Interactions Between Item Content And Group Membership on Achievement Test Items.
ERIC Educational Resources Information Center
Linn, Robert L.; Harnisch, Delwyn L.
The purpose of this investigation was to examine the interaction of item content and group membership on achievement test items. Estimates of the parameters of the three parameter logistic model were obtained on the 46 item math test for the sample of eighth grade students (N = 2055) participating in the Illinois Inventory of Educational Progress,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldaya, V.; Lopez-Ruiz, F. F.; Sanchez-Sastre, E.
2006-11-03
We reformulate the gauge theory of interactions by introducing the gauge group parameters into the model. The dynamics of the new 'Goldstone-like' bosons is accomplished through a non-linear {sigma}-model Lagrangian. They are minimally coupled according to a proper prescription which provides mass terms to the intermediate vector bosons without spoiling gauge invariance. The present formalism is explicitly applied to the Standard Model of electroweak interactions.
Group-based strategy diffusion in multiplex networks with weighted values
NASA Astrophysics Data System (ADS)
Yu, Jianyong; Jiang, J. C.; Xiang, Leijun
2017-03-01
The information diffusion of multiplex social networks has received increasing interests in recent years. Actually, the multiplex networks are made of many communities, and it should be gotten more attention for the influences of community level diffusion, besides of individual level interactions. In view of this, this work explores strategy interactions and diffusion processes in multiplex networks with weighted values from a new perspective. Two different groups consisting of some agents with different influential strength are firstly built in each layer network, the authority and non-authority groups. The strategy interactions between different groups in intralayer and interlayer networks are performed to explore community level diffusion, by playing two classical strategy games, Prisoner's Dilemma and Snowdrift Game. The impact forces from the different groups and the reactive forces from individual agents are simultaneously taken into account in intralayer and interlayer interactions. This paper reveals and explains the evolutions of cooperation diffusion and the influences of interlayer interaction tight degrees in multiplex networks with weighted values. Some thresholds of critical parameters of interaction degrees and games parameters settings are also discussed in group-based strategy diffusion.
Non-dimensional groups in the description of finite-amplitude sound propagation through aerosols
NASA Technical Reports Server (NTRS)
Scott, D. S.
1976-01-01
Several parameters, which have fairly transparent physical interpretations, appear in the analytic description of finite-amplitude sound propagation through aerosols. Typically, each of these parameters characterizes, in some sense, either the sound or the aerosol. It also turns out that fairly obvious combinations of these parameters yield non-dimensional groups which, in turn, characterize the nature of the acoustic-aerosol interaction. This theme is developed in order to illustrate how a quick examination of such parameters and groups can yield information about the nature of the processes involved, without the necessity of extensive mathematical analysis. This concept is developed primarily from the viewpoint of sound propagation through aerosols, although complimentary acoustic-aerosol interaction phenomena are briefly noted.
Wang, Liping; Han, Yuzhe; Jiang, Zhiqiang; Sun, Menglei; Si, Bin; Chen, Fei; Bao, Ning
2017-10-01
A 60-day feeding trial was conducted to assess the interactions of dietary leucine (Leu) and isoleucine (Ile) on Japanese flounder. Fish of 2.69 ± 0.04 g were fed experimental diets containing two levels of Leu (2.58 and 5.08% of diet) combined with three levels of Ile (1.44, 2.21, and 4.44% of diet), respectively. After the feeding trial, growth, proximate composition, muscle total amino acid profile, blood parameters, mucus lysozyme activity, and stress tolerance to freshwater were measured. Statistically significant (P < 0.05) interactive effects of Leu and Ile were found on growth parameters (final body weight, body weight gain, and special growth rate) of Japanese flounder. Antagonism was discovered in high dietary Leu groups, while stimulatory effects were obtained for increased dietary Ile in low Leu groups. Interactive effects of these two branched-chain amino acids were also found on hepatosomatic index of test fish. In addition, crude lipid content of fish whole body was significantly altered by various diets, with antagonism observed in low dietary Leu groups. Interactive effects also existed in muscle amino acid profiles for low fish meal diets, but no interactive impacts were observed on blood parameters. Furthermore, lysozyme activities and freshwater stress were significantly affected by different diets. And antagonism was found on lysozyme activities in low Leu groups. Moreover, high Leu and high Ile levels of diet significantly altered freshwater stress tolerance of Japanese flounder. These findings suggested that dietary Leu and Ile can effect interactively, and fish fed with diets containing 2.58% Leu with 4.44% Ile and 5.08% Leu with 1.44% Ile showed better growth performance.
Microdesigning of Lightweight/High Strength Ceramic Materials
1989-07-31
Continue on reverse if necessary and identiy by block number) FIELD GROUP SUB- GROUP Ceramics, Composite Materials, Colloidal Processing Iii 19. ABSTRACT...to identify key processing parameters that affect the microstructure of the composite material. The second section describes experimental results in...results of the significant theoretical effort made in our group . Theoretical models of particle-particle interaction, particle-polymer interaction
NASA Technical Reports Server (NTRS)
Rosero, Enrique; Yang, Zong-Liang; Wagener, Thorsten; Gulden, Lindsey E.; Yatheendradas, Soni; Niu, Guo-Yue
2009-01-01
We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N. A., E-mail: gromov@dm.komisc.ru
The very weak neutrino-matter interactions are explained with the help of the gauge group contraction of the standard Electroweak Model. The mathematical contraction procedure is connected with the energy dependence of the interaction cross section for neutrinos and corresponds to the limiting case of the Electroweak Model at low energies. Contraction parameter is connected with the universal Fermi constant of weak interactions and neutrino energy as j{sup 2}(s) = {radical}(G{sub F} s)
Dynamic Task Performance, Cohesion, and Communications in Human Groups.
Giraldo, Luis Felipe; Passino, Kevin M
2016-10-01
In the study of the behavior of human groups, it has been observed that there is a strong interaction between the cohesiveness of the group, its performance when the group has to solve a task, and the patterns of communication between the members of the group. Developing mathematical and computational tools for the analysis and design of task-solving groups that are not only cohesive but also perform well is of importance in social sciences, organizational management, and engineering. In this paper, we model a human group as a dynamical system whose behavior is driven by a task optimization process and the interaction between subsystems that represent the members of the group interconnected according to a given communication network. These interactions are described as attractions and repulsions among members. We show that the dynamics characterized by the proposed mathematical model are qualitatively consistent with those observed in real-human groups, where the key aspect is that the attraction patterns in the group and the commitment to solve the task are not static but change over time. Through a theoretical analysis of the system we provide conditions on the parameters that allow the group to have cohesive behaviors, and Monte Carlo simulations are used to study group dynamics for different sets of parameters, communication topologies, and tasks to solve.
NASA Astrophysics Data System (ADS)
Kompaneets, V. V.; Vasilieva, I. A.
2017-08-01
We have quantitatively analyzed the vibronic parameters of two cross-conjugated δ-dimethylaminoketones. The presence of the -N(CH3)2, C=O, and -NO2 groups in the benzene ring has been shown to affect the manifestation of the vibronic parameters of characteristic bands that describe the state (vibrations, types of deformation upon excitation) of polyene systems with aromatic rings. Data on the influence of the nature of the substituent on the parameters of intra- and intermolecular interactions in the examined compounds have been presented.
da Costa, Leonardo Moreira; Carneiro, José Walkimar de Mesquita; Romeiro, Gilberto Alves; Paes, Lilian Weitzel Coelho
2011-02-01
The affinity of the Ca(2+) ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)(2)] (R=H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca(2+) cation for the ligands. Geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction. The electronic nature of the substituent is the main parameter that determines the interaction energy. Donor groups make the interaction energy more negative (stabilizing the complex formed), while acceptor groups make the interaction energy less negative (destabilizing the complex formed).
Duaij, Omar K; Alghamdi, Ali; Al-Saigh, Zeki Y
2013-05-24
Inverse gas chromatography, IGC, was applied to characterize conducting polypyrrole chloride (PPyCl) using twenty three solvents. IGC is able to reveal the change in the morphology, the strength of solvent-PPyCl interactions, thermodynamics parameters (χ12, Ω1(∞)), solvent and polymer solubility parameters, and molar heats of sorption, mixing and evaporation (ΔH1(s), ΔH1(∞), ΔH1(v)). The following solvents showed stronger interactions than others; yet, none of these solvents are good solvents for PPyCl: dodecane among the alkane family, tetrahydrofuran and methyl ethyl ketone among the oxy and keto group, dichloromethane among the chlorinated group up to 120°C and chloroform at 180°C, and toluene among the cyclic and aromatic group. Overall, the groups showed higher affinities to PPyCl are: acetates, oxy and cyclic, and chlorinated groups. Comprehensive solvents and PPyCl solubility parameters are obtained. The latter showed that PPyCl is not soluble in any solvent used. Copyright © 2013 Elsevier B.V. All rights reserved.
Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions
NASA Astrophysics Data System (ADS)
Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena
2014-03-01
A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b
Parent-Child Interaction Therapy (PCIT) in school-aged children with specific language impairment.
Allen, Jessica; Marshall, Chloë R
2011-01-01
Parents play a critical role in their child's language development. Therefore, advising parents of a child with language difficulties on how to facilitate their child's language might benefit the child. Parent-Child Interaction Therapy (PCIT) has been developed specifically for this purpose. In PCIT, the speech-and-language therapist (SLT) works collaboratively with parents, altering interaction styles to make interaction more appropriate to their child's level of communicative needs. This study investigates the effectiveness of PCIT in 8-10-year-old children with specific language impairment (SLI) in the expressive domain. It aimed to identify whether PCIT had any significant impact on the following communication parameters of the child: verbal initiations, verbal and non-verbal responses, mean length of utterance (MLU), and proportion of child-to-parent utterances. Sixteen children with SLI and their parents were randomly assigned to two groups: treated or delayed treatment (control). The treated group took part in PCIT over a 4-week block, and then returned to the clinic for a final session after a 6-week consolidation period with no input from the therapist. The treated and control group were assessed in terms of the different communication parameters at three time points: pre-therapy, post-therapy (after the 4-week block) and at the final session (after the consolidation period), through video analysis. It was hypothesized that all communication parameters would significantly increase in the treated group over time and that no significant differences would be found in the control group. All the children in the treated group made language gains during spontaneous interactions with their parents. In comparison with the control group, PCIT had a positive effect on three of the five communication parameters: verbal initiations, MLU and the proportion of child-to-parent utterances. There was a marginal effect on verbal responses, and a trend towards such an effect for non-verbal responses. Despite the small group sizes, this study provides preliminary evidence that PCIT can achieve its treatment goals with 8-10-year-olds who have expressive language impairments. This has potentially important implications for how mainstream speech and language services provide intervention to school-aged children. In contrast to direct one-to-one therapy, PCIT offers a single block of therapy where the parents' communication and interaction skills are developed to provide the child with an appropriate language-rich environment, which in turn could be more cost-effective for the service provider. © 2010 Royal College of Speech & Language Therapists.
Soterio-Pires, J H; Hirotsu, C; Kim, L J; Bittencourt, L; Tufik, S; Andersen, M L
2017-03-01
Depression (DEP) is one of the main disabling diseases and is considered a contributor factor for erectile dysfunction (ED). Both of these conditions may be associated with hormonal changes and sleep disturbances. We aimed to evaluate the interaction between ED complaints and depression symptoms on sleep parameters, hormone levels and quality of life in men. This was a cross-sectional study of 468 men aged 20-80 years. The participants were classified according to the presence of ED and/or DEP in groups of healthy individuals, ED, DEP and DEP with ED (DEP-ED). All participants completed questionnaires about sleep, clinical history and quality of life, and underwent polysomnography with blood collection the following morning. ED participants showed higher frequency of insomnia symptoms (65.5%), whereas DEP group had more complaints of difficulty in falling asleep and early morning awakening. In the polysomnography, all groups showed similar parameters. No differences were found in cortisol and total testosterone levels; however, free testosterone levels and the physiological domain of quality of life were lower in DEP-ED group. ED and DEP, as independent factors, negatively affected subjective sleep parameters. The interaction between these factors led to a low quality of life and was related to a decrease in free testosterone levels.
Nonparametric tests for interaction and group differences in a two-way layout.
Fisher, A C; Wallenstein, S
1991-01-01
Nonparametric tests of group differences and interaction across strata are developed in which the null hypotheses for these tests are expressed as functions of rho i = P(X > Y) + 1/2P(X = Y), where X refers to a random observation from one group and Y refers to a random observation from the other group within stratum i. The estimator r of the parameter rho is shown to be a useful way to summarize and examine data for ordinal and continuous data.
Razdan, Neil K; Koshy, David M; Prausnitz, John M
2017-11-07
A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.
Group Contribution Methods for Phase Equilibrium Calculations.
Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian
2015-01-01
The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.
NASA Astrophysics Data System (ADS)
Lymperiadis, Alexandros; Adjiman, Claire S.; Galindo, Amparo; Jackson, George
2007-12-01
A predictive group-contribution statistical associating fluid theory (SAFT-γ) is developed by extending the molecular-based SAFT-VR equation of state [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] to treat heteronuclear molecules which are formed from fused segments of different types. Our models are thus a heteronuclear generalization of the standard models used within SAFT, comparable to the optimized potentials for the liquid state OPLS models commonly used in molecular simulation; an advantage of our SAFT-γ over simulation is that an algebraic description for the thermodynamic properties of the model molecules can be developed. In our SAFT-γ approach, each functional group in the molecule is modeled as a united-atom spherical (square-well) segment. The different groups are thus characterized by size (diameter), energy (well depth) and range parameters representing the dispersive interaction, and by shape factor parameters (which denote the extent to which each group contributes to the overall molecular properties). For associating groups a number of bonding sites are included on the segment: in this case the site types, the number of sites of each type, and the appropriate association energy and range parameters also have to be specified. A number of chemical families (n-alkanes, branched alkanes, n-alkylbenzenes, mono- and diunsaturated hydrocarbons, and n-alkan-1-ols) are treated in order to assess the quality of the SAFT-γ description of the vapor-liquid equilibria and to estimate the parameters of various functional groups. The group parameters for the functional groups present in these compounds (CH3, CH2, CH3CH, ACH, ACCH2, CH2, CH , and OH) together with the unlike energy parameters between groups of different types are obtained from an optimal description of the pure component phase equilibria. The approach is found to describe accurately the vapor-liquid equilibria with an overall %AAD of 3.60% for the vapor pressure and 0.86% for the saturated liquid density. The fluid phase equilibria of some larger compounds comprising these groups, which are not included in the optimization database and some binary mixtures are examined to confirm the predictive capability of the SAFT-γ approach. A key advantage of our method is that the binary interaction parameters between groups can be estimated directly from an examination of pure components alone. This means that as a first approximation the fluid-phase equilibria of mixtures of compounds comprising the groups considered can be predicted without the need for any adjustment of the binary interaction parameters (which is common in other approaches). The special case of molecular models comprising tangentially bonded (all-atom and united-atom) segments is considered separately; we comment on the adequacy of such models in representing the properties of real molecules.
Lymperiadis, Alexandros; Adjiman, Claire S; Galindo, Amparo; Jackson, George
2007-12-21
A predictive group-contribution statistical associating fluid theory (SAFT-gamma) is developed by extending the molecular-based SAFT-VR equation of state [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] to treat heteronuclear molecules which are formed from fused segments of different types. Our models are thus a heteronuclear generalization of the standard models used within SAFT, comparable to the optimized potentials for the liquid state OPLS models commonly used in molecular simulation; an advantage of our SAFT-gamma over simulation is that an algebraic description for the thermodynamic properties of the model molecules can be developed. In our SAFT-gamma approach, each functional group in the molecule is modeled as a united-atom spherical (square-well) segment. The different groups are thus characterized by size (diameter), energy (well depth) and range parameters representing the dispersive interaction, and by shape factor parameters (which denote the extent to which each group contributes to the overall molecular properties). For associating groups a number of bonding sites are included on the segment: in this case the site types, the number of sites of each type, and the appropriate association energy and range parameters also have to be specified. A number of chemical families (n-alkanes, branched alkanes, n-alkylbenzenes, mono- and diunsaturated hydrocarbons, and n-alkan-1-ols) are treated in order to assess the quality of the SAFT-gamma description of the vapor-liquid equilibria and to estimate the parameters of various functional groups. The group parameters for the functional groups present in these compounds (CH(3), CH(2), CH(3)CH, ACH, ACCH(2), CH(2)=, CH=, and OH) together with the unlike energy parameters between groups of different types are obtained from an optimal description of the pure component phase equilibria. The approach is found to describe accurately the vapor-liquid equilibria with an overall %AAD of 3.60% for the vapor pressure and 0.86% for the saturated liquid density. The fluid phase equilibria of some larger compounds comprising these groups, which are not included in the optimization database and some binary mixtures are examined to confirm the predictive capability of the SAFT-gamma approach. A key advantage of our method is that the binary interaction parameters between groups can be estimated directly from an examination of pure components alone. This means that as a first approximation the fluid-phase equilibria of mixtures of compounds comprising the groups considered can be predicted without the need for any adjustment of the binary interaction parameters (which is common in other approaches). The special case of molecular models comprising tangentially bonded (all-atom and united-atom) segments is considered separately; we comment on the adequacy of such models in representing the properties of real molecules.
Emergent Learning and Interactive Media Artworks: Parameters of Interaction for Novice Groups
ERIC Educational Resources Information Center
Kawka, Marta; Larkin, Kevin; Danaher, P. A.
2011-01-01
Emergent learning describes learning that occurs when participants interact and distribute knowledge, where learning is self-directed, and where the learning destination of the participants is largely unpredictable (Williams, Karousou, & Mackness, 2011). These notions of learning arise from the topologies of social networks and can be applied to…
NASA Astrophysics Data System (ADS)
Marion, Antoine; Monard, Gérald; Ruiz-López, Manuel F.; Ingrosso, Francesca
2014-07-01
In this work, we present a study of the ability of different semiempirical methods to describe intermolecular interactions in water solution. In particular, we focus on methods based on the Neglect of Diatomic Differential Overlap approximation. Significant improvements of these methods have been reported in the literature in the past years regarding the description of non-covalent interactions. In particular, a broad range of methodologies has been developed to deal with the properties of hydrogen-bonded systems, with varying degrees of success. In contrast, the interactions between water and a molecule containing hydrophobic groups have been little analyzed. Indeed, by considering the potential energy surfaces obtained using different semiempirical Hamiltonians for the intermolecular interactions of model systems, we found that none of the available methods provides an entirely satisfactory description of both hydrophobic and hydrophilic interactions in water. In addition, a vibrational analysis carried out in a model system for these interactions, a methane clathrate cluster, showed that some recent methods cannot be used to carry out studies of vibrational properties. Following a procedure established in our group [M. I. Bernal-Uruchurtu, M. T. C. Martins-Costa, C. Millot, and M. F. Ruiz-López, J. Comput. Chem. 21, 572 (2000); W. Harb, M. I. Bernal-Uruchurtu, and M. F. Ruiz-López, Theor. Chem. Acc. 112, 204 (2004)], we developed new parameters for the core-core interaction terms based on fitting potential energy curves obtained at the MP2 level for our model system. We investigated the transferability of the new parameters to describe a system, having both hydrophilic and hydrophobic groups, interacting with water. We found that only by introducing two different sets of parameters for hydrophilic and hydrophobic hydrogen atom types we are able to match the features of the ab initio calculated properties. Once this assumption is made, a good agreement with the MP2 reference is achieved. The results reported in this work provide therefore a direction for future developments of semiempirical approaches that are still required to investigate chemical processes in biomolecules and in large disordered systems.
Thermodynamic curvature for a two-parameter spin model with frustration.
Ruppeiner, George; Bellucci, Stefano
2015-01-01
Microscopic models of realistic thermodynamic systems usually involve a number of parameters, not all of equal macroscopic relevance. We examine a decorated (1+3) Ising spin chain containing two microscopic parameters: a stiff parameter K mediating the long-range interactions, and a sloppy J operating within local spin groups. We show that K dominates the macroscopic behavior, with varying J having only a weak effect, except in regions where J brings about transitions between phases through its conditioning of the local spin groups with which K interacts. We calculate the heat capacity C(H), the magnetic susceptibility χ(T), and the thermodynamic curvature R. For large |J/K|, we identify four magnetic phases: ferromagnetic, antiferromagnetic, and two ferrimagnetic, according to the signs of K and J. We argue that for characterizing these phases, the strongest picture is offered by the thermodynamic geometric invariant R, proportional to the correlation length ξ. This picture has correspondences to other cases, such as fluids.
Langner, Monika; Krystkowiak, Karolina; Salmanowicz, Bolesław P; Adamski, Tadeusz; Krajewski, Paweł; Kaczmarek, Zygmunt; Surma, Maria
2017-12-01
The major determinants of wheat quality are Glu-1 and Glu-3 glutenin loci and environmental factors. Additive effects of alleles at the Glu-1 and Glu-3 loci, as well as their interactions, were evaluated for dough rheology and baking properties in four groups of wheat doubled haploid lines differing in high- and low-molecular-weight glutenin composition. Flour quality, Reomixer (Reologica Instruments, Lund, Sweden), dough extension, Farinograph (Brabender GmbH, Duisburg, Germany) and baking parameters were determined. Groups of lines with the alleles Glu-A3b and Glu-B3d were characterized by higher values of dough and baking parameters compared to those with the Glu-A3e and Glu-B3a alleles. Effects of interactions between allelic variants at the Glu-1 and Glu-3 loci on Reomixer parameters, dough extension tests and baking parameters were significant, although additive effects of individual alleles were not always significant. The allelic variants at Glu-B3 had a much greater effect on dough rheological parameters than the variants at Glu-A3 or Glu-D3 loci. The effect of allelic variations at the Glu-D3 loci on rheological parameters and bread-making quality was non-significant, whereas their interactions with a majority of alleles at the other Glu-1 × Glu-3 loci were significant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Rhythmicity, Sequence and Syncrony of English and Japanese Face-to-Face Conversation.
ERIC Educational Resources Information Center
Hayashi, Reiko
1990-01-01
Investigates the interactional rhythmicity among a group of four people and presents a new analytic model involving two parameters, floor and time. The model is used to further investigate the emic meaning of interactional rhythm and cross-cultural differences. (47 references) (GLR)
Papaioannou, Vasileios; Lafitte, Thomas; Avendaño, Carlos; Adjiman, Claire S; Jackson, George; Müller, Erich A; Galindo, Amparo
2014-02-07
A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the n-alkanes and the n-alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH3, CH2, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of compounds not included in the development of group parameters are demonstrated. The performance of the theory is also critically assessed with predictions of the fluid-phase behavior (vapor-liquid and liquid-liquid equilibria) and excess thermodynamic properties of a variety of binary mixtures, including polymer solutions, where very good agreement with the experimental data is seen, without the need for adjustable mixture parameters.
An information driven strategy to support multidisciplinary design
NASA Technical Reports Server (NTRS)
Rangan, Ravi M.; Fulton, Robert E.
1990-01-01
The design of complex engineering systems such as aircraft, automobiles, and computers is primarily a cooperative multidisciplinary design process involving interactions between several design agents. The common thread underlying this multidisciplinary design activity is the information exchange between the various groups and disciplines. The integrating component in such environments is the common data and the dependencies that exist between such data. This may be contrasted to classical multidisciplinary analyses problems where there is coupling between distinct design parameters. For example, they may be expressed as mathematically coupled relationships between aerodynamic and structural interactions in aircraft structures, between thermal and structural interactions in nuclear plants, and between control considerations and structural interactions in flexible robots. These relationships provide analytical based frameworks leading to optimization problem formulations. However, in multidisciplinary design problems, information based interactions become more critical. Many times, the relationships between different design parameters are not amenable to analytical characterization. Under such circumstances, information based interactions will provide the best integration paradigm, i.e., there is a need to model the data entities and their dependencies between design parameters originating from different design agents. The modeling of such data interactions and dependencies forms the basis for integrating the various design agents.
Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita
2017-01-01
Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary mixtures of surfactants contains urea in concentration of 4M significant decreases of an interaction parameter value happens which confirms the importance of hydrogen bonds in synergistic interactions (urea compete in hydrogen bonds). Copyright © 2016 Elsevier Inc. All rights reserved.
Mitra, Aditi
2012-12-28
A renormalization group approach is used to show that a one-dimensional system of bosons subject to a lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the time evolution of the boson interaction parameter and the order parameter for the dynamical transition as well as for more general quenches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, Antoine; Monard, Gérald; Ruiz-López, Manuel F., E-mail: Manuel.Ruiz@univ-lorraine.fr
In this work, we present a study of the ability of different semiempirical methods to describe intermolecular interactions in water solution. In particular, we focus on methods based on the Neglect of Diatomic Differential Overlap approximation. Significant improvements of these methods have been reported in the literature in the past years regarding the description of non-covalent interactions. In particular, a broad range of methodologies has been developed to deal with the properties of hydrogen-bonded systems, with varying degrees of success. In contrast, the interactions between water and a molecule containing hydrophobic groups have been little analyzed. Indeed, by considering themore » potential energy surfaces obtained using different semiempirical Hamiltonians for the intermolecular interactions of model systems, we found that none of the available methods provides an entirely satisfactory description of both hydrophobic and hydrophilic interactions in water. In addition, a vibrational analysis carried out in a model system for these interactions, a methane clathrate cluster, showed that some recent methods cannot be used to carry out studies of vibrational properties. Following a procedure established in our group [M. I. Bernal-Uruchurtu, M. T. C. Martins-Costa, C. Millot, and M. F. Ruiz-López, J. Comput. Chem. 21, 572 (2000); W. Harb, M. I. Bernal-Uruchurtu, and M. F. Ruiz-López, Theor. Chem. Acc. 112, 204 (2004)], we developed new parameters for the core-core interaction terms based on fitting potential energy curves obtained at the MP2 level for our model system. We investigated the transferability of the new parameters to describe a system, having both hydrophilic and hydrophobic groups, interacting with water. We found that only by introducing two different sets of parameters for hydrophilic and hydrophobic hydrogen atom types we are able to match the features of the ab initio calculated properties. Once this assumption is made, a good agreement with the MP2 reference is achieved. The results reported in this work provide therefore a direction for future developments of semiempirical approaches that are still required to investigate chemical processes in biomolecules and in large disordered systems.« less
Simsek, Huseyin; Gurbuz, Taskın; Buyuk, Suleyman Kutalmış; Ozdemir, Yuksel
2017-05-01
The purpose of this study was to evaluate the effects of laser and acid etching on the mineral content and photon interaction parameters of dental enamel in human teeth. The composition of dental enamel may vary, especially at the surface, depending on the reactions that occur during dental treatment. Forty maxillary premolars were divided randomly into 2 groups of 20 teeth. In the first group, half of teeth crowns were etched by using 37% phosphoric acid; in the second group, half of teeth crowns were etched by using an erbium:yttrium-aluminum-garnet (Er:YAG) laser. The remaining half crowns in each group were used as untreated controls. We characterized the calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na), and potassium (K) contents in each specimen by using wavelength dispersive X-ray fluorescence spectrometry. The total atomic cross-section ([Formula: see text]), effective atomic number ([Formula: see text]), and electron density (N e ) of the tooth samples were determined at photon energies of 22.1, 25, 59.5, and 88 keV by using a narrow beam transmission method. Data were analyzed statistically by using the Mann-Whitney U test. The mineral contents after Er:YAG laser and phosphoric acid etching did not differ significantly (p > 0.05), and no significant variation in [Formula: see text], [Formula: see text], or N e was observed. Therefore, we conclude that the Er:YAG laser and phosphoric acid systems used in this study did not affect mineral composition or photon interaction parameters of dental enamel.
Modeling of Internet Influence on Group Emotion
NASA Astrophysics Data System (ADS)
Czaplicka, Agnieszka; Hołyst, Janusz A.
Long-range interactions are introduced to a two-dimensional model of agents with time-dependent internal variables ei = 0, ±1 corresponding to valencies of agent emotions. Effects of spontaneous emotion emergence and emotional relaxation processes are taken into account. The valence of agent i depends on valencies of its four nearest neighbors but it is also influenced by long-range interactions corresponding to social relations developed for example by Internet contacts to a randomly chosen community. Two types of such interactions are considered. In the first model the community emotional influence depends only on the sign of its temporary emotion. When the coupling parameter approaches a critical value a phase transition takes place and as result for larger coupling constants the mean group emotion of all agents is nonzero over long time periods. In the second model the community influence is proportional to magnitude of community average emotion. The ordered emotional phase was here observed for a narrow set of system parameters.
Cooper, Dustin L; Wood, Robert C; Wyatt, Jarrett E; Harirforoosh, Sam
2014-03-12
Nonsteroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal and renal side effects. Rebamipide is a mucoprotective agent that reduces gastrointenstinal side effects when administered concomitantly with NSAIDs. In this study, we investigated the pharmacokinetic drug interactions of rebamipide with two selected NSAIDs, celecoxib or diclofenac. Rats were randomly divided into five groups. Two groups received placebo and three groups were administered rebamipide (30 mg/kg) orally twice daily for two days. On day 3, the animals treated with placebo received celecoxib (40 mg/kg) or diclofenac (10mg/kg) and rats receiving rebamipide were administerd rebamipide followed by a single dose of placebo, celecoxib, or diclofenac. To investigate drug protein interactions, blank rat plasma was spiked with known concentrations of rebamipide, diclofenac plus rebamipide, or celecoxib plus rebamipide then dialyzed through a Rapid Equilibrium Dialysis device. AUC (139.70±24.97 μg h/mL), Cmax (42.99±2.98 μg/mL), and CLoral (0.08±0.02 L/h/kg) values of diclofenac in diclofenac plus rebamipide group altered when compared to those of diclofenac treated groups. Treatment with rebamipide showed no significant change in pharmacokinetic parameters of celecoxib treated rats. Cmax (7.80±1.22 μg/mL), AUC (56.46±7.30 μg h/mL), Vd/F (7.55±1.37 L/kg), and CLoral (0.58±0.09 L/h/kg) of rebamipide were significantly altered when diclofenac was co-administered with rebamipide. Pharmacokinetic parameters of rebamipide plus celecoxib group were not significantly different from those of rebamipide group. Plasma protein binding was not affected by concomitant administration of another drug. These results indicate alteration of pharmacokinetic parameters of both rebamipide and diclofenac when co-administered and cannot be explained by a variation in plasma protein binding. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Shu; Robertson, Megan L
2015-06-10
Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between polystyrene and short-chain polyacrylates (n ≤ 10). To our knowledge, this is the first study to explore the thermodynamic interactions between polystyrene and long-chain poly(n-alkyl acrylates) with n > 10. This work lays the groundwork for the development of multicomponent structured systems (i.e., blends and copolymers) in this class of sustainable materials.
Kashefolgheta, Sadra; Vila Verde, Ana
2017-08-09
We present a set of Lennard-Jones parameters for classical, all-atom models of acetate and various alkylated and non-alkylated forms of sulfate, sulfonate and phosphate ions, optimized to reproduce their interactions with water and with the physiologically relevant sodium, ammonium and methylammonium cations. The parameters are internally consistent and are fully compatible with the Generalized Amber Force Field (GAFF), the AMBER force field for proteins, the accompanying TIP3P water model and the sodium model of Joung and Cheatham. The parameters were developed primarily relying on experimental information - hydration free energies and solution activity derivatives at 0.5 m concentration - with ab initio, gas phase calculations being used for the cases where experimental information is missing. The ab initio parameterization scheme presented here is distinct from other approaches because it explicitly connects gas phase binding energies to intermolecular interactions in solution. We demonstrate that the original GAFF/AMBER parameters often overestimate anion-cation interactions, leading to an excessive number of contact ion pairs in solutions of carboxylate ions, and to aggregation in solutions of divalent ions. GAFF/AMBER parameters lead to excessive numbers of salt bridges in proteins and of contact ion pairs between sodium and acidic protein groups, issues that are resolved by using the optimized parameters presented here.
Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G
2016-03-07
This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.
Soto Rodríguez, Anxela; García Soidán, José Luís; de Toro Santos, Manuel; Lagoa Labrador, Fiz; Failde Garrido, José M; Pérez Fernández, María Reyes
2016-05-20
To assess whether an educational intervention in perimenopausal women with hypertension, diabetes mellitus and/or dyslipidaemia would improve adherence to a Mediterranean diet pattern and achieve changes in anthropometric parameters. Randomized clinical trial of parallel groups: 320 women (45-60 years) in 2 urban primary care services. hip and waist circumference, body mass index (BMI), total, visceral and trunk fat (bioimpedance measures) and adherence to Mediterranean diet (MEDAS-14 questionnaire). Intervention group: 3 interactive workshops on prevention of cardiovascular disease, and control group: information by post. Two hundred and thirty women completed the study (113 control group and 117 intervention group). The differences between groups were significant in all parameters one year later. In the intragroup comparison, the intervention group maintained their BMI and improved adherence to the Mediterranean diet. The control group increased their BMI, abdominal and hip circumference and fat parameters (total, visceral and trunk fat). A simple educational intervention in perimenopausal women with cardiovascular risk can improve their healthy habits. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Elementary particles in the early Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N.A., E-mail: gromov@dm.komisc.ru
The high-temperature limit of the Standard Model generated by the contractions of gauge groups is discussed. Contraction parameters of gauge group SU(2) of the Electroweak Model and gauge group SU(3) of Quantum Chromodynamics are taken identical and tending to zero when the temperature increases. Properties of the elementary particles change drastically at the infinite temperature limit: all particles lose masses, all quarks are monochromatic. Electroweak interactions become long-range and are mediated by neutral currents. Particles of different kind do not interact. It looks like some stratification with only one sort of particles in each stratum. The Standard Model passes inmore » this limit through several stages, which are distinguished by the powers of the contraction parameter. For any stage intermediate models are constructed and the exact expressions for the respective Lagrangians are presented. The developed approach describes the evolution of the Standard Model in the early Universe from the Big Bang up to the end of several nanoseconds.« less
NASA Astrophysics Data System (ADS)
Kuhn, A. M.; Fennel, K.; Bianucci, L.
2016-02-01
A key feature of the North Atlantic Ocean's biological dynamics is the annual phytoplankton spring bloom. In the region comprising the continental shelf and adjacent deep ocean of the northwest North Atlantic, we identified two patterns of bloom development: 1) locations with cold temperatures and deep winter mixed layers, where the spring bloom peaks around April and the annual chlorophyll cycle has a large amplitude, and 2) locations with warmer temperatures and shallow winter mixed layers, where the spring bloom peaks earlier in the year, sometimes indiscernible from the fall bloom. These patterns result from a combination of limiting environmental factors and interactions among planktonic groups with different optimal requirements. Simple models that represent the ecosystem with a single phytoplankton (P) and a single zooplankton (Z) group are challenged to reproduce these ecological interactions. Here we investigate the effect that added complexity has on determining spatio-temporal chlorophyll. We compare two ecosystem models, one that contains one P and one Z group, and one with two P and three Z groups. We consider three types of changes in complexity: 1) added dependencies among variables (e.g., temperature dependent rates), 2) modified structural pathways, and 3) added pathways. Subsets of the most sensitive parameters are optimized in each model to replicate observations in the region. For computational efficiency, the parameter optimization is performed using 1D surrogates of a 3D model. We evaluate how model complexity affects model skill, and whether the optimized parameter sets found for each model modify the interpretation of ecosystem functioning. Spatial differences in the parameter sets that best represent different areas hint at the existence of different ecological communities or at physical-biological interactions that are not represented in the simplest model. Our methodology emphasizes the combined use of observations, 1D models to help identifying patterns, and 3D models able to simulate the environment modre realistically, as a means to acquire predictive understanding of the ocean's ecology.
Tian, Fang; Saville, Dorothy J; Gordon, Keith C; Strachan, Clare J; Zeitler, J Axel; Sandler, Niklas; Rades, Thomas
2007-02-01
The influence of various excipients on the conversion of carbamazepine polymorphs to the dihydrate in aqueous suspension has been investigated. Ten excipients having functional groups which were potentially able to form hydrogen bonds with carbamazepine (group 1: methylcellulose, hypromellose (hydroxypropyl methylcellulose), hydroxypropylcellulose (HPC), 2-hydroxyethylcellulose (HEC), carmellose sodium (sodium carboxymethylcellulose), cellobiose; group 2: povidone (polyvinylpyrrolidone), povidone-vinyl acetate copolymer (povidone/VA) and N-methyl-2-pyrrolidone; group 3: macrogol (polyethylene glycol) and polyethylene oxide-polypropylene oxide copolymer (PEO/PPO)) were selected. Carbamazepine polymorphic forms III and I were dispersed separately into each aqueous excipient solution (0.1%, w/v) for 30 min at room temperature. The inhibition effect of each excipient was quantified using Raman spectroscopy combined with multivariate analyses. The solubility parameter of each excipient was calculated and used for categorizing excipients. Excipients in groups 1 and 2, which had both low solubility parameters (< 27.0 MPa(1/2)) and strong hydrogen bonding groups, inhibited the conversion completely. With increasing solubility parameter, the inhibition effect decreased for group 1 excipients, especially for carbamazepine form I, which had a higher specific surface area. Also, the excipients of group 3, lacking strong hydrogen bonding groups, showed poor inhibition although they had low solubility parameters (< 21.0 MPa(1/2)). This study indicated the importance of both hydrogen bonding interaction and a suitable hydrophobicity (expressed by the solubility parameter) in the inhibition of the conversion of carbamazepine to the dihydrate.
Ali, Ahmed; Farid, Samar; Amin, Mona; Kassem, Mohamed; Al-Garem, Nouman; Al-Ghobashy, Medhat
2016-02-01
Midodrine is an α-agonist prodrug of desglymidodrine used for the management of hypotension, and can also be used for hepatorenal syndrome and cirrhotic patients with tense ascites. The objective of the present work was to study the clinical pharmacokinetic parameters of midodrine and its active metabolite desglymidodrine in cirrhotic patients with tense ascites, which may help in dose selection and improve treatment outcome. This was a prospective, open-label, single-dose, parallel-group study. At first, a pilot study was performed on one healthy volunteer by taking serial blood samples at scheduled time intervals to validate the method of analysis and sampling times. The full study was then conducted by selecting 12 cirrhotic patients with tense ascites in one group and taking nine blood samples. We also selected five healthy volunteers as the control group and took 11 blood samples. Statistically significant differences were observed between the healthy volunteer group and the patients group in the area under the concentration versus time curve (AUC0-t) and maximum plasma concentration (Cmax) values of midodrine and desglymidodrine. Based on the results of the pharmacokinetic analysis, the patient group was further subdivided into those receiving the interacting drug ranitidine (five patients) and those not receiving the interacting drug (seven patients). Pharmacokinetic parameters of midodrine can differ significantly in cirrhotic patients with tense ascites from those in healthy individuals. Drug monitoring, dose adjustments, and drug-drug interactions should all be considered during therapy in this vulnerable patient group.
Milewski, Marek C; Kamel, Karol; Kurzynska-Kokorniak, Anna; Chmielewski, Marcin K; Figlerowicz, Marek
2017-10-01
Experimental methods based on DNA and RNA hybridization, such as multiplex polymerase chain reaction, multiplex ligation-dependent probe amplification, or microarray analysis, require the use of mixtures of multiple oligonucleotides (primers or probes) in a single test tube. To provide an optimal reaction environment, minimal self- and cross-hybridization must be achieved among these oligonucleotides. To address this problem, we developed EvOligo, which is a software package that provides the means to design and group DNA and RNA molecules with defined lengths. EvOligo combines two modules. The first module performs oligonucleotide design, and the second module performs oligonucleotide grouping. The software applies a nearest-neighbor model of nucleic acid interactions coupled with a parallel evolutionary algorithm to construct individual oligonucleotides, and to group the molecules that are characterized by the weakest possible cross-interactions. To provide optimal solutions, the evolutionary algorithm sorts oligonucleotides into sets, preserves preselected parts of the oligonucleotides, and shapes their remaining parts. In addition, the oligonucleotide sets can be designed and grouped based on their melting temperatures. For the user's convenience, EvOligo is provided with a user-friendly graphical interface. EvOligo was used to design individual oligonucleotides, oligonucleotide pairs, and groups of oligonucleotide pairs that are characterized by the following parameters: (1) weaker cross-interactions between the non-complementary oligonucleotides and (2) more uniform ranges of the oligonucleotide pair melting temperatures than other available software products. In addition, in contrast to other grouping algorithms, EvOligo offers time-efficient sorting of paired and unpaired oligonucleotides based on various parameters defined by the user.
Clustering and phase synchronization in populations of coupled phase oscillators
NASA Astrophysics Data System (ADS)
Cascallares, Guadalupe; Gleiser, Pablo M.
2015-10-01
In many species daily rhythms are endogenously generated by groups of coupled neurons that play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators. Each group has an internal coupling parameter and the interaction between the two groups can be controlled by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling between the groups is increased. Through a detailed analysis of the local synchronization processes we explain this behaviour.
Criticality triggers the emergence of collective intelligence in groups.
De Vincenzo, Ilario; Giannoccaro, Ilaria; Carbone, Giuseppe; Grigolini, Paolo
2017-08-01
A spinlike model mimicking human behavior in groups is employed to investigate the dynamics of the decision-making process. Within the model, the temporal evolution of the state of systems is governed by a time-continuous Markov chain. The transition rates of the resulting master equation are defined in terms of the change of interaction energy between the neighboring agents (change of the level of conflict) and the change of a locally defined agent fitness. Three control parameters can be identified: (i) the social interaction strength βJ measured in units of social temperature, (ii) the level of confidence β^{'} that each individual has on his own expertise, and (iii) the level of knowledge p that identifies the expertise of each member. Based on these three parameters, the phase diagrams of the system show that a critical transition front exists where a sharp and concurrent change in fitness and consensus takes place. We show that at the critical front, the information leakage from the fitness landscape to the agents is maximized. This event triggers the emergence of the collective intelligence of the group, and in the end it leads to a dramatic improvement in the decision-making performance of the group. The effect of size M of the system is also investigated, showing that, depending on the value of the control parameters, increasing M may be either beneficial or detrimental.
Criticality triggers the emergence of collective intelligence in groups
NASA Astrophysics Data System (ADS)
De Vincenzo, Ilario; Giannoccaro, Ilaria; Carbone, Giuseppe; Grigolini, Paolo
2017-08-01
A spinlike model mimicking human behavior in groups is employed to investigate the dynamics of the decision-making process. Within the model, the temporal evolution of the state of systems is governed by a time-continuous Markov chain. The transition rates of the resulting master equation are defined in terms of the change of interaction energy between the neighboring agents (change of the level of conflict) and the change of a locally defined agent fitness. Three control parameters can be identified: (i) the social interaction strength β J measured in units of social temperature, (ii) the level of confidence β' that each individual has on his own expertise, and (iii) the level of knowledge p that identifies the expertise of each member. Based on these three parameters, the phase diagrams of the system show that a critical transition front exists where a sharp and concurrent change in fitness and consensus takes place. We show that at the critical front, the information leakage from the fitness landscape to the agents is maximized. This event triggers the emergence of the collective intelligence of the group, and in the end it leads to a dramatic improvement in the decision-making performance of the group. The effect of size M of the system is also investigated, showing that, depending on the value of the control parameters, increasing M may be either beneficial or detrimental.
