)
Tiwari, Ashwani Kumar; Lavy, Muriel; Amanzio, Gianpiero; De Maio, Marina; Singh, Prasoon Kumar; Mahato, Mukesh Kumar
2017-12-01
The West Bokaro coalfield is a richest coal-mining belt in the Damodar Valley, India. The extensive mining of the area has resulted in disruption of the groundwater availability in terms of both quantity and quality. This has led to a drinking water crisis, especially during the pre-monsoon period in the West Bokaro coalfield area. The characterization of the hydrogeological system and the artificial recharging of the aquifers might help to better manage the problem of the groundwater-level depletion. For this purpose, seven important hydrogeological factors (water depth, slope, drainage, soil, infiltration, lithology, and landuse) have been considered to define the most suitable locations for artificial groundwater recharging in the mining area. Different thematic maps were prepared from existing maps and data sets, remote-sensing images, and field investigations for identification of the most suitable locations for artificial recharge. Thematic layers for these parameters were prepared, classified, weighted, and integrated into a geographic information system (GIS) environment by means of fuzzy logic. The results of the study indicate that about 29 and 31% of the area are very suitable and suitable for recharging purposes in the West Bokaro coalfield. However, the rest of the area is moderate to unsuitable for recharging due to the ongoing mining and related activities in the study area. The groundwater recharging map of the study area was validated with measured electrical conductivity (EC) values in the groundwater, and it indicated that validation can be accepted for the identification of groundwater recharging sites. These findings are providing useful information for the proper planning and sustainable management of the groundwater resources in the study area.
NASA Astrophysics Data System (ADS)
Harris, P. J.
1995-12-01
This report summarizes research studies linking on-site waste disposal systems (OSDS) to pathogen and nutrient concentrations in groundwater with the potential to impact coastal embayments. Few studies connect OSDS to coastal water quality. Most studies examined pathogen and nutrient impacts to groundwater and omitted estimations of contaminants discharged to surface water. The majority of studies focused on nitrogen, with little information on pathogens and even less on phosphorus. Nitrogen discharged from OSDS poses the greatest threat to water quality. Vertical distance of septic tank infiltration system from the water table, septic system design, and siting remain the key components in minimizing potential impacts from OSDS for control of both pathogens and nutrients. The most comprehensive information connecting nutrient contributions from OSDS to surface water quality was the study conducted on Buttermilk Bay in Massachusetts where 74% of nitrogen to the bay was attributed to onsite disposal systems. In conclusion, further studies on the viability and transport of pathogens and nutrients through the groundwater aquifer and across the groundwater/surface-water interface are needed. Additional research on the importance of septic system design on the availability of contaminants to groundwater as well as the minimum distance between the septic system and water table necessary to protect groundwater are also indicated.
El-Shahat, M F; Sadek, M A; Mostafa, W M; Hagagg, K H
2016-04-01
The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.
Predicting ground-water movement in large mine spoil areas in the Appalachian Plateau
Wunsch, D.R.; Dinger, J.S.; Graham, C.D.R.
1999-01-01
Spoil created by surface mining can accumulate large quantities of ground-water, which can create geotechnical or regulatory problems, as well as flood active mine pits. A current study at a large (4.1 km2), thick, (up to 90 m) spoil body in eastern Kentucky reveals important factors that control the storage and movement of water. Ground-water recharge occurs along the periphery of the spoil body where surface-water drainage is blocked, as well as from infiltration along the spoil-bedrock contact, recharge from adjacent bedrock, and to a minor extent, through macropores at the spoil's surface. Based on an average saturated thickness of 6.4 m for all spoil wells, and assuming an estimated porosity of 20%, approximately 5.2 x 106 m3 of water is stored within the existing 4.1 km2 of reclaimed spoil. A conceptual model of ground-water flow, based on data from monitoring wells, dye-tracing data, discharge from springs and ponds, hydraulic gradients, chemical data, field reconnaissance, and aerial photographs indicate that three distinct but interconnected saturated zones have been established: one in the spoil's interior, and others in the valley fills that surround the main spoil body at lower elevations. Ground-water movement is sluggish in the spoil's interior, but moves quickly through the valley fills. The conceptual model shows that a prediction of ground-water occurrence, movement, and quality can be made for active or abandoned spoil areas if all or some of the following data are available: structural contour of the base of the lowest coal seam being mined, pre-mining topography, documentation of mining methods employed throughout the mine, overburden characteristics, and aerial photographs of mine progression.Spoil created by surface mining can accumulate large quantities of ground-water, which can create geotechnical or regulatory problems, as well as flood active mine pits. A current study at a large (4.1 km2), thick, (up to 90 m) spoil body in eastern Kentucky reveals important factors that control the storage and movement of water. Ground-water recharge occurs along the periphery of the spoil body where surface-water drainage is blocked, as well as from infiltration along the spoil-bedrock contact, recharge from adjacent bedrock, and to a minor extent, through macropores at the spoil's surface. Based on an average saturated thickness of 6.4 m for all spoil wells, and assuming an estimated porosity of 20%, approximately 5.2 ?? 106 m3 of water is stored within the existing 4.1 km2 of reclaimed spoil. A conceptual model of ground-water flow, based on data from monitoring wells, dye-tracing data, discharge from springs and ponds, hydraulic gradients, chemical data, field reconnaissance, and aerial photographs indicate that three distinct but interconnected saturated zones have been established: one in the spoil's interior, and others in the valley fills that surround the main spoil body at lower elevations. Ground-water movement is sluggish in the spoil's interior, but moves quickly through the valley fills. The conceptual model shows that a prediction of ground-water occurrence, movement, and quality can be made for active or abandoned spoil areas if all or some of the following data are available: structural contour of the base of the lowest coal seam being mined, pre-mining topography, documentation of mining methods employed throughout the mine, overburden characteristics, and aerial photographs of mine progression.
[Influence of human activities on groundwater environment based on coefficient variation method].
Zhao, Wei; Lin, Jian; Wang, Shu-Fang; Liu, Ji-Lai; Chen, Zhong-Rong; Kou, Wen-Jie
2013-04-01
Groundwater system in the plain area of Beijing can be divided into six subsystems. Due to the different hydrogeological conditions of the subsystems, the degrees to which human activities affect the subsystems are also diverse. In order to evaluate the influence of human activities on each subsystem, the first and second aquifer with relatively poor water quality were chosen to be the evaluating positions, based on the data of groundwater sampled in September, 2011. With respect to human activities affect index such as total hardness, TDS, sulfate and ammonium, variation coefficient methods were used to calculate the weight of each index. Then scores were obtained for each index with national standard as reference, and superposition calculations were used to gain comprehensive scores, finally the groundwater quality conditions were evaluated. Contrast analyses were used to evaluate the incidence of human activities with groundwater subsystems as evaluation unit and water quality partitions as evaluation factors. The results indicate that the influence of human activities on the first aquifer is greater than that of the second aquifer, the Yongding river groundwater subsystems and the Chaobai river groundwater subsystems are affected more than other groundwater subsystems.
Geomorphology and its implication in urban groundwater environment: case study from Mumbai, India
NASA Astrophysics Data System (ADS)
Rani, V. R.; Pandalai, H. S.; Sajinkumar, K. S.; Pradeepkumar, A. P.
2015-06-01
Landforms of Mumbai Island have been largely modified by the urban sprawl and the demand for groundwater will increase exponentially in the future. Quality and quantity of groundwater occurrence in island are highly influenced by the geomorphic units. As this metropolis receives heavy rainfall, the area rarely faces the issue of water scarcity, nevertheless, quality always remains a question. The landforms of Mumbai Island have been shaped by a combination of fluvial, denudational and marine processes. These landforms are categorized into two broad zones on the basis of its influence in groundwater occurrence. Denudational landforms are categorized as runoff zones whereas the other two are categorized as storage zones. This classification is on the basis of occurrence and storage of groundwater. Mumbai Island is exposed to frequent sea water incursion and groundwater quality has deteriorated. The varied hydrogeological conditions prevalent in this area prevent rapid infiltration. This combined with the overextraction of groundwater resources for agriculture and industry has caused serious concern about the continued availability of potable water. This study aims at validating the geomorphic classification of the landforms with hydrogeochemistry and borehole data and it proved that geomorphology corroborates with groundwater chemistry and subsurface geology.
Deep groundwater quantity and quality in the southwestern US
NASA Astrophysics Data System (ADS)
Kang, M.; Ayars, J. E.; Jackson, R. B.
2017-12-01
Groundwater demands are growing in many arid regions and adaptation through the use of non-traditional resources during extreme droughts is increasingly common. One such resource is deep groundwater, which we define as deeper than 300 m and up to several kilometer-depths. Although deep groundwater has been studied in the context of oil and gas, geothermal, waste disposal, and other uses, it remains poorly characterized, especially for the purposes of human consumption and irrigation uses. Therefore, we evaluate deep groundwater quantity and quality within these contexts. We compile and analyze data from water management agencies and oil and gas-based sources for the southwestern US, with a detailed look at California's Central Valley. We also use crop tolerance thresholds to evaluate deep groundwater quality for irrigation purposes. We find fresh and usable groundwater volume estimates in California's Central Valley to increase by three- and four-fold respectively when depths of up to 3 km are considered. Of the ten basins in the southwestern US with the most data, we find that the Great Basin has the greatest proportions of fresh and usable deep groundwater. Given the potentially large deep groundwater volumes, it is important to characterize the resource, guard against subsidence where extracted, and protect it for use in decades and centuries to come.
Western USA groundwater drilling
NASA Astrophysics Data System (ADS)
Jasechko, S.; Perrone, D.
2016-12-01
Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.
Rahmati, Omid; Melesse, Assefa M
2016-10-15
Effective management and sustainable development of groundwater resources of arid and semi-arid environments require monitoring of groundwater quality and quantity. The aim of this paper is to develop a reasonable methodological framework for producing the suitability map for drinking water through the geographic information system, remote sensing and field surveys of the Andimeshk-Dezful, Khozestan province, Iran as a semi-arid region. This study investigated the delineation of groundwater potential zone based on Dempster-Shafer (DS) theory of evidence and evaluate its applicability for groundwater potentiality mapping. The study also analyzed the spatial distribution of groundwater nitrate concentration; and produced the suitability map for drinking water. The study has been carried out with the following steps: i) creation of maps of groundwater conditioning factors; ii) assessment of groundwater occurrence characteristics; iii) creation of groundwater potentiality map (GPM) and model validation; iv) collection and chemical analysis of water samples; v) assessment of groundwater nitrate pollution; and vi) creation of groundwater potentiality and quality map. The performance of the DS was also evaluated using the receiver operating characteristic (ROC) curve method and pumping test data to ensure its generalization ability, which eventually, the GPM showed 87.76% accuracy. The detailed analysis of groundwater potentiality and quality revealed that the 'non acceptable' areas covers an area of about 1479km(2) (60%). The study will provide significant information for groundwater management and exploitation in areas where groundwater is a major source of water and its exploration is critical to support drinking water need. Copyright © 2016 Elsevier B.V. All rights reserved.
Groundwater governance in Asia: present state and barriers to implementation of good governance
NASA Astrophysics Data System (ADS)
Tanaka, T.
2014-09-01
The present state of groundwater governance in Asia was reviewed. The main problem regarding groundwater resources in each Asian country is overexploitation, causing water level decline, land subsidence and salt water intrusion. For those groundwater hazards, many countries have established regulations such as laws and regulations as countermeasures. However, those laws and regulations are not the basic laws on groundwater resources, but only for countermeasures to prevent groundwater hazards. Common problems and barriers for implementing groundwater governance in Asian countries are that there is more than one institute with different and sometimes overlapping responsibilities in groundwater management. To overcome those conflicts among institutions and establishment of good governance, it is necessary to establish an agency in the government as one coordinate function reinforcing the direct coordination and facilitation of groundwater policy-making and management. As one such framework, the conceptual law called the Water Cycle Basic Law, which is under planning in Japan, is examined in this paper.
Groundwater sustainability and urban development - a major challenge for the 21st century
NASA Astrophysics Data System (ADS)
Foster, Stephen
2016-04-01
Groundwater is a critical, but often under appreciated, resource for urban water supply, a serious and costly hazard to urban infrastructure, and the 'invisible link' between various facets of the urbanisation process. An overview is presented of the benefits of urban groundwater use, together with some insidious and persistent problems that groundwater can present (especially those related to groundwater pollution from inadequate sanitation) for urban development. Spontaneous piecemeal approaches invariably mean that 'one person's solution becomes another person's problem' - and there is a strong argument for groundwater considerations to be part of a more holistic approach to urban infrastructure planning and management. However this is not a simple task because of the widespread vacuum of institutional responsibility and accountability for groundwater in urban areas. The current state of urban groundwater management will be reviewed, and pragmatic solutions to strengthening various facets of urban groundwater governance and management presented, using examples from Latin America and South Asia.
Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru).
de Meyer, Caroline M C; Rodríguez, Juan M; Carpio, Edward A; García, Pilar A; Stengel, Caroline; Berg, Michael
2017-12-31
This paper presents a first integrated survey on the occurrence and distribution of geogenic contaminants in groundwater resources of Western Amazonia in Peru. An increasing number of groundwater wells have been constructed for drinking water purposes in the last decades; however, the chemical quality of the groundwater resources in the Amazon region is poorly studied. We collected groundwater from the regions of Iquitos and Pucallpa to analyze the hydrochemical characteristics, including trace elements. The source aquifer of each well was determined by interpretation of the available geological information, which identified four different aquifer types with distinct hydrochemical properties. The majority of the wells in two of the aquifer types tap groundwater enriched in aluminum, arsenic, or manganese at levels harmful to human health. Holocene alluvial aquifers along the main Amazon tributaries with anoxic, near pH-neutral groundwater contained high concentrations of arsenic (up to 700μg/L) and manganese (up to 4mg/L). Around Iquitos, the acidic groundwater (4.2≤pH≤5.5) from unconfined aquifers composed of pure sand had dissolved aluminum concentrations of up to 3.3mg/L. Groundwater from older or deeper aquifers generally was of good chemical quality. The high concentrations of toxic elements highlight the urgent need to assess the groundwater quality throughout Western Amazonia. Copyright © 2017 Elsevier B.V. All rights reserved.
Regional assessment of groundwater quality for drinking purpose.
Jang, Cheng-Shin
2012-05-01
Owing to limited surface water during a long-term drought, this work attempted to locate clean and safe groundwater in the Choushui River alluvial fan of Taiwan based on drinking-water quality standards. Because aquifers contained several pollutants, multivariate indicator kriging (MVIK) was adopted to integrate the multiple pollutants in groundwater based on drinking- and raw-water quality standards and to explore spatial uncertainty. According to probabilities estimated by MVIK, safe zones were determined under four treatment conditions--no treatment; ammonium-N and iron removal; manganese and arsenic removal; and ammonium-N, iron, manganese, and arsenic removal. The analyzed results reveal that groundwater in the study area is not appropriate for drinking use without any treatments because of high ammonium-N, iron, manganese, and/or arsenic concentrations. After ammonium-N, iron, manganese, and arsenic removed, about 81.9-94.9% of total areas can extract safe groundwater for drinking. The proximal-fan, central mid-fan, southern mid-fan, and northern regions are the excellent locations to pump safe groundwater for drinking after treatment. Deep aquifers of exceeding 200 m depth have wider regions to obtain excellent groundwater than shallow aquifers do.
Sustainable yield of a karst aquifer system: a case study of Jinan springs in northern China
NASA Astrophysics Data System (ADS)
Kang, Fengxin; Jin, Menggui; Qin, Pinrui
2011-06-01
Based on the long-term monitoring data of rainfall, groundwater levels, groundwater abstraction, spring flow rates and groundwater quality, an assessment has been undertaken of the sustainable yield of a karst aquifer system in Shandong Province, northern China, to maintain perennial outflow of the karst springs while meeting water demands. One of the fundamental indicators for sustainable yield of groundwater is identified as maximum allowable water-level drawdown. A regional three-dimensional finite-difference numerical model has been developed to optimize the schemes associated with well fields and their locations and sustainable yields, in the Jinan spring catchment and its adjacent karst groundwater catchments, with the aim of maintaining the water level higher than the allowable lowest water level of 27.5 m above sea level. Furthermore, measures necessary to move towards sustainable use of the karst groundwater are outlined, drawing on contingency plans of water-source replacement and artificial recharge, dual water supply (based in water quality), use of the spring waters themselves, and groundwater quality protection.
Stein, Heide; Kellermann, Claudia; Schmidt, Susanne I; Brielmann, Heike; Steube, Christian; Berkhoff, Sven E; Fuchs, Andreas; Hahn, Hans Jürgen; Thulin, Barbara; Griebler, Christian
2010-01-01
The use of ecological criteria for the assessment of aquatic ecosystem status is routine for surface waters. So far no ecological parameters are considered for the assessment and monitoring of groundwater quality. It has been well known for decades that aquifers are ecosystems harbouring a vast diversity of invertebrates and microorganisms. The growing knowledge on groundwater microbial and faunal communities as well as the molecular and statistical tools available form a solid ground for the development of first ecologically sound assessment schemes. The sensitivity of groundwater communities towards impacts from land use and surface waters is exemplarily demonstrated by a data set of two geologically similar but hydrologically partially separated aquifer systems. Subgroups of the fauna in groundwater (stygobites vs. stygophiles and stygoxenes) successfully indicated elevated nitrate impacts linked to land use activities. Within the microbial communities, impacts from land use are mirrored by high bacterial biodiversity values atypical for pristine groundwater of comparable systems. The data show that there is legitimate hope for the application of ecological criteria for groundwater quality assessment in the future.
Groundwater ages and mixing in the Piceance Basin natural gas province, Colorado
McMahon, Peter B.; Thomas, Judith C.; Hunt, Andrew G.
2013-01-01
Reliably identifying the effects of energy development on groundwater quality can be difficult because baseline assessments of water quality completed before the onset of energy development are rare and because interactions between hydrocarbon reservoirs and aquifers can be complex, involving both natural and human processes. Groundwater age and mixing data can strengthen interpretations of monitoring data from those areas by providing better understanding of the groundwater flow systems. Chemical, isotopic, and age tracers were used to characterize groundwater ages and mixing with deeper saline water in three areas of the Piceance Basin natural gas province. The data revealed a complex array of groundwater ages (50,000 years) and mixing patterns in the basin that helped explain concentrations and sources of methane in groundwater. Age and mixing data also can strengthen the design of monitoring programs by providing information on time scales at which water quality changes in aquifers might be expected to occur. This information could be used to establish maximum allowable distances of monitoring wells from energy development activity and the appropriate duration of monitoring.
Modelling raw water quality: development of a drinking water management tool.
Kübeck, Ch; van Berk, W; Bergmann, A
2009-01-01
Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.
Physicochemical parameters affecting the perception of borehole water quality in Ghana.
Kulinkina, Alexandra V; Plummer, Jeanine D; Chui, Kenneth K H; Kosinski, Karen C; Adomako-Adjei, Theodora; Egorov, Andrey I; Naumova, Elena N
2017-08-01
Rural Ghanaian communities continue using microbiologically contaminated surface water sources due in part to undesirable organoleptic characteristics of groundwater from boreholes. Our objective was to identify thresholds of physical and chemical parameters associated with consumer complaints related to groundwater. Water samples from 94 boreholes in the dry season and 68 boreholes in the rainy season were analyzed for 18 parameters. Interviews of consumers were conducted at each borehole regarding five commonly expressed water quality problems (salty taste, presence of particles, unfavorable scent, oily sheen formation on the water surface, and staining of starchy foods during cooking). Threshold levels of water quality parameters predictive of complaints were determined using the Youden index maximizing the sum of sensitivity and specificity. The probability of complaints at various parameter concentrations was estimated using logistic regression. Exceedances of WHO guidelines were detected for pH, turbidity, chloride, iron, and manganese. Concentrations of total dissolved solids (TDS) above 172mg/L were associated with salty taste complaints. Although the WHO guideline is 1000mg/L, even at half the guideline, the likelihood of salty taste complaint was 75%. Iron concentrations above 0.11, 0.14 and 0.43mg/L (WHO guideline value 0.3mg/L) were associated with complaints of unfavorable scent, oily sheen, and food staining, respectively. Iron and TDS concentrations exhibited strong spatial clustering associated with specific geological formations. Improved groundwater sources in rural African communities that technically meet WHO water quality guidelines may be underutilized in preference of unimproved sources for drinking and domestic uses, compromising human health and sustainability of improved water infrastructure. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Krishna kumar, S.; Logeshkumaran, A.; Magesh, N. S.; Godson, Prince S.; Chandrasekar, N.
2015-12-01
In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock-water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na-Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SM Narbutovskih
2000-03-31
Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), themore » owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.« less
NASA Astrophysics Data System (ADS)
Torres Torres, N. I.; Howard, J.; Padilla, I. Y.; Torres, P.; Cotto, I.; Irizarry, C.
2012-12-01
The karst system of northern Puerto Rico is the most productive aquifer of the island. It serves freshwater to industrial, domestic and agricultural purposes, and contributes to the ecological integrity of the region. The same characteristics that make this a highly productive aquifer, make it vulnerable to contamination of groundwater. Of particular importance is contamination with chlorinated volatile organic compounds (CVOCs), which have been related to preterm birth problems. A great extent of CVOC contamination has been seen in the North Coast of Puerto Rico since the 1970s. The main purposes of this study are (1) to relate the water quality of wells and springs with the hydrogeological conditions in the north coast limestone aquifer of Puerto Rico, and (2) to make a statistical analysis of the historical groundwater contamination in that area. To achieve these objectives, groundwater samples are collected from wells and springs during dry and wet seasons. Results show that trichloroethylene (TCE), tetrachloroethylene (PCE) and chloroform (TCM) are frequently detected in groundwater samples. A greater detection of CVOCs is detected during the wet season than the dry season. This is attributed to a greater capacity to flush stored contaminants during the wet season. Historical analysis of contamination in the north coast of Puerto Rico shows a high capacity of the aquifer to store and release contaminants. Future work will be focused the statistical analysis of the historical groundwater contamination data to understand the behavior of the contaminants in different hydrologic conditions.
