Sample records for groundwater treatment unit

  1. Basewide Groundwater Operable Unit. Groundwater Operable Unit Remedial Investigation/Feasibility Study Report. Volume 3

    DTIC Science & Technology

    1994-06-01

    technologies were organized into five categories: * In Situ Biological Treatment * In Situ Physical/Chemical Treatment * Ex Situ Biological Groundwater...Technology FIGURE 11-3 PRIMARY SCORING SUMMARY EX SITU BIOLOGICAL GROUNDWATER TREATMENT TECHNOLOGIES GROUNDWATER OPERABLE UNIT RIIFS McCLELLAN AIR FORCE... Biological Treatment CometabolicAnaerobic Anaerobic/Aerobic In Situ Physical/Chemical Treatment Sparging/Soil Vapor Extraction Ex Situ Biological

  2. California Groundwater Units

    USGS Publications Warehouse

    Johnson, Tyler D.; Belitz, Kenneth

    2014-01-01

    The California Groundwater Units dataset classifies and delineates areas within the State of California into one of three groundwater-based polygon units: (1) those areas previously defined as alluvial groundwater basins or subbasins, (2) highland areas that are adjacent to and topographically upgradient of groundwater basins, and (3) highland areas not associated with a groundwater basin, only a hydrogeologic province. In total, 938 Groundwater Units are represented. The Groundwater Units dataset relates existing groundwater basins with their newly delineated highland areas which can be used in subsequent hydrologic studies. The methods used to delineate groundwater-basin-associated highland areas are similar to those used to delineate a contributing area (such as for a lake or water body); the difference is that highland areas are constrained to the immediately surrounding upslope (upstream) area. Upslope basins have their own delineated highland. A geoprocessing tool was created to facilitate delineation of highland areas for groundwater basins and subbasins and is available for download.

  3. Brackish groundwater in the United States

    USGS Publications Warehouse

    Stanton, Jennifer S.; Anning, David W.; Brown, Craig J.; Moore, Richard B.; McGuire, Virginia L.; Qi, Sharon L.; Harris, Alta C.; Dennehy, Kevin F.; McMahon, Peter B.; Degnan, James R.; Böhlke, John Karl

    2017-04-05

    For some parts of the Nation, large-scale development of groundwater has caused decreases in the amount of groundwater that is present in aquifer storage and that discharges to surface-water bodies. Water supply in some areas, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought is affecting large parts of the United States. Future water demand is projected to heighten the current stress on groundwater resources. This combination of factors has led to concerns about the availability of freshwater to meet domestic, agricultural, industrial, mining, and environmental needs. To ensure the water security of the Nation, currently [2016] untapped water sources may need to be developed.Brackish groundwater is an unconventional water source that may offer a partial solution to current and future water demands. In support of the national census of water resources, the U.S. Geological Survey completed the national brackish groundwater assessment to better understand the occurrence and characteristics of brackish groundwater in the United States as a potential water resource. Analyses completed as part of this assessment relied on previously collected data from multiple sources; no new data were collected. Compiled data included readily available information about groundwater chemistry, horizontal and vertical extents and hydrogeologic characteristics of principal aquifers (regionally extensive aquifers or aquifer systems that have the potential to be used as a source of potable water), and groundwater use. Although these data were obtained from a wide variety of sources, the compiled data are biased toward shallow and fresh groundwater resources; data representing groundwater that is at great depths and is saline were not as readily available.One of the most important contributions of this assessment is the creation of a database containing chemical characteristics and aquifer information for the known areas with brackish groundwater

  4. Situ treatment of contaminated groundwater

    DOEpatents

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  5. Groundwater depletion in the United States (1900−2008)

    USGS Publications Warehouse

    Konikow, Leonard F.

    2013-01-01

    A natural consequence of groundwater withdrawals is the removal of water from subsurface storage, but the overall rates and magnitude of groundwater depletion in the United States are not well characterized. This study evaluates long-term cumulative depletion volumes in 40 separate aquifers or areas and one land use category in the United States, bringing together information from the literature and from new analyses. Depletion is directly calculated using calibrated groundwater models, analytical approaches, or volumetric budget analyses for multiple aquifer systems. Estimated groundwater depletion in the United States during 1900–2008 totals approximately 1,000 cubic kilometers (km3). Furthermore, the rate of groundwater depletion has increased markedly since about 1950, with maximum rates occurring during the most recent period (2000–2008) when the depletion rate averaged almost 25 km3 per year (compared to 9.2 km3 per year averaged over the 1900–2008 timeframe).

  6. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linkingmore » them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.« less

  7. Oxidative particle mixtures for groundwater treatment

    DOEpatents

    Siegrist, Robert L.; Murdoch, Lawrence C.

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  8. Groundwater Flow Through a Constructed Treatment Wetland

    DTIC Science & Technology

    2003-03-01

    the treatment wetland is to biodegrade perchloroethylene, which is present in the groundwater as a contaminant. Contaminated water enters the...characterizing groundwater flow through a constructed treatment wetland, one can visualize the flow paths of water through various types of soil. With...flowing groundwater and are now appearing in drinking water wells. Since contamination originated from government practices at many of these sites

  9. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs[sup 137]). The Tank 16more » bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.« less

  10. Preliminary remedial action objectives for the Tank 16 groundwater operable unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, W.C. Jr.

    1992-10-28

    Tank 16 is a High Level Radioactive Waste tank in the H-Area Tank Farm on the Savannah River Site that was placed into service in May 1959. A leak was detected in one of the construction weld joints while the tank was being filled. Before jet evacuation of the tank waste was completed, the leak overflowed the annulus pan and an estimated 16 to 700 gallons of waste escaped to the environment (soil and groundwater) over a six hour period contaminating approximately 1,600--70,000 cubic feet of soil with up to 5000 curies of activity (principally Cs{sup 137}). The Tank 16more » bottom is constructed below the groundwater table which resulted in almost immediate contamination of that medium. Low groundwater flow rates, the ion exchange property of adjacent soils, and the distance to the nearest surface water bodies (1,500 to 8,000 feet) indicates that surface water and sediment outcrop of contaminates may be expected between 44 and 530 years (Poe et al., 1974). Remedial action objectives consist of medium-specific and operable unit specific goals for protecting human health and the environment. These objectives are specific and do not limit the range of alternatives that may be developed.A range of remedial technologies, which provides for treatment, containment, and removal requirements of contaminated media remaining at the Tank 16 groundwater operable unit, is identified and developed for each general response action.« less

  11. Ground-water recharge in humid areas of the United States: A summary of Ground-Water Resources Program studies, 2003-2006

    USGS Publications Warehouse

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  12. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    PubMed

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Chlorinated solvents in groundwater of the United States

    USGS Publications Warehouse

    Moran, M.J.; Zogorski, J.S.; Squillace, P.J.

    2007-01-01

    Four chlorinated solvents-methylene chloride, perchloroethene (PCE), 1,1,1-trichloroethane, and trichloroethene (TCE)-were analyzed in samples of groundwater taken throughout the conterminous United States by the U.S. Geological Survey. The samples were collected between 1985 and 2002 from more than 5,000 wells. Of 55 volatile organic compounds (VOCs) analyzed in groundwater samples, solvents were among the most frequently detected. Mixtures of solvents in groundwater were common and may be the result of common usage of solvents or degradation of one solvent to another. Relative to other VOCs with Maximum Contaminant Levels (MCLs), PCE and TCE ranked high in terms of the frequencies of concentrations greater than or near MCLs. The probability of occurrence of solvents in groundwater was associated with dissolved oxygen content of groundwater, sources such as urban land use and population density, and hydraulic properties of the aquifer. The results reinforce the importance of understanding the redox conditions of aquifers and the hydraulic properties of the saturated and vadose zones in determining the intrinsic susceptibility of groundwater to contamination by solvents. The results also reinforce the importance of controlling sources of solvents to groundwater. ?? 2007 American Chemical Society.

  14. Chlorine-36 in groundwater of the United States: Empirical data

    USGS Publications Warehouse

    Davis, S.N.; Moysey, S.; Cecil, L.D.; Zreda, M.

    2003-01-01

    Natural production of the radionuclide chlorine-36 (36Cl) has provided a valuable tracer for groundwater studies. The nuclear industry, especially the testing of thermonuclear weapons, has also produced large amounts of 36Cl that can be detected in many samples of groundwater. In order to be most useful in hydrologic studies, the natural production prior to 1952 should be distinguished from more recent artificial sources. The object of this study was to reconstruct the probable preanthropogenic levels of 36Cl in groundwater in the United States. Although significant local variations exist, they are superimposed on a broad regional pattern of 36Cl/Cl ratios in the United States. Owing to the influence of atmospherically transported ocean salt, natural ratios of 36Cl/total Cl are lowest near the coast and increase to a maximum in the central Rocky Mountains of the United States.

  15. Agricultural Groundwater Demands in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-12-01

    In the conterminous United States (CONUS), over 40% of water consumed for irrigation, livestock and domestic water is sourced from groundwater. The late 20th century and 21st century saw an expansion in irrigated agriculture across the CONUS that was accompanied by increased pumping of groundwater. Groundwater is typically used to mitigate impacts of drought on surface water supplies enabling water demands to be met as well as to augment sparse surface water resources in arid regions or where surface water availability is highly variable temporally and/or spatially. A Demand Sensitive Drought Index (DSDI) is used to examine the impacts of agricultural water needs on groundwater in the CONUS. The DSDI accounts for agricultural water deficits driven by low precipitation, high agricultural water demand, or a combination of both. Changes in groundwater levels relative to agricultural water deficits are characterized relative to precipitation during the growing season and winter precipitation. In several key irrigated agricultural regions in the CONUS, long-term trends in groundwater levels appear to reflect prolonged periods of surface water deficits resulting from land use and associated unsustainable water demands. These areas are subsequent unable to recover from persistent states of agricultural drought. Conversely, reductions in agricultural water demands for crops do not necessarily lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors. Calls to establish or reform groundwater policies have recently been made in an effort to achieve holistic groundwater management strategies that consider the human demands on both surface water and groundwater. There is a need for relevant groundwater policies to ensure that water demands are adequately managed across sectors without unsustainably depleting groundwater resources and to ensure efficient economic activity.

  16. Nitrate in groundwater of the United States, 1991-2003

    USGS Publications Warehouse

    Burow, Karen R.; Nolan, Bernard T.; Rupert, Michael G.; Dubrovsky, Neil M.

    2010-01-01

    An assessment of nitrate concentrations in groundwater in the United States indicates that concentrations are highest in shallow, oxic groundwater beneath areas with high N inputs. During 1991-2003, 5101 wells were sampled in 51 study areas throughout the U.S. as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program. The well networks reflect the existing used resource represented by domestic wells in major aquifers (major aquifer studies), and recently recharged groundwater beneath dominant land-surface activities (land-use studies). Nitrate concentrations were highest in shallow groundwater beneath agricultural land use in areas with well-drained soils and oxic geochemical conditions. Nitrate concentrations were lowest in deep groundwater where groundwater is reduced, or where groundwater is older and hence concentrations reflect historically low N application rates. Classification and regression tree analysis was used to identify the relative importance of N inputs, biogeochemical processes, and physical aquifer properties in explaining nitrate concentrations in groundwater. Factors ranked by reduction in sum of squares indicate that dissolved iron concentrations explained most of the variation in groundwater nitrate concentration, followed by manganese, calcium, farm N fertilizer inputs, percent well-drained soils, and dissolved oxygen. Overall, nitrate concentrations in groundwater are most significantly affected by redox conditions, followed by nonpoint-source N inputs. Other water-quality indicators and physical variables had a secondary influence on nitrate concentrations.

  17. Progress Toward Cleanup of Operable Unit 1 Groundwater at the US DOE Mound, Ohio, Site: Success of a Phase-Combined Remedy – 15310

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooten, Gwendolyn; Cato, Rebecca; Looney, Brian

    2015-03-01

    Operable Unit 1 (OU-1) soil and groundwater have been affected by volatile organic compounds (VOC) Present groundwater remedy is collection, treatment, and disposal (pump and treat [P&T]) Several combinations of technologies were used to address soil and groundwater contamination Monitored natural attenuation (MNA) is a viable alternative Majority of source term has been excavated VOC concentrations in groundwater have decreased Attenuation mechanisms have been observed in the subsurface at OU-1

  18. Long-term groundwater depletion in the United States

    USGS Publications Warehouse

    Konikow, Leonard F.

    2015-01-01

    The volume of groundwater stored in the subsurface in the United States decreased by almost 1000 km3 during 1900–2008. The aquifer systems with the three largest volumes of storage depletion include the High Plains aquifer, the Mississippi Embayment section of the Gulf Coastal Plain aquifer system, and the Central Valley of California. Depletion rates accelerated during 1945–1960, averaging 13.6 km3/year during the last half of the century, and after 2000 increased again to about 24 km3/year. Depletion intensity is a new parameter, introduced here, to provide a more consistent basis for comparing storage depletion problems among various aquifers by factoring in time and areal extent of the aquifer. During 2001–2008, the Central Valley of California had the largest depletion intensity. Groundwater depletion in the United States can explain 1.4% of observed sea-level rise during the 108-year study period and 2.1% during 2001–2008. Groundwater depletion must be confronted on local and regional scales to help reduce demand (primarily in irrigated agriculture) and/or increase supply.

  19. Potential corrosivity of untreated groundwater in the United States

    USGS Publications Warehouse

    Belitz, Kenneth; Jurgens, Bryant C.; Johnson, Tyler D.

    2016-07-12

    Corrosive groundwater, if untreated, can dissolve lead and other metals from pipes and other components in water distribution systems. Two indicators of potential corrosivity—the Langelier Saturation Index (LSI) and the Potential to Promote Galvanic Corrosion (PPGC)—were used to identify which areas in the United States might be more susceptible to elevated concentrations of metals in household drinking water and which areas might be less susceptible. On the basis of the LSI, about one-third of the samples collected from about 21,000 groundwater sites are classified as potentially corrosive. On the basis of the PPGC, about two-thirds of the samples collected from about 27,000 groundwater sites are classified as moderate PPGC, and about one-tenth as high PPGC. Potentially corrosive groundwater occurs in all 50 states and the District of Columbia.National maps have been prepared to identify the occurrence of potentially corrosive groundwater in the 50 states and the District of Columbia. Eleven states and the District of Columbia were classified as having a very high prevalence of potentially corrosive groundwater, 14 states as having a high prevalence of potentially corrosive groundwater, 19 states as having a moderate prevalence of potentially corrosive groundwater, and 6 states as having a low prevalence of potentially corrosive groundwater. These findings have the greatest implication for people dependent on untreated groundwater for drinking water, such as the 44 million people that are self-supplied and depend on domestic wells or springs for their water supply.

  20. Ground-water data collected in the Missouri River Basin units in Kansas during 1948

    USGS Publications Warehouse

    Berry, Delmar W.

    1950-01-01

    Ground-water studies in the Missouri River Basin were begun by the U.S. Geological Survey during the fall of 1945 as a part of the program for development of the resources of the basin by the U.S. Bureau of Reclamation and other Federal agencies. The studies of the ground-water resources in the part of Kansas that lies within the basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the Federal Geological Survey and the Kansas State Geological Survey with the cooperation of the Division of Sanitation of the Kansas State Board of health and the Division of Water Resources of the Kansas State Board of Agriculture.Areas in which ground-water data have been collected under the Missouri Basin program include the Almena Unit in Norton and Phillips Counties; the Bostwick Unit in Jewell, Republic, and Cloud Counties; the Cedar Bluff Unit in Ellis and Trego Counties; the Glen Elder Unit in Mitchell County; the Kanopolis Unit in McPherson and Saline Counties; the Kirwin Unit in Phillips, Smith, and Osborne Counties; the St. Francis Unit in Cheyenne County; the Webster Unit in Osborne County; and the Wilson Unit in Lincoln County.Most of the ground-water data presented in this report were collected during 1948. Most of the data collected in these areas prior to the end of 1947 were presented in a report mimeographed in September 1948. This report and the previous report are the first two of a series of annual reports on ground-water studies in the Missouri Basin units in Kansas. These reports are a means of more promptly releasing for administrative use the data collected each year. Data for a given area that are included in the annual reports will be assembled later in a report on the geology and hydrology of that area.

  1. Potassium ferrate treatment of RFETS` contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe {sup +6}) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutionsmore » where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern.« less

  2. Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

    USGS Publications Warehouse

    Gross, Eliza L.

    2017-05-11

    Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont

  3. Ground-water data collected in the Missouri River Basin units in Kansas during 1949

    USGS Publications Warehouse

    Berry, Delmar W.

    1950-01-01

    Ground-water studies in the Missouri River Basin were begun by the United States Geological Survey during the fall of 1945 as a part of the program for development of the resources of the basin by the U.S. Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the Basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the Federal Geological Survey and the State Geological Survey of Kansas with the cooperation of the Division of Sanitation of the Kansas State Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture. Areas in which ground-water data have been collected under the Missouri Basin program include the Almena Unit in Norton and Phillips Counties; the Bostwick Unit in Jewell, Republic, and Cloud Counties; the Cedar Bluff Unit in Ellis, Rush, and Trego Counties; the Glen Elder Unit in Mitchell County; the Webster Unit in Osborne County; and the Wilson Unit in Lincoln County. Most of the ground-water data presented in this report were collected during 1949. Most of the data collected in these areas prior to the end of 1947 were presented in a report that was mimeographed in September 1948 and most of the data collected during 1948 were presented in a report that was mimeographed in November 1949. This report is the third of a series of annual reports on ground-water data collected in the Missouri Basin units in Kansas. These annual reports are a means of more promptly releasing for administrative use the data collected each year. Data that are included in the annual reports for a given area will be assembled later in a report on the geology and hydrology of that area. An index of the data collected and presented in the 1947, 1948, and 1949 reports is given in table 1.

  4. Virtual groundwater transfers from overexploited aquifers in the United States.

    PubMed

    Marston, Landon; Konar, Megan; Cai, Ximing; Troy, Tara J

    2015-07-14

    The High Plains, Mississippi Embayment, and Central Valley aquifer systems within the United States are currently being overexploited for irrigation water supplies. The unsustainable use of groundwater resources in all three aquifer systems intensified from 2000 to 2008, making it imperative that we understand the consumptive processes and forces of demand that are driving their depletion. To this end, we quantify and track agricultural virtual groundwater transfers from these overexploited aquifer systems to their final destination. Specifically, we determine which US metropolitan areas, US states, and international export destinations are currently the largest consumers of these critical aquifers. We draw upon US government data on agricultural production, irrigation, and domestic food flows, as well as modeled estimates of agricultural virtual water contents to quantify domestic transfers. Additionally, we use US port-level trade data to trace international exports from these aquifers. In 2007, virtual groundwater transfers from the High Plains, Mississippi Embayment, and Central Valley aquifer systems totaled 17.93 km(3), 9.18 km(3), and 6.81 km(3), respectively, which is comparable to the capacity of Lake Mead (35.7 km(3)), the largest surface reservoir in the United States. The vast majority (91%) of virtual groundwater transfers remains within the United States. Importantly, the cereals produced by these overexploited aquifers are critical to US food security (contributing 18.5% to domestic cereal supply). Notably, Japan relies upon cereals produced by these overexploited aquifers for 9.2% of its domestic cereal supply. These results highlight the need to understand the teleconnections between distant food demands and local agricultural water use.

  5. Ground-water data collected in the Missouri River basin units in Kansas during 1950

    USGS Publications Warehouse

    Berry, Delmar W.

    1951-01-01

    Ground-water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the basin have been coordinated with the cooperative program of ground-water studies already being carried on in Kansas by the United States Geological Survey, the State Geological Survey of Kansas,the Division of Sanitation of the Kansas State Board of Health, and the Division of Water Resources of the Kansas State Board of Agriculture.

  6. Virtual groundwater transfers from overexploited aquifers in the United States

    PubMed Central

    Marston, Landon; Konar, Megan; Cai, Ximing; Troy, Tara J.

    2015-01-01

    The High Plains, Mississippi Embayment, and Central Valley aquifer systems within the United States are currently being overexploited for irrigation water supplies. The unsustainable use of groundwater resources in all three aquifer systems intensified from 2000 to 2008, making it imperative that we understand the consumptive processes and forces of demand that are driving their depletion. To this end, we quantify and track agricultural virtual groundwater transfers from these overexploited aquifer systems to their final destination. Specifically, we determine which US metropolitan areas, US states, and international export destinations are currently the largest consumers of these critical aquifers. We draw upon US government data on agricultural production, irrigation, and domestic food flows, as well as modeled estimates of agricultural virtual water contents to quantify domestic transfers. Additionally, we use US port-level trade data to trace international exports from these aquifers. In 2007, virtual groundwater transfers from the High Plains, Mississippi Embayment, and Central Valley aquifer systems totaled 17.93 km3, 9.18 km3, and 6.81 km3, respectively, which is comparable to the capacity of Lake Mead (35.7 km3), the largest surface reservoir in the United States. The vast majority (91%) of virtual groundwater transfers remains within the United States. Importantly, the cereals produced by these overexploited aquifers are critical to US food security (contributing 18.5% to domestic cereal supply). Notably, Japan relies upon cereals produced by these overexploited aquifers for 9.2% of its domestic cereal supply. These results highlight the need to understand the teleconnections between distant food demands and local agricultural water use. PMID:26124137

  7. Simplified Method for Groundwater Treatment Using Dilution and Ceramic Filter

    NASA Astrophysics Data System (ADS)

    Musa, S.; Ariff, N. A.; Kadir, M. N. Abdul; Denan, F.

    2016-07-01

    Groundwater is one of the natural resources that is not susceptible to pollutants. However, increasing activities of municipal, industrial, agricultural or extreme land use activities have resulted in groundwater contamination as occured at the Research Centre for Soft Soil Malaysia (RECESS), Universiti Tun Hussein Onn Malaysia (UTHM). Thus, aims of this study is to treat groundwater by using rainwater and simple ceramic filter as a treatment agent. The treatment uses rain water dilution, ceramic filters and combined method of dilute and filtering as an alternate treatment which are simple and more practical compared to modern or chemical methods. The water went through dilution treatment processes able to get rid of 57% reduction compared to initial condition. Meanwhile, the water that passes through the filtering process successfully get rid of as much as 86% groundwater parameters where only chloride does not pass the standard. Favorable results for the combination methods of dilution and filtration methods that can succesfully eliminate 100% parameters that donot pass the standards of the Ministry of Health and the Interim National Drinking Water Quality Standard such as those found in groundwater in RECESS, UTHM especially sulfate and chloride. As a result, it allows the raw water that will use clean drinking water and safe. It also proves that the method used in this study is very effective in improving the quality of groundwater.

  8. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    DTIC Science & Technology

    2002-10-01

    Contaminant of Concern by Mediaa Media Number of Sites Groundwater 380 Soil 372 Sediment 154 Surface Water 86 Debris 77 Sludge 45 Solid Waste 30 Leachate ...issue paper does not address three technologies that have been used to treat water containing arsenic: • Biological treatment • Phytoremediation ...arsenic in water, and no aboveground treatments of groundwater conducted at full scale were found. Phytoremediation and electrokinetics are not

  9. Monticello Mill Tailings Site, Operable Unit lll, Annual Groundwater Report, May 2015 Through April 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Jason; Smith, Fred

    This report provides the annual analysis of water quality restoration progress, cumulative through April 2016, for Operable Unit (OU) III, surface water and groundwater, of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Monticello Mill Tailings Site (MMTS). The MMTS is a Comprehensive Environmental Response, Compensation, and Liability Act National Priorities List site located in and near the city of Monticello, San Juan County, Utah. MMTS comprises the 110-acre site of a former uranium- and vanadium-ore-processing mill (mill site) and 1700 acres of surrounding private and municipal property. Milling operations generated 2.5 million cubic yards of wastemore » (tailings) from 1942 to 1960. The tailings were impounded at four locations on the mill site. Inorganic constituents in the tailings drained from the impoundments to contaminate local surface water (Montezuma Creek) and groundwater in the underlying alluvial aquifer. Mill tailings dispersed by wind and water also contaminated properties surrounding and downstream of the mill site. Remedial actions to remove and isolate radiologically contaminated soil, sediment, and debris from the former mill site, Operable Unit I (OU I), and surrounding properties (OU II) were completed in 1999 with the encapsulation of the wastes in an engineered repository located on DOE property 1 mile south of the former mill site. This effectively removed the primary source of groundwater contamination; however, contamination of groundwater and surface water remains within OU III at levels that exceed water quality protection standards. Uranium is the primary contaminant of concern (COC). LM implemented monitored natural attenuation with institutional controls as the OU III remedy in 2004. Because groundwater restoration proceeded more slowly than expected and did not meet performance criteria established in the OU III Record of Decision (June 2004), LM implemented a contingency action in 2009 by an Explanation

  10. Ground-water data collected in the Missouri River Basin units in Kansas during 1953

    USGS Publications Warehouse

    Mason, B.J.

    1954-01-01

    Ground-water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of Reclamation and other Federal Agencies. The studies of the ground-water resources in the part of Kansas that lies within the Missouri River basin have been coordinated with the cooperative program of ground water studies which were already being made in Kansas by the U. S. Geological Survey, the State Geological Survey of Kansas, the Division of Sanitation of the Kansas State Board of Health, and the Division of Water Resources of the Kansas State Board of Agriculture.Areas in which ground-water data have been and are being collected are the following: Almena unit in Norton and Phillips Counties; Bostwick unit in Jewell, Republic, and Cloud Counties; Cedar Bluff unit in Ellis, Rush, and Trego Counties; Glen Elder unit in Mitchell County; Kanopolis unit in Ellsworth, McPherson, and Saline Counties; Kirwin unit in Phillips, Smiths and Osborne Counties; St. Francis unit in Cheyenne County; Webster unit in Osborne County; and Wilson unit in Lincoln County. (See fig. 1.) Data relating to the Ladder Creek project in Greeley, Gove, Lane, Logan, Scott, Wallace, and Wichita Counties will be published later in a separate report.

  11. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Ground water has been the only source of potable water supply for residential, industrial, and agricultural users in the Beaumont and Banning storage units of the San Gorgonio Pass area, Riverside County, California. Ground-water levels in the Beaumont area have declined as much as 100 feet between the early 1920s and early 2000s, and numerous natural springs have stopped flowing. In 1961, the San Gorgonio Pass Water Agency (SGPWA) entered into a contract with the California State Department of Water Resources to receive 17,300 acre-feet per year of water to be delivered by the California State Water Project (SWP) to supplement natural recharge. Currently (2005), a pipeline is delivering SWP water into the area, and the SGPWA is artificially recharging the ground-water system using recharge ponds located along Little San Gorgonio Creek in Cherry Valley with the SWP water. In addition to artificial recharge, SGPWA is considering the direct delivery of SWP water for the irrigation of local golf courses and for agricultural supply in lieu of ground-water pumpage. To better understand the potential hydrologic effects of different water-management alternatives on ground-water levels and movement in the Beaumont and Banning storage units, existing geohydrologic and geochemical data were compiled, new data from a basin-wide ground-water level and water-quality monitoring network were collected, monitoring wells were installed near the Little San Gorgonio Creek recharge ponds, geohydrologic and geochemical analyses were completed, and a ground-water flow simulation model was developed. The San Gorgonio Pass area was divided into several storage units on the basis of mapped or inferred faults. This study addresses primarily the Beaumont and Banning storage units. The geologic units in the study area were generalized into crystalline basement rocks and sedimentary deposits. The younger sedimentary deposits and the surficial deposits are the main water-bearing deposits in the

  12. Hydrogeologic Effects of In-Situ Groundwater Treatment Using Biodegradation

    DTIC Science & Technology

    1987-06-15

    development of groundwater divides, 2 * removal of contaminated water through pumping foillowed by above ground treatment, Excavating the contaminant source... water infiltration. During in-situ bioreclama- tion the pol:uted extracted groundwater is often treated, and after addition of nutrients and oxygen...1982, "Degrada- tion of phenolic contaminants in groundwater by aerobic bacteria: St. Louis Park, Minnesota", Ground Water , Vol.20, No.6, pp.703-710

  13. Groundwater-quality data for the Sierra Nevada study unit, 2008: Results from the California GAMA program

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Munday, Cathy M.; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the approximately 25,500-square-mile Sierra Nevada study unit was investigated in June through October 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Sierra Nevada study was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in the study unit, and to facilitate statistically consistent comparisons of groundwater quality throughout California. The primary aquifer systems (hereinafter, primary aquifers) are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for public and community drinking-water supplies. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. In the Sierra Nevada study unit, groundwater samples were collected from 84 wells (and springs) in Lassen, Plumas, Butte, Sierra, Yuba, Nevada, Placer, El Dorado, Amador, Alpine, Calaveras, Tuolumne, Madera, Mariposa, Fresno, Inyo, Tulare, and Kern Counties. The wells were selected on two overlapping networks by using a spatially-distributed, randomized, grid-based approach. The primary grid-well network consisted of 30 wells, one well per grid cell in the study unit, and was designed to provide statistical representation of groundwater quality throughout the entire study unit. The lithologic grid-well network is a secondary grid that consisted of the wells in the primary grid-well network plus 53 additional wells and was designed to provide statistical representation of groundwater quality in each of the four major lithologic units in the Sierra

  14. Groundwater-Quality Data in the South Coast Range-Coastal Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the approximately 766-square-mile South Coast Range-Coastal (SCRC) study unit was investigated from May to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The SCRC study unit was the 25th study unit to be sampled as part of the GAMA Priority Basins Project. The SCRC study unit was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the SCRC study unit, groundwater samples were collected from 70 wells in two study areas (Basins and Uplands) in Santa Barbara and San Luis Obispo Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 15 wells were selected to aid in evaluation of specific water-quality issues (understanding wells). In addition to

  15. Technology Evaluation Report: Biological Treatment of Wood Preserving Site Groundwater by Biotrol, Inc

    EPA Science Inventory

    Biological Treatment of Wood Preserving SITE Groundwater by Biotrol, Inc. BioTrol's pilot-scale, fixed-film biological treatment system was evaluated for its effectiveness at removing pentachlorophenol from groundwater. The system employs indigenous microorganisms amended wit...

  16. Phosphate interference during in situ treatment for arsenic in groundwater.

    PubMed

    Brunsting, Joseph H; McBean, Edward A

    2014-01-01

    Contamination of groundwater by arsenic is a problem in many areas of the world, particularly in West Bengal (India) and Bangladesh, where reducing conditions in groundwater are the cause. In situ treatment is a novel approach wherein, by introduction of dissolved oxygen (DO), advantages over other treatment methods can be achieved through simplicity, not using chemicals, and not requiring disposal of arsenic-rich wastes. A lab-scale test of in situ treatment by air sparging, using a solution with approximately 5.3 mg L(-1) ferrous iron and 200 μg L(-1) arsenate, showed removal of arsenate in the range of 59%. A significant obstacle exists, however, due to the interference of phosphate since phosphate competes for adsorption sites on oxidized iron precipitates. A lab-scale test including 0.5 mg L(-1) phosphate showed negligible removal of arsenate. In situ treatment by air sparging demonstrates considerable promise for removal of arsenic from groundwater where iron is present in considerable quantities and phosphates are low.

  17. Modelling of sequential groundwater treatment with zero valent iron and granular activated carbon.

    PubMed

    Bayer, Peter; Finkel, Michael

    2005-06-01

    Multiple contaminant mixtures in groundwater may not efficiently be treated by a single technology if contaminants possess rather different properties with respect to sorptivity, solubility, and degradation potential. An obvious choice is to use sequenced units of the generally accepted treatment materials zero valent iron (ZVI) and granular activated carbon (GAC). However, as the results of this modelling study suggest, the required dimensions of both reactor units may strongly differ from those expected on the grounds of a contaminant-specific design. This is revealed by performing an analysis for a broad spectrum of design alternatives through numerical experiments for selected patterns of contaminant mixtures consisting of monochlorobenzene, tetrachloroethylene, trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), and vinyl chloride (VC). It is shown that efficient treatment can be achieved only if competitive sorption effects in the GAC unit as well as the formation of intermediate products in the ZVI unit are carefully taken into account. Cost-optimal designs turned out to vary extremely depending on the prevailing conditions concerning contaminant concentrations, branching ratios, and unit costs of both reactor materials. Where VC is the critical contaminant, due to high initial concentration or extensive production as an intermediate, two options are cost-effective: an oversized ZVI unit with an oversized GAC unit or a pure GAC reactor.

  18. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  19. Groundwater-quality data in the Klamath Mountains study unit, 2010: results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the 8,806-square-mile Klamath Mountains (KLAM) study unit was investigated by the U.S. Geological Survey (USGS) from October to December 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The KLAM study unit was the thirty-third study unit to be sampled as part of the GAMA-PBP. The GAMA Klamath Mountains study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined by the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the KLAM study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallower groundwater may be more vulnerable to surficial contamination. In the KLAM study unit, groundwater samples were collected from sites in Del Norte, Siskiyou, Humboldt, Trinity, Tehama, and Shasta Counties, California. Of the 39 sites sampled, 38 were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the primary aquifer system in the study unit (grid sites), and the remaining site was non-randomized (understanding site). The groundwater samples were analyzed for basic field parameters, organic constituents (volatile organic compounds [VOCs] and pesticides and pesticide degradates), inorganic constituents (trace elements, nutrients, major and minor ions, total dissolved solids [TDS]), radon-222, gross alpha and gross beta

  20. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  1. Ground-water data collected in the Missouri River Basin units in Kansas during 1954

    USGS Publications Warehouse

    Mason, B.J.; Loye, Linda

    1955-01-01

    Ground water studies in the Missouri River basin were begun by the United States Geological Survey during the fall of 1945 as a part of a program for the development of the resources of the basin by the United States Bureau of  Reclamation and other federal agencies. The studies of ground-water resources in the part of Kansas that lies within the Missouri River basin have been coordinated with the cooperative program of ground-water studies which were already being made in Kansas by the U.S Geological Survey, the Kansas State Geological Survey, the Division of Sanitation of the Kansas Board of Health and the Division of Water Resources of the Kansas State Board of Agriculture.  

  2. Trace elements and radon in groundwater across the United States, 1992-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.

    2011-01-01

    Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had

  3. In situ treatment of arsenic-contaminated groundwater by air sparging.

    PubMed

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    EPA Pesticide Factsheets

    This issue paper, developed for EPA's Engineering Forum, identifies and summarizes experiences with proven aboveground treatment alternatives for arsenic in groundwater, and provides information on their relative effectiveness and cost.

  5. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  6. Groundwater-quality data in the Santa Barbara study unit, 2011: results from the California GAMA Program

    USGS Publications Warehouse

    Davis, Tracy A.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the 48-square-mile Santa Barbara study unit was investigated by the U.S. Geological Survey (USGS) from January to February 2011, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The Santa Barbara study unit was the thirty-fourth study unit to be sampled as part of the GAMA-PBP. The GAMA Santa Barbara study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined as those parts of the aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the Santa Barbara study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. In the Santa Barbara study unit located in Santa Barbara and Ventura Counties, groundwater samples were collected from 24 wells. Eighteen of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and six wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds); constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]); naturally occurring inorganic constituents (trace

  7. Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin

    USGS Publications Warehouse

    Lampe, David C.

    2009-01-01

    The U.S. Geological Survey is assessing groundwater availability in the Lake Michigan Basin. As part of the assessment, a variable-density groundwater-flow model is being developed to simulate the effects of groundwater use on water availability throughout the basin. The hydrogeologic framework for the Lake Michigan Basin model was developed by grouping the bedrock geology of the study area into hydrogeologic units on the basis of the functioning of each unit as an aquifer or confining layer within the basin. Available data were evaluated based on the areal extent of coverage within the study area, and procedures were established to characterize areas with sparse data coverage. Top and bottom altitudes for each hydrogeologic unit were interpolated in a geographic information system for input to the model and compared with existing maps of subsurface formations. Fourteen bedrock hydrogeologic units, making up 17 bedrock model layers, were defined, and they range in age from the Jurassic Period red beds of central Michigan to the Cambrian Period Mount Simon Sandstone. Information on groundwater salinity in the Lake Michigan Basin was compiled to create an input dataset for the variable-density groundwater-flow simulation. Data presented in this report are referred to as 'salinity data' and are reported in terms of total dissolved solids. Salinity data were not available for each hydrogeologic unit. Available datasets were assigned to a hydrogeologic unit, entered into a spatial database, and data quality was visually evaluated. A geographic information system was used to interpolate salinity distributions for each hydrogeologic unit with available data. Hydrogeologic units with no available data either were set equal to neighboring units or were vertically interpolated by use of values from units above and below.

  8. Groundwater availability in the United States: the value of quantitative regional assessments

    USGS Publications Warehouse

    Dennehy, Kevin F.; Reilly, Thomas E.; Cunningham, William L.

    2015-01-01

    The sustainability of water resources is under continued threat from the challenges associated with a growing population, competing demands, and a changing climate. Freshwater scarcity has become a fact in many areas. Much of the United States surface-water supplies are fully apportioned for use; thus, in some areas the only potential alternative freshwater source that can provide needed quantities is groundwater. Although frequently overlooked, groundwater serves as the principal reserve of freshwater in the US and represents much of the potential supply during periods of drought. Some nations have requirements to monitor and characterize the availability of groundwater such as the European Union’s Water Framework Directive (EPCEU 2000). In the US there is no such national requirement. Quantitative regional groundwater availability assessments, however, are essential to document the status and trends of groundwater availability for the US and make informed water-resource decisions possible now and in the future. Barthel (2014) highlighted that the value of regional groundwater assessments goes well beyond just quantifying the resource so that it can be better managed. The tools and techniques required to evaluate these unique regional systems advance the science of hydrogeology and provide enhanced methods that can benefit local-scale groundwater investigations. In addition, a significant, yet under-utilized benefit is the digital spatial and temporal data sets routinely generated as part of these studies. Even though there is no legal or regulatory requirement for regional groundwater assessments in the US, there is a logical basis for their implementation. The purpose of this essay is to articulate the rationale for and reaffirm the value of regional groundwater assessments primarily in the US; however, the arguments hold for all nations. The importance of the data sets and the methods and model development that occur as part of these assessments is stressed

  9. Groundwater Drought and Recovery: a Case Study from the United Kingdom

    NASA Astrophysics Data System (ADS)

    Peach, D.; McKenzie, A. A.; Bloomfield, J.

    2012-12-01

    An understanding of the processes leading to the onset, duration and end of hydrological droughts is necessary to help improve the management of stressed or scarce water resources during such periods. In particular, the role and use of groundwater during episodes of drought is crucially important, since groundwater can provide relatively resilient water supplies during early stages of drought but maybe highly susceptible to relatively persistent or sustained droughts. Nevertheless, groundwater is seldom considered in drought analyses, and compared with other types of hydrological drought there have been few studies to date. The few previous studies of groundwater droughts at catchment- and regional-scale have shown that catchment and aquifer characteristics exert a strong influence on the spatio-temporal development of groundwater droughts as water deficit propagates through the terrestrial water cycle. In this context, the relationships between hydrogeological heterogeneity, catchment engineering infrastructure (storage), and decisions related to water resource management during drought events all shape the evolution and consequences of groundwater droughts. Here we examine the evolution of a recent regionally significant two-year drought across the United Kingdom (UK) and use it to investigate these relationships. We identify the drivers, characterise the development and spatio-temporal extent of the groundwater drought. In particular, we focus on the unusually rapid end and recovery from drought during what would normally be a period of groundwater recession. The UK, and in particular southern England, relies extensively on groundwater for public water supply, agricultural and industrial use, as well as for sustaining river flows that are essential to ecosystem health. In normal years relatively consistent rainfall patterns prevail, recharging aquifers over winter when evapotranspiration is minimal. However, by March 2012 large parts of the southern UK had

  10. An Effect Analysis of Comprehensive Treatment of Groundwater Over-Exploitation in Cheng’an County, Hebei Province, China

    PubMed Central

    Shao, Weiwei; Zhou, Jinjun; Liu, Jiahong; Zhang, Haixing; Wang, Jianhua; Xiang, Chenyao; Yang, Guiyu; Tang, Yun

    2017-01-01

    The comprehensive treatment project of groundwater over-exploitation in Hebei Province has been implemented for more than a year, and the effect of exploitation restriction is in urgent need of evaluation. This paper deals with Cheng’an County of Hebei Province as the research subject. Based on collected hydro-meteorological, socioeconomic, groundwater, and other related data, together with typical regional experimental research, this study generates the effective precipitation–groundwater exploitation (P-W) curve and accompanying research methods, and calculates the quantity of groundwater exploitation restriction. It analyzes the target completion status of groundwater exploitation restriction through water conservancy measures and agricultural practices of the groundwater over-exploitation comprehensive treatment project that was implemented in Cheng’an County in 2014. The paper evaluates the treatment effect of groundwater over-exploitation, as well as provides technical support for the effect evaluation of groundwater exploitation restriction of agricultural irrigation in Cheng’an County and relevant areas. PMID:28054979

  11. An Effect Analysis of Comprehensive Treatment of Groundwater Over-Exploitation in Cheng'an County, Hebei Province, China.

    PubMed

    Shao, Weiwei; Zhou, Jinjun; Liu, Jiahong; Zhang, Haixing; Wang, Jianhua; Xiang, Chenyao; Yang, Guiyu; Tang, Yun

    2017-01-04

    The comprehensive treatment project of groundwater over-exploitation in Hebei Province has been implemented for more than a year, and the effect of exploitation restriction is in urgent need of evaluation. This paper deals with Cheng'an County of Hebei Province as the research subject. Based on collected hydro-meteorological, socioeconomic, groundwater, and other related data, together with typical regional experimental research, this study generates the effective precipitation-groundwater exploitation (P-W) curve and accompanying research methods, and calculates the quantity of groundwater exploitation restriction. It analyzes the target completion status of groundwater exploitation restriction through water conservancy measures and agricultural practices of the groundwater over-exploitation comprehensive treatment project that was implemented in Cheng'an County in 2014. The paper evaluates the treatment effect of groundwater over-exploitation, as well as provides technical support for the effect evaluation of groundwater exploitation restriction of agricultural irrigation in Cheng'an County and relevant areas.

  12. Status of groundwater quality in the San Fernando--San Gabriel study unit, 2005--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.

  13. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    USGS Publications Warehouse

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in

  14. Ground-water recharge in the arid and semiarid southwestern United States

    USGS Publications Warehouse

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge

  15. Groundwater quality in the San Francisco Bay groundwater basins, California

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins of the San Francisco Bay area constitute one of the study units being evaluated.

  16. Treatment of N-Nitrosodimethylamine (NDMA) in Groundwater Using a Fluidized Bed Bioreactor

    DTIC Science & Technology

    2014-01-01

    Nitrosodimethylamine ( NDMA ) in Groundwater Using a Fluidized Bed Bioreactor Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Treatment of N-Nitrosodimethylamine ( NDMA ) in Groundwater Using a Fluidized Bed Bioreactor 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...21 5.6.1 NDMA and DMN

  17. Treatment of Chlorinated Aliphatic Contamination of Groundwater by Horizontal Recirculation Wells and by Constructed Vertical Flow Wetlands

    DTIC Science & Technology

    2002-03-01

    groundwater laden with contaminants. Once the contaminated water is at the surface, it must be treated for contaminant destruction, generally by...treatment walls only work under very specific hydrogeologic conditions (relatively shallow water table, no seasonal fluctuations in groundwater flow...GCWs Elevation Schematic Water Table Contaminated Groundwater Contaminated Groundwater Treated Groundwater Treated Groundwater Reactive Porous Medium

  18. FEASIBILITY STUDY REPORT FOR THE 200-ZP-1 GROUNDWATER OPERABLE UNIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BYRNES ME

    2008-07-18

    The Hanford Site, managed by the U.S. Department of Energy (DOE), encompasses approximately 1,517 km{sup 2} (586 mi{sup 2}) in the Columbia Basin of south-central Washington State. In 1989, the U.S. Environmental Protection Agency (EPA) placed the 100, 200, 300, and 1100 Areas of the Hanford Site on the 40 Code of Federal Regulations (CFR) 300, 'National Oil and Hazardous Substances Pollution Contingency Plan' National Contingency Plan [NCPD], Appendix B, 'National Priorities List' (NPL), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The 200 Areas NPL sites consist of the 200 West and 200 Eastmore » Areas (Figure 1-1). The 200 Areas contain waste management facilities, inactive irradiated fuel reprocessing facilities, and the 200 North Area (formerly used for interim storage and staging of irradiated fuel). Several waste sites in the 600 Area, located near the 200 Areas, also are included in the 200 Areas NPL site. The 200 Areas NPL site is in a region referred to as the 'Central Plateau' and consists of approximately 700 waste sites, excluding sites assigned to the tank farm waste management areas (WMAs). The 200-ZP-1 Groundwater Operable Unit (OU) consists of the groundwater located under the northern portion of the 200 West Area. Waste sources that contributed to the 200-ZP-1 OU included cribs and trenches that received liquid and/or solid waste in the past from the Z Plant and T Plant aggregate areas, WMA-T, WMA-TX/TY, and the State-Approved Land Disposal Site (SALDS). This feasibility study (FS) for the 200-ZP-1 Groundwater OU was prepared in accordance with the requirements of CERCLA decision documents. These decision documents are part of the Administrative Record for the selection of remedial actions for each waste site and present the selected remedial actions that are chosen in accordance with CERCLA, as amended by the Superfund Amendments and Reauthorization Act of 1986, and to the extent

  19. Innovative Approaches to Collaborative Groundwater Governance in the United States: Case Studies from Three High-Growth Regions in the Sun Belt.

    PubMed

    Megdal, Sharon B; Gerlak, Andrea K; Huang, Ling-Yee; Delano, Nathaniel; Varady, Robert G; Petersen-Perlman, Jacob D

    2017-05-01

    Groundwater is an increasingly important source of freshwater, especially where surface water resources are fully or over-allocated or becoming less reliable due to climate change. Groundwater reliance has created new challenges for sustainable management. This article examines how regional groundwater users coordinate and collaborate to manage shared groundwater resources, including attention to what drives collaboration. To identify and illustrate these facets, this article examines three geographically diverse cases of groundwater governance and management from the United States Sun Belt: Orange County Water District in southern California; Prescott Active Management Area in north-central Arizona; and the Central Florida Water Initiative in central Florida. These regions have different surface water laws, groundwater allocation and management laws and regulations, demographics, economics, topographies, and climate. These cases were selected because the Sun Belt faces similar pressures on groundwater due to historical and projected population growth and limited availability of usable surface water supplies. Collectively, they demonstrate groundwater governance trends in the United States, and illustrate distinctive features of regional groundwater management strategies. Our research shows how geophysical realities and state-level legislation have enabled and/or stimulated regions to develop groundwater management plans and strategies to address the specific issues associated with their groundwater resources. We find that litigation involvement and avoidance, along with the need to finance projects, are additional drivers of regional collaboration to manage groundwater. This case study underscores the importance of regionally coordinated and sustained efforts to address serious groundwater utilization challenges faced by the regions studied and around the world.

  20. Innovative Approaches to Collaborative Groundwater Governance in the United States: Case Studies from Three High-Growth Regions in the Sun Belt

    NASA Astrophysics Data System (ADS)

    Megdal, Sharon B.; Gerlak, Andrea K.; Huang, Ling-Yee; Delano, Nathaniel; Varady, Robert G.; Petersen-Perlman, Jacob D.

    2017-05-01

    Groundwater is an increasingly important source of freshwater, especially where surface water resources are fully or over-allocated or becoming less reliable due to climate change. Groundwater reliance has created new challenges for sustainable management. This article examines how regional groundwater users coordinate and collaborate to manage shared groundwater resources, including attention to what drives collaboration. To identify and illustrate these facets, this article examines three geographically diverse cases of groundwater governance and management from the United States Sun Belt: Orange County Water District in southern California; Prescott Active Management Area in north-central Arizona; and the Central Florida Water Initiative in central Florida. These regions have different surface water laws, groundwater allocation and management laws and regulations, demographics, economics, topographies, and climate. These cases were selected because the Sun Belt faces similar pressures on groundwater due to historical and projected population growth and limited availability of usable surface water supplies. Collectively, they demonstrate groundwater governance trends in the United States, and illustrate distinctive features of regional groundwater management strategies. Our research shows how geophysical realities and state-level legislation have enabled and/or stimulated regions to develop groundwater management plans and strategies to address the specific issues associated with their groundwater resources. We find that litigation involvement and avoidance, along with the need to finance projects, are additional drivers of regional collaboration to manage groundwater. This case study underscores the importance of regionally coordinated and sustained efforts to address serious groundwater utilization challenges faced by the regions studied and around the world.