Neutrino oscillations and Non-Standard Interactions
NASA Astrophysics Data System (ADS)
Farzan, Yasaman; Tórtola, Mariam
2018-02-01
Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant oscillation effects that can give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase, the mass ordering and the octant of θ_{23}. Determining the exact values of neutrino mass and mixing parameters is crucial to test neutrino models and flavor symmetries designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar experiments and the atmospheric data from Super-Kamiokande, IceCube and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO and Double Chooz as well as the long baseline neutrino data from MINOS, T2K and NOvA. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will be mainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass ≲ 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.
Shi, Xiangmin; Shan, Zhaoling; Yuan, Hongtao; Guo, Hongyang; Wang, Yutang
2014-01-01
This study aims to investigate the effect of captopril and losartan on the electrophysiology of myocardial cells parameters in ventricular vulnerable period and effective refractory period of myocardial ischemia rats. 96 wistar rats were enrolled in the study and divided into six groups: Captopril myocardial ischemia group, losartan myocardial ischemia group, myocardial ischemia control group, captopril normal group, losartan normal group and normal control group (n=16). We observed morphological changes of myocardial tissue in each group. The cardiac electrophysiological parameters in effective refractory period of each group were measured. Creatine kinase (CK), alanine aminotransferase (GOT), lactate dehydrogenase (LDH), the expression of Cardiotrophin 1 (CT-1) and malonaldehyde (MDA) were detected. Compared the losartan and captopril group with the control group, (P<0.05). Losartan and captopril can shorten the ventricular vulnerable period of the normal group and ischemic group. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. The effect of losartan and captopril on time window in ventricular vulnerable period showed that compared with the control group (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period of normal and ischemic rats. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. Compared with the myocardial ischemia control group, CK, GOT, LDH and MDA decreased in captopril and losartan myocardial ischemia groups (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period and shorten ventricular vulnerable period, they can also effectively prevent arrhythmias.
Pereira, Camila; Silva, Rubens A da; de Oliveira, Marcio R; Souza, Rejane D N; Borges, Renata J; Vieira, Edgar R
2018-05-01
The purpose of this study was to evaluate the impact of body mass index (BMI) and fat mass on balance force platform measurements in older adults. The sample consisted of 257 participants who were stratified into four groups by BMI: low weight, normal weight, pre-obesity and obesity. For fat mass variables, older individuals were classified into low and high-fat mass. All groups investigated performed three trials of one-legged stance balance on a force platform. Center of pressure (COP) domain parameters were computed from the mean across trials. Analysis of variance results revealed no significant interactions for groups and sexes for all COP parameters. Comparable balance results were found for BMI and fat groups for all COP parameters. A statistical effect (P < 0.05) was only reported for sex differences for COP parameters, regardless of BMI and fat mass variables. Overall, women presented better balance than men. In conclusion, BMI and fat mass do not seem to influence the balance of older adults during a one-leg stance task.
Intramolecular cation-π interactions in protonated phenylalanine derivatives.
Fu, Weiqiang; Carr, Patrick J J; Lecours, Michael J; Burt, Michael; Marta, Rick A; Steinmetz, Vincent; Fillion, Eric; McMahon, Terrance B; Hopkins, W Scott
2016-12-21
The structures and properties of a series of phenylalanine (Phe) derivatives have been investigated in a joint computational and experimental infrared multiple photon dissociation (IRMPD) study. IRMPD spectra in the 1000-2000 cm -1 region show that protonation is localized on the amine group in all cases. Intramolecular cation-π interactions between the ammonium group and the phenyl ring heavily influence molecular geometries and properties such as gas phase basicity and proton affinity. By varying substituents on the phenyl ring, one can sensitively tune the cation-π interaction and, therefore, the molecular structure and properties. Variations in molecular structures and properties as a function of phenyl ring substitution are shown to correlate with substituent Hammett parameters.
Moral foundations in an interacting neural networks society: A statistical mechanics analysis
NASA Astrophysics Data System (ADS)
Vicente, R.; Susemihl, A.; Jericó, J. P.; Caticha, N.
2014-04-01
The moral foundations theory supports that people, across cultures, tend to consider a small number of dimensions when classifying issues on a moral basis. The data also show that the statistics of weights attributed to each moral dimension is related to self-declared political affiliation, which in turn has been connected to cognitive learning styles by the recent literature in neuroscience and psychology. Inspired by these data, we propose a simple statistical mechanics model with interacting neural networks classifying vectors and learning from members of their social neighbourhood about their average opinion on a large set of issues. The purpose of learning is to reduce dissension among agents when disagreeing. We consider a family of learning algorithms parametrized by δ, that represents the importance given to corroborating (same sign) opinions. We define an order parameter that quantifies the diversity of opinions in a group with homogeneous learning style. Using Monte Carlo simulations and a mean field approximation we find the relation between the order parameter and the learning parameter δ at a temperature we associate with the importance of social influence in a given group. In concordance with data, groups that rely more strongly on corroborating evidence sustain less opinion diversity. We discuss predictions of the model and propose possible experimental tests.
Interaction of cadmium with phosphate on goethite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venema, P.; Hiemstra, T.; Riemsdijk, W.H. van
1997-08-01
Interactions between different ions are of importance in understanding chemical processes in natural systems. In this study simultaneous adsorption of phosphate and cadmium on goethite is studied in detail. The charge distribution (CD)-multisite complexation (MUSIC) model has been successful in describing extended data sets of cadmium adsorption and phosphate adsorption on goethite. In this study, the parameters of this model for these two data sets were combined to describe a new data set of simultaneous adsorption of cadmium and phosphate on goethite. Attention is focused on the surface speciation of cadmium. With the extra information that can be obtained frommore » the interaction experiments, the cadmium adsorption model is refined. For a perfect description of the data, the singly coordinated surface groups at the 110 face of goethite were assumed to form both monodentate and bidentate surface species with cadmium. The CD-MUSIC model is able to describe data sets of both simultaneous and single adsorption of cadmium and phosphate with the same parameters. The model calculations confirmed the idea that only singly coordinated surface groups are reactive for specific ion binding.« less
Event reweighting with the NuWro neutrino interaction generator
NASA Astrophysics Data System (ADS)
Pickering, Luke; Stowell, Patrick; Sobczyk, Jan
2017-09-01
Event reweighting has been implemented in the NuWro neutrino event generator for a number of free theory parameters in the interaction model. Event reweighting is a key analysis technique, used to efficiently study the effect of neutrino interaction model uncertainties. This opens up the possibility for NuWro to be used as a primary event generator by experimental analysis groups. A preliminary model tuning to ANL and BNL data of quasi-elastic and single pion production events was performed to validate the reweighting engine.
Changes in conformational dynamics of basic side chains upon protein–DNA association
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji
2016-01-01
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446
Dynamics of cellular level function and regulation derived from murine expression array data.
de Bivort, Benjamin; Huang, Sui; Bar-Yam, Yaneer
2004-12-21
A major open question of systems biology is how genetic and molecular components interact to create phenotypes at the cellular level. Although much recent effort has been dedicated to inferring effective regulatory influences within small networks of genes, the power of microarray bioinformatics has yet to be used to determine functional influences at the cellular level. In all cases of data-driven parameter estimation, the number of model parameters estimable from a set of data is strictly limited by the size of that set. Rather than infer parameters describing the detailed interactions of just a few genes, we chose a larger-scale investigation so that the cumulative effects of all gene interactions could be analyzed to identify the dynamics of cellular-level function. By aggregating genes into large groups with related behaviors (megamodules), we were able to determine the effective aggregate regulatory influences among 12 major gene groups in murine B lymphocytes over a variety of time steps. Intriguing observations about the behavior of cells at this high level of abstraction include: (i) a medium-term critical global transcriptional dependence on ATP-generating genes in the mitochondria, (ii) a longer-term dependence on glycolytic genes, (iii) the dual role of chromatin-reorganizing genes in transcriptional activation and repression, (iv) homeostasis-favoring influences, (v) the indication that, as a group, G protein-mediated signals are not concentration-dependent in their influence on target gene expression, and (vi) short-term-activating/long-term-repressing behavior of the cell-cycle system that reflects its oscillatory behavior.
Clowns Benefit Children Hospitalized for Respiratory Pathologies
Bertini, Mario; Isola, Elena; Paolone, Giuseppe; Curcio, Giuseppe
2011-01-01
The study aims at evaluating health-generating function of humor therapy in a hospital ward hosting children suffering from respiratory pathologies. The main scope of this study is to investigate possible positive effects of the presence of a clown on both the clinical evolution of the on-going disease, and on some physiological and pain parameters. Forty-three children with respiratory pathologies participated in the study: 21 of them belonged to the experimental group (EG) and 22 children to the control group (CG). During their hospitalization, the children of the EG interacted with two clowns who were experienced in the field of pediatric intervention. All participants were evaluated with respect to clinical progress and to a series of physiological and pain measures both before and after the clown interaction. When compared with the CG, EG children showed an earlier disappearance of the pathological symptoms. Moreover, the interaction of the clown with the children led to a statistically significant lowering of diastolic blood pressure, respiratory frequency and temperature in the EG as compared with the control group. The other two parameters of systolic pressure and heart frequency yielded results in the same direction, without reaching statistical significance. A similar health-inducing effect of clown presence was observed on pain parameters, both by self evaluation and assessment by nurses. Taken together, our data indicate that the presence of clowns in the ward has a possible health-inducing effect. Thus, humor can be seen as an easy-to-use, inexpensive and natural therapeutic modality to be used within different therapeutic settings. PMID:21785637
Majorana Kramers pairs in Rashba double nanowires with interactions and disorder
NASA Astrophysics Data System (ADS)
Thakurathi, Manisha; Simon, Pascal; Mandal, Ipsita; Klinovaja, Jelena; Loss, Daniel
2018-01-01
We analyze the effects of electron-electron interactions and disorder on a Rashba double-nanowire setup coupled to an s -wave superconductor, which has been recently proposed as a versatile platform to generate Kramers pairs of Majorana bound states in the absence of magnetic fields. We identify the regime of parameters for which these Kramers pairs are stable against interaction and disorder effects. We use bosonization, perturbative renormalization group, and replica techniques to derive the flow equations for various parameters of the model and evaluate the corresponding phase diagram with topological and disorder-dominated phases. We confirm aforementioned results by considering a more microscopic approach, which starts from the tunneling Hamiltonian between the three-dimensional s -wave superconductor and the nanowires. We find again that the interaction drives the system into the topological phase and, as the strength of the source term coming from the tunneling Hamiltonian increases, strong electron-electron interactions are required to reach the topological phase.
Synchronization of multi-agent systems with metric-topological interactions.
Wang, Lin; Chen, Guanrong
2016-09-01
A hybrid multi-agent systems model integrating the advantages of both metric interaction and topological interaction rules, called the metric-topological model, is developed. This model describes planar motions of mobile agents, where each agent can interact with all the agents within a circle of a constant radius, and can furthermore interact with some distant agents to reach a pre-assigned number of neighbors, if needed. Some sufficient conditions imposed only on system parameters and agent initial states are presented, which ensure achieving synchronization of the whole group of agents. It reveals the intrinsic relationships among the interaction range, the speed, the initial heading, and the density of the group. Moreover, robustness against variations of interaction range, density, and speed are investigated by comparing the motion patterns and performances of the hybrid metric-topological interaction model with the conventional metric-only and topological-only interaction models. Practically in all cases, the hybrid metric-topological interaction model has the best performance in the sense of achieving highest frequency of synchronization, fastest convergent rate, and smallest heading difference.
Group interaction and flight crew performance
NASA Technical Reports Server (NTRS)
Foushee, H. Clayton; Helmreich, Robert L.
1988-01-01
The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.
Interactions of galaxies outside clusters and massive groups
NASA Astrophysics Data System (ADS)
Yadav, Jaswant K.; Chen, Xuelei
2018-06-01
We investigate the dependence of physical properties of galaxies on small- and large-scale density environment. The galaxy population consists of mainly passively evolving galaxies in comparatively low-density regions of Sloan Digital Sky Survey (SDSS). We adopt (i) local density, ρ _{20}, derived using adaptive smoothing kernel, (ii) projected distance, r_p, to the nearest neighbor galaxy and (iii) the morphology of the nearest neighbor galaxy as various definitions of environment parameters of every galaxy in our sample. In order to detect long-range interaction effects, we group galaxy interactions into four cases depending on morphology of the target and neighbor galaxies. This study builds upon an earlier study by Park and Choi (2009) by including improved definitions of target and neighbor galaxies, thus enabling us to better understand the effect of "the nearest neighbor" interaction on the galaxy. We report that the impact of interaction on galaxy properties is detectable at least up to the pair separation corresponding to the virial radius of (the neighbor) galaxies. This turns out to be mostly between 210 and 360 h^{-1}kpc for galaxies included in our study. We report that early type fraction for isolated galaxies with r_p > r_{vir,nei} is almost ignorant of the background density and has a very weak density dependence for closed pairs. Star formation activity of a galaxy is found to be crucially dependent on neighbor galaxy morphology. We find star formation activity parameters and structure parameters of galaxies to be independent of the large-scale background density. We also exhibit that changing the absolute magnitude of the neighbor galaxies does not affect significantly the star formation activity of those target galaxies whose morphology and luminosities are fixed.
Shiao, S Pamela K; Grayson, James; Lie, Amanda; Yu, Chong Ho
2018-06-20
To personalize nutrition, the purpose of this study was to examine five key genes in the folate metabolism pathway, and dietary parameters and related interactive parameters as predictors of colorectal cancer (CRC) by measuring the healthy eating index (HEI) in multiethnic families. The five genes included methylenetetrahydrofolate reductase ( MTHFR ) 677 and 1298, methionine synthase ( MTR ) 2756, methionine synthase reductase ( MTRR 66), and dihydrofolate reductase ( DHFR ) 19bp , and they were used to compute a total gene mutation score. We included 53 families, 53 CRC patients and 53 paired family friend members of diverse population groups in Southern California. We measured multidimensional data using the ensemble bootstrap forest method to identify variables of importance within domains of genetic, demographic, and dietary parameters to achieve dimension reduction. We then constructed predictive generalized regression (GR) modeling with a supervised machine learning validation procedure with the target variable (cancer status) being specified to validate the results to allow enhanced prediction and reproducibility. The results showed that the CRC group had increased total gene mutation scores compared to the family members ( p < 0.05). Using the Akaike's information criterion and Leave-One-Out cross validation GR methods, the HEI was interactive with thiamine (vitamin B1), which is a new finding for the literature. The natural food sources for thiamine include whole grains, legumes, and some meats and fish which HEI scoring included as part of healthy portions (versus limiting portions on salt, saturated fat and empty calories). Additional predictors included age, as well as gender and the interaction of MTHFR 677 with overweight status (measured by body mass index) in predicting CRC, with the cancer group having more men and overweight cases. The HEI score was significant when split at the median score of 77 into greater or less scores, confirmed through the machine-learning recursive tree method and predictive modeling, although an HEI score of greater than 80 is the US national standard set value for a good diet. The HEI and healthy eating are modifiable factors for healthy living in relation to dietary parameters and cancer prevention, and they can be used for personalized nutrition in the precision-based healthcare era.
Loru, Donatella; Peña, Isabel; Alonso, José L.
2016-01-01
The intramolecular interactions in the lipid sphingosine have been elucidated through the investigation of the amino alcohol serinol which mimics its polar headgroup. Intricate networks of intramolecular hydrogen bonds involving the hydroxyl groups and the amino group contribute to the stabilisation of five different conformations observed in the broadband rotational spectrum. PMID:26727395
Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate.
Cirin, Dejan M; Poša, Mihalj M; Krstonošić, Veljko S
2011-12-29
In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100) or anionic (sodium lauryl ether sulfate) surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate.
Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate
2011-01-01
Background In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100) or anionic (sodium lauryl ether sulfate) surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. Results The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. Conclusion It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate. PMID:22206681
Substitution effect on a hydroxylated chalcone: Conformational, topological and theoretical studies
NASA Astrophysics Data System (ADS)
Custodio, Jean M. F.; Vaz, Wesley F.; de Andrade, Fabiano M.; Camargo, Ademir J.; Oliveira, Guilherme R.; Napolitano, Hamilton B.
2017-05-01
The effect of substituents on two hydroxylated chalcones was studied in this work. The first chalcone, with a dimethylamine group (HY-DAC) and the second, with three methoxy groups (HY-TRI) were synthesized and crystallized from ethanol on centrosymmetric space group P21/c. The geometric parameters and supramolecular arrangement for both structures obtained from single crystal X-ray diffraction data were analyzed. The intermolecular interactions were investigated by Hirshfeld surfaces with their respective 2D plot for quantification of each type of contact. Additionally, the observed interactions were characterized by QTAIM analysis, and DFT calculations were applied for theoretical vibrational spectra, localization and quantification of frontier orbitals and potential electrostatic map. The flatness of both structures was affected by the substituents, which led to different monoclinic crystalline packing. The calculated harmonic vibrational frequencies and homo-lumo gap confirmed the stability of the structures, while intermolecular interactions were confirmed by potential electrostatic map and QTAIM analysis.
[Pharmacokinetic interaction of pioglitazone hydrochloride and atorvastatin calcium in Beagle dogs].
Chen, He-Li; Zhang, Wen-Ping; Yang, Fu-Ying; Wang, Xin-Yu; Yang, Wen-Cheng; Dang, Hong-Wan
2013-05-01
The object of this study is to investigate the pharmacokinetic interaction of pioglitazone hydrochloride and atorvastatin calcium in healthy adult Beagle dogs following single and multiple oral dose administration. A randomized, cross-over study was conducted with nine healthy adult Beagle dogs assigned to three groups. Each group was arranged to take atorvastatin calcium (A), pioglitazone hydrochloride (B), atorvastatin calcium and pioglitazone hydrochloride (C) orally in the first period, to take B, C, A in the second period, and to take C, A, B in the third period for 6 days respectively. The blood samples were collected at the first and the sixth day after the administration, plasma drug concentrations were determined by LC-MS/MS, a one-week wash-out period was needed between each period. The pharmacokinetic parameters of drug combination group and the drug alone group were calculated by statistical moment method, calculation of C(max) and AUC(0-t) was done by using 90% confidence interval method of the bioequivalence and bioavailability degree module DAS 3.2.1 software statistics. Compared with the separate administration, the main pharmacokinetic parameters (C(max) and AUC(0-t)) of joint use of pioglitazone hydrochloride and atorvastatin calcium within 90% confidence intervals for bioequivalence statistics were unqualified, the mean t(max) with standard deviation used paired Wilcoxon test resulted P > 0.05. There was no significant difference within t1/2, CL(int), MRT, V/F. Pioglitazone hydrochloride and atorvastatin calcium had pharmacokinetic interaction in healthy adult Beagle dogs.
Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress
Bhatt, Laxit; Joshi, Viraj
2017-01-01
Aim: The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). Materials and Methods: Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. Results: The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. Conclusion: These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX. PMID:28894627
Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions
NASA Astrophysics Data System (ADS)
Lee, Yu-Wen; Lee, Yu-Li
2018-01-01
We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.
Materials cohesion and interaction forces.
Rosenholm, Jarl B; Peiponen, Kai-Erik; Gornov, Evgeny
2008-09-01
The most important methods to determine the cohesive interactions of materials and adhesive interactions between different substances are reviewed. The term cohesion is generalized as representing the unifying interaction forces of a single material and adhesion forces between different substances due to attraction. The aim is to interlink a number of frequently used interaction parameters in order to promote the understanding of materials research executed within different scientific (Material, Colloid, Sol-Gel and Nano) communities. The modern interdisciplinary research requires a removal of the historical obstacles represented by widely differing nomenclature used for the same material properties. The interaction parameters of different models are reviewed and representative numerical values computed from tabulated thermodynamic and spectroscopic material constants. The results are compared with published values. The models are grouped to represent single and two component systems, respectively. The latter group includes models for films on substrates and work of adhesion between liquids and solids. In most cases rather rough approximations have been employed, mostly relating to van der Waals substances for which the gas state is common reference state. In order to improve the predictability of the key Hamaker constant, a novel model for interpreting the dielectric spectrum is presented. The interrelation between thermodynamic, electronic, spectroscopic and dielectric parameters is illustrated by model calculations on typical inorganic materials of current interest as model compounds. The ionic solids are represented by NaCl and KCl, while ZnO, FeO, Fe(2)O(3), Fe(3)O(4), Al(2)O(3), SiO(2), TiO(2), ZrO(2), SnO, SnO(2) represent ceramic oxides and semiconductors. The model compounds thus illustrate the effect of bond type (covalent or ionic) and valence (charge number and sign) of the constituent elements. However, since the focus is placed on a phenomenological analysis, the number of examples remains self-evidently incomplete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ünlü, Hilmi, E-mail: hunlu@itu.edu.tr
We propose a non-orthogonal sp{sup 3} hybrid bond orbital model to determine the electronic properties of semiconductor heterostructures. The model considers the non-orthogonality of sp{sup 3} hybrid states of nearest neighboring adjacent atoms using the intra-atomic Coulomb interactions corrected Hartree-Fock atomic energies and metallic contribution to calculate the valence band width energies of group IV elemental and group III-V and II-VI compound semiconductors without any adjustable parameter.
NASA Astrophysics Data System (ADS)
Alkharji, Mohammed N.
Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The results showed that the hybrid algorithm successfully predicted the fracture parametrization, geometry, and the fluid content within the modeled reservoir. The method was also applied on an elastic tensor extracted from the Weyburn field in Saskatchewan, Canada. The solution suggested no presence of fractures but only a VTI system caused by the shale layering in the targeted reservoir, this interpretation is supported by other Weyburn field data.
Solubility Prediction of Active Pharmaceutical Compounds with the UNIFAC Model
NASA Astrophysics Data System (ADS)
Nouar, Abderrahim; Benmessaoud, Ibtissem; Koutchoukali, Ouahiba; Koutchoukali, Mohamed Salah
2016-03-01
The crystallization from solution of an active pharmaceutical ingredient requires the knowledge of the solubility in the entire temperature range investigated during the process. However, during the development of a new active ingredient, these data are missing. Its experimental determination is possible, but tedious. UNIFAC Group contribution method Fredenslund et al. (Vapor-liquid equilibria using UNIFAC: a group contribution method, 1977; AIChE J 21:1086, 1975) can be used to predict this physical property. Several modifications on this model have been proposed since its development in 1977, modified UNIFAC of Dortmund Weidlich et al. (Ind Eng Chem Res 26:1372, 1987), Gmehling et al. (Ind Eng Chem Res 32:178, 1993), Pharma-modified UNIFAC Diedrichs et al. (Evaluation und Erweiterung thermodynamischer Modelle zur Vorhersage von Wirkstofflöslichkeiten, PhD Thesis, 2010), KT-UNIFAC Kang et al. (Ind Eng Chem Res 41:3260, 2002), ldots In this study, we used UNIFAC model by considering the linear temperature dependence of interaction parameters as in Pharma-modified UNIFAC and structural groups as defined by KT-UNIFAC first-order model. More than 100 binary datasets were involved in the estimation of interaction parameters. These new parameters were then used to calculate activity coefficient and solubility of some molecules in various solvents at different temperatures. The model gives better results than those from the original UNIFAC and shows good agreement between the experimental solubility and the calculated one.
Significance of light and social cues in the maintenance of temporal organization in man
NASA Technical Reports Server (NTRS)
Winget, C. M.; Deroshia, C. W.; Ogawa, K. H.; Holley, D. C.
1989-01-01
The effects of light:darkness (LD) cycles and social interaction on the response to long-term confinement (105 days) were investigated experimentally in three groups of three male subjects aged 20-24 years. Data from measurements of physiological parameters indicating changes in circadian rhythms are presented in graphs and analyzed; it is found that the LD-induced rhythm changes observed in previous studies of subjects isolated singly do not appear when subjects are confined in groups of three, suggesting a positive adaptive effect of social contact. In one subject who was transferred to a different group at day 84, hostile social interactions and poor circadian-rhythm entrainment were observed; the possible reasons for this response are considered.
Changes in conformational dynamics of basic side chains upon protein-DNA association.
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji
2016-08-19
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solookinejad, G.; Panahi, M.; Sangachin, E. A.
The transmission and reflection properties of incident light in a defect dielectric structure is studied theoretically. The defect structure consists of donor and acceptor quantum dot nanostructures embedded in a photonic crystal. It is shown that the transmission and reflection properties of incident light can be controlled by adjusting the corresponding parameters of the system. The role of dipole–dipole interaction is considered as a new parameter in our calculations. It is noted that the features of transmission and reflection curves can be adjusted in the presence of dipole–dipole interaction. It is found that the absorption of weak probe light canmore » be converted to the probe amplification in the presence of dipole–dipole interaction. Moreover, the group velocity of transmitted and reflected probe light is discussed in detail in the absence and presence of dipole–dipole interaction. Our proposed model can be used as a new all-optical devices based on photonic materials doped with nanoparticles.« less
Make dark matter charged again
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.
NASA Astrophysics Data System (ADS)
Kromp, Florian; Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Weiss, Tamara; Ambros, Peter F.; Reiter, Michael
2015-02-01
We propose a user-driven method for the segmentation of neuroblastoma nuclei in microscopic fluorescence images involving the gradient energy tensor. Multispectral fluorescence images contain intensity and spatial information about antigene expression, fluorescence in situ hybridization (FISH) signals and nucleus morphology. The latter serves as basis for the detection of single cells and the calculation of shape features, which are used to validate the segmentation and to reject false detections. Accurate segmentation is difficult due to varying staining intensities and aggregated cells. It requires several (meta-) parameters, which have a strong influence on the segmentation results and have to be selected carefully for each sample (or group of similar samples) by user interactions. Because our method is designed for clinicians and biologists, who may have only limited image processing background, an interactive parameter selection step allows the implicit tuning of parameter values. With this simple but intuitive method, segmentation results with high precision for a large number of cells can be achieved by minimal user interaction. The strategy was validated on handsegmented datasets of three neuroblastoma cell lines.
The interactions between ionic surfactants and phosphatidylcholine vesicles: Conductometry
NASA Astrophysics Data System (ADS)
Tsao, Heng-Kwong; Tseng, Wen Liang
2001-11-01
The interaction between ionic surfactants and phosphatidylcholine vesicles, which are prepared without addition of buffer and salt, is investigated by conductivity measurements. On the basis of the vesicle acting as a trap of charge carriers, the bilayer/aqueous phase partition coefficient K and the surfactant/lipid molar ratio Re of nine surfactants are determined. The thermodynamic consistency is satisfied by the measured parameters. The effects of the alkyl chain length (C10-C16) and ionic head group are then studied. The inverse partition coefficient K-1 is linearly related to the critical micelle concentration. The solubilizing ability Reb is a consequence of the competition between the surfactant incorporation into the bilayer and the formation of micelles. Consequently, the K parameter rises whereas the Reb parameter declines as the chain length is increased. The influence due to addition of salt is also discussed.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.
Wang, Jing
2018-03-28
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials
NASA Astrophysics Data System (ADS)
Wang, Jing
2018-03-01
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Human-Swarm Interactions Based on Managing Attractors
2014-03-01
means that agent j is visible to agent i at time t. Each aij(t) is determined at time t according to a Bernoulli random vari- able with parameter pij(t...angu- lar momentum , mgroup, and group polarization, pgroup [9, 17]. The mgroup is a measure of the degree of rotation of the group about its centroid...0.1 seconds. 91 (a) (b) Figure 2: The group momentum and polarization as the radius of orientation is increased and decreased. 3. ATTRACTORS AND
Braito, Matthias; Giesinger, Johannes M; Fischler, Stefan; Koller, Arnold; Niederseer, David; Liebensteiner, Michael C
2016-08-01
In light of the existing lack of evidence, it was the aim of this study to compare gait characteristics and knee extensor strength after medial unicondylar knee arthroplasty (MUKA) with those after total knee arthroplasty (TKA), given the same standardized minimally invasive surgery (MIS) approach in both groups. Patients scheduled for MIS-MUKA or MIS-TKA as part of clinical routine were invited to participate. A posterior cruciate ligament-retaining total knee design was used for all MIS-TKA. A 3-dimensional gait analysis was performed preoperatively with a VICON system and at 8 weeks postoperative to determine temporospatial parameters, ground reaction forces, joint angles, and joint moments. At the same 2 times, isokinetic tests were performed to obtain peak values of knee extensor torque. A multivariate analysis of variance was conducted and included the main effects time (before and after surgery) and surgical group and the group-by-time interaction effect. Fifteen MIS-MUKA patients and 17 MIS-TKA patients were eligible for the final analysis. The groups showed no differences regarding age, body mass index, sex, side treated, or stage of osteoarthritis. We determined neither intergroup differences nor time × group interactions for peak knee extensor torque or any gait parameters (temporospatial, ground reaction forces, joint angles, and joint moments). It is concluded that MUKA is not superior to TKA with regard to knee extensor strength or 3-dimensional gait characteristics at 8 weeks after operation. As gait characteristics and knee extensor strength are only 2 of the various potential outcome parameters (knee scores, activity scores…) and quadriceps strength might take a longer time to recover, our findings should be interpreted with caution. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Li, Kelei; Wu, Kejian; Zhao, Yimin; Huang, Tao; Lou, Dajun; Yu, Xiaomei; Li, Duo
2015-08-26
The present case-control study explored the interaction between marine-derived n-3 long chain polyunsaturated fatty acids (n-3 LC PUFAs) and uric acid (UA) on glucose metabolism and risk of type 2 diabetes mellitus (T2DM). Two hundred and eleven healthy subjects in control group and 268 T2DM subjects in case group were included. Plasma phospholipid (PL) fatty acids and biochemical parameters were detected by standard methods. Plasma PL C22:6n-3 was significantly lower in case group than in control group, and was negatively correlated with fasting glucose (r = -0.177, p < 0.001). Higher plasma PL C22:6n-3 was associated with lower risk of T2DM, and the OR was 0.32 (95% confidence interval (CI), 0.12 to 0.80; p = 0.016) for per unit increase of C22:6n-3. UA was significantly lower in case group than in control group. UA was positively correlated with fasting glucose in healthy subjects, but this correlation became negative in T2DM subjects. A significant interaction was observed between C22:6n-3 and UA on fasting glucose (p for interaction = 0.005): the lowering effect of C22:6n-3 was only significant in subjects with a lower level of UA. In conclusion, C22:6n-3 interacts with UA to modulate glucose metabolism.
Arcentales, Andrés; Giraldo, Beatriz F; Caminal, Pere; Benito, Salvador; Voss, Andreas
2011-01-01
Autonomic nervous system regulates the behavior of cardiac and respiratory systems. Its assessment during the ventilator weaning can provide information about physio-pathological imbalances. This work proposes a non linear analysis of the complexity of the heart rate variability (HRV) and breathing duration (T(Tot)) applying recurrence plot (RP) and their interaction joint recurrence plot (JRP). A total of 131 patients on weaning trials from mechanical ventilation were analyzed: 92 patients with successful weaning (group S) and 39 patients that failed to maintain spontaneous breathing (group F). The results show that parameters as determinism (DET), average diagonal line length (L), and entropy (ENTR), are statistically significant with RP for T(Tot) series, but not with HRV. When comparing the groups with JRP, all parameters have been relevant. In all cases, mean values of recurrence quantification analysis are higher in the group S than in the group F. The main differences between groups were found on the diagonal and vertical structures of the joint recurrence plot.
Tripathi, Alok Shiomurti; Timiri, Ajay Kumar; Mazumder, Papiya Mitra; Chandewar, Anil
2015-10-01
The present study evaluates possible drug interactions between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ)-induced diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction based on molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg kg(-1), i.p.) and was confirmed by assessing blood and urine biochemical parameters 28 days after induction. Selected DN animals were used to explore the drug interaction between GLIM (0.5 mg kg(-1), p.o.) and SIL (2.5 mg kg(-1), p.o.) on the 29th and 70th day of the protocol. Possible drug interaction was assessed by evaluating the plasma drug concentration using HPLC-UV and changes in biochemical parameters in blood and urine were also determined. The mechanism of the interaction was postulated from the results of a molecular modeling study using the Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in blood and urine biochemical parameters in STZ-treated groups. The concentration of SIL increased significantly (P < 0.001) in rat plasma when co-administered with GLIM on the 70th day of the protocol. Molecular modeling revealed important interactions with rat serum albumin and CYP2C9. GLIM has a strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL, whereas for CYP2C9, GLIM forms a stronger hydrogen bond than SIL with polar contacts and hydrophobic interactions. The present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals, and the mechanism is supported by molecular modeling studies.
NASA Astrophysics Data System (ADS)
Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.
2016-12-01
This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for improving the model physics parameterizations.
Unitarity of the Cabibbo-Kobayashi-Maskawa matrix and a nonuniversal gauge interaction model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kang Young
2007-12-01
Recent measurements of |V{sub us}| from kaon decays strongly support the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. The unitarity provides a stringent constraint on the parameter space of the nonuniversal gauge interaction model based on the separate SU(2){sub L} gauge group acting on the third generation fermions. I show that this constraint is stronger than those from the CERN LEP and SLC data and low-energy experiment data.
Insight into the structure of photosynthetic LH2 aggregate from spectroscopy simulations.
Rancova, Olga; Sulskus, Juozas; Abramavicius, Darius
2012-07-12
Using the electrostatic model of intermolecular interactions, we obtain the Frenkel exciton Hamiltonian parameters for the chlorophyll Qy band of a photosynthetic peripheral light harvesting complex LH2 of a purple bacteria Rhodopseudomonas acidophila from structural data. The intermolecular couplings are mostly determined by the chlorophyll relative positions, whereas the molecular transition energies are determined by the background charge distribution of the whole complex. The protonation pattern of titratable residues is used as a tunable parameter. By studying several protonation state scenarios for distinct protein groups and comparing the simulated absorption and circular dichroism spectra to experiment, we determine the most probable configuration of the protonation states of various side groups of the protein.
Johann, K; Eschmann, K; Meiser, P
2011-06-01
Systemic enzyme therapy with bromelain resembles a sensible alternative to nonsteroidal antiinflammatory drugs for the treatment of sports injuries, with particular consideration of therapeutic benefits and possible risks. Beyond aftertreatment of sports injuries, bromelain is used postoperatively as well. Besides the desired effects remission of oedema and pain relief, however, the postoperative use of bromelain raises uncertainty in some patients and physicians since an enhanced bleeding tendency in case of concomitant therapy with anticoagulants was described as a possible interaction. Therefore, the goal of this study was to investigate the clinical relevance of this interaction. In two non-interventional studies, altogether 260 patients were peri- or postoperatively (cruciate ligament- or coxarthrosis surgery) treated with bromelain (n = 129, 1000 - 3000 F. I. P. units/day) or diclofenac (n = 131; 150 mg/day) under concomitant thrombosis prophylaxis with low molecular weight heparin. Parameters tested were prothrombin time, thrombin time, activated partial thromboplastin time, fibrinogen and tolerability of the medication. Only marginal changes and a low variability of coagulation parameters were observed in both treatment groups (bromelain vs. diclofenac) in both studies. Elevated laboratory parameters were observed in both treatment groups for thrombin time which is very likely attributable to the therapy with low molecular weight heparin, due to the substantially parallel course of this parameter in both treatment groups. Therapy with bromelain was superior to the treatment with diclofenac concerning the number and the severity of undesirable effects, as was expected. The presented studies therefore support the previous clinical evidence that a perioperative treatment with bromelain is well tolerated and does not lead to an increased risk of haemorrhage when used concomitantly with low molecular weight heparin. © Georg Thieme Verlag KG Stuttgart · New York.
Genetic variation in aggregation behaviour and interacting phenotypes in Drosophila.
Philippe, Anne-Sophie; Jeanson, Raphael; Pasquaretta, Cristian; Rebaudo, Francois; Sueur, Cedric; Mery, Frederic
2016-03-30
Aggregation behaviour is the tendency for animals to group together, which may have important consequences on individual fitness. We used a combination of experimental and simulation approaches to study how genetic variation and social environment interact to influence aggregation dynamics in Drosophila To do this, we used two different natural lines of Drosophila that arise from a polymorphism in the foraging gene (rovers and sitters). We placed groups of flies in a heated arena. Flies could freely move towards one of two small, cooler refuge areas. In groups of the same strain, sitters had a greater tendency to aggregate. The observed behavioural variation was based on only two parameters: the probability of entering a refuge and the likelihood of choosing a refuge based on the number of individuals present. We then directly addressed how different strains interact by mixing rovers and sitters within a group. Aggregation behaviour of each line was strongly affected by the presence of the other strain, without changing the decision rules used by each. Individuals obeying local rules shaped complex group dynamics via a constant feedback loop between the individual and the group. This study could help to identify the circumstances under which particular group compositions may improve individual fitness through underlying aggregation mechanisms under specific environmental conditions. © 2016 The Author(s).
An experimental study on pile spacing effects under lateral loading in sand.
Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan
2013-01-01
Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.
An Experimental Study on Pile Spacing Effects under Lateral Loading in Sand
Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan
2013-01-01
Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900
Ma, Xiaohong; Wang, Qiang; Li, Xiaoping; Tang, Jun; Zhang, Zhengfang
2015-11-01
Thermodynamic properties of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM] BF4) were determined via inverse gas chromatography (IGC). Two groups of solvents with different chemical natures and polarities were used to obtain information about [BMIM] BF4-solvent interactions. The specific retention volume, molar heat of sorption, weight fraction activity coefficient, Flory-Huggins interaction parameter as well as solubility parameter were also determined in a temperature range of 333 - 373 K. The results showed that the selected solvents n-C10 to n-C12, carbon tetrachloride, cyclohexane and toluene were poor solvents for [BMIM] BF4, while dichloromethane, acetone, chloroform, methyl acetate, ethanol and methanol were favorite solvents for [BMIM] BF4. In addition, the solubility parameter of [ BMIM] BF4 was determined as 23.39 (J/cm3)0.5 by the extrapolation at 298 K. The experiment proved that IGC was a simple and accurate method to obtain the thermodynamic properties of ionic liquids. This study could be used as a reference to the application and research of the ionic liquids.
Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity.
Bhatt, Laxit; Sebastian, Binu; Joshi, Viraj
Mangiferin is a highly potent antioxidant present in mango leaves which is utilized for therapeutic purposes. The present study was undertaken to evaluate the cardioprotective effect of mangiferin against cyclophosphamide induced cardiotoxicity. Rats were treated with 100 mg/kg of mangiferin in alone and interactive groups for 10 days. Apart from normal and mangiferin control groups, all the groups were subjected to cyclophosphamide (200 mg/kg, i.p.) toxicity on Day 1 and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile and histopathological evaluation. Mangiferin treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidant levels. Compared to cyclophosphamide control group, mangiferin treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score and mortality. The present findings clearly suggest the protective role of mangiferin as a powerful antioxidant preventing cardiotoxicity caused by cyclophosphamide. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.
Exact phase boundaries and topological phase transitions of the X Y Z spin chain
NASA Astrophysics Data System (ADS)
Jafari, S. A.
2017-07-01
Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.
Ramos-Robles, Michelle; Dáttilo, Wesley; Díaz-Castelazo, Cecilia; Andresen, Ellen
2018-04-02
Interactions between fleshy fruited plants and frugivores are crucial for the structuring and functioning of biotic communities, particularly in tropical forests where both groups are diverse and play different roles in network organization. However, it remains poorly understood how different groups of frugivore species and fruit traits contribute to network structure. We recorded interactions among 28 plant species and three groups of frugivores (birds, bats, and non-flying mammals) in a seasonal forest in Mexico to determine which species contribute more to network structure and evaluate the importance of each species. We also determined whether fruit abundance, water content, morphology traits, and fruiting phenology are related to network parameters: the number of interactions, species contribution to nestedness, and species strength. We found that plants did not depend on a single group of frugivores, but rather on one species of each group: the bird Pitangus sulphuratus, the bat Sturnira parvidens, and the non-flying mammal Procyon lotor. The abundance, size, and water content of the fruits were significantly related to the contribution to nestedness, number of interactions, and species strength index of plant species. Tree species and birds contributed mainly to the nested structure of the network. We show that the structure of plant-frugivore networks in this seasonal forest is non-random and that fruit traits (i.e., abundance, phenology, size, and water content) are important factors shaping plant-frugivore networks. Identification of the key species and their traits that maintain the complex structure of species interactions is therefore fundamental for the integral conservation of tropical forests.
Are quantitative sensitivity analysis methods always reliable?
NASA Astrophysics Data System (ADS)
Huang, X.
2016-12-01
Physical parameterizations developed to represent subgrid-scale physical processes include various uncertain parameters, leading to large uncertainties in today's Earth System Models (ESMs). Sensitivity Analysis (SA) is an efficient approach to quantitatively determine how the uncertainty of the evaluation metric can be apportioned to each parameter. Also, SA can identify the most influential parameters, as a result to reduce the high dimensional parametric space. In previous studies, some SA-based approaches, such as Sobol' and Fourier amplitude sensitivity testing (FAST), divide the parameters into sensitive and insensitive groups respectively. The first one is reserved but the other is eliminated for certain scientific study. However, these approaches ignore the disappearance of the interactive effects between the reserved parameters and the eliminated ones, which are also part of the total sensitive indices. Therefore, the wrong sensitive parameters might be identified by these traditional SA approaches and tools. In this study, we propose a dynamic global sensitivity analysis method (DGSAM), which iteratively removes the least important parameter until there are only two parameters left. We use the CLM-CASA, a global terrestrial model, as an example to verify our findings with different sample sizes ranging from 7000 to 280000. The result shows DGSAM has abilities to identify more influential parameters, which is confirmed by parameter calibration experiments using four popular optimization methods. For example, optimization using Top3 parameters filtered by DGSAM could achieve substantial improvement against Sobol' by 10%. Furthermore, the current computational cost for calibration has been reduced to 1/6 of the original one. In future, it is necessary to explore alternative SA methods emphasizing parameter interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzano, J. Sebastian; Singappuli-Arachchige, Dilini; Parikh, Bosky L.