Buvaneshwari, Sriramulu; Riotte, Jean; Sekhar, M; Mohan Kumar, M S; Sharma, Amit Kumar; Duprey, Jean Louis; Audry, Stephane; Giriraja, P R; Praveenkumarreddy, Yerabham; Moger, Hemanth; Durand, Patrick; Braun, Jean-Jacques; Ruiz, Laurent
2017-02-01
Agriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO 3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO 3 hot spots associated to deep groundwater levels (30-60m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO 3 concentrations suggest that significant lateral flow prevented NO 3 enrichment; iii) low NO 3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigation with NO 3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200kgN/ha/yr in hotspot areas, enhancing groundwater contamination. Such fluxes, once taken into account in fertilizer management, would allow optimizing fertilizer consumption and mitigate high nitrate concentrations in groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Impacts of swine manure pits on groundwater quality
Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.
2002-01-01
Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and ??15N and ??18O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal streptococcus bacteria were detected at least once in groundwater from all monitoring wells at both sites. Fecal streptococcus was more common and at greater concentrations than fecal coliform. The microbiological data suggest that filtration of bacteria by soils may not be as effective as commonly assumed. The presence of fecal bacteria in the shallow groundwater may pose a significant threat to human health if the ground water is used for drinking. Both facilities are less than 4 years old and the short-term impacts of these manure storage facilities on groundwater quality have been limited. Continued monitoring of these facilities will determine if they have a long-term impact on groundwater resources. ?? 2002 Elsevier Science Ltd. All rights reserved.
Fio, John L.; Leighton, David A.
1994-01-01
Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.
Haloi, Nabanita; Sarma, H P
2012-10-01
A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).
Groundwater Quality Protection in Oakland County: A Sourcebook for Teachers.
ERIC Educational Resources Information Center
East Michigan Environmental Action Council, Troy.
This sourcebook consists of background information and activities related to groundwater protection. The first section focuses on the characteristics of groundwater, the water cycle, stormwater runoff, and uses of groundwater. The second section addresses household hazardous materials--both from a safety standpoint and a groundwater standpoint.…
Modeling Effects of Groundwater Basin Closure, and Reversal of Closure, on Groundwater Quality
NASA Astrophysics Data System (ADS)
Pauloo, R.; Guo, Z.; Fogg, G. E.
2017-12-01
Population growth, the expansion of agriculture, and climate uncertainties have accelerated groundwater pumping and overdraft in aquifers worldwide. In many agricultural basins, a water budget may be stable or not in overdraft, yet disconnected ground and surface water bodies can contribute to the formation of a "closed" basin, where water principally exits the basin as evapotranspiration. Although decreasing water quality associated with increases in Total Dissolved Solids (TDS) have been documented in aquifers across the United States in the past half century, connections between water quality declines and significant changes in hydrologic budgets leading to closed basin formation remain poorly understood. Preliminary results from an analysis with a regional-scale mixing model of the Tulare Lake Basin in California indicate that groundwater salinization resulting from open to closed basin conversion can operate on a decades-to-century long time scale. The only way to reverse groundwater salinization caused by basin closure is to refill the basin and change the hydrologic budget sufficiently for natural groundwater discharge to resume. 3D flow and transport modeling, including the effects of heterogeneity based on a hydrostratigraphic facies model, is used to explore rates and time scales of groundwater salinization and its reversal under different water and land management scenarios. The modeling is also used to ascertain the extent to which local and regional heterogeneity need to be included in order to appropriately upscale the advection-dispersion equation in a basin scale groundwater quality management model. Results imply that persistent managed aquifer recharge may slow groundwater salinization, and complete reversal may be possible at sufficiently high water tables.
McMahon, Peter B.; Caldwell, Rodney R.; Galloway, Joel M.; Valder, Joshua F.; Hunt, Andrew G.
2015-01-01
The quality and age of shallow groundwater in the Bakken Formation production area were characterized using data from 30 randomly distributed domestic wells screened in the upper Fort Union Formation. Comparison of inorganic and organic chemical concentrations to health based drinking-water standards, correlation analysis of concentrations with oil and gas well locations, and isotopic data give no indication that energy-development activities affected groundwater quality. It is important, however, to consider these results in the context of groundwater age. Most samples were recharged before the early 1950s and had 14C ages ranging from 30,000 years. Thus, domestic wells may not be as well suited for detecting contamination associated with recent surface spills as shallower wells screened near the water table. Old groundwater could be contaminated directly by recent subsurface leaks from imperfectly cemented oil and gas wells, but horizontal groundwater velocities calculated from 14C ages imply that the contaminants would still be less than 0.5 km from their source. For the wells sampled in this study, the median distance to the nearest oil and gas well was 4.6 km. Because of the slow velocities, a long-term commitment to groundwater monitoring in the upper Fort Union Formation is needed to assess the effects of energy development on groundwater quality. In conjunction with that effort, monitoring could be done closer to energy-development activities to increase the likelihood of early detection of groundwater contamination if it did occur.
Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.
2012-01-01
In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.
LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.
2003-01-01
Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.
Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.
2006-01-01
Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.
The role of scenario analysis in water resources management in Yanqi Basin, Xinjiang, China
NASA Astrophysics Data System (ADS)
Li, N.; Kinzelbach, W. K.; Li, W.; Dong, X.
2011-12-01
With the rapid increase of world population and food demand, the demand for water resources is also increasing. At the same time shifts in rain patterns due to global climate change make the water resources situation more uncertain. A global water crisis can therefore not be excluded. The socio-economic and environmental problems induced by such a water crisis are especially prominent in arid and semiarid regions. The Yanqi Basin in Xinjiang province is a typical case study in China's arid and semi-arid areas, where rainfall is scarce and evaporation is extremely high. Thus its water resources have been under great pressure to satisfy the increasing water demand of agriculture and urban and industrial expansion in the last decades. The development has been accompanied by a number of environmental problems. Yanqi Basin is an important cultivated area which is irrigated by water diverted from rivers. Because of the long-term flood irrigation and an inefficient drainage system, the groundwater level under the cultivated area rose, accelerating the phreatic evaporation and leading to increased soil salinization. Simultaneously, the water quantity and quality of Boston Lake have been impaired in past years because of the decreased river discharge and the increased salt flux contained in the drainage discharge. Thus the ecosystems depending on the inflow to and outflow from the lake suffered. The riverine forests in the downstream area were degraded due to declining groundwater levels, and aquatic life as well as downstream water users had to cope with deteriorating water quality. The big challenge for decision makers in the basin is how to balance the justified requirements of agriculture, industrial development and the ecosystem. In order to provide a scientific basis to the decision making process, a scenario analysis was adopted. Here several scenarios are proposed: the basic scenario, scenario 1, describes the status of the year 2008. A second scenario maximizes the use of groundwater. Scenario 3 applies water saving for maximum increase of discharge to the downstream area, and scenario 4 looks at different climatic extremes. As groundwater lends it self readily to water saving irrigation, a present danger is over pumping of groundwater which leads to less efficient drainage, and recycling and accumulation of TDS. In an effort to allow high groundwater use scenario 5 analyses the use of irrigation channels for artificial groundwater recharge by surface water. All of the scenarios are implemented and compared through simulation, using an integrated 3D distributed flow and transport model of Yanqi Basin based on MikeSHE/Mike11 software. After the comparison of the different scenarios, an optimal combination of surface and groundwater resources use is suggested to reach an acceptable and sustainable compromise between the various water users i.e. agriculture, industry and the ecosystem.
Sustainability of natural attenuation of nitrate in agricultural aquifers
Green, Christopher T.; Bekins, Barbara A.
2010-01-01
Increased concentrations of nitrate in groundwater in agricultural areas, coinciding with increased use of chemical and organic fertilizers, have raised concern because of risks to environmental and human health. At some sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated reactions. Results from U.S. Geological Survey (USGS) research under the National Water-Quality Assessment (NAWQA) program show that reactions of dissolved nitrate with solid aquifer minerals and organic carbon help lower nitrate concentrations in groundwater beneath agricultural fields. However, increased fluxes of nitrate cause ongoing depletion of the finite pool of solid reactants. Consumption of the solid reactants diminishes the capacity of the aquifer to remove nitrate, calling into question the long-term sustainability of these natural attenuation processes.
Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India
NASA Astrophysics Data System (ADS)
Subba Rao, N.
2002-01-01
Hydrogeochemical investigations, which are significant for the assessment of water quality, have been carried out to study the sources of dissolved ions in groundwaters of some rural areas of Guntur district, Andhra Pradesh, India. Groundwaters in the area are mostly brackish. High contents of SiO2, and Na+ and Cl- ions in groundwater, in comparison with those of seawater, suggests a meteoric origin of groundwater. The high concentration of SiO2 and various geochemical signatures reflect the weathering of minerals. However, the Na++K+ vs Cl- ratio suggests weathering, has occurred only to some extent. The chemistry of groundwater favours the formation of clay minerals (montmorillonite, illite and chlorite), because of evapotranspiration. The positive saturation index of CaCO3 and the high signatures of Ma2+:Ca2+ and Na+:Ca2+ reveals the occurrence of evaporation. The evaporation enhances the concentration of ions (which occurred originally in the water) in the soils during summer. The very high SO{4/2-} and Cl- contents in some groundwaters and the occurrence of kankar (CaCO3) in the area suggest a long history of evaporation. Greater ionic concentration in the groundwaters of post-monsoon compared with pre-monsoon indicates the increasing addition of leachates into the groundwater from the soils in the monsoon and anthropogenic activities, which leads to a deteriorating quality of groundwater. According to the Gibbs' diagrams, rock weathering, to some extent, and evaporation are the dominant phenomena responsible for the higher ionic concentrations found in groundwater. Measures that benefit sustainable management of groundwater quality are suggested in this study.
Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China.
Guo, Fang; Jiang, Guanghui; Polk, Jason S; Huang, Xiufeng; Huang, Siyu
2015-11-01
Changes of groundwater flow and quality were investigated in a subtropical karst aquifer to determine the driving mechanism. Decreases in groundwater flow are more distinct in discharge zones than those in recharge and runoff zones. Long-term measurement of the represented regional groundwater outlet reveals that groundwater discharge decrease by nearly 50% during the dry season. The hydrochemistry of groundwater in the runoff and discharge zones is of poorer quality than in the recharge zone. Indications of intensive land resource exploitation and changes in land use patterns were attributed to changes in groundwater conditions since 1990, but the influence of climate change was likely from 2001, because the water temperature exhibited increasing trends at a mean rate of 0.02 °C/yr even though groundwater depth was high in the aquifer. These conclusions imply the need for further groundwater monitoring and reevaluation to understand the resilience of aquifer during urbanization and development.
Assessment of groundwater quality from Bankura I and II Blocks, Bankura District, West Bengal, India
NASA Astrophysics Data System (ADS)
Nag, S. K.; Das, Shreya
2017-10-01
Hydrochemical evaluation of groundwater has been conducted in Bankura I and II Blocks to analyze and determining groundwater quality in the area. Thirty-six groundwater samples were analyzed for their physical and chemical properties using standard laboratory methods. The constituents have the following ranges in the water: pH 6.4-8.6, electrical conductivity 80-1900 μS/cm, total hardness 30-730 mg/l, TDS 48-1001 mg/l, Ca2+ 4.2-222.6 mg/l, Na+ 2.33-103.33 mg/l, Mg2+ 1.56-115.36 mg/l, K+ 0.67-14 mg/l and Fe BDL-2.53 mg/l, {HCO}3^{ - } 48.8-1000.4 mg/l, Cl- 5.6-459.86 mg/l and {SO}4^{ = } BDL-99.03 mg/l. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). Sodium adsorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), total hardness (TH), and permeability index (PI) were calculated as derived parameters, to investigate the ionic toxicity. Concerned chemical parameters when plotted in the U.S. Salinity diagram indicate that waters are of C1-S1, C2-S1 and C3-S1 types, i.e., low salinity and low sodium which is good for irrigation. The values of Sodium Adsorption Ratio indicate that the groundwater of the area falls under the category of low sodium hazard. So, there is neither salinity nor toxicity problem of irrigation water, and hence the ground water can safely be used for long-term irrigation. The chemical parameters when plotted in Piper's trilinear diagram are found to concentrate in the central and west central part of the diamond-shaped field. Based on the analytical results, groundwater in the area is found to be generally fresh and hard to very hard. The abundance of the major ions is as follows: HCO3 > Cl > SO4 and Ca > Na > Mg > K > Fe. Results also show that bicarbonate ions ( {HCO}3^{ - } ) dominate the other anions (Cl- and {SO}4^{2 - } ). According to Gibbs diagrams samples fall in the rock dominance field and the chemical quality of groundwater is related to the lithology of the area. The alkaline earth elements (Ca and Mg) occur in greater abundance than alkaline elements (Na and K). A comparative study of our analytical results with the WHO standards of drinking water indicate that the present waters are also good for drinking purposes.
Impact of geochemical stressors on shallow groundwater quality
An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.
2005-01-01
Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of geochemical stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional geochemical stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.
The High Plains Aquifer, USA: Groundwater development and sustainability
Dennehy, K.F.; Litke, D.W.; McMahon, P.B.
2002-01-01
The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.
NASA Astrophysics Data System (ADS)
Miotliński, Konrad; Postma, Dieke; Kowalczyk, Andrzej
2012-01-01
SummaryThe changes in groundwater quality occurring in a buried valley aquifer following a reduction in groundwater exploitation and enhanced infiltration due to extensive flooding of the Odra River in 1997 were investigated. Long-time series data for the chemical composition of groundwater in a large well field for drinking water supply indicated the deterioration of groundwater quality in the wells capturing water from the flooded area, which had been intensively cultivated since the 1960s. Infiltration of flooded river water into the aquifer is suggested by an elevated chloride concentration, although salt flushing from the rewatered unsaturated zone due to the enhanced recharge event is much more feasible. Concomitantly with chloride increases in the concentrations of sulphate, ferrous iron, manganese, and nickel imply the oxidation of pyrite (FeS 2) which is abundant in the aquifer. The proton production resulting from pyrite oxidation is buffered by the dissolution of calcite, while the Ca:SO 4 stoichiometry of the groundwater indicates that pyrite oxidation coupled with nitrate reduction is the dominant process occurring in the aquifer. The pyritic origin of SO42- is confirmed by the sulphur isotopic composition. The resultant Fe 2+ increase induces Mn-oxide dissolution and the mobilisation of Ni 2+ previously adsorbed to Mn-oxide surfaces. The study has a major implication for groundwater quality prediction studies where there are considerable variations in water level associated with groundwater management and climate change issues.
NASA Astrophysics Data System (ADS)
Gnanachandrasamy, G.; Ramkumar, T.; Venkatramanan, S.; Vasudevan, S.; Chung, S. Y.; Bagyaraj, M.
2015-03-01
The aim of this present study was to evaluate groundwater quality in the lower part of Nagapattinam district, Tamil Nadu, Southern India. A detailed geochemical study of groundwater region is described, and the origin of the chemical composition of groundwater has been qualitatively evaluated, using observations over a period of two seasons premonsoon (June) and monsoon (November) in the year of 2010. To attempt this goal, samples were analysed for various physico-chemical parameters such as temperature, pH, salinity, Na+, Ca2+, K+, Mg2+, Cl-, HCO3 - and SO4 2-. The abundance of major cations concentration in groundwater is as Na > Ca > Mg > K, while that of anions is Cl > SO4 > HCO3. The Piper trilinear diagram indicates Ca-Cl2 facies, and according to USSL diagram, most of the sample exhibits high salinity hazard (C3S1) type in both seasons. It indicates that high salinity (C3) and low sodium (S1) are moderately suitable for irrigation purposes. Gibbs boomerang exhibits most of the samples mainly controlled by evaporation and weathering process sector in both seasons. Irrigation status of the groundwater samples indicates that it was moderately suitable for agricultural purpose. ArcGIS 9.3 software was used for the generation of various thematic maps and the final groundwater quality map. An interpolation technique inverse distance weighting was used to obtain the spatial distribution of groundwater quality parameters. The final map classified the ground quality in the study area. The results of this research show that the development of the management strategies for the aquifer system is vitally necessary.
NASA Astrophysics Data System (ADS)
Ganiyu, S. A.; Badmus, B. S.; Olurin, O. T.; Ojekunle, Z. O.
2018-03-01
The variation of groundwater quality across different regions is of great importance in the study of groundwater so as to ascertain the sources of contaminants to available water sources. Geochemical assessment of groundwater samples from hand-dug wells were done within the vicinity of Ajakanga dumpsite, Ibadan, Southwestern, Nigeria, with the aim of assessing their suitability for domestic and irrigation purposes. Ten groundwater samples were collected both in dry and wet seasons for analysis of physicochemical parameters such as: pH, EC, TDS, Na+, K+, Ca2+, Mg2+, HCO3^{ - } Cl-, SO4^{2 - }, NO3^{2 - } principal component analysis (PCA) and cluster analysis (CA) were used to determine probable sources of groundwater contamination. The results of the analyses showed the groundwater samples to be within permissible limits of WHO/NSDWQ, while elevated values of concentrations of most analyzed chemical constituents in water samples were noticed in S1 and S10 due to their nearness to the dumpsite and agricultural overflow, respectively. Groundwater in the study area is of hard, fresh and alkaline nature. There are very strong associations between EC and TDS, HCO3^{ - } and CO3^{2 - } in both seasons. PCA identified five and three major factors accounting for 95.7 and 88.7% of total variation in water quality for dry and wet seasons, respectively. PCA also identified factors influencing water quality as those probably related to mineral dissolution, groundwater-rock interaction, weathering process and anthropogenic activities from the dumpsite. Results of CA show groups based on similar water quality characteristics and on the extent of proximity to the dumpsite. Assessment for irrigation purpose showed that most of the water samples were suitable for agricultural purpose except in a few locations.
Liu, Xiuhua; Li, Lin; Hu, Anyan
2013-03-01
The Jinghuiqu irrigation district is located in the semi-arid regions of northwestern China, where groundwater is the most important natural source for local industry, agriculture and residents. The present work was conducted in the Jinghuiqu irrigation district to characterize the groundwater aquifer, which has undergone long-term flood irrigation for over 2000 years. Isotopic and hydrochemical analyses, along with geological and hydrogeological tools, were used to determine the chemical properties and evolutionary processes of the groundwater aquifer. Results showed that the groundwater chemistry had changed significantly from 1990 to 2009. Water with concentrations of CaMgSO4 had decreased significantly, from 60% to 28% of the total water samples, during the period, while water with concentrations of NaSO4 and NaCl increased significantly, from 28% to 72%. The salinity of the groundwater increased rapidly and the affected area had expanded to most of the irrigation district. Stable isotope studies showed that most of the groundwater concentrations were derived from sulfate mineral dissolution. The minerals saturation indices (SI), ion ratios and oxygen isotope values of the groundwater indicated that the shallow groundwater had mainly experienced mineral dissolution, cation exchange, and mixing of the irrigated surface waters and groundwater. The groundwater quality had continuously evolved toward salinization as concentrations of SO4(2-) and Na+ grew to dominate it. Water quality risk analyses showed that most of the saline groundwater is not suitable for domestic and irrigation uses, especially in the middle and eastern parts of the irrigation district. These findings indicate that the irrigation district should strengthen the groundwater resources management.
Bennett, Peter A.; Bennett, George L.; Belitz, Kenneth
2009-01-01
Groundwater quality in the approximately 1,180-square-mile Northern Sacramento Valley study unit (REDSAC) was investigated in October 2007 through January 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within REDSAC and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 66 wells in Shasta and Tehama Counties. Forty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 23 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of nitrogen and oxygen in nitrate, stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 275 constituents and field water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and sampmatrix spikes) were collected at approximately 8 to 11 percent of the wells, and the results for these samples were used to evaluate the quality of the data obtained from the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination was not a noticeable source of bias in the data for the groundwater samples. Differences between replicate samples were within acceptable ranges for nearly all compounds, indicating acceptably low variability. Matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, raw groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory thresholds apply to water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw groundwater were compared with regulatory and nonregulatory health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and with aesthetic and technical thresholds established by CDPH. Comparisons between data collected for this study and drinking-water thresholds are for illustrative purposes only and do not indicate compliance or noncompliance with those thresholds. The concentrations of most constituents detected in groundwater samples from REDSAC were below drinking-water thresholds. Volatile organic compounds (VOC) and pesticides were detected in less than one-quarter of the samples and were generally less than a hundredth of any health-based thresholds. NDMA was detected in one grid well above the NL-CA. Concentrations of all nutrients and trace elements in samples from REDSAC wells were below the health-based thresholds except those of arsenic in three samples, which were above the USEPA maximum contaminant level (MCL-US). However
California Groundwater Management During Drought: Existing and Future Regulatory Approaches
NASA Astrophysics Data System (ADS)
Ekdahl, E.; Boland-Brien, S.; Vanderburgh, B.; Landau, K.; Bean, J.; Peltier, T.
2015-12-01
Groundwater has served as an effective buffer to California's crippling drought of 2012-2015, allowing continued agricultural production in many areas where surface water deliveries have been curtailed. However, over-reliance on groundwater has caused plummeting groundwater levels in much of the state's heavily agricultural regions, with annual groundwater overdraft state-wide estimated in the millions of acre-feet per year. Prior to 2015, California water law did not allow for the effective monitoring or assessment of groundwater use; passage of new state regulations will require development of locally-managed plans that, for the first time, require comprehensive groundwater management and groundwater basin sustainability. Because these plans are not required to be implemented for another 25 years, groundwater levels will likely continue to decrease. Some communities that are 100-percent reliant on groundwater as a source of municipal supply may face shortages and supply issues, which may exacerbate known water quality concerns. Examination of community water systems that are reliant on groundwater, their existing water quality issues, and their response to the current drought (through existing mandatory conservation requirements imposed by California state regulators) can identify areas that are particularly susceptible to continued groundwater overdraft.