  1. Generalized hydrogeologic framework and groundwater budget for a groundwater availability study for the glacial aquifer system of the United States

    USGS Publications Warehouse

    Reeves, Howard W.; Bayless, E. Randall; Dudley, Robert W.; Feinstein, Daniel T.; Fienen, Michael N.; Hoard, Christopher J.; Hodgkins, Glenn A.; Qi, Sharon L.; Roth, Jason L.; Trost, Jared J.

    2017-12-14

    The glacial aquifer system groundwater availability study seeks to quantify (1) the status of groundwater resources in the glacial aquifer system, (2) how these resources have changed over time, and (3) likely system response to future changes in anthropogenic and environmental conditions. The glacial aquifer system extends from Maine to Alaska, although the focus of this report is the part of the system in the conterminous United States east of the Rocky Mountains. The glacial sand and gravel principal aquifer is the largest source of public and self-supplied industrial supply for any principal aquifer and also is an important source for irrigation supply. Despite its importance for water supply, water levels in the glacial aquifer system are generally stable varying with climate and only locally from pumping. The hydrogeologic framework developed for this study includes the information from waterwell records and classification of material types from surficial geologic maps into likely aquifers dominated by sand and gravel deposits. Generalized groundwater budgets across the study area highlight the variation in recharge and discharge primarily driven by climate.

  2. Modeling the Effects of Groundwater-fed Irrigation on Terrestrial Hydrology over the Conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong

    2014-06-01

    Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the terrestrial system, with potential impacts on weather and climate through land-atmosphere feedbacks. In this study, we incorporated a groundwater withdrawal scheme into the Community Land Model version 4 (CLM4). To simulate the impact of irrigation realistically, we calibrated the CLM4 simulated irrigation amount against observations from agriculture census at the county scale over the conterminous United States (CONUS). The water used for irrigation was then removedmore » from the surface runoff and groundwater aquifer according to a ratio determined from the county-level agricultural census data. Based on the simulations, the impact of groundwater withdrawals for irrigation on land surface and subsurface fluxes were investigated. Our results suggest that the impacts of irrigation on latent heat flux and potential recharge when water is withdrawn from surface water alone or from both surface and groundwater are comparable and local to the irrigation areas. However, when water is withdrawn from groundwater for irrigation, greater effects on the subsurface water balance were found, leading to significant depletion of groundwater storage in regions with low recharge rate and high groundwater exploitation rate. Our results underscore the importance of local hydrologic feedbacks in governing hydrologic response to anthropogenic change in CLM4 and the need to more realistically simulate the two-way interactions among surface water, groundwater, and atmosphere to better understand the impacts of groundwater pumping on irrigation efficiency and climate.« less

  3. Natural zeolite permeable treatment wall for removing Sr-90 from groundwater.

    PubMed

    Seneca, Shannon M; Rabideau, Alan J

    2013-02-05

    Experimental and modeling studies were completed to investigate the potential performance of a sorbing permeable treatment wall (PTW) comprised of natural zeolite for removal of strontium-90 (Sr-90) from groundwater at the West Valley Demonstration Project (WVDP) near Buffalo, NY. Multiple column tests were performed at the University at Buffalo (UB) and WVDP for periods ranging from 6 months to 2 years; UB columns were supplied with synthetic groundwater referenced to anticipated field conditions, while radioactive groundwater obtained on site was used for the WVDP columns. The primary focus was on quantifying the competitive cation reactions among five cations (Na(+), K(+), Ca(2+), Mg(2+), Sr(2+)) and Sr-90 with data obtained from the column studies used to estimate Gaines-Thomas (GT) selectivity coefficients. The resulting six-solute transport model provided flexibility to explore the influence of PTW parameters on long-term PTW performance, including variations in Sr-90 concentrations and groundwater geochemistry. The natural zeolite PTW is a viable method for in situ removal of Sr-90 from groundwater and potentially applicable to other sites contaminated by Sr-90.

  4. Geomatics for Mapping of Groundwater Potential Zones in Northern Part of the United Arab Emiratis - Sharjah City

    NASA Astrophysics Data System (ADS)

    Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.

    2015-04-01

    In United Arab Emirates (UAE) domestic water consumption has increased rapidly over the last decade. The increased demand for high-quality water, create an urgent need to evaluate the groundwater production of aquifers. The development of a reasonable model for groundwater potential is therefore crucial for future systematic developments, efficient management, and sustainable use of groundwater resources. The objective of this study is to map the groundwater potential zones in northern part of UAE and assess the contributing factors for exploration of potential groundwater resources. Remote sensing data and geographic information system will be used to locate potential zones for groundwater. Various maps (i.e., base, soil, geological, Hydro-geological, Geomorphologic Map, structural, drainage, slope, land use/land cover and average annual rainfall map) will be prepared based on geospatial techniques. The groundwater availability of the basin will qualitatively classified into different classes based on its hydro-geo-morphological conditions. The land use/land cover map will be also prepared for the different seasons using a digital classification technique with a ground truth based on field investigation.

  5. Hydrogeologic framework and estimates of ground-water volumes in Tertiary and upper Cretaceous hydrogeologic units in the Powder River basin, Wyoming

    USGS Publications Warehouse

    Hinaman, Kurt

    2005-01-01

    The Powder River Basin in Wyoming and Montana is an important source of energy resources for the United States. Coalbed methane gas is contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. This gas is released when water pressure in coalbeds is lowered, usually by pumping ground water. Issues related to disposal and uses of by-product water from coalbed methane production have developed, in part, due to uncertainties in hydrologic properties. One hydrologic property of primary interest is the amount of water contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, conducted a study to describe the hydrogeologic framework and to estimate ground-water volumes in different facies of Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin in Wyoming. A geographic information system was used to compile and utilize hydrogeologic maps, to describe the hydrogeologic framework, and to estimate the volume of ground water in Tertiary and upper Cretaceous hydrogeologic units in the Powder River structural basin in Wyoming. Maps of the altitudes of potentiometric surfaces, altitudes of the tops and bottoms of hydrogeologic units, thicknesses of hydrogeologic units, percent sand of hydrogeologic units, and outcrop boundaries for the following hydrogeologic units were used: Tongue River-Wasatch aquifer, Lebo confining unit, Tullock aquifer, Upper Hell Creek confining unit, and the Fox Hills-Lower Hell Creek aquifer. Literature porosity values of 30 percent for sand and 35 percent for non-sand facies were used to calculate the volume of total ground water in each hydrogeologic unit. Literature specific yield values of 26 percent for sand and 10 percent for non-sand facies, and literature specific storage values of 0.0001 ft-1 (1/foot) for sand facies and 0.00001 ft-1 for non-sand facies, were used to calculate a

  6. Estimates of groundwater age from till and carbonate bedrock hydrogeologic units at Jefferson Proving Ground, Southeastern Indiana, 2007-08

    USGS Publications Warehouse

    Buszka, Paul M.; Lampe, David C.; Egler, Amanda L.

    2010-01-01

    During 2007-08, the U.S. Geological Survey, in cooperation with the U.S. Department of the Army, conducted a study to evaluate the relative age of groundwater in Pre-Wisconsinan till and underlying shallow and deep carbonate bedrock units in and near an area at Jefferson Proving Ground (JPG), southeastern Indiana, which was used during 1984-94 to test fire depleted uranium (DU) penetrators. The shallow carbonate unit includes about the upper 40 feet of bedrock below the bedrock-till surface; the deeper carbonate unit includes wells completed at greater depth. Samples collected during April 2008 from 15 wells were analyzed for field water-quality parameters, dissolved gases, tritium, and chlorofluorocarbon (CFC) compounds; samples from 14 additional wells were analyzed for tritium only. Water-level gradients in the Pre-Wisconsinan till and the shallow carbonate unit were from topographically higher areas toward Big Creek and Middle Fork Creek, and their tributaries. Vertical gradients were strongly downward from the shallow carbonate unit toward the deep carbonate unit at 3 of 4 paired wells where water levels recovered after development; indicating the general lack of flow between the two units. The lack of post development recovery of water levels at 4 other wells in the deep carbonate unit indicate that parts of that unit have no appreciable permeability. CFC and tritium-based age dates of Pre-Wisconsinan till groundwater are consistent with infiltration of younger (typically post-1960 age) recharge that 'mixes' with older recharge from less permeable or less interconnected strata. Part of the recharge to three till wells dated from the early to mid-1980s (JPG-DU-03O, JPG-DU-09O, and JPG-DU-10O). Age dates of young recharge in water from two till wells predated 1980 (JPG-DU-04O and JPG-DU-06O). Tritium-based age dates of water from seven other till wells indicated post-1972 age recharge. Most wells in the Pre-Wisconsinan till have the potential to produce

  7. Groundwater-quality data in the Cascade Range and Modoc Plateau study unit, 2010-Results from the California GAMA Program

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the 39,000-square-kilometer Cascade Range and Modoc Plateau (CAMP) study unit was investigated by the U.S. Geological Survey (USGS) from July through October 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CAMP study unit is the thirty-second study unit to be sampled as part of the GAMA PBP. The GAMA CAMP study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined as that part of the aquifer corresponding to the open or screened intervals of wells listed in the California Department of Public Health (CDPH) database for the CAMP study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifer system; shallow groundwater may be more vulnerable to surficial contamination. In the CAMP study unit, groundwater samples were collected from 90 wells and springs in 6 study areas (Sacramento Valley Eastside, Honey Lake Valley, Cascade Range and Modoc Plateau Low Use Basins, Shasta Valley and Mount Shasta Volcanic Area, Quaternary Volcanic Areas, and Tertiary Volcanic Areas) in Butte, Lassen, Modoc, Plumas, Shasta, Siskiyou, and Tehama Counties. Wells and springs were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Groundwater samples were analyzed for field water-quality indicators, organic constituents, perchlorate, inorganic constituents

  8. Perchlorate Data for Streams and Groundwater in Selected Areas of the United States, 2004

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Stetson, Sarah J.; Lund, Kris D.; Wanty, Richard B.; Linder, Gregory L.

    2010-01-01

    This report presents data collected as part of a reconnaissance study to evaluate the occurrence of perchlorate in rivers and streams and in shallow aquifers in selected areas of the United States. Perchlorate, a component in rocket fuels, fireworks, and some explosives is soluble in water and persists in soils and water for long periods. It is biologically active at relatively low-levels in the environment, and has been identified as an endocrine-disrupting chemical. The purpose of this reconnaissance was to determine the occurrence of perchlorate in agricultural areas of the Midwestern and North-Central United States and in arid Central and Western parts of the United States. Samples were collected from 171 sites on rivers and streams and 146 sites from wells during the summer and early fall of 2004. Samples were collected from surface-water sites in 19 states and from wells in 5 states. Perchlorate was detected in samples collected in 15 states and was detected in 34 of 182 samples from rivers and streams and in 64 of 148 groundwater samples at concentrations equal to or greater than 0.4 micrograms per liter. Perchlorate concentrations were 1.0 micrograms per liter or greater in surface-water samples from seven states and in groundwater samples in four states. Only one surface-water and one groundwater sample had concentrations greater than 5.0 micrograms per liter. Perchlorate concentrations in followup samples collected from 1 to 3 months after the initial sample were unchanged at four of five stream sites.

  9. Status and understanding of groundwater quality in the Klamath Mountains study unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations

  10. Groundwater Conditions During 2009 and Changes in Groundwater Levels from 1984 to 2009, Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Snyder, Daniel T.; Haynes, Jonathan V.

    2010-01-01

    Groundwater elevations in three basalt units and one unconsolidated hydrogeologic unit in the Columbia Plateau Regional Aquifer System were measured and evaluated to provide a regional overview of groundwater conditions in spring 2009. Water levels for the Saddle Mountains unit, the Wanapum unit, the Grande Ronde unit, and for the overlying Overburden unit were measured in 1,752 wells during spring 2009 by the U.S. Geological Survey (USGS) and 10 other Federal, State, Tribal, and local agencies, including 66 wells located and measured by the USGS specifically for this study. These data were analyzed to determine the presence of spatial correlation of groundwater levels with distance and direction from each other. Groundwater flow in the Palouse Slope structural region showed evidence of being more continuous relative to groundwater flow in the Yakima Fold Belt, where the geologic complexity may contribute to compartmentalization of groundwater flow. This information was used to interpolate the generalized groundwater elevations for each of the basalt hydrogeologic units and to provide information on regional flow. Water-level change maps were constructed for the three basalt hydrogeologic units and the Overburden (unconsolidated) unit. Groundwater levels measured in spring 1984 and 2009 in 470 wells were compared. Small to moderate groundwater-level declines were measured in most wells, although declines greater than 100 ft and as great as 300 ft were measured in many wells. Essentially unchanged groundwater levels were measured in other wells. Of the wells measured in 1984 and 2009, water levels declined in 83 percent of the wells, and declines greater than 25 ft were measured in 29 percent of all wells. The groundwater-level changes were greatest in the deeper hydrogeologic units. Mean groundwater-level changes ranged from a 7 ft decline for the Overburden unit to a 51 ft decline for the Grande Ronde unit. The average annual rates of groundwater-level change for

  11. Groundwater quality in the South Coast Range Coastal groundwater basins, California

    USGS Publications Warehouse

    Burton, Carmen A.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The coastal basins in the Southern Coast Ranges constitute one of the study units being evaluated.

  12. Ground-water recharge in the arid and semiarid southwestern United States - Climatic and geologic framework: Chapter A in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Stonestrom, David A.; Harrill, James R.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly but irregularly control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of multidecadal droughts unlike any in the modern instrumental record. Anthropogenically induced climate change likely will reduce ground-water recharge through diminished snowpack at higher elevations, and perhaps through increased drought. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Land-use modifications influence ground-water recharge directly through vegetation, irrigation, and impermeable area, and indirectly through climate change. High ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive

  13. IN SITU TREATMENT OF SOIL AND GROUNDWATER CONTAMINATED WITH CHROMIUM - TECHNICAL RESOURCE GUIDE

    EPA Science Inventory

    New information and treatment approaches have been developed for chromium-contaminated soil and groundwater treatment. The prupose of this report is to bring together the most current information pertaining to the science of chromium contamination and the insitu treatment and co...

  14. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    NASA Astrophysics Data System (ADS)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  15. Nutrients in groundwaters of the conterminous United States, 1992-1995

    USGS Publications Warehouse

    Nolan, B.T.; Stoner, J.D.

    2000-01-01

    Results of a national water quality assessment indicate that nitrate is detected in 71% of groundwater samples, more than 13 times as often as ammonia, nitrite, organic nitrogen, and orthophosphate, based on a common detection threshold of 0.2 mg/L. Shallow groundwater (typically 5 m deep or less) beneath agricultural land has the highest median nitrate concentration (3.4 mg/L), followed by shallow groundwater beneath urban land (1.6 mg/L) and deeper groundwater in major aquifers (0.48 mg/L). Nitrate exceeds the maximum contaminant level, 10 mg/L as nitrogen, in more than 15% of groundwater samples from 4 of 33 major aquifers commonly used as a source of drinking water. Nitrate concentration in groundwater is variable and depends on interactions among several factors, including nitrogen loading, soil type, aquifer permeability, recharge rate, and climate. For a given nitrogen loading, factors that generally increase nitrate concentration in groundwater include well-drained soils, fractured bedrock, and irrigation. Factors that mitigate nitrate contamination of groundwater include poorly drained soils, greater depth to groundwater, artificial drainage systems, intervening layers of unfractured bedrock, a low rate of groundwater recharge, and anaerobic conditions in aquifers.

  16. Groundwater-quality data in the Bear Valley and Selected Hard Rock Areas study unit, 2010: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the 112-square-mile Bear Valley and Selected Hard Rock Areas (BEAR) study unit was investigated by the U.S. Geological Survey (USGS) from April to August 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The BEAR study unit was the thirty-first study unit to be sampled as part of the GAMA-PBP. The GAMA Bear Valley and Selected Hard Rock Areas study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer system is defined as the zones corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the BEAR study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallow or deep water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. In the BEAR study unit, groundwater samples were collected from two study areas (Bear Valley and Selected Hard Rock Areas) in San Bernardino County. Of the 38 sampling sites, 27 were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the primary aquifer system in the study unit (grid sites), and the remaining 11 sites were selected to aid in the understanding of the potential groundwater-quality issues associated with septic tank use and with ski areas in the study unit (understanding sites). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], pesticides and

  17. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  18. Groundwater quality in the Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project (PBP) of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Sierra Nevada Regional study unit constitutes one of the study units being evaluated.

  19. Groundwater-quality data in the Western San Joaquin Valley study unit, 2010 - Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Landon, Matthew K.; Shelton, Jennifer L.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the approximately 2,170-square-mile Western San Joaquin Valley (WSJV) study unit was investigated by the U.S. Geological Survey (USGS) from March to July 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The WSJV study unit was the twenty-ninth study unit to be sampled as part of the GAMA-PBP. The GAMA Western San Joaquin Valley study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system, and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer system is defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the WSJV study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. In the WSJV study unit, groundwater samples were collected from 58 wells in 2 study areas (Delta-Mendota subbasin and Westside subbasin) in Stanislaus, Merced, Madera, Fresno, and Kings Counties. Thirty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 wells were selected to aid in the understanding of aquifer-system flow and related groundwater-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], low-level fumigants, and pesticides and pesticide degradates

  20. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.

    PubMed

    Jing, C; Landsberger, S; Li, Y L

    2017-09-01

    In this study, nanoscale zero valent iron I-NZVI was investigated as a remediation strategy for uranium contaminated groundwater from the former Cimarron Fuel Fabrication Site in Oklahoma, USA. The 1 L batch-treatment system was applied in the study. The result shows that 99.9% of uranium in groundwater was removed by I-NZVI within 2 h. Uranium concentration in the groundwater stayed around 27 μg/L, and there was no sign of uranium release into groundwater after seven days of reaction time. Meanwhile the release of iron was significantly decreased compared to NZVI which can reduce the treatment impact on the water environment. To study the influence of background pH of the treatment system on removal efficiency of uranium, the groundwater was adjusted from pH 2-10 before the addition of I-NZVI. The pH of the groundwater was from 2.1 to 10.7 after treatment. The removal efficiency of uranium achieved a maximum in neutral pH of groundwater. The desorption of uranium on the residual solid phase after treatment was investigated in order to discuss the stability of uranium on residual solids. After 2 h of leaching, 0.07% of the total uranium on residual solid phase was leached out in a HNO 3 leaching solution with a pH of 4.03. The concentration of uranium in the acid leachate was under 3.2 μg/L which is below the EPA's maximum contaminant level of 30 μg/L. Otherwise, the concentration of uranium was negligible in distilled water leaching solution (pH = 6.44) and NaOH leaching solution (pH = 8.52). A desorption study shows that an acceptable amount of uranium on the residuals can be released into water system under strong acid conditions in short terms. For long term disposal management of the residual solids, the leachate needs to be monitored and treated before discharge into a hazardous landfill or the water system. For the first time, I-NZVI was applied for the treatment of uranium contaminated groundwater. These results provide proof that I-NZVI has

  1. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  2. Wellhead treatment costs for groundwater contaminated with pesticides: A preliminary analysis for pineapple in Hawaii

    NASA Astrophysics Data System (ADS)

    Leon-Guerrero, Ephraim D.; Loague, Keith; Green, Richard E.

    1994-01-01

    In Hawaii, trace concentrations of pesticides used in the production of pineapple were found in the groundwater supplies of Mililani Town in the Pearl Harbor Basin on the island of Oahu. Groundwater serves as the major source of drinking water and residents pay for wellhead treatment of the contaminated water, via their monthly water bill. The agricultural chemical users within the Pearl Harbor Basin do not include these wellhead treatment costs in their production costs. The agricultural industry benefits from using pesticides but does not pay the entire societal cost of using these chemicals. In this study we evaluate the specific financial cost of wellhead treatment, and not the economic value of groundwater. While wellhead treatment costs could conceivably be shared by several parties, this study focuses on the financial impact of the pineapple industry alone. This study factors annual wellhead treatment costs into annual pineapple production costs to measure the effect on annual financial return from pineapple production. Wellhead treatment costs are calculated from the existing granulated activated carbon (GAC) water treatment facility for Millilani Wells I and II. Pineapple production costs are estimated from previous cost of production studies. The inclusion of wellhead treatment costs produces different production-cost results, depending on the scale of analysis. At the local scale, the Mililani wellhead treatment costs can be factored into the production costs of the pineapple fields, which were probably responsible for contamination of the Mililani Wells, without causing a deficit in economic return. At the larger regional scale, however, the return from all of the pineapple grown in the Pearl Harbor Basin can not sustain the cost of wellhead treatmentfor the entire water supply of the basin. Recommendations point to the prevention of groundwater contamination as more cost-effective measure than wellhead treatment.

  3. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. APPLICATIONS ANALYSIS REPORT: BIOLOGICAL TREATMENT OF WOOD PRESERVING SITE GROUNDWATER BY BIOTROL, INC.

    EPA Science Inventory

    This report is an evaluation of the Biotrol, Inc. Aqueous Treatment System (BATS), a fixed-film, aerobic biological treatment process for contaminated groundwaters and other wastewaters. t summarizes and analyzes the results of the Superfund Innovative Technology Evaluation (SITE...

  5. NPDES Permit for Keller Transport, Inc. Groundwater Remediation Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT0030805, Keller Transport, Inc. is authorized to discharge from its groundwater remediation treatment facility in Lake County, Montana, to Flathead Lake.

  6. Groundwater-Quality Data in the South Coast Interior Basins Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Kulongoski, Justin T.; Ray, Mary C.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 653-square-mile South Coast Interior Basins (SCI) study unit was investigated from August to December 2008, as part of the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project was developed in response to Legislative mandates (Supplemental Report of the 1999 Budget Act 1999-00 Fiscal Year; and, the Groundwater-Quality Monitoring Act of 2001 [Sections 10780-10782.3 of the California Water Code, Assembly Bill 599]) to assess and monitor the quality of groundwater used as public supply for municipalities in California, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). SCI was the 27th study unit to be sampled as part of the GAMA Priority Basins Project. This study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies within SCI, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 54 wells within the three study areas [Livermore, Gilroy, and Cuyama] of SCI in Alameda, Santa Clara, San Benito, Santa Barbara, Ventura, and Kern Counties. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds], constituents of special interest [perchlorate and N-nitrosodimethylamine (NDMA)], naturally occurring inorganic constituents [trace elements, nutrients, major and minor ions, silica, total dissolved solids (TDS), and alkalinity

  7. Status and understanding of groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units, 2006-2007--California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the Tahoe-Martis, Central Sierra, and Southern Sierra study units was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The three study units are located in the Sierra Nevada region of California in parts of Nevada, Placer, El Dorado, Madera, Tulare, and Kern Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board, in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems used for drinking water. The primary aquifer systems (hereinafter, primary aquifers) for each study unit are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Tahoe-Martis, Central Sierra, and Southern Sierra study units were based on water-quality and ancillary data collected by the USGS from 132 wells in the three study units during 2006 and 2007 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for evaluating groundwater quality for those

  8. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  9. Factors influencing ground-water recharge in the eastern United States

    USGS Publications Warehouse

    Nolan, B.T.; Healy, R.W.; Taber, P.E.; Perkins, K.; Hitt, K.J.; Wolock, D.M.

    2007-01-01

    Ground-water recharge estimates for selected locations in the eastern half of the United States were obtained by Darcian and chloride-tracer methods and compared using statistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone (RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and 16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian estimates are a nonlinear function of moisture content and also reflect the uncertainty of pedotransfer functions used to estimate hydraulic parameters. Significance level is 0.3. Estimates of RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aquifers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. Westernmost portions of the study area have low recharge, receive somewhat less precipitation, and contain fine-grained sediment. The NLR model simulates water input to the land surface followed by transport to ground water, depending on factors that either promote or inhibit water infiltration. The model explains a moderate amount of variation in the data set (coefficient of determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temperature, and precipitation, and an index of ground-water exfiltration potential most influence estimates of recharge at sampled sites in the region. Soil characteristics and land use have less influence on the recharge estimates, but nonetheless are significant in the NLR model. ?? 2006 Elsevier B.V. All rights reserved.

  10. Basewide Groundwater Operable Unit. Groundwater Operable Unit Remedial Investigation/Feasibility Study Report. Volume 1

    DTIC Science & Technology

    1994-06-01

    units would be reused in the remedy. Contingency measures to be included in the remedy are potential metals removal prior to water end use, potential...onbase reuse of a portion of the water, and wellhead treatment on offbase supply wells. The contingency measures will only be implemented if necessary...94 LEGEND Ouatmar aluvi dposts agua Frmaion(cosoldatd aluval epoits W iead rdetilnsMhte omtin(neitccnlmeae ansoe9ndkeca F 70 Quvatei-lernayalvu e pk

  11. Influence of perched groundwater on base flow

    USGS Publications Warehouse

    Niswonger, Richard G.; Fogg, Graham E.

    2008-01-01

    Analysis with a three‐dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine‐sediment unit and the hydraulic conductivity of the fine‐sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000‐m stream reach. Generally, the rate of perched‐groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine‐sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine‐sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched‐groundwater discharge nearly 75%.

  12. Fracturesis Jointitis: Causes, Symptoms, and Treatment in Groundwater Communities.

    PubMed

    Manda, Alex K; Horsman, Eric

    2015-01-01

    Fracturesis Jointitis is a grammatical disorder characterized by failure or inability to understand the difference between overarching and specific terms of brittle deformation features. The disorder leads to the use of the word "fracture" as a specific type of discontinuity rather than as an overarching term for mechanical breaks in rocks. This condition appears to be prevalent among groundwater practitioners working with fractured rocks. Common signs and symptoms of Fracturesis Jointitis include the use of terms such as "joints and fractures" and "joints, faults and fractures" when describing fractures in rocks. At best, such terms imply that a "fracture" is one of many kinds of features like joints and faults, and at worst that joints and faults are not fractures but something else. Using proper terms to identify specific fracture types is critical because fractures may act as either barriers to groundwater flow (e.g., faults or deformation bands) or conduits for flow (e.g., faults and joints), The treatment for Fracturesis Jointitis involves an education campaign highlighting to the groundwater community the different fracture types that exist, the modes by which fractures propagate and the role that these fractures play in facilitating or hindering groundwater flow. Those afflicted by Fracturesis Jointitis can be cured of the condition by avoiding the word "fractures" in phrases such as "joints and fractures" or by adding descriptive words before the word "fractures" to specify fracture types (e.g., "foliation-parallel" fractures). Only with a concerted education campaign can we rid our community of Fracturesis Jointitis. © 2014, National Ground Water Association.

  13. Design and testing of a process-based groundwater vulnerability assessment (P-GWAVA) system for predicting concentrations of agrichemicals in groundwater across the United States

    USGS Publications Warehouse

    Barbash, Jack E; Voss, Frank D.

    2016-03-29

    Efforts to assess the likelihood of groundwater contamination from surface-derived compounds have spanned more than three decades. Relatively few of these assessments, however, have involved the use of process-based simulations of contaminant transport and fate in the subsurface, or compared the predictions from such models with measured data—especially over regional to national scales. To address this need, a process-based groundwater vulnerability assessment (P-GWAVA) system was constructed to use transport-and-fate simulations to predict the concentration of any surface-derived compound at a specified depth in the vadose zone anywhere in the conterminous United States. The system was then used to simulate the concentrations of selected agrichemicals in the vadose zone beneath agricultural areas in multiple locations across the conterminous United States. The simulated concentrations were compared with measured concentrations of the compounds detected in shallow groundwater (that is, groundwater drawn from within a depth of 6.3 ± 0.5 meters [mean ± 95 percent confidence interval] below the water table) in more than 1,400 locations across the United States. The results from these comparisons were used to select the simulation approaches that led to the closest agreement between the simulated and the measured concentrations.The P-GWAVA system uses computer simulations that account for a broader range of the hydrologic, physical, biological and chemical phenomena known to control the transport and fate of solutes in the subsurface than has been accounted for by any other vulnerability assessment over regional to national scales. Such phenomena include preferential transport and the influences of temperature, soil properties, and depth on the partitioning, transport, and transformation of pesticides in the subsurface. Published methods and detailed soil property data are used to estimate a wide range of model input parameters for each site, including surface

  14. Groundwater Flow Through a Constructed Treatment Wetland

    DTIC Science & Technology

    2002-03-01

    sediments or has the water found preferential flow paths? (2) Does the behavior of groundwater flow change with varying loading rates or environmental...surface of the wetland. Water flows through a subsurface flow wetland in a similar fashion as groundwater flows through an aquifer. The concept is...circuiting of the wetland media. Groundwater Flow Various physical properties influence the flow of water through soil. In wetlands, the type of soil

  15. Analysis of Infrequent (Quasi-Decadal) Large Groundwater Recharge Events: A Case Study for Northern Utah, United States

    NASA Astrophysics Data System (ADS)

    Masbruch, M.; Rumsey, C.; Gangopadhyay, S.; Susong, D.; Pruitt, T.

    2015-12-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in arid and semi-arid regions such as the western United States. Although much effort has been spent to assess and predict changes in surface-water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on quantifying the effects of large quasi-decadal groundwater recharge events on groundwater in the northern Utah portion of the Great Basin for the period 1960 to 2013. Groundwater-level monitoring data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified within the study area and period, with a frequency of about 11 to 13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single event ranged from about 115 Mm3 (93,000 acre-feet) to 205 Mm3 (166,000 acre-ft). Extrapolating these amounts over the entire northern Great Basin indicates that even a single large quasi-decadal recharge event could result in billions of cubic meters (millions of acre-feet) of groundwater recharge. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for making informed water management decisions.

  16. In Situ Catalytic Groundwater Treatment Using Palladium Catalysts and Horizontal Flow Treatment Wells

    DTIC Science & Technology

    2007-06-01

    runoff from Drainage Area B. Potentially contaminated surface runoff from Drainage Area B may enter the soil , and subsequently the groundwater, along...an estimated 250,000 gallons of JP-4 jet fuel were released. Soil was excavated and approximately 100,000 gallons of fuel were recovered during...Monitoring wells (4 wells, $4,000 per well) $16,000 Palladium catalyst treatment system $61,000 Palladium catalyst with eggshell coating (20 kg, $245

  17. Enhanced nitrogen removal with an onsite aerobic cyclic biological treatment unit.

    PubMed

    Babcock, Roger W; Senthill, Atiim; Lamichhane, Krishna M; Agsalda, Jessica; Lindbo, Glen D

    2015-01-01

    Coastal Zone Act Reauthorization Amendments (CZARA, Section 6217) necessitate the requirement that onsite wastewater disposal units located near impaired surface waters or groundwater to provide at least 50% nitrogen removal. Approximately 38% of Hawaii households use onsite systems including septic tanks and cesspools that cannot meet this requirement. Upgrades to aerobic treatment units (ATUs) are a possible compliance solution. In Hawaii, ATUs must meet National Sanitation Foundation Standard 40 (NSF40) Class I effluent criteria. Previously, a multi-chamber, flow-through, combined attached/suspended growth type ATU (OESIS-750) and presently, a sequencing batch type ATU (CBT 0.8KF-210) were evaluated for NSF40 compliance, nutrient removal capability (NSF245), and adaptability for water reuse (NSF350). Both units easily achieved the NSF40 Class I effluent criteria. While the OESIS-750 achieved only 19% nitrogen removal, the CBT unit achieved 81% nitrogen removal, meeting the NSF245 criteria and CZARA requirements for applications in critical wastewater disposal areas. In addition, the CBT consistently produced effluent with turbidity less than 2 NTU (NSF350) and UVT254 greater than 70%, facilitating the production of unrestricted-use recycled water.

  18. Practical performance and its efficiency of arsenic removal from groundwater using Fe-Mn binary oxide.

    PubMed

    Chang, Fangfang; Qu, Jiuhui; Liu, Ruiping; Zhao, Xu; Lei, Pengju

    2010-01-01

    A treatment unit packed by granular adsorbent of Fe-Mn binary oxide incorporated into diatomite (FMBO(1:1)-diatomite) was studied to remove arsenic from anaerobic groundwater without any pre-treatment or post-treatment. The raw anaerobic groundwater containing 35-45 microg/L of arsenic was collected from suburb of Beijing. Arsenic (III) constituted roughly 60%-80% of the total arsenic content. Approximately 7,000 bed volumes (ratio of effluent volume to adsorbent volume) treated water with arsenic concentration below 10 microg/L were produced in the operation period of four months. The regeneration of FMBO (1:1)-diatomite had been operated for 15 times. In the first stage, the regeneration process significantly improved the adsorption capacity of FMBO (1:1)-diatomite. With increased loading amount of Fe-Mn binary oxide, the adsorption capacity for arsenic decreased 20%-40%. Iron and manganese in anaerobic groundwater were oxidized and adsorptive filtrated by FMBO (1:1)-diatomite efficiently. The final concentrations of iron and manganese in effluents were nearly zero. The continued safe performance of the treatment units proved that adsorbent FMBO (1:1)-diatomite had high oxidation ability and exhibited strong adsorptive filtration.

  19. Monticello Mill Tailings Site Operable Unit III Annual Groundwater Report May 2014 Through April 2015, October 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Jason; Smith, Fred

    This report provides the annual analysis of water quality restoration progress, cumulative through April 2015, for Operable Unit (OU) III, surface water and groundwater, of the U.S. Department of Energy (DOE) Office of Legacy Management Monticello Mill Tailings Site (MMTS). The MMTS is a Comprehensive Environmental Response, Compensation, and Liability Act National Priorities List site located in and near the city of Monticello, San Juan County, Utah. MMTS comprises the 110-acre site of a former uranium- and vanadium-ore-processing mill (mill site) and 1,700 acres of surrounding private and municipal property. Milling operations generated 2.5 million cubic yards of waste (tailings)more » from 1942 to 1960. The tailings were impounded at four locations on the mill site. Inorganic constituents in the tailings drained from the impoundments to contaminate local surface water (Montezuma Creek) and groundwater in the underlying alluvial aquifer. Mill tailings dispersed by wind and water also contaminated properties surrounding and downstream of the mill site. Remedial actions to remove and isolate radiologically contaminated soil, sediment, and debris from the former mill site (OU I) and surrounding properties (OU II) were completed in 1999 with the encapsulation of the wastes in an engineered repository located on DOE property 1 mile south of the former mill site. Contamination of groundwater and surface water remains within OU III at levels that exceed water quality protection standards. Uranium is the primary contaminant of concern. LM implemented monitored natural attenuation with institutional controls as the OU III remedy in 2004. Because groundwater restoration proceeded more slowly than expected and did not meet performance criteria established in the OU III Record of Decision (June 2004), LM implemented a contingency action in 2009 by an Explanation of Significant Difference to include a pump-and-treat system using a single extraction well and treatment by

  20. Groundwater Quality Data for the Tahoe-Martis Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Fram, Miranda S.; Munday, Cathy; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 460-square-mile Tahoe-Martis study unit was investigated in June through September 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the Tahoe-Martis study unit (Tahoe-Martis) and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 52 wells in El Dorado, Placer, and Nevada Counties. Forty-one of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 11 were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, strontium isotope ratio, and stable isotopes of hydrogen and oxygen of water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 240 constituents and water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at 12 percent of the wells, and the

  1. Groundwater-Quality Data in the Colorado River Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2010-01-01

    Groundwater quality in the 188-square-mile Colorado River Study unit (COLOR) was investigated October through December 2007 as part of the Priority Basin Project of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and the U.S. Geological Survey (USGS) is the technical project lead. The Colorado River study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within COLOR, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 28 wells in three study areas in San Bernardino, Riverside, and Imperial Counties. Twenty wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the Study unit; these wells are termed 'grid wells'. Eight additional wells were selected to evaluate specific water-quality issues in the study area; these wells are termed `understanding wells.' The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], gasoline oxygenates and degradates, pesticides and pesticide degradates, pharmaceutical compounds), constituents of special interest (perchlorate, 1,4-dioxane, and 1,2,3-trichlorpropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents. Concentrations of naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, approximately 220 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and matrix spikes) were collected at

  2. Effects of residential wastewater treatment systems on ground-water quality in west-central Jefferson County, Colorado

    USGS Publications Warehouse

    Hall, Dennis C.; Hillier, D.E.; Nickum, Edward; Dorrance, W.G.

    1981-01-01

    The use of residential wastewater-treatment systems in Evergreen Meadows, Marshdale, and Herzman Mesa, Colo., has degraded ground-water quality to some extent in each community. Age of community; average lot size; slope of land surface; composition, permeability, and thickness of surficial material; density, size , and orientation of fractures; maintenance of wastewater-treatment systems; and presence of animals are factors possibly contributing to the degradation of ground-water quality. When compared with effluent from aeration-treatment tanks, effluent fom septic-treatment tanks is characterized by greater biochemical oxygen demand and greater concentrations of detergents. When compared with effluent from septic-treatment tanks, effluent from aeration-treatment tanks is characterized by greater concentrations of dissolved oxygen, nitrite, nitrate, sulfate, and dissolved solids. (USGS)

  3. Groundwater pumping by heterogeneous users

    NASA Astrophysics Data System (ADS)

    Saak, Alexander E.; Peterson, Jeffrey M.

    2012-08-01

    Farm size is a significant determinant of both groundwater-irrigated farm acreage and groundwater-irrigation-application rates per unit land area. This paper analyzes the patterns of groundwater exploitation when resource users in the area overlying a common aquifer are heterogeneous. In the presence of user heterogeneity, the common resource problem consists of inefficient dynamic and spatial allocation of groundwater because it impacts income distribution not only across periods but also across farmers. Under competitive allocation, smaller farmers pump groundwater faster if farmers have a constant marginal periodic utility of income. However, it is possible that larger farmers pump faster if the Arrow-Pratt coefficient of relative risk-aversion is sufficiently decreasing in income. A greater farm-size inequality may either moderate or amplify income inequality among farmers. Its effect on welfare depends on the curvature properties of the agricultural output function and the farmer utility of income. Also, it is shown that a flat-rate quota policy that limits the quantity of groundwater extraction per unit land area may have unintended consequences for the income distribution among farmers.

  4. Status and understanding of groundwater quality in the Monterey-Salinas Shallow Aquifer Study Unit, 2012–13: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen; Wright, Michael

    2018-05-30

    Groundwater quality in the approximately 7,820-square-kilometer (km2) Monterey-Salinas Shallow Aquifer (MS-SA) study unit was investigated from October 2012 to May 2013 as part of the second phase of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in the central coast region of California in the counties of Santa Cruz, Monterey, and San Luis Obispo. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in cooperation with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.The MS-SA study was designed to provide a statistically robust assessment of untreated-groundwater quality in the shallow aquifer systems. The assessment was based on water-quality samples collected by the U.S. Geological Survey from 100 groundwater sites and 70 household tap sites, along with ancillary data such as land use and well-construction information. The shallow aquifer systems were defined by the depth interval of wells associated with domestic supply. The MS-SA study unit consisted of four study areas—Santa Cruz (210 km2), Pajaro Valley (360 km2), Salinas Valley (2,000 km2), and Highlands (5,250 km2).This study had two primary components: the status assessment and the understanding assessment. The first primary component of this study—the status assessment—assessed the quality of the groundwater resource indicated by data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally present inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of groundwater resources in the shallow aquifer system of the MS-SA study unit, not the treated drinking water delivered to consumers by water purveyors. As opposed to the public wells, however, water from private wells, which often tap the shallow aquifer, is usually consumed without any treatment. The second

  5. Chloroethene dechlorination in acidic groundwater: Implications for combining fenton's treatment with natural attenuation

    USGS Publications Warehouse

    Bradley, Paul M.; Singletary , Michael A.; Chapelle, Francis H.

    2007-01-01

    A sulfuric acid leak in 1988 at a chloroethene-contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long-term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's-based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30-m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides-type bacteria within the sulfuric acid/chloroethene co-contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C-TCE and 14C-VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co-contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's-based source area treatment) do not necessarily preclude efficient chloroethene degradation.

  6. Status and understanding of groundwater quality in the Madera, Chowchilla Study Unit, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2013-01-01

    Groundwater quality in the approximately 860-square-mile Madera and Chowchilla Subbasins (Madera-Chowchilla study unit) of the San Joaquin Valley Basin was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in California's Central Valley region in parts of Madera, Merced, and Fresno Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The Project was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in California. The primary aquifer system within each study unit is defined by the depth of the perforated or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for municipal and community drinking-water supply. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to contamination from the surface. The assessments for the Madera-Chowchilla study unit were based on water-quality and ancillary data collected by the USGS from 35 wells during April-May 2008 and water-quality data reported in the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of natural factors and human activities affecting groundwater quality. The primary aquifer system is represented by the grid wells, of which 90 percent (%) had depths that ranged from about 200 to 800 feet (ft) below land surface and had depths to the top of perforations that ranged from about 140 to 400 ft below land surface. Relative-concentrations (sample concentrations divided by benchmark concentrations) were used for

  7. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  8. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    USGS Publications Warehouse

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox

  9. Evaluation of biological hydrogen sulfide oxidation coupled with two-stage upflow filtration for groundwater treatment.

    PubMed

    Levine, Audrey D; Raymer, Blake J; Jahn, Johna

    2004-01-01

    Hydrogen sulfide in groundwater can be oxidized by aerobic bacteria to form elemental sulfur and biomass. While this treatment approach is effective for conversion of hydrogen sulfide, it is important to have adequate control of the biomass exiting the biological treatment system to prevent release of elemental sulfur into the distribution system. Pilot scale tests were conducted on a Florida groundwater to evaluate the use of two-stage upflow filtration downstream of biological sulfur oxidation. The combined biological and filtration process was capable of excellent removal of hydrogen sulfide and associated turbidity. Additional benefits of this treatment approach include elimination of odor generation, reduction of chlorine demand, and improved stability of the finished water.

  10. In Situ Catalytic Groundwater Treatment Using Palladium Catalysts and Horizontal Flow Treatment Wells

    DTIC Science & Technology

    2008-01-01

    may enter the soil , and subsequently the groundwater, along any portion of this unlined channel. The area south of the buildings has not been...the 1960s in the northwestern corner of Site 19, and an estimated 250,000 gallons of JP-4 jet fuel were released. Soil was excavated and...16,000 Pd catalyst treatment system $61,000 Pd catalyst with eggshell coating (20 kg @ $245 per lb) $11,000 Skid-mounted reactor system and

  11. GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...

  12. Status and understanding of groundwater quality in the South Coast Range-Coastal study unit, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Land, Michael; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the South Coast Range–Coastal (SCRC) study unit was investigated from May through November 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Range hydrologic province and includes parts of Santa Barbara and San Luis Obispo Counties. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifer system. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health (CDPH) database for the SCRC study unit. The assessments for the SCRC study unit were based on water-quality and ancillary data collected in 2008 by the USGS from 55 wells on a spatially distributed grid, and water-quality data from the CDPH database. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource, and (2) understanding, identification of the natural and human factors affecting groundwater quality. Water-quality and ancillary data were collected from an additional 15 wells for the understanding assessment. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors. The first component of this study, the status assessment of groundwater quality, used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. Although the status assessment applies to untreated

  13. Electromagnetic analysis of groundwater on the Arizona-Utah border

    NASA Astrophysics Data System (ADS)

    Vander Vis, T.; Porter, R. C.; Macy, J. P.

    2016-12-01

    Understanding subsurface structure and groundwater flow is an essential part of managing groundwater resources, especially in southwestern United States where supply is limited and demand is increasing. This study describes the preliminary results of a transient electromagnetic survey conducted on the Arizona-Utah border to better understand the groundwater system which supplies water to many wells and springs in the region. Electromagnetic surveys are ideal for groundwater investigations because they can locate and characterize areas of high conductivity, which often are indicative of groundwater. The study area is on the southwestern margin of the Colorado Plateau and consists of uplifted, flat-lying sedimentary units. Regionally, groundwater is located within the Navajo Sandstone and underlying Kayenta Formation as an unconfined aquifer that extends from Pipe Springs National Monument north to the East Fork of the Virgin River. This area is characterized by step-like structural blocks that accommodate small amounts of extension and are bounded by long north-south-trending normal faults. The Sevier Fault runs through the sedimentary units near the study area and has been shown to influence groundwater movement by offsetting permeable units west of the fault adjacent to impermeable units east of the fault. Electromagnetic measurements were recorded with a Zonge GDP-32 receiver at 30 receiver locations at 16 and 32 Hz with a 100mx100m transmitter loop. These data were used to create a subsurface conductivity model. Water levels from local wells and local geologic data were utilized to relate the geophysical data to the groundwater system. Preliminary results define the depth to water table and the location of the groundwater divide between the groundwater that flows north towards the springs that feed the East Fork of the Virgin River and the groundwater that flows south towards Pipe Springs National Monument.

  14. Status and understanding of groundwater quality in the Sierra Nevada Regional study unit, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Statistical tests were used to evaluate relations between constituent concentrations and potential explanatory factors descriptive of land use, geography, depth, geochemical conditions, and groundwater age. Higher concentrations of trace elements, radioactive constituents, and constituents with aesthetic-based benchmarks generally were associated with anoxic conditions, higher pH, and location within a particular compositional band in the Sierra Nevada batholith corresponding to the southwestern part of the study unit. High concentrations of organic constituents generally were associated with greater proportions of urban land use. No significant relations were observed between the concentrations of organic constituents and measures of well depth or groundwater age, perhaps because of the high proportions of springs and modern groundwater in the dataset.

  15. Appraisal of ground-water quality near wastewater-treatment facilities, Glacier National Park, Montana

    USGS Publications Warehouse

    Moreland, Joe A.; Wood, Wayne A.

    1982-01-01

    Water-level and water-quality data were collected from monitoring wells at wastewater-treatment facilities in Glacier National Park. Five additional shallow observation wells were installed at the Glacier Park Headquarters facility to monitor water quality in the shallow ground-water system.Water-level, water-quality, and geologic information indicate that some of the initial monitoring wells are not ideally located to sample ground water most likely to be affected by waste disposal at the sites. Small differences in chemical characteristics between samples from monitor wells indicate that effluent may be affecting ground-water quality but that impacts are not significant.Future monitoring of ground-water quality could be limited to selected wells most likely to be impacted by percolating effluent. Laboratory analyses for common ions could detect future impacts.

  16. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  17. [Study on the advanced pre-treatments of reclaimed water used for groundwater recharge].

    PubMed

    Gao, Yu-Tuan; Zhang, Xue; Zhao, Xuan; Zhao, Gang

    2012-03-01

    To prevent groundwater contamination, pretreatments of reclaimed water are needed before the groundwater recharge. In this study, five treatments, including ultrafiltration (UF), ozonation, magnetic ion exchange (MIEX), UF coupled with ozonation and MIEX coupled with ozonation, were evaluated for their purification efficiencies of the reclaimed water and their influences on the following soil aquifer treatments. For organic matters in the secondary effluents, identified as dissolved organic carbon (DOC) and specific ultraviolet absorbance (SUVA), 20% DOC and 10% SUVA are removed by MIEX treatment with dose of 5 mL x L(-1), while only 10% DOC and no SUVA are removed by UF, but neither of these two pretreatments enhance the purification of soil aquifer treatments. Differently, SUVA of the secondary effluents are removed by 60%-79% by ozonation alone or coupled with UF/MIEX, increasing the biodegradability of the reclaimed water. These pretreatments significantly enhance the removal of organic matters by the following soil aquifer with DOC in the final effluents reducing to 1-2 mg x L(-1). For nitrogen, MIEX can remove 25% NO3(-) -N, and ozonation can remove 72% NH4(+) -N. The soil aquifer treatment could efficiently remove NH4(+) -N to below 0.5 mg x L(-1), while no obvious removal is detected for NO3(-) -N. In conclusion, more attentions should be paid to the organic matters and NO3(-) -N during the pretreatments of reclaimed water. Among all the pretreatments tested here, ozonation coupled with MIEX is capable of increasing the biodegradability of the reclaimed water and removing NO3(-) -N, which is a good choice for the pretreatment of groundwater recharge.