Phenyl-functionalized mesoporous silica materials were used to explore the effect of non-covalent interactions on the release of Ibuprofen into simulated body fluid. Variations in orientation and conformational mobility of the surface phenyl groups were introduced by selecting different structural precursors: a rigid upright orientation was obtained using phenyl groups directly bound to surface Si atoms (Ph-MSN), mobile groups were produced by using ethylene linkers to connect phenyl groups to the surface (PhEt-MSN), and groups co-planar to the surface were obtained by synthesizing a phenylene-bridged periodic mesoporous organosilica (Ph-PMO). The Ibuprofen release profiles from these materials and non-functionalized mesoporous silica nanoparticlesmore » (MSN) were analyzed using an adsorption-diffusion model. The model provided kinetic and thermodynamic parameters that evidenced fundamental differences in drug-surface interactions between the materials. All phenyl-bearing materials show lower Ibuprofen initial release rates than bare MSN. The conformationally locked Ph-MSN and Ph-PMO have stronger interactions with the drug (negative ΔG of adsorption) than the flexible PhEt-MSN and bare MSN (positive ΔG of adsorption). These differences in strength of adsorption are consistent with differences between interaction geometries obtained from DFT calculations. B3LYP-D3-optimized models show that π-π interactions contribute more to drug adsorption than H-bonding with silanol groups. Here, the results suggest that the type and geometry of interactions control the kinetics and extent of drug release, and should therefore serve as a guide to design new drug delivery systems with precise release behaviors customized to any desired target.« less
Manzano, J. Sebastian; Singappuli-Arachchige, Dilini; Parikh, Bosky L.; ...
2017-12-05
Phenyl-functionalized mesoporous silica materials were used to explore the effect of non-covalent interactions on the release of Ibuprofen into simulated body fluid. Variations in orientation and conformational mobility of the surface phenyl groups were introduced by selecting different structural precursors: a rigid upright orientation was obtained using phenyl groups directly bound to surface Si atoms (Ph-MSN), mobile groups were produced by using ethylene linkers to connect phenyl groups to the surface (PhEt-MSN), and groups co-planar to the surface were obtained by synthesizing a phenylene-bridged periodic mesoporous organosilica (Ph-PMO). The Ibuprofen release profiles from these materials and non-functionalized mesoporous silica nanoparticlesmore » (MSN) were analyzed using an adsorption-diffusion model. The model provided kinetic and thermodynamic parameters that evidenced fundamental differences in drug-surface interactions between the materials. All phenyl-bearing materials show lower Ibuprofen initial release rates than bare MSN. The conformationally locked Ph-MSN and Ph-PMO have stronger interactions with the drug (negative ΔG of adsorption) than the flexible PhEt-MSN and bare MSN (positive ΔG of adsorption). These differences in strength of adsorption are consistent with differences between interaction geometries obtained from DFT calculations. B3LYP-D3-optimized models show that π-π interactions contribute more to drug adsorption than H-bonding with silanol groups. Here, the results suggest that the type and geometry of interactions control the kinetics and extent of drug release, and should therefore serve as a guide to design new drug delivery systems with precise release behaviors customized to any desired target.« less
Papadopoulou, Stella K; Panayiotou, Costas
2014-01-10
The thermodynamic properties of poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) were determined by the aid of the inverse gas chromatography technique (IGC), at infinite dilution. The interactions between the polymer and 15 solvents were examined in the temperature range of 120-150 °C via the estimation of the thermodynamic sorption parameters, the parameters of mixing at infinite dilution, the weight fraction activity coefficients and the Flory-Huggins interaction parameters. Additionally, the total and the partial solubility parameters of PTFEMA were estimated. The findings of this work indicate that the type and strength of the intermolecular interactions between the polymer and the solvents are strongly depended on the functional groups of the polymer and the solvents. The proton acceptor character of the polymer is responsible for the preferential solubility of PTFEMA in chloroform which acts as a proton donor solvent. The results also reveal that the polymer is insoluble in alkanes and alcohols whereas it presents good miscibility with polar solvents, especially with 2-butanone, 2-pentanone and 1,4-dioxane. Furthermore, the total and dispersive solubility parameters appear diminishing upon temperature rise, whereas the opposite behavior is noticed for the polar and hydrogen bonding solubility parameters. The latter increase with temperature, probably, due to conformational changes of the polymer on the solid support. Finally, comparison of the solubilization profiles of fluorinated methacrylic polymers studied by IGC, leads to the conclusion that PTFEMA is more soluble compared to polymers with higher fluorine content. Copyright © 2013 Elsevier B.V. All rights reserved.
Neshich, Goran; Rocchia, Walter; Mancini, Adauto L.; Yamagishi, Michel E. B.; Kuser, Paula R.; Fileto, Renato; Baudet, Christian; Pinto, Ivan P.; Montagner, Arnaldo J.; Palandrani, Juliana F.; Krauchenco, Joao N.; Torres, Renato C.; Souza, Savio; Togawa, Roberto C.; Higa, Roberto H.
2004-01-01
JavaProtein Dossier (JPD) is a new concept, database and visualization tool providing one of the largest collections of the physicochemical parameters describing proteins' structure, stability, function and interaction with other macromolecules. By collecting as many descriptors/parameters as possible within a single database, we can achieve a better use of the available data and information. Furthermore, data grouping allows us to generate different parameters with the potential to provide new insights into the sequence–structure–function relationship. In JPD, residue selection can be performed according to multiple criteria. JPD can simultaneously display and analyze all the physicochemical parameters of any pair of structures, using precalculated structural alignments, allowing direct parameter comparison at corresponding amino acid positions among homologous structures. In order to focus on the physicochemical (and consequently pharmacological) profile of proteins, visualization tools (showing the structure and structural parameters) also had to be optimized. Our response to this challenge was the use of Java technology with its exceptional level of interactivity. JPD is freely accessible (within the Gold Sting Suite) at http://sms.cbi.cnptia.embrapa.br, http://mirrors.rcsb.org/SMS, http://trantor.bioc.columbia.edu/SMS and http://www.es.embnet.org/SMS/ (Option: JavaProtein Dossier). PMID:15215458
Florêncio, Telma M M T; Bueno, Nassib B; Britto, Revilane A P; Albuquerque, Fabiana C A; Lins, Isabela L L; Sawaya, Ana L
2016-01-01
Short stature that results from undernourishment during perinatal period is associated with an increased risk of diabetes and cardiovascular diseases in adulthood, particularly in poor populations. The present study investigated changes on anthropometric and metabolic parameters of socially vulnerable women with short stature. A prospective study with 48 women (19-45 years) who were mothers of undernourished children was conducted. Twenty-five of them were short (height ≤150 cm), and 23 were not short, to serve as a control (height >159 cm). Biochemical, anthropometric and dietary intake data were collected, before and after 4 years of follow-up. A mixed within-between analysis of covariance was used to assess the interaction between 'group' and 'time'. Waist-to-height ratio increased only in the short stature group, with significant interaction (+0.03 ± 0.03 in short group vs. +0.01 ± 0.03 in control; p for interaction = 0.04). The short stature group showed a significant decrease in the plasma triiodothyronine (T3) concentrations, without significant interaction (-0.16 ± 0.23 ng/ml in short group vs. -0.04 ± 0.29 ng/ml in control; p for interaction = 0.20). Women of short stature presented an increase in waist-to-height ratio, with a simultaneous decrease in total plasma T3. These alterations may lead them to increased risk of comorbidities. © 2016 S. Karger AG, Basel.
Wada, Mitsuhiro; Nishiwaki, Junichiro; Yamane, Tomoko; Ohwaki, Yuichi; Aboul-Enein, Hassan Y; Nakashima, Kenichiro
2007-06-01
The present study aims to investigate the possibility of interaction of aspirin (Asp) or clopidogrel (CG) on donepezil (DP) hydrochloride in rats by HPLC-fluorescence detection. The separation of DP was achieved in ca. 13 min without interference of Asp and CG on the chromatogram. DP levels in rat plasma with a single administration of DP (5 mg/kg, i.p., group I) and those with a co-administration of Asp (200 mg/kg, p.o., group II or 200 mg/kg, i.p., group III) or CG (5 mg/kg, p.o., group IV) were monitored. The DP concentrations determined in rat plasma ranged from 25.0 to 336.1 ng/mL. Pharmacokinetic parameters for these groups were calculated and compared with one another. No significant difference was observed on the comparison of group I with other groups except for the mean resident time of group IV (p = 0.012). These basic findings may help clinical inference when DP is co-administered with Asp and CG to human. Copyright 2007 John Wiley & Sons, Ltd.
Combining Costs and Benefits of Animal Activities to Assess Net Yield Outcomes in Apple Orchards
Luck, Gary W.
2016-01-01
Diverse animal communities influence ecosystem function in agroecosystems through positive and negative plant-animal interactions. Yet, past research has largely failed to examine multiple interactions that can have opposing impacts on agricultural production in a given context. We collected data on arthropod communities and yield quality and quantity parameters (fruit set, yield loss and net outcomes) in three major apple-growing regions in south-eastern Australia. We quantified the net yield outcome (accounting for positive and negative interactions) of multiple animal activities (pollination, fruit damage, biological control) across the entire growing season on netted branches, which excluded vertebrate predators of arthropods, and open branches. Net outcome was calculated as the number of undamaged fruit at harvest as a proportion of the number of blossoms (i.e., potential fruit yield). Vertebrate exclusion resulted in lower levels of fruit set and higher levels of arthropod damage to apples, but did not affect net outcomes. Yield quality and quantity parameters (fruit set, yield loss, net outcomes) were not directly associated with arthropod functional groups. Model variance and significant differences between the ratio of pest to beneficial arthropods between regions indicated that complex relationships between environmental factors and multiple animal interactions have a combined effect on yield. Our results show that focusing on a single crop stage, species group or ecosystem function/service can overlook important complexity in ecological processes within the system. Accounting for this complexity and quantifying the net outcome of ecological interactions within the system, is more informative for research and management of biodiversity and ecosystem services in agricultural landscapes. PMID:27391022
Combining Costs and Benefits of Animal Activities to Assess Net Yield Outcomes in Apple Orchards.
Saunders, Manu E; Luck, Gary W
2016-01-01
Diverse animal communities influence ecosystem function in agroecosystems through positive and negative plant-animal interactions. Yet, past research has largely failed to examine multiple interactions that can have opposing impacts on agricultural production in a given context. We collected data on arthropod communities and yield quality and quantity parameters (fruit set, yield loss and net outcomes) in three major apple-growing regions in south-eastern Australia. We quantified the net yield outcome (accounting for positive and negative interactions) of multiple animal activities (pollination, fruit damage, biological control) across the entire growing season on netted branches, which excluded vertebrate predators of arthropods, and open branches. Net outcome was calculated as the number of undamaged fruit at harvest as a proportion of the number of blossoms (i.e., potential fruit yield). Vertebrate exclusion resulted in lower levels of fruit set and higher levels of arthropod damage to apples, but did not affect net outcomes. Yield quality and quantity parameters (fruit set, yield loss, net outcomes) were not directly associated with arthropod functional groups. Model variance and significant differences between the ratio of pest to beneficial arthropods between regions indicated that complex relationships between environmental factors and multiple animal interactions have a combined effect on yield. Our results show that focusing on a single crop stage, species group or ecosystem function/service can overlook important complexity in ecological processes within the system. Accounting for this complexity and quantifying the net outcome of ecological interactions within the system, is more informative for research and management of biodiversity and ecosystem services in agricultural landscapes.
Make dark matter charged again
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large,more » a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.« less
Spectroscopic study of formation, evolution and interaction of M31 and M33 with star clusters
NASA Astrophysics Data System (ADS)
Fan, Zhou; Yang, Yanbin
2016-02-01
The recent studies show that the formation and evolution process of the nearby galaxies are still unclear. By using the Canada France Hawaii Telescope (CFHT) 3.6m telescope, the PanDAS shows complicated substructures (dwarf satellite galaxies, halo globular clusters, extended clusters, star streams, etc.) in the halo of M31 to ~150 kpc from the center of galaxy and M31-M33 interaction has been studied. In our work, we would like to investigate formation, evolution and interaction of M31 and M33, which are the nearest two spiral galaxies in Local Group. The star cluster systems of the two galaxies are good tracers to study the dynamics of the substructures and the interaction. Since 2010, the Xinglong 2.16m, Lijiang 2.4m and MMT 6.5m telescopes have been used for our spectroscopic observations. The radial velocities and Lick absorption-line indices can thus be measured with the spectroscopy and then ages, metallicities and masses of the star clusters can be fitted with the simple stellar population models. These parameters could be used as the input physical parameters for numerical simulations of M31-M33 interaction.
NASA Astrophysics Data System (ADS)
Bloßfeld, Mathis; Panzetta, Francesca; Müller, Horst; Gerstl, Michael
2016-04-01
The GGOS vision is to integrate geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. In order to reach this goal, the common estimation of station coordinates, Stokes coefficients and Earth Orientation Parameters (EOP) is necessary. Satellite Laser Ranging (SLR) provides the ability to study correlations between the different parameter groups since the observed satellite orbit dynamics are sensitive to the above mentioned geodetic parameters. To decrease the correlations, SLR observations to multiple satellites have to be combined. In this paper, we compare the estimated EOP of (i) single satellite SLR solutions and (ii) multi-satellite SLR solutions. Therefore, we jointly estimate station coordinates, EOP, Stokes coefficients and orbit parameters using different satellite constellations. A special focus in this investigation is put on the de-correlation of different geodetic parameter groups due to the combination of SLR observations. Besides SLR observations to spherical satellites (commonly used), we discuss the impact of SLR observations to non-spherical satellites such as, e.g., the JASON-2 satellite. The goal of this study is to discuss the existing parameter interactions and to present a strategy how to obtain reliable estimates of station coordinates, EOP, orbit parameter and Stokes coefficients in one common adjustment. Thereby, the benefits of a multi-satellite SLR solution are evaluated.
ERIC Educational Resources Information Center
Hooshyar, Nahid T.
Maternal language directed to 21 nonhandicapped, 21 Down syndrome, and 19 language impaired preschool children was examined. The three groups (all Caucasian and middle-class) were matched in mean length of utterance (MLU) and in developmental skills as measured on the Vineland Adaptive Behavior Scale. Mother-child language interaction was…
Deciphering Interactions in Moving Animal Groups
Gautrais, Jacques; Ginelli, Francesco; Fournier, Richard; Blanco, Stéphane; Soria, Marc; Chaté, Hugues; Theraulaz, Guy
2012-01-01
Collective motion phenomena in large groups of social organisms have long fascinated the observer, especially in cases, such as bird flocks or fish schools, where large-scale highly coordinated actions emerge in the absence of obvious leaders. However, the mechanisms involved in this self-organized behavior are still poorly understood, because the individual-level interactions underlying them remain elusive. Here, we demonstrate the power of a bottom-up methodology to build models for animal group motion from data gathered at the individual scale. Using video tracks of fish shoal in a tank, we show how a careful, incremental analysis at the local scale allows for the determination of the stimulus/response function governing an individual's moving decisions. We find in particular that both positional and orientational effects are present, act upon the fish turning speed, and depend on the swimming speed, yielding a novel schooling model whose parameters are all estimated from data. Our approach also leads to identify a density-dependent effect that results in a behavioral change for the largest groups considered. This suggests that, in confined environment, the behavioral state of fish and their reaction patterns change with group size. We debate the applicability, beyond the particular case studied here, of this novel framework for deciphering interactions in moving animal groups. PMID:23028277
Deciphering interactions in moving animal groups.
Gautrais, Jacques; Ginelli, Francesco; Fournier, Richard; Blanco, Stéphane; Soria, Marc; Chaté, Hugues; Theraulaz, Guy
2012-01-01
Collective motion phenomena in large groups of social organisms have long fascinated the observer, especially in cases, such as bird flocks or fish schools, where large-scale highly coordinated actions emerge in the absence of obvious leaders. However, the mechanisms involved in this self-organized behavior are still poorly understood, because the individual-level interactions underlying them remain elusive. Here, we demonstrate the power of a bottom-up methodology to build models for animal group motion from data gathered at the individual scale. Using video tracks of fish shoal in a tank, we show how a careful, incremental analysis at the local scale allows for the determination of the stimulus/response function governing an individual's moving decisions. We find in particular that both positional and orientational effects are present, act upon the fish turning speed, and depend on the swimming speed, yielding a novel schooling model whose parameters are all estimated from data. Our approach also leads to identify a density-dependent effect that results in a behavioral change for the largest groups considered. This suggests that, in confined environment, the behavioral state of fish and their reaction patterns change with group size. We debate the applicability, beyond the particular case studied here, of this novel framework for deciphering interactions in moving animal groups.
Access to Space Interactive Design Web Site
NASA Technical Reports Server (NTRS)
Leon, John; Cutlip, William; Hametz, Mark
2000-01-01
The Access To Space (ATS) Group at NASA's Goddard Space Flight Center (GSFC) supports the science and technology community at GSFC by facilitating frequent and affordable opportunities for access to space. Through partnerships established with access mode suppliers, the ATS Group has developed an interactive Mission Design web site. The ATS web site provides both the information and the tools necessary to assist mission planners in selecting and planning their ride to space. This includes the evaluation of single payloads vs. ride-sharing opportunities to reduce the cost of access to space. Features of this site include the following: (1) Mission Database. Our mission database contains a listing of missions ranging from proposed missions to manifested. Missions can be entered by our user community through data input tools. Data is then accessed by users through various search engines: orbit parameters, ride-share opportunities, spacecraft parameters, other mission notes, launch vehicle, and contact information. (2) Launch Vehicle Toolboxes. The launch vehicle toolboxes provide the user a full range of information on vehicle classes and individual configurations. Topics include: general information, environments, performance, payload interface, available volume, and launch sites.
Southern, Scott A; Bryce, David L
2015-12-10
Group IV tetrel elements may act as tetrel bond donors, whereby a region of positive electrostatic potential (σ-hole) interacts with a Lewis base. The results of calculations of NMR parameters are reported for a series of model compounds exhibiting tetrel bonding from a methyl carbon to the oxygen or nitrogen atoms in various functional groups. The (13)C chemical shift (δiso) and the (1c)J((13)C,Y) coupling (Y = (17)O, (15)N) across the tetrel bond are recorded as a function of geometry. The sensitivity of the NMR parameters to the noncovalent interaction is demonstrated via an increase in δiso and in |(1c)J((13)C,Y)| as the tetrel bond shortens. Gauge-including projector-augmented wave density functional theory (DFT) calculations of δiso are reported for crystals that exhibit tetrel bonding in the solid state. Experimental δiso values for solid sarcosine and its tetrel-bonded salts corroborate the computational findings. This work offers new insights into tetrel bonding and facilitates the incorporation of tetrel bonds as restraints in NMR crystallographic structure refinement.
Potential for the dynamics of pedestrians in a socially interacting group
NASA Astrophysics Data System (ADS)
Zanlungo, Francesco; Ikeda, Tetsushi; Kanda, Takayuki
2014-01-01
We introduce a simple potential to describe the dynamics of the relative motion of two pedestrians socially interacting in a walking group. We show that the proposed potential, based on basic empirical observations and theoretical considerations, can qualitatively describe the statistical properties of pedestrian behavior. In detail, we show that the two-dimensional probability distribution of the relative distance is determined by the proposed potential through a Boltzmann distribution. After calibrating the parameters of the model on the two-pedestrian group data, we apply the model to three-pedestrian groups, showing that it describes qualitatively and quantitatively well their behavior. In particular, the model predicts that three-pedestrian groups walk in a V-shaped formation and provides accurate values for the position of the three pedestrians. Furthermore, the model correctly predicts the average walking velocity of three-person groups based on the velocity of two-person ones. Possible extensions to larger groups, along with alternative explanations of the social dynamics that may be implied by our model, are discussed at the end of the paper.
Magnetic End States in a Strongly Interacting One-Dimensional Topological Kondo Insulator
Lobos, Alejandro M.; Dobry, Ariel O.; Galitski, Victor
2015-05-22
Topological Kondo insulators are strongly correlated materials where itinerant electrons hybridize with localized spins, giving rise to a topologically nontrivial band structure. Here, we use nonperturbative bosonization and renormalization-group techniques to study theoretically a one-dimensional topological Kondo insulator, described as a Kondo-Heisenberg model, where the Heisenberg spin-1/2 chain is coupled to a Hubbard chain through a Kondo exchange interaction in the p-wave channel (i.e., a strongly correlated version of the prototypical Tamm-Schockley model).We derive and solve renormalization-group equations at two-loop order in the Kondo parameter, and find that, at half filling, the charge degrees of freedom in the Hubbard chainmore » acquire a Mott gap, even in the case of a noninteracting conduction band (Hubbard parameter U = 0). Furthermore, at low enough temperatures, the system maps onto a spin-1/2 ladder with local ferromagnetic interactions along the rungs, effectively locking the spin degrees of freedom into a spin-1 chain with frozen charge degrees of freedom. This structure behaves as a spin-1 Haldane chain, a prototypical interacting topological spin model, and features two magnetic spin-1/2 end states for chains with open boundary conditions. In conclusion, our analysis allows us to derive an insightful connection between topological Kondo insulators in one spatial dimension and the well-known physics of the Haldane chain, showing that the ground state of the former is qualitatively different from the predictions of the naive mean-field theory.« less
Pion emission in α-particle interactions with various targets of nuclear emulsion detector
NASA Astrophysics Data System (ADS)
Abdelsalam, A.; Abou-Moussa, Z.; Rashed, N.; M. Badawy, B.; A. Amer, H.; Osman, W.; M. El-Ashmawy, M.; Abdallah, N.
2015-09-01
The behavior of relativistic hadron multiplicity for 4He-nucleus interactions is investigated. The experiment is carried out at 2.1 A and 3.7 A GeV (Dubna energy) to search for the incident energy effect on the interactions inside different emulsion target nuclei. Data are presented in terms of the number of emitted relativistic hadrons in both forward and backward angular zones. The dependence on the target size is presented. For this purpose the statistical events are discriminated into groups according to the interactions with H, CNO, Em, and AgBr target nuclei. The separation of events, into the mentioned groups, is executed based on Glauber's multiple scattering theory approach. Features suggestive of a decay mechanism seem to be a characteristic of the backward emission of relativistic hadrons. The results strongly support the assumption that the relativistic hadrons may already be emitted during the de-excitation of the excited target nucleus, in a behavior like that of compound-nucleus disintegration. Regarding the limiting fragmentation hypothesis beyond 1 A GeV, the target size is the main parameter affecting the backward production of the relativistic hadron. The incident energy is a principal factor responsible for the forward relativistic hadron production, implying that this system of particle production is a creation system. However, the target size is an effective parameter as well as the projectile size considering the geometrical concept regarded in the nuclear fireball model. The data are analyzed in the framework of the FRITIOF model.
Bañuls, Celia; Rovira-Llopis, Susana; Martinez de Marañon, Aranzazu; Veses, Silvia; Jover, Ana; Gomez, Marcelino; Rocha, Milagros; Hernandez-Mijares, Antonio; Victor, Victor M
2017-06-01
Polycystic ovary syndrome (PCOS) is associated with insulin resistance, which can lead to metabolic syndrome (MetS). Oxidative stress and leukocyte-endothelium interactions are related to PCOS. Our aim was to evaluate whether the presence of MetS in PCOS patients can influence endoplasmic reticulum (ER) and oxidative stress and leukocyte-endothelium interactions. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 148 PCOS women (116 without/32 with MetS) and 112 control subjects (87 without / 25 with MetS). Metabolic parameters, reactive oxygen species (ROS) production, ER stress markers (GRP78, sXBP1, ATF6), leukocyte-endothelium interactions, adhesion molecules (VCAM-1, ICAM-1, E-Selectin), TNF-α and IL-6 were determined. Total ROS, inflammatory parameters and adhesion molecules were enhanced in the presence of MetS (p<0.05), and the PCOS+MetS group showed higher levels of IL-6 and ICAM-1 than controls (p<0.05). Increased adhesion and leukocyte rolling flux were observed in PCOS and PCOS+MetS groups vs their respective controls (p<0.05). GRP78 protein expression was higher in the PCOS groups (p<0.05 vs controls) and sXBP1 was associated with the presence of MetS (p<0.05 vs controls without MetS). Furthermore, PCOS+MetS patients exhibited higher GRP78 and ATF6 levels than controls and PCOS patients without MetS (p<0.05). In PCOS women, HOMA-IR was positively correlated with ICAM-1 (r=0.501; p<0.01), ROS (r=0.604; p<0.01), rolling flux (r=0.455;p<0.05) and GRP78 (r=0.574; p<0.001). Our findings support the hypothesis of an association between altered metabolic status, increased ROS production, ER stress and leukocyte-endothelium interactions in PCOS, all of which are related to vascular complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Rhythmic behavior in a two-population mean-field Ising model
NASA Astrophysics Data System (ADS)
Collet, Francesca; Formentin, Marco; Tovazzi, Daniele
2016-10-01
Many real systems composed of a large number of interacting components, as, for instance, neural networks, may exhibit collective periodic behavior even though single components have no natural tendency to behave periodically. Macroscopic oscillations are indeed one of the most common self-organized behavior observed in living systems. In the present paper we study some dynamical features of a two-population generalization of the mean-field Ising model with the scope of investigating simple mechanisms capable to generate rhythms in large groups of interacting individuals. We show that the system may undergo a transition from a disordered phase, where the magnetization of each population fluctuates closely around zero, to a phase in which they both display a macroscopic regular rhythm. In particular, there exists a region in the parameter space where having two groups of spins with inter- and intrapopulation interactions of different strengths suffices for the emergence of a robust periodic behavior.
Theory of Nuclear Quadrupole Interactions in the Chemical Ferromagnet p-Cl-Ph-CH-N=TEMPO
NASA Astrophysics Data System (ADS)
Briere, Tina M.; Jeong, Junho; Sahoo, N.; Das, T. P.; Ohira, S.; Nishiyama, K.; Nagamine, K.
2002-03-01
The study(Junho Jeong et al., Physica B 289-290, 132 (2000).) of the magnetic hyperfine properties of chemical ferromagnets provides valuable information about the electronic spin distributions in the individual molecules. Insights into the electronic charge distributions and their anisotropy can be obtained from electric quadrupole interactions for the different nuclei in these systems. For this purpose we have studied the nuclear quadrupole interactions(T. P. Das and E. L. Hahn "Nuclear Quadrupole Resonance Spectroscopy", Academic Press Inc., New York, 1958.) for the 14^N nuclei in the NO group and the bridge nitrogen, the 17^O nucleus in the NO group and the 35^Cl nucleus in the p-Cl-Ph-CH-N=TEMPO system both by itself and in the presence of trapped μ and Mu. Comparison will be made between our results and available experimental quadrupole coupling constant (e^2qQ) and asymmetry parameter (η) data.
da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho
2011-08-01
DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.
Iwalokun, B A; Bamiro, S B; Ogunledun, A
2006-12-01
Elevated plasma levels of xanthine oxidase and liver function parameters have been associated with inflammatory events in several human diseases. While xanthine oxidase provides in vitro protection against malaria, its pathophysiological functions in vivo and interactions with liver function parameters remain unclear. This study examined the interactions and plasma levels of xanthine oxidase (XO) and uric acid (UA), catalase (CAT) and liver function parameters GOT, GPT and bilirubin in asymptomatic (n=20), uncomplicated (n=32), and severe (n=18) falciparum malaria children aged 3-13 years. Compared to age-matched control (n=16), significant (p<0.05) elevation in xanthine oxidase by 100-550%, uric acid by 15.4-153.8%, GOT and GPT by 22.1-102.2%, and total bilirubin by 2.3-86% according to parasitaemia (geometric mean parasite density (GMPD)=850-87100 parasites/microL) was observed in the malarial children. Further comparison with control revealed higher CAT level (16.2+/-0.5 vs 14.6+/-0.4 U/L; p<0.05) lacking significant (p>0.05) correlation with XO, but lower CAT level (13.4-5.4 U/L) with improved correlations (r=-0.53 to -0.91; p<0.05) with XO among the asymptomatic and symptomatic malaria children studied. 75% of control, 45% of asymptomatic, 21.9% of uncomplicated, and none of severe malaria children had Hb level>11.0 g/dL. Multivariate analyses further revealed significant (p<0.05) correlations between liver function parameters and xanthine oxidase (r=0.57-0.64) only in the severe malaria group. We conclude that elevated levels of XO and liver enzymes are biochemical features of Plasmodium falciparum parasitaemia in Nigerian children, with both parameters interacting differently to modulate the catalase response in asymptomatic and symptomatic falciparum malaria.
NASA Astrophysics Data System (ADS)
Jimenez-Ruiz, A.; Carnerero, J. M.; Castillo, P. M.; Prado-Gotor, R.
2017-01-01
Low-generation polyamidoamine (PAMAM) dendrimers are known to adsorb on the surface of gold nanoparticles (AuNPs) causing aggregation and color changes. In this paper, a thorough study of this affinity using absorption spectroscopy, colorimetric, and emission methods has been carried out. Results show that, for citrate-capped gold nanoparticles, interaction with the dendrimer is not only of an electrostatic character but instead occurs, at least in part, through the dendrimer's uncharged internal amino groups. The possibilities of the CIELab chromaticity system parameters' evolution have also been explored in order to quantify dendrimer interaction with the red-colored nanoparticles. By measuring and quantifying 17 nm citrate-capped AuNP color changes, which are strongly dependant on their aggregation state, binding free energies are obtained for the first time for these systems. Results are confirmed via an alternate fitting method which makes use of deconvolution parameters from absorbance spectra. Binding free energies obtained through the use of both means are in good agreement with each other.
Fernández-Viadero, Carlos; Peña Sarabia, Nicolás; Jiménez-Sanz, Magdalena; Ordóñez-González, Javier; Verduga Vélez, Rosario; Crespo Santiago, Dámaso
2016-01-01
It is important to assess longitudinal nutritional parameters during the ageing process in order to determine body composition changes. This procedure is more relevant when dealing with institutionalised geriatric patients suffering from cognitive impairment. The aim of this study was to assess the interactions, if any, between mental status and several nutritional parameters in a cohort of elderly people. A longitudinal prospective two years follow-up evaluation was performed on 301 elderly residents (233 females and 68 males) in a nursing home, of whom 51 of them fulfilled the clinical criteria for dementia. Both anthropometric and biochemical parameters were obtained annually, according to standard procedures. The dementia group had lower values when compared to the non-dementia group. Furthermore, nutritional values remained constant in the group with cognitive impairment (no significant differences were observed throughout the study period). BMI 24.5±4.9 vs 24.2±4.1; tricipital skinfold 15.0±6.0 vs 14.7±6.9; brachial circumference 25.9±3.3 vs 25.7±3.5, and albumin 3.7±0.3 vs 3.7±0.3. At the end of the study, the group without cognitive impairment showed lower values in all the parameters analysed when compared to the baseline ones, except for bicipital fold and plasma triglycerides. Our study shows that there are no variations in the elderly with cognitive impairment, as regards the nutritional, anthropometric and biochemist parameters analysed. On the contrary, the group with normal cognitive status showed a reduction in most of the parameters. Further studies analysing larger populations of elderly people and over longer periods of time will provide more information to improve our knowledge on this important issue. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.
Poša, Mihalj; Tepavčević, Vesna
2011-09-01
The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential. Copyright © 2011 Elsevier B.V. All rights reserved.
Empirical study on social groups in pedestrian evacuation dynamics
NASA Astrophysics Data System (ADS)
von Krüchten, Cornelia; Schadschneider, Andreas
2017-06-01
Pedestrian crowds often include social groups, i.e. pedestrians that walk together because of social relationships. They show characteristic configurations and influence the dynamics of the entire crowd. In order to investigate the impact of social groups on evacuations we performed an empirical study with pupils. Several evacuation runs with groups of different sizes and different interactions were performed. New group parameters are introduced which allow to describe the dynamics of the groups and the configuration of the group members quantitatively. The analysis shows a possible decrease of evacuation times for large groups due to self-ordering effects. Social groups can be approximated as ellipses that orientate along their direction of motion. Furthermore, explicitly cooperative behaviour among group members leads to a stronger aggregation of group members and an intermittent way of evacuation.
NASA Astrophysics Data System (ADS)
Akbari, Mohsen; Torki, Mehran
2014-08-01
A study was conducted using 240 female day-old broiler chicks to evaluate the effects of dietary chromium picolinate (CrPic), peppermint essential oil (P.mint), or their combination on growth performance and blood biochemical parameters of female broiler chicks raised under heat stress conditions (HS, 23.9 to 38 °C cycling). Average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) were obtained from 1 to 42 days of age. Furthermore, at the end of the experiment (day 42), birds were bled to determine some blood biochemical parameters and weighed for final body weight (BW). ADFI, ADG, and BW were not influenced significantly by dietary CrPic and P.mint ( P > 0.05). A significant interaction between dietary CrPic and P.mint on FCR ( P = 0.012) was detected. FCR significantly decreased in chicks fed the diet including both CrPic and P.mint compared with the CrPic group. Significant interaction between dietary P.mint and CrPic on serum concentrations of triglycerides, glucose, and albumin were observed ( P < 0.05), but the other measured blood biochemical parameters were not statistically affected by dietary treatments ( P > 0.05). The serum concentrations of glucose, triglycerides were decreased ( P < 0.05) in broilers fed the diet including both CrPic and P.mint. Plasma chromium (Cr) content increased significantly ( P < 0.05) in birds fed the CrPic-included diet compared with the control group ( P < 0.05). From the results of the present experiment it can be concluded that dietary supplementation with combined P.mint and CrPic could have beneficial effects on some blood biochemical parameters of female chicks reared under heat stress conditions.
Akbari, Mohsen; Torki, Mehran
2014-08-01
A study was conducted using 240 female day-old broiler chicks to evaluate the effects of dietary chromium picolinate (CrPic), peppermint essential oil (P.mint), or their combination on growth performance and blood biochemical parameters of female broiler chicks raised under heat stress conditions (HS, 23.9 to 38 °C cycling). Average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) were obtained from 1 to 42 days of age. Furthermore, at the end of the experiment (day 42), birds were bled to determine some blood biochemical parameters and weighed for final body weight (BW). ADFI, ADG, and BW were not influenced significantly by dietary CrPic and P.mint (P>0.05). A significant interaction between dietary CrPic and P.mint on FCR (P=0.012) was detected. FCR significantly decreased in chicks fed the diet including both CrPic and P.mint compared with the CrPic group. Significant interaction between dietary P.mint and CrPic on serum concentrations of triglycerides, glucose, and albumin were observed (P<0.05), but the other measured blood biochemical parameters were not statistically affected by dietary treatments (P>0.05). The serum concentrations of glucose, triglycerides were decreased (P<0.05) in broilers fed the diet including both CrPic and P.mint. Plasma chromium (Cr) content increased significantly (P<0.05) in birds fed the CrPic-included diet compared with the control group (P<0.05). From the results of the present experiment it can be concluded that dietary supplementation with combined P.mint and CrPic could have beneficial effects on some blood biochemical parameters of female chicks reared under heat stress conditions.
Correlation of etho-social and psycho-social data from "Mars-500" interplanetary simulation
NASA Astrophysics Data System (ADS)
Tafforin, Carole; Vinokhodova, Alla; Chekalina, Angelina; Gushin, Vadim
2015-06-01
Studies of social groups under isolation and confinement for the needs of space psychology were mostly limited by questionnaires completed with batteries of subjective tests, and they needed to be correlated with video recordings for objective analyses in space ethology. The aim of the present study is to identify crewmembers' behavioral profiles for better understanding group dynamics during a 520-day isolation and confinement of the international crew (n=6) participating to the "Mars-500" interplanetary simulation. We propose to correlate data from PSPA (Personal Self-Perception and Attitudes) computerized test, sociometric questionnaires and color choices test (Luscher test) used to measure anxiety levels, with data of video analysis during group discussion (GD) and breakfast time (BT). All the procedures were implemented monthly - GD, or twice a month - BT. Firstly, we used descriptive statistics for displaying quantitative subjects' behavioral profiles, supplied with a software based-solution: the Observer XT®. Secondly, we used Spearmen's nonparametric correlation analysis. The results show that for each subject, the level of non-verbal behavior ("visual interactions", "object interactions", "body interaction", "personal actions", "facial expressions", and "collateral acts") is higher than the level of verbal behavior ("interpersonal communication in Russian", and "interpersonal communication in English"). From the video analyses, dynamics profiles over months are different between the crewmembers. From the correlative analyses, we found highly negative correlations between anxiety and interpersonal communications; and between the sociometric parameter "popularity in leisure environment" and anxiety level. We also found highly significant positive correlations between the sociometric parameter "popularity in working environment" and interpersonal communications, and facial expressions; and between the sociometric parameter "popularity in leisure environment " and interpersonal communications, and facial expressions. As a whole, the findings show high importance of ethological investigations with video monitoring for assessment of group behavior in extreme environment. At the same time, correct interpretation of the video recording results requires their comparison with the results of classical socio-psychological methods. We discuss about the different approaches: objective vs. subjective; active vs. discursive; exhaustive vs. restrictive; descriptive vs. introspective.
NASA Astrophysics Data System (ADS)
Oh, Dong Keun; Hong, Sung Mok; Lee, Cheol Eui; Kim, B.-S.; Jin, J.-I.
2005-12-01
Using the time of flight (ToF) method, we investigated the bipolar charge transport for two glass-forming molecules containing carbazole and cyano-carbazole moiety. The enhanced electron mobility was observed in the cyano-carbazole compound. From the numerical method based the Laplace formalism, the distribution of hole trapping energy was obtained for the carbazole compound. This result was compared with the exponential distribution extracted from dispersion parameter for the cyano-carbazole material. Considering charge-dipole interactions as a reason for the disordered trapping mechanism, we discussed dispersive charge transport induced by a strong dipolar (i.e. cyano) group by comparing the distributions of hole trapping sites for two compounds.
Mazzoleni, Stefano; Montagnani, Giulia; Vagheggini, Guido; Buono, Lorenzo; Moretti, Francesca; Dario, Paolo; Ambrosino, Nicolino
2014-10-01
To evaluate the effectiveness of an interactive videogame (IV) system in addition to a supervised pulmonary rehabilitation programme (PRP) in patients with chronic respiratory diseases. Randomised Controlled Trial comparing standard PRP (20 patients, control group: CG), and PRP + sessions of interactive videogame-aided exercises (20 patients, experimental group: EG). Lung and respiratory muscle function, arterial blood gases, exercise capacity, dyspnoea, health status and health-related quality of life (HRQL) and emotional response were measured before and after PRP. A questionnaire on acceptability of the PRP was administered. Exercise capacity, dyspnoea and HRQL significantly improved in both groups after the PRP, whereas the EG showed a greater improvement in six-minute walk test and transitional dyspnoea index than the CG. No difference in psychological status or acceptability of PRP was observed between the two groups. The addition of IV training was more effective for improving some parameters of exercise tolerance and dyspnoea, although did not result in better psychological status nor it was better accepted than the standard PRP in patients with chronic respiratory diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin
2016-01-01
In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012
Ertl, P
1998-02-01
Easy to use, interactive, and platform-independent WWW-based tools are ideal for development of chemical applications. By using the newly emerging Web technologies such as Java applets and sophisticated scripting, it is possible to deliver powerful molecular processing capabilities directly to the desk of synthetic organic chemists. In Novartis Crop Protection in Basel, a Web-based molecular modelling system has been in use since 1995. In this article two new modules of this system are presented: a program for interactive calculation of important hydrophobic, electronic, and steric properties of organic substituents, and a module for substituent similarity searches enabling the identification of bioisosteric functional groups. Various possible applications of calculated substituent parameters are also discussed, including automatic design of molecules with the desired properties and creation of targeted virtual combinatorial libraries.
Contraction of electroweak model and neutrino
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N. A., E-mail: gromov@dm.komisc.ru
The electroweak model, which lepton sector correspond to the contracted gauge group SU(2; j) Multiplication-Sign U(1), j {yields} 0, whereas boson and quark sectors are standard one, is suggested. The field space of the model is fibered under contraction in such a way that neutrino fields are in the fiber and all other fields are in the base. Properties of the fibered field space are understood in context of semi-Riemannian geometry. This model describes in a natural manner why neutrinos so rarely interact with matter, as well as why neutrino cross section increase with the energy. Dimensionfull parameter of themore » model is interpreted as neutrino energy. Dimensionless contraction parameter j at low energy is connected with the Fermi constant of weak interactions and is approximated as j{sup 2} Almost-Equal-To 10{sup -5}.« less
Correlation effects in superconducting quantum dot systems
NASA Astrophysics Data System (ADS)
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
Bohnert, Tonika; Patel, Aarti; Templeton, Ian; Chen, Yuan; Lu, Chuang; Lai, George; Leung, Louis; Tse, Susanna; Einolf, Heidi J; Wang, Ying-Hong; Sinz, Michael; Stearns, Ralph; Walsky, Robert; Geng, Wanping; Sudsakorn, Sirimas; Moore, David; He, Ling; Wahlstrom, Jan; Keirns, Jim; Narayanan, Rangaraj; Lang, Dieter; Yang, Xiaoqing
2016-08-01
Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Changes of catecholamine excretion during long-duration confinement.
Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C
2002-06-01
Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.
García-Pinillos, Felipe; Laredo-Aguilera, José A; Muñoz-Jiménez, Marcos; Latorre-Román, Pedro A
2017-03-13
This study aimed to analyse the effect of 12-week low-volume HIIT-based concurrent training programme on body composition, upper- and lower-body muscle strength, mobility and balance in older adults, as well as to compare it with a low- moderate-intensity continuous training. 90 active older adults were randomly assigned to experimental (EG, n=47), and control (CG, n=43) groups. Body composition and physical functioning were assessed before (pre-test) and after (post-test) a 12-week intervention. A 2-way repeated measures ANOVA was used to test for an interaction between training programme and groups. The time x group interaction revealed no significant between-group differences at pre-test (p≥0.05). The group x time interaction showed significant improvements for the EG in body composition parameters (p<0.05) and physical functioning (muscle strength: p<0.001; mobility: p<0.001; and balance: p<0.05); while the CG remained unchanged (p≥0.05). This HIIT-based concurrent training programme led to greater improvements in body composition, muscle strength, mobility and balance in healthy older people than a regular low- moderate-intensity continuous training, despite the reduction in overall training volume.
NASA Astrophysics Data System (ADS)
Komarova, A. O.; Shashkov, M. V.; Sidel'nikov, V. N.
2017-11-01
Capillary columns based on a number of thermostable polysiloxane-silarylene motionless phases are prepared and their properties are studied. Three polymers with different contents of methyl and phenyl groups are synthesized: dimethylsiloxanesilarylene (DMS), methylphenylsiloxanesilarylene (MPhS), and diphenylsiloxanesilarylene (DPhS). Studies of their thermostability show that the level of the background current of these columns upon heating to 350°C is several times lower than that of a column based on polydimethylsiloxane. Based on McReynolds' studies of polarity and Abraham's studies of the selectivity of prepared columns according to the parameters of intermolecular interactions, it is found that silarylene MLPs are more affected by the contributions from specific interactions (especially for dipole-dipole, π-π-, and n-π-interactions) than MLPs with no phenylene inserts. The effect on the selectivity of a phenyl group inside a chain differs from the one produced by the phenyl groups in side MLP chains. The effect on the selectivity of a phenyl group inside a chain differs from the one produced by the phenyl groups in side MLP chains. Examples of the separation of test mixtures of aromatic and oxygen-containing compounds are obtained, along with an extract of thistle oil containing tocopherols and phytosterols at a final temperature of analysis of 350°C.