NASA Astrophysics Data System (ADS)
Tanaka, Tadashi
2016-03-01
Many big earthquakes have occurred in the tectonic regions of the world, especially in Japan. Earthquakes often cause damage to crucial life services such as water, gas and electricity supply systems and even the sewage system in urban and rural areas. The most severe problem for people affected by earthquakes is access to water for their drinking/cooking and toilet flushing. Securing safe water for daily life in an earthquake emergency requires the establishment of countermeasures, especially in a mega city like Tokyo. This paper described some examples of groundwater use in earthquake emergencies, with reference to reports, books and newspapers published in Japan. The consensus is that groundwater, as a source of water, plays a major role in earthquake emergencies, especially where the accessibility of wells coincides with the emergency need. It is also important to introduce a registration system for citizen-owned and company wells that can form the basis of a cooperative during a disaster; such a registration system was implemented by many Japanese local governments after the Hanshin-Awaji Earthquake in 1995 and the Great East Japan Earthquake in 2011, and is one of the most effective countermeasures for groundwater use in an earthquake emergency. Emphasis is also placed the importance of establishing of a continuous monitoring system of groundwater conditions for both quantity and quality during non-emergency periods.
Orem, William H.; Swarzenski, Peter W.; McPherson, Benjamin F.; Hedgepath, Marion; Lerch, Harry E.; Reich, Christopher; Torres, Arturo E.; Corum, Margo D.; Roberts, Richard E.
2007-01-01
The Loxahatchee River and Estuary are small, shallow, water bodies located in southeastern Florida. Historically, the Northwest Branch (Fork) of the Loxahatchee River was primarily a freshwater system. In 1947, the river inlet at Jupiter was dredged for navigation and has remained permanently open since that time. Drainage patterns within the basin have also been altered significantly due to land development, road construction (e.g., Florida Turnpike), and construction of the C-18 and other canals. These anthropogenic activities along with sea level rise have resulted in significant adverse impacts on the ecosystem over the last several decades, including increased saltwater encroachment and undesired vegetation changes in the floodplain. The problem of saltwater intrusion and vegetation degradation in the Loxahatchee River may be partly induced by diminished freshwater input, from both surface water and ground water into the River system. The overall objective of this project was to assess the seasonal surface water and groundwater interaction and the influence of the biogeochemical characteristics of shallow groundwater and porewater on vegetation health in the Loxahatchee floodplain. The hypothesis tested are: (1) groundwater influx constitutes a significant component of the overall flow of water into the Loxahatchee River; (2) salinity and other chemical constituents in shallow groundwater and porewater of the river floodplain may affect the distribution and health of the floodplain vegetation.
Littin, Gregory R.
2012-01-01
The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer approximately 40 to 80 feet below land surface. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality of the aquifer since 1992. Cooperative reports between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, surface-water-groundwater interaction, and pesticides in groundwater and surface water. Water-quality analyses were conducted for major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. Physical characteristics (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were measured in the field and recorded for each water sample collected. This report presents the results of routine water-quality data-collection activities from January 2006 through December 2010. Methods of data collection, quality-assurance, and water-quality analyses are presented. Data include the results of water-quality analyses from quarterly sampling from monitoring wells, municipal wells, and the Cedar River.
Environmental quality assessment of groundwater resources in Al Jabal Al Akhdar, Sultanate of Oman
NASA Astrophysics Data System (ADS)
Al-Kalbani, Mohammed Saif; Price, Martin F.; Ahmed, Mushtaque; Abahussain, Asma; O'Higgins, Timothy
2017-11-01
The research was conducted to assess the quality of groundwater resources of Al Jabal Al Akhdar, Oman. 11 drinking water sources were sampled during summer and winter seasons during 2012-2013 to evaluate their physico-chemical quality indicators; and assess their suitability for drinking and other domestic purposes. Sample collection, handling and processing followed the standard methods recommended by APHA and analyzed in quality assured laboratories using appropriate analytical methods and instrumental techniques. The results show that the quality parameters in all drinking water resources are within the permissible limits set by Omani and WHO standards; and the drinking water quality index is good or medium in quality based on NFS-WQI classification criteria, indicating their suitability for human consumption. There is an indication of the presence of high nitrate concentrations in some groundwater wells, which require more investigations and monitoring program to be conducted on regular basis to ensure good quality water supply for the residents in the mountain. The trilinear Piper diagram shows that most of the drinking water resources of the study area fall in the field of calcium and bicarbonate type with some magnesium bicarbonate type indicating that most of the major ions are natural in origin due to the geology of the region. This study is a first step towards providing indicators on groundwater quality of this fragile mountain ecosystem, which will be the basis for future planning decisions on corrective demand management measures to protect groundwater resources of Al Jabal Al Akhdar.
30 CFR 950.16 - Required program amendments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... provide that the groundwater quality description in a permit application must include pH. (i) By June 30... propose to amend its program to specify the minimum groundwater quality parameters that must be monitored...
30 CFR 950.16 - Required program amendments.
Code of Federal Regulations, 2013 CFR
2013-07-01
... provide that the groundwater quality description in a permit application must include pH. (i) By June 30... propose to amend its program to specify the minimum groundwater quality parameters that must be monitored...
30 CFR 950.16 - Required program amendments.
Code of Federal Regulations, 2012 CFR
2012-07-01
... provide that the groundwater quality description in a permit application must include pH. (i) By June 30... propose to amend its program to specify the minimum groundwater quality parameters that must be monitored...
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2011-01-01
Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the three Sacramento Valley study units, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than 1.0 indicates a concentration greater than a benchmark. For organic (volatile organic compounds and pesticides) and special-interest (perchlorate) constituents, relative-concentrations were classified as high (greater than 1.0); moderate (equal to or less than 1.0 and greater than 0.1); or low (equal to or less than 0.1). For inorganic (major ion, trace element, nutrient, and radioactive) constituents, the boundary between low and moderate relative-concentrations was set at 0.5. Aquifer-scale proportions were used in the status assessment for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifers that have a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers that have moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based, which used one value per grid cell, and spatially-weighted, which used the full dataset-were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. High and moderate aquifer-scale proportions were significantly greater for inorgani
40 CFR 257.22 - Ground-water monitoring systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of wells that... at other wells will provide an indication of background ground-water quality that is as...
40 CFR 258.51 - Ground-water monitoring systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the uppermost aquifer (as defined in § 258.2) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may...; or (ii) Sampling at other wells will provide an indication of background ground-water quality that is...
Groundwater conditions in Utah, spring of 2015
Burden, Carole B.
2015-01-01
This is the fifty-second in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to new wells constructed for withdrawal of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2014. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2015.pdf. Groundwater conditions in Utah for calendar year 2013 are reported in Burden and others (2014) and are available online at http://ut.water.usgs.gov/publications/GW2014.pdf.The water-level change maps in this report show the difference between water levels measured in the same well at two distinct times: in the spring of 1985 and the spring of 2015. Throughout the state, many groundwater levels were near their peak in or around 1985 following a multiple-year period of above average precipitation in the early 1980s. Conversely, consecutive years of significant drought have contributed to low groundwater levels in 2015. For these reasons, the difference between 1985 and 2015 groundwater levels may not accurately portray long-term changes in an aquifer. An evaluation of water-level trends should also include consideration of the annual water-level measurement plots provided for each of the major areas of groundwater development in this report.
NASA Astrophysics Data System (ADS)
Dhanasekarapandian, M.; Chandran, S.; Devi, D. Saranya; Kumar, V.
2016-12-01
This study is aimed at evaluating the groundwater quality within the urban reach of Gridhumal river sub-basin. 29 groundwater samples were collected with different categorization during post-monsoon (POM) and summer (SUM) seasons respectively. Various physical and chemical parameters viz., pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), Total Alkalinity, cations such as, Ca2+, Mg2+, Na+, anions such as NO3-, SO42-, F-, Cl- were analyzed and were compared with the standard guidelines recommended by WHO, ICMR, BIS. GIS techniques were used to find out the distribution of groundwater quality on land use pattern. Results indicated that the EC, TDS, TH, Na+, Cl-, NO3- level in groundwater samples was above critical limits, and it was found to be very high in wastewater irrigated areas in the urban reach of Gridhumal river sub-basin. Geochemical analysis of groundwater samples shows the predominance of Na-Cl and NaHCO3 types. The geochemical data was interpreted using WQI for drinking water quality and were found not suitable for drinking purposes. With Wilcox diagram, only 30% and 21% groundwater samples show suitability for irrigation for post monsoon and summer season. The US Salinity Laboratory Staff plot depicted that all the post monsoon groundwater sources are C3-S3, C4-S4 type and C4-S4 for the summer season. 17% samples show C3-S1 type for both the season. From the HC analysis in the groundwater samples have been classified into two groups, one is ionic and another metals group. PCA results revealed the existence of seven significant principal components indicating how processes like rock-water interaction and anthropogenic activities influence groundwater quality. Seven factors which together explain 83.33% and 77.85% of the total variance in the post monsoon and summer season respectively. In comparing heavy metal contents present in water samples with BIS/WHO standards, Pb, Cr and Cd concentrations were found to be present above the maximum permissible limits and were found in the following order Cd < Pb < Fe < Cr < Mn < Zn. By results, it is concluded that groundwater is not suitable for irrigation and drinking purposes due to long term use of wastewater, anthropogenic activities, over-extraction of groundwater and changes in land use pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurancemore » requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.« less
NASA Astrophysics Data System (ADS)
Kløve, Bjørn; Kvitsand, Hanne Margrethe Lund; Pitkänen, Tarja; Gunnarsdottir, Maria J.; Gaut, Sylvi; Gardarsson, Sigurdur M.; Rossi, Pekka M.; Miettinen, Ilkka
2017-06-01
The characteristics of groundwater systems and groundwater contamination in Finland, Norway and Iceland are presented, as they relate to outbreaks of disease. Disparities among the Nordic countries in the approach to providing safe drinking water from groundwater are discussed, and recommendations are given for the future. Groundwater recharge is typically high in autumn or winter months or after snowmelt in the coldest regions. Most inland aquifers are unconfined and therefore vulnerable to pollution, but they are often without much anthropogenic influence and the water quality is good. In coastal zones, previously emplaced marine sediments may confine and protect aquifers to some extent. However, the water quality in these aquifers is highly variable, as the coastal regions are also most influenced by agriculture, sea-water intrusion and urban settlements resulting in challenging conditions for water abstraction and supply. Groundwater is typically extracted from Quaternary deposits for small and medium municipalities, from bedrock for single households, and from surface water for the largest cities, except for Iceland, which relies almost entirely on groundwater for public supply. Managed aquifer recharge, with or without prior water treatment, is widely used in Finland to extend present groundwater resources. Especially at small utilities, groundwater is often supplied without treatment. Despite generally good water quality, microbial contamination has occurred, principally by norovirus and Campylobacter, with larger outbreaks resulting from sewage contamination, cross-connections into drinking water supplies, heavy rainfall events, and ingress of polluted surface water to groundwater.
Ground-water conditions in Utah, spring of 2007
Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.
2007-01-01
This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.
Ground-water conditions in Utah, spring of 2008
Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.
2008-01-01
This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.
Ground-water conditions in Utah, spring of 2009
Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.
2009-01-01
This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.
Rajamanickam, R; Nagan, S
2010-10-01
Karur is an industrial town located on the bank of river Amaravathi. There are 487 textile processing units in operation and discharge about 14610 kilo litres per day of treated effluent into the river. The groundwater quality in the downstream is deteriorated due to continuous discharge of effluent. In order to assess the present quality of groundwater, 13 open wells were identified in the river basin around Karur and samples were collected during pre-monsoon, post monsoon and summer, and analyzed for physico-chemical parameters. TDS, total alkalinity, total hardness, calcium, chlorides and sulphates exceeded the desirable limit. Amaravathi River water samples were also colleted at the upstream and downstream of Karur and the result shows the river is polluted. During summer season, there is no flow in the river and the river acts as a drainage for the effluent. Hence, there is severe impact on the groundwater quality in the downstream. The best option to protect the groundwater quality in the river basin is that the textile processing units should adopt zero liquid discharge (ZLD) system and completely recycle the treated effluent.
NASA Astrophysics Data System (ADS)
Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong
2016-09-01
Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3-) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3 years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems.
Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong
2016-09-01
Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3(-)) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Groundwater management in coastal zones and on islands in crystalline bedrock areas of Sweden
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Ekström, Linda Louise; Ljungkvist, Andreas; Granberg, Maria; Merisalu, Johanna; Pokorny, Sebastian; Barthel, Roland
2017-04-01
Groundwater problems in coastal regions are usually not associated with the sparsely populated shores of water-rich Scandinavia. However, the combination of geology and the specific conditions of water usage create challenges even there. Along the Swedish coast, much of the groundwater occurs in fractured bedrock or in relatively small, shallow, and isolated quaternary sedimentary formations. Those aquifers cannot provide water to larger permanent settlements and are thus neither useful for the public water supply nor have previously received much attention from water authorities or researchers. However, of the 450,000 private wells in Sweden, many are located in coastal areas or on islands, creating pressure on groundwater resources in summer months as periods with low or no natural groundwater recharge. In view of the increasing water demand, as well as the awareness of environmental impacts and climate change, Swedish municipalities now recognize groundwater usage in coastal areas is a major concern. Here, we present the results of an investigation on the "Koster" archipelago which forms a microcosm of coastal zone groundwater problems in Sweden. Koster's geology is dominated by fractured, crystalline bedrock with occasional shallow quaternary deposits in between. With around 300 permanent residents, and up to 6,000 summer guests in peak holiday season, the existing water supply based on 800 private wells is at its limit. Water availability forms an obstacle to future development and the current mode of operation is unsustainable. Therefore, the municipality must decide how to secure future water supply which involves complex legal problems, as well as social, cultural, economic, hydrogeological, and environmental questions. As there are no observation wells on the islands, we used approximately 220 of the 800 wells (65% dug and shallow, 35% drilled and up to 120m deep) for our monitoring. Additionally, water samples were collected by property owners on four occasions (spring, summer, fall, and winter). All samples were analyzed for electrical conductivity, major ions, and metals. Groundwater levels, in situ measurements of physicochemical parameters, and borehole logs of electrical conductivity and temperature were conducted for around 80 wells. Hydraulic head, electrical conductivity, and temperature were monitored continuously at 10 locations. Further, an online survey was distributed regarding water quantity, quality, and usage in different periods of the year, before a detailed GIS analysis was carried out to support the water balance calculations and groundwater recharge estimations. The case is interesting as studies dealing with saltwater intrusion in fractured (bedrock) aquifers are rare, thus offering the possibility to connect state of the art research with practical management questions at the science-society interface. For example, a new method for low cost strontium isotope analysis on an ICP-MS to analyze the origin and contact time of saltwater was used in parallel to interviews with individual well owners. Here, we present monitoring results over an entire hydrological year and how these can better inform the municipalities' decision-making process.
Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations
NASA Astrophysics Data System (ADS)
MacDonald, A. M.; Bonsor, H. C.; Ahmed, K. M.; Burgess, W. G.; Basharat, M.; Calow, R. C.; Dixit, A.; Foster, S. S. D.; Gopal, K.; Lapworth, D. J.; Lark, R. M.; Moench, M.; Mukherjee, A.; Rao, M. S.; Shamsudduha, M.; Smith, L.; Taylor, R. G.; Tucker, J.; van Steenbergen, F.; Yadav, S. K.
2016-10-01
Groundwater abstraction from the transboundary Indo-Gangetic Basin comprises 25% of global groundwater withdrawals, sustaining agricultural productivity in Pakistan, India, Nepal and Bangladesh. Recent interpretations of satellite gravity data indicate that current abstraction is unsustainable, yet these large-scale interpretations lack the spatio-temporal resolution required to govern groundwater effectively. Here we report new evidence from high-resolution in situ records of groundwater levels, abstraction and groundwater quality, which reveal that sustainable groundwater supplies are constrained more by extensive contamination than depletion. We estimate the volume of groundwater to 200 m depth to be >20 times the combined annual flow of the Indus, Brahmaputra and Ganges, and show the water table has been stable or rising across 70% of the aquifer between 2000 and 2012. Groundwater levels are falling in the remaining 30%, amounting to a net annual depletion of 8.0 +/- 3.0 km3. Within 60% of the aquifer, access to potable groundwater is restricted by excessive salinity or arsenic. Recent groundwater depletion in northern India and Pakistan has occurred within a longer history of groundwater accumulation from extensive canal leakage. This basin-wide synthesis of in situ groundwater observations provides the spatial detail essential for policy development, and the historical context to help evaluate recent satellite gravity data.
NASA Astrophysics Data System (ADS)
Karami, Shawgar; Madani, Hassan; Katibeh, Homayoon; Fatehi Marj, Ahmad
2018-03-01
Geostatistical methods are one of the advanced techniques used for interpolation of groundwater quality data. The results obtained from geostatistics will be useful for decision makers to adopt suitable remedial measures to protect the quality of groundwater sources. Data used in this study were collected from 78 wells in Varamin plain aquifer located in southeast of Tehran, Iran, in 2013. Ordinary kriging method was used in this study to evaluate groundwater quality parameters. According to what has been mentioned in this paper, seven main quality parameters (i.e. total dissolved solids (TDS), sodium adsorption ratio (SAR), electrical conductivity (EC), sodium (Na+), total hardness (TH), chloride (Cl-) and sulfate (SO4 2-)), have been analyzed and interpreted by statistical and geostatistical methods. After data normalization by Nscore method in WinGslib software, variography as a geostatistical tool to define spatial regression was compiled and experimental variograms were plotted by GS+ software. Then, the best theoretical model was fitted to each variogram based on the minimum RSS. Cross validation method was used to determine the accuracy of the estimated data. Eventually, estimation maps of groundwater quality were prepared in WinGslib software and estimation variance map and estimation error map were presented to evaluate the quality of estimation in each estimated point. Results showed that kriging method is more accurate than the traditional interpolation methods.
Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan
NASA Astrophysics Data System (ADS)
Fang, H. T.
2015-12-01
The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface to input parameter. The simulation of water level and chloride concentration already showed the real situation, and the result can be applied to the future study of the Chi-Ken subsurface reservoir salinity problems.
Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report
Grannemann, Norman G.; Van Stempvoort, Dale
2016-01-01
When the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the Governments of Canada and the United States (the “Parties”) (Environment Canada, 2013a), groundwater was not recognized as important to the water quality of the Lakes. At that time, groundwater and surface water were still considered as two separate systems, with almost no appreciation for their interaction. When the GLWQA was revised in 1978 (US Environmental Protection Agency (USEPA), 2012), groundwater contamination, such as that reported at legacy industrial sites such as those at Love Canal near the Niagara River, was squarely in the news. Consequently, the potential impacts of contaminated groundwater from such sites on Great Lakes water quality became a concern (Beck, 1979), and Annex 16 was added to the agreement, to address “pollution from contaminated groundwater” (Francis, 1989). However, no formal process for reporting under this annex was provided. The GLWQA Protocol in 1987 modified Annex 16 and called for progress reports beginning in 1988 (USEPA, 1988). The Protocol in 2012 provided a new Annex 8 to address groundwater more holistically (Environment 2 Canada, 2013b). Annex 8 (Environment Canada, 2013b) commits the Parties to coordinate groundwater science and management actions; as a first step, to “publish a report on the relevant and available groundwater science” by February 2015 (this report); and to “identify priorities for science activities and actions for groundwater management, protection, and remediation…” The broader mandate of Annex 8 is to (1) “identify groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes;” (2) “analyze contaminants, including nutrients in groundwater, derived from both point and non-point sources impacting the Waters of the Great Lakes;” (3) “assess information gaps and science needs related to groundwater to protect the quality of the Waters of the Great Lakes;” and (4) “analyze other factors, such as climate change, that individually or cumulatively affect groundwater’s impact on the quality of the Waters of the Great Lakes.” A binational Annex 8 Subcommittee was formed to lead efforts to fulfill the mandate of this annex (members listed on p. i of this report). In turn, this subcommittee has recruited a task team to prepare this report (listed as authors of each chapter). This report addresses all of the above four objectives, based on a compilation of the “relevant and available groundwater science.” Specifically, the second objective (to “analyze contaminants”) is addressed by incorporating information obtained in ongoing monitoring and research activities conducted by the Parties, and by various other members of the Great Lakes Executive Committee.
Wilkison, Donald H.
2012-01-01
Source contributions to monitoring and supply wells, contributing recharge areas, groundwater travel times, and current (2012) understanding of alluvial water quality were used to develop a groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri well field. The plan was designed to evaluate long-term alluvial water quality and assess potential changes in, and threats to, well-field water quality. Source contributions were determined from an existing groundwater flow model in conjunction with particle-tracking analysis and verified with water-quality data collected from 1997 through 2010 from a network of 68 monitoring wells. Three conjunctive factors - well-field pumpage, Missouri River discharge, and aquifer recharge - largely determined groundwater flow and, therefore, source contributions. The predominant source of groundwater to most monitoring wells and supply wells is the Missouri River, and this was reflected, to some extent, in alluvial water quality. To provide an estimate of the maximum potential lead time available for remedial action, monitoring wells where groundwater travel times from the contributing recharge areas are less than 2 years and predominately singular sources (such as the Missouri River or the land surface) were selected for annual sampling. The sample interval of the remaining wells, which have varying travel times and intermediate mixtures of river and land-surface contributions, were staggered on a 2-, 3-, or 4-year rotation. This was done to provide data from similar contributing areas and account for inherent aquifer variability yet minimize sample redundancy.
Sophocleous, M.A.