  18. Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation.

    PubMed

    Poi, Gregory; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Mok, Puah Chum; Ball, Andrew S

    2018-05-15

    Bioaugmentation or the addition of microbes to contaminated sites has been widely used to treat contaminated soil or water; however this approach is often limited to laboratory based studies. In the present study, large scale bioaugmentation has been applied to total petroleum hydrocarbons (TPH)-contaminated groundwater at a petroleum facility. Initial TPH concentrations of 1564 mg L -1 in the field were reduced to 89 mg L -1 over 32 days. This reduction was accompanied by improved ecotoxicity, as shown by Brassica rapa germination numbers that increased from 52 at day 0 to 82% by the end of the treatment. Metagenomic analysis indicated that there was a shift in the microbial community when compared to the beginning of the treatment. The microbial community was dominated by Proteobacteria and Bacteroidetes from day 0 to day 32, although differences at the genus level were observed. The predominant genera at the beginning of the treatment (day 0 just after inoculation) were Cloacibacterium, Sediminibacterium and Brevundimonas while at the end of the treatment members of Flavobacterium dominated, reaching almost half the population (41%), followed by Pseudomonas (6%) and Limnobacter (5.8%). To the author's knowledge, this is among the first studies to report the successful large scale biodegradation of TPH-contaminated groundwater (18,000 L per treatment session) at an offshore petrochemical facility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effects of seepage from fly-ash settling ponds and construction dewatering on ground-water levels in the Cowles unit, Indiana Dunes National Lakeshore, Indiana

    USGS Publications Warehouse

    Meyer, William R.; Tucci, Patrick

    1979-01-01

    Part of the Indiana Dunes National Lakeshore shares a common boundary with the Northern Indiana Public Service Company (NIPSCO). This area is underlain by unconsolidated deposits approximately 180 feet thick. NIPSCO accumulates fly ash from the burning of coal in electric-power generating units in settling ponds. Seepage from the ponds has raised ground-water levels above natural levels approximately 15 feet under the ponds and more than 10 feet within the Lakeshore. NIPSCO is presently (1977) constructing a nuclear powerplant, and construction activities include pumping ground water to dewater the construction site. The company has installed a slurry wall around the site to prevent lowering of ground-water levels within the Lakeshore. Plans call for continuous pumping through at least December 1979. A multilayered digital flow model was constructed to simulate the ground-water system. The model was used to demonstrate the effects of seepage from the fly-ash ponds on ground-water levels. Also, the model indicated a decline of 3 feet or less in the upper sand unit and 5 feet or less in the lower sand unit within the Lakeshore.

  20. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model -Documentation of the Hydrogeologic-Unit Flow (HUF) Package

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.

    2000-01-01

    This report documents the Hydrogeologic-Unit Flow (HUF) Package for the groundwater modeling computer program MODFLOW-2000. The HUF Package is an alternative internal flow package that allows the vertical geometry of the system hydrogeology to be defined explicitly within the model using hydrogeologic units that can be different than the definition of the model layers. The HUF Package works with all the processes of MODFLOW-2000. For the Ground-Water Flow Process, the HUF Package calculates effective hydraulic properties for the model layers based on the hydraulic properties of the hydrogeologic units, which are defined by the user using parameters. The hydraulic properties are used to calculate the conductance coefficients and other terms needed to solve the ground-water flow equation. The sensitivity of the model to the parameters defined within the HUF Package input file can be calculated using the Sensitivity Process, using observations defined with the Observation Process. Optimal values of the parameters can be estimated by using the Parameter-Estimation Process. The HUF Package is nearly identical to the Layer-Property Flow (LPF) Package, the major difference being the definition of the vertical geometry of the system hydrogeology. Use of the HUF Package is illustrated in two test cases, which also serve to verify the performance of the package by showing that the Parameter-Estimation Process produces the true parameter values when exact observations are used.

  1. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    USDA-ARS?s Scientific Manuscript database

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  2. Groundwater Quality Data in the Mojave Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,500 square-mile Mojave (MOJO) study unit was investigated from February to April 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). MOJO was the 23rd of 37 study units to be sampled as part of the GAMA Priority Basin Project. The MOJO study was designed to provide a spatially unbiased assessment of the quality of untreated ground water used for public water supplies within MOJO, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 59 wells in San Bernardino and Los Angeles Counties. Fifty-two of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seven were selected to aid in evaluation of specific water-quality issues (understanding wells). The groundwater samples were analyzed for a large number of organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, and pharmaceutical compounds], constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]) naturally occurring inorganic constituents (nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (stable isotopes of hydrogen, oxygen, and carbon, stable isotopes of nitrogen and oxygen in nitrate, and activities of tritium and carbon-14), and dissolved noble gases also were measured to help identify the sources and ages of the sampled

  3. A comparison of recharge rates in aquifers of the United States based on groundwater-age data

    USGS Publications Warehouse

    McMahon, P.B.; Plummer, Niel; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R.

    2011-01-01

    An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from < 10 to 1,200 mm/yr in selected aquifers on the basis of measured vertical age distributions and assuming exponential age gradients. On a regional basis, recharge rates based on tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

  4. Relationship between altitude and lithium in groundwater in the United States of America: results of a 1992-2003 study.

    PubMed

    Huber, Rebekah S; Kim, Namkug; Renshaw, Carl E; Renshaw, Perry F; Kondo, Douglas G

    2014-11-01

    Therapeutic dosages of lithium are known to reduce suicide rates, which has led to investigations of confounding environmental risk factors for suicide such as lithium in groundwater. It has been speculated that this might play a role in the potential relationship between suicide and altitude. A recent study in Austria involving geospatial analysis of lithium in groundwater and suicide found lower levels of lithium at higher altitudes. Since there is no reason to suspect this correlation is universal given variation in geology, the current study set out to investigate the relationship between altitude and lithium in groundwater in the United States of America (USA). The study utilised data extracted from the National Water-Quality Assessment programme implemented by the United States Geological Survey that has collected 5,183 samples from 48 study areas in USA for the period of 1992 to 2003. Lithium was the trace-element of interest and 518 samples were used in the current analyses. Due to uneven lithium sampling within the country, only the states (n=15) with the highest number of lithium samples were included. Federal information processing standard codes were used to match data by county with the mean county altitude calculated using altitude data from the Shuttle Radar Topography Mission. The study was controlled for potential confounding factors known to affect levels of lithium in groundwater including aquifer, aquifer type, lithology, water level and the depths of wells. The levels of lithium in groundwater, increased with altitude (R(2) = 0.226, P <0.001) during the study period. These findings differ from the Austrian study and suggest a need for further research accounting also for the impact of geographical variation.

  5. Ground-water resources of the Bengasi area, Cyrenaica, United Kingdom of Libya

    USGS Publications Warehouse

    Doyel, William Watson; Maguire, Frank J.

    1964-01-01

    The Benpsi area of Libya, in the northwestern part of the Province of Cyrenaica (Wilayat Barqah), is semiarid, and available ground-water supplies in the area are relatively small. Potable ground water from known sources is reserved for the present and future needs of the city, and no surface-water supplies are available in the area. This investigation to evaluate known, as well as potential, water supplies in the area was undertaken as part of a larger program of ground-water investigations in Libya under the auspices of the U. S. Operations Mission to Libya and the Government of Libya. A ground-water reservoir underlies the Bengasi area, in which the water occurs in solution channels, cavities, and other openings in Miocene limestone. The reservoir is recharged directly by rainfall on the area and by infiltration from ephemeral streams (wadis) rising in Al Jabal al Akhar to the east. In the Baninah and Al Fuwayhit areas the ground-water reservoir yields water of fair quality and in sufficient quantity for the current (1959) needs. of the Bengasi city supply. The test-drilling program in the area south and southeast of Bengasi indicates that water in sufficient quantity for additional public supply probably can be obtained in some localities from wells. The water, however, is moderately to highly mineralized and would require treatment or demineralization before it could be used for additional public supply. Much of the water could be used directly for irrigation, but careful attention would have to be given to cultivation, drainage, and cropping practices. The hazard of saltwater encroachment also exists if large-scale withdrawals are undertaken in the coastal zones.

  6. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  7. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Ground-water monitoring systems. 257... Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.22 Ground-water monitoring systems. (a) A ground-water monitoring system must be installed that consists of a sufficient number of...

  8. Arkansas Groundwater-Quality Network

    USGS Publications Warehouse

    Pugh, Aaron L.; Jackson, Barry T.; Miller, Roger

    2014-01-01

    Arkansas is the fourth largest user of groundwater in the United States, where groundwater accounts for two-thirds of the total water use. Groundwater use in the State increased by 510 percent between 1965 and 2005 (Holland, 2007). The Arkansas Groundwater-Quality Network is a Web map interface (http://ar.water.usgs.gov/wqx) that provides rapid access to the U.S. Geological Survey’s (USGS) National Water Information System (NWIS) and the U.S. Environmental Protection Agency’s (USEPA) STOrage and RETrieval (STORET) databases of ambient water information. The interface enables users to perform simple graphical analysis and download selected water-quality data.

  9. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    USGS Publications Warehouse

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals

  10. In Situ Bioremediation of MTBE in Groundwater

    DTIC Science & Technology

    2003-06-01

    by-products (carbon dioxide and water ). Groundwater leaving the down-gradient edge of the treatment zone contains MTBE at concentrations less than... groundwater treatment approaches ineffective or impracticable. Currently, conventional pump and treat (P&T) followed by aboveground water treatment and...carbon dioxide and water ). Groundwater leaving the down gradient edge of the treatment zone contains MTBE at concentrations less than or equal to the

  11. Treatment of highly polluted groundwater by novel iron removal process.

    PubMed

    Sim, S J; Kang, C D; Lee, J W; Kim, W S

    2001-01-01

    The removal of ferrous iron (Fe(II)) in groundwater has been generally achieved by simple aeration, or the addition of an oxidizing agent. Aeration has been shown to be very efficient in insolubilization ferrous iron at a pH level greater than 6.5. In this study, pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron in groundwater in a limestone packed column. A sedimentation unit coupled with a membrane filtration was also developed to precipitate and filtrate the oxidized ferric compound simultaneously. Several bench-scale studies, including the effects of the limestone granule sizes, amounts and hydraulic retention time on iron removal in the limestone packed column were investigated. It was found that 550 g/L of the 7-8 mesh size limestone granules, and 20 min of hydraulic retention time in the limestone packed column, were necessary for the sufficient oxidation of 40 mg/L of iron(II) in groundwater. Long-term operation was successfully achieved in contaminated waters by removing the iron deposits on the surface of the limestone granule by continuous aeration from the bottom of the column. Periodic reverse flow helped to remove caking and fouling of membrane surface caused by the continuous filtration. Recycling of the treated water from the membrane right after reverse flow operation made possible an admissible limit of iron concentration of the treated water for drinking. The pilot-scale process was constructed and has been tested in the rural area of Korea.

  12. Regional analysis of ground-water recharge: Chapter B in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    A modeling analysis of runoff and ground-water recharge for the arid and semiarid southwestern United States was performed to investigate the interactions of climate and other controlling factors and to place the eight study-site investigations into a regional context. A distributed-parameter water-balance model (the Basin Characterization Model, or BCM) was used in the analysis. Data requirements of the BCM included digital representations of topography, soils, geology, and vegetation, together with monthly time-series of precipitation and air-temperature data. Time-series of potential evapotranspiration were generated by using a submodel for solar radiation, taking into account topographic shading, cloudiness, and vegetation density. Snowpack accumulation and melting were modeled using precipitation and air-temperature data. Amounts of water available for runoff and ground-water recharge were calculated on the basis of water-budget considerations by using measured- and generated-meteorologic time series together with estimates of soil-water storage and saturated hydraulic conductivity of subsoil geologic units. Calculations were made on a computational grid with a horizontal resolution of about 270 meters for the entire 1,033,840 square-kilometer study area. The modeling analysis was composed of 194 basins, including the eight basins containing ground-water recharge-site investigations. For each grid cell, the BCM computed monthly values of potential evapotranspiration, soil-water storage, in-place ground-water recharge, and runoff (potential stream flow). A fixed percentage of runoff was assumed to become recharge beneath channels operating at a finer resolution than the computational grid of the BCM. Monthly precipitation and temperature data from 1941 to 2004 were used to explore climatic variability in runoff and ground-water recharge.The selected approach provided a framework for classifying study-site basins with respect to climate and dominant recharge

  13. Groundwater quality in the glacial aquifer system, United States

    USGS Publications Warehouse

    Stackelberg, Paul E.

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The glacial aquifer system constitutes one of the important areas being evaluated.

  14. Which is the best oxidant for complexed iron removal from groundwater: The Kogalym case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munter, R.; Overbeck, P.; Sutt, J.

    2008-07-01

    A short overview of the significance of a preoxidation stage groundwater treatment is presented. As an example the case of complexed iron removal from Kogalym groundwater (Tjumen, Siberia, Russian Federation) using different preoxidants (ozone, oxygen, chlorine, hydrogen peroxide, and potassium permanganate) is discussed. The key problem is stable di- and trivalent iron-organic complexes in groundwater which after aeration tend to pass through the hydroanthracite-sand gravity filters. The total organic carbon (TOC) content in raw groundwater is in the range of 3.2-6.4 mg/L, total iron content 2.7-6.0 mg/L and divalent iron content 2.4-4.0 mg/L. Separation from Kogalym groundwater by XAD-16 adsorbentmore » humic matter fraction was homogeneous, with only 1 peak on the chromatogram with maximum Rt = 10.75 min and corresponding molecular mass 1911 ({lt} 2000). The final developed treatment technology is based on the water oxidation/reduction potential (ORP) optimization according to the iron system pE-pH diagram and consists of intensive aeration of raw water in the Gas-Degas Treatment (GDT) unit with the following sequence: filtration through the hydroanthracite and special anthracite Everzit, with intermediate enrichment of water with pure oxygen between the filtration stages.« less

  15. Occurrence of pesticides in shallow groundwater of the United States: initial results from the National Water-Quality Assessment program

    USGS Publications Warehouse

    Kolpin, Dana W.; Barbash, Jack E.; Gilliom, Robert J.

    1998-01-01

    The first phase of intensive data collection for the National Water-Quality Assessment (NAWQA) was completed during 1993−1995 in 20 major hydrologic basins of the United States. Groundwater land-use studies, designed to sample recently recharged groundwater (generally within 10 years) beneath specific land-use and hydrogeologic settings, are a major component of the groundwater quality as sessment for NAWQA. Pesticide results from the 41 land-use studies conducted during 1993−1995 indicate that pesticides were commonly detected in shallow groundwater, having been found at 54.4% of the 1034 sites sampled in agricultural and urban settings across the United States. Pesticide concentrations were generally low, with over 95% of the detections at concentrations less than 1 μg/L. Of the 46 pesticide compounds examined, 39 were detected. The compounds detected most frequently were atrazine (38.2%), deethylatrazine (34.2%), simazine (18.0%), metolachlor (14.6%), and prometon (13.9%). Statistically significant relations were observed between frequencies of detection and the use, mobility, and persistence of these compounds. Pesticides were commonly detected in both agricultural (56.4%; 813 sites) and urban (46.6%; 221 sites) settings. Frequent detections of pesticides in urban areas indicate that, as is the case with agricultural pesticide use in agricultural areas, urban and suburban pesticide use significantly contribute to pesticide occurrence in shallow groundwater. Although pesticides were detected in groundwater sampled in urban areas and all nine of the agricultural land-use categories examined, significant variations in occurrence were observed among these categories. Maximum contaminant levels (MCLs) established by the U.S. Environmental Protection Agency for drinking water were exceeded for only one pesticide (atrazine, 3 μg/L) at a single location. However, MCLs have been established for only 25 of the 46 pesticide compounds examined, do not cover pesticide

  16. Superfund record of decision (EPA Region 9): Mather Air Force Base, Soil and Groundwater operable units, Sacramento, CA, June 21, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The decision document presents the selected remedial actions for the Soil Operable Unit (OU) Sites and Groundwater OU Plumes, at the formerly active Mather Air Force Base (AFB), Sacramento County, California. The purpose of the Record of Decision (ROD) is to decide the appropriate level of remediation necessary to protect human health and the environment, and determine what requirements are applicable or relevant and appropriate requirements (ARARs) based on the groundwater beneficial use designation and site-specific conditions. The ROD has been divided into seven sections which specifically address the range of selected remedial actions for the Soil OU sites andmore » Groundwater OU plumes.« less

  17. Seasonal forecasting of groundwater levels in natural aquifers in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Jackson, Christopher; Pachocka, Magdalena; Brookshaw, Anca; Scaife, Adam

    2014-05-01

    Groundwater aquifers comprise the world's largest freshwater resource and provide resilience to climate extremes which could become more frequent under future climate changes. Prolonged dry conditions can induce groundwater drought, often characterised by significantly low groundwater levels which may persist for months to years. In contrast, lasting wet conditions can result in anomalously high groundwater levels which result in flooding, potentially at large economic cost. Using computational models to produce groundwater level forecasts allows appropriate management strategies to be considered in advance of extreme events. The majority of groundwater level forecasting studies to date use data-based models, which exploit the long response time of groundwater levels to meteorological drivers and make forecasts based only on the current state of the system. Instead, seasonal meteorological forecasts can be used to drive hydrological models and simulate groundwater levels months into the future. Such approaches have not been used in the past due to a lack of skill in these long-range forecast products. However systems such as the latest version of the Met Office Global Seasonal Forecast System (GloSea5) are now showing increased skill up to a 3-month lead time. We demonstrate the first groundwater level ensemble forecasting system using a multi-member ensemble of hindcasts from GloSea5 between 1996 and 2009 to force 21 simple lumped conceptual groundwater models covering most of the UK's major aquifers. We present the results from this hindcasting study and demonstrate that the system can be used to forecast groundwater levels with some skill up to three months into the future.

  18. Groundwater quality in the Klamath Mountains, California

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  19. Hydrogeology, water quality, and ground-water development alternatives in the Beaver-Pasquiset ground-water reservoir, Rhode Island

    USGS Publications Warehouse

    Dickerman, D.C.; Ozbilgin, M.M.

    1985-01-01

    In a 23 sq mi study area, the Beaver-Pasquiset groundwater reservoir within the Pawcatuck River basin in southern Rhode Island, stratified drift is the only principal geologic unit capable of producing yields > 350 gal/min. Transmissivity of the aquifer ranges from 7,200 to 24,300 sq ft/day. Water table conditions prevail in the aquifer, which is in good hydraulic connection with perennial streams and ponds. A digital model of two-dimensional groundwater flow was used to simulate the interaction between surface water and groundwater, and to evaluate the impact of alternative schemes of groundwater development on groundwater levels, pond levels, and streamflow in the Beaver-Pasquiset groundwater reservoir. Transient simulations of theoretical pumpage were made for a drought period (1963-66) and a wet period (1976-78). The areas most favorable for development of high-capacity wells (350 gal/min or more) are along the Beaver River and near Pasquiset Pond. The water is soft and generally contains < 100 mg/L dissolved solids. Locally, groundwater contains elevated concentrations of iron and manganese (7.5 and 3.7 mg/L, respectively), southeast of Pasquiset Pond, and will require treatment if used for public supply. The groundwater reservoir was simulated with a two-dimensional finite-difference model using a block-centered grid consisting of 33 rows and 75 columns. Differences between measured and simulated water table altitudes for the final steady state run for 21 selected observation wells averaged +0.07 ft. Combined pumping rates for simulation of groundwater development alternatives at eight sites ranged from 3.25 to 7.00 Mgal/d. Pumping rates for individual wells ranged from 0.25 to 1.50 Mgal/d. Transient simulations suggest that the Beaver-Pasquiset groundwater reservoir is capable of sustaining a pumping rate of 4.25 Mgal/d during years of average groundwater recharge with minimal impact on groundwater levels, pond levels, and streamflow. During extreme drought

  20. Evaluation of the removal of Strontium-90 from groundwater using a zeolite rich-rock permeable treatment wall

    NASA Astrophysics Data System (ADS)

    Seneca, S. M.; Rabideau, A. J.; Bandilla, K.

    2010-12-01

    Experimental and modeling studies are in progress to evaluate the long-term performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Multiple column tests were performed at the University at Buffalo and on-site West Valley Environmental Services; columns were supplied with synthetic groundwater referenced to anticipate field conditions and radioactive groundwater on-site WVES. The primary focus in this work is on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+); the data obtained from the column studies is used to support the robust estimation of zeolite cation exchange parameters. This research will produce a five-solute cation exchange model describing the removal efficiency of the zeolite, using the various column tests to calibrate and validate the geochemical transport model. The field-scale transport model provides flexibility to explore design parameters and potential variations in groundwater geochemistry to investigate the long-term performance of a full scale treatment wall at the Western New York nuclear facility.

  1. Groundwater: Illinois' Buried Treasure. Education Activity Guide.

    ERIC Educational Resources Information Center

    Environmental Education Association of Illinois, Chicago.

    Groundwater is an extremely valuable resource that many feel has been too long neglected and taken for granted. There is growing recognition in Illinois and throughout the United States that comprehensive groundwater protection measures are vital. Illinois embarked on a course in protecting groundwater resources with the passage of the Illinois…

  2. Evaluation of Zeolite Permeable Treatment Wall for the Removal of Strontium-90 from Groundwater

    NASA Astrophysics Data System (ADS)

    Seneca, S. M.; Bronner, C.; Ross, E.; Rabideau, A. J.

    2009-05-01

    Experimental and modeling studies have been initiated to evaluate the potential performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Preliminary column studies were performed using a synthetic groundwater referenced to anticipate field conditions, with a focus on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+). Variations of the column configurations addressed the effects of particle size and flow rates on removal efficiency. In general, kinetic effects were not significant for the test conditions. Ongoing studies are focused on the comparison of zeolites obtained from two sources: Teague Mineral Products (Adrian, OR) and Bear River Zeolite (Preston, UT), and on the possible influence of native soil that is mixed with treatment wall material during construction. The results of the performance assessment will support the possible deployment of a full scale treatment wall at a Western New York nuclear facility.

  3. Evaluation of Zeolite Permeable Treatment Wall for the Removal of Strontium-90 from Groundwater

    NASA Astrophysics Data System (ADS)

    Seneca, S. M.; Bandilla, K.; Rabideau, A. J.; Ross, E.; Bronner, C. E.

    2009-12-01

    Experimental and modeling studies are in progress to evaluate the potential performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Column studies were performed using a synthetic groundwater referenced to anticipate field conditions, with a focus on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+). Ongoing studies are focused on the comparison of zeolites obtained from two sources: Teague Mineral Products (Adrian, OR) and Bear River Zeolite (Preston, UT), and on the possible influence of native soil that is mixed with treatment wall material during construction. The data obtained from the column studies is used to support robust estimation of zeolite cation exchange parameters producing a five-solute cation exchange model describing the removal efficiency of the zeolite. The field-scale transport model provides flexibility to explore design parameters to support the possible deployment of a full scale treatment wall at a Western New York nuclear facility.

  4. Predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States.

    PubMed

    Yang, Ningfang; Winkel, Lenny H E; Johannesson, Karen H

    2014-05-20

    Groundwater contaminated with arsenic (As) threatens the health of more than 140 million people worldwide. Previous studies indicate that geology and sedimentary depositional environments are important factors controlling groundwater As contamination. The Mississippi River delta has broadly similar geology and sedimentary depositional environments to the large deltas in South and Southeast Asia, which are severely affected by geogenic As contamination and therefore may also be vulnerable to groundwater As contamination. In this study, logistic regression is used to develop a probability model based on surface hydrology, soil properties, geology, and sedimentary depositional environments. The model is calibrated using 3286 aggregated and binary-coded groundwater As concentration measurements from Bangladesh and verified using 78 As measurements from south Louisiana. The model's predictions are in good agreement with the known spatial distribution of groundwater As contamination of Bangladesh, and the predictions also indicate high risk of As contamination in shallow groundwater from Holocene sediments of south Louisiana. Furthermore, the model correctly predicted 79% of the existing shallow groundwater As measurements in the study region, indicating good performance of the model in predicting groundwater As contamination in shallow aquifers of south Louisiana.

  5. Improving Groundwater Data Interoperability: Results of the Second OGC Groundwater Interoperability Experiment

    NASA Astrophysics Data System (ADS)

    Lucido, J. M.; Booth, N.

    2014-12-01

    Interoperable sharing of groundwater data across international boarders is essential for the proper management of global water resources. However storage and management of groundwater data is often times distributed across many agencies or organizations. Furthermore these data may be represented in disparate proprietary formats, posing a significant challenge for integration. For this reason standard data models are required to achieve interoperability across geographical and political boundaries. The GroundWater Markup Language 1.0 (GWML1) was developed in 2010 as an extension of the Geography Markup Language (GML) in order to support groundwater data exchange within Spatial Data Infrastructures (SDI). In 2013, development of GWML2 was initiated under the sponsorship of the Open Geospatial Consortium (OGC) for intended adoption by the international community as the authoritative standard for the transfer of groundwater feature data, including data about water wells, aquifers, and related entities. GWML2 harmonizes GWML1 and the EU's INSPIRE models related to geology and hydrogeology. Additionally, an interoperability experiment was initiated to test the model for commercial, technical, scientific, and policy use cases. The scientific use case focuses on the delivery of data required for input into computational flow modeling software used to determine the flow of groundwater within a particular aquifer system. It involves the delivery of properties associated with hydrogeologic units, observations related to those units, and information about the related aquifers. To test this use case web services are being implemented using GWML2 and WaterML2, which is the authoritative standard for water time series observations, in order to serve USGS water well and hydrogeologic data via standard OGC protocols. Furthermore, integration of these data into a computational groundwater flow model will be tested. This submission will present the GWML2 information model and results

  6. Pathogens in Dairy Farming: Source Characterization and Groundwater Impacts

    NASA Astrophysics Data System (ADS)

    Atwill, E. R.; Watanabe, N.; Li, X.; Hou, L.; Harter, T.; Bergamaschi, B.

    2007-12-01

    Intense animal husbandry is of growing concern as a potential contamination source of enteric pathogens as well as antibiotics. To assess the public health risk from pathogens and their hydrologic pathways, we hypothesize that the animal farm is not a homogeneous diffuse source, but that pathogen loading to the soil and, therefore, to groundwater varies significantly between the various management units of a farm. A dairy farm, for example, may include an area with calf hutches, corrals for heifers of various ages, freestalls and exercise yards for milking cows, separate freestalls for dry cows, a hospital barn, a yard for collection of solid manure, a liquid manure storage lagoon, and fields receiving various amounts of liquid and solid manure. Pathogen shedding and, hence, therapeutic and preventive pharmaceutical treatments vary between these management units. We are implementing a field reconnaissance program to determine the occurrence of three different pathogens ( E. coli, Salmonella, Campylobacter) and one indicator organism ( Enterococcus) at the ground-surface and in shallow groundwater of seven different management units on each of two farms, and in each of four seasons (spring/dry season, summer/irrigation season, fall/dry season, winter/rainy season). Initial results indicate that significant differences exist in the occurrence of these pathogens between management units and between organisms. These differences are weakly reflected in their occurrence in groundwater, despite the similarity of the shallow geologic environment across these sites. Our results indicate the importance of differentiating sources within a dairy farm and the importance of understanding subsurface transport processes for these pathogens.

  7. Twenty years of global groundwater research: A Science Citation Index Expanded-based bibliometric survey (1993-2012)

    NASA Astrophysics Data System (ADS)

    Niu, Beibei; Loáiciga, Hugo A.; Wang, Zhen; Zhan, F. Benjamin; Hong, Song

    2014-11-01

    A bibliometric analysis was conducted to evaluate groundwater research from different perspectives in the period 1993-2012 based on the Science Citation Index-Expanded (SCIE) database. The bibliometric analysis summarizes output, categorical, geographical, and institutional patterns, as well as research hotspots in global groundwater studies. Groundwater research experienced notable growth in the past two decades. ;Environmental sciences;, ;water resources; and ;multidisciplinary geosciences; were the three major subject categories. The Journal of Hydrology published the largest number of groundwater-related publications in the surveyed period. Major author clusters and research regions are located in the United States, Western Europe, Eastern and Southern Asia, and Eastern Australia. The United States was a leading contributor to global groundwater research with the largest number of independent and collaborative papers, its dominance affirmed by housing 12 of the top 20 most active institutions reporting groundwater-related research. The US Geological Survey, the Chinese Academy of Sciences, and the USDA Agricultural Research Service were the three institutions with the largest number of groundwater-related publications. A keywords analysis revealed that groundwater quality and contamination, effective research technologies, and treatment technologies for water-quality improvement were the main research areas in the study period. Several keywords such as ;arsenic;, ;climate change;, ;fluoride;, ;groundwater management;, ;hydrogeochemistry;, ;uncertainty;, ;numerical modeling;, ;seawater intrusion;, ;adsorption;, ;remote sensing;, ;land use;, ;USA;(as study site), and ;water supply; received dramatically increased attention during the study period, possibly signaling future research trends.

  8. LONG-TERM GEOCHEMICAL BEHAVIOR OF A ZEROVALENT IRON PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM IN GROUNDWATER

    EPA Science Inventory

    Passive, in-situ reactive barriers have proven to be viable, cost-effective systems for the remediation of Cr-contaminated groundwater at some sites. Permeable reactive barriers (PRBs) are installed in the flow-path of groundwater, most typically as vertical treatment walls. Re...

  9. Groundwater Profession in Transition: Discovery toAdaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.

    2005-04-04

    Over the past century and half, groundwater has played an important role in the economic prosperity of the United States. The groundwater profession which has contributed to this prosperity has grown through the contributions of the U.S. and State Geological Surveys,academia, and industry. A century ago, the energies of the profession were channeled towards discovering new sources of groundwater in a largely unexplored land, and exploiting the resources for maximum economic benefit. Experience has since revealed that groundwater systems are finite, and are intimately linked to surface water bodies and the biosphere. A consequence is that aggressive exploitation of groundwatermore » can lead to unacceptable environmental degradation and social cost. At present, the groundwater profession is in a state of transition from one of discovery and exploitation, to one of balancing resource development with avoiding unacceptable damage to the environment. This paper outlines the history of the groundwater profession in the United States since the late nineteenth century, and speculates on what may lie ahead in the near future, as the profession makes the transition from discovering new sources of groundwater to one of better understanding and adapting to nature's constraints.« less

  10. Groundwater Profession in Transition: Discovery toAdaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.

    Over the past century and half, groundwater has played an important role in the economic prosperity of the United States. The groundwater profession which has contributed to this prosperity has grown through the contributions of the U.S. and State Geological Surveys,academia, and industry. A century ago, the energies of the profession were channeled towards discovering new sources of groundwater in a largely unexplored land, and exploiting the resources for maximum economic benefit. Experience has since revealed that groundwater systems are finite, and are intimately linked to surface water bodies and the biosphere. A consequence is that aggressive exploitation of groundwatermore » can lead to unacceptable environmental degradation and social cost. At present, the groundwater profession is in a state of transition from one of discovery and exploitation, to one of balancing resource development with avoiding unacceptable damage to the environment. This paper outlines the history of the groundwater profession in the United States since the late nineteenth century, and speculates on what may lie ahead in the near future, as the profession makes the transition from discovering new sources of groundwater to one of better understanding and adapting to nature's constraints.« less

  11. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  12. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  13. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  14. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  15. 40 CFR 264.92 - Ground-water protection standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Ground-water protection standard. 264... Releases From Solid Waste Management Units § 264.92 Ground-water protection standard. The owner or operator... constituents under § 264.93 detected in the ground water from a regulated unit do not exceed the concentration...

  16. Potential effects of regional pumpage on groundwater age distribution

    USGS Publications Warehouse

    Zinn, Brendan A.; Konikow, Leonard F.

    2007-01-01

    Groundwater ages estimated from environmental tracers can help calibrate groundwater flow models. Groundwater age represents a mixture of traveltimes, with the distribution of ages determined by the detailed structure of the flow field, which can be prone to significant transient variability. Effects of pumping on age distribution were assessed using direct age simulation in a hypothetical layered aquifer system. A steady state predevelopment age distribution was computed first. A well field was then introduced, and pumpage caused leakage into the confined aquifer of older water from an overlying confining unit. Large changes in simulated groundwater ages occurred in both the aquifer and the confining unit at high pumping rates, and the effects propagated a substantial distance downgradient from the wells. The range and variance of ages contributing to the well increased substantially during pumping. The results suggest that the groundwater age distribution in developed aquifers may be affected by transient leakage from low‐permeability material, such as confining units, under certain hydrogeologic conditions.

  17. Chemical Reductive Treatment of Groundwater Chromate and Chlorinated Ethenes: Tests at Two Field Sites

    EPA Science Inventory

    Both hexavalent chromium (Cr(VI)) and chlorinated ethenes such as tetrachloroethene (PCE) are common groundwater contaminants. A pump-and-treat approach to remedy them usually is not satisfactory with respect to effectiveness and cost. Effective treatment technologies generally...

  18. Chlorine-36 in groundwater of the United States: empirical data

    NASA Astrophysics Data System (ADS)

    Davis, Stanley; Moysey, Stephen; Cecil, DeWayne; Zreda, Marek

    2002-11-01

    Natural production of the radionuclide chlorine-36 (36Cl) has provided a valuable tracer for groundwater studies. The nuclear industry, especially the testing of thermonuclear weapons, has also produced large amounts of 36Cl that can be detected in many samples of groundwater. In order to be most useful in hydrologic studies, the natural production prior to 1952 should be distinguished from more recent artificial sources. The object of this study was to reconstruct the probable preanthropogenic levels of 36Cl in groundwater in the United States. Although significant local variations exist, they are superimposed on a broad regional pattern of 36Cl/Cl ratios in the United States. Owing to the influence of atmospherically transported ocean salt, natural ratios of 36Cl/total Cl are lowest near the coast and increase to a maximum in the central Rocky Mountains of the United States. Résumé. La production naturelle du radionucléide chlore-36 (36Cl) fournit un intéressant traceur pour l'étude des eaux souterraines. L'industrie nucléaire, en particulier les essais de bombes thermonucléaires, a également produit de grandes quantités de 36Cl qui a pu être détecté dans de nombreux échantillons d'eau souterraine. Afin d'en améliorer l'usage dans les études hydrologiques, la production naturelle avant 1952 doit être distinguée des sources artificielles plus récentes. L'objectif de cette étude a été la reconstruction des niveaux probables de 36Cl dans les eaux souterraines des États-Unis, avant la production anthropique du 36Cl. Bien qu'il existe des variations locales significatives, elles se surimposent à un canevas régional de rapports 36Cl/Cl dans les États-Unis. Du fait de l'influence du sel océanique transporté dans l'atmosphère, les rapports naturels de 36Cl/Cl total sont plus faibles près de la côte et augmentent jusqu'à un maximum dans les Montagnes Rocheuses centrales des États-Unis. Resumen. La producción natural del radionucleido cloro

  19. Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993-1994

    USGS Publications Warehouse

    Squillace, P.T.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.

    1997-01-01

    The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE), is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-94 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Samples were collected from 5 drinking-water wells, 12 springs, and 1g3 monitoring wells in urban areas. No MTBE was detected in drinking-water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in 8 areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in 9 areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft lifetime drinking water health advisory. Because MTBE is persistent and mobile in groundwater) it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylenes (BTEX) compounds which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and nonpoint sources, such as recharge of precipitation and storm-water runoff.

  20. Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993-1994

    USGS Publications Warehouse

    Squillace, P.J.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.

    1996-01-01

    The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE) is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-1994 aspart of the U.S. Geological Survey's National Water-Quality Assessment program. Samples were collected from five drinking water wells, 12 springs, and 193 monitoring wells in urban areas. No MTBE was detected in drinking water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in eight areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in nine areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft drinking water health advisory. Because MTBE is persistent and mobile in groundwater, it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylene (BTEX) compounds, which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and non-point sources, such as recharge of precipitation and stormwater runoff.

  1. Groundwater-Quality Data in the Madera-Chowchilla Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 860-square-mile Madera-Chowchilla study unit (MADCHOW) was investigated in April and May 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within MADCHOW, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 35 wells in Madera, Merced, and Fresno Counties. Thirty of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and five more were selected to provide additional sampling density to aid in understanding processes affecting groundwater quality (flow-path wells). Detection summaries in the text and tables are given for grid wells only, to avoid over-representation of the water quality in areas adjacent to flow-path wells. Groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], low-level 1,2-dibromo-3-chloropropane [DBCP] and 1,2-dibromoethane [EDB], pesticides and pesticide degradates, polar pesticides and metabolites, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA], perchlorate, and low-level 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (uranium isotopes, and gross alpha and gross beta particle activities). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen

  2. Application of a geographic information system in analyzing the occurrence of atrazine in groundwater of the mid-continental United States

    USGS Publications Warehouse

    Burkart, M.R.; Kolpin, D.W.

    1993-01-01

    The US Geological Survey, US Department of Agriculture, and US Environmental Protection Agency are conducting research and regional assessments in support of policy alternatives intended to protect water resources from agricultural chemical contamination. The mid-continent was selected because of the intense row crop agriculture and associated herbicide application in this region. An application of a geographic information system is demonstrated for analyzing and comparing the distribution of estimated atrazine use to the detection rate of atrazine in groundwater. Understanding the relations between atrazine use and detection in groundwater is important in policy deliberations to protect water resources. Relational analyses between measures of chemical use and detection rate by natural resource units may provide insight into critical factors controlling the processes that result in groundwater contamination from agricultural chemicals. 

  3. Groundwater quality in the Northern Sacramento Valley, California

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  4. Groundwater quality in the Southern Sacramento Valley, California

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  5. Groundwater Remedies Selected at Superfund Sites

    EPA Pesticide Factsheets

    Groundwater remediation continues to be a priority for the U.S. Environmental Protection Agency (EPA), and remedies that have been specified in RODs for groundwater remediation include treatment (including groundwater pump and treat [P&T] and in situ treat

  6. Geohydrology of Storage Unit III and a combined flow model of the Santa Barbara and foothill ground-water basins, Santa Barbara County, California

    USGS Publications Warehouse

    Freckleton, John R.; Martin, Peter; Nishikawa, Tracy

    1998-01-01

    The city of Santa Barbara pumps most of its ground water from the Santa Barbara and Foothill ground-water basins. The Santa Barbara basin is subdivided into two storage units: Storage Unit I and Storage Unit III. The Foothill basin and Storage Unit I of the Santa Barbara basin have been studied extensively and ground-water flow models have been developed for them. In this report, the geohydrology of the Santa Barbara ground- water basin is described with a special emphasis on Storage Unit III in the southwestern part of the basin. The purposes of this study were to summarize and evaluate the geohydrology of Storage Unit III and to develop an areawide model of the Santa Barbara and Foothill basins that includes the previously unmodeled Storage Unit III. Storage Unit III is in the southwestern part of the city of Santa Barbara. It is approximately 3.5 miles long and varies in width from about 2,000 feet in the southeast to 4,000 feet in the north-west. Storage Unit III is composed of the Santa Barbara Formation and overlying alluvium. The Santa Barbara Formation (the principal aquifer) consists of Pleistocene and Pliocene(?) unconsolidated marine sand, silt, and clay, and it has a maximum saturated thickness of about 160 feet. The alluvium that overlies the Santa Barbara Formation has a maximum saturated thickness of about 140 feet. The storage unit is bounded areally by faults and low-permeability deposits and is underlain by rocks of Tertiary age. The main sources of recharge to Storage Unit III are seepage from Arroyo Burro and infiltration of precipitation. Most of the recharge occurs in the northwest part of the storage unit, and ground water flows toward the southeast along the unit's long axis. Lesser amounts of recharge may occur as subsurface flow from the Hope Ranch subbasin and as upwelling from the underlying Tertiary rocks. Discharge from Storage Unit III occurs as pumpage, flow to underground drains, underflow through alluvium in the vicinity of Arroyo

  7. Groundwater data network interoperability

    USGS Publications Warehouse

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  8. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for

  9. Sandcastle Moats and Petunia Bed Holes. A Book about Groundwater.

    ERIC Educational Resources Information Center

    Nickinson, Pat

    This book provides five instructional units on groundwater. Units included are: (1) "Where's the Groundwater?" (describing the concepts of a saturated zone, water table, hydrologic cycle, recharge and discharge, core of depression, subsidence, and saltwater intrusion); (2) "How Does It Travel?" (discussing porosity,…

  10. Ground-water hydrology of the Willamette basin, Oregon

    USGS Publications Warehouse

    Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.

    2005-01-01

    The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple

  11. A scientifically based nationwide assessment of groundwater quality in the United States

    USGS Publications Warehouse

    Alley, W.M.; Cohen, P.

    1991-01-01

    Beginning in 1986, the U.S. Geological Survey began an effort to develop a National Water-Quality Assessment Program. The basic premise underlying this initiative is that a better understanding of the quality of water resources across the country, both surface- and groundwater, is needed to develop effective programs and policies to meet the nation's water-quality concerns. The program will focus on water-quality conditions that are prevalent or large in scale, such as occur from nonpoint sources of pollution or from a high density of point sources. The design of the program is substantially different from the traditional approach of a diffuse national monitoring network. The major activities of the assessment program will be clustered within a set of hydrologic systems (river basins and aquifer systems), referred to as study units. In aggregate, the study units will account for a large part of the nation's water use and represent a wide range of settings across the country. Unique attributes of the program include: (1) the use of consistent study approaches, field and laboratory methods, water-quality measurements, and ancillary data measurements for all study units; (2) the development of a progressive understanding of water-quality conditions and trends in each study unit through long-term studies that rotate periods of intensive data collection and analysis with periods during which the assessment activities are less intensive; and (3) the focus of considerable effort on synthesizing results from among the study units to provide information on regional and national water-quality issues. ?? 1991 Springer-Verlag New York Inc.

  12. Method to remove uranium/vanadium contamination from groundwater

    DOEpatents

    Metzler, Donald R.; Morrison, Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  13. Groundwater-Quality Data in the Antelope Valley Study Unit, 2008: Results from the California GAMA Program

    USGS Publications Warehouse

    Schmitt, Stephen J.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2009-01-01

    Groundwater quality in the approximately 1,600 square-mile Antelope Valley study unit (ANT) was investigated from January to April 2008 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within ANT, and to facilitate statistically consistent comparisons of groundwater quality throughout California. Samples were collected from 57 wells in Kern, Los Angeles, and San Bernardino Counties. Fifty-six of the wells were selected using a spatially distributed, randomized, grid-based method to provide statistical representation of the study area (grid wells), and one additional well was selected to aid in evaluation of specific water-quality issues (understanding well). The groundwater samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], gasoline additives and degradates, pesticides and pesticide degradates, fumigants, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), and radioactive constituents (gross alpha and gross beta radioactivity, radium isotopes, and radon-222). Naturally occurring isotopes (strontium, tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 239 constituents and water-quality indicators (field parameters) were investigated. Quality

  14. TREATMENT OF HIGHLY CONTAMINATED GROUNDWATER: A SITE DEMONSTRATION PROJECT

    EPA Science Inventory

    From 9-11/1994, the USEPA conducted a field demonstration of the remediation of highly contaminated groundwater at the Mascolite Superfund site located in Millville, NJ. Besides high concentrations of the major contaminant, methyl methacrylate (MMA), the groundwater also containe...

  15. Groundwater quality in the Santa Barbara Coastal Plain, California

    USGS Publications Warehouse

    Davis, Tracy A.; Belitz, Kenneth

    2016-10-03

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.

  16. Status of groundwater quality in the Santa Barbara Study Unit, 2011: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Davis, Tracy A.; Kulongoski, Justin T.

    2016-10-03

    Groundwater quality in the 48-square-mile Santa Barbara study unit was investigated in 2011 as part of the California State Water Resources Control Board’s Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The study unit is mostly in Santa Barbara County and is in the Transverse and Selected Peninsular Ranges hydrogeologic province. The GAMA Priority Basin Project is carried out by the U.S. Geological Survey in collaboration with the California State Water Resources Control Board and Lawrence Livermore National Laboratory.The GAMA Priority Basin Project was designed to provide a statistically unbiased, spatially distributed assessment of the quality of untreated groundwater in the primary aquifer system of California. The primary aquifer system is defined as that part of the aquifer corresponding to the perforation interval of wells listed in the California Department of Public Health database for the Santa Barbara study unit. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Santa Barbara study unit, not the treated drinking water delivered to consumers by water purveyors.The status assessment for the Santa Barbara study unit was based on water-quality and ancillary data collected in 2011 by the U.S. Geological Survey from 23 sites and on water-quality data from the California Department of Public Health database for January 24, 2008–January 23, 2011. The data used for the assessment included volatile organic compounds; pesticides; pharmaceutical compounds; two constituents of special interest, perchlorate and N-nitrosodimethylamine (NDMA); and naturally present inorganic constituents, such as major ions and trace elements. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used to evaluate groundwater quality for those constituents that have federal or California regulatory and non

  17. Embodied energy comparison of surface water and groundwater supply options.

    PubMed

    Mo, Weiwei; Zhang, Qiong; Mihelcic, James R; Hokanson, David R

    2011-11-01

    The embodied energy associated with water provision comprises an important part of water management, and is important when considering sustainability. In this study, an input-output based hybrid analysis integrated with structural path analysis was used to develop an embodied energy model. The model was applied to a groundwater supply system (Kalamazoo, Michigan) and a surface water supply system (Tampa, Florida). The two systems evaluated have comparable total energy embodiments based on unit water production. However, the onsite energy use of the groundwater supply system is approximately 27% greater than the surface water supply system. This was primarily due to more extensive pumping requirements. On the other hand, the groundwater system uses approximately 31% less indirect energy than the surface water system, mainly because of fewer chemicals used for treatment. The results from this and other studies were also compiled to provide a relative comparison of embodied energy for major water supply options. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Groundwater quality in the Central Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. Two small watersheds of the Fresno and San Joaquin Rivers in the Central Sierra Nevada constitute one of the study units being evaluated.

  19. Groundwater quality in the Southern Sierra Nevada, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tehachapi-Cummings Valley and Kern River Valley basins and surrounding watersheds in the Southern Sierra Nevada constitute one of the study units being evaluated.

  20. Probability of detecting perchlorate under natural conditions in deep groundwater in California and the Southwestern United States

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    We use data from 1626 groundwater samples collected in California, primarily from public drinking water supply wells, to investigate the distribution of perchlorate in deep groundwater under natural conditions. The wells were sampled for the California Groundwater Ambient Monitoring and Assessment Priority Basin Project. We develop a logistic regression model for predicting probabilities of detecting perchlorate at concentrations greater than multiple threshold concentrations as a function of climate (represented by an aridity index) and potential anthropogenic contributions of perchlorate (quantified as an anthropogenic score, AS). AS is a composite categorical variable including terms for nitrate, pesticides, and volatile organic compounds. Incorporating water-quality parameters in AS permits identification of perturbation of natural occurrence patterns by flushing of natural perchlorate salts from unsaturated zones by irrigation recharge as well as addition of perchlorate from industrial and agricultural sources. The data and model results indicate low concentrations (0.1-0.5 μg/L) of perchlorate occur under natural conditions in groundwater across a wide range of climates, beyond the arid to semiarid climates in which they mostly have been previously reported. The probability of detecting perchlorate at concentrations greater than 0.1 μg/L under natural conditions ranges from 50-70% in semiarid to arid regions of California and the Southwestern United States to 5-15% in the wettest regions sampled (the Northern California coast). The probability of concentrations above 1 μg/L under natural conditions is low (generally <3%).

  1. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    USGS Publications Warehouse

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  2. 40 CFR 264.97 - General ground-water monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection of ground-water samples. The annular space (i.e., the space between the bore hole and well casing... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General ground-water monitoring... FACILITIES Releases From Solid Waste Management Units § 264.97 General ground-water monitoring requirements...

  3. Groundwater quality in the Tahoe and Martis Basins, California

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Tahoe and Martis Basins and surrounding watersheds constitute one of the study units being evaluated.

  4. Groundwater quality in the South Coast Interior Basins, California

    USGS Publications Warehouse

    Parsons, Mary C.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The South Coast Interior Basins constitute one of the study units being evaluated.