NASA Astrophysics Data System (ADS)
Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.
2013-12-01
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B
2017-02-21
In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime
2016-11-01
An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.
Kohn's theorem, Larmor's equivalence principle and the Newton-Hooke group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbons, G.W., E-mail: gwg1@amtp.cam.ac.uk; Pope, C.N.; George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242
2011-07-15
Highlights: > We show that non-relativistic electrons moving in a magnetic field with trapping potential admits as relativity group the Newton-Hooke group. > We use this fact to give a group theoretic interpretation of Kohn's theorem and to obtain the spectrum. > We obtain the lightlike lift of the system exhibiting showing it coincides with the Nappi-Witten spacetime. - Abstract: We consider non-relativistic electrons, each of the same charge to mass ratio, moving in an external magnetic field with an interaction potential depending only on the mutual separations, possibly confined by a harmonic trapping potential. We show that the systemmore » admits a 'relativity group' which is a one-parameter family of deformations of the standard Galilei group to the Newton-Hooke group which is a Wigner-Inoenue contraction of the de Sitter group. This allows a group-theoretic interpretation of Kohn's theorem and related results. Larmor's theorem is used to show that the one-parameter family of deformations are all isomorphic. We study the 'Eisenhart' or 'lightlike' lift of the system, exhibiting it as a pp-wave. In the planar case, the Eisenhart lift is the Brdicka-Eardley-Nappi-Witten pp-wave solution of Einstein-Maxwell theory, which may also be regarded as a bi-invariant metric on the Cangemi-Jackiw group.« less
Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling
NASA Astrophysics Data System (ADS)
Li, Zhidan; Han, Qiang
2018-04-01
The one dimension interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations and various physical quantities as functions of the fermion-fermion interaction $U$ are calculated systematically using the density matrix renormalization group method. A special value of interaction $U_p$ is revealed in the topological region of the phase diagram. We show that at $U_p$ the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. $U_p$ may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.
NASA Astrophysics Data System (ADS)
Han, SangEun; Moon, Eun-Gook
2018-06-01
Topological states may be protected by a lattice symmetry in a class of topological semimetals. In three spatial dimensions, the Berry flux around gapless excitations in momentum space concretely defines a chirality, so a protecting symmetry may be referred to as a chiral symmetry. Prime examples include a Dirac semimetal (DSM) in a distorted spinel, BiZnSiO4, protected by a mirror symmetry, and a DSM in Na3Bi , protected by a rotational symmetry. In these states, topology and chiral symmetry are intrinsically tied. In this Rapid Communication, the characteristic interplay between a chiral symmetry order parameter and an instantaneous long-range Coulomb interaction is investigated with the standard renormalization group method. We show that a topological transition associated with chiral symmetry is stable under the presence of a Coulomb interaction and the electron velocity always becomes faster than the one of a chiral symmetry order parameter. Thus, the transition must not be relativistic, which implies that supersymmetry is intrinsically forbidden by the long-range Coulomb interaction. Asymptotically exact universal ratios of physical quantities such as the energy gap ratio are obtained, and connections with experiments and recent theoretical proposals are also discussed.
Self-organized huddles of rat pups modeled by simple rules of individual behavior.
Schank, J C; Alberts, J R
1997-11-07
Starting at infancy and continuing throughout adult life, huddling is a major component of the behavioral repertoire of Norway rats (Rattus norvegicus). Huddling behavior maintains the cohesion of litters throughout early life, and in adulthood, it remains a consistent feature of social behavior of R. norvegicus. During infancy, rats have severely limited sensorimotor capabilities, and yet they are capable of aggregating and display a form of group regulatory behavior that conserves metabolic effort and augments body temperature regulation. The functions of huddling are generally understood as group adaptations, which are beyond the capabilities of the individual infant rat. We show, however, that huddling as aggregative or cohesive behavior can emerge as a self-organizing process from autonomous individuals following simple sensorimotor rules. In our model, two sets of sensorimotor parameters characterize the topotaxic responses and the dynamics of contact in 7-day-old rats. The first set of parameters are conditional probabilities of activity and inactivity given prior activity or inactivity and the second set are preferences for objects in the infant rat's environment. We found that the behavior of the model and of actual rat pups compare very favorably, demonstrating that the aggregative feature of huddling can emerge from the local sensorimotor interactions of individuals, and that complex group regulatory behaviors in infant rats may also emerge from self-organizing processes. We discuss the model and the underlying approach as a paradigm for investigating the dynamics of social interactions, group behavior, and developmental change.
Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions
NASA Technical Reports Server (NTRS)
Shelhamer, M.
2015-01-01
The NASA Human Research Program works to mitigate risks to health and performance on extended missions. However, research should be directed not only to mitigating known risks, but also to providing crews with tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory to assess resilience. The entire crew or the individual crewmember can be viewed as a complex system composed of subsystems; the interactions between subsystems are of crucial importance. Understanding the interactions can provide important information even in the absence of complete information on the component subsystems. Enabled by advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and during training to establish baselines. Coupled with mathematical modeling, this can provide assessment of health and function. Since the web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). Some of the many parameters and interactions to choose from include: sleep cycles, coordination of work and meal times, cardiorespiratory rhythms, circadian rhythms and body temperature, stress markers and cognition, sleep and performance, immune function and nutritional status. Tools for resilience are then the means to measure and analyze these parameters, incorporate them into models of normal variability and interconnectedness, and recognize when parameters or their couplings are outside of normal limits.
Goertz, O; von der Lohe, L; Lauer, H; Khosrawipour, T; Ring, A; Daigeler, A; Lehnhardt, M; Kolbenschlag, J
2014-11-01
Burn wounds remain a challenge due to subsequent wound infection and septicemia, which can be prevented by acceleration of wound healing. The aim of the study was to analyze microcirculation and leukocyte endothelium interaction with particular focus on angiogenesis after full-thickness burn using three different repetitions of low energy shock waves. Full-thickness burns were inflicted to the ears of hairless mice (n=44; area: 1.6±0.05 mm2 (mean±SEM)). Mice were randomized into four groups: the control group received a burn injury but no shock waves; group A received ESWA (0.03 mJ/mm2) on day one after burn injury; group B received shock waves on day one and day three after burn injury; group C ESWA on day one, three and seven after burn injury. Intravital fluorescent microscopy was used to assess microcirculatory parameters, angiogenesis and leukocyte interaction. Values were obtained before burn (baseline value) immediately after and on days 1, 3, 7 and 12 after burn. Shock-wave treated groups showed significantly accelerated angiogenesis compared to the control group. The non-perfused area (NPA) is regarded as a parameter for angiogenesis and showed the following data on day 12 2.7±0.4% (group A, p=0.001), 1.4±0.5% (group B, p<0.001), 1.0±0.3% (group C, p<0.001), 6.1±0.9% (control group). Edema formation is positively correlated with the number of shock wave applications: day 12: group A: 173.2±9.8%, group B: 184.2±6.6%, group C: 201.1±6.9%, p=0.009 vs. control: 162.3±8.7% (all data: mean±SEM). According to our data shock waves positively impact the wound healing process following burn injury. Angiogenesis showed significantly improved activity after shock wave application. In all three treatment groups angiogenesis was higher compared to the control group. Within the ESWA groups, double applications showed better results than single application and three applications showed better results than single or double applications. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf
2006-07-05
We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.
Mörschel, Philipp; Schmidt, Martin U
2015-01-01
A crystallographic quantum-mechanical/molecular-mechanical model (c-QM/MM model) with full space-group symmetry has been developed for molecular crystals. The lattice energy was calculated by quantum-mechanical methods for short-range interactions and force-field methods for long-range interactions. The quantum-mechanical calculations covered the interactions within the molecule and the interactions of a reference molecule with each of the surrounding 12-15 molecules. The interactions with all other molecules were treated by force-field methods. In each optimization step the energies in the QM and MM shells were calculated separately as single-point energies; after adding both energy contributions, the crystal structure (including the lattice parameters) was optimized accordingly. The space-group symmetry was maintained throughout. Crystal structures with more than one molecule per asymmetric unit, e.g. structures with Z' = 2, hydrates and solvates, have been optimized as well. Test calculations with different quantum-mechanical methods on nine small organic molecules revealed that the density functional theory methods with dispersion correction using the B97-D functional with 6-31G* basis set in combination with the DREIDING force field reproduced the experimental crystal structures with good accuracy. Subsequently the c-QM/MM method was applied to nine compounds from the CCDC blind tests resulting in good energy rankings and excellent geometric accuracies.
Pediatric normative data for the KayPENTAX phonatory aerodynamic system model 6600.
Weinrich, Barbara; Brehm, Susan Baker; Knudsen, Courtney; McBride, Stephanie; Hughes, Michael
2013-01-01
The objectives of this study were to (1) establish a preliminary pediatric normative database for the KayPENTAX Phonatory Aerodynamic System (PAS) Model 6600 (KayPENTAX Corp, Montvale, NJ) and (2) identify whether the data obtained were age- and/or gender-dependent. Prospective data collection across groups. A sample of 60 children (30 females and 30 males) with normal voices was divided into three age groups (6.0-9.11, 10.0-13.11, 14.0-17.11 years) with equal distribution of males and females within each group. Five PAS protocols (vital capacity, maximum sustained phonation, comfortable sustained phonation, variation in sound pressure level, voicing efficiency) were used to collect 45 phonatory aerodynamic measures. Measurements for the 45 PAS parameters examined revealed 13 parameters to have a difference that was statistically significant by age and/or gender. There was a significant age×gender interaction for mean pitch in the four protocols that reported this measure. Males in the oldest group had significantly lower mean pitch values than the middle and young groups. Statistically significant main effect differences were noted for seven parameters across three age groups (expiratory volume, expiratory airflow duration, phonation time, pitch range (in 2 protocols), aerodynamic resistance, acoustic ohms). Significant main effect differences for genders (males > females) were found for expiratory volume and peak expiratory airflow. The age- and gender-related differences found for some parameters within each of the five protocols are important for the interpretation of data obtained from PAS. These results could be explained by developmental changes that occur in the male and female respiratory and laryngeal systems. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Scale disparity and spectral transfer in anisotropic numerical turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE; Yeung, P. K.; Brasseur, James G.
1994-01-01
To study the effect of cancellations within long-range interactions on local isotropy at the small scales, we calculate explicitly the degree of cancellation in distant interactions in the simulations of Yeung & Brasseur and Yeung, Brasseur & Wang using the single scale disparity parameter 's' developed by Zhou. In the simulations, initially isotropic simulated turbulence was subjected to coherent anisotropic forcing at the large scales and the smallest scales were found to become anisotropic as a consequence of direct large-small scale couplings. We find that the marginally distant interactions in the simulation do not cancel out under summation and that the development of small-scale anisotropy is indeed a direct consequence of the distant triadic group, as argued by Yeung, et. al. A reduction of anisotropy at later times occurs as a result of the isotropizing influences of more local energy-cascading triadic interactions. Nevertheless, the local-to-nonlocal triadic group persists as an isotropizing influence at later times. We find that, whereas long-range interactions, in general, contribute little to net energy transfer into or out of a high wavenumber shell k, the anisotropic transfer of component energy within the shell increases with increasing scale separations. These results are consistent with results by Zhou, and Brasseur & Wei, and suggest that the anisotropizing influences of long range interactions should persist to higher Reynolds numbers. The residual effect of the forced distant group in this low-Reynolds number simulation is found to be forward cascading, on average.
Aging-related arterial-cardiac interaction in Japanese men.
Maruyama, Yoshiaki
2009-11-01
Vascular and cardiac aging is rapidly progressing among the Japanese population. A close relation exists between the artery and cardiac performance (arterial-cardiac interaction), but the relationships between age and these parameters have not been well examined. The aim of this study was to elucidate the changes of arterial-cardiac interaction with aging, using pulse wave velocity (PWV) as an indicator of atherosclerosis. The subjects comprised 595 adult men (mean age, 58.8 +/- 12.2 years) without any history of cardiovascular disease. After correlating PWV, cardiac structure, cardiac function, and blood pressure to age, subjects were divided into five age groups to compare changes in these parameters. Pulse wave velocity exhibited a strong positive correlation with age (r = 0.461, P < 0.01) and increased significantly over 55 years old, and left atrial dimension, relative wall thickness, systolic blood pressure, and pulse pressure correlated positively with age and increased similarly. Left ventricular volume correlated negatively with age and decreased similarly. These parameters significantly correlated with PWV. Aortic diameter (AoD) positively and EA ratio (E/A) negatively exhibited a correlation with age and revealed earlier change before PWV increase. Aortic diameter increased significantly over 45 years old and stayed flat, but E/A decreased linearly from the early period. Diastolic blood pressure (DBP) increased in the early period and decreased over 75 years of age. Agerelated atherosclerotic close arterial-cardiac interaction exists between the vessels and cardiac performance, but AoD, E/A, and DBP change in early age independent of atherosclerosis.
Diamond-like nanoparticles influence on flavonoids transport: molecular modelling
NASA Astrophysics Data System (ADS)
Plastun, Inna L.; Agandeeva, Ksenia E.; Bokarev, Andrey N.; Zenkin, Nikita S.
2017-03-01
Intermolecular interaction of diamond-like nanoparticles and flavonoids is investigated by numerical simulation. Using molecular modelling by the density functional theory method, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and nanodiamonds surrounded with carboxylic groups. Enriched adamantane (1,3,5,7 - adamantanetetracarboxylic acid) is used as an example of diamond-like nanoparticles. Intermolecular forces and structure of hydrogen bonds are investigated. IR - spectra and structure parameters of quercetin - adamantanetetracarboxylic acid molecular complex are obtained by numerical simulation using the Gaussian software complex. Received data coincide well with experimental results. Intermolecular interactions and hydrogen bonding structure in the obtained molecular complex are examined. Possibilities of flavonoids interaction with DNA at the molecular level are also considered.
NASA Astrophysics Data System (ADS)
Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj
2010-05-01
A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the Pitzer-EUNIQUAC benchmark applied to relevant aqueous solutions at elevated temperature, pressure and ionic strength will be presented.
Curcic, Marijana; Buha, Aleksandra; Stankovic, Sanja; Milovanovic, Vesna; Bulat, Zorica; Đukić-Ćosić, Danijela; Antonijević, Evica; Vučinić, Slavica; Matović, Vesna; Antonijevic, Biljana
2017-02-01
The objective of this study was to assess toxicity of Cd and BDE-209 mixture on haematological parameters in subacutely exposed rats and to determine the presence and type of interactions between these two chemicals using multiple factorial regression analysis. Furthermore, for the assessment of interaction type, an isobologram based methodology was applied and compared with multiple factorial regression analysis. Chemicals were given by oral gavage to the male Wistar rats weighing 200-240g for 28days. Animals were divided in 16 groups (8/group): control vehiculum group, three groups of rats were treated with 2.5, 7.5 or 15mg Cd/kg/day. These doses were chosen on the bases of literature data and reflect relatively high Cd environmental exposure, three groups of rats were treated with 1000, 2000 or 4000mg BDE-209/kg/bw/day, doses proved to induce toxic effects in rats. Furthermore, nine groups of animals were treated with different mixtures of Cd and BDE-209 containing doses of Cd and BDE-209 stated above. Blood samples were taken at the end of experiment and red blood cells, white blood cells and platelets counts were determined. For interaction assessment multiple factorial regression analysis and fitted isobologram approach were used. In this study, we focused on multiple factorial regression analysis as a method for interaction assessment. We also investigated the interactions between Cd and BDE-209 by the derived model for the description of the obtained fitted isobologram curves. Current study indicated that co-exposure to Cd and BDE-209 can result in significant decrease in RBC count, increase in WBC count and decrease in PLT count, when compared with controls. Multiple factorial regression analysis used for the assessment of interactions type between Cd and BDE-209 indicated synergism for the effect on RBC count and no interactions i.e. additivity for the effects on WBC and PLT counts. On the other hand, isobologram based approach showed slight antagonism for the effects on RBC and WBC while no interactions were proved for the joint effect on PLT count. These results confirm that the assessment of interactions between chemicals in the mixture greatly depends on the concept or method used for this evaluation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The heavy particle hazard, what physical data are needed?
NASA Technical Reports Server (NTRS)
Curtis, S. B.; Wilkinson, M. C.
1972-01-01
The physical data required to evaluate the radiation hazard from heavy galactic cosmic rays to astronauts on extended missions are discussed. The spectral characteristics, nuclear interaction parameters, and track structure of particles are emphasized. The data on the lower energy portion of the differential spectrum of the iron group and nuclear fragmentation in tissue and aluminum are tested, and results are shown.
Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigg, R.B.; Lingane, P.J.
1983-10-01
The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. There is consensus that the characterization of the C fraction, the grouping of this fraction into ''pseudo components'', and the selection of interaction parameters are the most important variables. However, the literature is vague as to how to best select the pseudo components, especially when aiming for a few-component representation as for a field scale compositional simulation. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a syntheticmore » oil C/C/C, with carbon dioxide. One can reproduce the phase behavior of these mixtures using 3-5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parameters are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility.« less
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.
2013-07-01
The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.
Onnis, L; Barbara, E; Bernardini, M; Caggese, A; Di Giacomo, S; Giambartolomei, A; Leonelli, A; Mule', A M; Nicoletti, P G; Vietri, A
2012-03-01
This article presents the results of a broader clinical research into the effectiveness of integrated treatments in teenage eating disorders, carried out at the Complex Operative Unit of Psychotherapy (Unità Operativa Complessa or U.O.C.) of the Department of Psychiatric Sciences and Psychological Medicine in collaboration with the Department of Neuropsychiatric Science for Child Development (Dipartimento di Scienze Neuropsichiatriche dell'Età Evolutiva), both at the "La Sapienza" University of Rome. The hypothesis of this research project is that in diagnosticable situations such as anorexia or bulimia, an integrated and multidisciplinary treatment, which combines medical-nutritional interventions and family psychotherapy, allows better results than a single kind of treatment, which is the usual medical- nutritional intervention supported by psychiatric counselling. Twenty-eight cases (16 of bulimia and 12 of anorexia) were selected and then subdivided, with a randomized distribution, into two (experimental and control) homogeneous groups of 14 patients. The grouping variables were the diagnosis, the disorder's seriousness and duration, BMI, gender, age, family composition and social status. The variables which have been examined in this article are the clinical parameters, which were valuated in accordance with the DSM IV-TR criteria, and relational parameters which were explored through the use of the W.F.T. Test (Wiltwyck Family Tasks). These parameters were tested at beginning as well as at the end of the therapies, in both the experimental group and the control group. Statistical analysis has shown that the experimental group, which was followed with the integrated treatment, experienced a significant improvement of the parameters as related to dysfunctional family interaction modalities, and that this improvement was correlated to the positive evolution of the clinical parameters. This improvement was not present or not of the same degree in the control group. The results, moreover, demonstrate the effectiveness of an integrated systemic treatment based on a complex approach compared to a reductionist approach.
Chen, Li-Jung; Fox, Kenneth R; Ku, Po-Wen; Chang, Yi-Wen
2016-08-01
Exercise has been found to be associated with improved sleep quality. However, most of the evidence is based on resistance exercise, walking, or gym-based aerobic activity. This study aimed to examine the effects of an 8-week aquatic exercise program on objectively measured sleep parameters among older adults with mild sleep impairment. A total of 67 eligible older adults with sleep impairment were selected and randomized to exercise and control groups, and 63 participants completed the study. The program involved 2 × 60-min sessions of aquatic exercise for 8 weeks. Participants wore wrist actigraphs to assess seven parameters of sleep for 1 week before and after the intervention. Mixed-design analysis of variance (ANOVA) was used to assess the differences between groups in each of the sleep parameters. No significant group differences on demographic variables, life satisfaction, percentage of body fat, fitness, seated blood pressure, and any parameter of sleep were found at baseline. Significant group × time interaction effects were found in sleep onset latency, F(1,58) = 6.921, p = .011, partial eta squared = .011, and in sleep efficiency, F(1, 61) = 16.909, p < 0.001, partial eta squared = .217. The exercise group reported significantly less time on sleep onset latency (mean difference = 7.9 min) and greater sleep efficiency (mean difference = 5.9 %) than the control group at posttest. There was no significant difference between groups in change of total sleep time, wake after sleep onset, activity counts, or number and length of awakenings. An 8-week aquatic exercise has significant benefits on some sleep parameters, including less time for sleep onset latency and better sleep efficiency in older adults with mild sleep impairment.
Konieczny, Krzysztof; Bąkowicz, Julia; Turowska-Tyrk, Ilona
2015-05-01
Contrary to the known 4-(2,4,6-triisopropylbenzoyl)benzoate salts, di-μ-aqua-bis[tetraaquasodium(I)] bis[4-(2,4,6-triisopropylbenzoyl)benzoate] dihydrate, [Na2(H2O)10](C23H27O3)2·2H2O, (1), does not undergo a photochemical Norrish-Yang reaction in the crystalline state. In order to explain this photochemical inactivity, the intermolecular interactions were analyzed by means of the Hirshfeld surface and intramolecular geometrical parameters describing the possibility of a Norrish-Yang reaction were calculated. The reasons for the behaviour of the title salt are similar crystalline environments for both the o-isopropyl groups in the anion, resulting in similar geometrical parameters and orientations, and that these interaction distances differ significantly from those found in salts where the photochemical reaction occurs.
Muin, Dana A; Wolzt, Michael; Marculescu, Rodrig; Sheikh Rezaei, Safoura; Salama, Mohamed; Fuchs, Carola; Luger, Anton; Bragagna, Elia; Litschauer, Brigitte; Bayerle-Eder, Michaela
2015-09-01
To assess the effect of on-demand intranasal oxytocin administration on female sexual function and activity. Randomized, prospective, double-blind, placebo-controlled, crossover trial with duration of 22 weeks. Academic medical center. Thirty pre-and postmenopausal women with sexual dysfunction. Over 8 weeks, intranasal oxytocin (32 IU) or placebo self-administered by women within 50 minutes before sexual intercourse; after a washout period of 2 weeks, crossover with patients switched to the alternate group for another 8 weeks. Primary outcome parameter: Female Sexual Function Index (FSFI); secondary outcome parameters: Female Sexual Distress Scale (FSDS), Sexual Quality of Life-Female (SQOL-F), Sexual Interest and Desire Inventory-Female (SIDI-F), and Hamilton depression scale (HDS). After oxytocin and placebo, the FSFI score increased by 26% and 31%, SQOL-F score by 144% and 125%, and SIDI-F score by 29% and 23%, respectively (repeated measures analysis of variance between groups). After oxytocin and placebo, the FSDS score decreased by 36% and 45%, respectively (repeated measures analysis of variance between groups). There was no statistically significant treatment, sequence (placebo first/second), or interaction effect. Long-term intranasal oxytocin and placebo administration both improved sexual function and symptoms of depression in women over time with no treatment, sequence (placebo first/second), or interaction effect. NCT02229721. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Neves, Claodete Hasselstrom; Tibana, Ramires Alsamir; Prestes, Jonato; Voltarelli, Fabricio Azevedo; Aguiar, Andreo Fernando; Ferreira Mota, Gustavo Augusto; de Sousa, Sergio Luiz Borges; Leopoldo, Andre Soares; Leopoldo, Ana Paula Lima; Mueller, Andre; Aguiar, Danilo Henrique; Navalta, James Wilfred; Sugizaki, Mario Mateus
2017-04-01
Cardiotonic drugs and exercise training promote cardiac inotropic effects, which may affect training-induced cardiac adaptations. This study investigated the effects of long-term administration of digoxin on heart structure and function, and physical performance of rats submitted to high-intensity interval training (HIIT). Male Wistar rats, 60 days old, were divided into control (C), digoxin (DIGO), trained (T), and trained with digoxin (TDIGO). Digoxin was administered by gavage (30 µg/kg/day) for 75 days. The HIIT program consisted of treadmill running 60 min/day (8 min at 80% of the maximum speed (MS) and 2 min at 20% of the MS), 5 days per week during 60 days. The main cardiac parameters were evaluated by echocardiograph and cardiomyocyte area was determined by histology. There were no group x time effects of digoxin, HIIT or interactions (digoxin and HIIT) on functional echocardiographic parameters (heart rate; ejection fraction) or in the maximum exercise test. There was a group x time interaction, as evidenced by observed cardiac hypertrophy in the TDIGO group evaluated by ratio of left ventricle weight to body weight (p<0.002) and cardiomyocyte area (p<0.000002). Long-term administration of digoxin promoted cardiac hypertrophy without affecting cardiac function and physical performance in rats submitted to HIIT. © Georg Thieme Verlag KG Stuttgart · New York.
A cybernetic approach to osteoporosis in anorexia nervosa.
Fricke, O; Tutlewski, B; Stabrey, A; Lehmkuhl, G; Schöenau, E
2005-06-01
A group of 25 female individuals, who had been admitted to the University Hospital with the diagnosis of anorexia nervosa (AN) 3 to 10 years before, was seen for a follow-up visit in the hospital. These women got a psychiatric exploration to detect a present eating disorder. Moreover, parameters of the muskuloskeletal interaction were determined on the non-dominant forearm. Bone mineral content (BMC) of the radius was measured by pQCT and maximal grip force was evaluated by the use of a dynamometer. Eating disorders were present in 12 females. The mean of BMC standard deviation (SD) score was significantly reduced in comparison with reference values. Furthermore, the mean of BMC SD score was also significantly lower than the mean of grip force in SD score. These results gave the suggestion that the adaptation of bone mass to biomechanical forces is disturbed in AN. The linear regression analyses between the parameters grip force and BMC were compared between the study and the reference group. The comparison delivered a significantly lower constant in the regression equation of the study group. This result can be interpreted on the background of the mechanostat theory. The affection with an eating disorder decreases the set point in the feedback loop of bone modeling. The results offer for the first time the possibility to analyse osteoporosis in anorexic females under the paradigm of muskuloskeletal interaction.
Evolution of complexity in a resource-based model
NASA Astrophysics Data System (ADS)
Fernández, Lenin; Campos, Paulo R. A.
2017-02-01
Through a resource-based modelling the evolution of organismal complexity is studied. In the model, the cells are characterized by their metabolic rates which, together with the availability of resource, determine the rate at which they divide. The population is structured in groups. Groups are also autonomous entities regarding reproduction and propagation, and so they correspond to a higher biological organization level. The model assumes reproductive altruism as there exists a fitness transfer from the cell level to the group level. Reproductive altruism comes about by inflicting a higher energetic cost to cells belonging to larger groups. On the other hand, larger groups are less prone to extinction. The strength of this benefit arising from group augmentation can be tuned by the synergistic parameter γ. Through extensive computer simulations we make a thorough exploration of the parameter space to find out the domain in which the formation of larger groups is allowed. We show that formation of small groups can be obtained for a low level of synergy. Larger group sizes can only be attained as synergistic interactions surpass a given level of strength. Although the total resource influx rate plays a key role in determining the number of groups coexisting at the equilibrium, its function on driving group size is minor. On the other hand, how the resource is seized by the groups matters.
Dilek, Fatih; Ozkaya, Emin; Kocyigit, Abdurrahim; Yazici, Mebrure; Kesgin, Siddika; Gedik, Ahmet Hakan; Cakir, Erkan
2015-01-01
There is ample knowledge reported in the literature about the role of oxidative stress in asthma pathogenesis. It is also known that the interaction of reactive oxygen species with DNA may result in DNA strand breaks. The aim of this study was to investigate if montelukast monotherapy affects oxidative stress and DNA damage parameters in a population of pediatric asthma patients. Group I consisted of 31 newly diagnosed asthmatic patients not taking any medication, and group II consisted of 32 patients who had been treated with montelukast for at least 6 months. Forty healthy control subjects were also enrolled in the study. Plasma total oxidant status (TOS) and total antioxidant status (TAS) were measured to assess oxidative stress. DNA damage was assessed by means of alkaline comet assay. The patients in both group I and group II had statistically significant higher plasma TOS (13.1 ± 4 and 11.1 ± 4.1 μmol H2O2 equivalent/liter, respectively) and low TAS levels (1.4 ± 0.5 and 1.5 ± 0.5 mmol Trolox equivalent/liter, respectively) compared with the control group (TOS: 6.3 ± 3.5 μmol H2O2 equivalent/liter and TAS: 2.7 ± 0.6 mmol Trolox equivalent/liter; p < 0.05). DNA damage was 18.2 ± 1.0 arbitrary units (a.u.) in group I, 16.7 ± 8.2 a.u. in group II and 13.7 ± 3.4 a.u. in the control group. There were statistically significant differences only between group I and the control group (p < 0.05). According to the findings, montelukast therapy makes only minimal but not statistically significant improvement in all TOS, TAS and DNA damage parameters. © 2015 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Lahoche, Vincent; Ousmane Samary, Dine
2017-02-01
This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.
NASA Astrophysics Data System (ADS)
Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M. A.
2017-06-01
A heterocyclic Schiff base, (E)-4-(1-((pyridin-2-ylmethyl)imino)ethyl)benzene-1,3-diol (L) was synthesized and isolated as single crystals. Its structure was characterized by FT-IR, UV, 1H and 13C NMR, and further confirmed by X-ray crystallography. Qualitatively and quantitatively the various interactions in the crystal structure of L has been analyzed by Hirshfeld surfaces and 2D fingerprint plots. Non covalent interactions have been studied by electron localization function (ELF) and mapped with reduced density gradient (RDG) analysis. The molecular structure was studied computationally by DFT-B3LYP/6-311G(d,p) calculations. HOMO-LUMO energy levels, chemical reactivity descriptors and thermodynamic parameters have been investigated at the same level of theory. The antioxidant potential of L was evaluated experimentally by measuring DPPH free radical scavenging effect using UV-visible spectroscopy and theoretically by DFT. Theoretical parameters, such as bond dissociation enthalpy (BDE) and spin density calculated suggests that antioxidant potential of L is due to H atom abstraction from the sbnd OH group.
Blackburn, Richard S; Harvey, Anna; Kettle, Lorna L; Payne, John D; Russell, Stephen J
2006-06-20
Antimicrobial agents such as poly(hexamethylene biguanide) (PHMB) find application in medical, apparel, and household textile sectors; although it is understood that certain concentrations need to be applied to achieve suitable performance, there has been very little work published concerning the interactions of the polymer and its adsorption mechanism on cellulose. In this paper, such physical chemistry parameters are examined and related to computational chemistry studies. Adsorption isotherms were constructed: at low concentrations, these were typical Langmuir isotherms; at higher concentrations, they were more indicative of Freundlich isotherms, attributed to a combination of electrostatic and hydrogen-bonding forces, which endorsed computational chemistry proposals. At lower concentrations, electrostatic interactions between PHMB and carboxylic acid groups in the cellulose dominate with a contribution to binding through hydrogen bonding; as the concentration of PHMB increases, hydrogen bonding with cellulose becomes increasingly dominant. At high PHMB concentrations, observations of increasing PHMB adsorption are attributed to monolayer aggregation and multilayer stacking of PHMB through electrostatic interactions with counterions and hydrogen bonding of biguanide groups.
Water Energy Simulation Toolset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thuy; Jeffers, Robert
The Water-Energy Simulation Toolset (WEST) is an interactive simulation model that helps visualize impacts of different stakeholders on water quantity and quality of a watershed. The case study is applied for the Snake River Basin with the fictional name Cutthroat River Basin. There are four groups of stakeholders of interest: hydropower, agriculture, flood control, and environmental protection. Currently, the quality component depicts nitrogen-nitrate contaminant. Users can easily interact with the model by changing certain inputs (climate change, fertilizer inputs, etc.) to observe the change over the entire system. Users can also change certain parameters to test their management policy.
Experimental effects of acute exercise duration and exercise recovery on mood state.
Crush, Elizabeth A; Frith, Emily; Loprinzi, Paul D
2018-03-15
Accumulating evidence suggests that, in addition to various psychosocial parameters, affective responses to exercise play an important role in subserving future exercise behavior. This study comprehensively evaluated whether acute exercise duration and recovery period influenced the relationship between moderate-intensity walking exercise and mood profile. We employed a randomized controlled cross-over trial. Participants completed two laboratory visits, separated by one-week. One of the visits involved a mood profile assessment with no exercise, while the other visit involved a mood profile assessment after an acute bout of exercise. Participants (N = 352; 22 per group; young [M age = 21 yrs] healthy adults) were randomized into one of 16 experimental groups: 10, 20, 30, 45 or 60min bout of exercise coupled with either a 5, 15 or 30min recovery period. The exercise bout was of moderate-intensity (40-59% of HRR). Mood profile was assessed from the POMS survey, considering subscales of depression, anger and hostility. For all three mood profile parameters, there was no evidence of a group x time interaction effect. However, the main effect for time was statistically significant for each mood parameter. These significant results demonstrate that, generally, exercise had a favorable effect on each of the mood profile, regardless of exercise duration and recovery period. In addition to the significant main effects for time, we also observed a significant main effect for group for the mood parameter hostility. With the exception of the group 13 (60min of exercise with 5min recovery) and the 3 groups that employed a 10-min bout of exercise (groups 1-3), all other experimental groups had a lower (better) hostility score after the exercise visit. Generally, exercise had a favorable effect on various mood profiles, regardless of exercise duration (between 10 and 60min) and recovery period (between 5 and 30min). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Kun; Gu, Boqin
2017-07-01
The present study investigates the physisorption and interfacial interactions between multiwalled carbon nanotubes (MWNTs) with different characteristics, including different numbers of walls and different functional groups, and acrylonitrile-butadiene rubber (NBR) polymer chains based on molecular dynamics simulations performed using modeled MWNT/NBR compound systems. The effects of the initial orientation of NBR chains and their relative distances to nanotubes, number of nanotube layers, and the surface functional groups of nanotubes on nanotube/polymer interactions are examined. Analysis is conducted according to the final configuration obtained in conjunction with the binding energy (Eb), radius of gyration (Rg) and end-to-end distance (h). The results show that the final conformations of NBR chains adsorbed on MWNT surfaces is associated with the initial relative angle of the NBR chains and their distance from the nanotubes. For non-functionalized MWNTs, Eb is almost directly proportional to Rg under equivalent parameters. Moreover, it is observed that functional groups hinder the wrapping of NBR chains on the MWNT surfaces. This indicates that functional groups do not always benefit the macro-mechanical properties of the composites. Moreover, the type of the major interaction force has been dramatically changed into electrostatic force from vdW force because of functionalization.
Do Interactive Globes and Games Help Students Learn Planetary Science?
NASA Astrophysics Data System (ADS)
Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer
2016-01-01
The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.
Gallagher, Elizabeth M.; Shennan, Stephen J.; Thomas, Mark G.
2015-01-01
Theories for the origins of agriculture are still debated, with a range of different explanations offered. Computational models can be used to test these theories and explore new hypotheses; Bowles and Choi [Bowles S, Choi J-K (2013) Proc Natl Acad Sci USA 110(22):8830–8835] have developed one such model. Their model shows the coevolution of farming and farming-friendly property rights, and by including climate variability, replicates the timings for the emergence of these events seen in the archaeological record. Because the processes modeled occurred a long time ago, it can be difficult to justify exact parameter values; hence, we propose a fitting to idealized outcomes (FIO) method to explore the model’s parameter space in more detail. We have replicated the model of Bowles and Choi, and used the FIO method to identify complexities and interactions of the model previously unidentified. Our results indicate that the key parameters for the emergence of farming are group structuring, group size, conservatism, and farming-friendly property rights (lending further support to Bowles and Choi’s original proposal). We also find that although advantageous, it is not essential that farming productivity be greater than foraging productivity for farming to emerge. In addition, we highlight how model behaviors can be missed when gauging parameter sensitivity via a fix-all-but-one variation approach. PMID:26578766
Effects of Ignoring Item Interaction on Item Parameter Estimation and Detection of Interacting Items
ERIC Educational Resources Information Center
Chen, Cheng-Te; Wang, Wen-Chung
2007-01-01
This study explores the effects of ignoring item interaction on item parameter estimation and the efficiency of using the local dependence index Q[subscript 3] and the SAS NLMIXED procedure to detect item interaction under the three-parameter logistic model and the generalized partial credit model. Through simulations, it was found that ignoring…
Magnetic-field control of electric polarization in coupled spin chains with three-site interactions
NASA Astrophysics Data System (ADS)
Sznajd, Jozef
2018-06-01
The linear perturbation renormalization group (LPRG) is used to study coupled X Y chains with Dzyaloshinskii-Moriya (DM) and three-spin interactions in a magnetic field. Starting with a minimal model exhibiting the magnetoelectric effect, a spin-1/2 X Y chain with nearest, next-nearest (J2x) , and DM (D1y) interactions in a magnetic field, the recursion relations for all effective interactions generated by the LPRG transformation are found. The evaluation of these relations allows us to analyze, among others, the influence of J2x,D1y , three-spin (SixSi+1 ySi+2 z-SiySi+1 xSi+2 z ), and interchain interactions on the thermodynamic properties. The field and temperature dependences of the polarization, specific heat, and correlation functions are found. It is shown that an interchain coupling triggers a phase transition indicated by the divergence of the renormalized coupling parameters.
Transferable tight binding model for strained group IV and III-V heterostructures
NASA Astrophysics Data System (ADS)
Tan, Yaohua; Povolotskyi, Micheal; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard
Modern semiconductor devices have reached critical device dimensions in the range of several nanometers. For reliable prediction of device performance, it is critical to have a numerical efficient model that are transferable to material interfaces. In this work, we present an empirical tight binding (ETB) model with transferable parameters for strained IV and III-V group semiconductors. The ETB model is numerically highly efficient as it make use of an orthogonal sp3d5s* basis set with nearest neighbor inter-atomic interactions. The ETB parameters are generated from HSE06 hybrid functional calculations. Band structures of strained group IV and III-V materials by ETB model are in good agreement with corresponding HSE06 calculations. Furthermore, the ETB model is applied to strained superlattices which consist of group IV and III-V elements. The ETB model turns out to be transferable to nano-scale hetero-structure. The ETB band structures agree with the corresponding HSE06 results in the whole Brillouin zone. The ETB band gaps of superlattices with common cations or common anions have discrepancies within 0.05eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konno, Kohkichi, E-mail: kohkichi@tomakomai-ct.ac.jp; Nagasawa, Tomoaki, E-mail: nagasawa@tomakomai-ct.ac.jp; Takahashi, Rohta, E-mail: takahashi@tomakomai-ct.ac.jp
We consider the scattering of a quantum particle by two independent, successive parity-invariant point interactions in one dimension. The parameter space for the two point interactions is given by the direct product of two tori, which is described by four parameters. By investigating the effects of the two point interactions on the transmission probability of plane wave, we obtain the conditions for the parameter space under which perfect resonant transmission occur. The resonance conditions are found to be described by symmetric and anti-symmetric relations between the parameters.
NASA Astrophysics Data System (ADS)
Lee, Lindsay; Mann, Graham; Carslaw, Ken; Toohey, Matthew; Aquila, Valentina
2016-04-01
The World Climate Research Program's SPARC initiative has a new international activity "Stratospheric Sulphur and its Role in Climate" (SSiRC) to better understand changes in stratospheric aerosol and precursor gaseous sulphur species. One component of SSiRC involves an intercomparison "ISA-MIP" of composition-climate models that simulate the stratospheric aerosol layer interactively. Within PoEMS each modelling group will run a "perturbed physics ensemble" (PPE) of interactive stratospheric aerosol (ISA) simulations of the Pinatubo eruption, varying several uncertain parameters associated with the eruption's SO2 emissions and model processes. A powerful new technique to quantify and attribute sources of uncertainty in complex global models is described by Lee et al. (2011, ACP). The analysis uses Gaussian emulation to derive a probability density function (pdf) of predicted quantities, essentially interpolating the PPE results in multi-dimensional parameter space. Once trained on the ensemble, a Monte Carlo simulation with the fast Gaussian emulator enabling a full variance-based sensitivity analysis. The approach has already been used effectively by Carslaw et al., (2013, Nature) to quantify the uncertainty in the cloud albedo effect forcing from a 3D global aerosol-microphysics model allowing to compare the sensitivy of different predicted quantities to uncertainties in natural and anthropogenic emissions types, and structural parameters in the models. Within ISA-MIP, each group will carry out a PPE of runs, with the subsequent analysis with the emulator assessing the uncertainty in the volcanic forcings predicted by each model. In this poster presentation we will give an outline of the "PoEMS" analysis, describing the uncertain parameters to be varied and the relevance to further understanding differences identified in previous international stratospheric aerosol assessments.
Interaction study between digoxin and a preparation of hawthorn (Crataegus oxyacantha).
Tankanow, Roberta; Tamer, Helen R; Streetman, Daniel S; Smith, Scott G; Welton, Janice L; Annesley, Thomas; Aaronson, Keith D; Bleske, Barry E
2003-06-01
Hawthorn, an herbal supplement, is currently being evaluated for the treatment of heart failure. The flavonoid components of hawthorn may be responsible for hawthorn's beneficial effects in the treatment of heart failure. However, these components may also affect P-glycoprotein function and cause interactions with drugs that are P-glycoprotein substrates, such as digoxin, which is also used to treat heart failure. Therefore, the purpose of this study was to determine the effect of hawthorn on digoxin pharmacokinetic parameters. A randomized, crossover trial with 8 healthy volunteers was performed evaluating digoxin 0.25 mg alone (D) for 10 days and digoxin 0.25 mg with Crataegus special extract WS 1442 (hawthorn leaves with flowers; Dr. Willmar Schwabe Pharmaceuticals) 450 mg twice daily (D + H) for 21 days. Pharmacokinetic studies were performed for 72 hours. There were no statistically significant differences in any measured pharmacokinetic parameters. The AUC0-infinity, Cmax-Cmin, Cmin, and renal clearance for the D group were 79 +/- 26 mcg.h/L, 1.4 +/- 0.7 mcg/L, 0.84 +/- 0.2 mcg/L, and 74 +/- 10 mL/min versus 73 +/- 20 mcg.h/L, 1.1 +/- 0.1 mcg/L, 0.65 +/- 0.2 mcg/L, and 81 +/- 22 mL/min for the D + H group, respectively (p > 0.05). Following 3 weeks of concomitant therapy, hawthorn did not significantly alter the pharmacokinetic parameters for digoxin. This suggests that both hawthorn and digoxin, in the doses and dosage form studied, may be coadministered safely.
NASA Astrophysics Data System (ADS)
Singh, Th. David; Sumitra, Ch.; Yaiphaba, N.; Devi, H. Debecca; Devi, M. Indira; Singh, N. Rajmuhon
2005-04-01
The coordination chemistry of glutathione reduced (GSH) is of great importance as it acts as excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. In our work we have studied two chemically dissimilar metal ions viz. Pr(III), which prefer hard donor site like carboxylic groups and Zn(II) the soft metal ion which prefer peptide-NH and sulphydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic Complexation of GSH with Pr(III) and Zn(II) has been explored in aqueous and aquated organic solvents. The variation in the energy parameters like Slater-Condon ( F K), Racah ( E K) and Lande ( ξ4f), Nephelauxetic parameter ( β) and bonding parameter ( b1/2) are computed to explain the nature of complexation.