1984-01-01
The salinity problems created in the Burrton area as a result of poor oil-field brine disposal practices of the past continue to be a major concern to the area depending on the Equus Beds aquifer for water, including the City of Wichita, Kansas. In this paper, an attempt is made to predict where and how fast the brine plume will move in this area, and what the average chloride concentrations in different parts of the aquifer are. In order to make such predictions, it was necessary to get a calibrated model of the groundwater-flow velocity field. Multiple regression analysis is used for parameter estimation of the steady-state groundwater-flow equation applied in the most critical area of the Equus Beds aquifer. Results of such an analysis produced a correlation coefficient of 0.992 between calculated and observed values of hydraulic head. A chloride transport modeling effort is then carried out despite some serious data deficiencies, the significance of which are evaluated through sensitivity analysis. Thus, starting with the quasi steady-state conditions of the early 1940's, it was possible to match the present chloride distribution satisfactorily. Chloride concentration predictions made for the year 2000 indicate that the quality of the Wichita well-field waters will not generally deteriorate from their present condition by that time. ?? 1984.
McMahon, P B; Caldwell, R R; Galloway, J M; Valder, J F; Hunt, A G
2015-04-01
The quality and age of shallow groundwater in the Bakken Formation production area were characterized using data from 30 randomly distributed domestic wells screened in the upper Fort Union Formation. Comparison of inorganic and organic chemical concentrations to health based drinking-water standards, correlation analysis of concentrations with oil and gas well locations, and isotopic data give no indication that energy-development activities affected groundwater quality. It is important, however, to consider these results in the context of groundwater age. Most samples were recharged before the early 1950s and had 14C ages ranging from <1000 to >30,000 years. Thus, domestic wells may not be as well suited for detecting contamination associated with recent surface spills as shallower wells screened near the water table. Old groundwater could be contaminated directly by recent subsurface leaks from imperfectly cemented oil and gas wells, but horizontal groundwater velocities calculated from 14C ages imply that the contaminants would still be less than 0.5 km from their source. For the wells sampled in this study, the median distance to the nearest oil and gas well was 4.6 km. Because of the slow velocities, a long-term commitment to groundwater monitoring in the upper Fort Union Formation is needed to assess the effects of energy development on groundwater quality. In conjunction with that effort, monitoring could be done closer to energy-development activities to increase the likelihood of early detection of groundwater contamination if it did occur. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Groundwater pollution by nitrates from livestock wastes.
Goldberg, V M
1989-01-01
Utilization of wastes from livestock complexes for irrigation involves the danger of groundwater pollution by nitrates. In order to prevent and minimize pollution, it is necessary to apply geological-hydrogeological evidence and concepts to the situation of wastewater irrigation for the purposes of studying natural groundwater protectiveness and predicting changes in groundwater quality as a result of infiltrating wastes. The procedure of protectiveness evaluation and quality prediction is described. With groundwater pollution by nitrate nitrogen, the concentration of ammonium nitrogen noticeably increases. One of the reasons for this change is the process of denitrification due to changes in the hydrogeochemical conditions in a layer. At representative field sites, it is necessary to collect systematic stationary observations of the concentrations of nitrogenous compounds in groundwater and changes in redox conditions and temperature. PMID:2620669
Regional strategies for the accelerating global problem of groundwater depletion
NASA Astrophysics Data System (ADS)
Aeschbach-Hertig, Werner; Gleeson, Tom
2012-12-01
Groundwater--the world's largest freshwater resource--is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches--such as water diversion, artificial groundwater recharge and efficient irrigation--have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.
Groundwater Nitrate Contamination Risk Assessment in Canicattì area (Sicily)
NASA Astrophysics Data System (ADS)
Pisciotta, Antonino; Cusimano, Gioacchino; Favara, Rocco
2010-05-01
Groundwaters play a dominant role in the Sicily, because as most part of Mediterranean countries this island is interested by the phenomenon of desertification and the quality of the groundwater reservoir is one of the most important aim for the management policy strategies. During last decade most of the Italian regions the nitrate levels in river and groundwaters have increased gradually over mainly as a consequence of large-scale agricultural application of manure and fertilizers, thereby threatening drinking water quality. The excessive use of chemicals and fertilizers increases the risk to pollution of surface and groundwater from diffuse source, an important reflex to human health and the environment. The studied area is located in Canicattì (central Sicily, Italy), the current land use (grape, olive grove and almond) is the main source of groundwater pollution. In order to investigate the effect of the over farming on the groundwater quality we report the study on the potential risk of contamination from nitrate of agricultural origin through the join of the application of two parametric methods: the IPNOA method (the intrinsic nitrate contamination risk from Agricultural sources) applied to define the Nitrate Vulnerable Zones and the SINTACS method applied to determine the aquifer vulnerability to contamination.
NASA Astrophysics Data System (ADS)
Askri, Brahim
2015-06-01
The Al Batinah coastal aquifer is the principal source of water in northwestern Oman. The rainfall in the Jabal Al Akhdar mountain region recharges the plain with freshwater that allowed agricultural and industrial activities to develop. The over-exploitation of this aquifer since the 1970s for municipal, agricultural and industrial purposes, excessive use of fertilizers in agriculture and leakage from septic tanks led to the deterioration of groundwater quality. The objective of this study was to investigate the hydrochemical processes regulating the groundwater quality in the southwestern section of Al Batinah. From available data collected during the spring of 2010 from 58 wells located in Al Musanaah wilayat, it was determined that the groundwater salinity increased in the direction from the south to the north following the regional flow direction. In addition to salinisation, the groundwater in the upstream and intermediate regions was contaminated with nitrate, while groundwater in the downstream region was affected by fluoride. Calculations of ionic ratios and seawater fraction indicated that seawater intrusion was not dominant in the study area. The primary factors controlling the groundwater chemistry in Al Musanaah appear to be halite dissolution, reverse ion exchange with clay material and anthropogenic pollutants.
NASA Astrophysics Data System (ADS)
Lallahem, S.; Hani, A.
2017-02-01
Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.
NASA Astrophysics Data System (ADS)
Lindsey, B.; McMahon, P.; Rupert, M.; Tesoriero, J.; Starn, J.; Anning, D.; Green, C.
2012-04-01
The U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program was implemented in 1991 to provide long-term, consistent, and comparable information on the quality of surface and groundwater resources of the United States. Findings are used to support national, regional, state, and local information needs with respect to water quality. The three main goals of the program are to 1) assess the condition of the nation's streams, rivers, groundwater, and aquatic systems; 2) assess how conditions are changing over time; and 3) determine how natural features and human activities affect these conditions, and where those effects are most pronounced. As data collection progressed into the second decade, the emphasis of the interpretation of the data has shifted from primarily understanding status, to evaluation of trends. The program has conducted national and regional evaluations of change in the quality of water in streams, rivers, groundwater, and health of aquatic systems. Evaluating trends in environmental systems requires complex analytical and statistical methods, and a periodic re-evaluation of the monitoring methods used to collect these data. Examples given herein summarize the lessons learned from the evaluation of changes in water quality during the past two decades with an emphasis on the finding with respect to groundwater. The analysis of trends in groundwater is based on 56 well networks located in 22 principal aquifers of the United States. Analysis has focused on 3 approaches: 1) a statistical analysis of results of sampling over various time scales, 2) studies of factors affecting trends in groundwater quality, and 3) use of models to simulate groundwater trends and forecast future trends. Data collection for analysis of changes in groundwater-quality has focused on decadal resampling of wells. Understanding the trends in groundwater quality and the factors affecting those trends has been conducted using quarterly sampling, biennial sampling, and more recently continuous monitoring of selected parameters in a small number of wells. Models such as MODFLOW have been used for simulation and forecasting of future trends. Important outcomes from the groundwater-trends studies include issues involving statistics, sampling frequency, changes in laboratory analytical methods over time, the need for groundwater age-dating information, the value of understanding geochemical conditions and contaminant degradation, the need to understand groundwater-surface water interaction, and the value of modeling in understanding trends and forecasting potential future conditions. Statistically significant increases in chloride, dissolved solids, and nitrate concentrations were found in a large number of well networks over the first decadal sampling period. Statistically significant decreases of chloride, dissolved solids, and nitrate concentrations were found in a very small number of networks. Trends in surface-water are analyzed within 8 large major river basins within the United States with a focus on issues of regional importance. Examples of regional surface-water issues include an analysis of trends in dissolved solids in the Southeastern United States, trends in pesticides in the north-central United States, and trends in nitrate in the Mississippi River Basin. Evaluations of ecological indicators of water quality include temporal changes in stream habitat, and aquatic-invertebrate and fish assemblages.
Hopkins, Candice B.; Bartolino, James R.
2013-01-01
Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this pattern and show a wide distribution of concentrations in the unconfined aquifer, indicating possible anthropogenic influence. Time-series plots of historical water-quality data indicated that nitrate does not seem to be increasing or decreasing in groundwater over time; however, time-series plots of chloride concentrations indicate that chloride may be increasing in some wells. The small amount of temporal variability in nitrate concentrations indicates a lack of major temporal changes to groundwater inputs.
Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies
NASA Astrophysics Data System (ADS)
Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.
2011-12-01
Dairy farming in California's Central Valley is a significant source of nitrate to underlying aquifers. One approach to mitigation is to implement farm-scale management plans that reduce nutrient loading to groundwater while sustaining crop yield. While the effect of different management practices on crop yield is easily measured, their effect on groundwater quality has only infrequently been evaluated. Documenting and predicting the impact of management on water quality requires a quantitative assessment of transport (including timescale and mixing) through the vadose and saturated zones. In this study, we measured tritium, helium isotopic composition, and noble gas concentrations in groundwater drawn from monitor wells on several dairies in the Lower San Joaquin Valley and Tulare Lake Basin of California's Central Valley in order to predict the timescales on which changes in management may produce observable changes in groundwater quality. These dairies differ in age (from <10 to >100 years old), thickness of the vadose zone (from <10 to 60 m), hydrogeologic setting, and primary source of irrigation water (surface or groundwater). All of the dairies use manure wastewater for irrigation and fertilization. Three of the dairies have implemented management changes designed to reduce nutrient loading and/or water usage. Monitor wells in the southern Tulare Lake Basin dairies were installed by UC-Davis as multi-level nested wells allowing depth profiling of tritium and noble gases at these sites. Tritium/helium-3 groundwater ages, calculated using a simple piston-flow model, range from <2 to >50 years. Initial tritium (the sum of measured tritium and tritiogenic helium-3) is close to or slightly above precipitation in the calculated recharge year for young samples; and significantly above the precipitation curve for older samples. This pattern is consistent with the use of 20-30 year old groundwater recharged before 1980 for irrigation, and illustrates how irrigation with groundwater can complicate the use of tritium alone for age dating. The presence of radiogenic helium-4 in several samples with measurable tritium provides evidence of mixing between pre-modern and younger groundwater. Groundwater age-depth relationships are complicated, consistent with transient flow patterns in shallow agricultural groundwaters affected by irrigation pumping and recharge. For the multi-level installations in the southern dairies, both depth profiles and re-sampling after significant changes in groundwater elevation emphasize the need to sample groundwater within 3 meters of the water table to obtain "first-encounter" groundwater with a tritium/helium-3 age of less than 5 years, and to use age tracers to identify wells and groundwater conditions suitable for monitoring and assessment of best management practice impacts on underlying groundwater quality. This work was carried out with funding from Sustainable Conservation and the California State Water Resources Control Board in collaboration with UC-Davis, and was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Takemura, T.; Uemura, K.; Akiba, Y.; Ota, M.
2015-12-01
The implementation of ground source heat pump (GSHP) systems has rapidly increased around the world, since they reduce carbon dioxide emissions and save electric energy. The GSHP system transfer heat into the geosphere zone when air conditioners are used to cool rooms or buildings. However, the effects of temperature increase on the quality of underground water has yet to be fully investigated. In order to reduce the risks of ground-water pollution by the installed GSHPs, it is important to evaluate the effect of temperature change on the ground-water quality. In this study, we installed a closed loop GSHP system on a heat exchange well along with a monitoring well drilled to measure ground-water quality and temperature. The monitoring well was drilled at 0.1cm away from the heat exchange well. We observed that changes of temperature in the heat exchange well affected the water quality, especially turbidity, in gravelly layer.
Bauch, Nancy J.; Musgrove, MaryLynn; Mahler, Barbara J.; Paschke, Suzanne
2015-01-01
Availability and sustainability of groundwater in the Denver Basin aquifer system depend on water quantity and water quality. The Denver Basin aquifer system underlies about 7,000 square miles of the Great Plains in eastern Colorado and is the primary or sole source of water for domestic and public supply in many areas of the basin. Use of groundwater from the Denver Basin sandstone aquifers has been instrumental for development of the south Denver metropolitan area and other areas, but has resulted in a decline in water levels in some parts of the system. Human activities in many areas have adversely affected the quality of water in the aquifer system, especially the shallow parts. Groundwater in deeper parts of the system used for drinking water, once considered isolated from the effects of overlying land use, is increasingly vulnerable to contamination from human activities and geologic materials. Availability and sustainability of high-quality groundwater are vital to the economic health of the Denver Basin area.
Banta, J.R.; Clark, Allan K.
2012-01-01
In general, the water-quality data indicated that the samples were representative of a calcium carbonate dominated system. The major ion chemistry and relations between magnesium to calcium molar ratios and 87Sr/86Sr isotopic ratios of samples collected from sites H and I indicated that the groundwater from these sites was most geochemically similar to groundwater collected from site B (State well AY-68-36-134), which is representative of groundwater in the Edwards aquifer. Of the sites sampled in this study, there appears to be varying hydrologic connectivity between groundwater from wells completed in the Austin Group and the Edwards aquifer.
Groundwater: the processes and global significance of aquifer degradation.
Foster, S S D; Chilton, P J
2003-01-01
The exploitation of groundwater resources for human use dates from the earliest civilizations, but massive resource development has been largely restricted to the past 50 years. Although global in scope, the emphasis of this paper is on groundwater-based economies in a developing nation context, where accelerated resource development has brought major social and economic benefits over the past 20 years. This results from groundwater's significant role in urban water supply and in rural livelihoods, including irrigated agriculture. However, little of the economic benefit of resource development has been reinvested in groundwater management, and concerns about aquifer degradation and resource sustainability began to arise. A general review, for a broad-based audience, is given of the mechanisms and significance of three semi-independent facets of aquifer degradation. These are (i) depletion of aquifer storage and its effects on groundwater availability, terrestrial and aquatic ecosystems; (ii) groundwater salinization arising from various different processes of induced hydraulic disturbance and soil fractionation; and (iii) vulnerability of aquifers to pollution from land-use and effluent discharge practices related to both urban development and agricultural intensification. Globally, data with which to assess the status of aquifer degradation are of questionable reliability, inadequate coverage and poor compilation. Recourse has to be made to 'type examples' and assumptions about the extension of similar hydrogeological settings likely to be experiencing similar conditions of groundwater demand and subsurface contaminant load. It is concluded that (i) aquifer degradation is much more than a localized problem because the sustainability of the resource base for much of the rapid socio-economic development of the second half of the twentieth century is threatened on quite a widespread geographical basis; and (ii) major (and long overdue) investments in groundwater resource and quality protection are urgently needed. These investments include appropriate institutional provisions, demand-side management, supply-side enhancement and pollution control. PMID:14728791
Gilliom, R.J.
1989-01-01
Selenium in tile drain water from parts of the western San Joaquin Valley, California, has adversely affected fish and waterfowl where drain water was impounded. Soils in these drained areas were derived from Coast Range marine sedimentary formations, were naturally saline and probably contained abundant soluble selenium. Decades of irrigation have redistributed the most soluble forms of selenium from the soil into groundwater and have caused the water table to rise 1 to 4 ft/year. Selenium in shallow groundwater has been further concentrated because of evapotranspiration. The rising water table has caused a large area of farmland to require artificial drainage of groundwater that contains high concentrations of selenium. The present areal distribution of selenium in shallow groundwater reflects the natural distribution of saline soils. The depth distribution of selenium in groundwater reflects the history of irrigation. The highest concentrations of selenium in groundwater (50 to more than 1,000 micrograms/L) are in a zone of variable thickness located between 20 and 150 ft below the water table. The toxic water in this zone was recharged during the first few decades of irrigation. The large volume of high selenium groundwater makes it desirable to leave this water where it is, rather than bring it to the land surface or allow it to move into parts of the aquifer that may be used for water supply. Selenium concentrations in the San Joaquin River depend on the magnitude of the selenium load from drain water and dilution by water with low concentrations of selenium from all other sources of streamflow. The San Joaquin Valley is a regional-scale example of how manipulation of the hydrologic system can cause water quality problems if naturally occurring toxic substances are mobilized. (USGS)
Spatial variability and long-term analysis of groundwater quality of Faisalabad industrial zone
NASA Astrophysics Data System (ADS)
Nasir, Muhammad Salman; Nasir, Abdul; Rashid, Haroon; Shah, Syed Hamid Hussain
2017-10-01
Water is the basic necessity of life and is essential for healthy society. In this study, groundwater quality analysis was carried out for the industrial zone of Faisalabad city. Sixty samples of groundwater were collected from the study area. The quality maps of deliberately analyzed results were prepared in GIS. The collected samples were analyzed for chemical parameters and heavy metals, such as total hardness, alkalinity, cadmium, arsenic, nickel, lead, and fluoride, and then, the results were compared with the WHO guidelines. The values of these results were represented by a mapping of quality parameters using the ArcView GIS v9.3, and IDW was used for raster interpolation. The long-term analysis of these parameters has been carried out using the `R Statistical' software. It was concluded that water is partially not fit for drinking, and direct use of this groundwater may cause health issues.
Groundwater contamination in Japan
NASA Astrophysics Data System (ADS)
Tase, Norio
1992-07-01
Problems on groundwater contamination in Japan are briefly summarized in this paper. Although normal physical conditions in Japan restrict the possibilities of groundwater contamination, human activities are threatening groundwater resources. A survey by the Environment Agency of Japan showed nationwide spreading of organic substances, such as trichloroethylene as well as nitrogen compounds. Synthetic detergents have also been detected even in rural areas and in deep confined aquifers, although their concentrations are not as high. Public awareness of agrichemical or pesticides abuse, especially from golf courses, is apparent. Other problems such as nitrate-nitrogen, leachate from landfills, and the leaking of underground storage tanks are also discussed.
Investigating the mysteries of groundwater in the Badain Jaran Desert, China
NASA Astrophysics Data System (ADS)
Wang, Xu-Sheng; Zhou, Yanyi
2018-03-01
The Badain Jaran Desert (BJD) in China is a desert with impressive sand dunes and a groundwater situation that has attracted numerous researchers. This paper gives an overview of the mysteries of groundwater in the BJD that are exhibited as five key problems identified in previous studies. These problems relate to the origin of the groundwater, the hydrological connection between the BJD and the Heihe River Basin (HRB), the infiltration recharge, the lake-groundwater interactions, and the features of stable isotope analyses. The existing controversial analyses and hypotheses have caused debate and have hindered effective water resources management in the region. In recent years, these problems have been partly addressed by additional surveys. It has been revealed that the Quaternary sandy sediments and Neogene-Cretaceous sandstones form a thick aquifer system in the BJD. Groundwater flow at the regional scale is dominated by a significant difference in water levels between the surrounding mountains and lowlands at the western and northern edges. Discharge of groundwater from the BJD to the downstream HRB occurs according to the regional flow. Seasonal fluctuations of the water level in lakes are less than 0.5 m due to the quasi-steady groundwater discharge. The magnitude of infiltration recharge is still highly uncertain because significant limitations existed in previous studies. The evaporation effect may be the key to interpreting the anomalous negative deuterium-excess in the BJD groundwater. Further investigations are expected to reveal the hydrogeological conditions in more detail.
Hua-Shan, Xu; Tong-Qian, Zhao; Hong-Q, Meng; Zong-Xue, Xu; Chao-Hon, Ma
2011-04-01
Riparian zone hydrology is dominated by shallow groundwater with complex interactions between groundwater and surface water. There are obvious relations of discharge and recharge between groundwater and surface water. Flood is an important hydrological incident that affects groundwater quality in riparian zone. By observing variations of physical and chemical groundwater indicators in riparian zone at the Kouma section of the Yellow River Wetland, especially those took place in the period of regulation for water and sediment at the Xiaolangdi Reservoir, relationship between the groundwater quality in riparian zone and the flood water quality in the river is studied. Results show that there will be great risk of nitrogen, phosphorus, nitrate nitrogen and organic matter permeating into the groundwater if floodplain changes into farmland. As the special control unit of nitrogen pollution between rivers and artificial wetlands, dry fanning areas near the river play a very important role in nitrogen migration between river and groundwater. Farm manure as base fertilizer may he an important source of phosphorus leak and loss at the artificial wetlands. Phosphorus leaks into the groundwater and is transferred along the hydraulic gradient, especially during the period of regulation for water and sediment at the Xiaolangdi Reservoir. The land use types and farming systems of the riparian floodplain have a major impact on the nitrate nitrogen contents of the groundwater. Nitrogen can infiltrate and accumulate quickly at anaerobic conditions in the fish pond area, and the annual nitrogen achieves a relatively balanced state in lotus area. In those areas, the soil is flooded and at anaerobic condition in spring and summer, nitrogen infiltrates and denitrification significantly, but soil is not flooded and at aerobic condition in the autumn and winter, and during these time, a significant nitrogen nitrification process occurs. In the area between 50 m and 200 m from the river bank, which is the efficient microbial nitrogen purification unit, nitrification-denitrification is intensive. Farm manure is an important source of organic matter loss at the artificial wetlands. Floodplain has sandy soil texture, with high infiltration capacity and low water and fertilizer conservation ability. Such features are prone for the loss of surface soil nutrition and organic matter if agricultural activities taken place in these areas change the land use of wetlands and apply extensive fertilizer. The infiltrated nutrition elements and organic matter can pollute the groundwater and the river. Compared with the losses of nutrition element and organic matter caused by surface runoff, the infiltrated process is even more prominent. As typical floodplain groundwater-river ecotone, the area between 50 m and 200 m from the river bank is a momentous pollution purification unit. Rational protection for this region is critical for the conservation of water quality in the river and groundwater.