  5. Groundwater quality in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  6. Compendium of ordinances for groundwater protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage inmore » agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.« less

  7. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  8. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,000 square-mile Kern County Subbasin study unit (KERN) was investigated from January to March, 2006, as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The Kern County Subbasin study was designed to provide a spatially unbiased assessment of raw (untreated) ground-water quality within KERN, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 50 wells within the San Joaquin Valley portion of Kern County. Forty-seven of the wells were selected using a randomized grid-based method to provide a statistical representation of the ground-water resources within the study unit. Three additional wells were sampled to aid in the evaluation of changes in water chemistry along regional ground-water flow paths. The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon) and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and laboratory matrix spikes) were collected and analyzed at approximately 10 percent of

  9. In-Situ Chemical Reduction and Oxidation of VOCs in Groundwater: Groundwater Treatability Studies

    NASA Technical Reports Server (NTRS)

    Keith, Amy; Glasgow, Jason; McCaleh, Rececca C. (Technical Monitor)

    2001-01-01

    This paper presents NASA Marshall Space Flight Center's treatability studies for volatile organic compounds in groundwater. In-Situ groundwater treatment technologies include: 1) Chemical Reduction(Ferox); 2) Chemical Oxidation (Fenton Reagents, Permanganate, and Persulfate); and 3) Thermal (Dynamic Underground Stripping, Six-Phase Heating). This paper is presented in viewgraph form.

  10. Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico

    EPA Science Inventory

    EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water soften...

  11. Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico

    EPA Science Inventory

    EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water softene...

  12. Ground-water quality protection; why it's important to you

    USGS Publications Warehouse

    Webbers, Ank

    1995-01-01

    Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.

  13. Status and understanding of groundwater quality in the North San Francisco Bay groundwater basins, 2004

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth; Landon, Matthew K.; Farrar, Christopher

    2010-01-01

    Groundwater quality in the approximately 1,000-square-mile (2,590-square-kilometer) North San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in northern California in Marin, Napa, and Sonoma Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA North San Francisco Bay study was designed to provide a spatially unbiased assessment of untreated groundwater quality in the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 89 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as primary aquifers) were defined by the depth interval of the wells listed in the CDPH database for the North San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifers of the North San Francisco Bay study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or

  14. Regional assessment of groundwater quality for drinking purpose.

    PubMed

    Jang, Cheng-Shin

    2012-05-01

    Owing to limited surface water during a long-term drought, this work attempted to locate clean and safe groundwater in the Choushui River alluvial fan of Taiwan based on drinking-water quality standards. Because aquifers contained several pollutants, multivariate indicator kriging (MVIK) was adopted to integrate the multiple pollutants in groundwater based on drinking- and raw-water quality standards and to explore spatial uncertainty. According to probabilities estimated by MVIK, safe zones were determined under four treatment conditions--no treatment; ammonium-N and iron removal; manganese and arsenic removal; and ammonium-N, iron, manganese, and arsenic removal. The analyzed results reveal that groundwater in the study area is not appropriate for drinking use without any treatments because of high ammonium-N, iron, manganese, and/or arsenic concentrations. After ammonium-N, iron, manganese, and arsenic removed, about 81.9-94.9% of total areas can extract safe groundwater for drinking. The proximal-fan, central mid-fan, southern mid-fan, and northern regions are the excellent locations to pump safe groundwater for drinking after treatment. Deep aquifers of exceeding 200 m depth have wider regions to obtain excellent groundwater than shallow aquifers do.

  15. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  16. Proglacial Groundwater Flux and Storage in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Chavez, D.; McKenzie, J. M.; Baraer, M.; Mark, B. G.

    2012-12-01

    As tropical glaciers continue to rapidly retreat in the Cordillera Blanca, Peru, dry-season water resources are becoming more dependent on groundwater baseflow. Therefore, understanding the flux and storage of proglacial groundwater is necessary to forecast how groundwater storage can offset decreasing water resources. Recent studies of the Rio Santa Watershed, which drains the western slopes of the Cordillera Blanca, have identified that groundwater is the largest contributor to outflow from many watersheds during the dry season and that the flux of groundwater is temporarily available (< 4years). These groundwater estimates are based on chemical mass balance models that use hydrochemical and isotopic results primarily from surface water samples and stream discharge measurements. Although effective, this approach is limited by the absence of data from proglacial aquifers. In July, 2012, we installed six groundwater monitoring wells to a maximum depth of 6 m in two proglacial valleys in the Cordillera Blanca. For each well, water samples were collected for hydrochemical and isotopic analysis, slug-tests were conducted to measure hydraulic conductivity, and water levels were continuously monitored using pressure transducers. In both valleys we observed an upper layer of clay to silt sized glaciolacustrine material at each drill site. This layer was typically less than 5 m in thickness and had a low hydraulic conductivity (< 10-7 m/s). Underlying the clay layer were water bearing units of course material (either well-sorted sand/gravel or talus deposits) with an average hydraulic conductivity of 10-5 m/s. Additionally numerous discontinuous sand lenses and localized glaciofluvial gravel deposits were observed within the clay layer. The glaciolacustrine deposits behave as confining units that were capable of generating localized artesian conditions in the coarse grain units. The occurrence of the clay units adjacent to the main stream channels suggests that the

  17. Nevada National Security Site Groundwater Program

    ScienceCinema

    None

    2018-01-16

    From 1951 to 1992, the Unites States government conducted 828 underground nuclear tests at the Nevada National Security Site. About one-third of these tests occurred near, below or within the water table - the very top portion of the groundwater layer where rock and soil are completely saturated with water. As a result, some groundwater was contaminated. The U.S. Department of Energy (DOE) began exploring the effects of groundwater contamination in the 1970s. Though contamination from underground testing has never been detected on public land, the DOE was committed to developing an advanced, reliable monitoring network that ensures the long-term protection of the public. An intensive groundwater investigation program was launched in 1989.

  18. Status and understanding of groundwater quality in the North San Francisco Bay Shallow Aquifer study unit, 2012; California GAMA Priority Basin Project (ver. 1.1, February 2018)

    USGS Publications Warehouse

    Bennett, George L.

    2017-07-20

    Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic

  19. NPDES Draft Permit for U.S. General Services Administration Downing Reservoir Groundwater Treatment Facility in Colorado

    EPA Pesticide Factsheets

    Under NPDES draft permit number CO-0035033, the U.S. General Services Administration is authorized to discharge from its Downing Reservoir Groundwater Treatment Plant to McIntyre Gulch entering Lakewood Gulch, tributary to the South Platte River.

  20. Risk of nitrate in groundwaters of the United States - A national perspective

    USGS Publications Warehouse

    Nolan, B.T.; Ruddy, B.C.; Hitt, K.J.; Helsel, D.R.

    1997-01-01

    Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as 'input' factors (population density end the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and 'aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas) and compiled in a national map that shows patterns of risk for nitrate contamination of groundwater. Areas with high nitrogen input, well-drained soils, and low woodland to cropland ratio have the highest potential for contamination of shallow groundwater by nitrate. Groundwater nitrate data collected through 1992 from wells less than 100 ft deep generally verified the risk patterns shown on the national map. Median nitrate concentration was 0.2 mg/L in wells representing the low-risk group, and the maximum contaminant level (MCL) was exceeded in 3% of the wells. In contrast, median nitrate concentration was 4.8 mg/L in wells representing the high-risk group, and the MCL was exceeded in 25% of the wells.Nitrate contamination of groundwater occurs in predictable patterns, based on findings of the U.S. Geological Survey's (USGS) National Water Quality Assessment (NAWQA) Program. The NAWQA Program was begun in 1991 to describe the quality of the Nation's water resources, using nationally consistent methods. Variables affecting nitrate concentration in groundwater were grouped as `input' factors (population density and the amount of nitrogen contributed by fertilizer, manure, and atmospheric sources) and `aquifer vulnerability' factors (soil drainage characteristic and the ratio of woodland acres to cropland acres in agricultural areas

  1. Understanding and managing the effects of groundwater pumping on streamflow

    USGS Publications Warehouse

    Leake, Stanley A.; Barlow, Paul M.

    2013-01-01

    Groundwater is a critical resource in the United States because it provides drinking water, irrigates crops, supports industry, and is a source of water for rivers, streams, lakes, and springs. Wells that pump water out of aquifers can reduce the amount of groundwater that flows into rivers and streams, which can have detrimental impacts on aquatic ecosystems and the availability of surface water. Estimation of rates, locations, and timing of streamflow depletion due to groundwater pumping is needed for water-resource managers and users throughout the United States, but the complexity of groundwater and surface-water systems and their interactions presents a major challenge. The understanding of streamflow depletion and evaluation of water-management practices have improved during recent years through the use of computer models that simulate aquifer conditions and the effects of pumping groundwater on streams.

  2. Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States

    NASA Astrophysics Data System (ADS)

    Rossman, Nathan R.; Zlotnik, Vitaly A.

    2013-09-01

    Water resources in agriculture-dominated basins of the arid western United States are stressed due to long-term impacts from pumping. A review of 88 regional groundwater-flow modeling applications from seven intensively irrigated western states (Arizona, California, Colorado, Idaho, Kansas, Nebraska and Texas) was conducted to provide hydrogeologists, modelers, water managers, and decision makers insight about past modeling studies that will aid future model development. Groundwater models were classified into three types: resource evaluation models (39 %), which quantify water budgets and act as preliminary models intended to be updated later, or constitute re-calibrations of older models; management/planning models (55 %), used to explore and identify management plans based on the response of the groundwater system to water-development or climate scenarios, sometimes under water-use constraints; and water rights models (7 %), used to make water administration decisions based on model output and to quantify water shortages incurred by water users or climate changes. Results for 27 model characteristics are summarized by state and model type, and important comparisons and contrasts are highlighted. Consideration of modeling uncertainty and the management focus toward sustainability, adaptive management and resilience are discussed, and future modeling recommendations, in light of the reviewed models and other published works, are presented.

  3. Transport of Nitrogen and Phosphorus from Onsite Wastewater Treatment Systems to Shallow Groundwater

    NASA Astrophysics Data System (ADS)

    Toor, G.

    2014-12-01

    The knowledge about the nutrients transport from the vadose zone of onsite wastewater treatment systems (commonly called septic systems) is crucial to protect groundwater quality as 25% of US population uses septic systems to discharge household wastewater. For example, our preliminary data showed that about 47% of applied water was recovered at 60-cm below drainfield of septic systems. This implies that contaminants present in wastewater, if not attenuated in the vadose zone, can be transported to shallow groundwater. This presentation will focus on the biophysical and hydrologic controls on the transport of nitrogen (N) and phosphorus (P) from the vadose of two conventional (drip dispersal, gravel trench) and an advanced (with aerobic and anaerobic medias) system. These systems were constructed using two rows of drip pipe (37 emitters/mound) placed 0.3 m apart in the center of 6 m x 0.6 m drainfield. Each system received 120 L of wastewater per day. During 20-month period (May 2012 to December 2013), soil-water samples were collected from the vadose zone using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected from piezometers installed at 3-3.30 m depth below the drainfield. A complimentary 1-year study using smaller drainfields (0.5 m long, 0.9 m wide, 0.9 m high) was conducted to obtain better insights in the vadose zone. A variety of instruments (multi-probe sensors, suction cup lysimeters, piezometers, tensiometers) were installed in the vadose zones. Results showed that nitrification controlled N evolution in drainfield and subsequent transport of N plumes (>10 mg/L) into groundwater. Most of the wastewater applied soluble inorganic P (>10 mg/L) was quickly attenuated in the drainfield due to fixation (sorption, precipitation) in the vadose zone (<0.10 mg/L), which was further reduced to <0.05 mg/L in groundwater. The hydrologic controls (primarily rainfall during June-September) facilitated transport of

  4. Groundwater quality in the Rio Grande aquifer system, southwestern United States

    USGS Publications Warehouse

    Musgrove, MaryLynn; Bexfield, Laura M.

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Rio Grande aquifer system constitutes one of the important areas being evaluated.

  5. Groundwater quality in the Cambrian-Ordovician aquifer system, midwestern United States

    USGS Publications Warehouse

    Stackelberg, Paul E.

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Cambrian-Ordovician aquifer system constitutes one of the important areas being evaluated.

  6. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    USGS Publications Warehouse

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    concentrations larger than 40 milligrams per liter. The chloride concentration of ground water in the alluvial aquifer reflects several sources, including precipitation, water from the Missouri River, water in the aquifer, and the treated effluent. Chloride concentrations from precipitation, the Missouri River, and water in the alluvial aquifer were less than 40 milligrams per liter. These monitoring wells affected by effluent are located in two general areas - adjacent to treatment wetland unit 1 and near the ground-water high on and north of the Eagle Bluffs Conservation Area. The probable source of the large chloride concentrations in well samples adjacent to treatment wetland unit 1 is leakage from the unit. The source for the large chloride concentrations in the other monitoring well samples is the effluent mixed with ground water and Missouri River water that is used to fill pools on the Eagle Bluffs Conservation Area. One monitoring well had a single sample with a chloride concentration larger than 40 milligrams per liter. That sample may have been affected by the use of road salt because of the presence of ice and snow immediately before the sample was collected. Lateral ground-water flow was dominated by the presence of a persistent ground-water high beneath the Eagle Bluffs Conservation Area and the presence of a cone of depression centered around the city of Columbia well field in the northern part of the study area. Ground-water flow was radially away from the apex of the ground-water high; west and south of the high, flow was toward the Missouri River, east of the high, flow was toward Perche Creek, and north of the high, flow was to the north toward the cone of depression around the city of Columbia well field. Another permanent feature on the water-level maps was a ground-water high beneath treatment wetland unit 1. Although the ground-water high was present throughout the study period, the subsurface expression of the high changed depending on hydrolo

  7. Explicit treatment for Dirichlet, Neumann and Cauchy boundary conditions in POD-based reduction of groundwater models

    NASA Astrophysics Data System (ADS)

    Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas

    2018-05-01

    In recent years, proper orthogonal decomposition (POD) has become a popular model reduction method in the field of groundwater modeling. It is used to mitigate the problem of long run times that are often associated with physically-based modeling of natural systems, especially for parameter estimation and uncertainty analysis. POD-based techniques reproduce groundwater head fields sufficiently accurate for a variety of applications. However, no study has investigated how POD techniques affect the accuracy of different boundary conditions found in groundwater models. We show that the current treatment of boundary conditions in POD causes inaccuracies for these boundaries in the reduced models. We provide an improved method that splits the POD projection space into a subspace orthogonal to the boundary conditions and a separate subspace that enforces the boundary conditions. To test the method for Dirichlet, Neumann and Cauchy boundary conditions, four simple transient 1D-groundwater models, as well as a more complex 3D model, are set up and reduced both by standard POD and POD with the new extension. We show that, in contrast to standard POD, the new method satisfies both Dirichlet and Neumann boundary conditions. It can also be applied to Cauchy boundaries, where the flux error of standard POD is reduced by its head-independent contribution. The extension essentially shifts the focus of the projection towards the boundary conditions. Therefore, we see a slight trade-off between errors at model boundaries and overall accuracy of the reduced model. The proposed POD extension is recommended where exact treatment of boundary conditions is required.

  8. Legacy Nitrate Impacts on Groundwater and Streams

    NASA Astrophysics Data System (ADS)

    Tesoriero, A. J.; Juckem, P. F.; Miller, M. P.

    2017-12-01

    Decades of recharge of high-nitrate groundwater have created a legacy—a mass of high-nitrate groundwater—that has implications for future nitrate concentrations in groundwater and in streams. In the United States, inorganic nitrogen fertilizer applications to the land surface have increased ten-fold since 1950, resulting in sharp increases in nitrate concentrations in recharging groundwater, which pose a risk to deeper groundwater and streams. This study assesses the factors that control time lags and eventual concentrations of legacy nitrate in groundwater and streams. Results from the USGS National Water-Quality Assessment Project are presented which elucidate nitrate trends in recharging groundwater, delineate redox zones and assess groundwater and stream vulnerability to legacy nitrate sources on a regional scale. This study evaluated trends and transformations of agricultural chemicals based on groundwater age and water chemistry data along flow paths from recharge areas to streams at 20 study sites across the United States. Median nitrate recharge concentrations in these agricultural areas have increased markedly over the last 50 years, from 4 to 7.5 mg N/L. The effect that nitrate accumulation in shallow aquifers will have on drinking water quality and stream ecosystems is dependent on the redox zones encountered along flow paths and on the age distribution of nitrate discharging to supply wells and streams. Delineating redox zones on a regional scale is complicated by the spatial variability of reaction rates. To overcome this limitation, we applied logistic regression and machine learning techniques to predict the probability of a specific redox condition in groundwater in the Chesapeake Bay watershed and the Fox-Wolf-Peshtigo study area in Wisconsin. By relating redox-active constituent concentrations in groundwater samples to indicators of residence time and/or electron donor availability, we were able to delineate redox zones on a regional scale

  9. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  10. Hydrogeologic framework, groundwater movement, and water budget of the Kitsap Peninsula, west-central Washington

    USGS Publications Warehouse

    Welch, Wendy B.; Frans, Lonna M.; Olsen, Theresa D.

    2014-01-01

    This report presents information used to characterize the groundwater-flow system on the Kitsap Peninsula, and includes descriptions of the geology and hydrogeologic framework, groundwater recharge and discharge, groundwater levels and flow directions, seasonal groundwater-level fluctuations, interactions between aquifers and the surface‑water system, and a water budget. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, the part of Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Geologic units were grouped into 12 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 2,116 drillers’ logs to construct 6 hydrogeologic sections and unit extent and thickness maps. Unconsolidated aquifers typically consist of moderately to well-sorted alluvial and glacial outwash deposits of sand, gravel, and cobbles, with minor lenses of silt and clay. These units often are discontinuous or isolated bodies and are of highly variable thickness. Unconfined conditions occur in areas where aquifer units are at land surface; however, much of the study area is mantled by glacial till, and confined aquifer conditions are common. Groundwater in the unconsolidated aquifers generally flows radially off the peninsula in the direction of Puget Sound and Hood Canal. These generalized flow patterns likely are complicated by the presence of low

  11. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters.

    PubMed

    Bai, Yaohui; Chang, Yangyang; Liang, Jinsong; Chen, Chen; Qu, Jiuhui

    2016-12-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) often occur simultaneously in groundwater. Previously, we demonstrated that Fe(II) and Mn(II) could be oxidized to biogenic Fe-Mn oxides (BFMO) via aeration and microbial oxidation, and the formed BFMO could further oxidize and adsorb other pollutants (e.g., arsenic (As(III)) and antimony (Sb(III))). To apply this finding to groundwater remediation, we established four quartz-sand columns for treating groundwater containing Fe(II), Mn(II), As(III), and Sb(III). A Mn-oxidizing bacterium (Pseudomonas sp. QJX-1) was inoculated into two parallel bioaugmented columns. Long-term treatment (120 d) showed that bioaugmentation accelerated the formation of Fe-Mn oxides, resulting in an increase in As and Sb removal. The bioaugmented columns also exhibited higher overall treatment effect and anti-shock load capacity than that of the non-bioaugmented columns. To clarify the causal relationship between the microbial community and treatment effect, we compared the biomass of active bacteria (reverse-transcribed real-time PCR), bacterial community composition (Miseq 16S rRNA sequencing) and community function (metagenomic sequencing) between the bioaugmented and non-bioaugmented columns. Results indicated that the QJX1 strain grew steadily and attached onto the filter material surface in the bioaugmented columns. In general, the inoculated strain did not significantly alter the composition of the indigenous bacterial community, but did improve the relative abundances of xenobiotic metabolism genes and Mn oxidation gene. Thus, bioaugmentation intensified microbial degradation/utilization for the direct removal of pollutants and increased the formation of Fe-Mn oxides for the indirect removal of pollutants. Our study provides an alternative method for the treatment of groundwater containing high Fe(II), Mn(II) and As/Sb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    NASA Astrophysics Data System (ADS)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  13. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    USGS Publications Warehouse

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area

  14. Hydrogeology and groundwater quality of Highlands County, Florida

    USGS Publications Warehouse

    Spechler, Rick M.

    2010-01-01

    Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or

  15. Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants.

    PubMed

    Einsiedl, Florian; Radke, Michael; Maloszewski, Piotr

    2010-09-20

    The occurrence of two pharmaceuticals, ibuprofen and diclofenac, in a vulnerable karst groundwater system was investigated. The hydrogeology of the karst system was identified by collecting (3)H samples in groundwater over 27years and by performing tracer tests. The isotopes and tracer data were interpreted by mathematical modeling to estimate the mean transit time of water and to characterize the hydrogeological flow paths in the groundwater system. By this approach, a mean (3)H transit time of 4.6 years for the fissured-porous karst aquifer was determined, whereas the fast flowing water in the conduit system showed a mean transit time of days. Both pharmaceuticals which infiltrated along sinkholes and small streams into the karst system were detected in concentrations of up to approximately 1 microg/L in effluent water of the wastewater treatment plants. Diclofenac was present in most samples collected from four springs discharging the karst groundwater to the rivers Altmühl and Anlauter in concentrations between 3.6 and 15.4 ng/L. In contrast, ibuprofen was rarely detected in groundwater. The results of this study suggest that both pharmaceuticals move into the fractured system of the karst system and go into storage. Thus dilution processes are the dominant control on the concentrations of both pharmaceuticals in the fractured system, whereas biodegradation is likely less important. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  17. The Use of Hydrograph Analysis and Impulse Response Functions to Improve Understanding of Groundwater Flooding: A Case Study from the Chalk Aquifer, United Kingdom.

    NASA Astrophysics Data System (ADS)

    Ascott, M.; Bloomfield, J.; Macdonald, D.; Marchant, B.; McKenzie, A.

    2017-12-01

    The Cretaceous Chalk, the most important aquifer in the United Kingdom (UK) for public water supply, underlies many large cities in southern and eastern England including parts of London, however, it is prone to groundwater flooding. We have developed a new approach to analyse the spatio-temporal extent of groundwater flooding using statistical analysis of groundwater level hydrographs and impulse response functions (IRFs) applied to a major Chalk groundwater flooding event in the UK during winter 2013/14. Using monthly groundwater levels for 26 boreholes in the Chalk and a new standardised index for groundwater flooding, we have: estimated standardised series; grouped them using k-means cluster analysis; and, cross-correlated the cluster centroids with the Standardised Precipitation Index accumulated over time intervals between 1 and 60 months. This analysis reveals two spatially coherent groups of standardised hydrographs which respond to precipitation over different timescales. We estimate IRF models of the groundwater level response to effective precipitation for three boreholes in each group. The IRF models support the SPI analysis showing different response functions between the two groups. If we apply identical effective precipitation inputs to each of the IRF models we see differences between the hydrographs from each group. It is proposed that these differences are due to the intrinsic, hydrogeological properties of the Chalk and of overlying relatively low permeability superficial deposits. Consequently, it is concluded that the overarching controls on groundwater flood response are a complex combination of antecedent conditions, rainfall and catchment hydrogeological properties. These controls should be taken into consideration when anticipating and managing future groundwater flood events.

  18. Numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area, South Dakota

    USGS Publications Warehouse

    Putnam, Larry D.; Long, Andrew J.

    2009-01-01

    The city of Rapid City and other water users in the Rapid City area obtain water supplies from the Minnelusa and Madison aquifers, which are contained in the Minnelusa and Madison hydrogeologic units. A numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area was developed to synthesize estimates of water-budget components and hydraulic properties, and to provide a tool to analyze the effect of additional stress on water-level altitudes within the aquifers and on discharge to springs. This report, prepared in cooperation with the city of Rapid City, documents a numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units for the 1,000-square-mile study area that includes Rapid City and the surrounding area. Water-table conditions generally exist in outcrop areas of the Minnelusa and Madison hydrogeologic units, which form generally concentric rings that surround the Precambrian core of the uplifted Black Hills. Confined conditions exist east of the water-table areas in the study area. The Minnelusa hydrogeologic unit is 375 to 800 feet (ft) thick in the study area with the more permeable upper part containing predominantly sandstone and the less permeable lower part containing more shale and limestone than the upper part. Shale units in the lower part generally impede flow between the Minnelusa hydrogeologic unit and the underlying Madison hydrogeologic unit; however, fracturing and weathering may result in hydraulic connections in some areas. The Madison hydrogeologic unit is composed of limestone and dolomite that is about 250 to 610 ft thick in the study area, and the upper part contains substantial secondary permeability from solution openings and fractures. Recharge to the Minnelusa and Madison hydrogeologic units is from streamflow loss where streams cross the outcrop and from infiltration of precipitation on the outcrops (areal recharge). MODFLOW-2000, a finite-difference groundwater

  19. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  20. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    USGS Publications Warehouse

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  1. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site

  2. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media,more » thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)« less

  3. Arsenic contaminated groundwater and its treatment options in Bangladesh.

    PubMed

    Jiang, Jia-Qian; Ashekuzzaman, S M; Jiang, Anlun; Sharifuzzaman, S M; Chowdhury, Sayedur Rahman

    2012-12-20

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.

  4. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    PubMed Central

    Jiang, Jia-Qian; Ashekuzzaman, S. M.; Jiang, Anlun; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman

    2012-01-01

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues. PMID:23343979

  5. GREAT (Groundwater Resources & Educational Activities for Teaching). An Iowa Project for Earth/Life/General Science, 7th-9th Grades.

    ERIC Educational Resources Information Center

    George, Gail, Ed.

    These resource materials are a part of a larger plan for groundwater education, as detailed in the Iowa Groundwater Education Strategy. The six units are arranged in priority order. The first unit covers the basics of groundwater and hydrogeology in Iowa. The other five units cover Iowa's groundwater issues in priority order, as outlined in the…

  6. Superfund record of decision (EPA Region 3): US Defense General Supply Center, Operable Unit 9, Chesterfield County, VA, September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The decision document presents the selected interim remedial action for Operable Unit 9 (OU9) at the Defense General Supply Center (DGSC) in Chesterfield County, Virginia near Richmond. OU9 pertains to groundwater beneath Area 50, the Open Storage Area (OSA), and the Naitonal Guard Area (NGA). This operable unit is the third of nine operable units that are currently being addressed at the DGSC. OU9 addresses interim treatment and containment of groundwater in the upper and lower aquifers beneath Area 50, the OSA, and the NGA.

  7. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, containing NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the

  8. Hydrogeology, distribution, and volume of saline groundwater in the southern midcontinent and adjacent areas of the United States

    USGS Publications Warehouse

    Osborn, Noël I.; Smith, S. Jerrod; Seger, Christian H.

    2013-01-01

    The hydrogeology, distribution, and volume of saline water in 22 aquifers in the southern midcontinent of the United States were evaluated to provide information about saline groundwater resources that may be used to reduce dependency on freshwater resources. Those aquifers underlie six States in the southern midcontinent—Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas—and adjacent areas including all or parts of Alabama, Colorado, Florida, Illinois, Kentucky, Mississippi, Nebraska, New Mexico, South Dakota, Tennessee, and Wyoming and some offshore areas of the Gulf of Mexico. Saline waters of the aquifers were evaluated by defining salinity zones; digitizing data, primarily from the Regional Aquifer-System Analysis Program of the U.S. Geological Survey; and computing the volume of saline water in storage. The distribution of saline groundwater in the southern midcontinent is substantially affected by the hydrogeology and groundwater-flow systems of the aquifers. Many of the aquifers in the southern midcontinent are underlain by one or more aquifers, resulting in vertically stacked aquifers containing groundwaters of varying salinity. Saline groundwater is affected by past and present hydrogeologic conditions. Spatial variation of groundwater salinity in the southern midcontinent is controlled primarily by locations of recharge and discharge areas, groundwater-flow paths and residence time, mixing of freshwater and saline water, and interactions with aquifer rocks and sediments. The volume calculations made for the evaluated aquifers in the southern midcontinent indicate that about 39,900 million acre-feet (acre-ft) of saline water is in storage. About 21,600 million acre-ft of the water in storage is slightly to moderately saline (1,000–10,000 milligrams per liter [mg/L] dissolved solids), and about 18,300 million acre-ft is very saline (10,000–35,000 mg/L dissolved solids). The largest volumes of saline water are in the coastal lowlands (about

  9. Groundwater quality in the North San Francisco Bay shallow aquifer, California

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.

    2018-02-23

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The North San Francisco Bay Shallow Aquifer constitutes one of the study units being evaluated.

  10. Arsenic in ground-water under oxidizing conditions, south-west United States

    USGS Publications Warehouse

    Robertson, F.N.

    1989-01-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 ??g L-1 and reach values as large as 1,300 ??g L-1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4???2, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may

  11. Groundwater-quality data in seven GAMA study units: results from initial sampling, 2004-2005, and resampling, 2007-2008, of wells: California GAMA Program Priority Basin Project

    USGS Publications Warehouse

    Kent, Robert; Belitz, Kenneth; Fram, Miranda S.

    2014-01-01

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The GAMA-PBP began sampling, primarily public supply wells in May 2004. By the end of February 2006, seven (of what would eventually be 35) study units had been sampled over a wide area of the State. Selected wells in these first seven study units were resampled for water quality from August 2007 to November 2008 as part of an assessment of temporal trends in water quality by the GAMA-PBP. The initial sampling was designed to provide a spatially unbiased assessment of the quality of raw groundwater used for public water supplies within the seven study units. In the 7 study units, 462 wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study area. Wells selected this way are referred to as grid wells or status wells. Approximately 3 years after the initial sampling, 55 of these previously sampled status wells (approximately 10 percent in each study unit) were randomly selected for resampling. The seven resampled study units, the total number of status wells sampled for each study unit, and the number of these wells resampled for trends are as follows, in chronological order of sampling: San Diego Drainages (53 status wells, 7 trend wells), North San Francisco Bay (84, 10), Northern San Joaquin Basin (51, 5), Southern Sacramento Valley (67, 7), San Fernando–San Gabriel (35, 6), Monterey Bay and Salinas Valley Basins (91, 11), and Southeast San Joaquin Valley (83, 9). The groundwater samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N

  12. Vulnerability assessment of groundwater-dependent ecosystems based on integrated groundwater flow modell construction

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Simon, Szilvia; Galsa, Attila; Havril, Timea; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2017-04-01

    Groundwater-dependent ecosystems (GDEs) are highly influenced by the amount of groundwater, seasonal variation of precipitation and consequent water table fluctuation and also the anthropogenic activities. They can be regarded as natural surface manifestations of the flowing groundwater. The preservation of environment and biodiversity of these GDEs is an important issue worldwide, however, the water management policy and action plan could not be constructed in absense of proper hydrogeological knowledge. The concept of gravity-driven regional groundwater flow could aid the understanding of flow pattern and interpretation of environmental processes and conditions. Unless the required well data are available, the geological-hydrogeological numerical model of the study area cannot be constructed based only on borehole information. In this case, spatially continuous geophysical data can support groundwater flow model building: systematically combined geophysical methods can provide model input. Integration of lithostratigraphic, electrostratigraphic and hydrostratigraphic information could aid groundwater flow model construction: hydrostratigraphic units and their hydraulic behaviour, boundaries and geometry can be obtained. Groundwater-related natural manifestations, such as GDEs, can be explained with the help of the revealed flow pattern and field mapping of features. Integrated groundwater flow model construction for assessing the vulnerability of GDEs was presented via the case study of the geologically complex area of Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, surface water-groundwater interaction, and revealing the potential effect of anthropogenic activity and climate change. In spite of its important and protected status, fluid flow model of the area, which could support water management and natural protection policy, had not been constructed previously. The 3D

  13. Modeling stream-groundwater interactions and associated groundwater salinization in an urban floodplain

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Lautz, L.

    2014-12-01

    The salinization of freshwater in the Northeastern United States from road salt application is well documented by the observed long-term increases in chloride concentrations in groundwater over the last fifty years. However, the processes controlling exchange of chloride between surface water and groundwater have not been fully investigated, particularly in urban streams where stream-groundwater interactions can be reduced due to bank armoring and channelization. Our research builds on previous findings that showed the potential for an urban riparian floodplain to buffer seasonal changes in chloride concentrations in an urban stream, resulting in smaller annual ranges of chloride in areas with intact riparian floodplains. A reach of Meadowbrook Creek, in Syracuse, New York, that is disconnected from the groundwater had large seasonal shifts in chloride concentration, varying from 2173 mg/L Cl- in the winter to 161.2 mg/L Cl- in the summer. This is in contrast to a downstream reach of the stream that receives groundwater discharge from a riparian floodplain, where chloride concentrations ranged from 657.0 mg/L in the winter to 252.0 mg/L in the summer. We originally hypothesized that winter snowmelt events caused overbank flooding of saline surface water, which recharged the floodplain groundwater, causing salinization. This saline water was then slowly discharged as baseflow throughout the year and was replaced with freshwater overbank events in the summer. However, a three dimensional model of the floodplain created using Visual MODFLOW indicates that surface water-groundwater interactions, such as hyporheic exchange, may have a greater control on winter salt input than overbank events, while summer flooding recharges the aquifer with freshwater. The model was compared to riparian aquifer samples collected from May 2013 until June 2014 to qualitatively study the impact of different types of surface water-groundwater interactions (e.g. groundwater recharge and

  14. Assessing quality and quantity of groundwater DOC in relation to plant export from different over-winter green-cover treatments in tillage farming systems

    NASA Astrophysics Data System (ADS)

    Premrov, Alina; Coxon, Catherine; Hackett, Richard; Richards, Karl

    2010-05-01

    The biogeochemistry of nitrogen is often connected to carbon and C/N dynamics. The dissolved organic carbon (DOC) electron donor availability can be related to groundwater denitrification (Buss, et al. 2005). Therefore groundwater nitrate attenuation processes are also frequently linked to carbon availability. In recent years the role of over-winter green cover in tillage farming has been studied extensively. Nevertheless further research on the biogeochemical effect of green cover on soil/sediment and groundwater quality is still needed. In particular plant roots are known to exude different types of organic compounds, but their role in groundwater quality has not been investigated in depth. According to Cannavo et al. (2004a,b), in addition to quantity, the quality of water-extractable soil organic matter (e.g. molecular size/weight) has also an important role for microbial activity. In this study we investigate the effect of over-winter green-cover on potential DOC export to shallow groundwater (2 - 5 m below ground level), located on tillage land in Oak Park, Carlow, Ireland. The experiment includes three over-winter green-cover treatments: natural green-cover, mustard and no-cover (sprayed with herbicide following harvest); and is underlain by a sand and gravel aquifer. The site is equipped with 4 shallow piezometers per treatment (total no. of piezometers is 20, including treatments and surrounding piezometers). In addition to monitoring the quantity of DOC concentrations in shallow groundwater under different green cover treatments over time, an attempt was made to evaluate the quality of dissolved organic matter in shallow groundwater using Excitation Emission Fluorescence Matrix (EEFM) profiles obtained from analyses performed on a Varian Fluorescence Spectrophotometer of a single batch of samples (from all 20 installed piezometers in September 2009). To evaluate the quality of dissolved organic matter in shallow groundwater, computation of the

  15. Well Construction Details, Groundwater Elevations, and Figures for the Tijeras Arroyo Groundwater Area at Sandia National Laboratories, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copland, John R.

    This Sandia National Laboratories / New Mexico (SNL/NM) submittal contains groundwater information that the United States Geological Survey (USGS) has requested. The USGS will use the information to assist Kirtland Air Force Base (KAFB) in its ongoing groundwater studies. The information in this submittal contains well-construction details and groundwater-elevation data for monitoring wells that SNL/NM has installed. Relevant well-construction data from other government agencies are also summarized. This submittal contains four data tables and three figures. Information in the tables has been used by SNL/NM to prepare groundwater compliance reports that have previously incorporated the three figures. The figures depictmore » the potentiometric surface for the Perched Groundwater System, the potentiometric surface for the Regional Aquifer, and a Conceptual Site Model for the vicinity of Tijeras Arroyo in the northern portion of KAFB.« less

  16. Water quality and geochemistry evaluation of groundwater upstream and downstream of the Khirbet Al-Samra wastewater treatment plant/Jordan

    NASA Astrophysics Data System (ADS)

    Bajjali, William; Al-Hadidi, Kheir; Ismail, Ma'mmon

    2017-03-01

    Groundwater in the northeastern Amman-Zarqa basin is an important source of water for irrigation. The quality and quantity of water has deteriorated due to mismanagement and misunderstanding of the hydrogeological system. Overexploitation of groundwater resources upstream of the Khirbet Al-Samra wastewater treatment plant (KSWTP) has lowered the water table 43 m since the beginning of groundwater development in 1968. Heavy pumping of groundwater downstream of KSWTP has not dropped the water level due to constant recharge from the Zarqa river bed. The water level of groundwater is rising continuously at a rate of 20 cm per year since building the KSWTP in 1985. Groundwater salinity has also shifted the quality of the aquifer from fresh to brackish. Continual irrigation from the groundwater upstream of KSWTP dissolves accumulated salt from the soil formed by evaporation, and the contaminated water infiltrates back to the aquifer, thereby increasing both salt and nitrate concentrations. The intense irrigation from the reclaimed water downstream of KSWTP and leakage of treated wastewater from the Zarqa River to the shallow groundwater is a secondary source of salt and nitrates. The isotopic composition of groundwater varies over a wide range and is associated with the meteoric water line affected by Mediterranean Sea air moisture. The isotopic composition of groundwater is represented by evaporation line (EL) with a low slope of 3.6. The enrichment of groundwater in δ18O and δD is attributed mainly to the two processes of evaporation before infiltration of return flow and mixing of different types of water in KSWTP originating from different aquifers. The EL starts from a location more depleted than the weighted mean value of the Amman rainfall station on the Eastern Meteoric Water Line indicating that the recharge took place under the climate regime prevailing today in Jordan and the recharge of the groundwater originates from a greater elevation than that of the

  17. Design of automated oil sludge treatment unit

    NASA Astrophysics Data System (ADS)

    Chukhareva, N.; Korotchenko, T.; Yurkin, A.

    2015-11-01

    The article provides the feasibility study of contemporary oil sludge treatment methods. The basic parameters of a new resource-efficient oil sludge treatment unit that allows extracting as much oil as possible and disposing other components in efficient way have been outlined. Based on the calculation results, it has been revealed that in order to reduce the cost of the treatment unit and the expenses related to sludge disposal, it is essential to apply various combinations of the existing treatment methods.

  18. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    constituents (trace elements, nutrients, major and minor ions, silica, total dissolved solids, and alkalinity) were collected at all 170 sites. In addition to these constituents, the samples from grid wells were analyzed for organic constituents (volatile organic compounds, pesticides and pesticide degradates), constituents of special interest (perchlorate and N-nitrosodimethylamine, or NDMA), radioactive constituents (radon-222 and gross-alpha and gross-beta radioactivity), and geochemical and age-dating tracers (stable isotopes of carbon in dissolved inorganic carbon, carbon-14 abundances, stable isotopes of hydrogen and oxygen in water, and tritium activities).Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 11 percent of the wells in the Monterey–Salinas Shallow Aquifer study unit, and the results for these samples were used to evaluate the quality of the data from the groundwater samples. With the exception of trace elements, blanks rarely contained detectable concentrations of any constituent, indicating that contamination from sample-collection procedures was not a significant source of bias in the data for the groundwater samples. Low concentrations of some trace elements were detected in blanks; therefore, the data were re-censored at higher reporting levels. Replicate samples generally were within the limits of acceptable analytical reproducibility. The median values of matrix-spike recoveries were within the acceptable range (70 to 130 percent) for the volatile organic compounds (VOCs) and N-nitrosodimethylamine (NDMA), but were only approximately 64 percent for pesticides and pesticide degradates.The sample-collection protocols used in this study were designed to obtain representative samples of groundwater. The quality of groundwater can differ from the quality of drinking water because water chemistry can change as a result of contact with plumbing systems or the atmosphere; because of treatment

  19. Groundwater quality in the San Diego Drainages Hydrogeologic Province, California

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    More than 40 percent of California's drinking water is from groundwater. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The San Diego Drainages Hydrogeologic Province (hereinafter referred to as San Diego) is one of the study units being evaluated. The San Diego study unit is approximately 3,900 square miles and consists of the Temecula Valley, Warner Valley, and 12 other alluvial basins (California Department of Water Resources, 2003). The study unit also consists of all areas outside defined groundwater basins that are within 3 kilometers of a public-supply well. The study unit was separated, based primarily on hydrogeologic settings, into four study areas: Temecula Valley, Warner Valley, Alluvial Basins, and Hard Rock (Wright and others, 2005). The sampling density for the Hard Rock study area, which consists of areas outside of groundwater basins, was much lower than for the other study areas. Consequently, aquifer proportions for the Hard Rock study area are not used to calculate the aquifer proportions shown by the pie charts. An assessment of groundwater quality for the Hard Rock study area can be found in Wright and Belitz, 2011. The temperatures in the coastal part of the study unit are mild with dry summers, moist winters, and an average annual rainfall of about 10 inches. The temperatures in the mountainous eastern part of the study unit are cooler than in the coastal part, with an annual precipitation of about 45 inches that occurs mostly in the winter. The primary aquifers consist of Quaternary-age alluvium and weathered bedrock in the Temecula Valley, Warner Valley, and Alluvial Basins study areas, whereas in the Hard Rock study area the primary aquifers consist mainly of fractured and

  20. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    USGS Publications Warehouse

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  1. Groundwater-quality data in 12 GAMA study units: Results from the 2006–10 initial sampling period and the 2008–13 trend sampling period, California GAMA Priority Basin Project

    USGS Publications Warehouse

    Mathany, Timothy M.

    2017-03-09

    The Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) program was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey in cooperation with the California State Water Resources Control Board. From 2004 through 2012, the GAMA-PBP collected samples and assessed the quality of groundwater resources that supply public drinking water in 35 study units across the State. Selected sites in each study unit were sampled again approximately 3 years after initial sampling as part of an assessment of temporal trends in water quality by the GAMA-PBP. Twelve of the study units, initially sampled during 2006–11 (initial sampling period) and sampled a second time during 2008–13 (trend sampling period) to assess temporal trends, are the subject of this report.The initial sampling was designed to provide a spatially unbiased assessment of the quality of untreated groundwater used for public water supplies in the 12 study units. In these study units, 550 sampling sites were selected by using a spatially distributed, randomized, grid-based method to provide spatially unbiased representation of the areas assessed (grid sites, also called “status sites”). After the initial sampling period, 76 of the previously sampled status sites (approximately 10 percent in each study unit) were randomly selected for trend sampling (“trend sites”). The 12 study units sampled both during the initial sampling and during the trend sampling period were distributed among 6 hydrogeologic provinces: Coastal (Northern and Southern), Transverse Ranges and Selected Peninsular Ranges, Klamath, Modoc Plateau and Cascades, and Sierra Nevada Hydrogeologic Provinces. For the purposes of this trend report, the six hydrogeologic provinces were grouped into two hydrogeologic regions based on location: Coastal and Mountain.The groundwater samples were analyzed for a number of synthetic organic

  2. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    USGS Publications Warehouse

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  3. Eolian transport, saline lake basins, and groundwater solutes

    USGS Publications Warehouse

    Wood, Warren W.; Sanford, Ward E.

    1995-01-01

    Eolian processes associated with saline lakes are shown to be important in determining solute concentration in groundwater in arid and semiarid areas. Steady state mass balance analyses of chloride in the groundwater at Double Lakes, a saline lake basin in the southern High Plains of Texas, United States, suggest that approximately 4.5 × 105 kg of chloride is removed from the relatively small (4.7 km2) basin floor each year by deflation. This mass enters the groundwater down the wind gradient from the lake, degrading the water quality. The estimates of mass transport were independently determined by evaluation of solutes in the unsaturated zone and by solute mass balance calculations of groundwater flux. Transport of salts from the lake was confirmed over a short term (2 years) by strategically placed dust collectors. Results consistent with those at Double Lake were obtained from dune surfaces collected upwind and downwind from a sabkha near the city of Abu Dhabi in the United Arab Emirates. The eolian transport process provides an explanation of the degraded groundwater quality associated with the 30–40 saline lake basins on the southern half of the southern High Plains of Texas and New Mexico and in many other arid and semiarid areas.

  4. Ground-Water Quality Data in the San Francisco Bay Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Ray, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 620-square-mile San Francisco Bay study unit (SFBAY) was investigated from April through June 2007 as part of the Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples in SFBAY were collected from 79 wells in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. Forty-three of the wells sampled were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Thirty-six wells were sampled to aid in evaluation of specific water-quality issues (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, trace elements, chloride and bromide isotopes, and uranium and strontium isotopes), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14 isotopes, and stable isotopes of hydrogen, oxygen, nitrogen, boron, and carbon), and dissolved noble gases (noble gases were analyzed in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blank samples

  5. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic

  6. Phytoremediation of explosives in groundwater using innovative wetlands-based treatment technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, F.J.; Behrends, L.L.; Coonrod, H.S.

    1997-12-31

    Many army ammunition plants across the country have problems with groundwater contaminated with explosives. A field demonstration was initiated at the Milan Army Ammunition Plant near Milan, Tennessee early in 1996 to demonstrate the feasibility of treating contaminated groundwater with constructed wetlands. Two different systems were designed and installed. A lagoon system consisted of two cells in series with each cell having dimensions of 24 x 9.4 x 0.6 m (L x W x H). A gravel-bed system consisted of three gravel-beds operated in series with a primary anaerobic cell having dimensions of 32 x 11 x 1.4 m (Lmore » x W x H), followed by a pair of secondary cells each with dimensions of 5.5 x 11 x 1.4 m (L x W x H). The primary cell is maintained anaerobic by adding powdered milk to the water every two weeks. The secondary cells are maintained aerobic via reciprocation, whereby water is pumped back and forth from one cell to another to cause a recurrent fill and drain action. The lagoons were planted with sago pond weed, water stargrass, elodea, and parrot feather. The gravel-bed wetlands were planted with canary grass, wool grass, sweet flag, and parrot feather. Water began flowing to each of the wetland treatment systems at 19 L min{sup {minus}1} starting in June 1996. The design hydraulic retention time through each treatment system was approximately 10 days. Influent and effluent water samples were collected every 2 weeks. Intensive sampling of water interior to the wetlands occurred every 2 months.« less

  7. Groundwater geochemical and selected volatile organic compound data, Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington, July 2013

    USGS Publications Warehouse

    Huffman, Raegan L.

    2014-01-01

    Previous investigations indicate that concentrations of chlorinated volatile organic compounds (CVOCs) are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision for the site. This report presents groundwater geochemical and selected CVOC data collected at Operable Unit 1 by the U.S. Geological Survey during July 9–18, 2013, in support of longterm monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers and four wells also were analyzed for CVOCs, as were all samples from the passive-diffusion sampling sites. In 2013, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations at all except an upgradient well 0.2 milligrams per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2013, CVOC concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly lower or the same as concentrations measured in 2012. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2013 continued to be variable as in previous years, and often very high, and reductive dechlorination byproducts were detected in two of the three

  8. Groundwater quality of southeastern Wyoming

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Blain, Liberty

    2011-01-01

    Groundwater is an important resource for domestic, municipal, stock, and irrigation uses in southeastern Wyoming. Thirty-seven percent of water used in the tri-County area, which includes Laramie, Platte, and Goshen Counties, is from groundwater. Most groundwater use in the tri-County area is withdrawn from three primary aquifer groups: Quaternary-age unconsolidated-deposit aquifers, Tertiary-age units of the High Plains aquifer system, and Upper Cretaceous bedrock aquifers (Lance Formation and Fox Hills Sandstone). Authors include selected physical properties and chemicals found in water samples, describe sources and importance, and report maximum levels established by the U.S. Environmental Protection Agency. They also show concentration ranges for selected physical properties and chemicals in samples collected from the three primary aquifer groups in the tri-County area.