Patel, Salin Gupta; Bummer, Paul M
2017-01-10
This report examines the energetics of aggregate formation between hydroxypropyl methylcellulose (HPMC) and model ionic surfactants including sodium dodecyl sulfate (SDS) at pharmaceutically relevant concentrations using the isothermal titration calorimetry (ITC) technique and a novel treatment of calorimetric data that accounts for the various species formed. The influence of molecular weight of HPMC, temperature and ionic strength of solution on the aggregate formation process was explored. The interaction between SDS and HPMC was determined to be an endothermic process and initiated at a critical aggregation concentration (CAC). The SDS-HPMC interactions were observed to be cooperative in nature and dependent on temperature and ionic strength of the solution. Molecular weight of HPMC significantly shifted the interaction parameters between HPMC and SDS such that at the highest molecular weight (HPMC K-100M;>240kDa), although the general shape of the titration curve (enthalpogram) was observed to remain similar, the critical concentration parameters (CAC, polymer saturation concentration (C sat ) and critical micelle concentration (CMC)) were significantly altered and shifted to lower concentrations of SDS. Ionic strength was also observed to influence the critical concentration parameters for the SDS-HPMC aggregation and decreased to lower SDS concentrations with increasing ionic strength for both anionic and cationic surfactant-HPMC systems. From these data, other thermodynamic parameters of aggregation such as ΔH agg ° , ΔG agg ° , H agg ° , ΔS agg ° , and ΔC p were calculated and utilized to postulate the hydrophobic nature of SDS-HPMC aggregate formation. The type of ionic surfactant head group (anionic vs. cationic i.e., dodecyltrimethylammonium bromide (DTAB)) was found to influence the strength of HPMC-surfactant interactions wherein a distinct CAC signifying the strength of HPMC-DTAB interactions was not observed. The interpretation of the microcalorimetric data at different temperatures and ionic strengths while varying properties of polymer and surfactant was a very effective tool in investigating the nature and energetics of HPMC and ionic surfactant interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad
2017-01-01
In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks ( M c ), crosslink density ( M r ), volume interaction parameter ( v 2, s ), Flory Huggins water interaction parameter and diffusion coefficient ( Q ) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM.
Calovi, Daniel S.; Litchinko, Alexandra; Lopez, Ugo; Chaté, Hugues; Sire, Clément
2018-01-01
The development of tracking methods for automatically quantifying individual behavior and social interactions in animal groups has open up new perspectives for building quantitative and predictive models of collective behavior. In this work, we combine extensive data analyses with a modeling approach to measure, disentangle, and reconstruct the actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hemigrammus rhodostomus). This species of fish performs burst-and-coast swimming behavior that consists of sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations. We quantify the spontaneous stochastic behavior of a fish and the interactions that govern wall avoidance and the reaction to a neighboring fish, the latter by exploiting general symmetry constraints for the interactions. In contrast with previous experimental works, we find that both attraction and alignment behaviors control the reaction of fish to a neighbor. We then exploit these results to build a model of spontaneous burst-and-coast swimming and interactions of fish, with all parameters being estimated or directly measured from experiments. This model quantitatively reproduces the key features of the motion and spatial distributions observed in experiments with a single fish and with two fish. This demonstrates the power of our method that exploits large amounts of data for disentangling and fully characterizing the interactions that govern collective behaviors in animals groups. PMID:29324853
Synergistic interaction between excess hepatic iron and alcohol ingestion in hepatic mutagenesis.
Asare, George A; Bronz, Michelle; Naidoo, Vivash; Kew, Michael C
2008-12-05
Hereditary hemochromatosis (HH) and dietary iron overload are the main iron-loading diseases. Fibrosis, cirrhosis and hepatocellular carcinoma (HCC) are complications to HH and dietary iron overload possibly influenced by co-factors. Alcohol may be one such factor. The aim therefore was to determine the extent of synergistic interaction between free hepatic iron and alcohol, complicating dietary iron overload in HCC pathogenesis. Four groups of 20 Wistar albino rats were used: group 1 (C) was fed the chow diet; group 2 (Fe) was supplemented with 0.75% ferrocene iron; group 3 (Fe+Al), 0.75% iron and 7% ethanol; and group 4, 7% ethanol (Al) for 12 months. Iron profile, superoxide/nitrite free radicals, lipid peroxidation (LPO)/8-isoprostane (8-IP), 8-hydroxydeoxyguanosine (8-OHdG), oxidative lipid/DNA damage immunohistochemistry, transaminases (AST/ALT) and Ames mutagenesis tests were performed. Significant differences were observed in the Fe+Al group for LPO, 8-IP, AST and ALT (p<0.001, 0.001, 0.001 and 0.001, respectively) compared to other groups. A three-fold synergistic interaction was observed for the same parameters. Furthermore, significant differences of p<0.05 and 0.001 were observed for 8-OHdG and mutagenesis, respectively, with an additive synergy in the Fe+Al group. ALT/8-OHdG and ALT/mutagenesis correlated positively (p<0.04 and 0.008, respectively). The immunohistochemistry revealed iron/alcohol multiplicative synergism with hydroxyl radical involvement. Mutagenic effects of iron and alcohol are synergistically multiplicative implicating hydroxyl free radicals in hepatocarcingenesis.
Reasoning in people with obsessive-compulsive disorder.
Simpson, Jane; Cove, Jennifer; Fineberg, Naomi; Msetfi, Rachel M; J Ball, Linden
2007-11-01
The aim of this study was to investigate the inductive and deductive reasoning abilities of people with obsessive-compulsive disorder (OCD). Following previous research, it was predicted that people with OCD would show different abilities on inductive reasoning tasks but similar abilities to controls on deductive reasoning tasks. A two-group comparison was used with both groups matched on a range of demographic variables. Where appropriate, unmatched variables were entered into the analyses as covariates. Twenty-three people with OCD and 25 control participants were assessed on two tasks: an inductive reasoning task (the 20-questions task) and a deductive reasoning task (a syllogistic reasoning task with a content-neutral and content-emotional manipulation). While no group differences emerged on several of the parameters of the inductive reasoning task, the OCD group did differ on one, and arguably the most important, parameter by asking fewer correct direct-hypothesis questions. The syllogistic reasoning task results were analysed using both correct response and conclusion acceptance data. While no main effects of group were evident, significant interactions indicated important differences in the way the OCD group reasoned with content neutral and emotional syllogisms. It was argued that the OCD group's patterns of response on both tasks were characterized by the need for more information, states of uncertainty, and doubt and postponement of a final decision.
A Study of the Interaction of Millimeter Wave Fields with Biological Systems.
1984-07-01
structurally complex proteins . The third issue is the relevance of the parameters used in previous modeling efforts. The strength of the exciton-phonon...modes of proteins in the millimeter and submillimeter regions of the electromagnetic spectrum. Specifically: o " Four separate groups of frequencies...Rhodopseudomonas Sphaeroides (4). In industrial or military environments a significant number of personnel are exposed to electromagnetic fields
The Nature of the Interactions in Triethanolammonium-Based Ionic Liquids. A Quantum Chemical Study.
Fedorova, Irina V; Safonova, Lyubov P
2018-05-10
Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.
Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters.
Alvarado, Alejandra; Montañez-Hernández, Lilia E; Palacio-Molina, Sandra L; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P; Balagurusamy, Nagamani
2014-01-01
Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process.
Study of Adsorption Mechanism of Congo Red on Graphene Oxide/PAMAM Nanocomposite
Rafi, Mohammad; Samiey, Babak; Cheng, Chil-Hung
2018-01-01
Graphene oxide/poly(amidoamine) (GO/PAMAM) nanocomposite adsorbed high quantities of congo red (CR) anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine. PMID:29587463
Chen, Po-Yin; Wei, Shun-Hwa; Hsieh, Wan-Ling; Cheen, Jang-Rong; Chen, Liang-Kung; Kao, Chung-Lan
2012-01-01
Declined balance functions have adverse effects on elderly population. Lower limbs muscle power training is currently an emerging concept in rehabilitation on individuals with decreased balance and mobility. In this prospective, controlled study, we used a human-computer interactive video-game-based rehabilitation device (LLPR) for training of lower limb muscle power in the elderly. Forty (aged >65 years) individuals were recruited from the community. Twenty participants in the exercise group received 30-min training, twice a week, using the LLPR system. The LLPR system allows participants to perform fast speed sit-to-stand (STS) movements. Twenty age-matched participants in the control group performed slow speed STS movements, as well as strengthening and balance exercises, with the same frequency and duration. The results were compared after 12 sessions (6 weeks) of training. The mechanical and time parameters during STS movement were measured using the LLPR system. Modified falls efficacy scale (MFES), Tinetti Performance-Oriented Mobility Assessment (POMA), function reach test, five times sit to stand (FTSS) and Timed Up and Go (TUG) were administered to participants as clinical assessments. Results showed that in the exercise group, all the mechanical and time parameters showed significant improvement. In control group, only the maximal vertical ground reaction force (MVGRF) improved significantly. For clinical assessments (balance, mobility, and self-confidence), exercise group showed significantly better scores. The STS movements in video-game-based training mimic real life situations which may help to transfer the training effects into daily activities. The effectiveness of lower limb muscle training is worthy of further investigation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Changes in Body Composition in Anorexia Nervosa: Predictors of Recovery and Treatment Outcome
Arcelus, Jon; Sánchez, Isabel; Riesco, Nadine; Jiménez-Murcia, Susana; González-Gómez, Jana; Granero, Roser; Custal, Nuria; Montserrat-Gil de Bernabé, Monica; Tárrega, Salomé; Baños, Rosa M.; Botella, Cristina; de la Torre, Rafael; Fernández-García, José C.; Fernández-Real, José M.; Frühbeck, Gema; Gómez-Ambrosi, Javier; Tinahones, Francisco J.; Crujeiras, Ana B.; Casanueva, Felipe F.; Menchón, José M.; Fernández-Aranda, Fernando
2015-01-01
The restoration of body composition (BC) parameters is considered to be one of the most important goals in the treatment of patients with anorexia nervosa (AN). However, little is known about differences between AN diagnostic subtypes [restricting (AN-R) and binge/purging (AN-BP)] and weekly changes in BC during refeeding treatment. Therefore, the main objectives of our study were twofold: 1) to assess the changes in BC throughout nutritional treatment in an AN sample and 2) to analyze predictors of BC changes during treatment, as well as predictors of treatment outcome. The whole sample comprised 261 participants [118 adult females with AN (70 AN-R vs. 48 AN-BP), and 143 healthy controls]. BC was measured weekly during 15 weeks of day-hospital treatment using bioelectrical impedance analysis (BIA). Assessment measures also included the Eating Disorders Inventory-2, as well as a number of other clinical indices. Overall, the results showed that AN-R and AN-BP patients statistically differed in all BC measures at admission. However, no significant time×group interaction was found for almost all BC parameters. Significant time×group interactions were only found for basal metabolic rate (p = .041) and body mass index (BMI) (p = .035). Multiple regression models showed that the best predictors of pre-post changes in BC parameters (namely fat-free mass, muscular mass, total body water and BMI) were the baseline values of BC parameters. Stepwise predictive logistic regressions showed that only BMI and age were significantly associated with outcome, but not with the percentage of body fat. In conclusion, these data suggest that although AN patients tended to restore all BC parameters during nutritional treatment, only AN-BP patients obtained the same fat mass values as healthy controls. Put succinctly, the best predictors of changes in BC were baseline BC values, which did not, however, seem to influence treatment outcome. PMID:26600309
Changes in Body Composition in Anorexia Nervosa: Predictors of Recovery and Treatment Outcome.
Agüera, Zaida; Romero, Xandra; Arcelus, Jon; Sánchez, Isabel; Riesco, Nadine; Jiménez-Murcia, Susana; González-Gómez, Jana; Granero, Roser; Custal, Nuria; Montserrat-Gil de Bernabé, Monica; Tárrega, Salomé; Baños, Rosa M; Botella, Cristina; de la Torre, Rafael; Fernández-García, José C; Fernández-Real, José M; Frühbeck, Gema; Gómez-Ambrosi, Javier; Tinahones, Francisco J; Crujeiras, Ana B; Casanueva, Felipe F; Menchón, José M; Fernández-Aranda, Fernando
2015-01-01
The restoration of body composition (BC) parameters is considered to be one of the most important goals in the treatment of patients with anorexia nervosa (AN). However, little is known about differences between AN diagnostic subtypes [restricting (AN-R) and binge/purging (AN-BP)] and weekly changes in BC during refeeding treatment. Therefore, the main objectives of our study were twofold: 1) to assess the changes in BC throughout nutritional treatment in an AN sample and 2) to analyze predictors of BC changes during treatment, as well as predictors of treatment outcome. The whole sample comprised 261 participants [118 adult females with AN (70 AN-R vs. 48 AN-BP), and 143 healthy controls]. BC was measured weekly during 15 weeks of day-hospital treatment using bioelectrical impedance analysis (BIA). Assessment measures also included the Eating Disorders Inventory-2, as well as a number of other clinical indices. Overall, the results showed that AN-R and AN-BP patients statistically differed in all BC measures at admission. However, no significant time×group interaction was found for almost all BC parameters. Significant time×group interactions were only found for basal metabolic rate (p = .041) and body mass index (BMI) (p = .035). Multiple regression models showed that the best predictors of pre-post changes in BC parameters (namely fat-free mass, muscular mass, total body water and BMI) were the baseline values of BC parameters. Stepwise predictive logistic regressions showed that only BMI and age were significantly associated with outcome, but not with the percentage of body fat. In conclusion, these data suggest that although AN patients tended to restore all BC parameters during nutritional treatment, only AN-BP patients obtained the same fat mass values as healthy controls. Put succinctly, the best predictors of changes in BC were baseline BC values, which did not, however, seem to influence treatment outcome.
Rise of an alternative majority against opinion leaders
NASA Astrophysics Data System (ADS)
Tucci, K.; González-Avella, J. C.; Cosenza, M. G.
2016-03-01
We investigate the role of opinion leaders or influentials in the collective behavior of a social system. Opinion leaders are characterized by their unidirectional influence on other agents. We employ a model based on Axelrod's dynamics for cultural interaction among social agents that allows for non-interacting states. We find three collective phases in the space of parameters of the system, given by the fraction of opinion leaders and a quantity representing the number of available states: one ordered phase having the state imposed by the leaders; another nontrivial ordered phase consisting of a majority group in a state orthogonal or alternative to that of the opinion leaders, and a disordered phase, where many small groups coexist. We show that the spontaneous rise of an alternative group in the presence of opinion leaders depends on the existence of a minimum number of long-range connections in the underlying network. This phenomenon challenges the common idea that influentials are fundamental to propagation processes in society, such as the formation of public opinion.
Casazza, Krista; Beasley, T. Mark; Fernandez, Jose R.
2011-01-01
The thrifty genotype hypothesis initiated speculation that feast and famine cycling throughout history may have led to group-specific alterations of the human genome, thereby augmenting the capacity for excessive fat mass accrual when immersed in the modern-day obesogenic environment. Contemporary work, however, suggests alternative mechanisms influencing fuel utilization and subsequent tissue partitioning to be more relevant in the etiology of population-based variation in adipose storage. The objective of this study was to evaluate the independent and interactive contribution of ancestral admixture as a proxy for population-based genetic variation and diet on adipose tissue deposition and distribution in peripubertal children and to identify differences in racial/ethnic and sex groups. Two-hundred seventy-eight children (53% male) aged 7–12y, categorized by parental self-report as African- (n=91), European- (n=110), or Hispanic American (n=77), participated. Ancestral genetic admixture was estimated using 140 ancestry informative markers. Body composition was evaluated by dual-energy x-ray absorptiometry; energy expenditure by indirect calorimetry and accelerometry; and diet by 24h–recall. Admixture independently contributed to all adiposity parameters; i.e., estimates of European and Amerindian ancestries were positively associated with all adiposity parameters, whereas African genetic admixture was inversely associated with adiposity. In boys, energy intake was associated with adiposity, irrespective of macronutrient profile, whereas in girls, the relationship was mediated by carbohydrate. We also observed moderating effects of energy balance/fuel utilization of the interaction between ancestral genetic admixture and diet. Interactive effects of genetic and non-genetic factors alter metabolic pathways and underlie some of the present population-based differences in fat storage. PMID:21365611
Phase Behavior of Pyrene and Vinyl Polymers with Aromatic Side Groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangovi, Gagan N.; Lee, Sangwoo
The phase behavior and thermodynamic properties of mixtures of pyrene and model vinyl polymers with and without aromatic side groups are investigated using differential scanning calorimetry (DSC) measurements. The melting temperature and associated heat of melting of the pyrene crystals in the mixtures are utilized to extract the effective interaction parameters χ and the composition of polymer-rich phases, respectively. The χ of pyrene mixed with polymers with aromatic side groups investigated in this study, polystyrene, poly(2-vinylpyridine), and poly(3-vinylanisole), is less than 0.5 at the melting point of the pyrene crystals, suggesting that pyrene and the polymers with aromatic sides groupsmore » are enthalpically compatible, likely due to aromatic π–π interactions. In contrast, the χ of pyrene mixed with poly(1,4-isoprene) or poly(ethylene-alt-propylene) is larger than 0.5. The DSC measurements also enable characterization of the composition of polymer-rich phases. Interestingly, the polymers with aromatic side groups are found to have more pronounced miscibility with pyrene at symmetric compositions.« less
The Interaction of Lexical Characteristics and Speech Production in Parkinson's Disease.
Chiu, Yi-Fang; Forrest, Karen
2017-01-01
This study sought to investigate the interaction of speech movement execution with higher order lexical parameters. The authors examined how lexical characteristics affect speech output in individuals with Parkinson's disease (PD) and healthy control (HC) speakers. Twenty speakers with PD and 12 healthy speakers read sentences with target words that varied in word frequency and neighborhood density. The formant transitions (F2 slopes) of the diphthongs in the target words were compared across lexical categories between PD and HC groups. Both groups of speakers produced steeper F2 slopes for the diphthongs in less frequent words and words from sparse neighborhoods. The magnitude of the increase in F2 slopes was significantly less in the PD than HC group. The lexical effect on the F2 slope differed among the diphthongs and between the 2 groups. PD and healthy speakers varied their acoustic output on the basis of word frequency and neighborhood density. F2 slope variations can be traced to higher level lexical differences. This lexical effect on articulation, however, appears to be constrained by PD.
Relationships of bone characteristics in MYO9B deficient femurs.
Kim, Do-Gyoon; Jeong, Yong-Hoon; McMichael, Brooke K; Bähler, Martin; Bodnyk, Kyle; Sedlar, Ryan; Lee, Beth S
2018-08-01
The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kim, Myung-Sun; Kang, Bit-Na; Lim, Jae Young
2016-01-01
Decision-making is the process of forming preferences for possible options, selecting and executing actions, and evaluating the outcome. This study used the Iowa Gambling Task (IGT) and the Prospect Valence Learning (PVL) model to investigate deficits in risk-reward related decision-making in patients with chronic schizophrenia, and to identify decision-making processes that contribute to poor IGT performance in these patients. Thirty-nine patients with schizophrenia and 31 healthy controls participated. Decision-making was measured by total net score, block net scores, and the total number of cards selected from each deck of the IGT. PVL parameters were estimated with the Markov chain Monte Carlo sampling scheme in OpenBugs and BRugs, its interface to R, and the estimated parameters were analyzed with the Mann-Whitney U-test. The schizophrenia group received significantly lower total net scores compared to the control group. In terms of block net scores, an interaction effect of group × block was observed. The block net scores of the schizophrenia group did not differ across the five blocks, whereas those of the control group increased as the blocks progressed. The schizophrenia group obtained significantly lower block net scores in the fourth and fifth blocks of the IGT and selected cards from deck D (advantageous) less frequently than the control group. Additionally, the schizophrenia group had significantly lower values on the utility-shape, loss-aversion, recency, and consistency parameters of the PVL model. These results indicate that patients with schizophrenia experience deficits in decision-making, possibly due to failure in learning the expected value of each deck, and incorporating outcome experiences of previous trials into expectancies about options in the present trial.
Multivariate data analysis to characterize gas chromatography columns for dioxin analysis.
Do, Lan; Geladi, Paul; Haglund, Peter
2014-06-20
Principal component analysis (PCA) was applied for evaluating the selectivity of 22 GC columns for which complete retention data were available for the 136 tetra- to octa-chlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Because the hepta- and octa-homologues are easy to separate the PCA was focused on the 128 tetra- to hexa-CDD/Fs. The analysis showed that 21 of the 22 GC columns could be subdivided into four groups with different selectivity. Group I consists of columns with non-polar thermally stable phases (Restek 5Sil MS and Dioxin 2, SGE BPX-DXN, Supelco Equity-5, and Agilent DB-1, DB-5, DB-5ms, VF-5ms, VF-Xms and DB-XLB). Group II includes ionic liquid columns (Supelco SLB-IL61, SLB-IL111 and SLB-IL76) with very high polarity. Group III includes columns with high-percentage phenyl and cyanopropyl phases (Agilent DB-17 and DB-225, Quadrex CPS-1, Supelco SP-2331, and Agilent CP-Sil 88), and Group IV columns with shape selectivity (Dionex SB-Smectic and Restek LC-50, Supelco βDEXcst, Agilent VF-Xms and DB-XLB). Thus, two columns appeared in both Group I and IV (Agilent VF-Xms and DB-XLB). The selectivity of the other column, Agilent DB-210, differs from those of these four groups. Partial least squares (PLS) regression was used to correlate the retention times of the tetra- to hexa-CDD/Fs on the 22 stationary phases with a set of physicochemical and structural descriptors to identify parameters that significantly influence the solute-stationary phase interactions. The most influential physicochemical parameters for the interaction were associated with molecular size (as reflects in the total energy, electron energy, core-core repulsion and standard entropy), solubility (aqueous solubility and n-octanol/water partition coefficient), charge distribution (molecular polarizability and dipolar moment), and reactivity (relative Gibbs free energy); and the most influential structural descriptors were related to these parameters, in particular, size and dipolar moment. Finally, the PCA and PLS analyses were complemented with linear regression analysis to identify the most orthogonal column combinations, which could be used in comprehensive two-dimensional gas chromatography (GC×GC) to enhance PCDD/F separation and congener profiling. Copyright © 2014 Elsevier B.V. All rights reserved.
Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry
2013-05-20
A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.
A model for cross-cultural reciprocal interactions through mass media.
González-Avella, Juan Carlos; Cosenza, Mario G; San Miguel, Maxi
2012-01-01
We investigate the problem of cross-cultural interactions through mass media in a model where two populations of social agents, each with its own internal dynamics, get information about each other through reciprocal global interactions. As the agent dynamics, we employ Axelrod's model for social influence. The global interaction fields correspond to the statistical mode of the states of the agents and represent mass media messages on the cultural trend originating in each population. Several phases are found in the collective behavior of either population depending on parameter values: two homogeneous phases, one having the state of the global field acting on that population, and the other consisting of a state different from that reached by the applied global field; and a disordered phase. In addition, the system displays nontrivial effects: (i) the emergence of a largest minority group of appreciable size sharing a state different from that of the applied global field; (ii) the appearance of localized ordered states for some values of parameters when the entire system is observed, consisting of one population in a homogeneous state and the other in a disordered state. This last situation can be considered as a social analogue to a chimera state arising in globally coupled populations of oscillators.
Reactivity of fluoroalkanes in reactions of coordinated molecular decomposition
NASA Astrophysics Data System (ADS)
Pokidova, T. S.; Denisov, E. T.
2017-08-01
Experimental results on the coordinated molecular decomposition of RF fluoroalkanes to olefin and HF are analyzed using the model of intersecting parabolas (IPM). The kinetic parameters are calculated to allow estimates of the activation energy ( E) and rate constant ( k) of these reactions, based on enthalpy and IPM algorithms. Parameters E and k are found for the first time for eight RF decomposition reactions. The factors that affect activation energy E of RF decomposition (the enthalpy of the reaction, the electronegativity of the atoms of reaction centers, and the dipole-dipole interaction of polar groups) are determined. The values of E and k for reverse reactions of addition are estimated.
Transitions of interaction outcomes in a uni-directional consumer-resource system
Wang, Y.; DeAngelis, D.L.
2011-01-01
A uni-directional consumer-resource system of two species is analyzed. Our aim is to understand the mechanisms that determine how the interaction outcomes depend on the context of the interaction; that is, on the model parameters. The dynamic behavior of the model is described and, in particular, it is demonstrated that no periodic orbits exist. Then the parameter (factor) space is shown to be divided into four regions, which correspond to the four forms of interaction outcomes; i.e. mutualism, commensalism, parasitism and amensalism. It is shown that the interaction outcomes of the system transition smoothly among these four forms when the parameters of the system are varied continuously. Varying each parameter individually or varying pairs of parameters can also lead to smooth transitions between the interaction outcomes. The analysis leads to both conditions for which each species achieves its maximal density, and situations in which periodic oscillations of the interaction outcomes emerge. ?? 2011 Elsevier Ltd.
Similarity-transformed chiral NN + 3N interactions for the ab initio description of 12C and 16O.
Roth, Robert; Langhammer, Joachim; Calci, Angelo; Binder, Sven; Navrátil, Petr
2011-08-12
We present first ab initio no-core shell model (NCSM) calculations using similarity renormalization group (SRG) transformed chiral two-nucleon (NN) plus three-nucleon (3N) interactions for nuclei throughout the p-shell, particularly (12)C and (16)O. By introducing an adaptive importance truncation for the NCSM model space and an efficient JT-coupling scheme for the 3N matrix elements, we are able to surpass previous NCSM studies including 3N interactions. We present ground and excited states in (12)C and (16)O for model spaces up to N(max) = 12 including full 3N interactions. We analyze the contributions of induced and initial 3N interactions and probe induced 4N terms through the sensitivity of the energies on the SRG flow parameter. Unlike for light p-shell nuclei, SRG-induced 4N contributions originating from the long-range two-pion terms of the chiral 3N interaction are sizable in (12)C and (16)O.
Collective behaviour in vertebrates: a sensory perspective
Collignon, Bertrand; Fernández-Juricic, Esteban
2016-01-01
Collective behaviour models can predict behaviours of schools, flocks, and herds. However, in many cases, these models make biologically unrealistic assumptions in terms of the sensory capabilities of the organism, which are applied across different species. We explored how sensitive collective behaviour models are to these sensory assumptions. Specifically, we used parameters reflecting the visual coverage and visual acuity that determine the spatial range over which an individual can detect and interact with conspecifics. Using metric and topological collective behaviour models, we compared the classic sensory parameters, typically used to model birds and fish, with a set of realistic sensory parameters obtained through physiological measurements. Compared with the classic sensory assumptions, the realistic assumptions increased perceptual ranges, which led to fewer groups and larger group sizes in all species, and higher polarity values and slightly shorter neighbour distances in the fish species. Overall, classic visual sensory assumptions are not representative of many species showing collective behaviour and constrain unrealistically their perceptual ranges. More importantly, caution must be exercised when empirically testing the predictions of these models in terms of choosing the model species, making realistic predictions, and interpreting the results. PMID:28018616
Insole-pressure distribution for normal children in different age groups.
Liu, Xue-Cheng; Lyon, Roger; Thometz, John G; Curtin, Brian; Tarima, Serge; Tassone, Channing
2011-09-01
In measuring plantar pressures during gait, earlier methods have used a platform system that does not take into account the interactions feet have with orthotics and shoe wearing. The purpose of the study was to provide normal insole plantar pressure parameter data during stance phase using the Pedar pressure insole system. Twenty-nine normal children, age 6 to 16 years, were recruited and walked along the 25 m walkway at self-selected speeds. Patients were divided into 2 separate groups for statistical analysis--juniors (< 12 y old) and teenagers (> 13 y old). The pressure map was divided into 8 regions (masks) determined by anatomic landmarks and a total of 7 pressure parameters were analyzed of each mask. We did not detect significant differences in foot pressures between juniors and teenagers when regarding sex, or left and right feet for 7 parameters measured. This normative data will provide a basis with which to more accurately assess pediatric pathologic foot deformities and to distinguish dynamic foot deformities from anatomic foot deformities. THE LEVEL OF EVIDENCE: Level II.
Nikodelis, Thomas; Moscha, Dimitra; Metaxiotis, Dimitris; Kollias, Iraklis
2011-08-01
To investigate what sampling frequency is adequate for gait, the correlation of spatiotemporal parameters and the kinematic differences, between normal and CP spastic gait, for three sampling frequencies (100 Hz, 50 Hz, 25 Hz) were assessed. Spatiotemporal, angular, and linear displacement variables in the sagittal plane along with their 1st and 2nd derivatives were analyzed. Spatiotemporal stride parameters were highly correlated among the three sampling frequencies. The statistical model (2 × 3 ANOVA) gave no interactions between the factors group and frequency, indicating that group differences were invariant of sampling frequency. Lower frequencies led to smoother curves for all the variables, with a loss of information though, especially for the 2nd derivatives, having a homologous effect as the one of oversmoothing. It is proposed that in the circumstance that only spatiotemporal stride parameters, as well as angular and linear displacements are to be used, in gait reports, then commercial video camera speeds (25/30 Hz, 50/60 Hz when deinterlaced) can be considered as a low-cost solution to produce acceptable results.
Molecular interactions in nanocellulose assembly
NASA Astrophysics Data System (ADS)
Nishiyama, Yoshiharu
2017-12-01
The contribution of hydrogen bonds and the London dispersion force in the cohesion of cellulose is discussed in the light of the structure, spectroscopic data, empirical molecular-modelling parameters and thermodynamics data of analogue molecules. The hydrogen bond of cellulose is mainly electrostatic, and the stabilization energy in cellulose for each hydrogen bond is estimated to be between 17 and 30 kJ mol-1. On average, hydroxyl groups of cellulose form hydrogen bonds comparable to those of other simple alcohols. The London dispersion interaction may be estimated from empirical attraction terms in molecular modelling by simple integration over all components. Although this interaction extends to relatively large distances in colloidal systems, the short-range interaction is dominant for the cohesion of cellulose and is equivalent to a compression of 3 GPa. Trends of heat of vaporization of alkyl alcohols and alkanes suggests a stabilization by such hydroxyl group hydrogen bonding to be of the order of 24 kJ mol-1, whereas the London dispersion force contributes about 0.41 kJ mol-1 Da-1. The simple arithmetic sum of the energy is consistent with the experimental enthalpy of sublimation of small sugars, where the main part of the cohesive energy comes from hydrogen bonds. For cellulose, because of the reduced number of hydroxyl groups, the London dispersion force provides the main contribution to intermolecular cohesion. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
Effects of a Sedentary Intervention on Cognitive Function.
Edwards, Meghan K; Loprinzi, Paul D
2018-03-01
To examine the effects of a free-living, sedentary-inducing intervention on cognitive function. Randomized controlled, parallel group intervention. University campus. Thirty-three young adults (n = 23 intervention; n = 10 control). The intervention group was asked to eliminate all exercise and minimize steps to ≤5000 steps/day for 1 week, whereas the control group was asked to continue normal physical activity (PA) levels for 1 week. Both groups completed a series of 8 cognitive function assessments (assessing multiple parameters of cognition) preintervention and immediately postintervention. The intervention group was asked to resume normal PA levels for 1 week postintervention and completed the cognitive assessments for a third time at 2 weeks postintervention. Split-plot repeated-measures analysis of variance. The results of our statistical analyses showed that the group × time interaction effect was not significant ( P > .05) for any of the evaluated cognitive parameters. These findings demonstrate the need for future experimental investigations of sedentary behavior to better understand its effects on cognitive function. However, although previous work has demonstrated favorable effects of acute and chronic PA on cognitive function, our findings suggest that a 1-week period of reduced PA does not detrimentally affect cognitive function, which may have encouraging implications for individuals going through a temporary relapse in PA.
Teng, Nur Islami Mohd Fahmi; Shahar, Suzana; Rajab, Nor Fadilah; Manaf, Zahara Abdul; Johari, Mohamad Hanapi; Ngah, Wan Zurinah Wan
2013-12-01
Calorie restriction and intermittent fasting are two dietary interventions that can improve aging. Religious fasting also suggested having similar benefit; however, such studies are still scarce. Thus, this study aimed to determine the effect of fasting calorie restriction (FCR) on metabolic parameters and DNA damage among healthy older adult men. A randomized controlled study was done on men, aged 50-70 years in Klang Valley, Malaysia. Subjects were divided into two groups; FCR (reduction of 300-500 kcal/d combined with 2 days/week of Muslim Sunnah Fasting) and control. Assessment was ascertained at three time point; baseline, weeks 6 and 12. Blood samples were analyzed for lipid profile, DNA damage and malondialdehyde (MDA). The FCR group reduced their energy intake for approximately 18% upon completion of the study. A significant interaction effect was found in body weight, body mass index, fat percentage, fat mass, blood pressure, total cholesterol, low-density lipoprotein cholesterol and the ratio of total cholesterol/high-density lipoprotein cholesterol (p < 0.05). A significant improvement (p < 0.001) in total DNA rejoining cells and MDA (p < 0.05) was also observed in the FCR group. FCR improved metabolic parameters and DNA damage in healthy older adult men. Therefore, there is a need to further examine the mechanism of FCR.
EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Falk, Tiago H.; Fraga, Francisco J.; Trambaiolli, Lucas; Anghinah, Renato
2012-12-01
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
NASA Astrophysics Data System (ADS)
Ding, Liang; Gao, Haibo; Liu, Zhen; Deng, Zongquan; Liu, Guangjun
2015-12-01
Identifying the mechanical property parameters of planetary soil based on terramechanics models using in-situ data obtained from autonomous planetary exploration rovers is both an important scientific goal and essential for control strategy optimization and high-fidelity simulations of rovers. However, identifying all the terrain parameters is a challenging task because of the nonlinear and coupling nature of the involved functions. Three parameter identification methods are presented in this paper to serve different purposes based on an improved terramechanics model that takes into account the effects of slip, wheel lugs, etc. Parameter sensitivity and coupling of the equations are analyzed, and the parameters are grouped according to their sensitivity to the normal force, resistance moment and drawbar pull. An iterative identification method using the original integral model is developed first. In order to realize real-time identification, the model is then simplified by linearizing the normal and shearing stresses to derive decoupled closed-form analytical equations. Each equation contains one or two groups of soil parameters, making step-by-step identification of all the unknowns feasible. Experiments were performed using six different types of single-wheels as well as a four-wheeled rover moving on planetary soil simulant. All the unknown model parameters were identified using the measured data and compared with the values obtained by conventional experiments. It is verified that the proposed iterative identification method provides improved accuracy, making it suitable for scientific studies of soil properties, whereas the step-by-step identification methods based on simplified models require less calculation time, making them more suitable for real-time applications. The models have less than 10% margin of error comparing with the measured results when predicting the interaction forces and moments using the corresponding identified parameters.
Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.
Avilés, Leticia; Abbot, Patrick; Cutter, Asher D
2002-02-01
Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.
Balap, Aishwarya; Lohidasan, Sathiyanarayanan; Sinnathambi, Arulmozhi; Mahadik, Kakasaheb
2017-01-04
Andrographis paniculata Nees (Acanthacae) have broad range of pharmacological effects such as hepatoprotective, antifertility, antimalarial, antidiabetic, suppression of various cancer cells and anti-inflammatory properties and is widely used medicinal plant in the traditional Unani and Ayurvedic medicinal systems. Andrographolide (AN) is one of the active constituent of the A. paniculata Nees extract (APE). They have been found in many traditional herbal formulations in India and proven to be effective as anti-inflammatory drug. To evaluate the pharmacokinetic and pharmacodynamic (anti arthritic) herb-drug interactions of A. paniculata Nees extract (APE) and pure andrographolide (AN) with naproxen (NP) after oral co-administration in wistar rats. After oral co-administration of APE (200mg/Kg) and AN (60mg/kg) with NP (7.5mg/kg) in rats, drug concentrations in plasma were determined using HPLC method. The main pharmacokinetic parameters of C max , t max , t 1/2 , MRT, Vd, CL, and AUC were calculated by non-compartment model. Change in paw volume, mechanical nociceptive threshold, mechanical hyperalgesia, histopathology and hematological parameters were evaluated to study antiarthritic activity. Co-administration of NP with APE and pure AN decreased systemic exposure level of NP in vivo. The C max , t max, AUC 0-t of NP was decreased. In pharmacodynamic study, NP (10mg/kg) alone and NP+AN (10+60mg/kg) groups exhibited significant synergistic anti-arthritic activity as compared to groups NP+APE, APE and AN alone. The results obtained from this study suggested that NP, APE and pure AN existed pharmacokinetic herb-drug interactions in rat which is correlated with anti-arthritic study. The knowledge regarding possible herb-drug interaction of NP might be helpful for physicians as well as patients using AP. So further studies should be done to understand the effect of other herbal ingredients of APE on NP as well as to predict the herb-drug interaction in humans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.
van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth
2017-09-01
The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Twenty-one healthy subjects (aged 20-65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20-24 years) were compared with a group of 8 older adults (aged 53-65 years). Also, the interaction between age and speed was analyzed. Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects.
NASA Technical Reports Server (NTRS)
1980-01-01
A program in the area of air sea interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for air sea interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an air sea interaction mission should be an early task.
A state interaction spin-orbit coupling density matrix renormalization group method
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2016-06-01
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive
NASA Astrophysics Data System (ADS)
Lin, He; Zhu, Shun-Guan; Li, Hong-Zhen; Peng, Xin-Hua
2013-09-01
1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX)/1,3-dimethyl-2-imidazolidinone (DMI) cocrystal explosive was synthesized and characterized by using X-ray single crystal diffraction. HMX/DMI cocrystal crystallizes in the monoclinic system (space group Cm), with cell parameters a = 7.231(2)Å, b = 14.739(2)Å, c = 7.552(1)Å, β = 96.66°. In addition, density functional theory, involving binding energy, natural bond orbital (NBO) analysis, atoms in molecule (AIM) analysis, band structure, and density of states, was adopted to investigate intermolecular interactions for the formation of HMX/DMI cocrystal. The results show that hydrogen bondings between methylene groups of HMX molecules and O atoms of DMI molecules are the main intermolecular interactions. This research provides the basis for further design of cocrystal explosives, which are composed of HMX and energetic materials.
Phonon triggered rhombohedral lattice distortion in vanadium at high pressure
Antonangeli, Daniele; Farber, Daniel L.; Bosak, Alexei; ...
2016-08-19
In spite of the simple body-centered-cubic crystal structure, the elements of group V, vanadium, niobium and tantalum, show strong interactions between the electronic properties and lattice dynamics. Further, these interactions can be tuned by external parameters, such as pressure and temperature. We used inelastic x-ray scattering to probe the phonon dispersion of single-crystalline vanadium as a function of pressure to 45 GPa. Our measurements show an anomalous high-pressure behavior of the transverse acoustic mode along the (100) direction and a softening of the elastic modulus C44 that triggers a rhombohedral lattice distortion occurring between 34 and 39 GPa. Lastly, ourmore » results provide the missing experimental confirmation of the theoretically predicted shear instability arising from the progressive intra-band nesting of the Fermi surface with increasing pressure, a scenario common to all transition metals of group V.« less
Entropic determination of the phase transition in a coevolving opinion-formation model.
Burgos, E; Hernández, Laura; Ceva, H; Perazzo, R P J
2015-03-01
We study an opinion formation model by the means of a coevolving complex network where the vertices represent the individuals, characterized by their evolving opinions, and the edges represent the interactions among them. The network adapts to the spreading of opinions in two ways: not only connected agents interact and eventually change their thinking but an agent may also rewire one of its links to a neighborhood holding the same opinion as his. The dynamics, based on a global majority rule, depends on an external parameter that controls the plasticity of the network. We show how the information entropy associated to the distribution of group sizes allows us to locate the phase transition between a phase of full consensus and another, where different opinions coexist. We also determine the minimum size of the most informative sampling. At the transition the distribution of the sizes of groups holding the same opinion is scale free.
Cognitive Rehabilitation in Alzheimer's Disease: A Controlled Intervention Trial.
Brueggen, Katharina; Kasper, Elisabeth; Ochmann, Sina; Pfaff, Henrike; Webel, Steffi; Schneider, Wolfgang; Teipel, Stefan
2017-01-01
Cognitive Rehabilitation for Alzheimer's disease (AD) is an integrative multimodal intervention. It aims to maintain autonomy and quality of life by enhancing the patients' abilities to compensate for decreased cognitive functioning. We evaluated the feasibility of a group-based Cognitive Rehabilitation approach in mild AD dementia and assessed its effect on activities of daily living (ADL). We included 16 patients with AD dementia in a controlled partial-randomized design. We adapted the manual-guided Cognitive Rehabilitation program (CORDIAL) to a group setting. Over the course of three months, one group received the Cognitive Rehabilitation intervention (n = 8), while the other group received a standardized Cognitive Training as an active control condition (n = 8). ADL-competence was measured as primary outcome. The secondary outcome parameters included cognitive abilities related to daily living, functional cognitive state, and non-cognitive domains, e.g., quality of life. For each scale, we assessed the interaction effect 'intervention by time', i.e., from pre-to post-intervention. We found no significant interaction effect of intervention by time on the primary outcome ADL-competence. The interaction effect was significant for quality of life (Cohen's d: -1.43), showing an increase in the intervention group compared with the control group. Our study demonstrates the feasibility of a group-based Cognitive Rehabilitation program for patients with mild AD dementia. The Cognitive Rehabilitation showed no significant effect on ADL, possibly reflecting a lack of transfer between the therapy setting and real life. However, the group setting enhanced communication skills and coping mechanisms. Effects on ADL may not have reached statistical significance due to a limited sample size. Furthermore, future studies might use an extended duration of the intervention and integrate caregivers to a greater extent to increase transfer to activities of daily living.
Savelyev, Alexey; MacKerell, Alexander D.
2015-01-01
In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions. The optimized ionic parameters are validated against counterion condensation theory and buffer exchange-atomic emission spectroscopy measurements providing quantitative data on the competitive association of different monovalent ions with DNA. Comparison between experimental and MD simulation results demonstrates that, compared to the additive CHARMM36 model, the Drude FF provides an improved description of the general features of the ionic atmosphere around DNA and leads to closer agreement with experiment on the ionic competition within the ion atmosphere. Results indicate the importance of extended simulation systems on the order of 25 Å beyond the DNA surface to obtain proper convergence of ion distributions. PMID:25751286
Bueno, Marta; Camacho, Carlos J; Sancho, Javier
2007-09-01
The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 2007 Wiley-Liss, Inc.