40 CFR 257.22 - Ground-water monitoring systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is as...
40 CFR 257.22 - Ground-water monitoring systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... aquifer (as defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of...) Sampling at other wells will provide an indication of background ground-water quality that is as...
Hildenbrand, Zacariah L; Carlton, Doug D; Meik, Jesse M; Taylor, Josh T; Fontenot, Brian E; Walton, Jayme L; Henderson, Drew; Thacker, Jonathan B; Korlie, Stephanie; Whyte, Colin J; Hudak, Paul F; Schug, Kevin A
2017-01-01
The extraction of oil and natural gas from unconventional shale formations has prompted a series of investigations to examine the quality of the groundwater in the overlying aquifers. Here we present a reconnaissance analysis of groundwater quality in the Eagle Ford region of southern Texas. These data reveal two distinct sample populations that are differentiable by bromide/chloride ratios. Elevated levels of fluoride, nitrate, sulfate, various metal ions, and the detection of exotic volatile organic compounds highlight a high bromide group of samples, which is geographically clustered, while encompassing multiple hydrogeological strata. Samples with bromide/chloride ratios representative of connate water displayed elevated levels of total organic carbon, while revealing the detection of alcohols and chlorinated compounds. These findings suggest that groundwater quality in the Western Gulf Basin is, for the most part, controlled by a series of natural processes; however, there is also evidence of episodic contamination events potentially attributed to unconventional oil and gas development or other anthropogenic activities. Collectively, this characterization of natural groundwater constituents and exogenous compounds will guide targeted remediation efforts and provides insight for agricultural entities, industrial operators, and rural communities that rely on groundwater in southern Texas. Copyright © 2016 Elsevier B.V. All rights reserved.
Ahlfeld, David P.; Baker, Kristine M.; Barlow, Paul M.
2009-01-01
This report describes the Groundwater-Management (GWM) Process for MODFLOW-2005, the 2005 version of the U.S. Geological Survey modular three-dimensional groundwater model. GWM can solve a broad range of groundwater-management problems by combined use of simulation- and optimization-modeling techniques. These problems include limiting groundwater-level declines or streamflow depletions, managing groundwater withdrawals, and conjunctively using groundwater and surface-water resources. GWM was initially released for the 2000 version of MODFLOW. Several modifications and enhancements have been made to GWM since its initial release to increase the scope of the program's capabilities and to improve its operation and reporting of results. The new code, which is called GWM-2005, also was designed to support the local grid refinement capability of MODFLOW-2005. Local grid refinement allows for the simulation of one or more higher resolution local grids (referred to as child models) within a coarser grid parent model. Local grid refinement is often needed to improve simulation accuracy in regions where hydraulic gradients change substantially over short distances or in areas requiring detailed representation of aquifer heterogeneity. GWM-2005 can be used to formulate and solve groundwater-management problems that include components in both parent and child models. Although local grid refinement increases simulation accuracy, it can also substantially increase simulation run times.
Groundwater quality and hydrogeochemical properties of Torbali Region, Izmir, Turkey.
Tayfur, Gokmen; Kirer, Tugba; Baba, Alper
2008-11-01
The large demand for drinking, irrigation and industrial water in the region of Torbali (Izmir, Turkey) is supplied from groundwater sources. Almost every factory and farm has private wells that are drilled without permission. These cause the depletion of groundwater and limiting the usage of groundwater. This study investigates spatial and temporal change in groundwater quality, relationships between quality parameters, and sources of contamination in Torbali region. For this purpose, samples were collected from 10 different sampling points chosen according to their geological and hydrogeological properties and location relative to factories, between October 2001 and July 2002. Various physical (pH, temperature, EC), chemical (calcium, magnesium, potassium, sodium, chloride, alkalinity, copper, chromium, cadmium, lead, zinc) and organic (nitrate, nitrite, ammonia, COD and cyanide) parameters were monitored. It was observed that the groundwater has bicarbonate alkalinity. Agricultural contamination was determined in the region, especially during the summer. Nitrite and ammonia concentrations were found to be above drinking water standard. Organic matter contamination was also investigated in the study area. COD concentrations were higher than the permissible limits during the summer months of the monitoring period.
NASA Astrophysics Data System (ADS)
Hariharan, V.; Chilambarasan, L.; Nandhakumar, G.; Porchelvan, P.
2017-11-01
Groundwater contamination has become so alarming that the existing valuable freshwater resources are at stake. Landfilling of solid refuse without pre-emptive measures, over the years, leads to the utter depletion of the groundwater quality in its vicinity. The Kodungaiyur landfill at the Perambur taluk located in the northernmost region of the Chennai metropolitan, is such a poorly managed landfill. This research article is intended to exhibit a detailed study report on the physicochemical and bacteriological parametric analyses of the currently available subsurface water in and around the landfill area. Besides being evident from the faecal coliform test that the water is not potable, the chief objective was to investigate the suitability of groundwater for irrigation. Representative samples of groundwater were collected from inside the landfill site, and the residential areas located within 2 km from the site and analysed using standard methods. The test results were interpreted by employing exhaustive statistical approaches. It is evident to the interpretations that, out of the nine sampled locations, seven were found to be endowed with a groundwater quality fit enough for irrigation.
Zhang, Bing; Song, Xianfang; Zhang, Yinghua; Han, Dongmei; Tang, Changyuan; Yu, Yilei; Ma, Ying
2012-05-15
Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Songnen plain is one of the grain bases in China, as well as one of the three major distribution regions of soda saline-alkali soil in the world. To assess the water quality, surface water and groundwater were sampled and analyzed by fuzzy membership analysis and multivariate statistics. The surface water were gather into class I, IV and V, while groundwater were grouped as class I, II, III and V by fuzzy membership analysis. The water samples were grouped into four categories according to irrigation water quality assessment diagrams of USDA. Most water samples distributed in category C1-S1, C2-S2 and C3-S3. Three groups were generated from hierarchical cluster analysis. Four principal components were extracted from principal component analysis. The indicators to water quality assessment were Na, HCO(3), NO(3), Fe, Mn and EC from principal component analysis. We conclude that surface water and shallow groundwater are suitable for irrigation, the reservoir and deep groundwater in upstream are the resources for drinking. The water for drinking should remove of the naturally occurring ions of Fe and Mn. The control of sodium and salinity hazard is required for irrigation. The integrated management of surface water and groundwater for drinking and irrigation is to solve the water issues. Copyright © 2012 Elsevier Ltd. All rights reserved.
A new four-step hierarchy method for combined assessment of groundwater quality and pollution.
Zhu, Henghua; Ren, Xiaohua; Liu, Zhizheng
2017-12-28
A new four-step hierarchy method was constructed and applied to evaluate the groundwater quality and pollution of the Dagujia River Basin. The assessment index system is divided into four types: field test indices, common inorganic chemical indices, inorganic toxicology indices, and trace organic indices. Background values of common inorganic chemical indices and inorganic toxicology indices were estimated with the cumulative-probability curve method, and the results showed that the background values of Mg 2+ (51.1 mg L -1 ), total hardness (TH) (509.4 mg L -1 ), and NO 3 - (182.4 mg L -1 ) are all higher than the corresponding grade III values of Quality Standard for Groundwater, indicating that they were poor indicators and therefore were not included in the groundwater quality assessment. The quality assessment results displayed that the field test indices were mainly classified as grade II, accounting for 60.87% of wells sampled. The indices of common inorganic chemical and inorganic toxicology were both mostly in the range of grade III, whereas the trace organic indices were predominantly classified as grade I. The variabilities and excess ratios of the indices were also calculated and evaluated. Spatial distributions showed that the groundwater with poor quality indices was mainly located in the northeast of the basin, which was well-connected with seawater intrusion. Additionally, the pollution assessment revealed that groundwater in well 44 was classified as "moderately polluted," wells 5 and 8 were "lightly polluted," and other wells were classified as "unpolluted."
Enabling global exchange of groundwater data: GroundWaterML2 (GWML2)
NASA Astrophysics Data System (ADS)
Brodaric, Boyan; Boisvert, Eric; Chery, Laurence; Dahlhaus, Peter; Grellet, Sylvain; Kmoch, Alexander; Létourneau, François; Lucido, Jessica; Simons, Bruce; Wagner, Bernhard
2018-05-01
GWML2 is an international standard for the online exchange of groundwater data that addresses the problem of data heterogeneity. This problem makes groundwater data hard to find and use because the data are diversely structured and fragmented into numerous data silos. Overcoming data heterogeneity requires a common data format; however, until the development of GWML2, an appropriate international standard has been lacking. GWML2 represents key hydrogeological entities such as aquifers and water wells, as well as related measurements and groundwater flows. It is developed and tested by an international consortium of groundwater data providers from North America, Europe, and Australasia, and facilitates many forms of data exchange, information representation, and the development of online web portals and tools.
Chapelle, Francis H.; Campbell, Bruce G.; Widdowson, Mark A.; Landon, Mathew K.
2013-01-01
Nitrate contamination of groundwater systems used for human water supplies is a major environmental problem in many parts of the world. Fertilizers containing a variety of reduced nitrogen compounds are commonly added to soils to increase agricultural yields. But the amount of nitrogen added during fertilization typically exceeds the amount of nitrogen taken up by crops. Oxidation of reduced nitrogen compounds present in residual fertilizers can produce substantial amounts of nitrate which can be transported to the underlying water table. Because nitrate concentrations exceeding 10 mg/L in drinking water can have a variety of deleterious effects for humans, agriculturally derived nitrate contamination of groundwater can be a serious public health issue. The Central Valley aquifer of California accounts for 13 percent of all the groundwater withdrawals in the United States. The Central Valley, which includes the San Joaquin Valley, is one of the most productive agricultural areas in the world and much of this groundwater is used for crop irrigation. However, rapid urbanization has led to increasing groundwater withdrawals for municipal public water supplies. That, in turn, has led to concern about how contaminants associated with agricultural practices will affect the chemical quality of groundwater in the San Joaquin Valley. Crop fertilization with various forms of nitrogen-containing compounds can greatly increase agricultural yields. However, leaching of nitrate from soils due to irrigation has led to substantial nitrate contamination of shallow groundwater. That shallow nitrate-contaminated groundwater has been moving deeper into the Central Valley aquifer since the 1960s. Denitrification can be an important process limiting the mobility of nitrate in groundwater systems. However, substantial denitrification requires adequate sources of electron donors in order to drive the process. In many cases, dissolved organic carbon (DOC) and particulate organic carbon (POC) are the primary electron donors driving active denitrification in groundwater. The purpose of this chapter is to use a numerical mass balance modeling approach to quantitatively compare sources of electron donors (DOC, POC) and electron acceptors (dissolved oxygen, nitrate, and ferric iron) in order to assess the potential for denitrification to attenuate nitrate migration in the Central Valley aquifer.
NASA Astrophysics Data System (ADS)
Yuval; Rimon, Y.; Graber, E. R.; Furman, A.
2013-07-01
A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanization often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data between points is thus an important tool for supplementing measured data. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range (up to a few orders of magnitude) of values in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. Local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. That inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the Coastal aquifer along the Israeli shoreline.
NASA Astrophysics Data System (ADS)
Petelet-Giraud, E.; Cary, L.; Bertrand, G.; Alves, L. M.; Cary, P.; Giglio-Jacquemot, A.; Aquilina, L.; Hirata, R.; Montenegro, S.; Aurouet, A.; Franzen, M.; Chatton, E.
2015-12-01
The Recife Metropolitan Region is a typical "hot spot" illustrating the problems of southern countries on water issues inducing high pressures on water resources both on quantity and quality in the context of global social and environmental changes. This study is based on an interdisciplinary approach, coupling "hard" geosciences together with "soft" social sciences with the aim to study the human impact on coastal aquifers in a context of overexploitation to improve the existing water management tools. By revisiting the geological and hydrogeological conceptual models, field campaigns of groundwater and surface water sampling and analysis, and of interviews of different actors on the theme of water supply and management in Recife Metropolitan Region, the main results can be summarized as follows: (1) The recharge of the deep strategic confined aquifers is very limited resulting in water level decrease (up to -90m in 25y) due to overexploitation. (2) Groundwater residence time in these deep aquifers is over 10,000 years. (3) The natural upward flux of these confined aquifers is observed inland, but is reversed in the heavily populated areas along the coast leading to mixing with modern groundwater coming from the shallow aquifers. (4) Groundwater salinization is inherited from the Pleistocene marine transgression, only partly diluted by the recharge through the mangroves during the subsequent regression phase. Today, leakage from surficial aquifers induces local salinization. (5) Local climatic scenarios predict a reduction of rainfall volume of 20% together with an increase of sea level (18-59cm by 2100). (5) The Public authorities tend to deny the difficulties that people, especially those in precarious situation, are confronted with regarding water, especially in times of drought. The COQUEIRAL research project is financially supported by ANR (ANR-11-CEPL-012); FACEPE (APQ-0077-3.07/11); FAPESP (2011/50553-0
Yuval, Yuval; Rimon, Yaara; Graber, Ellen R; Furman, Alex
2014-08-01
A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanisation often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data is thus an important tool for supplementing monitoring observations. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range of values (up to a few orders of magnitude) in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. A local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. The inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the coastal aquifer along the Israeli shoreline. The implications for aquifer management are discussed.
NASA Astrophysics Data System (ADS)
Vengosh, A.; Weinthal, E.
2005-12-01
The rapidly growing population in the Middle East and the ensuing increase in exploitation have led to the degradation its renewable aquifers. In turn, countries in the Middle East have been forced to search for alternative resources like non- renewable (fossil) groundwater and to develop new technologies such as desalination. Here, we show that most of the contamination of the transboundary water resources in the Middle East is due to natural processes. We integrate hydrogeological, geochemical, and isotopic investigations to show that salinization of groundwater in the Gaza Strip, the Jordan River, and the groundwater along the Jordan and Arava valleys are natural phenomena triggered by over-exploitation and distraction of the fragile balance of the hydrological systems in the region. Recent investigations also show that fresh and brackish groundwater from the Nubian Sandstone aquifer in Israel and Jordan contains high level of natural radioactivity. Groundwater from similar basins in Egypt and Libya may also suffer from similar problems of high natural radioactivity in the groundwater. The scientific evidences that most of the contamination is natural raises new challenges for political and legal solutions for such transboundary water resources. Unlike the traditional upstream/downstream conflicts associated with transboundary water resources, the natural contamination demands a reevaluation of water resource management approaches in the Middle East. We argue that regional cooperation must be based upon political bargaining and side-payments rather than just international water law in order to not only foster cooperation, but, more important, to address the poor water quality situation in the Middle East.
Urresti-Estala, Begoña; Carrasco-Cantos, Francisco; Vadillo-Pérez, Iñaki; Jiménez-Gavilán, Pablo
2013-03-15
Determine background levels are a key element in the further characterisation of groundwater bodies, according to Water Framework Directive 2000/60/EC and, more specifically, Groundwater Directive 2006/118/EC. In many cases, these levels present very high values for some parameters and types of groundwater, which is significant for their correct estimation as a prior step to establishing thresholds, assessing the status of water bodies and subsequently identifying contaminant patterns. The Guadalhorce River basin presents widely varying hydrogeological and hydrochemical conditions. Therefore, its background levels are the result of the many factors represented in the natural chemical composition of water bodies in this basin. The question of determining background levels under objective criteria is generally addressed as a statistical problem, arising from the many aspects involved in its calculation. In the present study, we outline the advantages of applying two statistical techniques applied specifically for this purpose: (1) the iterative 2σ technique and (2) the distribution function, and examine whether the conclusions reached by these techniques are similar or whether they differ considerably. In addition, we identify the specific characteristics of each approach and the circumstances under which they should be used. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghalib, Hussein B.
2017-11-01
The present study focused on assessing the groundwater quality of the shallow aquifer in the northeastern Wasit Governorate, Iraq. The physicochemical parameters, including major cation and anion compositions, pH, total dissolved solid and electrical conductivity, were used to assess the suitability of groundwater quality for drinking purpose by comparing with the WHO and Iraqi standards. Total dissolved solid (TDS), sodium adsorption ratio, residual sodium bicarbonate, permeability index and magnesium ratio were used for irrigation suitability assessment. For this purpose, 98 samples were collected from the scattered shallow wells in the study area. Results indicated that the spatial distribution of TDS, EC values and major ions in these groundwater samples considerably differ from one site to another mainly due to the lithological variations of the area. The results are correlated with standards classifications to deduce the hydrogeo-chemical phenomena. The dominant factors in controlling the groundwater hydrogeochemistry are evaporation and weathering in the study area. Geochemical modelling approach was used to calculate the saturation state of some selected minerals, i.e., explaining the dissolution and precipitation reactions occurring in the groundwater. The studied groundwater samples were found to be oversaturated with carbonate minerals and undersaturated with evaporates minerals. A comparison of groundwater quality in relation to drinking water standards showed that most of the groundwater samples were unsuitable for drinking purposes. On the other hand, most groundwater is unsuitable for irrigation purposes based on sodium and salinity hazards. However, soil type as well as proper selection of plants should be taken into consideration.
Salinity of deep groundwater in California: Water quantity, quality, and protection.
Kang, Mary; Jackson, Robert B
2016-07-12
Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond.
Salinity of deep groundwater in California: Water quantity, quality, and protection
Kang, Mary; Jackson, Robert B.
2016-01-01
Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-04-01
This evaluation was conducted to determine if surface discharges of contaminated water from a retention pond and seepage of tailings pore water from the disposal cell have affected ground I water quality in the alluvial deposits east and northeast of the Bodo Canyon disposal cell. The question of whether corrective remedial action is needed for the alluvial groundwater downgradient of the disposal cell is also addressed. Maximum observed concentrations of seven hazardous constituents equalled or exceeded proposed US Environmental Protection Agency (EPA) maximum concentration limits (MCLs) in the alluvial groundwater downgradient of the disposal cell. These constituents include chromium, lead,more » molybdenum, net gross alpha, radium-226 and -228, selenium, and uranium. Concentrations greater than MCLs for molybdenum, net gross alpha, and radium-226 and -228 may be naturally occurring in the alluvial groundwater. There is no statistical evidence that these hazardous constituents are groundwater contaminants with concentrations that exceed the MCLs in alluvial groundwater. However, the median selenium concentration in monitor well 608 exceeds the MCL. Therefore, selenium contamination in the alluvial groundwater in the area of monitor well 608 is possible. Selenium concentrations show no definite increasing or decreasing trend. Since groundwater contamination by selenium is possible in one monitor well, but concentrations are not increasing, corrective action is not warranted at this time. Alluvial groundwater quality will continue to be monitored quarterly and the discharge from the retention pond should be sampled after treatment to ascertain its potential affects on groundwater quality.« less
NASA Astrophysics Data System (ADS)
Sinner, K.; Teasley, R. L.
2016-12-01
Groundwater models serve as integral tools for understanding flow processes and informing stakeholders and policy makers in management decisions. Historically, these models tended towards a deterministic nature, relying on historical data to predict and inform future decisions based on model outputs. This research works towards developing a stochastic method of modeling recharge inputs from pipe main break predictions in an existing groundwater model, which subsequently generates desired outputs incorporating future uncertainty rather than deterministic data. The case study for this research is the Barton Springs segment of the Edwards Aquifer near Austin, Texas. Researchers and water resource professionals have modeled the Edwards Aquifer for decades due to its high water quality, fragile ecosystem, and stakeholder interest. The original case study and model that this research is built upon was developed as a co-design problem with regional stakeholders and the model outcomes are generated specifically for communication with policy makers and managers. Recently, research in the Barton Springs segment demonstrated a significant contribution of urban, or anthropogenic, recharge to the aquifer, particularly during dry period, using deterministic data sets. Due to social and ecological importance of urban water loss to recharge, this study develops an evaluation method to help predicted pipe breaks and their related recharge contribution within the Barton Springs segment of the Edwards Aquifer. To benefit groundwater management decision processes, the performance measures captured in the model results, such as springflow, head levels, storage, and others, were determined by previous work in elicitation of problem framing to determine stakeholder interests and concerns. The results of the previous deterministic model and the stochastic model are compared to determine gains to stakeholder knowledge through the additional modeling
Groundwater Risk Management Handbook
2008-01-01
restoration of groundwater to drinking water quality may not always be achievable due to technology limitations and, therefore, has developed a...extent (horizontal and vertical) of groundwater contamination • Future plans for groundwater use in the area, including local water resource planning...exposure (e.g., drinking water supplied by public water system and groundwater beneath the site is restricted for potable purposes) • Land use
Identifying the groundwater basin boundaries, using environmental isotopes: a case study
NASA Astrophysics Data System (ADS)
Demiroğlu, Muhterem
2017-06-01
Groundwater, which is renewable under current climatic conditions separately from other natural sources, in fact is a finite resource in terms of quality and fossil groundwater. Researchers have long emphasized the necessity of exploiting, operating, conserving and managing groundwater in an efficient and sustainable manner with an integrated water management approach. The management of groundwater needs reliable information about changes on groundwater quantity and quality. Environmental isotopes are the most important tools to provide this support. No matter which method we use to calculate the groundwater budget and flow equations, we need to determine boundary conditions or the physical boundaries of the domain. The Groundwater divide line or basin boundaries that separate the two adjacent basin recharge areas from each other must be drawn correctly to be successful in defining complex groundwater basin boundary conditions. Environmental isotope data, as well as other methods provide support for determining recharge areas of the aquifers, especially for karst aquifers, residence time and interconnections between aquifer systems. This study demonstrates the use of environmental isotope data to interpret and correct groundwater basin boundaries giving as an example the Yeniçıkrı basin within the main Sakarya basin.