  9. Modeling Effects of Groundwater Basin Closure, and Reversal of Closure, on Groundwater Quality

    NASA Astrophysics Data System (ADS)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2017-12-01

    Population growth, the expansion of agriculture, and climate uncertainties have accelerated groundwater pumping and overdraft in aquifers worldwide. In many agricultural basins, a water budget may be stable or not in overdraft, yet disconnected ground and surface water bodies can contribute to the formation of a "closed" basin, where water principally exits the basin as evapotranspiration. Although decreasing water quality associated with increases in Total Dissolved Solids (TDS) have been documented in aquifers across the United States in the past half century, connections between water quality declines and significant changes in hydrologic budgets leading to closed basin formation remain poorly understood. Preliminary results from an analysis with a regional-scale mixing model of the Tulare Lake Basin in California indicate that groundwater salinization resulting from open to closed basin conversion can operate on a decades-to-century long time scale. The only way to reverse groundwater salinization caused by basin closure is to refill the basin and change the hydrologic budget sufficiently for natural groundwater discharge to resume. 3D flow and transport modeling, including the effects of heterogeneity based on a hydrostratigraphic facies model, is used to explore rates and time scales of groundwater salinization and its reversal under different water and land management scenarios. The modeling is also used to ascertain the extent to which local and regional heterogeneity need to be included in order to appropriately upscale the advection-dispersion equation in a basin scale groundwater quality management model. Results imply that persistent managed aquifer recharge may slow groundwater salinization, and complete reversal may be possible at sufficiently high water tables.

  10. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    USGS Publications Warehouse

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability.This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The

  11. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recentlymore » developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement

  12. Groundwater in geologic processes, 2nd edition

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Sanford, Ward E.; Neuzil, Christopher E.

    2006-01-01

    Interest in the role of Groundwater in Geologic Processes has increased steadily over the past few decades. Hydrogeologists and geologists are now actively exploring the role of groundwater and other subsurface fluids in such fundamental geologic processes as crustal heat transfer, ore deposition, hydrocarbon migration, earthquakes, tectonic deformation, diagenesis, and metamorphism.Groundwater in Geologic Processes is the first comprehensive treatment of this body of inquiry. Chapters 1 to 4 develop the basic theories of groundwater motion, hydromechanics, solute transport, and heat transport. Chapter 5 applies these theories to regional groundwater flow systems in a generic sense, and Chapters 6 to 13 focus on particular geologic processes and environments. Relative to the first edition of Groundwater in Geologic Processes , this second edition includes a much more comprehensive treatment of hydromechanics (the coupling of groundwater flow and deformation). It also includes new chapters on "compaction and diagenesis," "metamorphism," and "subsea hydrogeology." Finally, it takes advantage of the substantial body of published research that has appeared since the first edition in 1998. The systematic presentation of theory and application, and the problem sets that conclude each chapter, make this book ideal for undergraduate- and graduate-level geology courses (assuming that the students have some background in calculus and introductory chemistry). It also serves as an invaluable reference for researchers and other professionals in the field

  13. Hydrogeologic and geochemical characterization of groundwater resources in Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.; Kirby, Stefan

    2011-01-01

    The water resources of Rush Valley were assessed during 2008–2010 with an emphasis on refining the understanding of the groundwater-flow system and updating the groundwater budget. Surface-water resources within Rush Valley are limited and are generally used for agriculture. Groundwater is the principal water source for most other uses including supplementing irrigation. Most groundwater withdrawal in Rush Valley is from the unconsolidated basin-fill aquifer where conditions are generally unconfined near the mountain front and confined at lower altitudes near the valley center. Productive aquifers also occur in fractured bedrock along the valley margins and beneath the basin-fill deposits in some areas.Drillers’ logs and geophysical gravity data were compiled and used to delineate seven hydrogeologic units important to basin-wide groundwater movement. The principal basin-fill aquifer includes the unconsolidated Quaternary-age alluvial and lacustrine deposits of (1) the upper basin-fill aquifer unit (UBFAU) and the consolidated and semiconsolidated Tertiary-age lacustrine and alluvial deposits of (2) the lower basin-fill aquifer unit (LBFAU). Bedrock hydrogeologic units include (3) the Tertiary-age volcanic unit (VU), (4) the Pennsylvanian- to Permian-age upper carbonate aquifer unit (UCAU), (5) the upper Mississippian- to lower Pennsylvanian-age upper siliciclastic confining unit (USCU), (6) the Middle Cambrian- to Mississippian-age lower carbonate aquifer unit (LCAU), and (7) the Precambrian- to Lower Cambrian-age noncarbonate confining unit (NCCU). Most productive bedrock wells in the Rush Valley groundwater basin are in the UCAU.Average annual recharge to the Rush Valley groundwater basin is estimated to be about 39,000 acre-feet. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall within the mountains with smaller amounts occurring as infiltration of streamflow and unconsumed irrigation water at or near the mountain front. Groundwater

  14. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site.

    PubMed

    Wirthensohn, T; Schoeberl, P; Ghosh, U; Fuchs, W

    2009-04-15

    The production of manufactured gas at a site in Vienna, Austria led to the contamination of soil and groundwater with various pollutants including PAHs, hydrocarbons, phenols, BTEX, and cyanide. The site needs to be remediated to alleviate potential impacts to the environment. The chosen remediation concept includes the excavation of the core contaminated site and the setup of a hydraulic barrier to protect the surrounding aquifer. The extracted groundwater will be treated on-site. To design the foreseen pump-and-treat system, a pilot-scale plant was built and operated for 6 months. The scope of the present study was to test the effectiveness of different process steps, which included an aerated sedimentation basin, a submerged fixed film reactor (SFFR), a multi-media filter, and an activated carbon filter. The hydraulic retention time (HRT) was 7.0 h during normal flow conditions and 3.5h during high flow conditions. The treatment system was effective in reducing the various organic and inorganic pollutants in the pumped groundwater. However, it was also demonstrated that appropriate pre-treatment was essential to overcome problems with clogging due to precipitation of tar and sulfur compounds. The reduction of the typical contaminants, PAHs and BTEX, was more than 99.8%. All water quality parameters after treatment were below the Austrian legal requirements for discharge into public water bodies.

  15. A Retrospective Analysis on the Occurrence of Arsenic in Ground-Water Resources of the United States and Limitations in Drinking-Water-Supply Characterizations

    USGS Publications Warehouse

    Focazio, Michael J.; Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Horn, Marilee A.

    2000-01-01

    The Safe Drinking Water Act, as amended in 1996, requires the U.S. Environmental Protection Agency (USEPA) to review current drinking-water standards for arsenic, propose a maximum contaminant level for arsenic by January 1, 2000, and issue a final regulation by January, 2001. Quantification of the national occurrence of targeted ranges in arsenic concentration in ground water used for public drinking-water supplies is an important component of USEPA's regulatory process. Data from the U.S. Geological Survey (USGS) National Water Information System (NWIS) were used in a retrospective analysis of arsenic in the ground-water resources of the United States. The analysis augments other existing sources of data on the occurrence of arsenic collected in ground water at public water-supply systems.The USGS, through its District offices and national programs, has been compiling data for many years on arsenic concentrations collected from wells used for public water supply, research, agriculture, industry, and domestic water supply throughout the United States. These data have been collected for a variety of purposes ranging from simple descriptions of the occurrence of arsenic in local or regional ground-water resources to detailed studies on arsenic geochemistry associated with contamination sites. A total of 18,864 sample locations were selected from the USGS NWIS data base regardless of well type, of which 2,262 were taken from public water-supply sources. Samples with non-potable water (dissolved-solids concentration greater than 2,000 milligrams per liter and water temperature greater than 50o Celsius) were not selected for the retrospective analysis and other criteria for selection included the amount and type of ancillary data available for each sample. The 1,528 counties with sufficient data included 76 percent of all large public water-supply systems (serving more than 10,000 people) and 61 percent of all small public water-supply systems (serving more than 1

  16. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  17. Report for Full-Scale Mulch Wall Treatment of Chlorinated Hydrocarbon-Impacted Groundwater

    DTIC Science & Technology

    2004-04-13

    7.1 Direction of Groundwater Flow Through the Test Area Static water level measurements were taken every quarter after the installation of the...volatile organic compounds, alternate electron acceptors/byproducts and water quality parameters. Potentiometric surface maps showed the groundwater ... groundwater and surface water restrictions 10 Established clear zone (3000 ft by 3000 ft) Building 301 CEA Previously installed soil boring MW-19I 19

  18. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  19. Studies on the integration of nanofiltration and soil treatment for municipal effluent reclamation as a groundwater supplement.

    PubMed

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2010-01-01

    Water shortage leads to increasing attention to artificial groundwater recharge by reclaimed water. An injection well is the most common recharge approach. In this paper, a new kind of integrated technology-short-term vadose soil treatment followed by nanofiltration-is recommended as pretreatment for artificial groundwater recharge by an injection well. Laboratory-scale experiments demonstrate that the short-term vadose soil can remove approximately 30% of the total dissolved organic carbon (DOC) content and 40% of dissolved organic matter with a molecular weight less than 1 kDa. As a compensatory process of soil treatment, nanofiltration offers a favorable desalination and additional organics removal. The removal efficiencies for total dissolved solids and conductivity amount to 45 and 48%, respectively. The residual DOC in the final effluent is below 1.0 mg/L. In addition, short-term vadose soil offers effective elimination of aromatic protein-like and polysaccharide-like substances, which are detected as components of the membrane foulant.

  20. Contributions of Phosphorus from Groundwater to Streams in the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces, Eastern United States

    USGS Publications Warehouse

    Denver, Judith M.; Cravotta,, Charles A.; Ator, Scott W.; Lindsey, Bruce D.

    2011-01-01

    Phosphorus from natural and human sources is likely to be discharged from groundwater to streams in certain geochemical environments. Water-quality data collected from 1991 through 2007 in paired networks of groundwater and streams in different hydrogeologic and land-use settings of the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces in the eastern United States were compiled and analyzed to evaluate the sources, fate, and transport of phosphorus. The median concentrations of phosphate in groundwater from the crystalline and siliciclastic bedrock settings (0.017 and 0.020 milligrams per liter, respectively) generally were greater than the median for the carbonate setting (less than 0.01 milligrams per liter). In contrast, the median concentrations of dissolved phosphate in stream base flow from the crystalline and siliciclastic bedrock settings (0.010 and 0.014 milligrams per liter, respectively) were less than the median concentration for base-flow samples from the carbonate setting (0.020 milligrams per liter). Concentrations of phosphorus in many of the stream base-flow and groundwater samples exceeded ecological criteria for streams in the region. Mineral dissolution was identified as the dominant source of phosphorus in the groundwater and stream base flow draining crystalline or siliciclastic bedrock in the study area. Low concentrations of dissolved phosphorus in groundwater from carbonate bedrock result from the precipitation of minerals and (or) from sorption to mineral surfaces along groundwater flow paths. Phosphorus concentrations are commonly elevated in stream base flow in areas underlain by carbonate bedrock, however, presumably derived from in-stream sources or from upland anthropogenic sources and transported along short, shallow groundwater flow paths. Dissolved phosphate concentrations in groundwater were correlated positively with concentrations of silica and sodium, and negatively with alkalinity and concentrations of calcium

  1. Interactions of water quality and integrated groundwater management: exampled from the United States

    USDA-ARS?s Scientific Manuscript database

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chap...

  2. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from

  3. Groundwater availability of the Mississippi embayment

    USGS Publications Warehouse

    Clark, Brian R.; Hart, Rheannon M.; Gurdak, Jason J.

    2011-01-01

    River Valley alluvial aquifer in Arkansas, Louisiana, Mississippi, and Missouri, and to a lesser extent in Illinois, Kentucky, and Tennessee. Predevelopment groundwater flow is represented in the MERAS model as a steady-state stress period, assumed to be prior to 1870. The simulated groundwater-flow budget indicates the largest predevelopment inflow to the system is net recharge to the alluvial aquifer. This inflow is balanced by outflow to gaining streams. Overall, water enters as net recharge to the alluvial aquifer or through outcrop areas of the various hydrogeologic units. Away from the outcrop areas, groundwater flow in the deeper formations is primarily upward into overlying units, ultimately discharging to streams through the alluvial aquifer. Total net recharge and discharge (sum of inflows or outflows) for the model ranged from about 0.66 million acre-feet per year during predevelopment to 20.16 million acre-feet per year by the end of the simulation (final simulated irrigation period in summer of 2006). This change in the model budget reflects increases in withdrawals compared to predevelopment conditions. Cumulative storage within aquifers simulated in the MERAS model indicates overall depletion of 140 million acre-feet (equivalent to 2.8 feet of water covering the entire study area). Postdevelopment inflow to the system is still through net recharge to the alluvial aquifer and the outcrop areas of the several hydrogeologic units, however, the flow between each unit is no longer upward to the alluvial aquifer. Groundwater flow during the summer of 2006 was primarily downward to offset demand from pumping. Early in the model simulation (1870-1920s), the primary components of the water budget were simulated as outflow from stream leakage and inflow from net recharge. As pumpage increased through time, water that would otherwise flow to streams reversed, and net stream leakage became an inflow to the system. The largest reversals began in the mid-1980s, but

  4. Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.

    PubMed

    Panno, Samuel V; Askari, Zohreh; Kelly, Walton R; Parris, Thomas M; Hackley, Keith C

    2018-01-01

    The conservative nature of chloride (Cl - ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl - isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl - within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects. © 2017, National Ground Water Association.

  5. Groundwater geochemical and selected volatile organic compound data, Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington, June and September 2014

    USGS Publications Warehouse

    Huffman, Raegan L.

    2015-01-01

    Previous investigations indicate that concentrations of chlorinated volatile organic compounds (CVOCs) are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation at the site. This report presents groundwater geochemical and selected CVOC data collected at Operable Unit 1 by the U.S. Geological Survey during June 23–25 and September 4, 2014, in support of long-term monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers and four wells also were analyzed for CVOCs, as were all samples from the passive-diffusion sampling sites. In 2014, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations all less than 1 milligram per liter; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2014, CVOC concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly lower or the same as concentrations measured in 2013. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2014 continued to be variable as in previous years, often high, and reductive dechlorination byproducts were detected in one of the three wells and in all but two piezometers. Beneath the marsh

  6. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  7. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon

    USGS Publications Warehouse

    Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.

    2017-05-31

    Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper

  8. Trends in groundwater quality in principal aquifers of the United States, 1988-2012

    USGS Publications Warehouse

    Lindsey, Bruce D.; Rupert, Michael G.

    2014-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program analyzed trends in groundwater quality throughout the nation for the sampling period of 1988-2012. Trends were determined for networks (sets of wells routinely monitored by the USGS) for a subset of constituents by statistical analysis of paired water-quality measurements collected on a near-decadal time scale. The data set for chloride, dissolved solids, and nitrate consisted of 1,511 wells in 67 networks, whereas the data set for methyl tert-butyl ether (MTBE) consisted of 1, 013 wells in 46 networks. The 25 principal aquifers represented by these networks account for about 75 percent of withdrawals of groundwater used for drinking-water supply for the nation. Statistically significant changes in chloride, dissolved-solids, or nitrate concentrations were found in many well networks over a decadal period. Concentrations increased significantly in 48 percent of networks for chloride, 42 percent of networks for dissolved solids, and 21 percent of networks for nitrate. Chloride, dissolved solids, and nitrate concentrations decreased significantly in 3, 3, and 10 percent of the networks, respectively. The magnitude of change in concentrations was typically small in most networks; however, the magnitude of change in networks with statistically significant increases was typically much larger than the magnitude of change in networks with statistically significant decreases. The largest increases of chloride concentrations were in urban areas in the northeastern and north central United States. The largest increases of nitrate concentrations were in networks in agricultural areas. Statistical analysis showed 42 or the 46 networks had no statistically significant changes in MTBE concentrations. The four networks with statistically significant changes in MTBE concentrations were in the northeastern United States, where MTBE was widely used. Two networks had increasing concentrations, and two

  9. Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater.

    PubMed

    Yan, Hong; Cousins, Ian T; Zhang, Chaojie; Zhou, Qi

    2015-08-15

    Raw and treated landfill leachate samples were collected from 5 municipal landfill sites in China to measure the concentrations and contamination profile of perfluoroalkyl acids (PFAAs) in leachate during different steps of treatment. The total concentration of PFAAs (∑PFAAs) ranged from 7280 to 292,000 ng L(-1) in raw leachate and from 98.4 to 282,000 ng L(-1) in treated leachate. The dominant compounds measured were PFOA (mean contribution 28.8% and 36.8% in raw and treated leachate, respectively) and PFBS (26.1% and 40.8% in raw and treated leachate, respectively). A calculation of mass flows during the leachate treatment processes showed that the fate of individual PFAAs was substance and treatment-specific. The Chinese national leakage of ∑PFAAs to groundwater from landfill leachate was estimated to be 3110 kg year(-1), which is a significant environmental release that is potentially threatening the sustainable use of groundwater as a drinking water source. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The High Plains Aquifer, USA: Groundwater development and sustainability

    USGS Publications Warehouse

    Dennehy, K.F.; Litke, D.W.; McMahon, P.B.

    2002-01-01

    The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.

  11. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korte, N.; Muck, M.; Kearl, P.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and becausemore » they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).« less

  12. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    USGS Publications Warehouse

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water

  13. Groundwater conditions and studies in the Augusta–Richmond County area, Georgia, 2008–2009

    USGS Publications Warehouse

    Gonthier, Gerard; Lawrence, Stephen J.; Peck, Michael F.; Holloway, O. Gary

    2011-01-01

    Groundwater studies and monitoring efforts conducted during 2008–2009, as part of the U.S. Geological Survey (USGS) Cooperative Water Program with the City of Augusta in Richmond County, Georgia, provided data for the effective management of local water resources. During 2008–2009 the USGS completed: (1) installation of three monitoring wells and the collection of lithologic and geophysical logging data to determine the extent of hydrogeologic units, (2) collection of continuous groundwater-level data from wells near Well Fields 2 and 3, (3) collection of synoptic groundwater-level measurements and construction of potentiometric-surface maps in Richmond County to establish flow gradients and groundwater-flow directions in the Dublin and Midville aquifer systems, (4) completion of a 24-hour aquifer test to determine hydraulic characteristics of the lower Dublin aquifer, and upper and lower Midville aquifers in Well Field 2, and (5) collection of groundwater samples from selected wells in Well Field 2 for laboratory analysis of volatile organic compounds and groundwater tracers to assess groundwater quality and estimate the time of groundwater recharge. Potentiometric-surface maps of the Dublin and Midville aquifer systems for 2008–2009 indicate that the general groundwater flow direction within Richmond County is eastward toward the Savannah River, with the exception of the area around Well Field 2, where pumping interrupts the eastward flow of water toward the Savannah River and causes flow lines to bend toward the center of pumping. Results from a 24-hour aquifer test conducted in 2009 within the upper and lower Midville aquifers at Well Field 2 indicated a transmissivity and storativity for the upper and lower Midville aquifers, combined, of 4,000 feet-squared per day and 2x10-4, respectively. The upper and lower Midville aquifers and the middle lower Midville confining unit, which is 85-feet thick in this area, yielded horizontal hydraulic conductivity and

  14. Ground-water management under the appropriation doctrine. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, D.; Bruhl, E.J.

    The purpose of the research is to better understand the characteristics of ground-water management under the prior-appropriation doctrine in the western United States. The general objective is to summarize the legal and administrative controls on ground-water use in eight western states and to compare the impacts of these controls on ground water systems.

  15. Hydrogeologic framework and groundwater conditions of the Ararat Basin in Armenia

    USGS Publications Warehouse

    Valder, Joshua F.; Carter, Janet M.; Medler, Colton J.; Thompson, Ryan F.; Anderson, Mark T.

    2018-01-17

    partners, including the Government of Armenia, Armenia’s Hydrogeological Monitoring Center, and the USAID Global Development Lab and its GeoCenter.The hydrogeologic framework of the Ararat Basin includes several basin-fill stratigraphic units consisting of interbedded dense clays, gravels, sands, volcanic basalts, and andesite deposits. Previously published cross sections and well lithologic logs were used to map nine general hydrogeologic units. Hydrogeologic units were mapped based on lithology and water-bearing potential. Water-level data measured in the water-bearing hydrogeologic units 2, 4, 6, and 8 in 2016 were used to create potentiometric surface maps. In hydrogeologic unit 2, the estimated direction of groundwater flow is from the west to north in the western part of the basin (away from the Aras River) and from north to south (toward the Aras River) in the eastern part of the basin. In hydrogeologic unit 4, the direction of groundwater flow is generally from west to east and north to south (toward the Aras River) except in the western part of the basin where groundwater flow is toward the north or northwest. Hydrogeologic unit 6 has the same general pattern of groundwater flow as unit 4. Hydrogeologic unit 8 is the deepest of the water-bearing units and is confined in the basin. Groundwater flow generally is from the south to north (away from the Aras River) in the western part of the basin and from west to east and north to south (toward the Aras River) elsewhere in the basin.In addition to water levels, personnel from Armenia’s Hydrogeological Monitoring Center also measured specific conductance at 540 wells and temperature at 2,470 wells in the Ararat Basin using U.S. Geological Survey protocols in 2016. The minimum specific conductance was 377 microsiemens per centimeter (μS/cm), the maximum value was 4,000 μS/cm, and the mean was 998 μS/cm. The maximum water temperature was 24.2 degrees Celsius. An analysis between water temperature and well depth

  16. Evaluation of water stress and groundwater storage using a global hydrological model

    NASA Astrophysics Data System (ADS)

    Shiojiri, D.; Tanaka, K.; Tanaka, S.

    2017-12-01

    United Nations reported the number of people will reach 9.7 billion in 2050, and this rapid growth of population will increase water use. To prevent global water shortage, it is important to identify the problematic areas in order to maintain water resources sustainability. Moreover, groundwater availability is decreasing in some areas due to excessive groundwater extraction compared to the groundwater recharge capacity. The development of a hydrological model that can simulate the current status of the world's water resources represents an important tool to achieve sustainable water resources management. In this study, a global hydrological simulation is conducted at a 20km spatial resolution using the land surface model SiBUC, which is coupled to the river routing model HydroBEAM. In the river routing model, we evaluate water stress by comparing the excess of water demand with the river water demand. Areas with high water stress are seen in United States, India, and east part of China; however, for the case of Africa the overall water stress is zero. This could be because rain-fed agriculture is the norm in Africa and thus irrigation water demand is low, which affects water stress index. Sustainability of groundwater resources is also evaluated in the river routing model by setting a virtual groundwater tank. When the amount of groundwater withdrawal constantly exceeds groundwater recharge, the volume in the tank falls below zero and the area is regarded as unsustainable in terms of groundwater usage. Such areas are mostly seen in central United States, northeast China, the region between northwest India and Pakistan. In the simulation with SiBUC, the amount of groundwater recharge is assumed as the proportion of water that flows from the second to the third soil layer. This proportion will be estimated by comparing monthly variations of terrestrial water storage (TWS) derived from the observations of the GRACE satellite with the simulated TWS variations. From

  17. Supporting evaluation for the proposed plan for final remedial action for the groundwater operable unit at the chemical plant area of the Weldon Spring Site, Weldon Spring, Missouri.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-08-06

    This report presents the technical information developed since the interim record of decision (IROD) was issued in September 2000 (U.S. Department of Energy [DOE] 2000). The information was incorporated into the evaluation that was performed in selecting the preferred alternative for the Chemical Plant groundwater operable unit (GWOU) of the Weldon Spring site. The contaminants of concern (COCs) in groundwater and springs are trichloroethylene (TCE), nitrate, uranium, and nitroaromatic compounds. The preferred alternative of monitored natural attenuation (MNA) coupled with institutional controls (ICs) and contingency activities is described in the ''Proposed Plan (PP) for Final Remedial Action for the Groundwatermore » Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri'' (DOE 2003b).« less

  18. Regression models for estimating concentrations of atrazine plus deethylatrazine in shallow groundwater in agricultural areas of the United States

    USGS Publications Warehouse

    Stackelberg, Paul E.; Barbash, Jack E.; Gilliom, Robert J.; Stone, Wesley W.; Wolock, David M.

    2012-01-01

    Tobit regression models were developed to predict the summed concentration of atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] and its degradate deethylatrazine [6-chloro-N-(1-methylethyl)-1,3,5,-triazine-2,4-diamine] (DEA) in shallow groundwater underlying agricultural settings across the conterminous United States. The models were developed from atrazine and DEA concentrations in samples from 1298 wells and explanatory variables that represent the source of atrazine and various aspects of the transport and fate of atrazine and DEA in the subsurface. One advantage of these newly developed models over previous national regression models is that they predict concentrations (rather than detection frequency), which can be compared with water quality benchmarks. Model results indicate that variability in the concentration of atrazine residues (atrazine plus DEA) in groundwater underlying agricultural areas is more strongly controlled by the history of atrazine use in relation to the timing of recharge (groundwater age) than by processes that control the dispersion, adsorption, or degradation of these compounds in the saturated zone. Current (1990s) atrazine use was found to be a weak explanatory variable, perhaps because it does not represent the use of atrazine at the time of recharge of the sampled groundwater and because the likelihood that these compounds will reach the water table is affected by other factors operating within the unsaturated zone, such as soil characteristics, artificial drainage, and water movement. Results show that only about 5% of agricultural areas have greater than a 10% probability of exceeding the USEPA maximum contaminant level of 3.0 μg L-1. These models are not developed for regulatory purposes but rather can be used to (i) identify areas of potential concern, (ii) provide conservative estimates of the concentrations of atrazine residues in deeper potential drinking water supplies, and (iii) set priorities

  19. MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites.

    PubMed

    Santos, Inês C; Martin, Misty S; Carlton, Doug D; Amorim, Catarina L; Castro, Paula M L; Hildenbrand, Zacariah L; Schug, Kevin A

    2017-08-10

    Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. Pseudomonas stutzeri and Acinetobacter haemolyticus were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds.

  20. MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites

    PubMed Central

    Martin, Misty S.; Carlton, Doug D.; Castro, Paula M. L.; Hildenbrand, Zacariah L.; Schug, Kevin A.

    2017-01-01

    Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. Pseudomonas stutzeri and Acinetobacter haemolyticus were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds. PMID:28796186

  1. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  2. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  3. Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drici, Warda

    2004-02-01

    This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

  4. Hydrogeologic Framework, Groundwater Movement, and Water Budget in the Chambers-Clover Creek Watershed and Vicinity, Pierce County, Washington

    USGS Publications Warehouse

    Savoca, Mark E.; Welch, Wendy B.; Johnson, Kenneth H.; Lane, R.C.; Fasser, Elisabeth T.

    2010-01-01

    This report presents information used to characterize the groundwater-flow system in the Chambers-Clover Creek Watershed and vicinity, and includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater level fluctuations; interactions between aquifers and the surface-water system; and a water budget. The study area covers about 706 square miles in western Pierce County, Washington, and extends north to the Puyallup River, southwest to the Nisqually River, and is bounded on the south and east by foothills of the Cascade Range and on the west by Puget Sound. The area is underlain by a northwest-thickening sequence of unconsolidated glacial and interglacial deposits which overlie sedimentary and volcanic bedrock units that crop out in the foothills along the southern and southeastern margin of the study area. Geologic units were grouped into 11 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 450 drillers' logs to construct 6 hydrogeologic sections, and unit extent and thickness maps. Groundwater in unconsolidated glacial and interglacial aquifers generally flows to the northwest towards Puget Sound, and to the north and northeast towards the Puyallup River. These generalized flow patterns likely are complicated by the presence of low permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Water levels in wells completed in the unconsolidated hydrogeologic units show seasonal variations ranging from less than 1 to about 50 feet. The largest groundwater-level fluctuation (78 feet) observed during the monitoring period (March 2007-September 2008) was in a well completed in the bedrock unit. Synoptic streamflow measurements made in September 2007 and July 2008 indicated a

  5. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States

    USGS Publications Warehouse

    Katz, B.G.; Eberts, S.M.; Kauffman, L.J.

    2011-01-01

    A detailed review was made of chemical indicators used to identify impacts from septic tanks on groundwater quality. Potential impacts from septic tank leachate on groundwater quality were assessed using the mass ratio of chloride-bromide (Cl/Br), concentrations of selected chemical constituents, and ancillary information (land use, census data, well depth, soil characteristics) for wells in principal aquifers of the United States. Chemical data were evaluated from 1848 domestic wells in 19 aquifers, 121 public-supply wells in 6 aquifers, and associated monitoring wells in four aquifers and their overlying hydrogeologic units. Based on previously reported Cl/Br ratios, statistical comparisons between targeted wells (where Cl/Br ratios range from 400 to 1100 and Cl concentrations range from 20 to 100 mg/L) and non-targeted wells indicated that shallow targeted monitoring and domestic wells (0.5. mg/L) shallow groundwater from target domestic wells, relative to non-target wells (1.5. mg/L), corresponded to significantly higher potassium, boron, chloride, dissolved organic carbon, and sulfate concentrations, which may also indicate the influence of septic-tank effluent. Impacts on groundwater quality from septic systems were most evident for the Eastern Glacial Deposits aquifer and the Northern High Plains aquifer that were associated with the number of housing units using septic tanks, high permeability of overlying sediments, mostly oxic conditions, and shallow wells. Overall, little or no influence from septic systems were found for water samples from the deeper public-supply wells.The Cl/Br ratio is a useful first-level screening tool for assessing possible septic tank influence in water from shallow wells (<20 m) with the range of 400-1100. The use of this ratio would be enhanced with information on other chloride sources, temporal variability of chloride and bromide concentrations in shallow groundwater, knowledge of septic-system age and maintenance, and the

  6. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Goltz, M. N.; Secody, R. E.; Huang, J.; Hatzinger, P. B.

    2007-12-01

    Perchlorate-contaminated groundwater is a significant national problem. An innovative technology was recently developed which uses a pair of dual-screened treatment wells to mix an electron donor into perchlorate- contaminated groundwater in order to effect in situ bioremediation of the perchlorate by indigenous perchlorate reducing bacteria (PRB) without the need to extract the contaminated water from the subsurface. The two treatment wells work in tandem to establish a groundwater recirculation zone in the subsurface. Electron donor is added and mixed into perchlorate-contaminated groundwater flowing through each well. The donor serves to stimulate biodegradation of the perchlorate by PRB in bioactive zones that form adjacent to the injection screens of the treatment wells. In this study, a model that simulates operation of the technology was calibrated using concentration data obtained from a field-scale technology evaluation project at a perchlorate-contaminated site. The model simulates transport of perchlorate, the electron donor (citrate, for this study), and competing electron acceptors (oxygen and nitrate) in the groundwater flow field induced by operation of the treatment well pair. A genetic algorithm was used to derive a set of best-fit model parameters to describe the perchlorate reduction kinetics in this field-scale evaluation project. The calibrated parameter values were then used to predict technology performance. The model qualitatively predicted the salient characteristics of the observed data. It appears the model may be a useful tool for designing and operating this technology at other perchlorate-contaminated sites.

  7. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation.more » The result will be more immediate attention [Records of Decision (RODs) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regimes, which are labeled as integrator OUs. This remedial investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the feasibility study to evaluate all probable or likely alternatives.« less

  8. Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation.more » The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.« less

  9. Nitrate-nitrogen contamination in groundwater: Spatiotemporal variation and driving factors under cropland in Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Jiang, L. H.; Zhang, C. J.; Li, P.; Zhao, T. K.

    2017-08-01

    High groundwater nitrate-N is a serious problem especially in highly active agricultural areas. In study, the concentration and spatialtemporal distribution of groundwater nitrate-N under cropland in Shandong province were assessed by statistical and geostatistical techniques. Nitrate-N concentration reached a maximum of 184.60 mg L-1 and 29.5% of samples had levels in excess of safety threshold concentration (20 mg L-1). The median nitrate-N contents after rainy season were significantly higher than those before rainy season, and decreased with increasing groundwater depth. Nitrate-N under vegetable and orchard area are significantly higher than ones under grain. The kriging map shows that groundwater nitrate-N has a strong spatial variability. Many districts, such as Weifang, Linyi in Shandong province are heavily contaminated with nitrate-N. However, there are no significant trends of NO3 --N for most cities. Stepwise regression analysis showed influencing factors are different for the groundwater in different depth. But overall, vegetable yield per unit area, percentages of orchard area, per capita agricultural production, unit-area nitrogen fertilizer, livestock per unit area, percentages of irrigation areas, population per unit area and annual mean temperature are significant variables for groundwater nitrate-N variation.

  10. Application of uphole data from petroleum seismic surveys to groundwater investigations, Abu Dhabi (United Arab Emirates)

    USGS Publications Warehouse

    Woodward, D.; Menges, C.M.

    1991-01-01

    Velocity data from uphole surveys were used to map the water table and the contact at the base dune sand/top alluvium as part of a joint National Drilling Company-United States Geological Survey Ground Water Research Project in the Emirate of Abu Dhabi. During 1981-1983, a reconnaissance seismic survey was conducted for petroleum exploration in the eastern region of Abu Dhabi. Approximately 2800 kilometers of seismic data, consisting of 92 lines, were acquired in the 2500 km2 concession area near Al Ain. Uphole surveys were conducted about 2 km apart along each seismic line, and were used to calculate weathering corrections required to further process in the seismic data. Approximately 1300 uphole surveys were completed in the concession area between March 1981 and June 1983. Reinterpretation of the velocity profiles derived from the uphole surveys provided data for determining the following subsurface layers, listed in descending order: (1) a surficial, unconsolidated weathering layer with a velocity from 300 to 450 m/s; (2) surficial dune sand, from 750 to 900 m/s; (3) unsaturated, unconsolidated alluvium, from 1000 to 1300 m/s; and (4) saturated, unconsolidated alluvium, from 1900 to 2200 m/s. Two interfaces-the water table and the base dune sand/top alluvium - were identified and mapped from boundaries between these velocity layers. Although the regional water table can fluctuate naturally as much as 3 m per year in this area and the water-table determinations from the uphole data span a 27-month period, an extremely consistent and interpretable water-table map was derived from the uphole data throughout the entire concession area. In the northern part of the area, unconfined groundwater moves northward and northwestward toward the Arabian Gulf; and in the central and southern parts of the area, groundwater moves westward away from the Oman Mountains. In the extreme southern area east of Jabal Hafit, groundwater moves southward into Oman. The map of the base

  11. Groundwater-quality data in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010--Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Wright, Michael T.; Beuttel, Brandon S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the 12,103-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts (CLUB) study unit was investigated by the U.S. Geological Survey (USGS) from December 2008 to March 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CLUB study unit was the twenty-eighth study unit to be sampled as part of the GAMA-PBP. The GAMA CLUB study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer systems, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) are defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the CLUB study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the CLUB study unit, groundwater samples were collected from 52 wells in 3 study areas (Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts) in San Bernardino, Riverside, Kern, San Diego, and Imperial Counties. Forty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and three wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile

  12. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  13. Groundwater-quality data for the Madera/Chowchilla–Kings shallow aquifer study unit, 2013–14: Results from the California GAMA Program

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.

    2017-02-03

    Groundwater quality in the 2,390-square-mile Madera/Chowchilla–Kings Shallow Aquifer study unit was investigated by the U.S. Geological Survey from August 2013 to April 2014 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment Program’s Priority Basin Project. The study was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality in the shallow aquifer systems of the Madera, Chowchilla, and Kings subbasins of the San Joaquin Valley groundwater basin. The shallow aquifer system corresponds to the part of the aquifer system generally used by domestic wells and is shallower than the part of the aquifer system generally used by public-supply wells. This report presents the data collected for the study and a brief preliminary description of the results.Groundwater samples were collected from 77 wells and were analyzed for organic constituents, inorganic constituents, selected isotopic and age-dating tracers, and microbial indicators. Most of the wells sampled for this study were private domestic wells. Unlike groundwater from public-supply wells, the groundwater from private domestic wells is not regulated for quality in California and is rarely analyzed for water-quality constituents. To provide context for the sampling results, however, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory benchmarks established for drinking-water quality by the U.S. Environmental Protection Agency, the State of California, and the U.S. Geological Survey.Of the 319 organic constituents assessed in this study (90 volatile organic compounds and 229 pesticides and pesticide degradates), 17 volatile organic compounds and 23 pesticides and pesticide degradates were detected in groundwater samples; concentrations of all but 2 were less than the respective benchmarks. The fumigants 1,2-dibromo-3-chloropropane (DBCP

  14. Groundwater sapping processes, Western Desert, Egypt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W.; Arvidson, R.E.; Sultan, M.

    1997-01-01

    Depressions of the Western Desert of Egypt (specifically, Kharga, Farafra, and Kurkur regions) are mainly occupied by shales that are impermeable, but easily erodible by rainfall and runoff, whereas the surrounding plateaus are composed of limestones that are permeable and more resistant to fluvial erosion under semiarid to arid conditions. Scallop-shaped escarpment edges and stubby-looking channels that cut into the plateau units are suggestive of slumping of limestones by ground-water sapping at the limestone-shale interfaces, removal of slump blocks by weathering and fluvial erosion, and consequent scarp retreat. Spring-derived tufa deposits found near the limestone escarpments provide additional evidence formore » possible ground-water sapping during previous wet periods. A computer simulation model was developed to quantify the ground-water sapping processes, using a cellular automata algorithm with coupled surface runoff and ground-water flow for a permeable, resistant layer over an impermeable, friable unit. Erosion, deposition, slumping, and generation of spring-derived tufas were parametrically modeled. Simulations using geologically reasonable parameters demonstrate that relatively rapid erosion of the shales by surface runoff, ground-water sapping, and slumping of the limestones, and detailed control by hydraulic conductivity inhomogeneities associated with structures explain the depressions, escarpments, and associated landforms and deposits. Using episodic wet pulses, keyed by {delta}{sup 18}O deep-sea core record, the model produced tufa ages that are statistically consistent with the observed U/Th tufa ages. This result supports the hypothesis that northeastern African wet periods occurred during interglacial maxima. The {delta}{sup 18}O-forced model also replicates the decrease in fluvial and sapping activity over the past million years, as northeastern Africa became hyperarid. The model thus provides a promising predictive tool for studying long

  15. Building groundwater modeling capacity in Mongolia

    USGS Publications Warehouse

    Valder, Joshua F.; Carter, Janet M.; Anderson, Mark T.; Davis, Kyle W.; Haynes, Michelle A.; Dorjsuren Dechinlhundev,

    2016-06-16

    Ulaanbaatar, the capital city of Mongolia (fig. 1), is dependent on groundwater for its municipal and industrial water supply. The population of Mongolia is about 3 million people, with about one-half the population residing in or near Ulaanbaatar (World Population Review, 2016). Groundwater is drawn from a network of shallow wells in an alluvial aquifer along the Tuul River. Evidence indicates that current water use may not be sustainable from existing water sources, especially when factoring the projected water demand from a rapidly growing urban population (Ministry of Environment and Green Development, 2013). In response, the Government of Mongolia Ministry of Environment, Green Development, and Tourism (MEGDT) and the Freshwater Institute, Mongolia, requested technical assistance on groundwater modeling through the U.S. Army Corps of Engineers (USACE) to the U.S. Geological Survey (USGS). Scientists from the USGS and USACE provided two workshops in 2015 to Mongolian hydrology experts on basic principles of groundwater modeling using the USGS groundwater modeling program MODFLOW-2005 (Harbaugh, 2005). The purpose of the workshops was to bring together representatives from the Government of Mongolia, local universities, technical experts, and other key stakeholders to build in-country capacity in hydrogeology and groundwater modeling.A preliminary steady-state groundwater-flow model was developed as part of the workshops to demonstrate groundwater modeling techniques to simulate groundwater conditions in alluvial deposits along the Tuul River in the vicinity of Ulaanbaatar. ModelMuse (Winston, 2009) was used as the graphical user interface for MODFLOW for training purposes during the workshops. Basic and advanced groundwater modeling concepts included in the workshops were groundwater principles; estimating hydraulic properties; developing model grids, data sets, and MODFLOW input files; and viewing and evaluating MODFLOW output files. A key to success was

  16. Hydrochemical and microbiological quality of groundwater in West Thrace Region of Turkey

    NASA Astrophysics Data System (ADS)

    Özler, H. Murat; Aydın, Ali

    2008-03-01

    The aim of this study was to do a preliminary assessment of the hydrochemical and microbial groundwater quality of the West Thrace region. Forty samples of groundwater collected from Edirne (Site 1) to Gelibolu (Site 2) were assessed for their suitability for human consumption. As3- was non-detectable in all the groundwater and Zn2+, Pb2+, F-, Cu2+, NH{4/+}, Cn- PO{4/3-} and Cl- were all below their respective European Union drinking water directive (EU-DWD) and Turkish food codex-drinking water directive (TFC-DWD). Maximum Acceptable Concentrations (MAC) Ni2+, Pb2+, Cd2+, Mg2+, Mn2+, and Ca2+ levels were detected in upper maximum acceptable concentrations 77.5, 42.5, 35.0, 50.0, 50.0, and 32.5% of the groundwater samples, respectively. However, in terms of Cr3+, Ni2+ and Pb2+, the differences between groundwaters of Sites 1 and 2 were significant ( p < 0.05). Eight water samples (20%) had HPC exceeding the EU and Turkish water directive limit 20 CFU (Colony Forming Unit)/ml in drinking water and the maximum bacteria count recorded was 44 CFU/ml. Total coliforms, thermotolerant coliforms, E. coli, Enterococcus spp., Salmonella sp., Staphylococcus spp. and P. aeruginosa were detected in 25, 17.5, 15, 47.5, 15, 27.5, and 15% of the groundwater samples, respectively. Furthermore, heavy metals and trace elements were found after chemical analyzes in most samples. The pollution of groundwater come from a variety of sources, Meric and Ergene rivers, including land application of agricultural chemicals and organics wastes, infiltration of irrigation water, septic tanks, and infiltration of effluent from sewage treatment plants, pits, lagoons and ponds used storage.

  17. Groundwater availability of the Denver Basin aquifer system, Colorado

    USGS Publications Warehouse

    Paschke, Suzanne

    2011-01-01

    The Denver Basin aquifer system is a critical water resource for growing municipal, industrial, and domestic uses along the semiarid Front Range urban corridor of Colorado. The confined bedrock aquifer system is located along the eastern edge of the Rocky Mountain Front Range where the mountains meet the Great Plains physiographic province. Continued population growth and the resulting need for additional water supplies in the Denver Basin and throughout the western United States emphasize the need to continually monitor and reassess the availability of groundwater resources. In 2004, the U.S. Geological Survey initiated large-scale regional studies to provide updated groundwater-availability assessments of important principal aquifers across the United States, including the Denver Basin. This study of the Denver Basin aquifer system evaluates the hydrologic effects of continued pumping and documents an updated groundwater flow model useful for appraisal of hydrologic conditions.

  18. Regulatory and Technical Issues Concerning the Detection and Treatment of NDMA-Contaminated Groundwater at NASA WSTF

    NASA Technical Reports Server (NTRS)

    Wiebe, D. T.; Zigmond, M. J.; Tufts, C. A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA) White Sands Test Facility (WSTF) was established in 1963 primarily to provide rocket engine testing services for several NASA programs. The groundwater underlying the site has been contaminated as a result of historical operations. Groundwater contaminants include several volatile organic compounds (VOCs) and two semi-volatile compounds: N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (DMN). This paper discusses some of the technical, analytical, regulatory, and health risk issues associated with the contaminant plume. The plume has moved approximately 2.5 miles downgradient of the facility industrial boundary, with evidence of continued migration. As a result, NASA has proposed a pump and treat system using air strippers and ultraviolet (UV) oxidation to stabilize future movement of the contaminant plume. The system has been designed to treat 1,076 gallons (4,073 liters) per minute, with provisions for future expansion. The UV oxidation process was selected to treat NDMA-contaminated groundwater based on successes at other NDMA-contaminated sites. Bench- and pilot-scale testing of WSTF groundwater confirmed the ability of UV oxidation to destroy NDMA and generated sufficient data to design the proposed full-scale treatment system. NDMA is acutely toxic and is a probable human carcinogen. EPA-recommended health risk criteria for the residential consumption of NDMA/DMN-contaminated groundwater was used to determine that a 1.0 x 10(exp -6) excess cancer risk corresponds to 1.7 parts per trillion (ppt). EPA analytical methods are unable to detect NDMA and DMN in the low ppt range. EPA's current Appendix IX analytical method used to screen for NDMA, Method 8270, can detect NDMA only at levels that are orders of magnitude greater than the recommended health risk level. Additionally, EPA Method 607, the most sensitive EPA approved method, has a detection limit of 150 ppt. This corresponds to an excess cancer

  19. Groundwater

    USGS Publications Warehouse

    Stonestrom, David A.; Wohl, Ellen E.

    2016-01-01

    Groundwater represents the terrestrial subsurface component of the hydrologic cycle. As such, groundwater is generally in motion, moving from elevated areas of recharge to lower areas of discharge. Groundwater usually moves in accordance with Darcy’s law (Dalmont, Paris: Les Fontaines Publiques de la Ville de Dijon, 1856). Groundwater residence times can be under a day in small upland catchments to over a million years in subcontinental-sized desert basins. The broadest definition of groundwater includes water in the unsaturated zone, considered briefly here. Water chemically bound to minerals, as in gypsum (CaSO4 • 2H2O) or hydrated clays, cannot flow in response to gradients in total hydraulic head (pressure head plus elevation head); such water is thus usually excluded from consideration as groundwater. In 1940, M. King Hubbert showed Darcy’s law to be a special case of thermodynamically based potential field equations governing fluid motion, thereby establishing groundwater hydraulics as a rigorous engineering science (Journal of Geology 48, pp. 785–944). The development of computer-enabled numerical methods for solving the field equations with real-world approximating geometries and boundary conditions in the mid-1960s ushered in the era of digital groundwater modeling. An estimated 30 percent of global fresh water is groundwater, compared to 0.3 percent that is surface water, 0.04 percent atmospheric water, and 70 percent that exists as ice, including permafrost (Shiklomanov and Rodda 2004, cited under Groundwater Occurrence). Groundwater thus constitutes the vast majority—over 98 percent—of the unfrozen fresh-water resources of the planet, excluding surface-water reservoirs. Environmental dimensions of groundwater are equally large, receiving attention on multiple disciplinary fronts. Riparian, streambed, and spring-pool habitats can be sensitively dependent on the amount and quality of groundwater inputs that modulate temperature and solutes

  20. Codes for the identification of aquifer names and geologic units in the United States and the Caribbean outlying areas

    USGS Publications Warehouse

    ,

    1988-01-01

    This standard provides codes to be used for the identification of aquifer names and geologic units in the United States, the Caribbean and other outlying areas. Outlying areas include Puerto Rico, the Virgin Islands, American Samoa, the Midway Islands, Trust Territories of the Pacific Islands, and miscellaneous Pacific Islands. Each code identifies an aquifer or rock-stratigraphic unit and its age designation. The codes provide a standardized base for use by organizations in the storage, retrieval, and exchange of ground-water data; the indexing and inventory of ground-water data and information; the cataloging of ground-water data acquisition activities; and a variety of other applications.

  1. Codes for the identification of aquifer names and geologic units in the United States and the Caribbean outlying areas

    USGS Publications Warehouse

    ,

    1985-01-01

    This standard provides codes to be used for the identification of aquifer names and geologic units in the United States, the Caribbean and other outlying areas. Outlying areas include Puerto Rico, the Virgin Islands, American Samoa, the Midway Islands, Trust Territories of the Pacific Islands, and miscellaneous Pacific Islands. Each code identifies an aquifer or rock-stratigraphic unit and its age designation. The codes provide a standardized base for use by organizations in the storage, retrieval, and exchange of ground-water data; the indexing and inventory of ground-water data and information; the cataloging of ground-water data acquisition activities; and a variety of other applications.

  2. Groundwater geochemical and selected volatile organic compound data, Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington, June 2011

    USGS Publications Warehouse

    Huffman, Raegan L.; Frans, L.M.