Diako, Charles; McMahon, Kenneth; Mattinson, Scott; Evans, Marc; Ross, Carolyn
2016-08-01
The objective of this study was to assess the influence of the interaction among alcohol, tannins, and mannoproteins on the aroma, flavor, taste, and mouthfeel characteristics of selected commercial Merlot wines. Merlot wines (n = 61) were characterized for wine chemistry parameters, including pH, titratable acidity, alcohol, glucose, fructose, tannin profile, total proteins, and mannoprotein content. Agglomerative clustering of these physicochemical characteristics revealed 6 groups of wines. Two wines were selected from each group (n = 12) and profiled by a trained sensory evaluation panel. One wine from each group was evaluated using the electronic tongue (e-tongue). Sensory evaluation results showed complex effects among tannins, alcohol, and mannoproteins on the perception of most aromas, flavors, tastes, and mouthfeel attributes (P < 0.05). The e-tongue showed distinct differences among the taste attributes of the 6 groups of wines as indicated by a high discrimination index (DI = 95). Strong correlations (r(2) > 0.930) were reported between the e-tongue and sensory perception of sweet, sour, bitter, burning, astringent, and metallic. This study showed that interactions among wine matrix components influence the resulting sensory perceptions. The strong correlation between the e-tongue and trained panel evaluations indicated the e-tongue can complement sensory evaluations to improve wine quality assessment. © 2016 Institute of Food Technologists®
Takezawa, Masanori; Price, Michael E
2010-05-21
For many years in evolutionary science, the consensus view has been that while reciprocal altruism can evolve in dyadic interactions, it is unlikely to evolve in sizable groups. This view had been based on studies which have assumed cooperation to be discrete rather than continuous (i.e., individuals can either fully cooperate or else fully defect, but they cannot continuously vary their level of cooperation). In real world cooperation, however, cooperation is often continuous. In this paper, we re-examine the evolution of reciprocity in sizable groups by presenting a model of the n-person prisoner's dilemma that assumes continuous rather than discrete cooperation. This model shows that continuous reciprocity has a dramatically wider basin of attraction than discrete reciprocity, and that this basin's size increases with efficiency of cooperation (marginal per capita return). Further, we find that assortative interaction interacts synergistically with continuous reciprocity to a much greater extent than it does with discrete reciprocity. These results suggest that previous models may have underestimated reciprocity's adaptiveness in groups. However, we also find that the invasion of continuous reciprocators into a population of unconditional defectors becomes realistic only within a narrow parameter space in which the efficiency of cooperation is close to its maximum bound. Therefore our model suggests that continuous reciprocity can evolve in large groups more easily than discrete reciprocity only under unusual circumstances. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdelsalam, A.; El–Nagdy, M. S.; Badawy, B. M.; Osman, W.; Fayed, M.
2016-06-01
The grey particle production following 60 A and 200A GeV 16O interactions with emulsion nuclei is investigated at different centralities. The evaporated target fragment multiplicity is voted as a centrality parameter. The target size effect is examined over a wide range, where the C, N and O nuclei present the light target group while the Br and Ag nuclei are the heavy group. In the framework of the nuclear limiting fragmentation hypothesis, the grey particle multiplicity characteristics depend only on the target size and centrality while the projectile size and energy are not effective. The grey particle is suggested to be a multisource production system. The emission direction in the 4π space depends upon the production source. Either the exponential decay or the Poisson’s peaking curves are the usual characteristic shapes of the grey particle multiplicity distributions. The decay shape is suggested to be a characteristic feature of the source singularity while the peaking shape is a multisource super-position. The sensibility to the centrality varies from a source to other. The distribution shape is identified at each centrality region according to the associated source contribution. In general, the multiplicity characteristics seem to be limited w.r.t. the collision system centrality using light target nuclei. The selection of the black particle multiplicity as a centrality parameter is successful through the collision with the heavy target nuclei. In the collision with the light target nuclei it may be qualitatively better to vote another centrality parameter.
Akalin, Ferda Alev; Baltacioğlu, Esra; Alver, Ahmet; Karabulut, Erdem
2009-03-01
There is evidence of reduced antioxidant (AO) defense in periodontitis and pregnancy and adverse interactions between periodontitis and pregnancy. In this study, serum and gingival crevicular fluid (GCF) total AO capacity (TAOC) and superoxide dismutase (SOD) enzyme concentrations in pregnant patients with chronic periodontitis (CP) were compared to those in non-pregnant patients. Periodontal examinations were performed and GCF/serum samples were obtained from 33 pregnant patients with CP (PCP), 18 pregnant patients with gingivitis (PG), and 21 periodontally healthy pregnant controls (P-controls), monitored in the first and third trimesters; 27 non-pregnant women with CP; and 25 non-pregnant control women. The concentrations of TAOC (automated measurement method) and SOD (spectrophotometric method) were determined. Periodontal parameters were higher in pregnant patients versus non-pregnant patients and in the CP group compared to controls, whereas TAOC and SOD concentrations were lower (P <0.05). All parameters, except plaque index, increased in pregnant subjects in the third trimester compared to the first trimester, whereas TAOC and SOD levels decreased (P <0.05). Periodontal parameters were highest and TAOC and SOD levels were lowest in the PCP group in the third trimester (P <0.05). Systemic and local GCF AO levels decreased in pregnancy and periodontitis, and AO defense reached the lowest levels in the last phase of pregnancy, whereas periodontal status deteriorated. These results suggest that reduced AO capacity may be associated with adverse periodontitis-pregnancy interactions, and each situation can be a provocative risk factor for the other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Alex W.; Rivas, Angel; Huelga, Susana F.
2010-09-15
By using the properties of orthogonal polynomials, we present an exact unitary transformation that maps the Hamiltonian of a quantum system coupled linearly to a continuum of bosonic or fermionic modes to a Hamiltonian that describes a one-dimensional chain with only nearest-neighbor interactions. This analytical transformation predicts a simple set of relations between the parameters of the chain and the recurrence coefficients of the orthogonal polynomials used in the transformation and allows the chain parameters to be computed using numerically stable algorithms that have been developed to compute recurrence coefficients. We then prove some general properties of this chain systemmore » for a wide range of spectral functions and give examples drawn from physical systems where exact analytic expressions for the chain properties can be obtained. Crucially, the short-range interactions of the effective chain system permit these open-quantum systems to be efficiently simulated by the density matrix renormalization group methods.« less
NASA Astrophysics Data System (ADS)
Križan, Peter; Matúš, Miloš; Beniak, Juraj; Šooš, Ľubomír
2018-01-01
During the biomass densification can be recognized various technological variables and also material parameters which significantly influences the final solid biofuels (pellets) quality. In this paper, we will present the research findings concerning relationships between technological and material variables during densification of sunflower hulls. Sunflower hulls as an unused source is a typical product of agricultural industry in Slovakia and belongs to the group of herbaceous biomass. The main goal of presented experimental research is to determine the impact of compression pressure, compression temperature and material particle size distribution on final biofuels quality. Experimental research described in this paper was realized by single-axis densification, which was represented by experimental pressing stand. The impact of mentioned investigated variables on the final briquettes density and briquettes dilatation was determined. Mutual interactions of these variables on final briquettes quality are showing the importance of mentioned variables during the densification process. Impact of raw material particle size distribution on final biofuels quality was also proven by experimental research on semi-production pelleting plant.
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
NASA Astrophysics Data System (ADS)
Farazmand, Mohammad; Sapsis, Themistoklis P.
2017-07-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. We assess the validity of this scheme in several cases of ocean wave spectra.
Cogenerating and pre-annihilating dark matter by a new gauge interaction in a unified model
Barr, S. M.; Scherrer, Robert J.
2016-05-31
Here, grand unified theories based on large groups (with rank ≥ 6) are a natural context for dark matter models. They contain Standard-Model-singlet fermions that could be dark matter candidates, and can contain new non-abelian interactions whose sphalerons convert baryons, leptons, and dark matter into each other, ''cogenerating" a dark matter asymmetry comparable to the baryon asymmetry. In this paper it is shown that the same non-abelian interactions can ''pre-annihilate" the symmetric component of heavy dark matter particles χ, which then decay late into light stable dark matter particles ζ that inherit their asymmetry. We derive cosmological constraints on themore » parameters of such models. The mass of χ must be < 3000 TeV and their decays must happen when 2 × 10 –7 < T dec/mχ < 10 –4. It is shown that such decays can come from d=5 operators with coefficients of order 1/MGUT or 1/M Pℓ. We present a simple realization of our model based on the group SU(7).« less
Vibration-rotation interactions and ring-puckering in 3,3-dimethyl oxetane by microwave spectroscopy
NASA Astrophysics Data System (ADS)
López, Juan C.; Lesarri, Alberto G.; Villamañán, Rosa M.; Alonso, Josél.
1990-06-01
Ring puckering in 3,3-dimethyl oxetane has been investigated using microwave spectroscopy. Microwave spectra of the ground state, the first six ring-puckering excited states, and nine excited states of the methyl groups' deformation vibrations have been observed. The μa electric dipole moment component has been determined as 2.03(3) D from Stark-effect measurements. The vibrational dependence of the rotational constants is consistent with the ring-puckering potential function derived by Duckett et al. ( J. Mol. Spectrosc.69, 159-165 (1978)). Coriolis coupling interactions have been observed and are satisfactorily accounted for with a quartic centrifugal distortion Hamiltonian. The vibrational dependence of the centrifugal distortion constants has been analyzed using the theory developed by Creswell and Mills. In order to reproduce the experimental value of the vibration-rotation interaction parameter, {δμ ab}/{δQ}, a dynamical model allowing the rocking of the CH 3CCH 3 group should be used. The equilibrium ring puckering angle calculated with this model and the ring-puckering potential function is 17.5°.
Sequence memory based on coherent spin-interaction neural networks.
Xia, Min; Wong, W K; Wang, Zhijie
2014-12-01
Sequence information processing, for instance, the sequence memory, plays an important role on many functions of brain. In the workings of the human brain, the steady-state period is alterable. However, in the existing sequence memory models using heteroassociations, the steady-state period cannot be changed in the sequence recall. In this work, a novel neural network model for sequence memory with controllable steady-state period based on coherent spininteraction is proposed. In the proposed model, neurons fire collectively in a phase-coherent manner, which lets a neuron group respond differently to different patterns and also lets different neuron groups respond differently to one pattern. The simulation results demonstrating the performance of the sequence memory are presented. By introducing a new coherent spin-interaction sequence memory model, the steady-state period can be controlled by dimension parameters and the overlap between the input pattern and the stored patterns. The sequence storage capacity is enlarged by coherent spin interaction compared with the existing sequence memory models. Furthermore, the sequence storage capacity has an exponential relationship to the dimension of the neural network.
Effectiveness of Wii-based rehabilitation in stroke: A randomized controlled study.
Karasu, Ayça Utkan; Batur, Elif Balevi; Karataş, Gülçin Kaymak
2018-05-08
To investigate the efficacy of Nintendo Wii Fit®-based balance rehabilitation as an adjunc-tive therapy to conventional rehabilitation in stroke patients. During the study period, 70 stroke patients were evaluated. Of these, 23 who met the study criteria were randomly assigned to either the experimental group (n = 12) or the control group (n = 11) by block randomization. Primary outcome measures were Berg Balance Scale, Functional Reach Test, Postural Assessment Scale for Stroke Patients, Timed Up and Go Test and Static Balance Index. Secondary outcome measures were postural sway, as assessed with Emed-X, Functional Independence Measure Transfer and Ambulation Scores. An evaluator who was blinded to the groups made assessments immediately before (baseline), immediately after (post-treatment), and 4 weeks after completion of the study (follow-up). Group-time interaction was significant in the Berg Balance Scale, Functional Reach Test, anteroposterior and mediolateral centre of pressure displacement with eyes open, anteroposterior centre of pressure displacement with eyes closed, centre of pressure displacement during weight shifting to affected side, to unaffected side and total centre of pressure displacement during weight shifting. Demonstrating significant group-time interaction in those parameters suggests that, while both groups exhibited significant improvement, the experimental group showed greater improvement than the control group. Virtual reality exercises with the Nintendo Wii system could represent a useful adjunctive therapy to traditional treatment to improve static and dynamic balance in stroke patients.
Interaction-induced effects on Bose-Hubbard parameters
NASA Astrophysics Data System (ADS)
Kremer, Mark; Sachdeva, Rashi; Benseny, Albert; Busch, Thomas
2017-12-01
We study the effects of repulsive on-site interactions on the broadening of the localized Wannier functions used for calculating the parameters to describe ultracold atoms in optical lattices. For this, we replace the common single-particle Wannier functions, which do not contain any information about the interactions, by two-particle Wannier functions obtained from an exact solution which takes the interactions into account. We then use these interaction-dependent basis functions to calculate the Bose-Hubbard model parameters, showing that they are substantially different both at low and high lattice depths from the ones calculated using single-particle Wannier functions. Our results suggest that density effects are not negligible for many parameter ranges and need to be taken into account in metrology experiments.
Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad
2017-01-01
Abstract In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks (M c), crosslink density (M r), volume interaction parameter (v 2,s), Flory Huggins water interaction parameter and diffusion coefficient (Q) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM. PMID:29491802
Ansari, Mahdi; Zhandi, Mahdi; Kohram, Hamid; Zaghari, Mojtaba; Sadeghi, Mostafa; Sharafi, Mohsen
2017-04-01
This study was conducted to investigate the effect of d-Aspartic acid (D-Asp) on post-thawed sperm quality, fertility and hatchability outcomes in male broiler breeders. Twenty 55-week-old roosters were selected and equally split into four groups (n = 5 rooster/group). Different daily D-Asp doses including 0 (D-0), 100 (D-100), 200 (D-200) or 300 (D-300) mg/kg BW were capsulated and individually administered for 12 weeks to roosters in each group. Semen samples were weekly collected from 7th to 12th week of experiment. Sperm quality from 7th to 11th week was evaluated in both fresh (total and forward motility and plasma membrane functionality) and post-thawed (total and forward motility, plasma membrane functionality, apoptosis status and mitochondrial activity) conditions. Also, collected semen samples on the 12th week were frozen and artificially inseminated to evaluate fertility and hatchability. The results from fresh condition showed that total and forward motility and plasma membrane functionality were significantly higher in D-200 compared to other groups. Also, interaction effect of time and treatment was not significant for all assessed parameters in fresh condition. In post-thawed condition, D-200 showed significantly higher total and forward motility, fertility and hatchability compared to other groups. The higher value for plasma membrane functionality and mitochondrial activity was observed in D-200 compared to D-0 and D300 groups. However, the percentage of live, early apoptotic and dead spermatozoa were not significantly affected by applied treatment in the current study. No significant difference for time and treat interaction effect was observed for all assessed parameters except forward motility. In conclusion, it seems that D-Asp administration could improve fresh and post-thawed sperm quality and post-thawed sperm fertility in male broiler breeders. Copyright © 2017 Elsevier Inc. All rights reserved.
Correlation of materials properties with the atomic density concept
NASA Technical Reports Server (NTRS)
1975-01-01
Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.
Morphometric analysis of suprabasal cells in oral white lesions.
Shabana, A H; el-Labban, N G; Lee, K W; Kramer, I R
1989-01-01
Surgical specimens from the cheek mucosa of 73 patients with white lesions were studied to determine various morphometric parameters that would help differentiate between the various types of oral mucosal white lesions that carry a risk of malignant change. Four cell types were represented: traumatic keratosis, leucoplakia, candidal leucoplakia and lichen planus, in addition to a control group of normal mucosa. The shape and size of the epithelial cells in two cell compartments, parabasal and spinous, were investigated by an interactive image analysis system (IBAS-1). The results showed an increase in the cell size in the parabasal cell compartment of all the white lesions compared with the normal mucosa. In the spinous cell compartment there was an increase in the cell size in lichen planus and traumatic keratosis; leucoplakia and candidal leucoplakia showed a slight decrease in cell size compared with the normal mucosa. Attempts to discriminate between the four groups of white lesions showed that these parameters can provide a high level of separation between lichen planus and the three other groups, but not between leucoplakia, candidal leucoplakia, and traumatic keratosis. PMID:2703543
Huang, Wenjun; Mandal, Taraknath; Larson, Ronald G
2017-03-06
We present coarse-grained (CG) force fields for hydroxypropyl-methylcellulose acetate succinate (HPMCAS) polymers and the drug molecule phenytoin using a bead/stiff spring model, with each bead representing a HPMCAS monomer or monomer side group (hydroxypropyl acetyl, acetyl, or succinyl) or a single phenytoin ring. We obtain the bonded and nonbonded interaction parameters in our CG model using the RDFs from atomistic simulations of short HPMCAS model oligomers (20-mer) and atomistic simulations of phenytoin molecules. The nonbonded interactions are modeled using a LJ 12-6 potential, with separate parameters for each monomer substitution type, which allows heterogeneous polymer chains to be modeled. The cross interaction terms between the polymer and phenytoin CG beads are obtained explicitly from atomistic level polymer-phenytoin simulations, rather than from mixing rules. We study the solvation behavior of 50-mer and 100-mer polymer chains and find chain-length-dependent aggregation. We also compare the phenytoin CG force field developed in this work with that in Mandal et al. (Soft Matter, 2016, 12, 8246-8255) and conclude both are suitable for studying the interaction between polymer and drug in solvated solid dispersion formulation, in the absence of drug crystallization. Finally, we present simulations of heterogeneous HPMCAS model polymer chains and phenytoin molecules. Polymer and drug form a complex in a short period of simulation time due to strong intermolecular interactions. Moreover, the protonated polymer chains are more effective than deprotonated ones in inhibiting the drug aggregation in the polymer-drug complex.
Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances
Tipping, E.; Reddy, M.M.; Hurley, M.A.
1990-01-01
The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.
Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters
Alvarado, Alejandra; Montañez-Hernández, Lilia E.; Palacio-Molina, Sandra L.; Oropeza-Navarro, Ricardo; Luévanos-Escareño, Miriam P.; Balagurusamy, Nagamani
2014-01-01
Anaerobic digestion (AD) is a biological process where different trophic groups of microorganisms break down biodegradable organic materials in the absence of oxygen. A wide range of AD technologies is being used to convert livestock manure, municipal and industrial wastewaters, and solid organic wastes into biogas. AD gains importance not only because of its relevance in waste treatment but also because of the recovery of carbon in the form of methane, which is a renewable energy and is used to generate electricity and heat. Despite the advances on the engineering and design of new bioreactors for AD, the microbiology component always poses challenges. Microbiology of AD processes is complicated as the efficiency of the process depends on the interactions of various trophic groups involved. Due to the complex interdependence of microbial activities for the functionality of the anaerobic bioreactors, the genetic expression of mcrA, which encodes a key enzyme in methane formation, is proposed as a parameter to monitor the process performance in real time. This review evaluates the current knowledge on microbial groups, their interactions, and their relationship to the performance of anaerobic biodigesters with a focus on using mcrA gene expression as a tool to monitor the process. PMID:25429286
Strongly correlated fermions after a quantum quench.
Manmana, S R; Wessel, S; Noack, R M; Muramatsu, A
2007-05-25
Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating) lead to observables which become indistinguishable after relaxation. We find that the resulting quasistationary state is nonthermal. This result holds for both integrable and nonintegrable variants of the system.
Modified screening interaction potential on dust lattice waves in dusty plasma ring
NASA Astrophysics Data System (ADS)
He, Kerong; Chen, Hui; Liu, Sanqiu
2017-05-01
In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.
[Effects of radiation emitted from mobile phones on short- term heart rate variability parameters].
Yıldız, Metin; Yılmaz, Derya; Güler, Inan; Akgüllü, Cağdaş
2012-08-01
In this study, the effects of radiation emitted from mobile phone (MP) on heart rate variability (HRV) which is accepted a non-invasive indicator of autonomic nervous system (ANS) were investigated with considering the deficiency of previous studies. A randomized controlled study has been designed and utilized with 30 young and healthy volunteers. During the experiment that had three periods, the electrocardiogram (ECG) and respiration signals were recorded and MP was attached to subjects' right ear with a bone. Ten subjects selected randomly were exposed to high -level radiation during the second period (Experimental Group 1). Ten of others were exposed during the third period with maximum level radiation (Experimental Group 2). Ten records were also made while MP was closed as a control. Short -term HRV parameters were obtained and repeated measures ANOVA and suitable post-hoc tests applied to the results. According to the results of the repeated measures ANOVA; there were no significant main effects of groups. However, there were some significant differences in measuring time periods and groups*period interactions. The post-hoc tests showed that mean R to R interval and HF power are significantly changed by maximum radiation emitted from MP. Due to the radiation emitted from MPs at maximum power, some changes may occur in HRV parameters that are associated with increased parasympathetic activity. But, the level of these changes is similar to daily activities as excitement, and stand up.
Identification of walking human model using agent-based modelling
NASA Astrophysics Data System (ADS)
Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir
2018-03-01
The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.
Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations.
Bürger, Vincent; Briesen, Heiko
2016-10-05
For colloidal particles interacting in suspensions, clusters, or gels, contact models should attempt to include all physical phenomena experimentally observed. One critical point when formulating a contact model is to ensure that the interaction parameters can be easily obtained from experiments. Experimental determinations of contact parameters for particles either are based on bulk measurements for simulations on the macroscopic scale or require elaborate setups for obtaining tangential parameters such as using atomic force microscopy. However, on the colloidal scale, a simple method is required to obtain all interaction parameters simultaneously. This work demonstrates that quasi-static compression of a fractal-like particle network provides all the necessary information to obtain particle interaction parameters using a simple spring-based contact model. These springs provide resistances against all degrees of freedom associated with two-particle interactions, and include critical forces or moments where such springs break, indicating a bond-breakage event. A position-based cost function is introduced to show the identifiability of the two-particle contact parameters, and a discrete, nonlinear, and non-gradient-based global optimization method (simplex with simulated annealing, SIMPSA) is used to minimize the cost function calculated from deviations of particle positions. Results show that, in principle, all necessary contact parameters for an arbitrary particle network can be identified, although numerical efficiency as well as experimental noise must be addressed when applying this method. Such an approach lays the groundwork for identifying particle-contact parameters from a position-based particle analysis for a colloidal system using just one experiment. Spring constants also directly influence the time step of the discrete-element method, and a detailed knowledge of all necessary interaction parameters will help to improve the efficiency of colloidal particle simulations.
Gardarsson, Haraldur; Schweizer, W Bernd; Trapp, Nils; Diederich, François
2014-04-14
Various recent computational studies initiated this systematic re-investigation of substituent effects on aromatic edge-to-face interactions. Five series of Tröger base derived molecular torsion balances (MTBs), initially introduced by Wilcox and co-workers, showing an aromatic edge-to-face interaction in the folded, but not in the unfolded form, were synthesized. A fluorine atom or a trifluoromethyl group was introduced onto the edge ring in ortho-, meta-, and para-positions to the C-H group interacting with the face component. The substituents on the face component were varied from electron-donating to electron-withdrawing. Extensive X-ray crystallographic data allowed for a discussion on the conformational behavior of the torsional balances in the solid state. While most systems adopt the folded conformation, some were found to form supramolecular intercalative dimers, lacking the intramolecular edge-to-face interaction, which is compensated by the gain of aromatic π-stacking interactions between four aryl rings of the two molecular components. This dimerization does not take place in solution. The folding free enthalpy ΔG(fold) of all torsion balances was determined by (1)H NMR measurements by using 10 mM solutions of samples in CDCl3 and C6D6. Only the ΔG(fold) values of balances bearing an edge-ring substituent in ortho-position to the interacting C-H show a steep linear correlation with the Hammett parameter (σ(meta)) of the face-component substituent. Thermodynamic analysis using van't Hoff plots revealed that the interaction is enthalpy-driven. The ΔG(fold) values of the balances, in addition to partial charge calculations, suggest that increasing the polarization of the interacting C-H group makes a favorable contribution to the edge-to-face interaction. The largest contribution, however, seems to originate from local direct interactions between the substituent in ortho-position to the edge-ring C-H and the substituted face ring. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimal recruitment strategies for groups of interacting walkers with leaders
NASA Astrophysics Data System (ADS)
Martínez-García, Ricardo; López, Cristóbal; Vazquez, Federico
2015-02-01
We introduce a model of interacting random walkers on a finite one-dimensional chain with absorbing boundaries or targets at the ends. Walkers are of two types: informed particles that move ballistically towards a given target and diffusing uninformed particles that are biased towards close informed individuals. This model mimics the dynamics of hierarchical groups of animals, where an informed individual tries to persuade and lead the movement of its conspecifics. We characterize the success of this persuasion by the first-passage probability of the uninformed particle to the target, and we interpret the speed of the informed particle as a strategic parameter that the particle can tune to maximize its success. We find that the success probability is nonmonotonic, reaching its maximum at an intermediate speed whose value increases with the diffusing rate of the uninformed particle. When two different groups of informed leaders traveling in opposite directions compete, usually the largest group is the most successful. However, the minority can reverse this situation and become the most probable winner by following two different strategies: increasing its attraction strength or adjusting its speed to an optimal value relative to the majority's speed.
Power Law and Logarithmic Ricci Dark Energy Models in Hořava-Lifshitz Cosmology
NASA Astrophysics Data System (ADS)
Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Myrzakulov, Ratbay; Hakobyan, Margarit; Movsisyan, Artashes
2015-03-01
In this work, we studied the Power Law and the Logarithmic Entropy Corrected versions of the Ricci Dark Energy (RDE) model in a spatially non-flat universe and in the framework of Hořava-Lifshitz cosmology. For the two cases containing non-interacting and interacting RDE and Dark Matter (DM), we obtained the exact differential equation that determines the evolutionary form of the RDE energy density. Moreover, we obtained the expressions of the deceleration parameter q and, using a parametrization of the equation of state (EoS) parameter ω D given by the relation ω D ( z) = ω 0+ ω 1 z, we derived the expressions of both ω 0 and ω 1. We interestingly found that the expression of ω 0 is the same for both non-interacting and interacting case. The expression of ω 1 for the interacting case has strong dependence from the interacting parameter b 2. The parameters derived in this work are done in small redshift approximation and for low redshift expansion of the EoS parameter.
Low-energy spin dynamics of orthoferrites AFeO3 (A = Y, La, Bi)
NASA Astrophysics Data System (ADS)
Park, Kisoo; Sim, Hasung; Leiner, Jonathan C.; Yoshida, Yoshiyuki; Jeong, Jaehong; Yano, Shin-ichiro; Gardner, Jason; Bourges, Philippe; Klicpera, Milan; Sechovský, Vladimír; Boehm, Martin; Park, Je-Geun
2018-06-01
YFeO3 and LaFeO3 are members of the rare-earth orthoferrites family with Pbnm space group. Using inelastic neutron scattering, the low-energy spin excitations have been measured around the magnetic Brillouin zone center. Splitting of magnon branches and finite magnon gaps (∼2 meV) are observed for both compounds, where the Dzyaloshinsky–Moriya interactions account for most of this gap with some additional contribution from single-ion anisotropy. We also make comparisons with multiferroic BiFeO3 (R3c space group), in which similar behavior was observed. By taking into account all relevant local Dzyaloshinsky–Moriya interactions, our analysis allows for the precise determination of all experimentally observed parameters in the spin-Hamiltonian. We find that different properties of the Pbnm and R3c space group lead to the stabilization of a spin cycloid structure in the latter case but not in the former, which explains the difference in the levels of complexity of magnon band structures for the respective compounds.
Universal relations for range corrections to Efimov features
Ji, Chen; Braaten, Eric; Phillips, Daniel R.; ...
2015-09-09
In a three-body system of identical bosons interacting through a large S-wave scattering length a, there are several sets of features related to the Efimov effect that are characterized by discrete scale invariance. Effective field theory was recently used to derive universal relations between these Efimov features that include the first-order correction due to a nonzero effective range r s. We reveal a simple pattern in these range corrections that had not been previously identified. The pattern is explained by the renormalization group for the effective field theory, which implies that the Efimov three-body parameter runs logarithmically with the momentummore » scale at a rate proportional to r s/a. The running Efimov parameter also explains the empirical observation that range corrections can be largely taken into account by shifting the Efimov parameter by an adjustable parameter divided by a. Furthermore, the accuracy of universal relations that include first-order range corrections is verified by comparing them with various theoretical calculations using models with nonzero range.« less
Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation
NASA Astrophysics Data System (ADS)
Laiho, K.; Pressl, B.; Schlager, A.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.
2016-10-01
We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons, we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain, and provide important feedback for designing such sources, especially in the broadband case.
Sung, Paul S; Zipple, J Tim; Danial, Pamela
2017-04-01
New insight regarding limb-dominance effects on temporal-spatial gait parameters is needed to further investigate subjects with recurrent low back pain (LBP). Although an asymmetrical gait pattern was found to reflect natural functional differences, there is a lack of information regarding gender differences on dominant limb support patterns in subjects with LBP. The purpose of this study was to investigate temporal-spatial gait parameters based on limb dominance and gender between subjects with and without LBP. One hundred and ten right limb dominant older adults (51 subjects with LBP and 59 control subjects) participated in the study. A three-dimensional motion capture system was utilized to measure temporal-spatial gait parameters, including initial double, single, and terminal double limb support times and walking speed. The gender differences between subjects with and without LBP were analyzed based on dominance for those parameters. Overall, limb dominance demonstrated significant differences on single and terminal double limb support times as well as walking speed. Limb dominance also demonstrated interactions on group x gender for single limb support time and walking speed. The male subjects with LBP demonstrated significantly increased single limb support times on the non-dominant limb. The significant gender and group interactions based on limb dominance account for a possible pain avoidance, asymmetrical limb support pattern. The causal pathway in dominance dependency gait by unweighted ambulation might be considered as an intervention for correcting these gait deviations in subjects with LBP. The specific modification recovery profiles of the subjects with LBP could shed light on variability of current LBP experiences of the subjects and reasons for gait deviations. Clinicians need to consider the mechanism of dominant limb dependency, which requires postural control strategies in male subjects with recurrent LBP. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira
2009-10-01
Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.
Aburai, Kenichi; Ogura, Taku; Hyodo, Ryo; Sakai, Hideki; Abe, Masahiko; Glatter, Otto
2013-01-01
We investigated the location of cholesterol (Chol) in liposomes and its interaction with phospholipids using small-angle x-ray scattering (SAXS) data and applying the generalized indirect Fourier transformation (GIFT) method. The GIFT method has been applied to lamellar liquid crystal systems and it gives quantitative data on bilayer thickness, electron density profile, and membrane flexibility (Caillé parameter). When the GIFT method is applied to the SAXS data of dipalmitoylphosphatidylcholine (DPPC) alone (Chol [-]) or a DPPC/Chol = 7/3 mixed system (Chol [+], molar ratio), change in the bilayer thickness was insignificant in both systems. However, the electron density for the Chol (+) system was higher than that for the Chol (-) system at the location of hydrophilic groups of phospholipids, and whereas Caillé parameter value increased with temperature for the Chol (-) system, no significant change with temperature was observed in the Caillé parameter for the Chol (+) system. These results indicated that Chol is located in the vicinity of the hydrophilic group of the phospholipids and constricts the packing of the acyl chain of phospholipids in the bilayer.
Isoquinoline alkaloids and their binding with DNA: calorimetry and thermal analysis applications.
Bhadra, Kakali; Kumar, Gopinatha Suresh
2010-11-01
Alkaloids are a group of natural products with unmatched chemical diversity and biological relevance forming potential quality pools in drug screening. The molecular aspects of their interaction with many cellular macromolecules like DNA, RNA and proteins are being currently investigated in order to evolve the structure activity relationship. Isoquinolines constitute an important group of alkaloids. They have extensive utility in cancer therapy and a large volume of data is now emerging in the literature on their mode, mechanism and specificity of binding to DNA. Thermodynamic characterization of the binding of these alkaloids to DNA may offer key insights into the molecular aspects that drive complex formation and these data can provide valuable information about the balance of driving forces. Various thermal techniques have been conveniently used for this purpose and modern calorimetric instrumentation provides direct and quick estimation of thermodynamic parameters. Thermal melting studies and calorimetric techniques like isothermal titration calorimetry and differential scanning calorimetry have further advanced the field by providing authentic, reliable and sensitive data on various aspects of temperature dependent structural analysis of the interaction. In this review we present the application of various thermal techniques, viz. isothermal titration calorimetry, differential scanning calorimetry and optical melting studies in the characterization of drug-DNA interactions with particular emphasis on isoquinoline alkaloid-DNA interaction.
Spatio-temporal modeling with GIS and remote sensing for schistosomiasis control in Sichuan, China
NASA Astrophysics Data System (ADS)
Xu, Bing
Schistosomiasis is a water-borne parasitic disease endemic in tropical and subtropical areas. Its transmission requires certain kind of snail as the intermediate host. Some efforts have been made to mapping snail habitats with remote sensing and schistosomiasis transmission modeling. However, the modeling is limited to isolated residential groups and does not include spatial interaction among those groups. Remotely sensed data are only used in snail habitat classification, not in estimation of snail abundance that is an important parameter in schistosomiasis transmission modeling. This research overcomes the above two problems using innovative geographic information system (GIS) and remote sensing technology. A mountainous environment near Xichang, China, is chosen as the test site. Environmental and epidemiological data are stored in a GIS to support modeling. Snail abundance is estimated from land-cover and land-use fractions derived from high spatial resolution IKONOS satellite data. Spatial interaction is determined in consideration of neighborhoods, group areas, relative slopes among groups, and natural barriers. Land-cover and land-use information extracted from 4 m high resolution IKONOS data is used as reference in scaling up to the regional level. The scale-up is done with coarser resolution satellite data including Landsat Thematic Mapper (TM), EO-1 Advanced Land Imager (ALI) and Hyperion data all at 30 m resolution. Snail abundance is estimated by regressing snail survey data with land-cover and land-use fractions. An R2 of 0.87 is obtained between the average snail density predicted and that surveyed at the group level. With such a model, a snail density map is generated for all residential groups in the study area. A spatio-temporal model of schistosomiasis transmission is finally built to incorporate the spatial interaction caused by miracidia and cercaria migration. Comparing the model results with and without spatial interaction has revealed a number of advantages of the spatio-temporal model. Particularly, with the inclusion of spatial interaction, more effective control of schistosomiasis transmission over the whole study area can be achieved.
Effects of α-thalassaemia mutations on the haematological parameters of β-thalassaemia carriers.
Saleh-Gohari, Nasrollah; Khademi Bami, Maryam; Nikbakht, Roya; Karimi-Maleh, Hassan
2015-07-01
Thalassaemia is a haemoglobin disorder caused by a reduction in, or a complete absence of, the production of α- or β-globin genes. Detection of β-thalassaemia carriers is the first step in the prenatal diagnosis of the disease and is based primarily on the differences between levels of blood cell indices. Since co-inheritance of β- and α-thalassaemia mutations modulates the haematological parameters of heterozygote β-thalassaemia indices, understanding the influence of this interaction is helpful for identification of disease carriers. To determine the effects of α-thalassaemia mutations on the haematological parameters of β-thalassaemia carriers. We used gap-PCR and amplification refractory mutation system techniques to find any α- and/or β-thalassaemia mutations in 270 subjects who were suspected to be thalassaemia carriers. The mean values of the haematological parameters in α, β-thalassaemia and β-thalassaemia carriers were compared. Significant differences in mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and HbA2 were found between the two groups. Patients who were α, β-thalassaemia carriers had higher mean values of MCV and MCH, whereas HbA2 levels were higher in simple β-thalassaemia. No marked differences were found in mean cell haemoglobin (Hb) concentration and Hb blood cell indices. The value of MCV, MCH and HbA2 were significantly different between α,β-thalassaemia and simple β-thalassaemia in men and women, but the mean values of Hb in the two groups differed markedly only in men. We conclude that co-inheritance of α- and β-thalassaemia mutations may result in misdiagnosis of β-thalassaemia carriers. Therefore, in genetic counselling of patients with a near-normal range of blood cell indices the possibility that they may carry α, β-thalassaemia mutations must be considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Improving estimation of kinetic parameters in dynamic force spectroscopy using cluster analysis
NASA Astrophysics Data System (ADS)
Yen, Chi-Fu; Sivasankar, Sanjeevi
2018-03-01
Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according to their pulling speeds, and the mean force and loading rate of each group are calculated. These data are subsequently fit to established models, and energy landscape parameters such as the intrinsic off-rate (koff) and the width of the potential energy barrier (xβ) are extracted. However, due to large uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS experiment can be dramatically improved by sorting rupture events into groups using cluster analysis instead of sorting them according to their pulling speeds. We test different clustering algorithms including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these clustering algorithms over a wide range of koff and xβ, under different levels of thermal noise, and as a function of both the number of unbinding events and the number of pulling speeds. Our results demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the accuracy of parameter estimation, particularly when the number of unbinding events are limited and not well separated into distinct groups. Cluster analysis is easy to implement, and our performance benchmarks serve as a guide in choosing an appropriate method for DFS data analysis.
Interactions of pharmacokinetic profile of different parts from Ginkgo biloba extract in rats.
Guan, HanLiang; Qian, Dawei; Ren, Hao; Zhang, Wei; Nie, Hui; Shang, Erxing; Duan, Jinao
2014-08-08
Extracts from Ginkgo biloba L. leaves confer their therapeutic effects through the synergistic actions of flavonoid and terpenoid components, but some non-flavonoid and non-terpenoid components also exist in this extract. In the study of this paper, an investigation was carried out to compare the pharmacokinetic parameters of fourteen compounds to clarify the influences of non-flavonoid and non-terpenoid fraction (WEF) on the pharmacokinetics profile of the flavonoid fraction (FF) and the terpene lactone fraction (TLF) from Ginkgo biloba extracts. A selective and sensitive UPLC-MS/MS method was established to determine the plasma concentrations of the fourteen compounds to compare the pharmacokinetic parameters after orally administration of FF, TLF, FF-WEF, FF-TLF, TLF-WEF and FF-TLF-WEF with approximately the same dose. At different time points, the concentration of rutin (1), isoquercitrin (2), quercetin 3-O-[4-O-(-β-D-glucosyl)-α-L-rhamnoside] (3), ginkgolide C (4), bilobalide (5), quercitrin (6), ginkgolide B (7), ginkgolide A (8), luteolin (9), quercetin (10), apigenin (11), kaempferol (12), isorhamnetin (13), genkwanin (14) in rat plasma were determined and main pharmacokinetic parameters including T1/2, Tmax, Cmax and AUC were calculated using the DAS 3.2 software package. The statistical analysis was performed using the Student׳s t-test with P<0.05 as the level of significance. FF and WEF had no effect on the pharmacokinetic behaviors and parameters of the four terpene lactones, but the pharmacokinetic profiles and parameters of flavonoids changed while co-administered with non-flavonoid components. It was found that Cmax and AUC of six flavonoid aglycones in group FF-WEF, FF-TLF and FF-TLF-WEF had varying degrees of reduction in comparison with group FF, especially in group FF-TLF-WEF. On the contrary, the values of Cmax, Tmax and AUC of four flavonoid glycosides in group FF-TLF-WEF were significantly increased compared with those in group FF. These results indicate that non-flavonoid components in Ginkgo biloba extracts could increase the absorption and improve the bioavailability of flavonoid glycosides but decrease the absorption and reduce the bioavailability of flavonoid aglycones. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Colic, Lejla; Woelfer, Marie; Colic, Merima; Leutritz, Anna Linda; Liebe, Thomas; Fensky, Luisa; Sen, Zumrut Duygu; Li, Meng; Hoffmann, Juliane; Kretzschmar, Moritz A; Isermann, Berend; Walter, Martin
2018-04-23
Recently, ketamine has been investigated as a potential antidepressant option for treatment resistant depression. Unlike traditional drugs, it yields immediate effects, most likely via increased glutamatergic transmission and synaptic plasticity. However, ketamine administration in humans is systemic and its long-term impact on blood parameters has not yet been described in clinical studies. Here we investigated potential sustained effects of ketamine administration (0.5 mg/kg ketamine racemate) on hematological and biochemical values in plasma and serum in a randomized double-blinded study. 80 healthy young participants were included and whole blood samples were collected 5 days before, and 14 days after the infusion. To assess the group effect, repeated measure analyses of co-variance (rmANCOVA) were conducted for the following blood parameters: levels of sodium, potassium, calcium, hemoglobin and number of erythrocytes, lymphocytes, and thrombocytes. RmANCOVA revealed a significant time by treatment effect on thrombocyte levels (F 1, 74 = 13.54, p < 0.001, eta = 0.155), driven by an increase in the ketamine group (paired t-test, t = -3.51, df = 38, p = 0.001). Specificity of thrombocyte effect was confirmed by logistic regression, and in addition, no other coagulation parameters showed significant interaction. Moreover, the relative increase in the ketamine group was stable across sexes and not predicted by age, BMI, smoking, alcohol or drug use, and contraception. Our results describe aftereffects of sub-anesthetic ketamine administration on blood coagulation parameters, which should be considered especially when targeting psychiatric populations with relevant clinical comorbidities. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yi; Zhang, Hui; Zhou, Wenzhao; Deng, Chao; Liao, Jian
2018-06-01
This study set out with the aim of investigating the solvent effects on dimethyl phthalate (DMP) using FTIR characterization, solvent parameter correlation and DFT calculation. DMP exposed to 17 organic solvents manifested varying shift in the carbonyl stretching vibration frequency (νCdbnd O). Non-alkanols induced Band I and alkanols produced Band I and Band II. Through correlating the νCdbnd O with the empirical solvent scales including acceptor parameter (AN), Schleyer's linear free energy parameter (G), and linear free salvation energy relationships (LSER), Band I was mainly ascribed to non-specific effects from either non-alkanols or alkanol polymers ((alkanol)n). νCdbnd O of the latter indicated minor red shift and less variability compared to the former. An assumption was made and validated about the sequestering of hydroxyl group by the bulky hydrophobic chain in (alkanol)n, creating what we refer to as "screening effects". Ab initio calculation, on the other hand, provided insights for possible hydrogen binding between DMP and (ethanol)n or between ethanol monomers. The two components of Band I observed in inert solvents were assigned to the two Cdbnd O groups adopting differentiated conformations. This in turn prompted our consideration that hydrogen binding was highly selective in favor of lowly associated (alkanol)n and the particular Cdbnd O group having relatively less steric hindrance and stronger electron-donating capacity. Band II was therefore believed to derive from hydrogen-bond interactions mainly in manner of 1:1 and 1:2 DMP-(alkanol)n complexes.
Design and implementation of a biomedical image database (BDIM).