Nazzal, Yousef; Ahmed, Izrar; Al-Arifi, Nassir S N; Ghrefat, Habes; Zaidi, Faisal K; El-Waheidi, Mahmud M; Batayneh, Awni; Zumlot, Taisser
2014-08-01
The present study deals with detailed hydrochemical assessment of groundwater within the Saq aquifer. The Saq aquifer which extends through the NW part of Saudi Arabia is one of the major sources of groundwater supply. Groundwater samples were collected from about 295 groundwater wells and analyzed for various physico-chemical parameters such as electrical conductivity (EC), pH, temperature, total dissolved solids (TDS), Na(+), K(+), Ca(2+), Mg(2+), CO3 (-), HCO3 (-), Cl(-), SO4 (2-), and NO3 (-). Groundwater in the area is slightly alkaline and hard in nature. Electrical conductivity (EC) varies between 284 and 9,902 μS/cm with an average value of 1,599.4 μS/cm. The groundwater is highly mineralized with approximately 30 % of the samples having major ion concentrations above the WHO permissible limits. The NO3 (-) concentration varies between 0.4 and 318.2 mg/l. The depth distribution of NO3 (-) concentration shows higher concentration at shallow depths with a gradual decrease at deeper depths. As far as drinking water quality criteria are concerned, study shows that about 33 % of samples are unfit for use. A detailed assessment of groundwater quality in relation to agriculture use reveals that 21 % samples are unsuitable for irrigation. Using Piper's classification, groundwater was classified into five different groups. Majority of the samples show Mix-Cl-SO4- and Na-Cl-types water. The abundances of Ca(2+) and Mg(2+) over alkalis infer mixed type of groundwater facies and reverse exchange reactions. The groundwater has acquired unique chemical characteristics through prolonged rock-water interactions, percolation of irrigation return water, and reactions at vadose zone.
Chica-Olmo, Mario; Luque-Espinar, Juan Antonio; Rodriguez-Galiano, Victor; Pardo-Igúzquiza, Eulogio; Chica-Rivas, Lucía
2014-02-01
Groundwater nitrate pollution associated with agricultural activity is an important environmental problem in the management of this natural resource, as acknowledged by the European Water Framework Directive. Therefore, specific measures aimed to control the risk of water pollution by nitrates must be implemented to minimise its impact on the environment and potential risk to human health. The spatial probability distribution of nitrate contents exceeding a threshold or limit value, established within the quality standard, will be helpful to managers and decision-makers. A methodology based on non-parametric and non-linear methods of Indicator Kriging was used in the elaboration of a nitrate pollution categorical map for the aquifer of Vega de Granada (SE Spain). The map has been obtained from the local estimation of the probability that a nitrate content in an unsampled location belongs to one of the three categories established by the European Water Framework Directive: CL. 1 good quality [Min - 37.5 ppm], CL. 2 intermediate quality [37.5-50 ppm] and CL. 3 poor quality [50 ppm - Max]. The obtained results show that the areas exceeding nitrate concentrations of 50 ppm, poor quality waters, occupy more than 50% of the aquifer area. A great proportion of the area's municipalities are located in these poor quality water areas. The intermediate quality and good quality areas correspond to 21% and 28%, respectively, but with the highest population density. These results are coherent with the experimental data, which show an average nitrate concentration value of 72 ppm, significantly higher than the quality standard limit of 50 ppm. Consequently, the results suggest the importance of planning actions in order to control and monitor aquifer nitrate pollution. © 2013.
NASA Astrophysics Data System (ADS)
Srinivas, Y.; Aghil, T. B.; Hudson Oliver, D.; Nithya Nair, C.; Chandrasekar, N.
2017-06-01
The present study was carried out to find the groundwater quality of coastal aquifer along Manavalakurichi coast. For this study, a total of 30 groundwater samples were collected randomly from open wells and borewells. The concentration of major ions and other geochemical parameters in the groundwater were analyzed in the laboratory by adopting standard procedures suggested by the American Public Health Association. The order of the dominant cations in the study area was found to be Na+ > Ca2+ > Mg2+ > K+, whereas the sequence of dominant anions was {{Cl}}^{ - } > {{HCO}}3^{ - } > {{SO}}4^{2 - }. The hydrogeochemical facies of the groundwater samples were studied by constructing piper trilinear diagram which revealed the evidence of saltwater intrusion into the study area. The obtained geochemical parameters were compared with the standard permissible limits suggested by the World Health Organization and Indian Standard Institution to determine the drinking water quality in the study area. The analysis suggests that the groundwater from the wells W25 and W26 is unsuitable for drinking. The suitability of groundwater for irrigation was studied by calculating percent sodium, sodium absorption ratio and residual sodium carbonate values. The Wilcox and USSL plots were also prepared. It was found that the groundwater from the stations W1, W25 and W26 is unfit for irrigation. The Gibbs plots were also sketched to study the mechanisms controlling the geochemical composition of groundwater in the study area.
Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.
2010-01-01
Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors affecting groundwater quality. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. Benchmarks used in this study were either health-based (regulatory and non-regulatory) or aesthetic based (non-regulatory). For inorganic constituents, relative-concentrations were classified as high (equal to or greater than 1.0), indicating relative-concentrations greater than benchmarks; moderate (equal to or greater than 0.5, and less than 1.0); or, low (less than 0.5). For organic and special- interest constituents [1,2,3-trichloropropane (1,2,3-TCP), N-nitrosodimethylamine (NDMA), and perchlorate], relative- concentrations were classified as high (equal to or greater than 1.0); moderate (equal to or greater than 0.1 and less than 1.0); or, low (less than 0.1). Aquifer-scale proportion was used as the primary metric in the status assessment for groundwater quality. High aquifer- scale proportion is defined as the percentage of the primary aquifer with relative-concentrations greater than 1.0; moderate and low aquifer-scale proportions are defined as the percentage of the primary aquifer with moderate and low relative- concentrations, respectively. The methods used to calculate aquifer-scale proportions are based on an equal-area grid; thus, the proportions are areal rather than volumetric. Two statistical approaches - grid-based, which used one value per grid cell, and spatially weighted, which used the full dataset - were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90-percent confidence intervals of the grid-based estimates in all cases. The understanding assessment used statistical correlations between constituent relative-concentrations and
NASA Astrophysics Data System (ADS)
Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Ambrose
Irrigation water quality is an essential component of sustainable agriculture. Irrigation water quality concerns have often been neglected over concerns of quantity in most irrigation projects in Malawi. In this study, a hydrochemical assessment of groundwater was carried out to characterize, classify groundwater and evaluate its suitability for irrigation use in Karonga and Rumphi districts, Northern Malawi. Groundwater samples were collected during wet (January-April 2011) and dry (July-September 2011) seasons from 107 shallow wells and boreholes drilled for rural water supply using standard sampling procedures. The water samples were analysed for pH, major ions, total dissolved solids and electrical conductivity (EC), using standard methods. Multivariate chemometric (such as Kruskal Wallis test), hydrographical methods (i.e. Piper diagram) and PHREEQC geochemical modelling program were used to characterise the groundwater quality. Electrical conductivity, percentage sodium ion (% Na+), residual sodium carbonate (RSC), total dissolved solids (TDS), sodium adsorption ratio (SAR), Kelly’s ratio (KR) and permeability index (PI) were used to evaluate the suitability of water for irrigation. It was established that groundwater is neutral to alkaline and mostly freshwater (TDS < 1000 mg/l) of Ca-HCO3- type. Groundwater is of low mineralisation which did not show statistically significant variations with respect to depth of shallow wells and boreholes, location and seasonality at 5% significance level. Groundwater from Karonga District was largely oversaturated with respect to both calcite and dolomite, where as that from Rumphi District was undersaturated with respect to both calcite and dolomite. However, the calculated PCO2 values suggested that the groundwater system was open to soil CO2 and that there was possibility of degassing of CO2 during flow, which could increase the pH and subsequently result in the oversaturation of calcite in both districts. Groundwater water samples were stable towards calcite and kaolinite stability field. This suggested that equilibrium of the groundwater with silicates is an important indicator of the hydrogeochemical processes behind groundwater quality in the study area. The calculated values of SAR, KR and % Na+ indicated good and permissible quality of water for irrigation uses. However, samples with doubtful RSC (6% from Karonga district), unsuitable PI (5% and 3% from Karonga and Rumphi, respectively) and a high salinity hazard (56.2% and 20.3% from Karonga and Rumphi, respectively) values restrict the suitability of the groundwater for agricultural purposes, and plants with good salt tolerance should be selected for such groundwaters. A detailed hydro-geochemical investigation and integrated water management is suggested for sustainable development of the water resources for better plant growth, long-term as well as maintaining human health in the study area.
NASA Astrophysics Data System (ADS)
Goebel, M.; Knight, R. J.; Pidlisecky, A.
2016-12-01
Coastal regions represent a complex dynamic interface where saltwater intrusion moves seawater landward and groundwater discharge moves freshwater seaward. These processes can have a dramatic impact on water quality, affecting both humans and coastal ecosystems. The ability to map the subsurface distribution of fresh and salt water is a critical step in predicting and managing water quality in coastal regions. This is commonly accomplished using wells, which are expensive and provide point information, which may fail to capture the spatial complexity in subsurface conditions. We present an alternate method for acquiring data, long-offset Electrical Resistivity Tomography (ERT), which is non-invasive, cost effective, and can address the problem of poor spatial sampling. This geophysical method can produce continuous profiles of subsurface electrical resistivity to a depth of 300 m, with spatial resolution on the order of tens of meters. Our research focuses on the Monterey Bay region, where sustained groundwater extraction over the past century has led to significant saltwater intrusion. ERT was acquired along 40 kilometers of the coast using the roll along method, allowing for continuous overlap in data acquisition. Electrodes were spaced every 22.2 m, with a total of 81 electrodes along the 1.8 km active cable length. The data show a complex distribution of fresh and salt water, influenced by geology, groundwater pumping, recharge, and land-use. While the inverted ERT resistivity profiles correspond well with existing data sets and geologic interpretations in the region, the spatial complexity revealed through the ERT data goes beyond what is known from traditional data sources alone. This leads us to conclude that this form of data can be extremely useful in informing and calibrating groundwater flow models, making targeted management decisions, and monitoring changes in subsurface salinities over time.
Borehole geophysics applied to ground-water investigations
Keys, W.S.
1990-01-01
The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary background in hydrogeology with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, as well as on changes in the character of these factors over time. The response of well logs is caused by petrophysical factors, by the quality, temperature, and pressure of interstitial fluids, and by ground-water flow. Qualitative and quantitative analysis of analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs. The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids, and wells, as well as the principles of measurement, must be understood if geophysical logs are to be interpreted correctly. Plating a logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology is needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and the log analyst and requires both calibration and well-site standardization of equipment. Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization, volume of investigation, extraneous effects, and interpretation and applications.
Borehole geophysics applied to ground-water investigations
Keys, W.S.
1988-01-01
The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary training with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, in addition to changes in the character of these factors with time. The response of well logs is caused by: petrophysical factors; the quality; temperature, and pressure of interstitial fluids; and ground-water flow. Qualitative and quantitative analysis of the analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs.The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids and wells, and the principles of measurement need to be understood to correctly interpret geophysical logs. Planning the logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology are needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and log analyst and requires both calibration and well-site standardization of equipment.Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include: spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization, volume of investigation, extraneous effects, and interpretation and applications.
NASA Astrophysics Data System (ADS)
Sefiani, Salma; El mandour, Abdennabi; Laftouhi, Nour-Eddine; Khalil, Nourdine; Chehbouni, Abdelghani; Jarlan, Lionel; Hanich, Lahoucine; Khabba, Said; Hamaoui, Addi; Kamal, Safia
2016-04-01
Water resources play an important role in the socio-economic development of the Haouz plain. The agriculture and tourism are two essential components of this development. They represent more than 85% of the water consumption of the Tensift catchment. Under a semi-arid climate, according to hydric stress water used for irrigation essential for most crops, comes from pumping in groundwater from the unconfined aquifer of the Haouz. The use of groundwater for irrigation causes problems of soil degradation by the intensification of salinization processes, sodisation or alkalizing at several degrees. These situations are closely related to the natural characteristics of the environment (soil and climate) and the modalities of water management dedicated for irrigation highly affected by water quality. It is in this sense that the study was conducted in an irrigated citrus orchard drip, located in the western part of Haouz at 35 km of Marrakesh. The aim of this study is to characterize the area on hydrogeological and hydrochemical point of view, on the basis of a measurement and sampling campaign of thirty wells corresponding to June 2014. The piezometric map shows parallel flow lines oriented northwest. The aquifer recharge is ensured by lateral flow from the High Atlas and by the infiltration from surface water from Chichaoua, Assif El Mal and N'fis rivers. The low amount of flow rate recorded and measured in the vicinity of the study area at the sensing points are relative to the rise of Paleozoic substratum which reduces the recharge of the aquifer. On the hydrochemical level, groundwater quality is generally good (86% of cases). The strong mineralization is concentrated mainly in irrigated areas downstream along the flow direction of the aquifer and at the Guemassa substratum.
Ground-water conditions in Utah, spring of 2006
Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Wilberg, D.E.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.
2006-01-01
This is the forty-third in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2005. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/techinfo/wwwpub/gw2006.pdf and http://ut.water.usgs. gov/publications/GW2006.pdf.
Understanding Land Use Impacts on Groundwater Quality Using Chemical Analysis
NASA Astrophysics Data System (ADS)
Nitka, A.; Masarik, K.; Masterpole, D.; Johnson, B.; Piette, S.
2017-12-01
Chippewa County, in western Wisconsin, has a unique historical set of groundwater quality data. The county conducted extensive groundwater sampling of private wells in 1985 (715 wells) and 2007 (800 wells). In 2016, they collaborated with UW-Extension and UW-Stevens Point to evaluate the current status of groundwater quality in Chippewa County by sampling of as many of the previously studied wells as possible. Nitrate was a primary focus of this groundwater quality inventory. Of the 744 samples collected, 60 were further analyzed for chemical indicators of agricultural and septic waste, two major sources of nitrate contamination. Wells for nitrate source analysis were selected from the 2016 participants based upon certain criteria. Only wells with a Wisconsin Unique Well Number were considered to ensure well construction information was available. Next, an Inverse Distance Weighting tool in ESRI ArcMap was used to assign values categorizing septic density. Two-thirds of the wells were selected in higher density areas and one-third in lower density areas. Equally prioritized was an even distribution of nitrate - N concentrations, with 28 of the wells having nitrate - N concentrations higher than the drinking water standard of 10 mg/L and 32 wells with concentrations between 2 and 10 mg/L. All wells with WUWN and nitrate - N concentrations greater than 20 mg/L were selected. The results of the nitrate source analyses will aid in determining temporal changes and spatial relationships of groundwater quality to soils, geology and land use in Chippewa County.
Source apportionment of groundwater pollution around landfill site in Nagpur, India.
Pujari, Paras R; Deshpande, Vijaya
2005-12-01
The present work attempts statistical analysis of groundwater quality near a Landfill site in Nagpur, India. The objective of the present work is to figure out the impact of different factors on the quality of groundwater in the study area. Statistical analysis of the data has been attempted by applying Factor Analysis concept. The analysis brings out the effect of five different factors governing the groundwater quality in the study area. Based on the contribution of the different parameters present in the extracted factors, the latter are linked to the geological setting, the leaching from the host rock, leachate of heavy metals from the landfill as well as the bacterial contamination from landfill site and other anthropogenic activities. The analysis brings out the vulnerability of the unconfined aquifer to contamination.
Littin, Gregory R.; Schnoebelen, Douglas J.
2010-01-01
The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer at approximately 40 to 80 feet deep. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality near the well fields since 1992. Previous cooperative studies between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, evaluation of surface and ground-water interaction, assessment of pesticides in groundwater and surface water, and to evaluate water quality near a wetland area in the Seminole well field. Typical water-quality analyses included major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. In addition, two synoptic samplings included analyses of additional pesticide degradates in water samples. Physical field parameters (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were recorded with each water sample collected. This report presents the results of water quality data-collection activities from January 1999 through December 2005. Methods of data collection, quality-assurance samples, water-quality analyses, and statistical summaries are presented. Data include the results of water-quality analyses from quarterly and synoptic sampling from monitoring wells, municipal wells, and the Cedar River.
Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming
2017-01-01
Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781
Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming
2017-07-13
Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.
Konikow, Leonard F.
1981-01-01
Undesirable salinity increases occur in both groundwater and surface water and are commonly related to agricultural practices. Groundwater recharge from precipitation or irrigation will transport and disperse residual salts concentrated by evapotranspiration, salts leached from soil and aquifer materials, as well as some dissolved fertilizers and pesticides. Where stream salinity is affected by agricultural practices, the increases in salt load usually are attributable mostly to a groundwater component of flow. Thus, efforts to predict, manage, or control stream salinity increases should consider the role of groundwater in salt transport. Two examples of groundwater salinity problems in Colorado, U.S.A., illustrate that a model which simulates accurately the transport and dispersion of solutes in flowing groundwater can be (1) a valuable investigative tool to help understand the processes and parameters controlling the movement and fate of the salt, and (2) a valuable management tool for predicting responses and optimizing the development and use of the total water resource. ?? 1981.
Groundwater Monitoring Plan. Volume 2. Final Quality Assurance Project Plan
1993-10-01
5 Table 4-2. US EPA Drinking Water MCLs ........................................ 4-6 Table 5-1. Sample Bottle Requirements, Preservation, and Holding... drinking water . " The types of quality control samples that will be collected during the Canal Creek groundwater monitoring program. ]- Jacobs...Revision No.: 0 Date: 10/27/93 Page: 6 of 9 Canal Creek Area, APG-EA, Maryland Groundwater Monitoring Plan, VOLUME I1 Table 4-2. US EPA Drinking Water
40 CFR 264.93 - Hazardous constituents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Administrator will consider the following: (1) Potential adverse effects on ground-water quality, considering... (2) Potential adverse effects on hydraulically-connected surface water quality, considering: (i) The... specify in the facility permit the hazardous constituents to which the ground-water protection standard of...
40 CFR 264.93 - Hazardous constituents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Administrator will consider the following: (1) Potential adverse effects on ground-water quality, considering... (2) Potential adverse effects on hydraulically-connected surface water quality, considering: (i) The... specify in the facility permit the hazardous constituents to which the ground-water protection standard of...
NASA Astrophysics Data System (ADS)
Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow
2017-04-01
Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This was confirm by further statistical analysis (cluster analysis and correlation matrix) of the water quality parameters. Spatial distribution of water quality parameters, trace elements and the results obtained from the statistical analysis was determined by geographical information system (GIS). In addition, the isotopic analysis of the sampled surface water and groundwater revealed that most of the surface water and groundwater were of meteoric origin with little or no isotopic variations. It is expected that outcomes of this research will form a baseline for making appropriate decision on water quality management by decision makers in the Lower Tano river Basin. Keywords: Water stable isotopes, Trace elements, Multivariate statistics, Evaluation indices, Lower Tano river basin.
NASA Astrophysics Data System (ADS)
Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter
2014-05-01
Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained. The optimization framework based on the GA is still computationally feasible and represents a clean and customizable method. The method has been applied to the Ziya River basin, China. The basin is located on the North China Plain and is subject to severe water scarcity, which includes surface water droughts and groundwater over-pumping. The head-dependent groundwater pumping costs will enable assessment of the long-term effects of increased electricity prices on the groundwater pumping. The coupled optimization framework is used to assess realistic alternative development scenarios for the basin. In particular the potential for using electricity pricing policies to reach sustainable groundwater pumping is investigated.
Grady, S.J.; Weaver, M.F.
1988-01-01
The stratified-drift aquifers that underlie 7.9 sq mi of the Potatuck and 12.7 sq mi of the Pomperaug River valley, CT, consist primarily of sand and gravel deposits up to 150 ft thick. Average horizontal hydraulic conductivity of the stratified drift ranges from 20 to 170 ft/day, and groundwater flows through the aquifers at an average rate of 2 to 3 ft/day. Land use in the study areas is changing from primarily undeveloped or agricultural lands to expanding residential, commercial, and light-industrial uses. Water quality data for 1923-82, that include 127 partial chemical analyses of groundwater samples from 38 wells in the two aquifers, were augmented by sampling during 1985 from 21 new stainless-steel wells for selected major inorganic constituents, trace elements, and organic chemicals. Nonparametric statistical procedures were used to compare the water quality data from four land use areas, for the two sampling periods, and between the two aquifers. Human activities associated with agricultural, residential, and industrial/commercial land uses have affected the quality of water in the stratified-drift aquifers underlying these land use areas. Statistical comparisons of water quality data between land use areas show significant differences, with the apparent relations between land use and groundwater being: (1) Median concentrations of most groundwater constituents are smallest in undeveloped areas; (2) Groundwater in agricultural areas has the largest median sulfate and total ammonia plus organic nitrogen concentrations. Agricultural areas are also characterized by groundwater with significantly greater median specific conductance, noncarbonate hardness, carbon dioxide, and magnesium concentrations relative to undeveloped areas; (3) Median concentrations of most major inorganic constituents, excluding potassium, sulfate, and total ammonia plus organic nitrogen, are greater in groundwater in residential areas than in undeveloped and agricultural areas. (4) Groundwater in industrial/commercial areas has the greatest median specific conductance, pH, carbon dioxide, calcium, magnesium, chloride bicarbonate, dissolved solids, boron, and strontium concentrations. (Author 's abstract)
Characterization of groundwater resources in the Trinity and Woodbine aquifers in Texas.