    2012-01-01

    Previous investigations indicate that concentrations of chlorinated volatile organic compounds are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. Phytoremediation combined with ongoing natural attenuation processes was the preferred remedy selected by the U.S. Navy, as specified in the Record of Decision for the site. The U.S. Navy planted two hybrid poplar plantations on the landfill in spring 1999 to remove and to control the migration of chlorinated volatile organic compounds in shallow groundwater. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision. This report presents groundwater geochemical and selected volatile organic compound data collected at Operable Unit 1 by the U.S. Geological Survey during June 20-22, 2011, in support of long-term monitoring for natural attenuation. In 2011, groundwater samples were collected from 13 wells and 9 piezometers. Samples from all wells and piezometers were analyzed for redox sensitive constituents and dissolved gases, and samples from 5 of 13 wells and all piezometers also were analyzed for chlorinated volatile organic compounds. Concentrations of redox sensitive constituents measured in 2011 were consistent with previous years, with dissolved oxygen concentrations all at 0.4 milligram per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. The reductive declorination byproducts - methane, ethane, and ethene - were either not detected in samples collected from the upgradient wells in the landfill and the upper aquifer beneath the northern phytoremediation plantation or were detected at concentrations less than those measured in 2010. Chlorinated volatile organic compound concentrations in 2011 at most piezometers

  3. Groundwater development stress: Global-scale indices compared to regional modeling

    USGS Publications Warehouse

    Alley, William; Clark, Brian R.; Ely, Matt; Faunt, Claudia

    2018-01-01

    The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global-scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional-scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional-scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional-scale models with global-scale analyses would greatly enhance knowledge of the global groundwater depletion problem.

  4. Ground-Water Quality Data in the Central Sierra Study Unit, 2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 950 square kilometer (370 square mile) Central Sierra study unit (CENSIE) was investigated in May 2006 as part of the Priority Basin Assessment project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). This study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for drinking-water supplies within CENSIE, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from thirty wells in Madera County. Twenty-seven of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and three were selected to aid in evaluation of specific water-quality issues (understanding wells). Ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates), constituents of special interest (N-nitrosodimethylamine, perchlorate, and 1,2,3-trichloropropane), naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon], and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 250 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-sixth of the wells, and

  5. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,800 square-mile Southern Sierra study unit (SOSA) was investigated in June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Southern Sierra study was designed to provide a spatially unbiased assessment of raw ground-water quality within SOSA, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from fifty wells in Kern and Tulare Counties. Thirty-five of the wells were selected using a randomized grid-based method to provide statistical representation of the study area, and fifteen were selected to evaluate changes in water chemistry along ground-water flow paths. The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected for approximately one-eighth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the

  6. Hazardous organic compounds in groundwater near Tehran automobile industry.

    PubMed

    Dobaradaran, Sina; Mahvi, Amir Hossein; Nabizadeh, Ramin; Mesdaghinia, Alireza; Naddafi, Kazem; Yunesian, Masoud; Rastkari, Noushin; Nazmara, Shahrokh

    2010-11-01

    Potential of groundwater contamination by trichloroethylene (TCE) and other volatile organic compounds VOCs near car industry was conducted in this study. TCE, PCE, toluene, xylene, dichloromethane, cyclohexane, n-hexane and n-pentane were detected in all groundwaters. Mean TCE levels in groundwater ranged from 124.37 to 1,035.9 μg L⁻¹ with maximum level of 1,345.7 μg L⁻¹. Due to the data obtained from conventional wastewater treatment in car factory the TCE removal efficiency was only 24 percent which necessitates the TCE removal by advanced treatment processes before the use of well water.

  7. A hybrid treatment of ozonation with limestone adsorption processes for the removal of Fe2+ in groundwater: Fixed bed column study

    NASA Astrophysics Data System (ADS)

    Akbar, Nor Azliza; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2017-10-01

    During pumping of groundwater to the surface, the reaction between dissolved iron (Fe2+) and oxygen causes oxidation to ferric iron (Fe3+), thereby increasing the concentration of Fe2+. In this research, the potential application of ozonation with limestone adsorption to remove Fe2+ from groundwater was investigated through batch ozonation and fixed-bed-column studies. Groundwater samples were collected from a University Science Malaysia tube well (initial concentration of Fe2+, Co=1.563 mg/L). The effect of varying ozone dosages (10, 12.5, 15, 17.5, 20, 22.5, and 25 g/Nm3) was analyzed to determine the optimum ozone dosage for treatment. The characteristics of the column data and breakthrough curve were analyzed and predicted using mathematical models, such as Adam Bohart, Thomas, and Yoon-Nelson models. The data fitted well to the Thomas and Yoon-Nelson models, with correlation coefficient r2>0.93, but not to the Adam Bohart (r2=0.47). The total Fe2+ removed was 72% (final concentration of Fe2+, Ct=0.426 mg/L) at the maximum dosage of 25 g/Nm3 through ozonation only. However, the efficiency of Fe2+ removal was increased up to 99.5% (Ct=0.008 mg/L) when the hybrid treatment of ozonation with limestone adsorption was applied in this study. Thus, this integrated treatment was considerably more effective in removing Fe2+ than single ozonation treatment.

  8. Investigation of Contaminated Groundwater at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2008

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.

    2009-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. Engineered remediation aspects at the site consist of a zero-valent-iron permeable reactive barrier (PRB) installed in December 2002 intercepting the contamination plume and a phytoremediation test stand of loblolly pine trees planted in the source area in May 2003. The U.S. Geological Survey planted an additional phytoremediation test stand of loblolly pine trees on the upgradient side of the southern end of the PRB in February 2008. At least once during the summer, however, the trees were inadvertently mowed during lawn cutting activity. The PRB along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells upgradient from the PRB showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest downgradient from the PRB showed a sharp increase in 2005, followed by a decrease in 2006. Farther downgradient in the forest, the VOC concentrations began to increase in 2007 and continued to increase into 2008. The VOC-concentration changes in groundwater beneath the forest appear to indicate movement of a groundwater-contaminant pulse through the forest. It also is possible that the data may represent lateral shifting of the plume in response to changes in groundwater-flow direction.

  9. Drinking-water treatment, climate change, and childhood gastrointestinal illness projections for northern Wisconsin (USA) communities drinking untreated groundwater

    NASA Astrophysics Data System (ADS)

    Uejio, Christopher K.; Christenson, Megan; Moran, Colleen; Gorelick, Mark

    2017-06-01

    This study examined the relative importance of climate change and drinking-water treatment for gastrointestinal illness incidence in children (age <5 years) from period 2046-2065 compared to 1991-2010. The northern Wisconsin (USA) study focused on municipalities distributing untreated groundwater. A time-series analysis first quantified the observed (1991-2010) precipitation and gastrointestinal illness associations after controlling for seasonality and temporal trends. Precipitation likely transported pathogens into drinking-water sources or into leaking water-distribution networks. Building on observed relationships, the second analysis projected how climate change and drinking-water treatment installation may alter gastrointestinal illness incidence. Future precipitation values were modeled by 13 global climate models and three greenhouse-gas emissions levels. The second analysis was rerun using three pathways: (1) only climate change, (2) climate change and the same slow pace of treatment installation observed over 1991-2010, and (3) climate change and the rapid rate of installation observed over 2011-2016. The results illustrate the risks that climate change presents to small rural groundwater municipalities without drinking water treatment. Climate-change-related seasonal precipitation changes will marginally increase the gastrointestinal illness incidence rate (mean: ˜1.5%, range: -3.6-4.3%). A slow pace of treatment installation somewhat decreased precipitation-associated gastrointestinal illness incidence (mean: ˜3.0%, range: 0.2-7.8%) in spite of climate change. The rapid treatment installation rate largely decreases the gastrointestinal illness incidence (mean: ˜82.0%, range: 82.0-83.0%).

  10. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    NASA Astrophysics Data System (ADS)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  11. Characterization of bacterial diversity in contaminated groundwater using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Martin, Misty S; Santos, Inês C; Carlton, Doug D; Stigler-Granados, Paula; Hildenbrand, Zacariah L; Schug, Kevin A

    2018-05-01

    Groundwater is a major source for drinking water in the United States, and therefore, its quality and quantity is of extreme importance. One major concern that has emerged is the possible contamination of groundwater due to the unconventional oil and gas extraction activities. As such, the impacts of exogenous contaminants on microbial ecology is an area to be explored to understand what are the chemical and physical conditions that allow the proliferation of pathogenic bacteria and to find alternatives for water treatment by identifying organic-degrading bacteria. In this work, we assess the interplay between groundwater quality and the microbiome in contaminated groundwaters rich in hydrocarbon gases, volatile organic and inorganic compounds, and various metals. Opportunistic pathogenic bacteria, such as Aeromonas hydrophila, Bacillus cereus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were identified, increasing the risk for consumption of and exposure to these contaminated groundwaters. Additionally, antimicrobial tests revealed that many of the identified bacteria were resistant to different antibiotics. The MALDI-TOF MS results were successfully confirmed with 16S rRNA gene sequencing, proving the accuracy of this high-throughput method. Collectively, these data provide a seminal understanding of the microbial populations in contaminated groundwater overlying anthropogenic activities like unconventional oil and gas development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater

    USGS Publications Warehouse

    Meliker, J.R.; Slotnick, M.J.; Avruskin, G.A.; Haack, S.K.; Nriagu, J.O.

    2009-01-01

    Arsenic concentrations exceeding 10 ??g/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination. ?? Springer-Verlag 2008.

  13. Groundwater geochemical and selected volatile organic compound data, Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington, June and October 2012

    USGS Publications Warehouse

    Huffman, R.L.

    2013-01-01

    Previous investigations indicate that concentrations of chlorinated volatile organic compounds are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision for the site. This report presents groundwater geochemical and selected chlorinated volatile organic compound data collected at Operable Unit 1 by the U.S. Geological Survey during June and October 2012, in support of long-term monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers also were analyzed for chlorinated volatile organic compounds, as were all samples from the passive-diffusion sampling sites. In 2012, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations all at 0.4 milligram per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2012, chlorinated volatile organic compound (CVOC) concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly higher or the same as concentrations measured in 2011. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2012 continued to be extremely variable as in previous years, and often very high

  14. Evaluation of the ground-water resources of parts of Lancaster and Berks Counties, Pennsylvania

    USGS Publications Warehouse

    Gerhart, J.M.; Lazorchick, G.J.

    1984-01-01

    Secondary openings in bedrock are the avenues for virtually all ground-water flow in a 626-sqare-mile area in Lancaster and Berks Counties, Pennsylvania. The number, size, and interconnection of secondary openings are functions of lithology, depth, and topography. Ground water actively circulates to depths of 150 to 300 feet below land surface. Total average annual ground-water recharge for the area is 388 million gallons per day, most of which discharges to streams from local, unconfined flow systems. A digital ground-water flow model was developed to simulate unconfined flow under several different recharge and withdrawal scenarios. On the basis of lithologic and hydrologic differences, the modeled area was sub-divided into 22 hydrogeologic units. A finite-difference grid with rectangular blocks, each 2,015 by 2,332 feet, was used. The model was calibrated under steady-state and transient conditions. The steady-state calibration was used to determine hydraulic conductivities and stream leakage coefficients and the transient calibration was used to determine specific yields. The 22 hydrogeologic units fall into four general lithologies: Carbonate rocks, metamorphic rocks, Paleozoic sedimentary rocks, and Triassic sedimentary rocks. Average hydraulic conductivity ranges from about 8.8 feet per day in carbonate units to about .5 feet per day in metamorphic units. The Stonehenge Formation (limestone) has the greatest average hydraulic conductivity--85.2 feet per day in carbonate units to about 0.11 feet per day in the greatest gaining-strem leakage coefficient--16.81 feet per day. Specific yield ranges from 0.06 to 0.09 in carbonate units, and is 0.02 to 0.015, and 0.012 in metamorphic, Paleozoic sedimentary, and Triassic sedimentary units, respectively. Transient simulations were made to determine the effects of four different combinations of natural and artificial stresses. Natural aquifer conditions (no ground-water withdrawals) and actual aquifer conditions

  15. Simulating reservoir leakage in ground-water models

    USGS Publications Warehouse

    Fenske, J.P.; Leake, S.A.; Prudic, David E.

    1997-01-01

    Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.

  16. Ground-water monitoring in the Albuquerque area

    USGS Publications Warehouse

    Thorn, Condé R.

    1996-01-01

    At present (1996), all drinking water for Albuquerque residents comes from ground-water reserves. The Albuquerque area is the largest population center in the State and the largest consumer of ground water. Recent reports concerning the water resources of the Albuquerque area suggest that the Albuquerque Basin may soon face serious water-availability and water-quality problems due to anticipated ground-water development. Recent studies completed by the U.S. Geological Survey (USGS) have improved the understanding of the ground-water resources in the Albuquerque Basin. These studies have indicated that the more permeable units within the aquifer system--the upper Santa Fe Group--are less extensive than previously thought, and that water-levels have declined as much as 160 feet.

  17. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every MRB_E2RF1catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  18. Developing A National Groundwater-Monitoring Network In Korea

    NASA Astrophysics Data System (ADS)

    Kim, N. J.; Cho, M. J.; Woo, N. C.

    1995-04-01

    Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.

  19. H-Area Seepage Basins groundwater monitoring report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    During fourth quarter 1992, the groundwater at the H-Area Seepage Basins (HASB) was monitored in compliance with South Carolina Hazardous Waste Management Regulations, R61-79.265, Subpart F. Samples were collected from 130 wells that monitor the three separate hydrostratigraphic units that make up the uppermost aquifer beneath the HASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B Post-Closure Care Permit Application for the H-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control in December 1990. Historically, as well as currently, tritium, nitrate, total alpha-emittingmore » radium, gross alpha, and mercury have been the primary constituents observed above final Primary Drinking Water Standards (PDWS) in groundwater at the HASB. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during first and fourth quarter 1992. Water-level maps indicate that the groundwater flow rates and directions at the HASB have remained relatively constant since the basins ceased to be active in 1988.« less

  20. As(III) oxidation by MnO2 during groundwater treatment.

    PubMed

    Gude, J C J; Rietveld, L C; van Halem, D

    2017-03-15

    The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-02-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  2. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area

    PubMed Central

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S.

    2017-01-01

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m3. The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater. PMID:28220874

  3. Modeling contribution of shallow groundwater to evapotranspiration and yield of maize in an arid area.

    PubMed

    Gao, Xiaoyu; Huo, Zailin; Qu, Zhongyi; Xu, Xu; Huang, Guanhua; Steenhuis, Tammo S

    2017-02-21

    Capillary rise from shallow groundwater can decrease the need for irrigation water. However, simple techniques do not exist to quantify the contribution of capillary flux to crop water use. In this study we develop the Agricultural Water Productivity Model for Shallow Groundwater (AWPM-SG) for calculating capillary fluxes from shallow groundwater using readily available data. The model combines an analytical solution of upward flux from groundwater with the EPIC crop growth model. AWPM-SG was calibrated and validated with 2-year lysimetric experiment with maize. Predicted soil moisture, groundwater depth and leaf area index agreed with the observations. To investigate the response of model, various scenarios were run in which the irrigation amount and groundwater depth were varied. Simulations shows that at groundwater depth of 1 m capillary upward supplied 41% of the evapotranspiration. This reduced to 6% at groundwater depth of 2 m. The yield per unit water consumed (water productivity) was nearly constant for 2.3 kg/m 3 . The yield per unit water applied (irrigation water productivity) increased with decreasing irrigation water because capillary rise made up in part for the lack of irrigation water. Consequently, using AWPM-SG in irrigation scheduling will be beneficial to save more water in areas with shallow groundwater.

  4. Granular activated carbon pilot treatment studies for explosives removal from contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wujcik, W.J.; Lowe, W.L.; Marks, P.J.

    1992-08-01

    Manufacturing activities at Army Ammunition Plants (AAPs) result in the production of organic wastewaters that contain both explosive residues and other organic chemicals. As a result of past waste practices at such plants, explosive residues may leach through the soil and contaminate groundwater. Two pilot studies were performed to evaluate the use of granular activated carbon (GAC) to treat groundwater contaminated with explosives at Badger AAP and Milan AAP. An additional goal of the Badger AAP study was to examine the potential discharge of explosives 2,4-DNT and 2,6-DNT from a packed column air stripper used to remove volatile organic compoundsmore » from groundwater. A laboratory method was developed for the BAAP study to permit lower detection levels for 2,4-DNT and 2,6-DNT (0.46[mu]g/L and 0.017 [mu]g/L, respectively). The studies concluded that removal of explosives from groundwater using continuous flow GAC is feasible. 14 refs., 10 figs., 11 tabs.« less

  5. Occurrence of fungicides and other pesticides in surface water, groundwater, and sediment from three targeted-use areas in the United States, 2009

    USGS Publications Warehouse

    Orlando, James L.; Smalling, Kelly L.; Reilly, Timothy J.; Boehlke, Adam; Meyer, Michael T.; Kuivila, Kathryn

    2013-01-01

    Surface-water, groundwater, and suspended- and bedsediment samples were collected in three targeted-use areas in the United States where potatoes were grown during 2009 and analyzed for an extensive suite of fungicides and other pesticides by gas chromatograph/mass spectrometry and liquid chromatography with tandem mass spectrometry. Fungicides were detected in all environmental matrices sampled during the study. The most frequently detected fungicides were azoxystrobin, boscalid, chlorothalonil, and pyraclostrobin. Other pesticides that were detected frequently included amino phosphonic acid (AMPA), atrazine, metolaclor, and the organochlorine insecticide p,p’-DDT and its degradates p,p’-DDD and p,p’-DDE. A greater number of pesticides were detected in surface water relative to the other environmental matrices sampled, and at least one pesticide was detected in 62 of the 63 surfacewater samples. The greatest numbers of pesticides and the maximum observed concentrations for most pesticides were measured in surface-water samples from Idaho. In eight surface- water samples (six from Idaho and two from Wisconsin), concentrations of bifenthrin, metolachlor, or malathion exceeded U.S. Environmental Protection Agency freshwater aquatic-life benchmarks for chronic toxicity to invertebrates. Thirteen pesticides, including seven fungicides, were detected in groundwater samples. Shallow groundwater samples collected beneath recently harvested potato fields contained more pesticides and had higher concentrations of pesticides than samples collected from other groundwater sources sampled during the study. Generally, pesticide concentrations were lower in groundwater samples than in surfacewater or sediment samples, with the exception of the fungicide boscalid, which was found to have its highest concentration in a shallow groundwater sample collected in Wisconsin. Thirteen pesticides, including four fungicides, were detected in suspended-sediment samples. The most

  6. Ex situ treatment of N-nitrosodimethylamine (NDMA) in groundwater using a fluidized bed reactor.

    PubMed

    Webster, Todd S; Condee, Charles; Hatzinger, Paul B

    2013-02-01

    N-nitrosodimethylamine (NDMA) is a suspected human carcinogen that has traditionally been treated in water using ultraviolet irradiation (UV). The objective of this research was to examine the application of a laboratory-scale fluidized bed reactor (FBR) as an alternative technology for treating NDMA to part-per-trillion (ng/L) concentrations in groundwater. Previous studies have shown that the bacterium Rhodococcus ruber ENV425 is capable of cometabolizing NDMA during growth on propane as a primary substrate in batch culture (Fournier et al., 2009) and in a bench-scale membrane bioreactor (Hatzinger et al., 2011) to low ng/L concentrations. R. ruber ENV425 was inoculated into the FBR during this study. With a hydraulic residence time (HRT) of 20 min, the FBR was found to be an effective means to treat 10-20 μg/L of NDMA to effluent concentrations less than 100 ng/L. When the HRT was increased to 30 min and oxygen and propane addition rates were optimized, the FBR system demonstrated treatment of the NDMA to effluent concentrations of less than 10 ng/L. Short-term shutdowns and the presence of trichloroethene (TCE) at 6 μg/L as a co-contaminant had minimal effect on the treatment of NDMA in the FBR. The data suggest that the FBR technology can be a viable alternative to UV for removing NDMA from groundwater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the latemore » 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.« less

  8. Hydrogeochemical processes and impact of tanning industries on groundwater quality in Ambur, Vellore district, Tamil Nadu, India.

    PubMed

    Kanagaraj, G; Elango, L

    2016-12-01

    The present study was carried out to determine the hydrogeochemical processes and the impact of tanning industries on groundwater in Ambur, Vellore district, Tamil Nadu, India. Thirty groundwater samples were collected during pre monsoon (July 2015) and post monsoon (January 2016) from the open and shallow wells around this region and were analyzed for major ions and chromium. The major ion concentration follows the order of Na + > Ca 2+ > Mg 2+ > K + (cations) and Cl - > HCO 3 - > SO 4 2- > NO 3 - (anions) for both seasons. The high concentrations of Na + , Cl - , and Cr around the tannery regions indicate the impact of effluent discharged from tannery units. In general, the groundwater of this study area is of Na + -Cl - type, which is due to the mixing of tannery effluent and cation exchange process. Ionic ratio indicates that the silicate weathering influences the groundwater chemistry. The permissible limit of chromium in the groundwater exceeds in over 50 % of the sampling wells. The factor analysis reveals that the dominant source for ionic contents is due to tannery effluents and cation exchange processes. To overcome this situation, it is essential to improve the performance of the effluent treatment plants so as to remove the salinity of wastewater and to plan for rainfall recharge structures for improving the groundwater recharge.

  9. Control of groundwater in surface mining

    NASA Astrophysics Data System (ADS)

    Brawner, C. O.

    1982-03-01

    The presence of groundwater in surface mining operations often creates serious problems. The most important is generally a reduction in stability of the pit slopes. This is caused by pore water pressures and hydrodynamic shock due to blasting which reduce the shear strength and seepage pressures, water in tension cracks and increased unit weight which increase the shear stress. Groundwater and seepage also increase the cost of pit drainage, shipping, drilling and blasting, tyre wear and equipment maintenance. Surface erosion may also be increased and, in northern climates, ice flows on the slopes may occur. Procedures have been developed in the field of soil mechanics and engineering of dams to obtain quantitative data on pore water pressures and rock permeability, to evaluate the influence of pore water and seepage pressures on stability and to estimate the magnitude of ground-water flow. Based on field investigations, a design can be prepared for the control of groundwater in the slope and in the pit. Methods of control include the use of horizontal drains, blasted toe drains, construction of adits or drainage tunnels and pumping from wells in or outside of the pit. Recent research indicates that subsurface drainage can be augmented by applying a vacuum or by selective blasting. Instrumentation should be installed to monitor the groundwater changes created by drainage. Typical case histories are described that indicate the approach used to evaluate groundwater conditions.

  10. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  11. Status and understanding of groundwater quality in the South Coast Interior groundwater basins, 2008: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 653-square-mile (1,691-square-kilometer) South Coast Interior Basins (SCI) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The South Coast Interior Basins study unit contains eight priority groundwater basins grouped into three study areas, Livermore, Gilroy, and Cuyama, in the Southern Coast Ranges hydrogeologic province. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA South Coast Interior Basins study was designed to provide a spatially unbiased assessment of untreated (raw) groundwater quality within the primary aquifer system, as well as a statistically consistent basis for comparing water quality between basins. The assessment was based on water-quality and ancillary data collected by the USGS from 50 wells in 2008 and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH database for the SCI study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as trace elements and minor ions. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the SCI study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration

  12. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologicmore » work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of

  13. NRC evaluates groundwater programs

    NASA Astrophysics Data System (ADS)

    A recent report by the National Research Council (NRC) noted that about half the people of the United States depend on wells for their drinking water, but recent tests reveal widespread contamination.Responsibility for monitoring and protecting groundwater supplies lies largely with state governments. Federal funding of model projects under the Clean Water Act expired in 1983. However, the U.S. Environmental Protection Agency (EPA) has asked the NRC to identify and evaluate ten state and local groundwater protection programs and to recommend features that may be applied in other areas. A committee, organized by the Water Science and Technology Board and chaired by Jerome B. Gilbert, general manager of the East Bay Municipal Utility District of Oakland, Calif., has undertaken the study. The report is expected to be completed in March 1986.

  14. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    USGS Publications Warehouse

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    Mean annual basin-scale ETg totaled about 28 million cubic meters (Mm3) (23,000 acre-feet [acre-ft]), and represents the sum of ETg from all ET units. Annual groundwater ET from vegetated areas totaled about 26 Mm3 (21,000 acre-ft), and was dominated by the moderate-to-dense shrubland ET unit (54 percent), followed by sparse shrubland (37 percent) and grassland (9 percent) ET units. Senesced grasses observed in the northern most areas of the moderate-to-dense ET unit likely confounded the vegetation index and led to an overestimate of ETg for this ET unit. Therefore, mean annual ETg for moderate-to-dense shrubland presented here is likely an upper bound. Annual groundwater ET from the playa ET unit was 2.2 Mm3 (1,800 acre-ft), whereas groundwater ET from the playa lake ET unit was 0–0.1 Mm3 (0–100 acre-ft). Oxygen-18 and deuterium data indicate discharge from the playa center predominantly represents removal of local precipitation-derived recharge. The playa lake estimate, therefore, is considered an upper bound. Mean annual ETg estimates for Dixie Valley are assumed to represent the pre‑development, long-term ETg rates within the study area.

  15. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  16. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Eberts, Sandra M.; Kauffman, Leon J.

    2011-02-01

    SummaryA detailed review was made of chemical indicators used to identify impacts from septic tanks on groundwater quality. Potential impacts from septic tank leachate on groundwater quality were assessed using the mass ratio of chloride-bromide (Cl/Br), concentrations of selected chemical constituents, and ancillary information (land use, census data, well depth, soil characteristics) for wells in principal aquifers of the United States. Chemical data were evaluated from 1848 domestic wells in 19 aquifers, 121 public-supply wells in 6 aquifers, and associated monitoring wells in four aquifers and their overlying hydrogeologic units. Based on previously reported Cl/Br ratios, statistical comparisons between targeted wells (where Cl/Br ratios range from 400 to 1100 and Cl concentrations range from 20 to 100 mg/L) and non-targeted wells indicated that shallow targeted monitoring and domestic wells (<20 m depth below land surface) had a significantly ( p < 0.05) higher median percentage of houses with septic tanks (1990 census data) than non-targeted wells. Higher ( p = 0.08) median nitrate-N concentration (3.1 mg/L) in oxic (dissolved oxygen concentrations >0.5 mg/L) shallow groundwater from target domestic wells, relative to non-target wells (1.5 mg/L), corresponded to significantly higher potassium, boron, chloride, dissolved organic carbon, and sulfate concentrations, which may also indicate the influence of septic-tank effluent. Impacts on groundwater quality from septic systems were most evident for the Eastern Glacial Deposits aquifer and the Northern High Plains aquifer that were associated with the number of housing units using septic tanks, high permeability of overlying sediments, mostly oxic conditions, and shallow wells. Overall, little or no influence from septic systems were found for water samples from the deeper public-supply wells. The Cl/Br ratio is a useful first-level screening tool for assessing possible septic tank influence in water from

  17. Regional strategies for the accelerating global problem of groundwater depletion

    NASA Astrophysics Data System (ADS)

    Aeschbach-Hertig, Werner; Gleeson, Tom

    2012-12-01

    Groundwater--the world's largest freshwater resource--is critically important for irrigated agriculture and hence for global food security. Yet depletion is widespread in large groundwater systems in both semi-arid and humid regions of the world. Excessive extraction for irrigation where groundwater is slowly renewed is the main cause of the depletion, and climate change has the potential to exacerbate the problem in some regions. Globally aggregated groundwater depletion contributes to sea-level rise, and has accelerated markedly since the mid-twentieth century. But its impacts on water resources are more obvious at the regional scale, for example in agriculturally important parts of India, China and the United States. Food production in such regions can only be made sustainable in the long term if groundwater levels are stabilized. To this end, a transformation is required in how we value, manage and characterize groundwater systems. Technical approaches--such as water diversion, artificial groundwater recharge and efficient irrigation--have failed to balance regional groundwater budgets. They need to be complemented by more comprehensive strategies that are adapted to the specific social, economic, political and environmental settings of each region.

  18. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  19. Ground-Water Quality Data in the Upper Santa Ana Watershed Study Unit, November 2006-March 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Kent, Robert; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,000-square-mile Upper Santa Ana Watershed study unit (USAW) was investigated from November 2006 through March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Upper Santa Ana Watershed study was designed to provide a spatially unbiased assessment of raw ground-water quality within USAW, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Riverside and San Bernardino Counties. Ninety of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Nine wells were selected to provide additional understanding of specific water-quality issues identified within the basin (understanding wells). The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], 1,4-dioxane, and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen and oxygen in water) and dissolved noble gases also were measured to help identify sources and ages of the sampled ground water. Dissolved gases, and isotopes of nitrogen gas and of dissolved nitrate also were measured in order to investigate the sources and occurrence of

  20. Ecotoxicity assessment of artificial groundwater recharge with reclaimed water: a pilot-scale study.

    PubMed

    Zhang, Xue; Zhao, Xuan

    2013-11-01

    A demonstration of artificial groundwater recharge with tertiary effluent was evaluated using a set of bioassays (acute toxicity to Daphnia, genotoxicity, estrogenic and antiestrogenic toxicity). Around 95 % genotoxicity and 53 % antiestrogenicity were removed from the feed water by ozonation, whereas significant reduction of acute toxicity to Daphnia magna was achieved during a 3 days vadose soil treatment. The toxicity was further removed to the same level as the local groundwater during a 20 days aquifer soil treatment. The pilot study has shown that ozonation and soil treatments can improve the quality of municipal wastewater treatment plant effluents for possible groundwater recharge purposes.

  1. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe: Chapter 14

    USGS Publications Warehouse

    Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.

    2015-01-01

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.

  2. Groundwater studies in arid areas in Egypt using LANDSAT satellite images

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdelhady, M. A.; Elshazly, M. M.

    1977-01-01

    Various features are interpreted which have strong bearing on groundwater in the arid environment. These include the nature of geological and lithologic units, structural lineaments, present and old drainage systems, distribution and form of water pools, geomorphologic units, weathering surfaces and other weathering phenomena, desert soils, sand dunes and dune sand accumulations, growths of natural vegetation and agriculture, and salt crusts and other expressions of salinization. There are many impressive examples which illustrate the significance of satellite image interpretation on the regional conditions of groundwater which could be traced and interconnected over several tens or even several hundreds of kilometers. This is especially true in the northern Western Desert of Egypt where ground water issuing from deep strata comes to the surface along ENE-WSW and ESE-WNW fault lines and fracture systems. Another striking example is illustrated by the occurrence of fresh to brackish groundwater on the Mediterranean Sea Coastal Zone of the Western Desert where the groundwater is found in the form of lenses floating on the saline sea water.

  3. Detection of pharmaceuticals and other personal care products in groundwater beneath and adjacent to onsite wastewater treatment systems in a coastal plain shallow aquifer.

    PubMed

    Del Rosario, Katie L; Mitra, Siddhartha; Humphrey, Charles P; O'Driscoll, Michael A

    2014-07-15

    Onsite wastewater treatment systems (OWTS) are the predominant disposal method for human waste in areas without municipal sewage treatment alternatives. Relatively few studies have addressed the release of pharmaceuticals and personal care products (PPCPs) from OWTS to groundwater. PPCP fate and transport from OWTS are important, particularly where these systems are adjacent to sensitive aquatic ecosystems such as coastal areas or wetlands. The objectives of this study were to identify PPCPs in residential wastewater and groundwater beneath OWTS and to characterize the environmental conditions affecting the OWTS discharge of PPCPs to nearby streams. The study sites are in coastal plain aquifers, which may be considered vulnerable "end-members" for subsurface PPCP transport. The PPCPs most commonly detected in the OWTS, at concentrations ranging from 0.12 μg L(-1) to 12.04 μg L(-1) in the groundwater, included: caffeine, ibuprofen, DEET, and homosalate. Their presence was related to particulate and dissolved organic carbon abundance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    USGS Publications Warehouse

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  5. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit

  6. Groundwater quality in the Piedmont and Blue Ridge crystalline-rock aquifers, eastern United States

    USGS Publications Warehouse

    Lindsey, Bruce

    2017-12-07

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Piedmont and Blue Ridge crystalline-rock aquifers constitute one of the important areas being evaluated.

  7. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    USGS Publications Warehouse

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  8. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurancemore » requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.« less

  9. The quality of our Nation's waters: Water quality in principal aquifers of the United States, 1991-2010

    USGS Publications Warehouse

    DeSimone, Leslie A.; McMahon, Peter B.; Rosen, Michael R.

    2015-01-01

    About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminants come from the rocks and sediments of the aquifers themselves, and others are chemicals that we use in agriculture, industry, and day-to-day life. When groundwater supplies are contaminated, millions of dollars can be required for treatment so that the supplies can be usable. Contaminants in groundwater can also affect the health of our streams and valuable coastal waters. By knowing where contaminants occur in groundwater, what factors control contaminant concentrations, and what kinds of changes in groundwater quality might be expected in the future, we can ensure the availability and quality of this vital natural resource in the future.

  10. Groundwater quality in the Coastal Lowlands aquifer system, south-central United States

    USGS Publications Warehouse

    Barlow, Jeannie R.B.; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Coastal Lowlands aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 12 percent of the study area and at moderate concentrations in about 18 percent. Organic constituents were not detected at high or moderate concentrations in the study area.

  11. Satellites measure recent rates of groundwater depletion in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Famiglietti, J. S.; Lo, M.; Ho, S. L.; Bethune, J.; Anderson, K. J.; Syed, T. H.; Swenson, S. C.; de Linage, C. R.; Rodell, M.

    2011-02-01

    In highly-productive agricultural areas such as California's Central Valley, where groundwater often supplies the bulk of the water required for irrigation, quantifying rates of groundwater depletion remains a challenge owing to a lack of monitoring infrastructure and the absence of water use reporting requirements. Here we use 78 months (October, 2003-March, 2010) of data from the Gravity Recovery and Climate Experiment satellite mission to estimate water storage changes in California's Sacramento and San Joaquin River Basins. We find that the basins are losing water at a rate of 31.0 ± 2.7 mm yr-1 equivalent water height, equal to a volume of 30.9 km3 for the study period, or nearly the capacity of Lake Mead, the largest reservoir in the United States. We use additional observations and hydrological model information to determine that the majority of these losses are due to groundwater depletion in the Central Valley. Our results show that the Central Valley lost 20.4 ± 3.9 mm yr-1 of groundwater during the 78-month period, or 20.3 km3 in volume. Continued groundwater depletion at this rate may well be unsustainable, with potentially dire consequences for the economic and food security of the United States.

  12. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  13. Soil and groundwater attenuation factors for nitrogen from septic systems in the Chesapeake Bay TMDL

    NASA Astrophysics Data System (ADS)

    Radcliffe, D. E.; Geza, M.; O'Drisoll, M.; Humphrey, C., Jr.

    2015-12-01

    An expert panel was tasked with estimating the percent of the nitrogen (N) load from septic systems that was lost in the flow path from a typical home to third-order streams as part of the Chesapeake Bay Total Maximum Daily Load (TMDL). These losses were referred to as attenuation factors. We developed values for the soil (unsaturated) zone and for the Piedmont and Coastal Plain groundwater zones. For the soil zone, we used the Soil Treatment Unit MODel (STUMOD) to estimate loses due to denitrification for all 12 soil textural classes and then averaged the results over three textural groups. Assuming hydraulic loading at the design rate and a conventional system, the attenuation factors were 16% for sand, loamy sand, sandy loam, and loam soils; 34% for silt loam, clay loam, sandy clay loam, silty clay loam, and silt soils; and 54% for sandy clay, silty clay, and clay soils. Attenuation factors increased in the more clayey soils due to wetter conditions and more losses due to denitrification. Attenuation factors were also developed for reduced hydraulic loading rates and for systems using advanced N pre-treatment. For the Piedmont groundwater zone, we used data from a recent study in Georgia of small suburban streams with high-density septic systems. Stream base-flow load was estimated using simultaneous measurements of total N concentration and discharge and compared to the estimated groundwater input load, resulting in an attenuation factor of 81%. For the Coastal Plain groundwater zone, literature values of groundwater N concentrations within septic system plumes in Virginia, North Carolina, and Florida were used to estimate an attenuation factor of approximately 60% at 100m downgradient from the drainfield. These attenuation factors will be used to estimate the contribution of N to the Chesapeake Bay in the Phase 6 TMDL models.

  14. Isotopic Survey of Lake Davis and the Local Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, M N; Moran, J E; Singleton, M J

    2007-08-21

    In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek andmore » rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.« less

  15. Removal of trace organic chemicals in onsite wastewater soil treatment units: a laboratory experiment.

    PubMed

    Teerlink, Jennifer; Martínez-Hernández, Virtudes; Higgins, Christopher P; Drewes, Jörg E

    2012-10-15

    Onsite wastewater treatment is used by 20% of residences in the United States. The ability of these systems, specifically soil treatment units (STUs), to attenuate trace organic chemicals (TOrCs) is not well understood. TOrCs released by STUs pose a potential risk to downstream groundwater and hydraulically-connected surface water that may be used as a drinking water source. A series of bench-scale experiments were conducted using sand columns to represent STUs and to evaluate the efficacy of TOrC attenuation as a function of hydraulic loading rate (1, 4, 8, 12, and 30 cm/day). Each hydraulic loading rate was examined using triplicate experimental columns. Columns were initially seeded with raw wastewater to establish a microbial community, after which they were fed with synthetic wastewater and spiked with 17 TOrCs, in four equal doses per day, to provide a consistent influent water quality. After an initial start-up phase, effluent from all columns consistently demonstrated >90% reductions in dissolved organic carbon and nearly complete (>85%) oxidation of ammonia to nitrate, comparable to the performance of field STUs. The results of this study suggest STUs are capable of attenuating many TOrCs present in domestic wastewater, but attenuation is compound-specific. A subset of TOrCs exhibited an inverse relationship with hydraulic loading rate and attenuation efficiency. Atenolol, cimetidine, and TCPP were more effectively attenuated over time in each experiment, suggesting that the microbial community evolved to a stage where these TOrCs were more effectively biotransformed. Aerobic conditions as compared to anaerobic conditions resulted in more efficient attenuation of acetaminophen and cimetidine. Copyright © 2012. Published by Elsevier Ltd.

  16. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  17. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    USGS Publications Warehouse

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  18. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    PubMed

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Modeling irrigation behavior in groundwater systems

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  20. Bibliography of groundwater resources of the glacial aquifer systems in Washington, Idaho, and northwestern Montana, 1905-2011

    USGS Publications Warehouse

    Kahle, Sue C.; Futornick, Zoe O.

    2012-01-01

    The U.S. Geological Survey Groundwater Resources Program is undertaking a series of regional groundwater availability studies to improve our understanding of groundwater availability in major aquifers across the Nation. One of the objectives of the Glacial Principal Aquifers study (proposed) is to provide information on the occurrence of groundwater in glacial aquifers in the United States, an area that includes parts of the northern continental States and much of Alaska. Toward this effort, a literature search was conducted to identify readily available documents that describe the occurrence of groundwater in glacial aquifers in the United States. This bibliography provides citations for documents, as well as codes indicating types of information available in each, for Washington, Idaho, and northwestern Montana—an area corresponding approximately to the southern extent of the Cordilleran ice sheet.

  1. Quality of life before and 6 weeks after treatment in a dermatological outpatient treatment unit.

    PubMed

    Maroti, M; Ulff, E; Wijma, B

    2006-10-01

    Dermatological disease affects quality of life to a great extent. Treatments are time-consuming and many patients have problems adhering to treatment. Attending an outpatient unit regularly during an intensive treatment period may enable patients to cope with their illness, adhere to treatment and thus improve their quality of life. To study the effect on quality of life of 6 weeks of regular treatment in the outpatient unit in the County Hospital of Jönköping, by means of a questionnaire and interviews. The Dermatology Life Quality Index (DLQI) was distributed to 50 consecutive patients with psoriasis, atopic dermatitis or pruritus attending our outpatient treatment unit. Nine of the patients were interviewed during treatment about factors that might influence their quality of life. The DLQI scores before treatment indicated a low quality of life. Women were more affected than men. After 6 weeks of treatment there was a clear improvement, with a 57% reduction in the scores. The answers from the interviews indicated important areas of concern such as withdrawal from public places, adoption of special clothing habits and concern about personal relationships. Dermatological diseases have an important influence on patients' quality of life. Attending an outpatient treatment unit was in this series of cases associated with improved quality of life as measured with the DLQI.

  2. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for

  3. Quality of groundwater resources in Afghanistan.

    PubMed

    Hayat, Ehsanullah; Baba, Alper

    2017-07-01

    Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.

  4. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  5. Transpiration Rate for Chile Peppers Irrigated with Brackish Groundwater and ro Concentrate

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Baath, G.

    2016-12-01

    Fresh water availability is declining in most of the semi-arid and arid regions across the world including southwestern United States. Use of marginal quality groundwater has been increasing for sustaining agriculture in these arid regions. Reverse Osmosis (RO) can treat brackish groundwater but the possibility of using RO concentrate for irrigation needs further exploration. This greenhouse study evaluates the transpiration rate, water use, leaching fraction and yield responses of five selected chile pepper (Capsicum annuum) cultivars irrigated with natural brackish groundwater and RO concentrate. The four saline water treatments used for irrigation were tap water of EC 0.6 (control), ground water of EC 3 and 5 dS/m and RO concentrate of EC 8 dS/m. The transpiration of all chile peppers cultivars decreased and leaching fraction increased with increasing irrigation water salinity. Based on the water use efficiency (WUEY) of selected chile pepper cultivars, brackish water of EC ≤ 3 dS/m can be used for irrigation. The average yield of chile peppers was stable up to a saturated soil paste extract electrical conductivity (ECe) of about 2 dS/m, although further increases in ECe resulted in an exponential yield decline. This study showed that yield reductions in chile peppers irrigated with Ca rich brackish groundwater were less than those reported using NaCl dominant saline solution studies. Environmentally safe reuse of RO concentrate could stimulate implementation of inland desalination in water scarce areas and increase greenhouse chile pepper cultivation.

  6. Degradation of sucralose in groundwater and implications for age dating contaminated groundwater.

    PubMed

    Robertson, W D; Van Stempvoort, D R; Spoelstra, J; Brown, S J; Schiff, S L

    2016-01-01

    The artificial sweetener sucralose has been in use in Canada and the US since about 2000 and in the EU since 2003, and is now ubiquitous in sanitary wastewater in many parts of the world. It persists during sewage treatment and in surface water environments and as such, has been suggested as a powerful tracer of wastewater. In this study, longer-term persistence of sucralose was examined in groundwater by undertaking a series of three sampling snapshots of a well constrained wastewater plume in Canada (Long Point septic system) over a 6-year period from 2008 to 2014. A shrinking sucralose plume in 2014, compared to earlier sampling, during this period when sucralose use was likely increasing, provides clear evidence of degradation. However, depletion of sucralose from a mean of 40 μg/L in the proximal plume zone, occurred at a relatively slow rate over a period of several months to several years. Furthermore, examination of septic tank effluent and impacted groundwater at six other sites in Canada, revealed that sucralose was present in all samples of septic tank effluent (6-98 μg/L, n = 32) and in all groundwater samples (0.7-77 μg/L, n = 64). Even though sucralose degradation is noted in the Long Point plume, its ubiquitous presence in the groundwater plumes at all seven sites implies a relatively slow rate of decay in many groundwater septic plume environments. Thus, sucralose has the potential to be used as an indicator of 'recent' wastewater contamination. The presence of sucralose identifies groundwater that was recharged after 2000 in Canada and the US and after 2003 in the EU and many Asian countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Groundwater quality in the Southeastern Coastal Plain aquifer system, southeastern United States

    USGS Publications Warehouse

    Barlow, Jeannie; Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Southeastern Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 6 percent of the study area and at moderate concentrations in about 13 percent. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.

  8. Baseline groundwater quality in national park units within the Marcellus and Utica Shale gas plays, New York, Pennsylvania, and West Virginia, 2011

    USGS Publications Warehouse

    Eckhardt, David A.V.; Sloto, Ronald A.

    2012-01-01

    Groundwater samples were collected from 15 production wells and 1 spring at 9 national park units in New York, Pennsylvania, and West Virginia in July and August 2011 and analyzed to characterize the quality of these water supplies. The sample sites generally were selected to represent areas of potential effects on water quality by drilling and development of gas wells in Marcellus Shale and Utica Shale areas of the northeastern United States. The groundwater samples were analyzed for 53 constituents, including nutrients, major inorganic constituents, trace elements, chemical oxygen demand, radioactivity, and dissolved gases, including methane and radon-222. Results indicated that the groundwater used for water supply at the selected national park units is generally of acceptable quality, although concentrations of some constituents exceeded at least one drinking-water guideline at several wells. Nine analytes were detected in concentrations that exceeded Federal drinking-water standards, mostly secondary standards that define aesthetic properties of water, such as taste and odor. One sample had an arsenic concentration that exceeded the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 micrograms per liter (μg/L). The pH, which is a measure of acidity (hydrogen ion activity), ranged from 4.8 to 8.4, and in 5 of the 16 samples, the pH values were outside the accepted U.S. Environmental Protection Agency secondary maximum contaminant level (SMCL) range of 6.5 to 8.5. The concentration of total dissolved solids exceeded the SMCL of 500 milligrams per liter (mg/L) at four sites. The sulfate concentration exceeded the SMCL of 250 mg/L concentration in one sample, and the fluoride concentration exceeded the SMCL of 2 mg/L in one sample. Sodium concentrations exceeded the U.S. Environmental Protection Agency drinking water health advisory of 60 mg/L at four sites. Iron concentrations exceeded the SMCL of 300 μg/L in two samples, and manganese

  9. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.

    PubMed

    Jadhav, Sachin V; Bringas, Eugenio; Yadav, Ganapati D; Rathod, Virendra K; Ortiz, Inmaculada; Marathe, Kumudini V

    2015-10-01

    Chronic contamination of groundwaters by both arsenic (As) and fluoride (F) is frequently observed around the world, which has severely affected millions of people. Fluoride and As are introduced into groundwaters by several sources such as water-rock interactions, anthropogenic activities, and groundwater recharge. Coexistence of these pollutants can have adverse effects due to synergistic and/or antagonistic mechanisms leading to uncertain and complicated health effects, including cancer. Many developing countries are beset with the problem of F and As laden waters, with no affordable technologies to provide clean water supply. The technologies available for the simultaneous removal are akin to chemical treatment, adsorption and membrane processes. However, the presence of competing ions such as phosphate, silicate, nitrate, chloride, carbonate, and sulfate affect the removal efficiency. Highly efficient, low-cost and sustainable technology which could be used by rural populations is of utmost importance for simultaneous removal of both pollutants. This can be realized by using readily available low cost materials coupled with proper disposal units. Synthesis of inexpensive and highly selective nanoadsorbents or nanofunctionalized membranes is required along with encapsulation units to isolate the toxicant loaded materials to avoid their re-entry in aquifers. A vast number of reviews have been published periodically on removal of As or F alone. However, there is a dearth of literature on the simultaneous removal of both. This review critically analyzes this important issue and considers strategies for their removal and safe disposal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Quantifying Groundwater Availability in Fractured Rock Aquifers of Northern Ugandan Refugee Settlements

    NASA Astrophysics Data System (ADS)

    Frederiks, R.; Lowry, C.; Mutiibwa, R.; Moisy, S.; Thapa, L.; Oriba, J.

    2017-12-01

    In the past two years, Uganda has witnessed an influx of nearly one million refugees who have settled in the sparsely populated northwestern region of the country. This rapid population growth has created high demand for clean water resources. Water supply has been unable to keep pace with demand because the fractured rock aquifers underlying the region often produce low yielding wells. To facilitate management of groundwater resources, it is necessary to quantify the spatial distribution of groundwater. In fractured rock aquifers, there is significant spatial variability in water storage because fractures must be both connected and abundant for water to be extracted in usable quantities. Two conceptual models were evaluated to determine the groundwater storage mechanism in the fractured crystalline bedrock aquifers of northwestern Uganda where by permeability is controlled by faulting, which opens up fractures in the bedrock, or weathering, which occurs when water dissolves components of rock. In order to test these two conceptual models, geologic well logs and available hydrologic data were collected and evaluated using geostatistical and numerical groundwater models. The geostatistical analysis focused on identifying spatially distributed patterns of high and low water yield. The conceptual models were evaluated numerically using four inverse groundwater MODFLOW models based on head and estimated flux targets. The models were based on: (1) the mapped bedrock units using an equivalent porous media approach (2) bedrock units with the addition of known fault zones (3) bedrock units with predicted units of deep weathering based on surface slopes, and (4) bedrock units with discrete faults and simulated weathered zones. Predicting permeable zones is vital for water well drilling in much of East Africa and South America where there is an abundance of both fractured rock and tectonic activity. Given that the population of these developing regions is growing, the demand

  11. Guidelines for model calibration and application to flow simulation in the Death Valley regional groundwater system

    USGS Publications Warehouse

    Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2000-01-01

    Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.