Aubry, F; Badaoui, S; Kaplan, H; Di Paola, R
1988-01-01
We developed a biomedical image database (BDIM) which proposes a standardized representation of value arrays such as images and curves, and of their associated parameters, independently of their acquisition mode to make their transmission and processing easier. It includes three kinds of interactions, oriented to the users. The network concept was kept as a constraint to incorporate the BDIM in a distributed structure and we maintained compatibility with the ACR/NEMA communication protocol. The management of arrays and their associated parameters includes two distinct bases of objects, linked together via a gateway. The first one manages arrays according to their storage mode: long term storage on optionally on-line mass storage devices, and, for consultations, partial copies of long term stored arrays on hard disk. The second one manages the associated parameters and the gateway by means of the relational DBMS ORACLE. Parameters are grouped into relations. Some of them are in agreement with groups defined by the ACR/NEMA. The other relations describe objects resulting from processed initial objects. These new objects are not described by the ACR/NEMA but they can be inserted as shadow groups of ACR/NEMA description. The relations describing the storage and their pathname constitute the gateway. ORACLE distributed tools and the two-level storage technique will allow the integration of the BDIM into a distributed structure, Queries and array (alone or in sequences) retrieval module has access to the relations via a level in which a dictionary managed by ORACLE is included. This dictionary translates ACR/NEMA objects into objects that can be handled by the DBMS.(ABSTRACT TRUNCATED AT 250 WORDS)
Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).
Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).
Batrouni, G. G.; Rousseau, V. G.; Scalettar, R. T.; ...
2014-11-17
Here, we study the phase diagram of the one-dimensional bosonic Hubbard model with contact (U) and near neighbor (V ) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The parameter regime (U, V and μ) where this phase exists and how it competes with other phases such as the supersolid (SS) phase, is incompletely understood. We use the Stochastic Green Function quantum Monte Carlo algorithm as well as the density matrix renormalization group to map out the phase diagram. The HI exists only at = 1, the SS phase existsmore » for a very wide range of parameters (including commensurate fillings) and displays power law decay in the one body Green function were our main conclusions. Additionally, we show that at fixed integer density, the system exhibits phase separation in the (U, V ) plane.« less
The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model
van Hoeve, Sander; Leenstra, Bernard; Willems, Paul; Poeze, Martijn; Meijer, Kenneth
2017-01-01
Abstract Background: The effects of age and speed on foot and ankle kinematics in gait studies using foot models are not fully understood, whereas this can have significant influence. We analyzed these variables with the 4-segment Oxford foot model. Methods: Twenty-one healthy subjects (aged 20–65 years) were recruited for gait analysis. The effect of speed on foot and ankle kinematics was assessed by comparing results during slow walking and fast walking. To assess the effect of age, a group of 13 healthy young adults (aged 20–24 years) were compared with a group of 8 older adults (aged 53–65 years). Also, the interaction between age and speed was analyzed. Results: Regarding speed, there was a significant difference between forefoot/hindfoot motion in the sagittal plane (flexion/extension) during both loading- and push-off phase (P = .004, P < .001). Between hindfoot/tibia, there was a significant difference for all parameters except for motion in the sagittal plane (flexion/extension) during push-off phase (P = .5). Age did not significantly influence kinematics. There was no interaction between age and speed. Conclusion: Our analysis found that speed significantly influenced the kinematic outcome parameters. This was more pronounced in the ankle joint. In contrast, no significant differences were found between younger and older healthy subjects. PMID:28858109
qPIPSA: Relating enzymatic kinetic parameters and interaction fields
Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C
2007-01-01
Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319
Richards, Jessica M.; Patel, Nilam; Daniele, Teresa; MacPherson, Laura; Lejuez, C.W.; Ernst, Monique
2014-01-01
Risk-taking behavior increases during adolescence, leading to potentially disastrous consequences. Social anxiety emerges in adolescence and may compound risk-taking propensity, particularly during stress and when reward potential is high. However, the manner in which social anxiety, stress, and reward parameters interact to impact adolescent risk-taking is unclear. To clarify this question, a community sample of 35 adolescents (15 to 18 yo), characterized as having high or low social anxiety, participated in a 2-day study, during each of which they were exposed to either a social stress or a control condition, while performing a risky decision-making task. The task manipulated, orthogonally, reward magnitude and probability across trials. Three findings emerged. First, reward magnitude had a greater impact on the rate of risky decisions in high social anxiety (HSA) than low social anxiety (LSA) adolescents. Second, reaction times (RTs) were similar during the social stress and the control conditions for the HSA group, whereas the LSA group’s RTs differed between conditions. Third, HSA adolescents showed the longest RTs on the most negative trials. These findings suggest that risk-taking in adolescents is modulated by context and reward parameters differentially as a function of social anxiety. PMID:25465884
Problems of low-parameter equations of state
NASA Astrophysics Data System (ADS)
Petrik, G. G.
2017-11-01
The paper focuses on the system approach to problems of low-parametric equations of state (EOS). It is a continuation of the investigations in the field of substantiated prognosis of properties on two levels, molecular and thermodynamic. Two sets of low-parameter EOS have been considered based on two very simple molecular-level models. The first one consists of EOS of van der Waals type (a modification of van der Waals EOS proposed for spheres). The main problem of these EOS is a weak connection with the micro-level, which raise many uncertainties. The second group of EOS has been derived by the author independently of the ideas of van der Waals based on the model of interacting point centers (IPC). All the parameters of the EOS have a meaning and are associated with the manifestation of attractive and repulsive forces. The relationship between them is found to be the control parameter of the thermodynamic level. In this case, EOS IPC passes into a one-parameter family. It is shown that many EOS of vdW-type can be included in the framework of the PC model. Simultaneously, all their parameters acquire a physical meaning.
Analytical study on the generalized Davydov model in the alpha helical proteins
NASA Astrophysics Data System (ADS)
Wang, Pan; Xiao, Shu-Hong; Chen, Li; Yang, Gang
2017-06-01
In this paper, we investigate the dynamics of a generalized Davydov model derived from an infinite chain of alpha helical protein molecules which contain three hydrogen bonding spines running almost parallel to the helical axis. Through the introduction of the auxiliary function, the bilinear form, one-, two- and three-soliton solutions for the generalized Davydov model are obtained firstly. Propagation and interactions of solitons have been investigated analytically and graphically. The amplitude of the soliton is only related to the complex parameter μ and real parameter 𝜃 with a range of [0, 2π]. The velocity of the soliton is only related to the complex parameter μ, real parameter 𝜃, lattice parameter 𝜀, and physical parameters β1, β3 and β4. Overtaking and head-on interactions of two and three solitons are presented. The common in the interactions of three solitons is the directions of the solitons change after the interactions. The soliton derived in this paper is expected to have potential applications in the alpha helical proteins.
The concomitant use of lapatinib and paracetamol - the risk of interaction.
Karbownik, Agnieszka; Szałek, Edyta; Sobańska, Katarzyna; Grabowski, Tomasz; Klupczynska, Agnieszka; Plewa, Szymon; Wolc, Anna; Magiera, Magdalena; Porażka, Joanna; Kokot, Zenon J; Grześkowiak, Edmund
2018-02-20
Lapatinib is a tyrosine kinase inhibitor used for the treatment of breast cancer. Paracetamol is an analgesic commonly applied to patients with mild or moderate pain and fever. Cancer patients are polymedicated, which involves high risk of drug interactions during therapy. The aim of the study was to assess the interaction between lapatinib and paracetamol in rats. The rats were divided into three groups of eight animals in each. One group received lapatinib + paracetamol (I L + PA ), another group received lapatinib (II L ), whereas the last group received paracetamol (III PA ). A single dose of lapatinib (100 mg/kg b.w.) and paracetamol (100 mg/kg b.w.) was administered orally. Plasma concentrations of lapatinib, paracetamol and its metabolites - glucuronide and sulphate, were measured with the validated HPLC-MS/MS method and HPLC-UV method, respectively. The pharmacokinetic parameters of both drugs were calculated using non-compartmental methods. The co-administration of lapatinib and paracetamol increased the area under the plasma concentration-time curve (AUC) and the maximum concentration (C max ) of lapatinib by 239.6% (p = 0.0030) and 184% (p = 0.0011), respectively. Lapatinib decreased the paracetamol AUC 0-∞ by 48.8% and C max by 55.7%. In the I L + PA group the C max of paracetamol glucuronide was reduced, whereas the C max of paracetamol sulphate was higher than in the III PA group. Paracetamol significantly affected the enhanced plasma exposure of lapatinib. Additionally, lapatinib reduced the concentrations of paracetamol. The co-administration of lapatinib decreased the paracetamol glucuronidation but increased the sulphation. The findings of this study may be of clinical relevance to patients requiring analgesic therapy.
Consistent van der Waals Radii for the Whole Main Group
Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G.
2013-01-01
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83. PMID:19382751
Consistent van der Waals radii for the whole main group.
Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G
2009-05-14
Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.
Renormalization group approach to symmetry protected topological phases
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Schnyder, Andreas P.; Chen, Wei
2018-04-01
A defining feature of a symmetry protected topological phase (SPT) in one dimension is the degeneracy of the Schmidt values for any given bipartition. For the system to go through a topological phase transition separating two SPTs, the Schmidt values must either split or cross at the critical point in order to change their degeneracies. A renormalization group (RG) approach based on this splitting or crossing is proposed, through which we obtain an RG flow that identifies the topological phase transitions in the parameter space. Our approach can be implemented numerically in an efficient manner, for example, using the matrix product state formalism, since only the largest first few Schmidt values need to be calculated with sufficient accuracy. Using several concrete models, we demonstrate that the critical points and fixed points of the RG flow coincide with the maxima and minima of the entanglement entropy, respectively, and the method can serve as a numerically efficient tool to analyze interacting SPTs in the parameter space.
Balap, Aishwarya; Atre, Bhagyashri; Lohidasan, Sathiyanarayanan; Sinnathambi, Arulmozhi; Mahadik, Kakasaheb
2016-05-13
Andrographis paniculata Nees (Acanthacae) is commonly used medicinal plant in the traditional. Unani and Ayurvedic medicinal systems. It has broad range of pharmacological effects such as hepatoprotective, antioxidant, antivenom, antifertility, inhibition of replication of the HIV virus, antimalarial, antifungal, antibacterial, antidiabetic, suppression of various cancer cells and anti-inflammatory properties. Andrographolide (AN) is one of the active constituent of the A. paniculata Nees extract (APE). They have been found in many traditional herbal formulations in India and proven to be effective as anti-inflammatory drug To evaluate the pharmacokinetic and pharmacodynamic (anti-arthritic) herb-drug interactions of A. paniculata Nees extract (APE) and pure andrographolide (AN) with etoricoxib (ETO) after oral co-administration in wistar rats. After oral co-administration of APE (200mg/Kg) and AN (60mg/kg) with ETO (10mg/kg) in rats, drug concentrations in plasma were determined using HPLC method. The main pharmacokinetic parameters of Cmax, tmax, t1/2, MRT, Vd, CL, and AUC were calculated by non-compartment model. Change in paw volume, mechanical nociceptive threshold, mechanical hyperalgesia, histopathology and hematological parameters were evaluated to study antiarthritic activity. Co-administration of ETO with APE and pure AN decreased systemic exposure level of each compound in vivo. The Cmax, AUC, t1/2 of ETO was decreased whereas Vd and CL of ETO was increased significantly after co-administration of ETO with pure AN and APE. In pharmacodynamic study, ETO alone and ETO+APE (10+200mg/kg) groups exhibited significant synergistic anti-arthritic activity as compared to groups ETO+AN, APE and AN alone. The results obtained from this study suggested that ETO, APE and pure AN existed pharmacokinetic herb-drug interactions in rat which is correlated with anti-arthritic study. Physicians and patients using A. paniculata should have the knowledge about its possible herb-drug interaction with ETO. Copyright © 2016. Published by Elsevier Ireland Ltd.
Sweetapple, Christine; Fu, Guangtao; Butler, David
2013-09-01
This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Benvenga, S; Ruggeri, R M; Russo, A; Lapa, D; Campenni, A; Trimarchi, F
2001-08-01
Old studies in animals and unblinded studies in a few hyperthyroid patients suggested that L -carnitine is a periferal antagonist of thyroid hormone action at least in some tissues. This conclusion was substantiated by our recent observation that carnitine inhibits thyroid hormone entry into the nucleus of hepatocytes, neurons, and fibroblasts. In the randomized, double-blind, placebo-controlled 6-month trial reported here, we assessed whether 2 or 4 g/d oral L-carnitine were able to both reverse and prevent/minimize nine hyperthyroidism- related symptoms. We also evaluated changes on nine thyroid hormone-sensitive biochemical parameters and on vertebral and hip mineral density (bone mineral density). Fifty women under a fixed TSH-suppressive dose of L -T(4) for all 6 months were randomly allocated to five groups of 10 subjects each. Group 0 associated placebo for 6 months; groups A2 and A4 started associating placebo (first bimester), substituted placebo with 2 or 4 g/d carnitine (second bimester), and then returned to the association with placebo. Groups B2 and B4 started associating 2 and 4 g/d carnitine for the first two bimesters, and then substituted carnitine with placebo (third bimester). Symptoms and biochemical parameters worsened in group 0. In group A, symptoms and biochemical parameters worsened during the first bimester, returned to baseline or increased minimally during the second bimester (except osteocalcin and urinary OH-proline), and worsened again in the third bimester. In group B, symptoms and biochemical parameters (except osteocalcin and urinary OH-proline) did not worsen or even improved over the first 4 months; they tended to worsen in the third bimester. In both the A and B groups, the two doses of carnitine were similarly effective. At the end of the trial, bone mineral density tended to increase in groups B and A (B > A). In conclusion, L-carnitine is effective in both reversing and preventing symptoms of hyperthyroidism and has a beneficial effect on bone mineralization. Because hyperthyroidism depletes the body deposits of carnitine and since carnitine has no toxicity, teratogenicity, contraindications and interactions with drugs, carnitine can be of clinical use.
NASA Technical Reports Server (NTRS)
Cross, P. L.
1994-01-01
Birefringent filters are often used as line-narrowing components in solid state lasers. The Birefringent Filter Model program generates a stand-alone model of a birefringent filter for use in designing and analyzing a birefringent filter. It was originally developed to aid in the design of solid state lasers to be used on aircraft or spacecraft to perform remote sensing of the atmosphere. The model is general enough to allow the user to address problems such as temperature stability requirements, manufacturing tolerances, and alignment tolerances. The input parameters for the program are divided into 7 groups: 1) general parameters which refer to all elements of the filter; 2) wavelength related parameters; 3) filter, coating and orientation parameters; 4) input ray parameters; 5) output device specifications; 6) component related parameters; and 7) transmission profile parameters. The program can analyze a birefringent filter with up to 12 different components, and can calculate the transmission and summary parameters for multiple passes as well as a single pass through the filter. The Jones matrix, which is calculated from the input parameters of Groups 1 through 4, is used to calculate the transmission. Output files containing the calculated transmission or the calculated Jones' matrix as a function of wavelength can be created. These output files can then be used as inputs for user written programs. For example, to plot the transmission or to calculate the eigen-transmittances and the corresponding eigen-polarizations for the Jones' matrix, write the appropriate data to a file. The Birefringent Filter Model is written in Microsoft FORTRAN 2.0. The program format is interactive. It was developed on an IBM PC XT equipped with an 8087 math coprocessor, and has a central memory requirement of approximately 154K. Since Microsoft FORTRAN 2.0 does not support complex arithmetic, matrix routines for addition, subtraction, and multiplication of complex, double precision variables are included. The Birefringent Filter Model was written in 1987.
Evolution of conditional cooperation under multilevel selection.
Zhang, Huanren; Perc, Matjaž
2016-03-11
We study the emergence of conditional cooperation in the presence of both intra-group and inter-group selection. Individuals play public goods games within their groups using conditional strategies, which are represented as piecewise linear response functions. Accordingly, groups engage in conflicts with a certain probability. In contrast to previous studies, we consider continuous contribution levels and a rich set of conditional strategies, allowing for a wide range of possible interactions between strategies. We find that the existence of conditional strategies enables the stabilization of cooperation even under strong intra-group selection. The strategy that eventually dominates in the population has two key properties: (i) It is unexploitable with strong intra-group selection; (ii) It can achieve full contribution to outperform other strategies in the inter-group selection. The success of this strategy is robust to initial conditions as well as changes to important parameters. We also investigate the influence of different factors on cooperation levels, including group conflicts, group size, and migration rate. Their effect on cooperation can be attributed to and explained by their influence on the relative strength of intra-group and inter-group selection.
Interspecies interactions are an integral determinant of microbial community dynamics
Aziz, Fatma A. A.; Suzuki, Kenshi; Ohtaki, Akihiro; Sagegami, Keita; Hirai, Hidetaka; Seno, Jun; Mizuno, Naoko; Inuzuka, Yuma; Saito, Yasuhisa; Tashiro, Yosuke; Hiraishi, Akira; Futamata, Hiroyuki
2015-01-01
This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and “interspecies interaction,” were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, “interspecies interaction,” a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem. PMID:26539177
Whitley, Julie Anne; Rich, Bonnie L
2008-12-01
To explore the hypothesis that nontouch therapy such as therapeutic touch (TT) reduces stress to a clinically important degree and is safe to use in preterm infants. A pilot randomized, double-blind, controlled trial. Two groups of 10 infants were enrolled and randomly assigned to treatment or nontreatment groups. Gestational age was less than 29 weeks. Demographic descriptions of the 2 groups were statistically similar. The observer and staff were blinded to assignment; the TT practitioner was blinded to observed measurements. Each infant received either TT or no therapeutic touch (NTT) for 5 minutes on 3 consecutive days at the same time of day, behind a curtain. Heart period variability (HPV) was measured 5 minutes before, during, and after the treatment phase. Examination of the parameters of oxygen saturation and episodes of apnea demonstrated no increase in adverse events in TT group compared with NTT group. Repeated-measures multivariate analysis of variance on HPV revealed differences in the interaction of group assignment with low-frequency, high-frequency, and low-to-high- frequency ratio interaction (F2,143 = 8.076, P = .000) and for group, day, and low-frequency, high-frequency, and low-to-high-frequency ratio (F2,288 = 3.146, P = .015), and in the posttreatment time period (F1,16 = 6.259, P = .024), reflective of greater parasympathetic activity in TT group. In this pilot trial, HPV showed an increase for the TT group compared with the NTT group. The study reveals no adverse effects of TT in preterm infants.
The X-ray properties of Be/X-ray pulsars in quiescence
NASA Astrophysics Data System (ADS)
Tsygankov, Sergey S.; Wijnands, Rudy; Lutovinov, Alexander A.; Degenaar, Nathalie; Poutanen, Juri
2017-09-01
Observations of accreting neutron stars (NSs) with strong magnetic fields can be used not only for studying the accretion flow interaction with the NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (I) the interaction of a rotating NS (magnetosphere) with the infalling matter at different accretion rates, and (II) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: (I) relatively bright objects with a luminosity around ˜1034 erg s-1 and (hard) power-law spectra, and (II) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group (I) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the infalling matter with the NS magnetic field and those describing heating and cooling in accreting NSs.
Piccolo, Brian D; Wankhade, Umesh D; Chintapalli, Sree V; Bhattacharyya, Sudeepa; Chunqiao, Luo; Shankar, Kartik
2018-03-15
Dynamic assessment of microbial ecology (DAME) is a Shiny-based web application for interactive analysis and visualization of microbial sequencing data. DAME provides researchers not familiar with R programming the ability to access the most current R functions utilized for ecology and gene sequencing data analyses. Currently, DAME supports group comparisons of several ecological estimates of α-diversity and β-diversity, along with differential abundance analysis of individual taxa. Using the Shiny framework, the user has complete control of all aspects of the data analysis, including sample/experimental group selection and filtering, estimate selection, statistical methods and visualization parameters. Furthermore, graphical and tabular outputs are supported by R packages using D3.js and are fully interactive. DAME was implemented in R but can be modified by Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript. It is freely available on the web at https://acnc-shinyapps.shinyapps.io/DAME/. Local installation and source code are available through Github (https://github.com/bdpiccolo/ACNC-DAME). Any system with R can launch DAME locally provided the shiny package is installed. bdpiccolo@uams.edu.
Voicu, Victor; Sârbu, Costel; Tache, Florentin; Micăle, Florina; Rădulescu, Ştefan Flavian; Sakurada, Koichi; Ohta, Hikoto; Medvedovici, Andrei
2014-05-01
The liquid chromatographic behavior observed under bimodal retention conditions (reversed phase and hydrophilic interaction) offers a new basis for the determination of some derived lipophilicity indices. The experiments were carried out on a representative group (30 compounds) of pyridinium oximes, therapeutically tested in acetylcholinesterase reactivation, covering a large range of lipophilic character. The chromatographic behavior was observed on a mixed mode acting stationary phase, resulting from covalent functionalization of high purity spherical silica with long chain alkyl groups terminated by a polar environment created through the vicinal diol substitution at the lasting carbon atoms (Acclaim Mixed Mode HILIC 1 column). Elution was achieved by combining different proportions of 5 mM ammonium formiate solutions in water and acetonitrile. The derived lipophilicity indices were compared with logP values resulting from different computational algorithms. The correlations between experimental and computed data sets are significant. To obtain a better insight on the transition from reversed phase to hydrophilic interaction retention mechanisms, the variation of the thermodynamic parameters determined through the van׳t Hoff approach was also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of Web-based learning methods in emergency medicine: randomized controlled trial.
Leszczyński, Piotr; Gotlib, Joanna; Kopański, Zbigniew; Wejnarski, Arkadiusz; Świeżewski, Stanisław; Gałązkowski, Robert
2018-04-01
In medical education, Web-based learning is increasingly used as a complement to practical classes. The objective of the study was to perform a comparative analysis of three different forms of e-learning course on emergency medicine in terms of an indicator of knowledge growth and students' satisfaction. For the purpose of the study, we developed and implemented a tool in the form of an online course: A - non-animated presentation, B - video, C - interactive video. The participants were undergraduate students of emergency medicine and nursing ( n = 106). A pre-test and a post-test were carried out, and the resulting data were analyzed using parametric tests ( t -test, ANOVA, post-hoc). Final questionnaires assessing six parameters of satisfaction were also evaluated. A significant increase in knowledge in the experimental group which used an interactive video was observed ( p = 0.04). Moreover, the number of replays of learning material was the highest in group C (2.09 ±2.48). The level of post-course satisfaction turned out to be comparable in all three groups ( p = 0.62). The study allowed the interactive course to be identified as the most effective method of distance learning among selected ones. Due to the limitations of the study, we conclude that there is a need for further studies on the effectiveness of e-learning in emergency medicine.
FOR STIMUL-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles McCormick; Roger Hester
This report contains a series of terpolymers containing acrylic acid, methacrylamide and a twin-tailed hydrophobic monomer that were synthesized using micellar polymerization methods. These polymer systems were characterized using light scattering, viscometry, and fluorescence methods. Viscosity studies indicate that increasing the nonpolar character of the hydrophobic monomer (longer chain length or twin tailed vs. single tailed) results in enhanced viscosity in aqueous solutions. The interactions of these polymers with surfactants were investigated. These surfactants include sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), Triton X-100. Viscosity measurements of DiC{sub 6}AM and DiC{sub 8}AM mixtures indicate little interaction with SDS,more » gelation with CTAB, and hemimicelle formation followed by polymer hydrophobe solubilization with Triton X-100. The DiC{sub 10}Am terpolymer shows similar interaction behavior with CTAB and Triton X-100. However, the enhanced hydrophobic nature of the DiC{sub 10} polymer allows complex formation with SDS as confirmed by surface tensiometry. Fluorescence measurements performed on a dansyl labeled DiC{sub 10}Am terpolymer in the presence of increasing amounts of each of the surfactant indicate relative interaction strengths to be CTAB>Triton X-100>SDS. A modified model based on Yamakawa-Fujii and Odjik-Skolnick-Fixman theories was found to describe the contribution of electrostatic forces to the excluded volume of a polyelectrolyte in solution. The model was found to be valid for flexible polymer coils in aqueous salt solutions where intermolecular interactions are minimal. The model suggested that a dimensionless group of parameters termed the dimensionless viscosity should be proportional to the dimensionless ratio of solution screening length to polyion charge spacing. Several sets of experimental data from the literature and from our laboratory have been analyzed according to the model and the results suggest that the two dimensionless groups are indeed related by a universal constant. This model has identified the parameters that are important to fluid mobility, thereby revealing methods to enhance solution performance when using polyions solutions as displacing fluids in oil reservoirs.« less
Orecchioni, Marco; Bedognetti, Davide; Newman, Leon; Fuoco, Claudia; Spada, Filomena; Hendrickx, Wouter; Marincola, Francesco M; Sgarrella, Francesco; Rodrigues, Artur Filipe; Ménard-Moyon, Cécilia; Cesareni, Gianni; Kostarelos, Kostas; Bianco, Alberto; Delogu, Lucia G
2017-10-24
Understanding the biomolecular interactions between graphene and human immune cells is a prerequisite for its utilization as a diagnostic or therapeutic tool. To characterize the complex interactions between graphene and immune cells, we propose an integrative analytical pipeline encompassing the evaluation of molecular and cellular parameters. Herein, we use single-cell mass cytometry to dissect the effects of graphene oxide (GO) and GO functionalized with amino groups (GONH 2 ) on 15 immune cell populations, interrogating 30 markers at the single-cell level. Next, the integration of single-cell mass cytometry with genome-wide transcriptome analysis shows that the amine groups reduce the perturbations caused by GO on cell metabolism and increase biocompatibility. Moreover, GONH 2 polarizes T-cell and monocyte activation toward a T helper-1/M1 immune response. This study describes an innovative approach for the analysis of the effects of nanomaterials on distinct immune cells, laying the foundation for the incorporation of single-cell mass cytometry on the experimental pipeline.
A state interaction spin-orbit coupling density matrix renormalization group method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less
Ostertag-Henning, C.; Risse, A.; Thomas, B.; ...
2014-12-31
Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in compositionmore » of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.« less
A low-temperature polymorph of m-quinquephenyl.
Gomes, Ligia R; Howie, R Alan; Low, John Nicolson; Rodrigues, Ana S M C; Santos, Luís M N B F
2012-12-01
A low-temperature polymorph of 1,1':3',1'':3'',1''':3''',1''''-quinquephenyl (m-quinquephenyl), C(30)H(22), crystallizes in the space group P2(1)/c with two molecules in the asymmetric unit. The crystal is a three-component nonmerohedral twin. A previously reported room-temperature polymorph [Rabideau, Sygula, Dhar & Fronczek (1993). Chem. Commun. pp. 1795-1797] also crystallizes with two molecules in the asymmetric unit in the space group P-1. The unit-cell volume for the low-temperature polymorph is 4120.5 (4) Å(3), almost twice that of the room-temperature polymorph which is 2102.3 (6) Å(3). The molecules in both structures adopt a U-shaped conformation with similar geometric parameters. The structural packing is similar in both compounds, with the molecules lying in layers which stack perpendicular to the longest unit-cell axis. The molecules pack alternately in the layers and in the stacked columns. In both polymorphs, the only interactions between the molecules which can stabilize the packing are very weak C-H...π interactions.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Fili, Soraya Moradi
2014-01-01
The interaction of mesalamine (5-aminosalicylic acid (5-ASA)) with bovine serum albumin (BSA) was investigated by fluorescence quenching, absorption spectroscopy, circular dichroism (CD) techniques, and molecular docking. Thermodynamic parameters (ΔH < 0 and ΔS 0) indicated that the hydrogen bond and electrostatic forces played the major role in the binding of 5-ASA to BSA. The results of CD and UV-vis spectroscopy showed that the binding of this drug to BSA induces some conformational changes in BSA. Displacement experiments predicted that the binding of 5-ASA to BSA is located within domain III, Sudlows site 2, that these observations were substantiated by molecular docking studies. In addition, the docking result shows that the 5-ASA in its anionic form mainly interacts with Gln-416 residue through one hydrogen bond between H atom of 5-ASA anion and the adjacent O atom of the hydroxyl group of Gln-416.
Cooperative polymerization of α-helices induced by macromolecular architecture
NASA Astrophysics Data System (ADS)
Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun
2017-07-01
Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.
Deficits in eye gaze during negative social interactions in patients with schizophrenia.
Choi, Soo-Hee; Ku, Jeonghun; Han, Kiwan; Kim, Eosu; Kim, Sun I; Park, Junyoung; Kim, Jae-Jin
2010-11-01
Impaired social functioning has been reported in patients with schizophrenia. This study aimed to examine characteristics of interpersonal behaviors in patients with schizophrenia during various social interactions using the virtual reality system. Twenty-six patients and 26 controls engaged in the virtual conversation tasks, including 3 positive and 3 negative emotion-laden conversations. Eye gaze and other behavioral parameters were recorded during the listening and answering phases. The amount of eye gaze was assessed as smaller in the patients than in the controls. A significant interaction effect of group status and emotional type was found for the listening phase. The amount of eye gaze in the patients inversely correlated with self-rated scores of assertiveness for the listening phase. These results suggest that the patients displayed inadequate levels of augmentations in eye gaze during negative emotional situations. These deficits should be considered in the treatment and social skills training for patients with schizophrenia.
A study of an orbital radar mapping mission to Venus. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1973-01-01
A preliminary design of a Venus radar mapping orbiter mission and spacecraft was developed. The important technological problems were identified and evaluated. The study was primarily concerned with trading off alternate ways of implementing the mission and examining the most attractive concepts in order to assess technology requirements. Compatible groupings of mission and spacecraft parameters were analyzed by examining the interaction of their functioning elements and assessing their overall cost effectiveness in performing the mission.
Construction of CASCI-type wave functions for very large active spaces.
Boguslawski, Katharina; Marti, Konrad H; Reiher, Markus
2011-06-14
We present a procedure to construct a configuration-interaction expansion containing arbitrary excitations from an underlying full-configuration-interaction-type wave function defined for a very large active space. Our procedure is based on the density-matrix renormalization group (DMRG) algorithm that provides the necessary information in terms of the eigenstates of the reduced density matrices to calculate the coefficient of any basis state in the many-particle Hilbert space. Since the dimension of the Hilbert space scales binomially with the size of the active space, a sophisticated Monte Carlo sampling routine is employed. This sampling algorithm can also construct such configuration-interaction-type wave functions from any other type of tensor network states. The configuration-interaction information obtained serves several purposes. It yields a qualitatively correct description of the molecule's electronic structure, it allows us to analyze DMRG wave functions converged for the same molecular system but with different parameter sets (e.g., different numbers of active-system (block) states), and it can be considered a balanced reference for the application of a subsequent standard multi-reference configuration-interaction method.
Ontogeny of collective behavior reveals a simple attraction rule.
Hinz, Robert C; de Polavieja, Gonzalo G
2017-02-28
The striking patterns of collective animal behavior, including ant trails, bird flocks, and fish schools, can result from local interactions among animals without centralized control. Several of these rules of interaction have been proposed, but it has proven difficult to discriminate which ones are implemented in nature. As a method to better discriminate among interaction rules, we propose to follow the slow birth of a rule of interaction during animal development. Specifically, we followed the development of zebrafish, Danio rerio , and found that larvae turn toward each other from 7 days postfertilization and increase the intensity of interactions until 3 weeks. This developmental dataset allows testing the parameter-free predictions of a simple rule in which animals attract each other part of the time, with attraction defined as turning toward another animal chosen at random. This rule makes each individual likely move to a high density of conspecifics, and moving groups naturally emerge. Development of attraction strength corresponds to an increase in the time spent in attraction behavior. Adults were found to follow the same attraction rule, suggesting a potential significance for adults of other species.
Adamska, K; Bellinghausen, R; Voelkel, A
2008-06-27
The Hansen solubility parameter (HSP) seems to be a useful tool for the thermodynamic characterization of different materials. Unfortunately, estimation of the HSP values can cause some problems. In this work different procedures by using inverse gas chromatography have been presented for calculation of pharmaceutical excipients' solubility parameter. The new procedure proposed, based on the Lindvig et al. methodology, where experimental data of Flory-Huggins interaction parameter are used, can be a reasonable alternative for the estimation of HSP values. The advantage of this method is that the values of Flory-Huggins interaction parameter chi for all test solutes are used for further calculation, thus diverse interactions between test solute and material are taken into consideration.
MINE: Module Identification in Networks
2011-01-01
Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434
Ziembowicz, Francieli Isa; Bender, Caroline Raquel; Frizzo, Clarissa Piccinin; Martins, Marcos Antonio Pinto; de Souza, Thiane Deprá; Kloster, Carmen Luisa; Santos Garcia, Irene Teresinha; Villetti, Marcos Antonio
2017-09-07
Alkylimidazolium salts are an important class of ionic liquids (ILs) due to their self-assembly capacity when in solution and due to their potential applications in chemistry and materials science. Therefore, detailed knowledge of the physicochemical properties of this class of ILs and their mixtures with natural polymers is highly desired. This work describes the interactions between a homologous series of mono- (C n MIMBr) and dicationic imidazolium (C n (MIM) 2 Br 2 ) ILs with cellulose ethers in aqueous medium. The effects of the alkyl chain length (n = 10, 12, 14, and 16), type, and concentration range of ILs (below and above their cmc) on the binding to methylcellulose (MC) were evaluated. The thermodynamic parameters showed that the interactions are favored by the increase of the IL hydrocarbon chain length, and that the binding of monocationic ILs to MC is driven by entropy. The monocationic ILs bind more effectively on the methoxyl group of MC when compared to dicationic ILs, and this outcome may be rationalized by considering the structural difference between the conventional (C n MIMBr) and the bolaform (C n (MIM) 2 Br 2 ) surfactant ILs. The C 16 MIMBr interacts more strongly with hydroxypropylcellulose when compared to methylcellulose, indicating that the strength of the interaction also depends on the hydrophobicity of the cellulose ethers. Our findings highlight that several parameters should be taken into account when designing new complex formulations.
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).
A general consumer-resource population model
Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.
2015-01-01
Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.
The Fundamental Neutron Physics Facilities at NIST.
Nico, J S; Arif, M; Dewey, M S; Gentile, T R; Gilliam, D M; Huffman, P R; Jacobson, D L; Thompson, A K
2005-01-01
The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities.
The Fundamental Neutron Physics Facilities at NIST
Nico, J. S.; Arif, M.; Dewey, M. S.; Gentile, T. R.; Gilliam, D. M.; Huffman, P. R.; Jacobson, D. L.; Thompson, A. K.
2005-01-01
The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities. PMID:27308110
Oki, Erica; Norde, Marina M; Carioca, Antônio A F; Ikeda, Renata E; Souza, José M P; Castro, Inar A; Marchioni, Dirce M L; Fisberg, Regina M; Rogero, Marcelo M
2016-01-01
To assess the interaction of three single nucleotide polymorphisms in the C-reactive protein (CRP) gene and plasma fatty acid (FA) levels in modulating inflammatory profile. A total of 262 subjects, aged >19 y and <60 y, participated in a cross-sectional, population-based study performed in Brazil. Three single nucleotide polymorphisms (rs1205, rs1417938, and rs2808630) spanning the CRP gene were genotyped. Eleven plasma inflammatory biomarkers and plasma FA profile were determined. Cluster analysis was performed to stratify individuals based on eleven inflammatory biomarkers into two groups: an inflammatory (INF) and a noninflammatory group. The INF cluster had higher age, waist circumference, systolic blood pressure, and diastolic blood pressure; higher levels of triacylglycerol, high-sensitivity CRP, tumor necrosis factor-α, interleukin (IL)-8, IL-6, IL-1β, IL-12, IL-10, soluble monocyte chemoattractant protein-1, soluble intercellular adhesion molecule-1, C16:0, polyunsaturated fatty acid, and omega (n)-6 polyunsaturated fatty acid; and greater C20:4n-6, C18:1/18:0, and C20:4/20:3 ratios than the noninflammatory group. Statistically significant gene-plasma C16:1n-7 interaction was detected for rs1417938 (P = 0.047). Those with a dominant homozygous rs2808630 had a lower risk of belonging to the INF group with the upper 50th percentile of C20:4n-6, n-3 highly unsaturated FA, and C20:4/20:3 ratio. Regarding rs1205, A allele carriers had lower risk of being in the INF group when C20:5n-3 and n-3 highly unsaturated FA levels were greater than the median. The INF group exhibited changes in metabolic parameters that predispose this group to chronic disease, where polymorphisms in the CRP gene modulated the risk of being in the INF group depending on individual plasma fatty acid and lipid profile. Copyright © 2016 Elsevier Inc. All rights reserved.
Clemens, Kelly J; Van Nieuwenhuyzen, Petra S; Li, Kong M; Cornish, Jennifer L; Hunt, Glenn E; McGregor, Iain S
2004-05-01
3,4-Methylenedioxymethamphetamine (MDMA) and methamphetamine (METH) are illicit drugs that are increasingly used in combination. The acute and long-term effects of MDMA/METH combinations are largely uncharacterised. The current study investigated the behavioural, thermal and neurotoxic effects of MDMA and METH when given alone or in combined low doses. Male rats received four injections, one every 2 h, of vehicle, MDMA (2.5 or 5 mg/kg per injection), METH (2.5 or 5 mg/kg per injection) or combined MDMA/METH (1.25+1.25 mg/kg per injection or 2+2 mg/kg per injection). Drugs were given at an ambient temperature of 28 degrees C to simulate hot nightclub conditions. Body temperature, locomotor activity and head-weaving were assessed during acute drug administration while social interaction, anxiety-related behavior on the emergence test and neurochemical parameters were assessed 4-7 weeks later. All treatments acutely increased locomotor activity, while pronounced head-weaving was seen with both MDMA/METH treatments and the higher dose METH treatment. Acute hyperthermia was greatest with the higher dose MDMA/METH treatment and was also seen with MDMA but not METH treatment. Several weeks after drug administration, both MDMA/METH groups, both METH groups and the higher dose MDMA group showed decreased social interaction relative to controls, while both MDMA/METH groups and the lower dose MDMA group showed increased anxiety-like behaviour on the emergence test. MDMA treatment caused 5-HT and 5-HIAA depletion in several brain regions, while METH treatment reduced dopamine in the prefrontal cortex. Combined MDMA/METH treatment caused 5-HT and 5-HIAA depletion in several brain regions and a unique depletion of dopamine and DOPAC in the striatum. These results suggest that MDMA and METH in combination may have greater adverse acute effects (head-weaving, body temperature) and long-term effects (decreased social interaction, increased emergence anxiety, dopamine depletion) than equivalent doses of either drug alone.
Doulames, Vanessa; Lee, Sangmook; Shea, Thomas B
2014-05-01
Environmental stimulation and increased social interactions stimulate cognitive performance, while decrease in these parameters can exacerbate cognitive decline as a function of illness, injury, or age. We examined the impact of environmental stimulation and social interactions on cognitive performance in healthy adult C57B1/6J mice. Mice were housed for 1 month individually or in groups of three (to prevent or allow social interaction) in either a standard environment (SE) or an enlarged cage containing nesting material and items classically utilized to stimulate exploration and activity ("enriched environment"; EE). Cognitive performance was tested by Y maze navigation and Novel Object Recognition (NOR; which compares the relative amount of time mice spent investigating a novel vs. a familiar object). Mice maintained for 1 month under isolated conditions in the SE statistically declined in performance versus baseline in the Y maze (p < 0.02; ANOVA). Performance under all other conditions did not change from baseline. Maintenance in groups in the SE statistically improved NOR (p < 0.01), whereas maintenance in isolation in the SE did not alter performance from baseline. Maintenance in the EE statistically improved performance in NOR for mice housed in groups and individually (p < 0.01). Maintenance under isolated conditions slightly increased reactive oxygen/nitrogen species (ROS/RNS) in brain. Environmental enrichment did not influence ROS/RNS. These findings indicate that environmental and social enrichment can positively influence cognitive performance in healthy adult mice, and support the notion that proactive approaches may delay age-related cognitive decline.
Scharf, A; Staboulidou, I; Günter, H H; Wüstemann, M; Sohn, C
2003-01-01
Acupuncture as a non-evidence-based therapy modality is widely used in obstetrics prior to and during delivery. Thus far, only few studies investigated the impact of acupuncture on obstetric surveillance parameters like cardiotocography. The aim of this study was to control the effect of clearly-defined acupuncture on CTG parameters. 61 low-risk singleton pregnancies between 30 + 0 and 39 + 6 weeks of gestation were prospectively treated with acupuncture at GV 20 and ST 36 bilaterally for the purpose of maternal relaxation by the same investigator under CTG control. Before (Phase 1), during (Phase 2) and after (Phase 3) treatment the cardiotocogram was recorded. Controlled parameters of outcome were the Fisher score, uterine activity (Phase 1, 2, 3) and maternal blood pressure and pulse before (Phase 1) and after (Phase 2) administration of acupuncture. In a matched control group, 60 pregnant women were monitored by an identical scheme without application of acupuncture and the same outcome parameters were recorded. : The CTG analysis revealed a statistically significant increase of the Fisher score as well as uterine activity which tended to trace back to pretherapeutic initial values. The systolic maternal blood pressure was found to show a statistically significant decrease while diastolic blood pressure and pulse frequency remained unchanged. In the control group, the comparison of phase 1 vs. phase 2 showed a statistically significant increase of the Fischer score and uterine activity. During phase 3 the Fischer score further increased in contrast to a statistically significant slight reduction of uterine activity. Maternal systolic blood pressure measured at the end of phase 2 was found to be statistically reduced while diastolic blood pressure and pulse remained unchanged. The extent of the systolic blood pressure reduction was markedly higher in the acupuncture group as compared to the control group. Antenatal acupuncture as a reflex therapy for the purpose of maternal relaxation seems to exert an influence on short-term alterations of the fetal activity (transient increase in terms of Fischer score) with reversibly increased uterine activity as detected by cardiotocography. Also, a slight reduction of the maternal blood pressure seems to be effected. The phenomena recorded in the control group (relaxation without supportive acupuncture treatment) revealed to be partially concordant (reversibly increased uterine activity, mild maternal reduction of systolic blood pressure) and partially discordant (persisting increase of Fischer score) as compared with the acupuncture group. Acupuncture seems not only to have a psychological, but also a short-term somatic effect with direct influence on maternal and fetal circulation parameters. Other established surveillance parameters and different points of acupuncture should be studied to further elucidate the underlying interaction as well as the duration of this effect.
Antagonistic and synergistic interactions among predators.
Huxel, Gary R
2007-08-01
The structure and dynamics of food webs are largely dependent upon interactions among consumers and their resources. However, interspecific interactions such as intraguild predation and interference competition can also play a significant role in the stability of communities. The role of antagonistic/synergistic interactions among predators has been largely ignored in food web theory. These mechanisms influence predation rates, which is one of the key factors regulating food web structure and dynamics, thus ignoring them can potentially limit understanding of food webs. Using nonlinear models, it is shown that critical aspects of multiple predator food web dynamics are antagonistic/synergistic interactions among predators. The influence of antagonistic/synergistic interactions on coexistence of predators depended largely upon the parameter set used and the degree of feeding niche differentiation. In all cases when there was no effect of antagonism or synergism (a ( ij )=1.00), the predators coexisted. Using the stable parameter set, coexistence occurred across the range of antagonism/synergism used. However, using the chaotic parameter strong antagonism resulted in the extinction of one or both species, while strong synergism tended to coexistence. Whereas using the limit cycle parameter set, coexistence was strongly dependent on the degree of feeding niche overlap. Additionally increasing the degree of feeding specialization of the predators on the two prey species increased the amount of parameter space in which coexistence of the two predators occurred. Bifurcation analyses supported the general pattern of increased stability when the predator interaction was synergistic and decreased stability when it was antagonistic. Thus, synergistic interactions should be more common than antagonistic interactions in ecological systems.