Chaudhuri, Sriroop; Ale, Srinivasulu
2013-05-01
A vast region in north-central Texas, centering on Dallas-Fort Worth metroplex, suffers from intense groundwater drawdown and water quality degradation, which led to inclusion of 18 counties of this region into Priority Groundwater Management Areas. We combined aquifer-based and county-based hydrologic analyses to (1) assess spatio-temporal changes in groundwater level and quality between 1960 and 2010 in the Trinity and Woodbine aquifers underlying the study region, (2) delve into major hydrochemical facies with reference to aquifer hydrostratigraphy, and (3) identify county-based spatial zones to aid in future groundwater management initiatives. Water-level and quality data was obtained from the Texas Water Development Board (TWDB) and analyzed on a decadal scale. Progressive water-level decline was the major concern in the Trinity aquifer with >50% of observations occurring at depths >100 m since the 1980s, an observation becoming apparent only in the 2000s in the Woodbine aquifer. Water quality degradation was the major issue in the Woodbine aquifer with substantially higher percentage of observations exceeding the secondary maximum contaminant levels (SMCL; a non-enforceable threshold set by the United State Environmental Protection Agency (USEPA)) and/or maximum contaminant level (MCL, a legally enforceable drinking water standard set by the USEPA) for sulfate (SO4(2-)), chloride (Cl(-)), and fluoride (F(-)) in each decade. In both aquifers, however, >70% of observations exceeded the SMCL for total dissolved solids indicating high groundwater salinization. Water-level changes in Trinity aquifer also had significant negative impact on water quality. Hydrochemical facies in this region sequentially evolved from Ca-Mg-HCO3 and Ca-HCO3 in the fluvial sediments of the west to Na-SO4-Cl in the deltaic sediments to the east. Sequentially evolving hydrogeochemical facies and increasing salinization closely resembled regional groundwater flow pattern. Distinct spatial zones based on homogenous hydrologic characteristics have become increasingly apparent over time indicating necessity of zone-specific groundwater management strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Miller, Lisa D.; Ortiz, Roderick F.
2007-01-01
In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated. Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons). Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards. Currently (2004), there is no federally enforced drinking-water standard for radon in public water-supply systems, but proposed regulations suggest a maximum contaminant level of 300 picocuries per liter (pCi/L) and an alternative maximum contaminant level of 4,000 pCi/L contingent on other mitigating remedial activities to reduce radon levels in indoor air. Radon concentrations in about 91 percent of ground-water samples were greater than or equal to 300 pCi/L, and about 25 percent had radon concentrations greater than or equal to 4,000 pCi/L. Generally, the highest radon concentrations were measured in samples collected from wells completed in the crystalline-rock aquifers. Analyses of ground-water-quality data indicate that recharge from ISDS effluent has affected some local ground-water systems in Park County. Because roughly 90 percent of domestic water used is assumed to be recharged by ISDS's, detections of human-related (wastewater) compounds in ground water in Park County are not surprising; however, concentrations of constituents associated with ISDS effluent generally are low (concentrations near the laboratory reporting levels). Thirty-eight different organic wastewater compounds were detected in 46 percent of ground-water samples, and the number of compounds detected per sample ranged from 1 to 17 compounds. Samples collected from wells with detections of wastewater compounds also had significantly higher (p-value < 0.05) chloride and boron concentrations than samples from wells with no detections of wastewater compounds. ISDS density (average subdivision lot size used to estimate ISDS density) was related to ground-water quality in Park County. Chloride and boron concentrations were significantly higher in ground-water samples collected from wells located in areas that had average subdivision lot sizes of less than 1 acre than in areas that had average subdivision lot sizes greater than or equal to 1 acre. For wells completed in the crystalline-
Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher
2010-01-01
Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California benchmarks. A relative-concentration greater than (>) 1.0 indicates a concentration above a benchmark, and less than or equal to (=) 1.0 indicates a concentration equal to or below a benchmark. Relative-concentrations of organic and special interest constituents were classified as ?high? (relative-concentration > 1.0), ?moderate? (0.1 1.0), ?moderate? (0.5 < relative-concentration = 1.0), or ?low? (relative-concentration = 0.5). Aquifer-scale proportion was used as a metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the primary aquifers that have a relative-concentration greater than 1.0; proportion is calculated on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifers that have moderate and low relative-concentrations, respectively. Two statistical approaches-grid-based and spatially-weighted-were used to evaluate aquifer-scale proportion for individual constituents and classes of constituents. Grid-based and spatially-weighted estimates were comparable in the North San Francisco Bay study unit (90-percent confidence intervals). For inorganic constituents with human-health benchmarks, relative-concentrations were high in 14.0 percent of the primary aquifers, moderate in 35.8 percent, and low in 50.2 percent. The high aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of arsenic (10.0 percent), boron (4.1 percent), and lead (1.6 percent). In contrast, relative-concentrations of organic constituents (one or more) were high in 1.4 percent, moderate in 4.9 percent, and low in 93.7 percent (not detected in 64.8 percent) of the primary aquifers. The high aquifer-scale proport
Assessment of groundwater quality in the coastal area of Sindh province, Pakistan.
Alamgir, Aamir; Khan, Moazzam Ali; Schilling, Janpeter; Shaukat, S Shahid; Shahab, Shoaib
2016-02-01
Groundwater is a highly important resource, especially for human consumption and agricultural production. This study offers an assessment of groundwater quality in the coastal areas of Sindh province in Pakistan. Fifty-six samples of groundwater were taken at depths ranging from 30 to 50 m. Bacteriological and physico-chemical analyses were performed using the Standard Methods for the Examination of Water and Wastewater. These were supplemented with expert interviews and observations to identify the usage of water and potential sources of pollution. The quality of the groundwater was found to be unsuitable for human consumption, despite being used for this purpose. The concentrations of sulfate and phosphate were well within the tolerance limits. Most critical were the high levels of organic and fecal pollution followed by turbidity and salinity. Metal concentrations (As, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, and Zn) were also determined, and Ni and Pb strongly exceeded health standards. The study stresses the need for significant improvements of the irrigation, sanitation, and sewage infrastructure.
Gowrisankar, G; Jagadeshan, G; Elango, L
2017-04-01
In many regions around the globe, including India, degradation in the quality of groundwater is of great concern. The objective of this investigation is to determine the effect of recharge from a check dam on quality of groundwater in a region of Krishnagiri District of Tamil Nadu State, India. For this study, water samples from 15 wells were periodically obtained and analysed for major ions and fluoride concentrations. The amount of major ions present in groundwater was compared with the drinking water guideline values of the Bureau of Indian Standards. With respect to the sodium and fluoride concentrations, 38% of groundwater samples collected was not suitable for direct use as drinking water. Suitability of water for agricultural use was determined considering the electrical conductivity, sodium adsorption ratio, sodium percentage, permeability index, Wilcox and United States Salinity Laboratory diagrams. The influence of freshwater recharge from the dam is evident as the groundwater in wells nearer to the check dam was suitable for both irrigation and domestic purposes. However, the groundwater away from the dam had a high ionic composition. This study demonstrated that in other fluoride-affected areas, the concentration can be reduced by dilution with the construction of check dams as a measure of managed aquifer recharge.
Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.
2018-01-31
The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of <0.5 milligram per liter (mg/L), <1.0 mg/L, and <2.0 mg/L were selected to apply broadly to regional groundwater-quality investigations. Although the presence of dissolved manganese in groundwater indicates strongly reducing (anoxic) groundwater conditions, it is also considered a “nuisance” constituent in drinking water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, <50 micrograms per liter (µg/L), <150 µg/L, and <300 µg/L, were selected to create predicted probabilities of exceedances in depth zones used by domestic and public-supply water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.
Jasmin, I; Mallikarjuna, P
2014-02-01
Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na(+)) and potassium (K(+)) and anions such as bicarbonate (HCO3 (-)) and chloride (Cl(-)) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca(2+)), magnesium (Mg(2+)), sulfate (SO4 (2-)), nitrate (NO3 (-)), and fluoride (F(-)) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Ca(2+)-Mg(2+)-HCO3 (-) and Na(+)-K(+)-Cl(-)-SO4 (2-) types during the post-monsoon period and Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Na(+)-K(+)-Cl(-)-SO4 (2-) and Ca(2+)-Mg(2+)-HCO3 (-) types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46% of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...
Predicting Risk from Radon in Source Waters from Water Quality Parameters
Overall, 47 groundwater samples were collected from 45 small community water systems (CWSs) and analyzed for radon and other water quality constituents. In general, groundwater from unconsolidated deposits and sedimentary rocks had lower average radon levels (ranging from 223 to...
NASA Astrophysics Data System (ADS)
Stefansky, J. N.; Robertson, W. M.; Chappaz, A.; Babos, H.; Israel, S.; Groskreutz, L. M.
2015-12-01
Hydraulic fracturing (fracking) of oil and natural gas (O&G) wells is a widely applied technology that can increase yields from tight geologic formations. However, it is unclear how fracking may impact shallow groundwater; previous research into its effects has produced conflicting results. Much of the worry over potential impacts to water quality arises from concerns about the produced water. The water produced from O&G formations is often salty, contains toxic dissolved elements, and can be radioactive. If fracking activities cause or increase connectivity between O&G formations and overlying groundwater, there may be risks to aquifers. As one part of a groundwater quality study in Antrim and Kalkaska Counties, MI, samples were collected from the unconfined glacial aquifer (3-300 m thick) and produced water from the underlying Antrim formation, a shallow (180-670 m deep) natural gas producing black shale. Groundwater samples were collected between 200 to 10,000 m distance from producing Antrim gas wells and from a range of screened intervals (15-95 m). Samples were analyzed for major constituents (e.g., Br, Cl), pH, conductivity, and dissolved oxygen (DO). The specific conductance of groundwater samples ranged from 230-1020 μS/cm; DO ranged from 0.4-100% saturation. Preliminary results show a slight inverse correlation between specific conductance and proximity to producing Antrim wells. The observed range of DO saturation in glacial aquifer groundwater appears to be related to both screened depth of the water wells and proximity to Antrim wells. During sampling, some well owners expressed concerns about the effects of fracking on groundwater quality and reported odd smells and tastes in their water after O&G drilling occurred near their homes. The results of this study and reported observations provide evidence to suggest a potential hydrogeological connection between the Antrim formation and the overlying glacial aquifer in some locations; it also raises questions about water quality in Antrim and Kalkaska counties. Further investigation is needed to address questions raised in this study. As the controversy surrounding fracking is growing and the application of this technology spreads worldwide, it is important for the questions about fracking and groundwater quality to be well addressed.
Groundwater conditions in Utah, spring of 2011
Burden, Carole B.
2011-01-01
This is the forty-eighth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2010. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2011.pdf. Groundwater conditions in Utah for calendar year 2009 are reported in Burden and others (2010) and available online at http://ut.water.usgs.gov/ publications/GW2010.pdf.Analytical results associated with water samples collected from each area of groundwater development were compared to State of Utah Maximum Contaminant Levels (MCLs) and secondary drinking-water standards of routinely measureable substances present in water supplies. The MCLs and secondary drinking-water standards can be accessed online at http://www.rules.utah.gov/publicat/code/r309/r309-200. htm#T5. The U.S. Environmental Protection Agency (EPA) drinking-water standards can be accessed at http://www.epa. gov/safewater/mcl.html#mcls. Maximum Contaminant Levels and secondary drinking-water standards were developed for public water systems and do not apply to the majority of wells sampled during this study.
Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL
NASA Astrophysics Data System (ADS)
Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis
2015-04-01
Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards with a spatial analysis. We compare diverse case studies using geochemical maps built by kriging in which we interpolate the conditional probability of exceeding the reference value (i.e. the drinking water standard) OR the local natural background level. The resulting maps provide a useful reference for management purposes.
McArthur, J M; Sikdar, P K; Leng, M J; Ghosal, U; Sen, I
2018-05-01
Kolkata, the capital city of West Bengal, exploits groundwater for public water-supply. The groundwater has been reported to be widely polluted by arsenic (As). Analysis for As in 280 groundwaters from across Kolkata, failed to detect As concentrations >10 μg/L from natural processes. Arsenic concentrations between 10 and 79 μg/L found in 14 of the 280 groundwaters are remnant from a pollution-plume emanating from a single factory site where Paris Green, an arsenical pesticide, was manufactured between 1965 and 1985. In 45% of groundwaters sampled, concentrations of Mn exceed 0.4 mg/L, a putative health guideline value for drinking water. Sporadic minor hazards are posed by Pb > 10 μg/L introduced into groundwater from well-fittings, from 4% of groundwaters with F concentrations between 0.75 and 1 mg/L, and the 14% of groundwaters containing more than 500 mg/L Na, concentrations that might contribute to excessive daily intake of Na. Compounding hazards from As, F, Mn, Na, and Pb, shows that 64% of public wells and 40% of municipal wells supply groundwater of suspect quality. Groundwaters comply with WHO Guideline Values for drinking water in terms of Cr, Cu, Co, NO 2 , NO 3 , Sb, Se, and U. Aesthetic guideline values for Fe, Mn, SO 4 , and Cl are exceeded for many groundwaters.
Investigation and Evaluation of Groundwater Resources of Juxian
NASA Astrophysics Data System (ADS)
Xinyi, Li; Wanglin, Li; Xiaojiao, Zhang; Deling, Zhu; Huadan, Yan
2018-03-01
The investigation and evaluation of groundwater resources refers to the analysis of groundwater quantity, quality, spatial-temporal property and exploitation status. Based on the collected data and field investigation, the groundwater resources in plain and hilly area of Juxian were calculated by replenishment method, discharge method and comprehensive infiltration coefficient method, and the groundwater quality was analyzed and evaluated. The conclusions are as follows: (1) The amount of groundwater resources is 224.940 million m3/a, including 89.585 million m3/a of plain area and 142.523 million m3/a of hilly area respectively. (2) The allowable yield of groundwater is about 162.948 million m3/a, in which the amounts in the plain area and the hilly area are 74 .585million m3/a and 88.363 million m3/a, respectively. (3) The pH value of groundwater ranges from 6.5∼7.5 and the degree of mineralization of groundwater was lower than 1 g/L at most. In addition, the total hardness varies from 150 mg/L to 450 mg/L in plain area and 300 mg/L to 550 mg/L in hilly area, respectively. The investigation and evaluation of groundwater resources was of great significance in ensuring the sustainable development of groundwater resources, establishing the scheme of groundwater resources exploitation and utilization.
ERIC Educational Resources Information Center
Cole, Charles A.
Described is a presentation and learning session on groundwater, which is intended to educate advisory groups interested in improving water quality decision making. Among the areas addressed are the importance of groundwater, sources of contamination, and groundwater pollution control programs. These materials are part of the Working for Clean…
Oden, Timothy D.
2011-01-01
The Gulf Coast aquifer system is the primary water supply for Montgomery County in southeastern Texas, including part of the Houston metropolitan area and the cities of Magnolia, Conroe, and The Woodlands Township, Texas. The U.S. Geological Survey, in cooperation with the Lone Star Groundwater Conservation District, collected environmental tracer data in the Gulf Coast aquifer system, primarily in Montgomery County. Forty existing groundwater wells screened in the Gulf Coast aquifer system were selected for sampling in Montgomery County (38 wells), Waller County (1 well), and Walker County (1 well). Groundwater-quality samples, physicochemical properties, and water-level data were collected once from each of the 40 wells during March-September 2008. Groundwater-quality samples were analyzed for dissolved gases and the environmental tracers sulfur hexafluoride, chlorofluorocarbons, tritium, helium-4, and helium-3/tritium. Water samples were collected and processed onsite using methods designed to minimize changes to the water-sample chemistry or contamination from the atmosphere. Replicate samples for quality assurance and quality control were collected with each environmental sample. Well-construction information and environmental tracer data for March-September 2008 are presented.
Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.
2017-04-10
Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.
Urban hydrogeology in Indonesia: A highlight from Jakarta
NASA Astrophysics Data System (ADS)
Lubis, R. F.
2018-02-01
In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.
Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth
2014-01-01
Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by the health- or aesthetic-based benchmark concentrations) were used for evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration greater than (>) 1.0 indicates a concentration greater than a benchmark, and a relative-concentration less than or equal to (≤) 1.0 indicates a concentration less than or equal to a benchmark. Relative-concentrations of organic constituents were classified as “high” (relative-concentration > 1.0), “moderate” (0.1 Aquifer-scale proportion was used in the status assessment as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with a relative-concentration greater than 1.0 for a particular constituent or class of constituents; percentage is based on an areal rather than a volumetric basis. Moderate and low aquifer-scale proportions were defined as the percentages of the primary aquifer system with moderate and low relative-concentrations, respectively. The KLAM study unit includes more than 8,800 square miles (mi2), but only those areas near the sampling sites, about 920 mi2, are included in the areal assessment of the study unit. Two statistical approaches—grid-based and spatially weighted—were used to evaluate aquifer-scale proportions for individual constituents and classes of constituents. To confirm this methodology, 90 percent confidence intervals were calculated for the grid-based high aquifer-scale proportions and were compared to the spatially weighted results, which were found to be within these confidence intervals in all cases. Grid-based results were selected for use in the status assessment unless, as was observed in a few cases, a grid-based result was zero and the spatially weighted result was not zero, in which case, the spatially weighted result was used. The status assessment showed that inorganic constituents with human-health benchmarks were detected at high relative-concentrations in 2.6 percent of the primary aquifer system and at moderate relative-concentrations in 10 percent of the system. The high aquifer-scale proportion for inorganic constituents mainly reflected the high aquifer-scale proportions of boron. Inorganic constituents with secondary maximum contaminant levels were detected at high relative-concentrations in 13 percent of the primary aquifer system and at moderate relative-concentrations in 10 percent of the system. The constituents present at high relative-concentrations included iron and manganese. Organic constituents with human-health benchmarks were not detected at high relative-concentrations, but were detected at moderate relative-concentrations in 1.9 percent of the primary aquifer system. The 1.9 percent reflected a spatially weighted moderate aquifer-scale proportion for the gasoline additive methyl tert-butyl ether. Of the 148 organic constituents analyzed, 14 constituents were detected. Only one organic constituent had a detection frequency of greater than 10 percent—the trihalomethane, chloroform. The second component of this study, the understanding assessment, identified the natural and human factors that may have affected the groundwater quality in the KLAM study unit by evaluating statistical correlations between water-quality constituents and potential explanatory factors. The potential explanatory factors evaluated were aquifer lithology, land use, hydrologic conditions, depth, groundwater age, and geochemical conditions. Results of the statistical evaluations were used to explain the occurrence and distribution of constituents in the KLAM study unit. Groundwater age distribution (modern, mixed, or pre-modern), redox class (oxic, mixed, or anoxic), and dissolved oxygen concentration were the explanatory factors that best explained occurrence patterns of the inorganic constituents. High concentrations of boron were found to be associated with groundwater classified as mixed or pre-modern with respect to groundwater age. Boron was also negatively correlated to dissolved oxygen and positively correlated to specific conductance. Iron and manganese concentrations were strongly associated with low dissolved oxygen concentrations, anoxic and mixed redox classifications, and pre-modern groundwater. Specific conductance concentrations were found to be related to pre-modern groundwater, low dissolved oxygen concentrations, and high pH. Chloroform was selected for additional evaluation in the understanding assessment because it was detected in more than 10 percent of wells sampled in the KLAM study unit. Septic tank density was the only explanatory factor that was found to relate to chloroform concentrations.
A MANUAL OF INSTRUCTIONAL PROBLEMS FOR THE U.S.G.S. MODFLOW MODEL
A recent report by the United States Environmental Protection Agency Groundwater Modeling Policy Study Group (van der Heijde and Park, 1986) offered several approaches to training Agency staff in the application of groundwater modeling. They identified the problem that current t...
Nakagaki, Naomi; Hitt, Kerie J.; Price, Curtis V.; Falcone, James A.
2012-01-01
Characterization of natural and anthropogenic features that define the environmental settings of sampling sites for streams and groundwater, including drainage basins and groundwater study areas, is an essential component of water-quality and ecological investigations being conducted as part of the U.S. Geological Survey's National Water-Quality Assessment program. Quantitative characterization of environmental settings, combined with physical, chemical, and biological data collected at sampling sites, contributes to understanding the status of, and influences on, water-quality and ecological conditions. To support studies for the National Water-Quality Assessment program, a geographic information system (GIS) was used to develop a standard set of methods to consistently characterize the sites, drainage basins, and groundwater study areas across the nation. This report describes three methods used for characterization-simple overlay, area-weighted areal interpolation, and land-cover-weighted areal interpolation-and their appropriate applications to geographic analyses that have different objectives and data constraints. In addition, this document records the GIS thematic datasets that are used for the Program's national design and data analyses.
Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA
Rowden, R.D.; Liu, H.; Libra, R.D.
2001-01-01
Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.
Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada
NASA Astrophysics Data System (ADS)
Howard, Ken W. F.; Maier, Herb
2007-04-01
North America's fifth most populated municipality — the Greater Toronto Area (GTA) — is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-icing salt is the primary concern since there are no cost effective alternatives to NaCl de-icing salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-icing chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in areas where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.
Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada.
Howard, Ken W F; Maier, Herb
2007-04-01
North America's fifth most populated municipality--the Greater Toronto Area (GTA)--is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-icing salt is the primary concern since there are no cost effective alternatives to NaCl de-icing salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-icing chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in areas where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.
NASA Astrophysics Data System (ADS)
Han, Dongmei; Song, Xianfang; Currell, Matthew J.