  12. Application of GRACE for Monitoring Groundwater in Data Scarce Regions

    NASA Technical Reports Server (NTRS)

    Rodell, Matt; Li, Bailing; Famiglietti, Jay; Zaitchik, Ben

    2012-01-01

    In the United States, groundwater storage is somewhat well monitored (spatial and temporal data gaps notwithstanding) and abundant data are freely and easily accessible. Outside of the U.S., groundwater often is not monitored systematically and where it is the data are rarely centralized and made available. Since 2002 the Gravity Recovery and Climate Experiment (GRACE) satellite mission has delivered gravity field observations which have been used to infer variations in total terrestrial water storage, including groundwater, at regional to continental scales. Challenges to using GRACE for groundwater monitoring include its relatively coarse spatial and temporal resolutions, its inability to differentiate groundwater from other types of water on and under the land surface, and typical 2-3 month data latency. Data assimilation can be used to overcome these challenges, but uncertainty in the results remains and is difficult to quantify without independent observations. Nevertheless, the results are preferable to the alternative - no data at all- and GRACE has already revealed groundwater variability and trends in regions where only anecdotal evidence existed previously.

  13. Online flow cytometry reveals microbial dynamics influenced by concurrent natural and operational events in groundwater used for drinking water treatment.

    PubMed

    Besmer, Michael D; Epting, Jannis; Page, Rebecca M; Sigrist, Jürg A; Huggenberger, Peter; Hammes, Frederik

    2016-12-07

    Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality - particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells μL -1 . The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems.

  14. Online flow cytometry reveals microbial dynamics influenced by concurrent natural and operational events in groundwater used for drinking water treatment

    PubMed Central

    Besmer, Michael D.; Epting, Jannis; Page, Rebecca M.; Sigrist, Jürg A.; Huggenberger, Peter; Hammes, Frederik

    2016-01-01

    Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality – particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells μL−1. The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems. PMID:27924920

  15. In situ remediation of uranium contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptablemore » regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.« less

  16. In situ remediation of uranium contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.; Marozas, D.C.

    1997-12-31

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ tomore » acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.« less

  17. Beyond Ebola treatment units: severe infection temporary treatment units as an essential element of Ebola case management during an outbreak.

    PubMed

    Janke, Christian; Heim, Katrin Moira; Steiner, Florian; Massaquoi, Moses; Gbanya, Miatta Zenabu; Frey, Claudia; Froeschl, Guenter

    2017-02-06

    In the course of the Ebola outbreak in West Africa that was witnessed since early 2014, the response mechanisms showed deficits in terms of timeliness, volume and adequacy. The authors were deployed in the Ebola campaign in the West African country Liberia, where by September 2014 the changing epidemiological pattern made reconsiderations of guidelines and adopted procedures necessary. A temporary facility set up as a conventional Ebola Treatment Unit in the Liberian capital Monrovia was re-dedicated into a Severe Infections Temporary Treatment Unit. This facility allowed for stratification based on the nosocomial risk of exposure to Ebola virus for a growing subgroup of admitted patients that in the end would turn out as Ebola negative cases. At the same time, adequate diagnostic measures and treatment for the non-Ebola conditions of these patients could be provided without compromising work safety of the employed staff. The key elements of the new unit comprised a Suspect Cases Area similar to that of conventional Ebola treatment units for newly arriving patients, an Unlikely Cases Area for patients with a first negative Ebola PCR result, and a Confirmed Negative Cases Area for patients in whom Ebola could be ruled out. The authors, comprising representatives of the Liberian Ministry of Health and Social Welfare, as well as infectious disease specialists from the German Ebola Task Force are presenting key features of the adapted concept, and are highlighting its relevance in raising acceptance for outbreak counter-measures within the population at stake.

  18. Impacts of Urbanization on Groundwater Quality and Recharge in a Semi-arid Alluvial Basin

    USDA-ARS?s Scientific Manuscript database

    The management of groundwater resources is paramount in semi-arid regions experiencing urban development. In the southwestern United States, enhancing recharge of urban storm runoff has been identified as a strategy for augmenting groundwater resources. An understanding of how urbanization may impac...

  19. Finding Balance Between Biological Groundwater Treatment and Treated Injection Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Mark A.; Nielsen, Kellin R.; Byrnes, Mark E.

    2015-01-14

    At the U.S. Department of Energy’s Hanford Site, CH2M HILL Plateau Remediation Company operates the 200 West Pump and Treat which was engineered to treat radiological and chemical contaminants in groundwater as a result of the site’s former plutonium production years. Fluidized bed bioreactors (FBRs) are used to remove nitrate, metals, and volatile organic compounds. Increasing nitrate concentrations in the treatment plant effluent and the presence of a slimy biomass (a typical microorganism response to stress) in the FBRs triggered an investigation of nutrient levels in the system. Little, if any, micronutrient feed was coming into the bioreactors. Additionally, carbonmore » substrate (used to promote biological growth) was passing through to the injection wells, causing biological fouling of the wells and reduced specific injectivity. Adjustments to the micronutrient feed improved microorganism health, but the micronutrients were being overfed (particularly manganese) plugging the injection wells further. Injection well rehabilitation to restore specific injectivity required repeated treatments to remove the biological fouling and precipitated metal oxides. A combination of sulfamic and citric acids worked well to dissolve metal oxides and sodium hypochlorite effectively removed the biological growth. Intensive surging and development techniques successfully removed clogging material from the injection wells. Ultimately, the investigation and nutrient adjustments took months to restore proper balance to the microbial system and over a year to stabilize injection well capacities. Carefully tracking and managing the FBRs and well performance monitoring are critical to balancing the needs of the treatment system while reducing fouling mechanisms in the injection wells.« less

  20. Groundwater regulation and integrated planning

    USGS Publications Warehouse

    Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.

    2016-01-01

    The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.

  1. Future research needs involving pathogens in groundwater

    NASA Astrophysics Data System (ADS)

    Bradford, Scott A.; Harvey, Ronald W.

    2017-06-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  2. Future research needs involving pathogens in groundwater

    USGS Publications Warehouse

    Bradford, Scott A.; Harvey, Ronald W.

    2017-01-01

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.

  3. Nitrate variability in groundwater of North Carolina using monitoring and private well data models.

    PubMed

    Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L

    2014-09-16

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.

  4. Attempts for an integrative (ecological) assessment of groundwater ecosystems status

    NASA Astrophysics Data System (ADS)

    Griebler, Christian; Kellermann, Claudia; Jürgen Hahn, Hans; Stein, Heide; Brielmann, Heike; Berkhoff, Sven; Fuchs, Andreas

    2014-05-01

    Today the assessment of the ecological status of surface waters is routine and made its way into national and international (e.g. European Water Framework Directive) regulations. For groundwater and aquifers a comparable approach, considering ecological aspects, is still missing. In contrast, groundwater monitoring and management schemes follow exclusively physical-chemical and quantitative criteria. However, groundwater systems are, although persistently neglected, ecosystems harboring diverse communities of microorganisms and invertebrates. Directly linked to the biological components, groundwater systems provide various ecosystem services of societal relevance (natural production of clean drinking water). In the recent past, we developed a first concept of an ecologically sound assessment scheme for groundwater systems. Work included (1) the selection of appropriate biological/ecological criteria, (2) set-up of a groundwater ecosystem typology, (3) deduction of natural biological groundwater background values and definition of reference conditions for selected sites, and (4) a first evaluation model. Groundwater has been analyzed repeatedly of more than 100 wells distributed over five investigation areas spread all over Germany. The investigated sites could be assigned to different natural regions, geological regions, hydrogeological units, and aquifer types. The mismatch of groundwater faunal communities with the established classification schemes led to the proposal of 'stygoregions' for Germany. The presentation introduces a number of microbial and faunistic assessment criteria, which have been tested and natural background values which have been deduced. Finally, a tiered framework for assessing groundwater ecosystem status which allows an easy and fast evaluation is introduced.

  5. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  6. Groundwater management institutions to protect riparian habitat

    NASA Astrophysics Data System (ADS)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  7. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites

    NASA Astrophysics Data System (ADS)

    Döll, Petra; Müller Schmied, Hannes; Schuh, Carina; Portmann, Felix T.; Eicker, Annette

    2014-07-01

    Groundwater depletion (GWD) compromises crop production in major global agricultural areas and has negative ecological consequences. To derive GWD at the grid cell, country, and global levels, we applied a new version of the global hydrological model WaterGAP that simulates not only net groundwater abstractions and groundwater recharge from soils but also groundwater recharge from surface water bodies in dry regions. A large number of independent estimates of GWD as well as total water storage (TWS) trends determined from GRACE satellite data by three analysis centers were compared to model results. GWD and TWS trends are simulated best assuming that farmers in GWD areas irrigate at 70% of optimal water requirement. India, United States, Iran, Saudi Arabia, and China had the highest GWD rates in the first decade of the 21st century. On the Arabian Peninsula, in Libya, Egypt, Mali, Mozambique, and Mongolia, at least 30% of the abstracted groundwater was taken from nonrenewable groundwater during this time period. The rate of global GWD has likely more than doubled since the period 1960-2000. Estimated GWD of 113 km3/yr during 2000-2009, corresponding to a sea level rise of 0.31 mm/yr, is much smaller than most previous estimates. About 15% of the globally abstracted groundwater was taken from nonrenewable groundwater during this period. To monitor recent temporal dynamics of GWD and related water abstractions, GRACE data are best evaluated with a hydrological model that, like WaterGAP, simulates the impact of abstractions on water storage, but the low spatial resolution of GRACE remains a challenge.

  8. Groundwater Withdrawals under Drought: Reconciling GRACE and Models in the United States High Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Nie, W.; Zaitchik, B. F.; Kumar, S.; Rodell, M.

    2017-12-01

    Advanced Land Surface Models (LSM) offer a powerful tool for studying and monitoring hydrological variability. Highly managed systems, however, present a challenge for these models, which typically have simplified or incomplete representations of human water use, if the process is represented at all. GRACE, meanwhile, detects the total change in water storage, including change due to human activities, but does not resolve the source of these changes. Here we examine recent groundwater declines in the US High Plains Aquifer (HPA), a region that is heavily utilized for irrigation and that is also affected by episodic drought. To understand observed decline in groundwater (well observation) and terrestrial water storage (GRACE) during a recent multi-year drought, we modify the Noah-MP LSM to include a groundwater pumping irrigation scheme. To account for seasonal and interannual variability in active irrigated area we apply a monthly time-varying greenness vegetation fraction (GVF) dataset to the model. A set of five experiments were performed to study the impact of irrigation with groundwater withdrawal on the simulated hydrological cycle of the HPA and to assess the importance of time-varying GVF when simulating drought conditions. The results show that including the groundwater pumping irrigation scheme in Noah-MP improves model agreement with GRACE mascon solutions for TWS and well observations of groundwater anomaly in the southern HPA, including Texas and Kansas, and that accounting for time-varying GVF is important for model realism under drought. Results for the HPA in Nebraska are mixed, likely due to misrepresentation of the recharge process. This presentation will highlight the value of the GRACE constraint for model development, present estimates of the relative contribution of climate variability and irrigation to declining TWS in the HPA under drought, and identify opportunities to integrate GRACE-FO with models for water resource monitoring in heavily

  9. Quality assessment of groundwater from the south-eastern Arabian Peninsula.

    PubMed

    Zhang, H W; Sun, Y Q; Li, Y; Zhou, X D; Tang, X Z; Yi, P; Murad, A; Hussein, S; Alshamsi, D; Aldahan, A; Yu, Z B; Chen, X G; Mugwaneza, V D P

    2017-08-01

    Assessment of groundwater quality plays a significant role in the utilization of the scarce water resources globally and especially in arid regions. The increasing abstraction together with man-made contamination and seawater intrusion have strongly affected groundwater quality in the Arabia Peninsula, exemplified by the investigation given here from the United Arab Emirates, where the groundwater is seldom reviewed and assessed. In the aim of assessing current groundwater quality, we here present a comparison of chemical data linked to aquifers types. The results reveal that most of the investigated groundwater is not suitable for drinking, household, and agricultural purposes following the WHO permissible limits. Aquifer composition and climate have vital control on the water quality, with the carbonate aquifers contain the least potable water compared to the ophiolites and Quaternary clastics. Seawater intrusion along coastal regions has deteriorated the water quality and the phenomenon may become more intensive with future warming climate and rising sea level.

  10. Bioremediation of Uranium-Contaminated Groundwater using Engineered Injection and Extraction

    NASA Astrophysics Data System (ADS)

    Greene, J. A.; Neupauer, R.; Ye, M.; Kasprzyk, J. R.; Mays, D. C.; Curtis, G. P.

    2017-12-01

    During in-situ remediation of contaminated groundwater, a treatment chemical is injected into the contaminated groundwater to react with and degrade the contaminant, with reactions occurring where the treatment chemical contacts the contaminant. Traditional in-situ groundwater remediation relies on background groundwater flow for spreading of treatment chemicals into contaminant plumes. Engineered Injection and Extraction (EIE), in which time-varying induced flow fields are used to actively spread the treatment chemical into the contaminant plume, has been developed to increase contact between the contaminant and treatment chemical, thereby enhancing contaminant degradation. EIE has been investigated for contaminants that degrade through irreversible bimolecular reaction with a treatment chemical, but has not been investigated for a contaminant governed by reversible reactions. Uranium primarily occurs in its aqueous, mobile form, U(VI), in the environment but can be bioreduced to its sparingly soluble, immobile form, U(IV), by iron reducing bacteria stimulated by an acetate amendment. In this study, we investigate the ability of EIE to facilitate and sustain favorable conditions to immobilize uranium during remediation, and to prevent re-mobilization of uranium into the aqueous phase after active remediation has ended. Simulations in this investigation are conducted using a semi-synthetic model based on physical and chemical conditions at the Naturita Uranium Mill Tailings Remedial Action (UMTRA) site in southwestern Colorado and the Old Rifle UMTRA site in western Colorado. The EIE design is optimized for the synthetic model using the Borg multi-objective evolutionary algorithm.

  11. Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units.

    PubMed

    Lou, Jie-Chung; Lin, Yung-Chang

    2008-02-01

    Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35-99.68% and 24.15-99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH(3)-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH(3)-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.

  12. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    USGS Publications Warehouse

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  13. A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh

    NASA Astrophysics Data System (ADS)

    Islam, Md Bayzidul; Firoz, A. B. M.; Foglia, Laura; Marandi, Andres; Khan, Abidur Rahman; Schüth, Christoph; Ribbe, Lars

    2017-05-01

    The water resources that supply most of the megacities in the world are under increased pressure because of land transformation, population growth, rapid urbanization, and climate-change impacts. Dhaka, in Bangladesh, is one of the largest of 22 growing megacities in the world, and it depends on mainly groundwater for all kinds of water needs. The regional groundwater-flow model MODFLOW-2005 was used to simulate the interaction between aquifers and rivers in steady-state and transient conditions during the period 1981-2013, to assess the impact of development and climate change on the regional groundwater resources. Detailed hydro-stratigraphic units are described according to 150 lithology logs, and a three-dimensional model of the upper 400 m of the Greater Dhaka area was constructed. The results explain how the total abstraction (2.9 million m3/d) in the Dhaka megacity, which has caused regional cones of depression, is balanced by recharge and induced river leakage. The simulated outcome shows the general trend of groundwater flow in the sedimentary Holocene aquifers under a variety of hydrogeological conditions, which will assist in the future development of a rational and sustainable management approach.

  14. Groundwater quality in the Northern Atlantic Coastal Plain aquifer system, eastern United States

    USGS Publications Warehouse

    Lindsey, Bruce; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Northern Atlantic Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 15 percent of the study area and at moderate concentrations in about 17 percent. Organic constituents were not detected at high concentrations in the study area.

  15. Groundwater ages from the freshwater zone of the Edwards aquifer, Uvalde County, Texas—Insights into groundwater flow and recharge

    USGS Publications Warehouse

    Hunt, Andrew G.; Landis, Gary P.; Faith, Jason R.

    2016-02-23

    Tritium–helium-3 groundwater ages of the Edwards aquifer in south-central Texas were determined as part of a long-term study of groundwater flow and recharge in the Edwards and Trinity aquifers. These ages help to define groundwater residence times and to provide constraints for calibration of groundwater flow models. A suite of 17 samples from public and private supply wells within Uvalde County were collected for active and noble gases, and for tritium–helium-3 analyses from the confined and unconfined parts of the Edwards aquifer. Samples were collected from monitoring wells at discrete depths in open boreholes as well as from integrated pumped well-head samples. The data indicate a fairly uniform groundwater flow system within an otherwise structurally complex geologic environment comprised of regionally and locally faulted rock units, igneous intrusions, and karst features within carbonate rocks. Apparent ages show moderate, downward average, linear velocities in the Uvalde area with increasing age to the east along a regional groundwater flow path. Though the apparent age data show a fairly consistent distribution across the study area, many apparent ages indicate mixing of both modern (less than 60 years) and premodern (greater than 60 years) waters. This mixing is most evident along the “bad water” line, an arbitrary delineation of 1,000 milligrams per liter dissolved solids that separates the freshwater zone of the Edwards aquifer from the downdip saline water zone. Mixing of modern and premodern waters also is indicated within the unconfined zone of the aquifer by high excess helium concentrations in young waters. Excess helium anomalies in the unconfined aquifer are consistent with possible subsurface discharge of premodern groundwater from the underlying Trinity aquifer into the younger groundwater of the Edwards aquifer.

  16. Implications of projected climate change for groundwater recharge in the western United States

    USGS Publications Warehouse

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle Ann

    2016-01-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10–20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using

  17. Implications of Projected Climate Change for Groundwater Recharge in the Western United States

    NASA Technical Reports Server (NTRS)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; hide

    2016-01-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/ location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100 degrees longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using

  18. Implications of projected climate change for groundwater recharge in the western United States

    NASA Astrophysics Data System (ADS)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed

  19. Three-dimensional flow and trace metal mobility in shallow Chalk groundwater, Dorset, United Kingdom

    NASA Astrophysics Data System (ADS)

    Schürch, Marc; Edmunds, W. Michael; Buckley, David

    2004-06-01

    The three-dimensional groundwater flow and the hydrogeochemical regime have been determined in the Bere Stream valley, North Dorset Downs, southern England. The dual porosity characteristics of the Portsdown Chalk have been established using geophysical and hydrochemical borehole logging. Chemical properties have been established using major and trace element analyses of depth samples and groundwaters. The study site is located at the unconfined-confined boundary of the Chalk aquifer, where it is overflowing in the observation boreholes. The Chalk dips locally at about 5 m/km to the south-east under Palaeogene confining beds and three distinctive flow horizons may be recognised. The Chalk groundwater is of Ca-HCO 3 type and three separate geochemical groundwater zones were also determined with depth, having different oxygen levels and trace element characteristics. (1) A shallow O 2-rich zone with around 80% dissolved O 2 and low trace element concentrations. (2) A mixing and transition zone with significant concentrations of trace elements and high trace metal concentrations at its base: manganese 29 μg/l, nickel 55 μg/l, cadmium 146 μg/l, and zinc 214 μg/l. (3) A deeper zone with depleted oxygen (5-20% dissolved O 2) and with longer water residence times shown by higher Mg/Ca and K/Na ratios as well as higher Sr and F. The groundwater geochemistry in the Chalk aquifer is dominated by incongruent reactions with the fine-grained carbonate sediments, which release trace element impurities to the water. Some of the metals are co-precipitated with Mn- and Fe-oxide phases on fissure surfaces, whilst producing a purer calcite. During subsequent recrystallisation to purer iron- and manganese-oxides on fissure surfaces under specific geochemical and hydrodynamic conditions, trace metals are released into the fissure water. The results demonstrate the need to monitor quality stratification and the changes in the groundwater baseline chemistry in areas close to the

  20. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, California

    USGS Publications Warehouse

    Burton, Carmen

    2018-05-30

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.

  1. Documentation of a computer program to simulate transient leakage from confining units using the modular finite-difference, ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Leahy, P.P.; Navoy, A.S.

    1994-01-01

    Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.

  2. Groundwater Quality in the Central Eastside San Joaquin Valley, California

    USGS Publications Warehouse

    Belitz, Kenneth; Landon, Matthew K.

    2010-01-01

    The Central Eastside study unit is located in California's San Joaquin Valley. The 1,695 square mile study unit includes three groundwater subbasins: Modesto, Turlock, and Merced (California Department of Water Resources, 2003). The primary water-bearing units consist of discontinuous lenses of gravel, sand, silt, and clay, which are derived largely from the Sierra Nevada Mountains to the east. Public-supply wells provide most of the drinking water supply in the Central Eastside. Consequently, the primary aquifer in the Central Eastside study unit is defined as that part of the aquifer corresponding to the perforated interval of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 350 feet, consist of solid casing from the land surface to a depth of about 100 to 200 feet, and they are perforated below the solid casing. Water quality in the shallower and deeper parts of the aquifer system may differ from that in the primary aquifer. The Central Eastside study unit has hot and dry summers and cool, moist, winters. Average annual rainfall ranges from 11 to 15 inches. The Stanislaus, Tuolumne, and Merced Rivers, with headwaters in the Sierra Nevada Mountains, are the primary streams traversing the study unit. Land use in the study unit is approximately 59 percent (%) agricultural, 34% natural (primarily grassland), and 7% urban. The primary crops are almonds, walnuts, peaches, grapes, grain, corn, and alfalfa. The largest urban areas (2003 population in parentheses) are the cities of Modesto (206,872), Turlock (63,467), and Merced (69,512). Municipal water use accounts for about 5% of the total water use in the Central Eastside study unit, with the remainder used for irrigated agriculture. Groundwater accounts for about 75% of the municipal supply, and surface water accounts for about 25%. Recharge to the groundwater flow system is primarily from percolation of irrigation return

  3. In Situ Treatment Train for Remediation of Perfluoroalkyl Contaminated Groundwater: In Situ Chemical Oxidation of Sorbed Contaminants (ISCO SC)

    DTIC Science & Technology

    2017-07-18

    FINAL REPORT In Situ Treatment Train for Remediation of Perfluoroalkyl Contaminated Groundwater: In Situ Chemical Oxidation of Sorbed... Contaminants (ISCO-SC) SERDP Project ER-2423 OCTOBER 2017 M. Crimi, T. Holsen, C. Bellona Clarkson University C. Divine Arcadis E...Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer , or otherwise, does not

  4. Assessing Groundwater Resources Sustainability Using Groundwater Footprint Concept

    NASA Astrophysics Data System (ADS)

    Charchousi, Despoina; Spanoudaki, Katerina; Papadopoulou, Maria P.

    2017-04-01

    Over-pumping, water table depletion and climate change impacts require effective groundwater management. The Groundwater Footprint (GWF), introduced by Gleeson et al. in 2012 expresses the area required to sustain groundwater use and groundwater dependent ecosystem services. GWF represents a water balance between aquifer inflows and outflows, focusing on environmental flow requirements. Developing the water balance, precipitation recharge and additional recharge from irrigation are considered as inflows, whereas outflows are considered the groundwater abstraction from the aquifer of interest and the quantity of groundwater that is needed to sustain ecosystem services. The parameters required for GWF calculation can be estimated through in-situ measurements, observations and models outputs. The actual groundwater abstraction is often difficult to be estimated with a high accuracy. Environmental flow requirements can be calculated through different approaches; the most accurate of which are considered the ones that focus on hydro-ecological data analysis. As the GWF is a tool recently introduced in groundwater assessment and management, only a few studies have been reported in the literature to use it as groundwater monitoring and management tool. The present study emphasizes on a case study in Southern Europe, where awareness should be raised about rivers' environmental flow. GWF concept will be applied for the first time to a pilot area in Greece, where the flow of the perennial river that crosses the area of interest is dependent on baseflow. Recharge and abstraction of the pilot area are estimated based on historical data and previous reports and a groundwater flow model is developed using Visual Modflow so as to diminish the uncertainty of the input parameters through model calibration. The groundwater quantity that should be allocated on surface water body in order to sustain satisfactory biological conditions is estimated under the assumption that surface

  5. Groundwater quality in the Mojave area, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  6. SUMMARY OF WATERBORNE ILLNESS TRANSMITTED THROUGH CONTAMINATED GROUNDWATER

    EPA Science Inventory

    The use of contaminated, untreated or inadequately treated groundwater was responsible for 51 percent of all waterborne outbreaks and 40 percent of all waterborne illness reported in the United States during the period 1971-82. Contaminated, untreated or inadequately disinfected ...

  7. Chemistry and quality of groundwater in a coastal region of Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Rao, N. Subba; Vidyasagar, G.; Surya Rao, P.; Bhanumurthy, P.

    2017-03-01

    The chemistry of groundwater in the coastal region between Chirala and Ongole of Andhra Pradesh, India shows pollution to varying extent. The relative contribution of ions in six zones divided based on TDS indicates unsuitability of groundwater here for drinking, irrigation and industrial use. The water is brackish except in first zone and further alkaline. TDS is less than 1,000 mg/L in first zone, while it is more in other zones. This classification of groundwater into zones is also investigated by hydrogeochemical facies, genetic classification, mechanisms of groundwater chemistry and geochemical signatures. Hydrogeochemical facies of Na+>Mg2+>Ca2+: {{HCO}}3^{ - } > Cl- > SO 4^{2 - } is observed from zone I, while that of Na+>Mg2+>Ca2+:Cl- > HCO 3^{ - } > SO 4^{2 - } from second to sixth zones. The genetic classification of groundwater in first and second zones is HCO 3^{ - } type and supported by good drainage conditions, while zones III to VI belong to Cl- category evident from poor drainage scenario. The location of six zones on mechanisms of groundwater chemistry supports sluggish drainage conditions of second to six zones, while predominate rock-water interaction in first zone. The geochemical signatures (HCO 3^{ - } :Cl- > 1 and Na+:Cl- < 1) also endorse the pollution. The quantities of chemical species (Mg2+, Na+, K+, HCO 3^{ - } , Cl ^{ - } , SO 4^{2 - } , NO 3^{ - } and F ^{ - } ) and TDS in all zones are far greater than the stipulated limits for drinking. The United States Salinity Laboratory plots discriminated the suitability of groundwater in second to sixth zones for irrigation after only special soil treatment. Higher concentrations of TDS, HCO 3^{ - } , Cl- and SO 4^{2 - } in all zones render it unsuitable for industry too. This information is crucial for public and civic authorities for taking up strategic management plan for preventing further deterioration of hydrogeochemical environmental conditions of this part of the coastal region.

  8. Sub-marine groundwater for the supply of drinking water. A review of the hydro-geological potential and its technical and economical feasibility.

    NASA Astrophysics Data System (ADS)

    Haakon Bakken, Tor; Mangset, Lars Erik

    2010-05-01

    assumptions as Zhou and Tol (2005), it is found that utilisation of sub-marine groundwater can be economically competitive. The calculation gives an expected unit cost of 1,23 US /m3. Performed Monte Carlo-simulations give 5 % and 95 % percentiles equal to the unit cost levels 1,07 and 1,39 US /m3, respectively. This is not far from the proposed feasibility benchmark of 1,14 US /m3 by Zhou and Tol (2005), or the average costs of 1,46 US /m3 derived from their large database of built desalination plants (based on reverse osmosis-technology). The dominating cost driver is considered being the salinity of the sub-marine groundwater, affecting the need for water treatment and consequently energy consumption. Hence it is concluded that a premise for the proposed technical concept is that the sub-marine groundwater holds sufficiently better quality (lower salinity) than the ambient sea water to justify the additional costs related to exploration and exploitation of the sub-marine water resource (i.e. the additional off-shore oil & gas technologies). A review of publications mainly from the US, supported by a limited number of publications originating from European research groups, were all positive in their conclusions that fresh and brackish water can be found on the continental shelf. These indications may therefore suggest that sub-marine groundwater may be a realistic alternative to desalination of sea water, seen from an economic point of view. Lower energy consumption related to treatment of less saline sub-marine groundwater moreover implies that environmental benefits, assuming the use of fossil fuels as energy source to water desalination, may be achieved.

  9. Groundwater resources of the East Mountain area, Bernalillo, Sandoval, Santa Fe, and Torrance Counties, New Mexico, 2005

    USGS Publications Warehouse

    Bartolino, James R.; Anderholm, Scott K.; Myers, Nathan C.

    2010-01-01

    The groundwater resources of about 400 square miles of the East Mountain area of Bernalillo, Sandoval, Santa Fe, and Torrance Counties in central New Mexico were evaluated by using groundwater levels and water-quality analyses, and updated geologic mapping. Substantial development in the study area (population increased by 11,000, or 50 percent, from 1990 through 2000) has raised concerns about the effects of growth on water resources. The last comprehensive examination of the water resources of the study area was done in 1980-this study examines a slightly different area and incorporates data collected in the intervening 25 years. The East Mountain area is geologically and hydrologically complex-in addition to the geologic units, such features as the Sandia Mountains, Tijeras and Gutierrez Faults, Tijeras syncline and anticline, and the Estancia Basin affect the movement, availability, and water quality of the groundwater system. The stratigraphic units were separated into eight hydrostratigraphic units, each having distinct hydraulic and chemical properties. Overall, the major hydrostratigraphic units are the Madera-Sandia and Abo-Yeso; however, other units are the primary source of supply in some areas. Despite the eight previously defined hydrostratigraphic units, water-level contours were drawn on the generalized regional potentiometric map assuming all hydrostratigraphic units are connected and function as a single aquifer system. Groundwater originates as infiltration of precipitation in upland areas (Sandia, Manzano, and Manzanita Mountains, and the Ortiz Porphyry Belt) and moves downgradient into the Tijeras Graben, Tijeras Canyon, San Pedro synclinorium, and the Hagan, Estancia, and Espanola Basins. The study area was divided into eight groundwater areas defined on the basis of geologic, hydrologic, and geochemical information-Tijeras Canyon, Cedar Crest, Tijeras Graben, Estancia Basin, San Pedro Creek, Ortiz Porphyry Belt, Hagan Basin, and Upper Sandia

  10. Local capacity for groundwater protection in Ontario.

    PubMed

    De Loë, Rob C; Di Giantomasso, Sandra E; Kreutzwiser, Reid D

    2002-02-01

    Preventing groundwater contamination is vastly cheaper than remediation. Recognizing this, attention in water and land management agencies in North America increasingly turn to groundwater protection. Local agencies, such as municipalities and watershed management districts, are vital to successful groundwater protection, but they face daunting challenges. In the United States, senior governments have recognized these challenges and provide considerable support for local agencies. In Ontario, Canada, local agencies are, to a much greater extent, on their own. The aims in this paper are to analyze factors that shape local capacity for groundwater protection, focusing on Ontario, and to recommend avenues for capacity building. Interrelationships among five dimensions of capacity (technical, financial, institutional, social, and political) are explored through an analysis of three smaller Ontario communities: City of Guelph (population 93,400), Town of Orangeville (population 22,188), and Town of Erin (population 11,000). Size clearly influences capacity for groundwater protection. However, other considerations unrelated to size appear to be as important. These other factors include the ability to form horizontal and vertical linkages with external agencies, political leadership and commitment, and citizen involvement. Thus, smaller communities in Ontario (and other jurisdictions with limited senior government support) would do well to focus on these areas at the same time as they develop their technical, financial, and institutional capacity.

  11. Thermal treatment wall

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  12. The economics of optimal urban groundwater management in southwestern USA

    NASA Astrophysics Data System (ADS)

    Hansen, Jason K.

    2012-08-01

    Groundwater serves as the primary water source for approximately 80% of public water systems in the United States, and for many more as a secondary source. Traditionally management relies on groundwater to meet rising demand by increasing supply, but climate uncertainty and population growth require more judicious management to achieve efficiency and sustainability. Over-pumping leads to groundwater overdraft and jeopardizes the ability of future users to depend on the resource. Optimal urban groundwater pumping can play a role in solving this conundrum. This paper investigates to what extent and under what circumstances controlled pumping improves social welfare. It considers management in a hydro-economic framework and finds the optimal pumping path and the optimal price path. These allow for the identification of the social benefit of controlled pumping, and the scarcity rent, which is one tool to sustainably manage groundwater resources. The model is numerically illustrated with a case study from Albuquerque, New Mexico (USA). The Albuquerque results indicate that, in the presence of strong demand growth, controlled pumping improves social welfare by 22%, extends use of the resource, and provides planners with a mechanism to advance the economic sustainability of groundwater.

  13. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to

  14. Status and understanding of groundwater quality in the San Francisco Bay groundwater basins, 2007—California GAMA Priority Basin Project

    USGS Publications Warehouse

    Parsons, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the approximately 620-square-mile (1,600-square-kilometer) San Francisco Bay study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in the Southern Coast Ranges of California, in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Francisco Bay study was designed to provide a spatially unbiased assessment of the quality of untreated groundwater within the primary aquifer system, as well as a statistically consistent basis for comparing water quality throughout the State. The assessment is based on water-quality and ancillary data collected by the USGS from 79 wells in 2007 and is supplemented with water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system is defined by the depth interval of the wells listed in the CDPH database for the San Francisco Bay study unit. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifer system; shallower groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. Water- quality data from the CDPH database also were incorporated for this assessment. This status assessment is intended to characterize the quality of groundwater resources within the primary aquifer system of the San Francisco Bay study unit, not the treated drinking water delivered to consumers by water

  15. Hydrogeologic framework, groundwater movement, and water budget in the Chimacum Creek basin and vicinity, Jefferson County, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Welch, Wendy B.; Frans, Lonna M.; Olsen, Theresa D.

    2011-01-01

    This report presents information used to characterize the groundwater flow system in the Chimacum Creek basin. It includes descriptions of the geology and hydrogeologic framework; groundwater recharge and discharge; groundwater levels and flow directions; seasonal fluctuations in groundwater level; interactions between aquifers and the surface-water system; and a groundwater budget. The study area covers 124 square miles in northeastern Jefferson County, Washington, and includes the Chimacum Creek basin, which drains an area of about 37 square miles. The area is underlain by a north-thickening sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and igneous bedrock units that crop out along the margins and western interior of the study area. Six hydrogeologic units consisting of unconsolidated aquifers and confining units, along with an underlying bedrock unit, were identified. A surficial hydrogeologic map was developed and used with well information from 187 drillers' logs to construct 4 hydrogeologic sections, and maps showing the extent and thickness of the units. Natural recharge was estimated using precipitation-recharge relation regression equations developed for western Washington, and estimates were calculated for return flow from data on domestic indoor and outdoor use and irrigated agriculture. Results from synoptic streamflow measurements and water table elevations determined from monthly measurements at monitoring wells are presented and compared with those from a study conducted during 2002-03. A water budget was calculated comprising long-term average recharge, domestic public-supply withdrawals and return flow, self-supplied domestic withdrawals and return flow, and irrigated agricultural withdrawals and return flow.

  16. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ

    NASA Astrophysics Data System (ADS)

    Piscopo, Amy N.; Neupauer, Roseanna M.; Kasprzyk, Joseph R.

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume.

  17. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    PubMed Central

    Wright, Justin; Kirchner, Veronica; Bernard, William; Ulrich, Nikea; McLimans, Christopher; Campa, Maria F.; Hazen, Terry; Macbeth, Tamzen; Marabello, David; McDermott, Jacob; Mackelprang, Rachel; Roth, Kimberly; Lamendella, Regina

    2017-01-01

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  18. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Justin; Kirchner, Veronica; Bernard, William

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  19. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE PAGES

    Wright, Justin; Kirchner, Veronica; Bernard, William; ...

    2017-11-22

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges

  20. Treatment of Chlorinated Solvents in Groundwater Beneath an Occupied Building at the Young-Rainey STAR Center, Pinellas, FL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Joe; Surovchak, Scott; Tabor, Charles

    Groundwater contamination, consisting of two dissolved-phase plumes originating from chlorinated solvent source areas, in the southeastern portion of the Young- Rainey Star Center (also known as the Pinellas County, Florida, Site) in Largo, Florida, has migrated beyond the property boundary, beneath the roadways, and beneath adjacent properties to the south and east. Groundwater contamination will persist as long as the onsite contaminant source remains. The origin of the contamination appears to be multiple long-term point sources beneath Building 100, a 4.5 ha (11 acre) building that housed manufacturing facilities during US DOE operations at the site. The site is nowmore » owned by Pinellas County, and most of the space inside the building is leased to private companies, so DOE chose not to conduct characterization or remediation through the floor of the building, instead choosing to conduct all work from outside the building. Injection of emulsified soybean oil and a microbial culture has been used at other areas of the site to accelerate naturally occurring bacterial processes that degrade groundwater contaminants to harmless compounds, and that same approach was chosen for this task. The technical approach consisted of installing horizontal wells from outside the building footprint, extending through and around the identified subsurface treatment areas, and terminating beneath the building. Two 107 m (350 ft) long wells, two 122 m (400 ft) long wells, and four 137 m (450 ft) long wells have been installed to intersect the inferred source areas and confirmed contaminant plumes beneath the building. DOE then injected emulsified vegetable oil and a microbial culture into the horizontal wells at each of several target areas beneath the building where the highest groundwater contaminant concentrations have been detected. The target areas are the northwest corner of the building between the old drum storage pad locations and monitoring well PIN12-S35B, the

  1. Final construction and testing of an experimental sprinkler/groundwater treatment system for proposed use by the village of Utica, Nebraska.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2005-06-17

    The testing described above demonstrates that the experimental sprinkler designed by Argonne could be successfully, and safely, used by the Village of Utica for irrigation of the town's playing fields, using contaminated (by carbon tetrachloride) groundwater from the shallow aquifer beneath the town. Routine operation of the sprinkler within the range of parameters identified by the testing program would effectively reduce carbon tetrachloride concentrations in the discharged spray reaching the ground to levels below the MCL (5 {micro}g/l). CCC/USDA and Argonne propose to test use of the experimental sprinkler by the Village of Utica during the next (Summer 2001) growingmore » season, under Argonne supervision. Water will be supplied from the well to the sprinkler drive unit using a temporary, flexible (high-pressure hose) connection. Argonne will provide training to Village staff in the setup and use of the sprinkler, and will conduct periodic monitoring (proposed biweekly, initially) of the watering operations and sampling and analysis of the spray discharge from the unit, to ensure that the specified groundwater cleanup performance of the sprinkler system (to carbon tetrachloride values <5 {micro}g/L) is maintained. If testing of the sprinkler in this manner proves successful during 2001, CCC/USDA will seek to permanently transfer ownership and operation responsibilities for the sprinkler to the Utica Village Board.« less

  2. Illinois ground-water observation network; a preliminary planning document for network design

    USGS Publications Warehouse

    Frost, L.R.; O'Hearn, Michael; Gibb, J.P.; Sherrill, M.G.

    1984-01-01

    Water-level and water-quality networks in Illinois were evaluated to determine the adequacy and completeness of available data bases. Ground-water data in present data bases are inadequate to provide information on ground-water quality and water levels in large areas of Illinois and in the major geohydrologic units underlying Illinois and surrounding areas. Data-management needs indicate that a new data base is desirable and could be developed by use of carefully selected available data and new data. Types of data needed to define ground-water quality and water levels in selected geohydrologic units were tentatively identified. They include data on concentrations of organic chemicals related to activities of man, and concentrations of inorganic chemicals which relate either to man 's activities or to the chemical composition of the source aquifer. Water-level data are needed which can be used to describe short- and long-term stresses on the ground-water resources of Illinois. Establishment of priorities for data collection has been deferred until existing hydrologic data files can be stored for usable data and until input from other local, State, and Federal agencies can be solicited and compiled. (USGS)

  3. Occurrence of Sustained Treatment Following Enhanced Anaerobic Bioremediation at Chlorinated Solvent Sites

    NASA Astrophysics Data System (ADS)

    Burcham, M.; Bedient, P.; McGuire, T.; Adamson, D.; Newell, C. J.

    2012-12-01

    Chlorinated solvents are among the most prevalent groundwater contaminants found in the United States, located at nearly 80% of all Superfund sites, and at more than 3,000 Department of Defense sites. Responsible parties in the U.S. spend several billion dollars per year on environmental restoration with much of these funds targeting remediation of chlorinated solvents in groundwater. To make this large investment in groundwater remediation technologies more effective, end-users need quantitative, accurate, and reliable performance data for commonly used remediation technologies. One such technology that has been used increasingly for remediation of chlorinated solvent sites is enhanced anaerobic bioremediation (EAB). A previous study of remediation performance of various technologies indicated that EAB has the potential for sustained treatment several years after injection of an EAB substrate. This benefit is attributed to the recycling of decaying biomass (endogenous decay) and/or the formation of reactive mineral species, and it serves to mitigate the incidence of concentration rebound during the post-treatment period that is commonly-observed with other technologies. The current study expands on the previous study by focusing on the occurrence of sustained treatment at EAB sites through analysis of groundwater concentration data for longer post-treatment periods than were available for the previous study (up to 9 years), along with site characteristics such as hydrogeology, geochemistry, and microbiology. The objective is to determine whether relationships exist that can aid in determining when sustained treatment following EAB might occur for a given site. To date, data from over 17 distinct sites applying EAB have been collected. The dataset includes over 50 monitoring wells within EAB treatment zones, with concentration data extending from before treatment began to more than 3 to 9 years following treatment. Efforts are underway to continue this data mining

  4. Integrated hydrochemical and geophysical studies for assessment of groundwater pollution in basaltic settings in Central India.

    PubMed

    Pujari, Paras R; Padmakar, C; SuriNaidu, L; Vaijnath, V U; Kachawe, Bhusan; Gurunadha Rao, V V S; Labhasetwar, P K

    2012-05-01

    The Pithampur Industrial sectors I, II, and III, located approximately, 45 km from Indore in Central India have emerged as one of the largest industrial clusters in the region. Various types of industries ranging from automobiles to chemicals and pharmaceuticals have been set up in the region since 1990. Most of the industries have effluent treatment plants (ETP) for treating wastewater before its disposal on land and/or in water body. The present study is an attempt to assess the groundwater quality in the watersheds surrounding these industrial sectors to develop the baseline groundwater quality in order to enable the policy makers to facilitate decisions on the development of industries in this region. The industries are located in two sub-watersheds, namely, Gambhir river sub-watershed and Chambal river sub-watershed. Geologically, the study area is located in the Deccan traps of Cretaceous to Paleocene age. The different basaltic flow units underlie clayey soils varying in thickness from 2-3 m. The aquifer is mostly of unconfined nature. Samples have been collected from a network of observation wells set up in the watersheds. The water quality analysis of the groundwater samples has been carried out six times during three hydrological cycles of 2004, 2005, and 2006. The results indicate that a few observation wells in the vicinity of the industrial clusters have very high TDS concentration and exceed the Bureau of Indian Standards (BIS) guideline for TDS concentration. The contamination of groundwater has been more severe in the Gambhir watershed as compared to the Chambal watershed. The presence of the impermeable clay layers has resulted in a slow migration of contaminants from the sources. The findings reveal that there is no significant groundwater contamination in the Pithampur industrial sectors except in the vicinity of the industrial clusters, which indicates that there is good environmental space available for the expansion of industrial units in

  5. Analysis of groundwater response to tidal fluctuations, Operable Unit 2, Area 8, Naval Base Kitsap, Keyport, Washington

    USGS Publications Warehouse

    Opatz, Chad C.; Dinicola, Richard S.

    2018-05-21

    Operable Unit 2, Area 8, at Naval Base Kitsap, Keyport is the site of a former chrome-plating facility that released metals (primarily chromium and cadmium), chlorinated volatile organic compounds, and petroleum compounds into the local environment. To ensure long-term protectiveness, as stipulated in the Fourth Five-Year Review for the site, Naval Facilities Engineering Command Northwest collaborated with the U.S. Environmental Protection Agency, the Washington State Department of Ecology, and the Suquamish Tribe, to collect data to monitor the contamination left in place and to ensure the site does not pose a risk to human health or the environment. To support these efforts, refined information was needed on the interaction of fresh groundwater with seawater in response to the up-to 13-ft tidal fluctuations at this nearshore site adjacent to Port Orchard Bay. The information was analyzed to meet the primary objective of this investigation, which was to determine the optimal time during the semi-diurnal and the neap-spring tidal cycles to sample groundwater for freshwater contaminants in Area 8 monitoring wells.Groundwater levels and specific conductance in five monitoring wells, along with marine water-levels (tidal levels) in Port Orchard Bay, were monitored every 15 minutes during a 3-week duration to determine how nearshore groundwater responds to tidal forcing. Time series data were collected from October 24, 2017, to November 16, 2017, a period that included neap and spring tides. Vertical profiles of specific conductance were also measured once in the screened interval of each well prior to instrument deployment to determine if a freshwater/saltwater interface was present in the well during that particular time.The vertical profiles of specific conductance were measured only one time during an ebbing tide at approximately the top, middle, and bottom of the saturated thickness within the screened interval of each well. The landward-most well, MW8-8, was

  6. Geophysical and hydrogeological characterisation of the impacts of on-site wastewater treatment discharge to groundwater in a poorly productive bedrock aquifer.

    PubMed

    Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond

    2015-08-01

    Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar

  7. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  8. Groundwater quality in Coachella Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  9. Superfund Record of Decision (EPA Region 9): San Fernando Valley Area 2, operable unit 2, Los Angeles County, CA, June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    This decision document presents the selected remedial action for the Glendale North Operable Unit, San Fernando Valley Area 2 Superfund site. The remedy involves groundwater extraction and treatment for the shallow aquifer system in the Glendale area of the San Fernando Valley.

  10. Superfund Record of Decision (EPA Region 9): San Fernando Valley Area 2, operable unit 3, Los Angeles County, CA, June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    This decision document presents the selected remedial action for the Glendale South Operable Unit, San Fernando Valley Area 2 Superfund site. The remedy involves groundwater extraction and treatment for the shallow aquifer system in the Glendale area of the San Fernando Valley.

  11. Groundwater potential index in a crystalline terrain using remote sensing data

    NASA Astrophysics Data System (ADS)

    Subba Rao, N.

    2006-08-01

    Demand for groundwater for drinking, agricultural and industrial purposes has increased due to uncertainty in the surface water supply. Agriculture is the main occupation of the rural people in Guntur district, Andhra Pradesh, India. Development of groundwater in the district is very less, indicating a lot of scope for further development of groundwater resources. However, assessment of groundwater conditions, particularly in a crystalline terrain, is a complex task because of variations in weathering and fracturing zones from place to place. Systematic studies for evaluation of groundwater potential zones have been carried out in a crystalline terrain of the district. Information on soils, geological formations and groundwater conditions is collected during the hydrogeological survey. Topographical and drainage conditions are derived from the Survey of India topographical maps. Geomorphological units and associated landform features inferred and delineated from the Indian remote sensing satellite imagery (IRS ID LISS III FCC) are moderately buried pediplain (BPM), shallow buried pediplain (BPS), valley fills (VF), structural hill (SH), residual hills (RH), lineaments and land use/land cover. A groundwater potential index (GPI) is computed for relative evaluation of groundwater potential zones in the study area by integrating all the related factors of occurrence and movement of groundwater resources. Accordingly, the landforms, BPM, BPS, VF, SH and RH, of the area are categorized as very good groundwater potential zone, good to moderate groundwater potential zone, moderate to poor groundwater potential zone, poor to very poor groundwater potential zone and very poor groundwater potential zone, respectively, for development and utilization of both groundwater and surface water resources for eliminating water scarcity. This study could help to improve the agrarian economy for better living conditions of the rural people. Taking the total weight-score of the GPI into

  12. Hydrogeologic Framework, Groundwater Movement, and Water Budget in Tributary Subbasins and Vicinity, Lower Skagit River Basin, Skagit and Snohomish Counties, Washington

    USGS Publications Warehouse

    Savoca, Mark E.; Johnson, Kenneth H.; Sumioka, Steven S.; Olsen, Theresa D.; Fasser, Elisabeth T.; Huffman, Raegan L.