2016-05-01
The hydrogeochemical processes controlling groundwater evolution in the Daweijia area of Dalian, northeast China, were characterised using hydrochemistry and isotopes of carbon and sulfur (δ13CDIC and δ34SSO4). The aim was to distinguish anthropogenic impacts as distinct from natural processes, with a particular focus on sulfate, which is found at elevated levels (range: 54.4 to 368.8 mg L-1; mean: 174.4 mg L-1) in fresh and brackish groundwater. The current investigation reveals minor seawater intrusion impact (not exceeding 5 % of the overall solute load), in contrast with extensive impacts observed in 1982 during the height of intensive abstraction. This indicates that measures to restrict groundwater abstraction have been effective. However, hydrochemical facies analysis shows that the groundwater remains in a state of ongoing hydrochemical evolution (towards Ca-Cl type water) and quality degradation (increasing nitrate and sulfate concentrations). The wide range of NO3 concentrations (74.7-579 mg L-1) in the Quaternary aquifer indicates considerable input of fertilisers and/or leakage from septic systems. Both δ13C (-14.5 to -5.9 permil) and δ34SSO4 (+5.4 to +13.1 permil) values in groundwater show increasing trends along groundwater flow paths. While carbonate minerals may contribute to increasing δ13CDIC and δ34SSO4 values in deep karstic groundwater, high loads of agricultural fertilisers reaching the aquifer via irrigation return flow are likely the main source of the dissolved sulfate in Quaternary groundwater, as shown by distinctive isotopic ratios and a lack of evidence for other sources in the major ion chemistry. According to isotope mass balance calculations, the fertiliser contribution to overall sulfate has reached an average of 62.1 % in the Quaternary aquifer, which has a strong hydraulic connection to the underlying carbonate aquifer. The results point to an alarming level of impact from the local intensive agriculture on the groundwater system, a widespread problem throughout China.
NASA Astrophysics Data System (ADS)
Han, D.; Song, X.; Currell, M. J.
2015-11-01
The hydrogeochemical processes controlling groundwater evolution in the Daweijia area of Dalian, northeast China, were characterized using hydrochemistry and isotopes of carbon and sulfur (δ13CDIC and δ34SSO4). The aim was to distinguish anthropogenic impacts as distinct from natural processes, with a particular focus on sulfate, which is found at elevated levels (range: 54.4 to 368.8 mg L-1; mean: 174.4 mg L-1) in fresh and brackish groundwater. The current investigation reveals minor seawater intrusion impact (not exceeding 5 % of overall solute load), in contrast with extensive impacts observed in 1982 during the height of intensive abstraction. This indicates that measures to restrict groundwater abstraction have been effective. However, hydrochemical facies analysis shows that the groundwater remains in a state of ongoing hydrochemical evolution (towards Ca-Cl type water) and quality degradation (increasing nitrate and sulphate concentrations). The wide range of NO3 concentrations (74.7-579 mg L-1) in the Quaternary aquifer indicates considerable input of fertilizers and/or leakage from septic systems. Both δ13C (-14.5 to -5.9 ‰) and δ34SSO4 (+5.4-+13.1 ‰) values in groundwater show increasing trends along groundwater flow paths. While carbonate minerals may contribute to increasing δ13CDIC and δ34SSO4 values in deep karstic groundwater, high loads of agricultural fertilizers reaching the aquifer via irrigation return flow are likely the main source of the dissolved sulfate in Quaternary groundwater, as shown by distinctive isotopic ratios and a lack of evidence for other sources in the major ion chemistry. According to isotope mass balance calculations, the fertilizer contribution to overall sulfate has reached an average of 62.1 % in the Quaternary aquifer, which has a strong hydraulic connection to the underlying carbonate aquifer. The results point to an alarming level of impact from the local intensive agriculture on the groundwater system, a widespread problem throughout China.
Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996
Milby Dawson, Barbara J.
2001-01-01
In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural processes and human activities are affecting ground-water quality in the upper part of the southeastern Sacramento Valley aquifer. The factors identified as having an influence on ground-water quality were redox condition in the aquifer, depth within the aquifer, and land use overlying the aquifer. Nitrate concentra-tions showed a statistical correlation with each of these factors. Detections of pesticides and volatile organic compounds were too few to compare concentrations with the various factors, but the types of synthetic compounds detected were consistent with the sur-rounding land use. Sixty-one percent of the wells sampled in this study showed the effect of human activities on ground-water quality in the form of a nitrate concentration over 3 milligrams per liter or a detection of a pesticide or volatile organic compound. In general, the water quality in the southeastern Sacramento Valley aquifer was found suitable for most uses.
NASA Astrophysics Data System (ADS)
Barthel, R.; Jagelke, J.; Götzinger, J.; Gaiser, T.; Printz, Andreas
Two regional groundwater flow models (Neckar catchment, Germany, 14,000 km 2, and Southern Ouémé Basin, Benin, 11,000 km 2) were developed within the framework of the integrated management project ‘RIVERTWIN’ ( www.rivertwin.org). Both models were evaluated with respect to the question if the chosen modelling approaches (multi-layered finite difference numerical flow modelling, steady state and transient) are appropriate in view of the existing management problems in the catchments, the data availability and the hydrogeological and hydrological conditions in the basins. It is shown that neither the model in the well-investigated, data-rich basin in Western Europe with its highly developed water related infrastructure, nor the model in the hydrogeologically less well-known and less developed basin in Western Africa provide results that are fully applicable to the main regional management tasks. In the case of the Ouémé, the groundwater related problems are foremost of local character and therefore cannot be addressed by regional models in a meaningful way. Data scarcity and complex, unfavourable geological conditions (crystalline rocks, discontinuous aquifers) support the conclusion that numerical 3D groundwater flow models are currently not helpful to manage groundwater related management problems in the Ouémé basin. A better understanding of regional hydrological surface and subsurface processes is required first. Methods for a reliable estimation of groundwater recharge and subsequently groundwater availability were identified as the most urgently needed tool for meaningful groundwater management in view of climatic, demographic and land use change. In the Neckar catchment the results of the analysis are less pronounced; here regional groundwater problems could clearly benefit from a physically based 3D model since the hydrogeological system is strictly stratified with several important aquifers in the vertical sequence. As a general conclusion it can be stated that regional scale groundwater flow modelling concepts seem to be difficult to integrate in management systems and difficult to transfer from one basin to another. This means the question of how to represent the groundwater resources appropriately has to be discussed very thoroughly for any new integrated water resources management problem. It is not possible to give a final recommendation on which modelling concept is the most appropriate one in regional integrated modelling and management. Hence, this article is only intended to provide an in depth discussion of the aspects that need to be considered in the process of choosing appropriate modelling concepts.
Environmental analysis of groundwater in Mecosta County, Michigan.
Steinman, Alan D; Biddanda, Bopi; Chu, Xuefeng; Thompson, Kurt; Rediske, Rick
2007-11-01
Groundwater withdrawal has major economic, social, and environmental implications. In Michigan, recent legislative activity has begun to address the issue of groundwater sustainability. However, more hydrologic data are needed to help inform policy and legislation. A study was conducted in Mecosta County, Michigan to: (1) determine if a relationship could be established between land use/land cover and groundwater quality; and (2) develop a conceptual model for the shallow groundwater system of the study region. In general, groundwater quality was good, with below detection levels of E. coli, low total bacterial counts, and relatively low nutrient concentrations. No statistically significant associations were found between the bacterial numbers and either land use or the physical/chemical attributes measured, which may be because the scale of our spatial analysis was too coarse to detect patterns. Finer-scale, localized processes may have a greater influence on microorganism growth and abundance than coarser-scale, regional processes in this area. Our groundwater analysis suggested that shallow groundwater flow paths are generally consistent with regional surface water flow networks, and that shallow groundwater levels in most of the region have fluctuated within 1-2 m over the past 30 years, with no obvious increasing or decreasing trend.
Identification and description of potential ground-water quality monitoring wells in Florida
Seaber, P.R.; Thagard, M.E.
1986-01-01
The results of a survey of existing wells in Florida that meet the following criteria are presented: (1) well location is known , (2) principal aquifer is known, (3) depth of well is known, (4) well casing depth is known, (5) well water had been analyzed between 1970 and 1982, and (6) well data are stored in the U.S. Geological Survey 's (USGS) computer files. Information for more than 20,000 wells in Florida were stored in the USGS Master Water Data Index of the National Water Data Exchange and in the National Water Data Storage and Retrieval System 's Groundwater Site Inventory computerized files in 1982. Wells in these computer files that had been sampled for groundwater quality before November 1982 in Florida number 13,739; 1,846 of these wells met the above criteria and are the potential (or candidate) groundwater quality monitoring wells included in this report. The distribution by principal aquifer of the 1,846 wells identified as potential groundwater quality monitoring wells is as follows: 1,022 tap the Floridan aquifer system, 114 tap the intermediate aquifers, 232 tap the surficial aquifers, 246 tap the Biscayne aquifer, and 232 tap the sand-and-gravel aquifer. These wells are located in 59 of Florida 's 67 counties. This report presents the station descriptions, which include location , site characteristics, period of record, and the type and frequency of chemical water quality data collected for each well. The 1,846 well locations are plotted on 14 USGS 1:250,000 scale, 1 degree by 2 degree, quadrangle maps. This relatively large number of potential (or candidate) monitoring wells, geographically and geohydrologically dispersed, provides a basis for a future groundwater quality monitoring network and computerized data base for Florida. There is a large variety of water quality determinations available from these wells, both areally and temporally. Future sampling of these wells would permit analyses of time and areal trends for selected water quality characteristics throughout the State. The identification and description of the potential monitoring wells and the listing of the type and frequency of the groundwater quality data forms a foundation for both the network and the data base. (Author 's abstract)
Walton-Day, Katherine; Mills, Taylor J.
2015-01-01
The Dinero mine drainage tunnel is an abandoned, draining mine adit near Leadville, Colorado, that has an adverse effect on downstream water quality and aquatic life. In 2009, a bulkhead was constructed (creating a mine pool and increasing water-table elevations behind the tunnel) to limit drainage from the tunnel and improve downstream water quality. The goal of this study was to document changes to hydrology and water quality resulting from bulkhead emplacement, and to understand post-bulkhead changes in source water and geochemical processes that control mine-tunnel discharge and water quality. Comparison of pre-and post-bulkhead hydrology and water quality indicated that tunnel discharge and zinc and manganese loads decreased by up to 97 percent at the portal of Dinero tunnel and at two downstream sites (LF-537 and LF-580). However, some water-quality problems persisted at LF-537 and LF-580 during high-flow events and years, indicating the effects of the remaining mine waste in the area. In contrast, post-bulkhead water quality degraded at three upstream stream sites and a draining mine tunnel (Nelson tunnel). Water-quality degradation in the streams likely occurred from increased contributions of mine-pool groundwater to the streams. In contrast, water-quality degradation in the Nelson tunnel was likely from flow of mine-pool water along a vein that connects the Nelson tunnel to mine workings behind the Dinero tunnel bulkhead. Principal components analysis, mixing analysis, and inverse geochemical modeling using PHREEQC indicated that mixing and geochemical reactions (carbonate dissolution during acid weathering, precipitation of goethite and birnessite, and sorption of zinc) between three end-member water types generally explain the pre-and post-bulkhead water composition at the Dinero and Nelson tunnels. The three end members were (1) a relatively dilute groundwater having low sulfate and trace element concentrations; (2) mine pool water, and (3) water that flowed from a structure in front of the bulkhead after bulkhead emplacement. Both (2) and (3) had high sulfate and trace element concentrations. These results indicate how analysis of monitoring information can be used to understand hydrogeochemical changes resulting from bulkhead emplacement. This understanding, in turn, can help inform future decisions on the disposition of the remaining mine waste and water-quality problems in the area.
Duell, L.F.
1987-01-01
A basinwide ideal network and an actual network were designed to identify ambient groundwater quality, trends in groundwater quality, and degree of threat from potential pollution sources in Antelope Valley, California. In general, throughout the valley groundwater quality has remained unchanged, and no specific trends are apparent. The main source of groundwater for the valley is generally suitable for domestic, irrigation, and most industrial uses. Water quality data for selected constituents of some network wells and surface-water sites are presented. The ideal network of 77 sites was selected on the basis of site-specific criteria, geohydrology, and current land use (agricultural, residential, and industrial). These sites were used as a guide in the design of the actual network consisting of 44 existing wells. Wells are currently being monitored and were selected whenever possible because of budgetary constraints. Of the remaining ideal sites, 20 have existing wells not part of a current water quality network, and 13 are locations where no wells exist. The methodology used for the selection of sites, constituents monitored, and frequency of analysis will enable network users to make appropriate future changes to the monitoring network. (USGS)
Assessment of human activities impact on groundwater quality discharging into a reef lagoon
NASA Astrophysics Data System (ADS)
Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A.; Merino-Ibarra, M.; Lecossec, A.; Soto, M.
2010-03-01
The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean (Submarine Groundwater Discharges). In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.
Ground-water quality in Douglas County, western Nevada
Garcia, K.T.
1989-01-01
A 182% increase in population within the last 10 years in Douglas County, Nevada, has raised concerns by county officials as to the possible effects land development may have on groundwater quality. Most groundwater in Douglas County meets the State of Nevada drinking water standards. Of the 333 water samples used in this analysis, 6 equaled or were greater than the drinking water standards for sulfates, 44 for fluoride, 4 for dissolved solids, 5 for nitrate as nitrate, 12 for arsenic, 33 for iron, and 18 for manganese. Groundwater in the west-central, northern, and northeastern part of Carson Valley is influenced by geothermal water. Some areas in the county may have septic-tank effluent contaminating the groundwater. Temporal changes in most municipal wells showed no overall trend for dissolved-solids and nitrate concentrations spanning the years 1969-83. However, a municipal well in the Topaz Lake area has shown a general increases in the nitrate concentration from 1961 to 1984, but the concentration does not exceed the drinking-water standard. A future groundwater quality monitoring program in Douglas County would include periodic sampling of primary or heavily pumped wells, long-term trend wells, and supplemental wells. (Thacker-USGS)
Gordon, Debbie W.
2006-01-01
The U.S. Geological Survey (USGS) has been working with the Albany Water, Gas, and Light Commission to monitor ground-water quality and availability since 1977. This report presents the findings for July 2005 through June 2006 and summarizes the ground-water and surface-water conditions for 2005. Water levels in 14 wells were continuously monitored in Dougherty County, Georgia. Water levels in 12 of those wells were above normal, one was normal, and one was below normal. Ground-water samples collected from the Upper Floridan aquifer indicate that nitrate levels have increased in 13 wells and decreased in two wells from a year earlier. A sample also was collected from the Flint River. A trilinear diagram showing the percent composition of selected major cations and anions indicates that the ground-water quality of the Upper Floridan aquifer at the Albany wellfield is distinctly different from the water quality of the Flint River. To improve the understanding of the ground-water flow system and nitrate movement in the Upper Floridan aquifer, the USGS is developing a ground-water flow model in the southwest Albany area, Georgia.
Contains site investigation plan & data for assessment of groundwater quality at Dickson County Landfill, Dickson, Tennessee, with figures, tables, appendices, November 1994, including Application for Authorization for Class V Underground Injection Well.
NASA Astrophysics Data System (ADS)
Negrel, Philippe; Pauwels, Hélène; Millot, Romain; Roy, Stéphane; Guerrot, Catherine
2010-05-01
Groundwater flow and storage in hard rock areas is becoming a matter of great interest and importance to researchers and water managers either with regards to the quantity, quality of water as well as delimitation of resources and aquifers. Degradation of groundwater resources by abstraction, contamination, ... has been increasing in many areas and is of growing concern for few decades. In terms of hydrogeology, hard rocks represent a quite heterogeneous and anisotropic media with irregular distribution of pathways of groundwater flow, typically consisting of three vertical zones, upper weathered, middle fractured and lower massive bedrock. Aim of this work is dual and the Maheshwaram watershed (53 km2, Andhra Pradesh, India) representative of watersheds in southern India in terms of geology, overpumping of its hard-rock aquifer (more than 700 classical open end wells in use), its cropping pattern (rice dominating), and its rural socio-economy mainly based on traditional agriculture is investigated through stable isotopes of the water molecule and lead isotopes in groundwater. The overall objective is to incorporate isotopic- and chemical-tracing data and constraints into methods for evaluating groundwater circulation. It divides into fingerprinting the groundwater recharge processes (e.g. the input by the monsoon) and the water use in such agricultural watershed, which is of primary importance in such semi-arid context and investigating the processes of water-rock interactions (e.g. granite-water interaction). In the frame of delimitation of resources and aquifers and long-term sustainability, we monitored the input from monsoon-precipitation over 2 years, and measured spatial and temporal variations in δ18O and δ2H in the groundwater and in precipitation. Individual recharge from the two monsoon periods was identified. This led to identification of periods during which evaporation affects groundwater quality through a higher concentration of salts and stable isotopes in the return flow. In addition, such evaporation is further affected by land use, rice paddies having the strongest evapotranspiration. Lead concentrations span over one or two orders of magnitude up to approximately 20 ?g. L-1. Pb-isotopes, measured in water by MC-ICPMS using an improved new procedure, fluctuate largely as exemplified by the 206Pb/204Pb ratio, reaching values up to 25. Most of the lead in the groundwaters is of geogenic origin, and through the lead isotopic signature in groundwater we have traced and fingerprinted the processes of water-rock interactions considering the granite matrix. Combining a weathering model and field observations, we have defined a two step weathering process that includes a control on the Pb-isotopes ratios by accessory phases and by the main mineral from the granite in a second step of weathering. For future studies, multi-isotope approach will be necessary for the identification of possible flowpaths, in conjunction with the larger exploitation of the groundwater resources. This is also challenging for generalising the use of isotope tools (such as Nd, Sr, Pb and newly developed isotope systematics like Ca, Si...) in many other catchments that may face structural problems of groundwater overdraft.
Rodríguez, José M.
2013-01-01
The source of drinking water in the Santa Isabel and Coamo areas of Puerto Rico (Molina and Gómez-Gómez, 2008) is the South Coast aquifer (hereafter referred to as the aquifer), which supplies about 30,700 cubic meters per day (m³/d) to Puerto Rico Aqueduct and Sewer Authority (PRASA) public-supply wells. In addition, approximately 45 wells provide an estimated 33,700 m³/d of groundwater to irrigate crops in the area. In 1967, baseline nitrate concentrations in groundwater throughout most of the aquifer were generally less than 6 milligrams per liter (mg/L) as nitrogen in collected water samples (U.S. Geological Survey, 2012). In 2007, elevated nitrate concentrations were detected in the aquifer, near Santa Isabel and the foothills north of the coastal plain at Santa Isabel as part of a regional groundwater-quality assessment conducted by the U.S. Geological Survey (USGS) during 2007 (Rodríguez and Gómez-Gómez, 2008). The increase in nitrate concentrations has been of concern to local government agencies because of its potential effect on public supply. To address public-supply concerns, the USGS, in cooperation with the Puerto Rico Department of Natural and Environmental Resources (PRDNER), evaluated groundwater quality in the aquifer near the Santa Isabel area between January 2008 and May 2009. The objectives of the study were to (1) define the groundwater-quality conditions of the aquifer, with emphasis on the distribution of nitrate concentrations; (2) identify potential sources leading to elevated nitrate concentrations; (3) estimate the nitrate loads from major sources identified; and (4) estimate the groundwater withdrawals by principal-use categories in the area. Results of this study will be used by Commonwealth of Puerto Rico and Federal agencies in developing strategies that can result in containment of high nitrate groundwater to minimize degradation of fresh groundwater in the aquifer.
Parliman, D.J.
1987-01-01
The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications of organic wastewater and organic solute loading rates on subsurface water quality is not feasible at this time.
Leahy, P. Patrick
1985-01-01
New Jersey is the most densely populated and one of the most industrialized states in the United States. An abundance of freshwater and proximity to major northeastern metropolitan centers has facilitated this development. Pumpage of freshwater from all aquifers in the State in 1980 was 730 million gallons per day (2.76 million cubic meters per day).Management and efficient development of the ground-water resources of the State are the responsibility of the New Jersey Department of Environmental Protection. Laws have been enacted and updated by the State legislature to manage water allocation and to control the disposal of hazardous wastes. Present resource management is guided by the New Jersey Water-Supply Master Plan of 1981. Funding for management activities is partially derived from the sale of state-approved bonds.Effective planning and regional management require accurate and up-to-date hydrologic information and analyses. The U.S. Geological Survey, in cooperation with the New Jersey Geological Survey, is conducting three intensive ground-water studies involving the collection and interpretation of hydrologic data to meet the urgent water-management needs of New Jersey. These studies are part of a long-term cooperative program and are funded through the Water-Supply Bond Act of 1981. They began in 1983 and are scheduled to be completed in 1988.The project areas are situated in the New Jersey part of the Atlantic Coastal Plain in and near Atlantic City, Camden, and South River. They range in size from 400 to 1,200 mil (1,040 to 3,120 km2). The studies are designed to define the geology, hydrology, and geochemistry of the local ground-water systems. The results of these studies will enable the State to address more effectively major problems in these areas such as declining water levels, overpumping, saltwater intrusion, and ground-water contamination resulting from the improper disposal of hazardous wastes.Specific objectives of these studies by the U.S. Geological Survey are to (1) develop an accurate and up-to-date hydrogeologic data base, (2) design and implement a data-collection program and establish a computerized information management system, (3) refine the conceptualization of the ground-water flow system, and (4) define the geochemistry of the aquifer system by conducting a water-quality appraisal. The objectives are accomplished by standard hydrogeologic methods. Information concerning hydrogeologic framework, ground-water levels, water use, hydraulic characteristics, and water quality in the study areas is compiled from all available sources. Additional data needed are collected through well inventories, surface geophysical surveys, water-quality samplings, water-level measurements, and a well-drilling program.Interpretation of the flow system is based on the use of standard analytical techniques and digital flow modeling. Calibrated flow models will provide ground-water managers with a mechanism to develop and test regional water-supply strategies.Definition of the geochemistry of the aquifer system is accomplished through a variety of methods which depend on the problems and available data in the particular study area. The approach includes statistical analysis of water-quality data, reaction-path modeling, and determination of the movement of chemical constituents using analytical and numerical modeling techniques.A combined staff of 25 to 30 professionals and technicians from the New Jersey District office of the U.S. Geological Survey is committed to the three studies. The staff has specialists in geohydrology, numerical modeling, geochemistry, geophysics, and computer science. The findings of these studies will be published in data reports, interpretive reports, instructional manuals and journal articles.