    2009-01-01

    A study to characterize the groundwater-flow system in four tributary subbasins and vicinity of the lower Skagit River basin was conducted by the U.S. Geological Survey to assist Skagit County and the Washington State Department of Ecology in evaluating the effects of potential groundwater withdrawals and consumptive use on tributary streamflows. This report presents information used to characterize the groundwater and surface-water flow system in the subbasins, and includes descriptions of the geology and hydrogeologic framework of the subbasins; groundwater recharge and discharge; groundwater levels and flow directions; seasonal groundwater-level fluctuations; interactions between aquifers and the surface-water system; and a water budget for the subbasins. The study area covers about 247 mi2 along the Skagit River and its tributary subbasins (East Fork Nookachamps Creek, Nookachamps Creek, Carpenter Creek, and Fisher Creek) in southwestern Skagit County and northwestern Snohomish County, Washington. The geology of the area records a complex history of accretion along the continental margin, mountain building, deposition of terrestrial and marine sediments, igneous intrusion, and the repeated advance and retreat of continental glaciers. A simplified surficial geologic map was developed from previous mapping in the area, and geologic units were grouped into nine hydrogeologic units consisting of aquifers and confining units. A surficial hydrogeologic unit map was constructed and, with lithologic information from 296 drillers'logs, was used to produce unit extent and thickness maps and four hydrogeologic sections. Groundwater in unconsolidated aquifers generally flows towards the northwest and west in the direction of the Skagit River and Puget Sound. This generalized flow pattern is likely complicated by the presence of low-permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers. Groundwater

  13. Human Health Impact of Fluoride in Groundwater in the Chiang Mai Basin

    NASA Astrophysics Data System (ADS)

    Matsui, Y.; Takizawa, S.; Wattanachira, S.; Wongrueng, A.; Ibaraki, M.

    2005-12-01

    Chiang Mai Basin, in Northern Thailand, is known as a fluorotic area. Groundwater of the Chiang Mai Basin has been gradually replaced by contaminated surface water since the 1980's. People have been exposed to fluoride contaminated groundwater since that time. As a result, harmful health effects on dental and skeletal growth were observed in the 90's. These include dental and skeletal fluorosis. Dental fluorosis is characterized by yellow or white spots on teeth and pitting or mottled enamel, consequently causing the teeth to look unsightly. Skeletal fluorosis leads to changes in bone structure, making them extremely weak and brittle. The most severe form of this is known as ``crippling skeletal fluorosis,'' a condition that can cause immobility, muscle wasting, and neurological problems related to spinal cord compression. This study focuses on the problematic issue of the Chiang Mai Basin's groundwater from the viewpoint of fluoride occurrence and current health impacts. Chiang Mai and Lamphun Provinces comprise the Chiang Mai Basin. Fluoride rich granites or fluorite deposits are scattered across the mountainside of the Lamphun Province. Tropical savanna climate conditions with seasonal monsoons bring more than 1,000 mm of annual precipitation, which can prompt weathering of minerals containing fluoride. The Ping River dominates the Basin, and the main eastern tributary of the Ping River runs through the Lamphun Province. The Basin has geological units composed of lower semi-consolidated Tertiary fluvial and upper unconsolidated Quaternary alluvium deposits. The main aquifers are in the upper unconsolidated unit. High fluoride concentrations tend to be observed in the aquifer located in lower part of this unconsolidated unit. We have been investigating two areas in the Basin. These two locations are similar with respect to geological and hydrological settings. However, one area in which groundwater is Ca-bicarbonate dominant has a low fluoride occurrence

  14. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  15. Vulnerability of recently recharged groundwater in principal aquifers of the United States to nitrate contamination

    USGS Publications Warehouse

    Gurdak, Jason J.; Qi, Sharon L.

    2012-01-01

    Recently recharged water (defined here as <60 years old) is generally the most vulnerable part of a groundwater resource to nonpoint-source nitrate contamination. Understanding at the appropriate scale the interactions of natural and anthropogenic controlling factors that influence nitrate occurrence in recently recharged groundwater is critical to support best management and policy decisions that are often made at the aquifer to subaquifer scale. New logistic regression models were developed using data from the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program and National Water Information System for 17 principal aquifers of the U.S. to identify important source, transport, and attenuation factors that control nonpoint source nitrate concentrations greater than relative background levels in recently recharged groundwater and were used to predict the probability of detecting elevated nitrate in areas beyond the sampling network. Results indicate that dissolved oxygen, crops and irrigated cropland, fertilizer application, seasonally high water table, and soil properties that affect infiltration and denitrification are among the most important factors in predicting elevated nitrate concentrations. Important differences in controlling factors and spatial predictions were identified in the principal aquifer and national-scale models and support the conclusion that similar spatial scales are needed between informed groundwater management and model development.

  16. EFFECT OF GROUND-WATER REMEDIATION ACTIVITIES ON INDIGENOUS MICROFLORA

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA), working with the Interagency DNAPL Consortium, completed an independent evaluation of microbial responses to ground-water remediation technology demonstrations at Launch Pad 34 at Cape Canaveral Air Station in Brevard Count...

  17. High Plains regional ground-water study

    USGS Publications Warehouse

    Dennehy, Kevin F.

    2000-01-01

    Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.

  18. Hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2011-01-01

    The Chehalis River has the largest drainage basin of any river entirely contained within the State of Washington with a watershed of approximately 2,700 mi2 and has correspondingly diverse geology and land use. Demands for water resources have prompted the local citizens and governments of the Chehalis River basin to coordinate with Federal, State and Tribal agencies through the Chehalis Basin Partnership to develop a long-term watershed management plan. The recognition of the interdependence of groundwater and surface-water resources of the Chehalis River basin became the impetus for this study, the purpose of which is to describe the hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin. Surficial geologic maps and 372 drillers' lithostratigraphic logs were used to generalize the basin-wide hydrogeologic framework. Five hydrogeologic units that include aquifers within unconsolidated glacial and alluvial sediments separated by discontinuous confining units were identified. These five units are bounded by a low permeability unit comprised of Tertiary bedrock. A water table map, and generalized groundwater-flow directions in the surficial aquifers, were delineated from water levels measured in wells between July and September 2009. Groundwater generally follows landsurface-topography from the uplands to the alluvial valley of the Chehalis River. Groundwater gradients are highest in tributary valleys such as the Newaukum River valley (approximately 23 cubic feet per mile), relatively flat in the central Chehalis River valley (approximately 6 cubic feet per mile), and become tidally influenced near the outlet of the Chehalis River to Grays Harbor. The dynamic interaction between groundwater and surface-water was observed through the synoptic streamflow measurements, termed a seepage run, made during August 2010, and monitoring of water levels in wells during the 2010 Water Year. The seepage run revealed an overall gain of 56

  19. Application of Remote Sensing for Generation of Groundwater Prospect Map

    NASA Astrophysics Data System (ADS)

    Inayathulla, Masool

    2016-07-01

    In developing accurate hydrogeomorphological analysis, monitoring, ability to generate information in spatial and temporal domain and delineation of land features are crucial for successful analysis and prediction of groundwater resources. However, the use of RS and GIS in handling large amount of spatial data provides to gain accurate information for delineating the geological and geomorphological characteristics and allied significance, which are considered as a controlling factor for the occurrence and movement of groundwater used IRS LISS II data on 1: 50000 scale along with topographic maps in various parts of India to develop integrated groundwater potential zones. The present work is an attempt to integrate RS and GIS based analysis and methodology in groundwater potential zone identification in the Arkavathi Basin, Bangalore, study area. The information on geology, geomorphology, soil, slope, rainfall, water level and land use/land cover was gathered, in addition, GIS platform was used for the integration of various themes. The composite map generated was further classified according to the spatial variation of the groundwater potential. Five categories of groundwater potential zones namely poor, moderate to poor, moderate, good and very good were identified and delineated. The hydrogeomorphological units like valley fills and alluvial plain and are potential zones for groundwater exploration and development and valley fills associated with lineaments is highly promising area for ground water recharging. The spatial variation of the potential indicates that groundwater occurrence is controlled by geology, land use / land cover, slope and landforms.

  20. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme

    NASA Astrophysics Data System (ADS)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.

  1. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.

    PubMed

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO 2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO 2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO 2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO 2 eq saving per GL of water produced by the plant.

  2. Evaluating groundwater depletion as computed by a global water model

    NASA Astrophysics Data System (ADS)

    Schuh, Carina; Doell, Petra; Mueller Schmied, Hannes; Portmann, Felix

    2013-04-01

    When groundwater abstraction occurs faster than its replenishment over a long time and in a large area, the result is an overexploitation or depletion of groundwater. The problem is aggravated in areas where a growing population relies on freshwater resources for an intensive irrigation agriculture that is meant to guarantee food security. Especially in semi-arid and arid regions, the dominant use for groundwater is irrigation, reaching more than 95% of total water use. Therefore, the hot spots for groundwater depletion are the world's major irrigation areas like the central United States, north-western India and north China. Groundwater depletion presents a major threat to securing agricultural productivity and domestic water supply in these parts of the world. Besides, the environmental consequences that accompany the abstraction of groundwater are severe. Within the scientific community there is a common understanding that high-quality data on globally existing groundwater resources are deficient. In order to allow a sustainable management of the world's available groundwater resources, especially in areas under current water stress, the quantification of groundwater depletion is of high importance. WaterGAP (Water - Global Assessment and Prognosis) is a global model of water availability and water use which can serve to estimate the impact of groundwater and surface water withdrawals on groundwater storage. The new WaterGAP version 2.2a was modified to allow for an improved analysis of groundwater storage changes in semi-arid and arid regions. Now, groundwater recharge from surface water bodies is simulated in semi-arid and arid areas. Estimation of net groundwater abstractions was modified with respect of irrigation water use efficiency for groundwater and return flow fractions. In addition, irrigation consumptive use has been set to 70% of optimal irrigation consumptive use, assuming deficit irrigation to prevail in these parts of the world. Based on time

  3. Estimating Groundwater Development area in Jianan Plain using Standardized Groundwater Index

    NASA Astrophysics Data System (ADS)

    Yu, Chang Hsiang; Haw, Lee Cheng

    2017-04-01

    Taiwan has been facing severe water crises in recent years owing to the effects of extreme weather conditions. Changes in precipitation patterns have also made the drought phenomenon increasingly prominent, which has indirectly affected groundwater recharge. Hence, in the present study, long-term monitoring data were collected from the study area of the Jianan plain. The standardized groundwater index (SGI) and was then used to analyse the region's drought characteristics. To analyse the groundwater level by using SGI, making SGI180 groundwater level be the medium water crises, and SGI360 groundwater level be the extreme water crises. Through the different water crises signal in SGI180 and SGI360, we divide groundwater in Jianan plain into two sections. Thereby the water crises indicators establishing groundwater level standard line in Jianan Plain, then using the groundwater level standard line to find the study area where could be groundwater development area in Jianan plain. Taking into account relatively more water scarcity in dry season, so the study screen out another emergency backup groundwater development area, but the long-term groundwater development area is still as a priority development area. After finding suitable locations, groundwater modeling systems(GMS) software is used to simulate our sites to evaluate development volume. Finally, the result of study will help the government to grasp the water shortage situation immediately and solve the problem of water resources deployment.

  4. Changes in projected spatial and seasonal groundwater recharge in the upper Colorado River Basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.

  5. Groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts, California

    USGS Publications Warehouse

    Parsons, Mary C.; Belitz, Kenneth

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. Selected groundwater basins in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts constitute one of the study units being evaluated.

  6. Microbial fuel cells as pollutant treatment units: Research updates.

    PubMed

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-10-01

    Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimal design of active spreading systems to remediate sorbing groundwater contaminants in situ.

    PubMed

    Piscopo, Amy N; Neupauer, Roseanna M; Kasprzyk, Joseph R

    2016-07-01

    The effectiveness of in situ remediation to treat contaminated aquifers is limited by the degree of contact between the injected treatment chemical and the groundwater contaminant. In this study, candidate designs that actively spread the treatment chemical into the contaminant are generated using a multi-objective evolutionary algorithm. Design parameters pertaining to the amount of treatment chemical and the duration and rate of its injection are optimized according to objectives established for the remediation - maximizing contaminant degradation while minimizing energy and material requirements. Because groundwater contaminants have different reaction and sorption properties that influence their ability to be degraded with in situ remediation, optimization was conducted for six different combinations of reaction rate coefficients and sorption rates constants to represent remediation of the common groundwater contaminants, trichloroethene, tetrachloroethene, and toluene, using the treatment chemical, permanganate. Results indicate that active spreading for contaminants with low reaction rate coefficients should be conducted by using greater amounts of treatment chemical mass and longer injection durations relative to contaminants with high reaction rate coefficients. For contaminants with slow sorption or contaminants in heterogeneous aquifers, two different design strategies are acceptable - one that injects high concentrations of treatment chemical mass over a short duration or one that injects lower concentrations of treatment chemical mass over a long duration. Thus, decision-makers can select a strategy according to their preference for material or energy use. Finally, for scenarios with high ambient groundwater velocities, the injection rate used for active spreading should be high enough for the groundwater divide to encompass the entire contaminant plume. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Groundwater-flow model and effects of projected groundwater use in the Ozark Plateaus Aquifer System in the vicinity of Greene County, Missouri - 1907-2030

    USGS Publications Warehouse

    Richards, Joseph M.

    2010-01-01

    Recent and historical periods of rapid growth have increased the stress on the groundwater resources in the Ozark aquifer in the Greene County, Missouri area. Historical pumpage from the Ozark aquifer has caused a cone of depression beneath Springfield, Missouri. In an effort to ease its dependence on groundwater for supply, the city of Springfield built a pipeline in 1996 to bring water from Stockton Lake to the city. Rapid population growth in the area coupled with the expanding cone of depression raised concern about the sustainability of groundwater as a resource for future use. A groundwater-flow model was developed by the U.S. Geological Survey in cooperation with Greene County, Missouri, the U. S. Army Corps of Engineers, and the Missouri Department of Natural Resources to assess the effect that increased groundwater demand is having on the long-term availability of groundwater in and around Greene County, Missouri. Three hydrogeologic units were represented in the groundwater-flow model: the Springfield Plateau aquifer, the Ozark confining unit, and the Ozark aquifer. The Springfield Plateau aquifer is less than 350 feet thick in the model area and generally is a low yield aquifer suitable only for domestic use. The Ozark aquifer is composed of a more than 900-foot thick sequence of dolomite and sandstone in the model area and is the primary aquifer throughout most of southern Missouri. Wells open to the entire thickness of the Ozark aquifer typically yield 1,000 gallons per minute or more. Between the two aquifers is the Ozark confining unit composed of as much as 98 feet of shale and limestone. Karst features such as sinkholes, springs, caves, and losing streams are present in both aquifers, but the majority of these features occur in the Springfield Plateau aquifer. The solution-enlarged fracture and bedding plane conduits in the karst system, particularly in the Springfield Plateau aquifer, are capable of moving large quantities of groundwater through

  9. Conceptual model and numerical simulation of the groundwater-flow system of Bainbridge Island, Washington

    USGS Publications Warehouse

    Frans, Lonna M.; Bachmann, Matthew P.; Sumioka, Steve S.; Olsen, Theresa D.

    2011-01-01

    Groundwater is the sole source of drinking water for the population of Bainbridge Island. Increased use of groundwater supplies on Bainbridge Island as the population has grown over time has created concern about the quantity of water available and whether saltwater intrusion will occur as groundwater usage increases. A groundwater-flow model was developed to aid in the understanding of the groundwater system and the effects of groundwater development alternatives on the water resources of Bainbridge Island. Bainbridge Island is underlain by unconsolidated deposits of glacial and nonglacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Eleven principal hydrogeologic units are recognized in the study area and form the basis of the groundwater-flow model. A transient variable-density groundwater-flow model of Bainbridge Island and the surrounding area was developed to simulate current (2008) groundwater conditions. The model was calibrated to water levels measured during 2007 and 2008 using parameter estimation (PEST) to minimize the weighted differences or residuals between simulated and measured hydraulic head. The calibrated model was used to make some general observations of the groundwater system in 2008. Total flow through the groundwater system was about 31,000 acre-ft/ yr. The recharge to the groundwater system was from precipitation and septic-system returns. Groundwater flow to Bainbridge Island accounted for about 1,000 acre-ft/ yr or slightly more than 5 percent of the recharge amounts. Groundwater discharge was predominately to streams, lakes, springs, and seepage faces (16,000 acre-ft/yr) and directly to marine waters (10,000 acre-ft/yr). Total groundwater withdrawals in 2008 were slightly more than 6 percent (2,000 acre-ft/yr) of the total flow. The calibrated model was used to simulate predevelopment conditions

  10. Hydrogeologic framework and groundwater/surface-water interactions of the South Fork Nooksack River Basin, northwestern Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2014-01-01

    A hydrogeologic framework of the South Fork (SF) Nooksack River Basin in northwestern Washington was developed and hydrologic data were collected to characterize the groundwater-flow system and its interaction with surface‑water features. In addition to domestic, agricultural, and commercial uses of groundwater within the SF Nooksack River Basin, groundwater has the potential to provide ecological benefits by maintaining late-summer streamflows and buffering stream temperatures. Cold-water refugia, created and maintained in part by groundwater, have been identified by water-resource managers as key elements to restore the health and viability of threatened salmonids in the SF Nooksack River. The SF Nooksack River drains a 183-square mile area of the North Cascades and the Puget Lowland underlain by unconsolidated glacial and alluvial sediments deposited over older sedimentary, metamorphic, and igneous bedrock. The primary aquifer that interacts with the SF Nooksack River was mapped within unconsolidated glacial outwash and alluvial sediment. The lower extent of this unit is bounded by bedrock and fine-grained, poorly sorted unconsolidated glaciomarine and glaciolacustrine sediments. In places, these deposits overlie and confine an aquifer within older glacial sediments. The extent and thickness of the hydrogeologic units were assembled from mapped geologic units and lithostratigraphic logs of field-inventoried wells. Generalized groundwater-flow directions within the surficial aquifer were interpreted from groundwater levels measured in August 2012; and groundwater seepage gains and losses to the SF Nooksack River were calculated from synoptic streamflow measurements made in the SF Nooksack River and its tributaries in September 2012. A subset of the field-inventoried wells was measured at a monthly interval to determine seasonal fluctuations in groundwater levels during water year 2013. Taken together, these data provide the foundation for a future groundwater

  11. Estimated use of water in the United States in 2005

    USGS Publications Warehouse

    Kenny, Joan F.; Barber, Nancy L.; Hutson, Susan S.; Linsey, Kristin S.; Lovelace, John K.; Maupin, Molly A.

    2009-01-01

    About 67 percent of fresh groundwater withdrawals in 2005 were for irrigation, and 18 percent were for public supply. More than half of fresh groundwater withdrawals in the United States in 2005 occurred in six States. In California, Texas, Nebraska, Arkansas, and Idaho, most of the fresh groundwater withdrawals were for irrigation. In Florida, 52 percent of all fresh groundwater withdrawals were for public supply, and 34 percent were for irrigation.

  12. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    USGS Publications Warehouse

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    Groundwater pumping has increased substantially over the past 40–50 years; this increase resulted in declining water levels at depth and decreased base flows over much of the study area. The effects of pumping are mitigated somewhat by the increase of surface-water irrigation, especially in the shallow Overburden unit, and commingling wells in some areas. During dry to average years, groundwater pumping causes a net loss of groundwater in storage and current condition (2000–2007) groundwater pumping exceeds recharge in all but the wettest of years.

  13. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    USGS Publications Warehouse

    Scanlon, Bridget R.; Faunt, Claudia; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.

  14. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    USGS Publications Warehouse

    Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ~50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ~7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.

  15. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    PubMed Central

    Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley. PMID:22645352

  16. [Influence of human activities on groundwater environment based on coefficient variation method].

    PubMed

    Zhao, Wei; Lin, Jian; Wang, Shu-Fang; Liu, Ji-Lai; Chen, Zhong-Rong; Kou, Wen-Jie

    2013-04-01

    Groundwater system in the plain area of Beijing can be divided into six subsystems. Due to the different hydrogeological conditions of the subsystems, the degrees to which human activities affect the subsystems are also diverse. In order to evaluate the influence of human activities on each subsystem, the first and second aquifer with relatively poor water quality were chosen to be the evaluating positions, based on the data of groundwater sampled in September, 2011. With respect to human activities affect index such as total hardness, TDS, sulfate and ammonium, variation coefficient methods were used to calculate the weight of each index. Then scores were obtained for each index with national standard as reference, and superposition calculations were used to gain comprehensive scores, finally the groundwater quality conditions were evaluated. Contrast analyses were used to evaluate the incidence of human activities with groundwater subsystems as evaluation unit and water quality partitions as evaluation factors. The results indicate that the influence of human activities on the first aquifer is greater than that of the second aquifer, the Yongding river groundwater subsystems and the Chaobai river groundwater subsystems are affected more than other groundwater subsystems.

  17. Groundwater quality in the Basin and Range Basin-Fill Aquifers, southwestern United States

    USGS Publications Warehouse

    Musgrove, MaryLynn; Belitz, Kenneth

    2017-01-19

    Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Basin and Range basin-fill aquifers constitute one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 20 percent of the study area and at moderate concentrations in about 49 percent. Organic constituents were not detected at high concentrations in the study area. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.

  18. Using SWAT-MODFLOW to simulate groundwater flow and groundwater-surface water interactions in an intensively irrigated stream-aquifer system

    NASA Astrophysics Data System (ADS)

    Wei, X.; Bailey, R. T.

    2017-12-01

    Agricultural irrigated watersheds in semi-arid regions face challenges such as waterlogging, high soil salinity, reduced crop yield, and leaching of chemical species due to extreme shallow water tables resulting from long-term intensive irrigation. Hydrologic models can be used to evaluate the impact of land management practices on water yields and groundwater-surface water interactions in such regions. In this study, the newly developed SWAT-MODFLOW, a coupled surface/subsurface hydrologic model, is applied to a 950 km2 watershed in the Lower Arkansas River Valley (southeastern Colorado). The model accounts for the influence of canal diversions, irrigation applications, groundwater pumping, and earth canal seepage losses. The model provides a detailed description of surface and subsurface flow processes, thereby enabling detailed description of watershed processes such as runoff, infiltration, in-streamflow, three-dimensional groundwater flow in a heterogeneous aquifer system with sources and sinks (e.g. pumping, seepage to subsurface drains), and spatially-variable surface and groundwater exchange. The model was calibrated and tested against stream discharge from 5 stream gauges in the Arkansas River and its tributaries, groundwater levels from 70 observation wells, and evapotranspiration (ET) data estimated from satellite (ReSET) data during the 1999 to 2007 period. Since the water-use patterns within the study area are typical of many other irrigated river valleys in the United States and elsewhere, this modeling approach is transferable to other regions.

  19. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  20. Chemical evolution of groundwater near a sinkhole lake, northern Florida: 1. Flow patterns, age of groundwater, and influence of lakewater leakage

    USGS Publications Warehouse

    Katz, Brian G.; Lee, Terrie M.; Plummer, Niel; Busenberg, Eurybiades

    1995-01-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11–67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  1. A Multi-Methodology for improving Adelaide's Groundwater Management

    NASA Astrophysics Data System (ADS)

    Batelaan, Okke; Banks, Eddie; Batlle-Aguilar, Jordi; Breciani, Etienne; Cook, Peter; Cranswick, Roger; Smith, Stan; Turnadge, Chris; Partington, Daniel; Post, Vincent; Pool Ramirez, Maria; Werner, Adrian; Xie, Yueqing; Yang, Yuting

    2015-04-01

    Groundwater is a strategic and vital resource in South Australia playing a crucial role in sustaining a healthy environment, as well as supporting industries and economic development. In the Adelaide metropolitan region ten different aquifer units have been identified, extending to more than 500 m below sea level. Although salinity within most of these aquifers is variable, water suitable for commercial, irrigation and/or potable use is predominantly found in the deeper Tertiary aquifers. Groundwater currently contributes only 9000 ML/yr of Adelaide's total water consumption of 216,000 ML, while in the Northern Adelaide Plains 17000 ML/yr is used. However, major industries, market gardeners, golf courses, and local councils are highly dependent on this resource. Despite recent rapid expansion in managed aquifer recharge, and the potential for increased extraction of groundwater, particularly for the commercial and irrigation supplies, little is known about the sources and ages of Adelaide's groundwater. The aim of this study is therefore to provide a robust conceptualisation of Adelaide's groundwater system. The study focuses on three important knowledge gaps: 1. Does groundwater flow from the Adelaide Hills into the sedimentary aquifers on the plains? 2. What is the potential for encroachment of seawater if groundwater extraction increases? 3. How isolated are the different aquifers, or does water leak from one to the other? A multi-tool approach has been used to improve the conceptual understanding of groundwater flow processes; including the installation of new groundwater monitoring wells from the hills to the coast, an extensive groundwater sampling campaign of new and existing groundwater wells for chemistry and environmental tracers analysis, and development of a regional scale numerical model rigorously tested under different scenario conditions. The model allows quantification of otherwise hardly quantifiable quantities such as flow across fault zones and

  2. Vulnerability Assessment of Groundwater Resources by Nutrient Source Apportionment to Individual Groundwater Wells: A Case Study in North Carolina

    NASA Astrophysics Data System (ADS)

    Ayub, R.; Obenour, D. R.; Keyworth, A. J.; Genereux, D. P.; Mahinthakumar, K.

    2016-12-01

    Groundwater contamination by nutrients (nitrogen and phosphorus) is a major concern in water table aquifers that underlie agricultural areas in the mid-Atlantic Coastal Plain of the United States. High nutrient concentrations leaching into shallow groundwater can lead to human health problems and eutrophication of receiving surface waters. Liquid manure from concentrated animal feeding operations (CAFOs) stored in open-air lagoons and applied to spray fields can be a significant source of nutrients to groundwater, along with septic waste. In this study, we developed a model-based methodology for source apportionment and vulnerability assessment using sparse groundwater quality sampling measurements for Duplin County, North Carolina (NC), obtained by the NC Department of Environmental Quality (NC DEQ). This model provides information relevant to management by estimating the nutrient transport through the aquifer from different sources and addressing the uncertainty of nutrient contaminant propagation. First, the zones of influence (dependent on nutrient pathways) for individual groundwater monitoring wells were identified using a two-dimensional vertically averaged groundwater flow and transport model incorporating geologic uncertainty for the surficial aquifer system. A multiple linear regression approach is then applied to estimate the contribution weights for different nutrient source types using the nutrient measurements from monitoring wells and the potential sources within each zone of influence. Using the source contribution weights and their uncertainty, a probabilistic vulnerability assessment of the study area due to nutrient contamination is performed. Knowledge of the contribution of different nutrient sources to contamination at receptor locations (e.g., private wells, municipal wells, stream beds etc.) will be helpful in planning and implementation of appropriate mitigation measures.

  3. Ground-Water Quality Data in the San Fernando-San Gabriel Study Unit, 2005 - Results from the California GAMA Program

    USGS Publications Warehouse

    Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 460 square mile San Fernando-San Gabriel study unit (SFSG) was investigated between May and July 2005 as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The San Fernando-San Gabriel study was designed to provide a spatially unbiased assessment of raw ground-water quality within SFSG, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 52 wells in Los Angeles County. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seventeen wells were selected to aid in the evaluation of specific water-quality issues or changes in water chemistry along a historic ground-water flow path (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,2,3-trichloropropane (1,2,3-TCP), and 1,4-dioxane], naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately one-fifth (11 of 52) of the wells, and the results for these

  4. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain.

    PubMed

    Ledoux, E; Gomez, E; Monget, J M; Viavattene, C; Viennot, P; Ducharne, A; Benoit, M; Mignolet, C; Schott, C; Mary, B

    2007-04-01

    A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management

  5. Groundwater Molybdenum from Emerging Industries in Taiwan.

    PubMed

    Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long

    2016-01-01

    This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p < 0.05) than those from non-potentially contaminated areas (0.0022 mg/L). The highest Mo wastewater concentrations in the effluent from the optoelectronics industry and following wastewater batch treatment were 0.788 and 0.0326 mg/L, respectively. This indicates that wastewater containing Mo is a possible source of both groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.

  6. Entering the policy debate: An economic evaluation of groundwater policy in flux

    NASA Astrophysics Data System (ADS)

    Livingston, Marie Leigh; Garrido, Alberto

    2004-12-01

    This is an age of transition in groundwater policy. The ownership and control of aquifers, changing groundwater quality, and the impact of groundwater on the environment command the attention of policy makers around the globe. Substantial pressure exists for change in the laws and regulations governing groundwater, which are critical to the management of this critical resource. The objective of this paper is to contribute to the practical policy debate from an economic perspective. This study begins by outlining the basic stages of change in groundwater policy and their economic relevance. A set of physical, economic, and institutional indicators are suggested that may help to understand various country issues. The indicators are used to describe some actual experiences in groundwater policy in the United States and Spain that are examined for insights into common policy questions. This study suggests that the public authority to initiate groundwater policy innovations often results from the physical ties between surface and groundwater. In contexts rich with spatial and temporal externalities the situation is more complex, but this increases the social benefits that result from successful reform. A credible threat of losing rights is often necessary to create enough incentives to firm existing rights. Reductions in overall use are better achieved through purchasing and retiring rights, rather than through compensation for nonuse. Finally, the policy issues important to groundwater are often more fundamental than pricing alone. These insights may help policy makers adapt to emerging groundwater management problems.

  7. In Situ Treatment of Chlorinated Ethene-Contaminated Groundwater Using horizontal Flow Treatment Wells.

    DTIC Science & Technology

    2000-03-01

    groundwater, Environmental Science and Technology, 30 (12): 536A-539A, 1996. Arnold, W. A. and A. L. Roberts, Pathways of chlorinated ethylene and...chlorinated acetylene reaction with Zn(0), Environmental Science and Technology, 32 (19): 3017-3025, 1998. Arnold, W. A. and A. L. Roberts, Pathways and...kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles, Environmental Science and Technology, in press, 2000

  8. Superfund record of decision (EPA Region 4): Marine Corps Base (site 35), operable unit 10, Camp Lejeune, NC, September 22, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    This decision document presents the selected remedy for surficial groundwater for a portion of Operable Unit (OU) No. 10 (Site 35), Marine Corps Base (MCB), Camp Lejeune, North Carolina. Five Remedial Action Alternatives (RAAs) were evaluated as part of an interim remedial investigation/feasibility study for surficial groundwater at OU No. 10 (Site 35). These RAAs included RAA 1 (No Action), RAA 2 (No Action With Institutional Controls), RAA 3 (Groundwater Collection and On-site Treatment), RAA 4 (In Situ Air Sparging and Off-Gas Carbon Adsorption) and RAA 5 (In Well Aeration and Off-Gas Adsorption). After all five RAAs were compared tomore » established criteria, RAA 5 was selected as the preferred alternative.« less

  9. Ground-water flow and the possible effects of remedial actions at J-Field, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Hughes, W.B.

    1995-01-01

    J-Field, located in the Edgewood Area of Aberdeen Proving Ground, Md, has been used since World War II to test and dispose of explosives, chemical warfare agents, and industrial chemicals resulting in ground-water, surface-water, and soil contami- nation. The U.S. Geological Survey finite-difference model was used to better understand ground-water flow at the site and to simulate the effects of remedial actions. A surficial aquifer and a confined aquifer were simulated with the model. A confining unit separates these units and is represented by leakance between the layers. The area modeled is 3.65 mi2; the model was constructed with a variably spaced 40 X 38 grid. The horizontal and lower boundaries of the model are all no-flow boundaries. Steady-state conditions were used. Ground water at the areas under investigation flows from disposal pit areas toward discharge areas in adjacent estuaries or wetlands. Simulations indicate that capping disposal areas with an impermeable cover effectively slows advective ground water flow by 0.7 to 0.5 times. Barriers to lateral ground-water flow were simulated and effectively prevented the movement of ground water toward discharge areas. Extraction wells were simulated as a way to contain ground-water contamination and to extract ground water for treatment. Two wells pumping 5 gallons per minute each at the toxic-materials disposal area and a single well pumping 2.5 gallons per minute at the riot-control-agent disposal area effectively contained contamination at these sites. A combi- nation of barriers to horizontal flow east and south of the toxic-materials disposal area, and a single extraction well pumping at 5 gallons per minute can extract contaminated ground water and prevent pumpage of marsh water.

  10. Field Treatment of MTBE-Contaiminated Groundwater Using Ozone/UV Oxidation

    EPA Science Inventory

    Methyl-tertiary butyl ether (MTBE) is often found in groundwater as a result of gasoline spills and leaking underground storage tanks. An extrapolation of occurrence data in 2008 estimated at least one detection of MTBE in approximately 165 small and large public water systems se...

  11. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    NASA Astrophysics Data System (ADS)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  12. Groundwater quality in the Colorado River basins, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  13. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    PubMed

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  14. Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models

    USGS Publications Warehouse

    Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin

    2018-01-01

    The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.

  15. In-situ method to remove iron and other metals from solution in groundwater down gradient from permeable reactive barrier

    DOEpatents

    Carpenter, Clay E.; Morrison, Stanley J.

    2001-07-03

    This invention is directed to a process for treating the flow of anaerobic groundwater through an aquifer with a primary treatment media, preferably iron, and then passing the treated groundwater through a second porous media though which an oxygenated gas is passed in order to oxygenate the dissolved primary treatment material and convert it into an insoluble material thereby removing the dissolved primary treatment material from the groundwater.

  16. Spatial modeling for groundwater arsenic levels in North Carolina

    USGS Publications Warehouse

    Kim, D.; Miranda, M.L.; Tootoo, J.; Bradley, P.; Gelfand, A.E.

    2011-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. ?? 2011 American Chemical Society.

  17. Spatial Modeling for Groundwater Arsenic Levels in North Carolina

    PubMed Central

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E.

    2013-01-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area. PMID:21528844

  18. Spatial modeling for groundwater arsenic levels in North Carolina.

    PubMed

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  19. Bicarbonate content of groundwater in carbonate rock in eastern North America

    USGS Publications Warehouse

    Trainer, F.W.; Heath, R.C.

    1976-01-01

    In carbonate-rock terrane the most effective solution occurs where soil and vegetative cover facilitate biogenic production and storage of CO2 in the soil until part of it is carried downward in percolating water. Bicarbonate data for groundwater in eastern North America are examined in the light of these conditions, of the CO2 content of soil gas, and of the timing of groundwater recharge relative to seasonal changes in soil temperature. There appears to be no well-marked relation between latitude and bicarbonate content of groundwater in this region. Interplay of all the factors listed above, and of lithology and soil types, is evidently such that under optimum conditions the amount of solution of carbonate rock is roughly comparable, per unit of groundwater recharge, over the region from Ohio to Florida (and, perhaps, to Puerto Rico and Yucatan). Relatively low HCO3 concentrations observed in much of the southern United States are attributed to low production and storage of CO2 in sandy soil that is poor in organic matter. On the other hand, concentrations observed in Ontario, New York and Michigan are markedly higher than is to be expected from interrelations of the factors considered. These high values, apparently anomalous, are attributed in part to solution of granular glacial drift derived largely from carbonate rock. ?? 1976.

  20. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most

  1. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformationmore » infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 μg/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from

  2. Changes in Projected Spatial and Seasonal Groundwater Recharge in the Upper Colorado River Basin.

    PubMed

    Tillman, Fred D; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-07-01

    The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low-flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin-wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin-wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Tracing groundwater recharge in the San Luis Valley, Colorado: Groundwater contamination susceptibility in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Patel, Tanya; Hindshaw, Ruth; Singer, Michael

    2015-04-01

    Water is a vital resource in any agricultural watershed, yet in the arid western United States farming practices threaten the quality and availability of groundwater. This is a pressing concern in the San Luis Valley, southern Colorado, where agriculture comprises 30% of the local economy, and employs over half the valley population. Although 54 % of the water used for irrigation is surface water, farmers do not usually apply this water directly to their fields. Instead, the water is often diverted into pits which recharge the aquifer, and the water is subsequently pumped during the following irrigation season. The Rio Grande Water Conservation District recognises that recharge to the unconfined aquifer has been outpaced by commercial irrigation for at least four decades, resulting in a decline in groundwater levels. Recycled irrigation water, and leakage from unlined canals now represent the greatest recharge contribution to the unconfined aquifer in this region. This makes the shallow groundwater particularly susceptible to agricultural contamination. The purpose of this study is to assess groundwater contamination in the unconfined and upper confined aquifers of the San Luis Valley, which are the most susceptible to contamination due to their close proximity to the surface. Although concentrations of potentially harmful contaminants from agricultural runoff are regularly monitored, the large spatial and temporal fluctuations in values make it difficult to determine long-term trends. We have analysed δ18O, δ2H and major-ion chemistry of 57 groundwater, stream and precipitation samples, collected in June 2014, and interpreted them alongside regional stream flow data and groundwater levels. This will allow us to study the seasonality and locality of groundwater recharge to provide greater insight into the watershed's potential for pollution. A groundwater vulnerability assessment was performed using the model DRASTIC (Depth to water, Recharge, Aquifer media, Soil

  4. 40 CFR 257.22 - Ground-water monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in § 257.5(b)) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may include sampling of wells that... at other wells will provide an indication of background ground-water quality that is as...

  5. 40 CFR 258.51 - Ground-water monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the uppermost aquifer (as defined in § 258.2) that: (1) Represent the quality of background ground water that has not been affected by leakage from a unit. A determination of background quality may...; or (ii) Sampling at other wells will provide an indication of background ground-water quality that is...

  6. Groundwater management in northern Iraq

    NASA Astrophysics Data System (ADS)

    Stevanovic, Zoran; Iurkiewicz, Adrian

    2009-03-01

    Groundwater is vital and the sole resource in most of the studied region of northern Iraq. It has a significant role in agriculture, water supply and health, and the elimination of poverty in rural areas. Although Iraq is currently dramatically disturbed by complex political and socio-economic problems, in its northern part, i.e. the Kurdish-inhabited region, fast urbanization and economic expansion are visible everywhere. Monitoring and water management schemes are necessary to prevent aquifer over-exploitation in the region. Artificial recharge with temporary runoff water, construction of subsurface dams and several other aquifer management and regulation measures have been designed, and some implemented, in order to improve the water situation. Recommendations, presented to the local professionals and decision-makers in water management, include creation of Water Master Plans and Water User Associations, synchronization of drilling programmes, rehabilitation of the existing well fields, opening of new well fields, and the incorporation of new spring intakes in some areas with large groundwater reserves, as well as construction of numerous small-scale schemes for initial in situ water treatment where saline groundwater is present.

  7. Naturally Occurring versus Anthropogenic Sources of Elevated Molybdenum in Groundwater: Evidence for Geogenic Contamination from Southeast Wisconsin, United States.

    PubMed

    Harkness, Jennifer S; Darrah, Thomas H; Moore, Myles T; Whyte, Colin J; Mathewson, Paul D; Cook, Tyson; Vengosh, Avner

    2017-11-07

    Molybdenum (Mo) is an essential trace nutrient but has negative health effects at high concentrations. Groundwater typically has low Mo (<2 μg/L), and elevated levels are associated with anthropogenic contamination, although geogenic sources have also been reported. Coal combustion residues (CCRs) are enriched in Mo, and thus present a potential anthropogenic contamination source. Here, we use diagnostic geochemical tracers combined with groundwater residence time indicators to investigate the sources of Mo in drinking-water wells from shallow aquifers in a region of widespread CCR disposal in southeastern Wisconsin. Samples from drinking-water wells were collected in areas near and away from known CCR disposal sites, and analyzed for Mo and inorganic geochemistry indicators, including boron and strontium isotope ratios, along with groundwater tritium-helium and radiogenic 4 He in-growth age-dating techniques. Mo concentrations ranged from <1 to 149 μg/L. Concentrations exceeding the U.S. Environmental Protection Agency health advisory of 40 μg/L were found in deeper, older groundwater (mean residence time >300 y). The B (δ 11 B = 22.9 ± 3.5‰) and Sr ( 87 Sr/ 86 Sr = 0.70923 ± 0.00024) isotope ratios were not consistent with the expected isotope fingerprints of CCRs, but rather mimic the compositions of local lithologies. The isotope signatures combined with mean groundwater residence times of more than 300 years for groundwater with high Mo concentrations support a geogenic source of Mo to the groundwater, rather than CCR-induced contamination. This study demonstrates the utility of a multi-isotope approach to distinguish between fossil fuel-related and natural sources of groundwater contamination.

  8. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  9. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington

    USGS Publications Warehouse

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.

    2011-01-01

    Five applications (scenarios) of the model were completed to obtain a better understanding of the relation between pumpage and surface-water resources and groundwater levels. For the first three scenarios, the calibrated transient model was used to simulate conditions without: (1) pumpage from all hydrogeologic units, (2) pumpage from basalt hydrogeologic units, and (3) exempt-well pumpage. The simulation results indicated potential streamflow capture by the existing pumpage from 1960 through 2001. The quantity of streamflow capture generally was inversely related to the total quantity of pumpage eliminated in the model scenarios. For the fourth scenario, the model simulated 1994 through 2001 under existing conditions with additional pumpage estimated for pending groundwater applications. The differences between the calibrated model streamflow and this scenario indicated additional decreases in streamflow of 91 cubic feet per second in the model domain. Existing conditions representing 1994 through 2001 were projected through 2025 for the fifth scenario and indicated additional streamflow decreases of 38 cubic feet per second and groundwater-level declines.

  10. Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2010-01-01

    Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors

  11. Groundwater sustainability strategies

    USGS Publications Warehouse

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  12. Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada

    USGS Publications Warehouse

    Nichols, William D.

    2000-01-01

    PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes

  13. Assessing groundwater availability in the Northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.

    2011-01-01

    The U.S. Geological Survey's Groundwater Resources Program is conducting an assessment of groundwater availability throughout the United States to gain a better understanding of the status of the Nation's groundwater resources and how changes in land use, water use, and climate may affect those resources. The goal of this National assessment is to improve our ability to forecast water availability for future economic and environmental uses. Assessments will be completed for the Nation's principal aquifer systems to help characterize how much water is currently available, how water availability is changing, and how much water we can expect to have in the future (Reilly and others, 2008). The concept of groundwater availability is more than just how much water can be pumped from any given aquifer. Groundwater availability is a function of many factors, including the quantity and quality of water and the laws, regulations, economics, and environmental factors that control its use. The primary objective of the North Atlantic Coastal Plain groundwater-availability study is to identify spatial and temporal changes in the overall water budget by more fully determining the natural and human processes that control how water enters, moves through, and leaves the groundwater system. Development of tools such as numerical models can help hydrologists gain an understanding of this groundwater system, allowing forecasts to be made about the response of this system to natural and human stresses, and water quality and ecosystem health to be analyzed, throughout the region.

  14. [Groundwater organic pollution source identification technology system research and application].

    PubMed

    Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan

    2013-02-01

    Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.

  15. Brackish groundwater and its potential to augment freshwater supplies

    USGS Publications Warehouse

    Stanton, Jennifer S.; Dennehy, Kevin F.

    2017-07-18

    Secure, reliable, and sustainable water resources are fundamental to the Nation’s food production, energy independence, and ecological and human health and well-being. Indications are that at any given time, water resources are under stress in selected parts of the country. The large-scale development of groundwater resources has caused declines in the amount of groundwater in storage and declines in discharges to surface water bodies (Reilly and others, 2008). Water supply in some regions, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought intensifies the stresses affecting water resources (National Drought Mitigation Center, the U.S. Department of Agriculture, and the National Oceanic and Atmospheric Association, 2015). If these drought conditions continue, water shortages could adversely affect the human condition and threaten environmental flows necessary to maintain ecosystem health.In support of the national census of water resources, the U.S. Geological Survey (USGS) completed the national brackish groundwater assessment to provide updated information about brackish groundwater as a potential resource to augment or replace freshwater supplies (Stanton and others, 2017). Study objectives were to consolidate available data into a comprehensive database of brackish groundwater resources in the United States and to produce a summary report highlighting the distribution, physical and chemical characteristics, and use of brackish groundwater resources. This assessment was authorized by section 9507 of the Omnibus Public Land Management Act of 2009 (42 U.S.C. 10367), passed by Congress in March 2009. Before this assessment, the last national brackish groundwater compilation was completed in the mid-1960s (Feth, 1965). Since that time, substantially more hydrologic and geochemical data have been collected and now can be used to improve the understanding of the Nation’s brackish groundwater resources.

  16. Groundwater quality in the Antelope Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  17. The groundwater subsidy to vegetation: groundwater exchanges between landcover patches

    NASA Astrophysics Data System (ADS)

    Steven, L. I.; Gimenez, R.; Jobbagy, E. G.

    2015-12-01

    The Gran Chaco is a hot, dry plain, that spans over 60 million hectares across Bolivia, Paraguay, Brazil and Argentina. It supports high biodiversity in its dry forest and savannahs, but is rapidly being converted to agriculture in response to growing soy demand and technology including genetic modification and zero-till, that has made cultivation in drier landscapes more viable. Under natural conditions, the deep-rooted, native vegetation of the Chaco effectively captured all rainfall for evapotranspiration resulting in near zero groundwater recharge under the dry forest. Conversion to shallower rooted soy and corn, combined with the fallow period prior to the growing season, reduces evapotranspiration and allows some water to percolate through the root zone and recharge the groundwater system. When this groundwater recharge occurs, it creates groundwater mounding and a hydraulic gradient that drives flow to adjacent landcover patches where recharge does not occur. As the watertable rises, groundwater becomes available to the deep-rooted, dry forest vegetation. We develop a soil and groundwater flow model to simulate infiltration, percolation, evaporation, rootwater uptake, groundwater recharge and the lateral transfer of water between adjacent landcover patches to quantify this groundwater subsidy from converted agricultural lands to remnant patches of dry forest.

  18. Stable isotope compositions of waters in the Great Basin, United States 3. Comparison of groundwaters with modern precipitation

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; Veronda, G.; Johnson, C.A.

    2002-01-01

    Groundwater samples from wells and springs, scattered over most of the Great Basin province, were collected and analyzed for their isotopic makeup. They were augmented by previously published isotopic data on groundwaters from southeast California and by several hundred unpublished isotopic analyses. The ratio of 2H (deuterium, D) to 1H, in water samples from valleys in parts of California, Idaho, Nevada, Oregon, and Utah, are here compared with the winter, summer, and annual isotopic compositions of precipitation falling in or near the sampled areas. The main goal of this study was to identify basins where the groundwaters have isotopic compositions that are "lighter" (depleted in the heavier isotope, D) relative to modern winter precipitation. Where these basins do not adjoin substantially higher terrain, we consider those light groundwaters to be of Pleistocene age and thus more than 10,000 years old. Where the groundwater is 10 to 19??? lighter than local winter precipitation, we consider it to be possibly an indication of Pleistocene water; where the ??D makeup is >20??? lighter, we consider it to be probably Pleistocene water. More than 80 sites underlain by waters of possible or probable Pleistocene age were identified.

  19. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  20. Radioactive Water Treatment at a United States Environmental Protection Agency Superfund Site - 12322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, John C.

    2012-07-01

    A water treatment system at a United States Environmental Protection Agency (USEPA) Superfund site impacted by radiological contaminants is used to treat water entering the site. The United States Army Corps of Engineers (USACE) is actively managing the remedial action for the USEPA using contracts to support the multiple activities on site. The site is where former gas mantle production facilities operated around the turn of the century. The manufacturing facilities used thorium ores to develop the mantles and disposed of off-specification mantles and ore residuals in the surrounding areas. During Site remedial actions, both groundwater and surface water comesmore » into contact with contaminated soils and must be collected and treated at an on-site treatment facility. The radionuclides thorium and radium with associated progeny are the main concern for treatment. Suspended solids, volatile organic compounds, and select metals are also monitored during water treatment. The water treatment process begins were water is pumped to a collection tank where debris and grit settle out. Stored water is pumped to a coagulant tank containing poly-aluminum chloride to collect dissolved solids. The water passes into a reaction tube where aspirated air is added or reagent added to remove Volatile Organic Compounds (VOC'S) by mass transfer and convert dissolved iron to a solid. The water enters the flocculent polymer tank to drop solids out. The flocculated water overflows to a fluidized bed contact chamber to increase precipitation. Flocculation is where colloids of material drop out of suspension and settle. The settled solids are periodically removed and disposed of as radioactive waste. The water is passed through filters and an ion exchange process to extract the radionuclides. Several million liters of water are processed each year from two water treatment plants servicing different areas of the remediation site. Ion exchange resin and filter material are periodically