Dirks-Hofmeister, Mareike E.; Singh, Ratna; Leufken, Christine M.; Inlow, Jennifer K.; Moerschbacher, Bruno M.
2014-01-01
Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure–function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a “selector” for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates. PMID:24918587
Dirks-Hofmeister, Mareike E; Singh, Ratna; Leufken, Christine M; Inlow, Jennifer K; Moerschbacher, Bruno M
2014-01-01
Polyphenol oxidases (PPOs) are ubiquitous type-3 copper enzymes that catalyze the oxygen-dependent conversion of o-diphenols to the corresponding quinones. In most plants, PPOs are present as multiple isoenzymes that probably serve distinct functions, although the precise relationship between sequence, structure and function has not been addressed in detail. We therefore compared the characteristics and activities of recombinant dandelion PPOs to gain insight into the structure-function relationships within the plant PPO family. Phylogenetic analysis resolved the 11 isoenzymes of dandelion into two evolutionary groups. More detailed in silico and in vitro analyses of four representative PPOs covering both phylogenetic groups were performed. Molecular modeling and docking predicted differences in enzyme-substrate interactions, providing a structure-based explanation for grouping. One amino acid side chain positioned at the entrance to the active site (position HB2+1) potentially acts as a "selector" for substrate binding. In vitro activity measurements with the recombinant, purified enzymes also revealed group-specific differences in kinetic parameters when the selected PPOs were presented with five model substrates. The combination of our enzyme kinetic measurements and the in silico docking studies therefore indicate that the physiological functions of individual PPOs might be defined by their specific interactions with different natural substrates.
Ghost Dark Energy with Sign-changeable Interaction Term
NASA Astrophysics Data System (ADS)
Zadeh, M. Abdollahi; Sheykhi, A.; Moradpour, H.
2017-11-01
Regarding the Veneziano ghost of QCD and its generalized form, we consider a Friedmann-Robertson-Walker (FRW) universe filled by a pressureless matter and a dark energy component interacting with each other through a mutual sign-changeable interaction of positive coupling constant. Our study shows that, at the late time, for the deceleration parameter we have q → -1, while the equation of state parameter of the interacting ghost dark energy (GDE) does not cross the phantom line, namely ω D ≥ -1. We also extend our study to the generalized ghost dark energy (GGDE) model and show that, at late time, the equation of state parameter of the interacting GGDE also respects the phantom line in both flat and non-flat universes. Moreover, we find out that, unlike the non-flat universe, we have q → -1 at late time for flat FRW universe. In order to make the behavior of the underlying models more clear, the deceleration parameter q as well as the equation of state parameter w D for flat and closed universes have been plotted against the redshift parameter, z. All of the studied cases admit a transition in the expansion history of universe from a deceleration phase to an accelerated one around z ≈ 0.6.
Czogała, Jan; Cholewiński, Mateusz; Kutek, Agnieszka; Zielińska-Danch, Wioleta
2012-01-01
A relatively new device, described by producers as a device to help smokers quit, nicotine inhaler is an electronic (e-cigarette). Its mission is to provide the body with small doses of nicotine behavior "ceremonial" burning product is not tested for efficacy and toxicity The aim of this study was to compare the effects of nicotine absorbed from cigarette conventional and electronic changes in systolic and diastolic blood pressure and heart rate. Because of the potential interaction of carbon monoxide contained in cigarette smoke and nicotine conventional to changes on the parameters is also going to examine changes in the concentration of carboxyhemoglobin after smoking cigarettes and using e-cigarettes. study group consisted of 42 people, including 21 women and 21 men aged from 18 to 62 years who declared daily cigarette smoking. In this study it was found that as a result of cigarette smoking are increasing all the analyzed conventional hemodynamic parameters, these increases probably normally associated with nicotine absorbed by the smoker with the smoke. It was also a clear increase in carboxyhemoglobin, which is associated with a high concentration of carbon monoxide in cigarette smoke. If you use the e-cigarettes tested were observed increases in diastolic blood pressure and pulse, but none of the parameters did not change significantly, indicating that either the use of e-cigarette by the respondents did not supply the body with absorbable nicotine or for the increase in haemodynamic parameters studied did not correspond only nicotine but also other smoke constituents that interact with nicotine to the smoker body as carbon monoxide.
Reconstruction of interaction rate in holographic dark energy
NASA Astrophysics Data System (ADS)
Mukherjee, Ankan
2016-11-01
The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for three different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernovab data (SNe), baryon acoustic oscillation data (BAO) and the distance prior of cosmic microwave background (CMB) namely the CMB shift parameter data (CMBShift). The interaction rate obtained in the present work remains always positive and increases with expansion. It is very similar to the result obtained by Sen and Pavon [1] where the interaction rate has been reconstructed for a parametrization of the dark energy equation of state. Tighter constraints on the interaction rate have been obtained in the present work as it is based on larger data sets. The nature of the dark energy equation of state parameter has also been studied for the present models. Though the reconstruction is done from different parametrizations, the overall nature of the interaction rate is very similar in all the cases. Different information criteria and the Bayesian evidence, which have been invoked in the context of model selection, show that the these models are at close proximity of each other.
Compact configurations within small evolving groups of galaxies
NASA Astrophysics Data System (ADS)
Mamon, G. A.
Small virialized groups of galaxies are evolved with a gravitational N-body code, where the galaxies and a diffuse background are treated as single particles, but with mass and luminosity profiles attached, which enbles the estimation of parameters such as internal energies, half-mass radii, and the softened potential energies of interaction. The numerical treatment includes mergers, collisional stripping, tidal limitation by the mean-field of the background (evaluated using a combination of instantaneous and impulsive formulations), galaxy heating from collisons, and background heating from dynamical friction. The groups start out either as dense as appear the groups in Hickson's (1982) catalog, or as loose as appear those in Turner and Gott's (1976a) catalog, and they are simulated many times (usually 20) with different initial positions and velocities. Dense groups of galaxies with massive dark haloes coalesce into a single galaxy and lose their compact group appearance in approximately 3 group half-mass crossing times, while dense groups of galaxies without massive haloes survive the merger instability for 15 half-mass crossing times (in a more massive background to keep the same total group mass).
Hernández, Joaquín; Benedito, José Luís; Vázquez, Patricia; Pereira, Victor; Méndez, Jesús; Sotillo, Juan; Castillo, Cristina
2009-01-01
This study investigated the in vivo effects of a commercial blend of plant extracts (carvacrol, cinnamaldehyde and capsaicin) on blood acid-base balance and serum lactate levels in a 148-day feedlot experimentwith 24 double-muscled Belgian Blue bull calves. Animals were allotted randomly to one of two experimental groups: 1) a control group (C, no supplementation; n = 10), and 2) a group receiving dietary supplementation with a combination of plant extracts (PE, 100 mg per kg DM of concentrate; n = 14). All animals received a high-grain ration, typical of diets fed commercially to feedlot cattle in Spain, consisting mainly of barley plus other components in proportions depending on the production phase. Production data (weight, DMI, ADG and feed-to-gain ratio) were recorded, and venous blood pH, pCO2, HCO3(-), Base Excess -BE- and serum L-lactate were determined. Apparently, beneficial effects of supplementation on production parameters were observed in both growing and finishing periods, though statistically significant effects were only observed in the finishing period. As regards blood parameters, no significant effects of supplementation (or the supplementation x time interaction) were observed, except for an effect on blood pH in the growing period, when supplemented animals showed significantly higher values than controls. A beneficial supplementation x time interactive effect was observed on serum L-lactate levels: from the first week of the study until the end, supplemented animals showed significantly lower levels than controls. These in vivo results support the utility of this dietary supplement in feedlot cattle receiving a barley-based high-grain diet.
NASA Astrophysics Data System (ADS)
Ren, Luchuan
2015-04-01
A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method
Surface Peroneal Nerve Stimulation in Lower Limb Hemiparesis: Effect on Quantitative Gait Parameters
Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas D.; Buurke, Jaap H.; IJzerman, Maarten J.; Chae, John
2015-01-01
Objective To evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation (PNS) versus usual care (UC) via quantitative gait analysis. Design Randomized controlled clinical trial. Setting Teaching hospital of academic medical center. Participants 110 chronic stroke survivors (> 12-wks post-stroke) with unilateral hemiparesis. Interventions Subjects were randomized to a surface PNS device or UC intervention. Subjects were treated for 12-wks and followed for 6-months post-treatment. Main Outcome Measures Spatiotemporal, kinematic, and kinetic parameters of gait. Results Cadence (F3,153=5.81, p=.012), stride length (F3,179=20.01, p<.001), walking speed (F3,167=18.2, p<.001), anterior posterior ground reaction force (F3,164=6.61, p=.004), peak hip power in pre-swing (F3,156=8.76, p<.001), and peak ankle power at push-off (F3,149=6.38, p=.005) all improved with respect to time. However, peak ankle DF in swing (F3,184=4.99, p=.031) worsened. In general, the greatest change for all parameters occurred during the treatment period. There was no significant treatment group by time interaction effects for any of the spatiotemporal, kinematic, or kinetic parameters. Conclusions Gait training with PNS and usual care was associated with improvements in peak hip power in pre-swing and peak ankle power at push-off, which may have resulted in improved cadence, stride length, and walking speed; however, there were no differences between treatment groups. Both treatment groups also experienced a decrease in peak ankle DF in swing, though the clinical implications of this finding are unclear. PMID:25802966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Hiromichi, E-mail: hishiyam@kitasato-u.ac.jp; Satoh, Takefumi; Kawakami, Shogo
Purpose: To compare dosimetric parameters, seed migration rates, operation times, and acute toxicities of intraoperatively built custom-linked (IBCL) seeds with those of loose seeds for prostate brachytherapy. Methods and Materials: Participants were 140 patients with low or intermediate prostate cancer prospectively allocated to an IBCL seed group (n=74) or a loose seed group (n=66), using quasirandomization (allocated by week of the month). All patients underwent prostate brachytherapy using an interactive plan technique. Computed tomography and plain radiography were performed the next day and 1 month after brachytherapy. The primary endpoint was detection of a 5% difference in dose to 90% ofmore » prostate volume on postimplant computed tomography 1 month after treatment. Seed migration was defined as a seed position >1 cm from the cluster of other seeds on radiography. A seed dropped into the seminal vesicle was also defined as a migrated seed. Results: Dosimetric parameters including the primary endpoint did not differ significantly between groups, but seed migration rate was significantly lower in the IBCL seed group (0%) than in the loose seed group (55%; P<.001). Mean operation time was slightly but significantly longer in the IBCL seed group (57 min) than in the loose seed group (50 min; P<.001). No significant differences in acute toxicities were seen between groups (median follow-up, 9 months). Conclusions: This prospective quasirandomized control trial showed no dosimetric differences between IBCL seed and loose seed groups. However, a strong trend toward decreased postimplant seed migration was shown in the IBCL seed group.« less
Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu
2012-01-01
Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305
Wang, Yu-Jen; Wang, Yi-Zen; Yeh, Mei-Ling
2016-07-01
Numerous studies have demonstrated autonomic abnormalities in various pain conditions. However, few have investigated heart rate variability (HRV) in young women with primary dysmenorrhea, and the conclusions have been inconsistent. More evidence is required to confirm the reported trend for consistent fluctuation of HRV parameters in dysmenorrhea. The study's aim was to determine whether significant differences exist between young women with and without dysmenorrhea for heart rate (HR), blood pressure (BP), and HRV parameters during menses. A prospective comparison design with repeated measures was used. Sixty-six women aged 18-25 with dysmenorrhea and 54 eumenorrheic women were recruited from a university in northern Taiwan. High-frequency and low-frequency HRV parameters (HF and LF), LF/HF ratio, BP, and HR were measured daily between 8 p.m. and 10 p.m. from Day 1 to Day 6 during menses. The generalized estimating equation was used to analyze the effects of group, time, and Group × Time interaction on these variables. HF values were significantly lower in the dysmenorrhea than in the eumenorrhea group, but there were no differences in BP, HR, LF, or LF/HF ratio. Reduced HF values reflect reduced parasympathetic activity and autonomic instability in young women with dysmenorrhea. Future longitudinal studies are warranted to examine autonomic regulation in menstrual pain of varying intensities associated with dysmenorrhea-related symptoms and to clarify the causal relationship between dysmenorrhea and HRV fluctuations. © The Author(s) 2016.
Partition thermodynamics of ionic surfactants between phosphatidylcholine vesicle and water phases
NASA Astrophysics Data System (ADS)
Chu, Shin-Chi; Hung, Chia-Hui; Wang, Shun-Cheng; Tsao, Heng-Kwong
2003-08-01
The partition of ionic surfactants (sodium alkyl sulfate and alkyl trimethyl ammonium bromide) between phosphatidylcholine vesicles and aqueous phase is investigated by simple conductometry under different temperatures. The experimental results can be well represented by the proposed regular solution theory and the thermodynamic parameters satisfy the thermodynamic consistency. The deviation from ideal partition is manifested through the effective interaction energy between lipid and surfactant wb, which is O(kT) large. It is found that wb rises as the alkyl chain is decreased for a specified head group. This is attributed to significant mismatch of chain lengths between surfactant and lipid molecules. The partition coefficient K declines with increasing temperature. The energy barrier from bilayer to aqueous phase, Δμ/kT∝ln K, is in the range of 16-26 kJ/mol. As the alkyl chain length is decreased for a given head group, Δμ is lowered by 1.3-1.5 kJ/mol per methylene group. Two independent analyses are employed to confirm this result. Using the thermodynamic parameters determined from experiments, the internal energy, entropy, and free energy of the partition process can be derived. Partition is essentially driven by the internal energy gain. The solubilizing ability, which is represented by the maximum surfactant-lipid ratio in the bilayer, Reb also decreases in accord with the K parameter. It is because the change in temperature influences the surfactant incorporation into the bilayer more than the formation of micelles.
Samala, Sujatha; Veeresham, Ciddi
2016-03-01
The effect of boswellic acids (BA) and andrographolide (AD) on the pharmacokinetics and pharmacodynamics of glyburide in normal as well as in streptozotocin-induced diabetic rats was studied. In normal and diabetic rats, the combination of glyburide with BA or AD increased significantly (p < 0.01) all the pharmacokinetic parameters, such as Cmax, AUC0-n, AUCtotal, t1/2, and mean residence time, and decreased the clearance, Vd, markedly as compared with the control group. In rat liver, microsomes BA and AD have shown CYP3A4 inhibitory activity significantly (p < 0.01), compared with the vehicle group. The increase in hypoglycemic action by concomitant administration of glyburide with BA or AD was more in diabetic rats than when the drugs were used singly and with the control group, which suggests the enhancement of glucose reduction capacity of glyburide in diabetic rats along with BA or AD. In PK/PD modeling of BA and AD with glyburide, the predicted PK and PD parameters are in line with the observed PK and PD parameters. The results revealed that BA and AD led to the PK/PD changes because of glyburide-increased bioavailability and because of the inhibition of CYP3A4 enzyme. In conclusion, add-on preparations containing BA or AD may increase the bioavailability of glyburide, and hence the dose should be monitored. Copyright © 2016 John Wiley & Sons, Ltd.
Zhu, Jiahua; Penfold, Scott N
2016-06-01
Correct modelling of the interaction parameters of patient tissues is of vital importance in proton therapy treatment planning because of the large dose gradients associated with the Bragg peak. Different 3D imaging techniques yield different information regarding these interaction parameters. Given the rapidly expanding interest in proton therapy, this review is written to make readers aware of the current challenges in accounting for tissue heterogeneities and the imaging systems that are proposed to tackle these challenges. A summary of the interaction parameters of interest in proton therapy and the current and developmental 3D imaging techniques used in proton therapy treatment planning is given. The different methods to translate the imaging data to the interaction parameters of interest are reviewed and a summary of the implementations in several commercial treatment planning systems is presented.
Vibrational Relaxation and Collision-Induced Dissociation of Xenon Fluoride by Neon
1989-03-01
potential energy surface, which consists of a Morse function for the XeF interaction and Lennard - Jones functions for the NeXe and NeF interactions. Rate...interaction and a Lennard - Jones function for the NeXe and the NeF interactions. The values of the Morse potential parameters for XeF are taken from...interactions are calculated using the theoretical data provided by Svehla.59 The parameters for the Morse potential and the Lennard - Jones potentials are listed
Seeck, A; Rademacher, W; Fischer, C; Haueisen, J; Surber, R; Voss, A
2013-03-01
Today atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice accounting for approximately one third of hospitalizations and accompanied with a 5 fold increased risk for ischemic stroke and a 1.5 fold increased mortality risk. The role of the cardiac regulation system in AF recurrence after electrical cardioversion (CV) is still unclear. The aim of this study was to investigate the autonomic regulation by analyzing the interaction between heart rate and blood pressure using novel methods of nonlinear interaction dynamics, namely joint symbolic dynamics (JSD) and segmented Poincaré plot analysis (SPPA). For the first time, we applied SPPA to analyze the interaction between two time series. Introducing a parameter set of two indices, one derived from JSD and one from SPPA, the linear discriminant function analysis revealed an overall accuracy of 89% (sensitivity 91.7%, specificity 86.7%) for the classification between patients with stable sinus rhythm (group SR, n = 15) and with AF recurrence (group REZ, n = 12). This study proves that the assessment of the autonomic regulation by analyzing the coupling of heart rate and systolic blood pressure provides a potential tool for the prediction of AF recurrence after CV and could aid in the adjustment of therapeutic options for patients with AF. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model
NASA Astrophysics Data System (ADS)
Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi
1998-04-01
The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.
Petrovskii, Sergei; Blackshaw, Rod; Li, Bai-Lian
2008-02-01
The impact of intraspecific interactions on ecological stability and population persistence in terms of steady state(s) existence is considered theoretically based on a general competition model. We compare persistence of a structured population consisting of a few interacting (competitive) subpopulations, or groups, to persistence of the corresponding unstructured population. For a general case, we show that if the intra-group competition is stronger than the inter-group competition, then the structured population is less prone to extinction, i.e. it can persist in a parameter range where the unstructured population goes extinct. For a more specific case of a population with hierarchical competition, we show that relative viability of structured and unstructured populations depend on the type of density dependence in the population growth. Namely, while in the case of logistic growth, structured and unstructured populations exhibit equivalent persistence; in the case of Allee dynamics, the persistence of a hierarchically structured population is shown to be higher. We then apply these results to the case of behaviourally structured populations and demonstrate that an extreme form of individual aggression can be beneficial at the population level and enhance population persistence.
Asymptotically Free Gauge Theories. I
DOE R&D Accomplishments Database
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
Associations between feelings of social anxiety and emotion perception.
Lynn, Spencer K; Bui, Eric; Hoeppner, Susanne S; O'Day, Emily B; Palitz, Sophie A; Barrett, Lisa Feldman; Simon, Naomi M
2018-06-01
Abnormally biased perceptual judgment is a feature of many psychiatric disorders. Thus, individuals with social anxiety disorder are biased to recall or interpret social events negatively. Cognitive behavioral therapy addresses such bias by teaching patients, via verbal instruction, to become aware of and change pathological misjudgment. The present study examined whether targeting verbal instruction to specific decision parameters that influence perceptual judgment may affect changes in anger perception. We used a signal detection framework to decompose anger perception into three decision parameters (base rate of encountering anger vs. no-anger, payoff for correct vs. incorrect categorization of face stimuli, and perceptual similarity of angry vs. not-angry facial expressions). We created brief verbal instructions that emphasized each parameter separately. Participants with social anxiety disorder, generalized anxiety disorder, and healthy controls, were assigned to one of the three instruction conditions. We compared anger perception pre-vs. post-instruction. Base rate and payoff instructions affected response bias over and above practice effects, across the three groups. There was no interaction with diagnosis. The ability to target specific decision parameters that underlie perceptual judgment suggests that cognitive behavioral therapy might be improved by tailoring it to patients' individual parameter "estimation" deficits. Copyright © 2017 Elsevier Ltd. All rights reserved.
Koslen, Hannah R.; Chiel, Hillel J.; Mizutani, Claudia Mieko
2014-01-01
Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which are in agreement with their phylogenetic relationships. PMID:25165818
NASA Astrophysics Data System (ADS)
Rančić, Milica P.; Trišović, Nemanja P.; Milčić, Miloš K.; Ajaj, Ismail A.; Marinković, Aleksandar D.
2013-10-01
The electronic structure of 5-arylidene-2,4-thiazolidinediones has been studied by using experimental and theoretical methodology. The theoretical calculations of the investigated 5-arylidene-2,4-thiazolidinediones have been performed by the use of quantum chemical methods. The calculated 13C NMR chemical shifts and NBO atomic charges provide an insight into the influence of such a structure on the transmission of electronic substituent effects. Linear free energy relationships (LFERs) have been further applied to their 13C NMR chemical shifts. The correlation analyses for the substituent-induced chemical shifts (SCS) have been performed with σ using SSP (single substituent parameter), field (σF) and resonance (σR) parameters using DSP (dual substituent parameter), as well as the Yukawa-Tsuno model. The presented correlations account satisfactorily for the polar and resonance substituent effects operative at Cβ, and C7 carbons, while reverse substituent effect was found for Cα. The comparison of correlation results for the investigated molecules with those obtained for seven structurally related styrene series has indicated that specific cross-interaction of phenyl substituent and groups attached at Cβ carbon causes increased sensitivity of SCS Cβ to the resonance effect with increasing of electron-accepting capabilities of the group present at Cβ.
Excited states in polydiacetylene chains: A density matrix renormalization group study
NASA Astrophysics Data System (ADS)
Barcza, Gergely; Barford, William; Gebhard, Florian; Legeza, Örs
2013-06-01
We study theoretically polydiacetylene chains diluted in their monomer matrix. We employ the density matrix renormalization group method on finite chains to calculate the ground state and low-lying excitations of the corresponding Peierls-Hubbard-Ohno Hamiltonian which is characterized by the electron transfer amplitude t0 between nearest neighbors, by the electron-phonon coupling constant α, by the Hubbard interaction U, and by the long-range interaction V. We treat the lattice relaxation in the adiabatic limit, i.e., we calculate the polaronic lattice distortions for each excited state. Using chains with up to 102 lattice sites, we can safely perform the extrapolation to the thermodynamic limit for the ground-state energy and conformation, the single-particle gap, and the energies of the singlet exciton, the triplet ground state, and the optical excitation of the triplet ground state. The corresponding gaps are known with high precision from experiments. We determine a coherent parameter set (t0*=2.4eV,α*=3.4eV/Å,U*=6eV,V*=3eV) from a fit of the experimental gap energies to the theoretical values which we obtain for 81 parameter points in the four-dimensional search space (t0,α,U,V). We identify dark in-gap states in the singlet and triplet sectors as seen in experiments. Using a fairly stiff spring constant, the length of our unit cell is about 1% larger than its experimental value.
Dynamical Crossovers in Prethermal Critical States.
Chiocchetta, Alessio; Gambassi, Andrea; Diehl, Sebastian; Marino, Jamir
2017-03-31
We study the prethermal dynamics of an interacting quantum field theory with an N-component order parameter and O(N) symmetry, suddenly quenched in the vicinity of a dynamical critical point. Depending on the initial conditions, the evolution of the order parameter, and of the response and correlation functions, can exhibit a temporal crossover between universal dynamical scaling regimes governed, respectively, by a quantum and a classical prethermal fixed point, as well as a crossover from a Gaussian to a non-Gaussian prethermal dynamical scaling. Together with a recent experiment, this suggests that quenches may be used in order to explore the rich variety of dynamical critical points occurring in the nonequilibrium dynamics of a quantum many-body system. We illustrate this fact by using a combination of renormalization group techniques and a nonperturbative large-N limit.
Magnetism of the 35 K superconductor CsEuFe4As4
NASA Astrophysics Data System (ADS)
Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han
2018-04-01
The results of ab initio hyperfine-interaction parameters calculations, and of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy study of the new 35 K superconductor CsEuFe4As4 are reported. The superconductor crystallizes in the tetragonal space group P4/mmm with the lattice parameters a = 3.8956(1) Å and c = 13.6628(5) Å. It is demonstrated unequivocally that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated with the Eu magnetic moments. The Curie temperature TC = 15.97(8) K determined from the temperature dependence of the hyperfine magnetic field at 151Eu nuclei is shown to be compatible with the temperature dependence of the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are shown to be perpendicular to the crystallographic c-axis. The temperature dependence of the principal component of the electric field gradient tensor, both at Fe and Eu sites, is well described by a T 3/2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of CsEuFe4As4 is found to be 295(3) K.
Mössbauer spectroscopy measurements on the 35.5 K superconductor Rb1 -δEuFe4As4
NASA Astrophysics Data System (ADS)
Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han
2018-04-01
The results of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy measurements, supplemented with ab initio hyperfine-interaction parameter calculations, on the new 35.5 K superconductor Rb1 -δEuFe4As4 are presented. The superconductor crystallizes in the tetragonal space group P 4 /m m m with the lattice parameters a =3.8849 (1 ) Å and c =13.3370 (3 ) Å. It is shown that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated solely with the Eu magnetic moments. The Curie temperature TC=16.54 (8 ) K is determined from the temperature dependence of both the hyperfine magnetic field at 151Eu nuclei and the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are demonstrated to be perpendicular to the crystallographic c axis. The temperature dependence of the principal component of the electric field gradient tensor, at both Fe and Eu sites, is well described by a T3 /2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of Rb1 -δEuFe4As4 is found to be 391(8) K.
NASA Astrophysics Data System (ADS)
Luo, W.; Pelletier, J. D.; Smith, T.; Whalley, K.; Shelhamer, A.; Darling, A.; Ormand, C. J.; Duffin, K.; Hung, W. C.; Iverson, E. A. R.; Shernoff, D.; Zhai, X.; Chiang, J. L.; Lotter, N.
2016-12-01
The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a simplified version of a physically-based model that simulates bedrock channel erosion, cliff retreat, and base level change. Students can observe the landform evolution in animation under different scenarios by changing parameter values. In addition, cross-sections and profiles at different time intervals can be displayed and saved for further quantitative analysis. Students were randomly assigned to a treatment group (using WILSIM-GC simulation) or a control group (using traditional paper-based material). Pre- and post-tests were administered to measure students' understanding of the concepts and processes related to Grand Canyon formation and evolution. Results from the ANOVA showed that for both groups there were statistically significant growth in scores from pre-test to post-test [F(1, 47) = 25.82, p < .001], but the growth in scores between the two groups was not statistically significant [F(1, 47) = 0.08, p =.774]. In semester 1, the WILSIM-GC group showed greater growth, while in semester 2, the paper-based group showed greater growth. Additionally, a significant time × group × gender × semester interaction effect was observed [F(1, 47) = 4.76, p =.034]. Here, in semester 1 female students were more strongly advantaged by the WILSIM-GC intervention than male students, while in semester 2, female students were less strongly advantaged than male students. The new results are consistent with our initial findings (Luo et al., 2016) and others reported in the literature, i.e., simulation approach is at least equally effective as traditional paper-based method in teaching students about landform evolution. Survey data indicate that students favor the simulation approach. Further study is needed to investigate the reasons for the difference by gender.
Reduced-order prediction of rogue waves in two-dimensional deep-water waves
NASA Astrophysics Data System (ADS)
Sapsis, Themistoklis; Farazmand, Mohammad
2017-11-01
We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.
Demoulin, Christophe; Wolfs, Sébastien; Chevalier, Madeline; Granado, Caroline; Grosdent, Stéphanie; Depas, Yannick; Roussel, Nathalie; Hage, Renaud; Vanderthommen, Marc
2016-01-01
Most parameters regarding hamstring flexibility training programs have been investigated; however, the joint (i.e. hip or knee) on which the stretching should preferentially be focused needs to be further explored. This randomized controlled assessor-blinded study aimed to investigate the influence of this parameter. We randomly assigned 111 asymptomatic participants with tight hamstring muscles in three groups: a control group and two groups following a different home-based 8-week (five 10-minute sessions per week) hamstring stretching program (i.e. stretching performed by flexing the hip while keeping the knee extended [SH] or by first flexing the hip with a flexed knee and then extending the knee [SK]). Range of motion (ROM) of hip flexion and knee extension were measured before and after the stretching program by means of the straight leg raising test and the passive knee extension angle test, respectively. Eighty-nine participants completed the study. A significant increase in ROM was observed at post-test. Analyses showed significant group-by-time interactions for changes regarding all outcomes. Whereas the increase in hip flexion and knee extension ROM was higher in the stretching groups than in the CG (especially for the SH group p < 0.05), no differences between the two stretching groups were observed (p > 0.05). In conclusion, the fact that both stretching programs resulted in similar results suggests no influence of the joint at which the stretching is focused upon, as assessed by the straight leg raising and knee extension angle tests.
Terranova, Nadia; Germani, Massimiliano; Del Bene, Francesca; Magni, Paolo
2013-08-01
In clinical oncology, combination treatments are widely used and increasingly preferred over single drug administrations. A better characterization of the interaction between drug effects and the selection of synergistic combinations represent an open challenge in drug development process. To this aim, preclinical studies are routinely performed, even if they are only qualitatively analyzed due to the lack of generally applicable mathematical models. This paper presents a new pharmacokinetic-pharmacodynamic model that, starting from the well-known single agent Simeoni TGI model, is able to describe tumor growth in xenograft mice after the co-administration of two anticancer agents. Due to the drug action, tumor cells are divided in two groups: damaged and not damaged ones. The damaging rate has two terms proportional to drug concentrations (as in the single drug administration model) and one interaction term proportional to their product. Six of the eight pharmacodynamic parameters assume the same value as in the corresponding single drug models. Only one parameter summarizes the interaction, and it can be used to compute two important indexes that are a clear way to score the synergistic/antagonistic interaction among drug effects. The model was successfully applied to four new compounds co-administered with four drugs already available on the market for the treatment of three different tumor cell lines. It also provided reliable predictions of different combination regimens in which the same drugs were administered at different doses/schedules. A good and quantitative measurement of the intensity and nature of interaction between drug effects, as well as the capability to correctly predict new combination arms, suggest the use of this generally applicable model for supporting the experiment optimal design and the prioritization of different therapies.
Dark soliton dynamics and interactions in continuous-wave-induced lattices.
Tsopelas, Ilias; Kominis, Yannis; Hizanidis, Kyriakos
2007-10-01
The dynamics of dark spatial soliton beams and their interaction under the presence of a continuous wave (CW), which dynamically induces a photonic lattice, are investigated. It is shown that appropriate selection of the characteristic parameters of the CW result in controllable steering of a single soliton as well as controllable interaction between two solitons. Depending on the CW parameters, the soliton angle of propagation can be changed drastically, while two-soliton interaction can be either enhanced or reduced, suggesting a reconfigurable soliton control mechanism. Our analytical approach, based on the variational perturbation method, provides a dynamical system for the dark soliton evolution parameters. Analytical results are shown in good agreement with direct numerical simulations.
Taylor, Adrian H; Fox, Ken R
2005-01-01
This study investigated the effectiveness of a 10-week primary care exercise referral intervention on the physical self-perceptions of 40-70 year olds. Participants (N=142) were assessed, randomized to an exercise or control group, and reassessed at 16 and 37 weeks. The Physical Self-Perception Profile (PSPP; K. R. Fox, 1990), fitness, physical activity, body mass index, body fat (skinfolds), and hip and waist circumference were assessed. A multivariate analysis of variance revealed significant Group X Time interactions, with the exercise group showing greater physical self-worth, physical condition, and physical health at 16 and 37 weeks. Changes in all PSPP scales at baseline and 37 weeks were related to changes in anthropometric measures and adherence to the 10-week exercise program but not to changes in submaximal fitness parameters.
Spectral characteristics of tramadol in different solvents and β-cyclodextrin
NASA Astrophysics Data System (ADS)
Anton Smith, A.; Manavalan, R.; Kannan, K.; Rajendiran, N.
2009-10-01
Effect of solvents and β-cyclodextrin on the absorption and fluorescence spectra of tramadol drug has been investigated and compared with anisole. The solid inclusion complex of tramadol with β-CD is investigated by FT-IR, 1H NMR, scanning electron microscope (SEM), DSC and semiempirical methods. The thermodynamic parameter (Δ G) of inclusion process is determined. A solvent study shows (i) the spectral behaviour of both tramadol and anisole molecules is similar to each other and (ii) the cyclohexanol group in tramadol is not effectively conjugated with anisole group. However, in β-CD, due to space restriction of the CD cavity, a weak interaction is present between the above groups in tramadol. β-Cyclodextrin studies show that tramadol forms 1:2 inclusion complex with β-CD. A mechanism is proposed for the inclusion process.
Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri
2018-03-30
Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290
Farshchi, Negin; Abbasian, Ali; Larijani, Kambiz
2018-05-10
Limonene is a colorless liquid hydrocarbon and had been investigated as a plasticizer for many plastics. Prediction of solubility between different materials is an advantage in many ways, one of the most convenient ways to know the compatibility of materials is to determine the degree of solubility of them in each other. The concept of "solubility parameter" can help practitioners in this way.In this study, inverse gas chromatography (IGC) method at infinite dilution was used for determination of the thermodynamic properties of DL-p-mentha-1,8-diene, 4-Isopropyl-1-methylcyclohexene (DL-limonene). The interaction between DL-limonene and 13 solvents were examined in the temperature range of 63-123°C through the assessment of the thermodynamic sorption parameters, the parameters of mixing at infinite dilution, the weight fraction activity coefficient and the Flory-Huggins interaction parameters. Additionally, the solubility parameter for DL-limonene and the temperature dependence of these parameters was investigated as well.Results show that there is a temperature dependence in solubility parameter, which increases by decreasing temperature. However, there were no specific dependence between interaction parameters and temperature, but chemical structure appeared to have a significant effect on them as well as on the type and strength of intermolecular interactions between DL-limonene and investigated solvents. The solubility parameter δ2 of DL-limonene determined to be 19.20 (J/cm3)0.5 at 25°C.
Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav
2015-01-01
Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.
Frustrated S = 1/2 Two-Leg Ladder with Different Leg Interactions
NASA Astrophysics Data System (ADS)
Tonegawa, Takashi; Okamoto, Kiyomi; Hikihara, Toshiya; Sakai, Tôru
2017-04-01
We explore the ground-state phase diagram of the S = 1/2 two-leg ladder. The isotropic leg interactions J1,a and J1,b between nearest neighbor spins in the legs a and b, respectively, are different from each other. The xy and z components of the uniform rung interactions are denoted by Jr and ΔJr, respectively, where Δ is the XXZ anisotropy parameter. This system has a frustration when J1,aJ1,b < 0 irrespective of the sign of Jr. The phase diagrams on the Δ (0≤Δ<1) versus J1,b plane in the cases of J1,a = - 0.2 and J1,a = 0.2 with Jr = -1 are determined numerically. We employ the physical consideration, the level spectroscopy analysis of the results obtained by the exact diagonalization method and also the density-matrix renormalization-group method. It is found that the non-collinear ferrimagnetic (NCFR) state appears as the ground state in the frustrated region of the parameters. Furthermore, the direct-product triplet-dimer (TD) state in which all rungs form the TD pair is the exact ground state, when J1,a + J1,b = 0 and 0≤ Δ ≲ 0.83. The obtained phase diagrams consist of the TD, XY and Haldane phases as well as the NCFR phase.
Zhao, Jing-Lu; Zhao, Yu-Yun; Zhu, Wei-Jie
2017-10-01
The interaction between obesity and chronic inflammation has been studied. Diet-induced obesity or chronic inflammation could reduce the testicular functions of males. However, the mechanism underlying the reproductive effects of fattening foods in males with or without chronic inflammation still needs further discussion. This study was aimed to investigate the effects of high-fat, high-protein diet on testicular steroidogenesis and sperm parameters in adult mice under physiological and chronic inflammatory conditions. Because casein can trigger a non-infectious systemic inflammatory response, we used casein injection to induce chronic inflammation in male adult Kunming mice. Twenty-four mice were randomly and equally divided into four groups: (i) normal diet+saline (Control); (ii) normal diet+casein (ND+CS); (iii) high-fat, high-protein diet+saline (HFPD+SI); (iv) high-fat, high-protein diet+casein (HFPD+CS). After 8weeks, there was a significant increase in body weight for groups HFPD+SI and HFPD+CS and a decrease in group ND+CS compared with the control. The serum levels of tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10) and lipid profiles were increased markedly in groups ND+CS, HFPD+SI and HFPD+CS compared with the control. A remarkable reduction of serum adiponectin level occurred in group HFPD+CS compared with group ND+CS. Sperm parameters (sperm count, viability and abnormality) were also adversely affected in groups ND+CS and HFPD+SI. Groups ND+CS and HFPD+SI showed severe pathological changes in testicular tissues. Semiquantitative RT-PCR, Western blot and immunohistochemical staining also showed significant reductions in both testicular mRNA and protein levels of steroidogenic acute regulatory (StAR) and cytochrome P450scc (CYP11A1) in groups HFPD+SI and HFPD+CS compared with the control, whereas testicular mRNA and protein levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) in groups HFPD+SI and HFPD+CS significantly increased. The mRNA and protein levels of the StAR and 3β-HSD in group HFPD+CS were both higher than those of in group ND+CS. These results indicated that Kunming male mice with high-fat, high-protein diet and casein injection for 8weeks can be used to establish a diet-induced obesity and chronic systemic inflammation. The sperm parameters in groups ND+CS and HFPD+SI decreased accompanied by pathological changes of testicular tissue. This resultant effect of reduced serum testosterone levels was associated with the overproduction of TNF-α and IL-10 and down-regulation of StAR and CYP11A1. Under the same casein-induced chronic inflammation condition, the mice with high-fat, high-protein diet had better testicular steroidogenesis activity and sperm parameters compared with the mice in normal diet, indicating that the mice with casein-induced inflammatory injury consuming a high-fat, high-protein diet gained weight normally, reduced serum adiponectin level and increased testosterone production by an upregulation of 3β-HSD expression. High-fat, high-protein diet attenuated the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
White, L J; Waris, M; Cane, P A; Nokes, D J; Medley, G F
2005-04-01
Human respiratory syncytial virus (hRSV) transmission dynamics are inherently cyclical, and the observed genetic diversity (between groups A and B) also appears to have a repeating pattern. A key unknown is the extent to which genetic variants interact immunologically, and thus impact on epidemiology. We developed a novel mathematical model for hRSV transmission including seasonal forcing of incidence and temporary intra- and inter-group partial immunity. Simultaneous model fits to data from two locations (England & Wales, UK, and Turku, Finland) successfully reproduced the contrasting infection dynamics and group A/B dominance patterns. Parameter estimates are consistent with direct estimates. Differences in the magnitude and seasonal variation in contact rate between the two populations alone could account for the variation in dynamics between these populations. The A/B group dominance patterns are explained by reductions in susceptibility to and infectiousness of secondary homologous and heterologous infections. The consequences of the observed dynamic complexity are discussed.
NASA Astrophysics Data System (ADS)
Maiti, Amitesh; McGrother, Simon
2004-01-01
Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren [J. Chem. Phys. 107, 4423 (1997)] established an important link between DPD and the Flory-Huggins χ-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.
Daneshfar, Rambod; Klassen, John S
2006-09-01
Arrhenius activation parameters (E(a), A) for the loss of neutral nucleobases from a series of T-rich, doubly and triply deprotonated 15- and 20-mer oligodeoxynucleotides (ODN) containing a single reactive base (X = A or C) with the sequence, XT14, XT19 and T19X, have been determined using the blackbody infrared radiative dissociation technique. The A-containing anions are significantly more reactive (> or =3000 times) than the C-containing ions over the temperature range investigated. Importantly, the Arrhenius parameters for the loss of AH exhibit a strong dependence on size of the ODN and, to some extent, the charge state; the Arrhenius parameters increase with size and charge (Ea = 29-39 kcal mol(-1), A = 10(15)-10(20) s(-1)). In contrast, the parameters for the loss of CH are much less sensitive to size (Ea = 35-39 kcal mol(-1), A = 10(14)-10(17) s(-1)). The results are consistent with a greater contribution from the internal solvation of the reactive base to the Arrhenius parameters for the loss of A, compared with C, from the 15- and 20-mers. To further probe differences in internal solvation of A and C, hydrogen/deuterium exchange was carried out on AT19(-3), T19A(-3), CT19(-3) and T19C(-3) using D2O as the exchange reagent. However, the H/D exchange results did not reveal any differences in internal solvation within the ODN anions. Arrhenius parameters for the dissociation of noncovalent complexes of T20(-3) and the neutral nucleobase AH or CH have also been determined. Differences in the parameters indicate differences in the nature of the intermolecular interactions. It is proposed that neutral A-T interactions (i.e., base-base), which originate in solution, dominate in the case of (T20 + AH)(-3), while charge solvation, involving CH and a deprotonated phosphate group, is present for (T20 + CH)(-3).
Reconstruction of interaction rate in holographic dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Ankan, E-mail: ankan_ju@iiserkol.ac.in
2016-11-01
The present work is based on the holographic dark energy model with Hubble horizon as the infrared cut-off. The interaction rate between dark energy and dark matter has been reconstructed for three different parameterizations of the deceleration parameter. Observational constraints on the model parameters have been obtained by maximum likelihood analysis using the observational Hubble parameter data (OHD), type Ia supernovab data (SNe), baryon acoustic oscillation data (BAO) and the distance prior of cosmic microwave background (CMB) namely the CMB shift parameter data (CMBShift). The interaction rate obtained in the present work remains always positive and increases with expansion. Itmore » is very similar to the result obtained by Sen and Pavon [1] where the interaction rate has been reconstructed for a parametrization of the dark energy equation of state. Tighter constraints on the interaction rate have been obtained in the present work as it is based on larger data sets. The nature of the dark energy equation of state parameter has also been studied for the present models. Though the reconstruction is done from different parametrizations, the overall nature of the interaction rate is very similar in all the cases. Different information criteria and the Bayesian evidence, which have been invoked in the context of model selection, show that the these models are at close proximity of each other.« less
Vandenhove, H; Gil-García, C; Rigol, A; Vidal, M
2009-09-01
Predicting the transfer of radionuclides in the environment for normal release, accidental, disposal or remediation scenarios in order to assess exposure requires the availability of an important number of generic parameter values. One of the key parameters in environmental assessment is the solid liquid distribution coefficient, K(d), which is used to predict radionuclide-soil interaction and subsequent radionuclide transport in the soil column. This article presents a review of K(d) values for uranium, radium, lead, polonium and thorium based on an extensive literature survey, including recent publications. The K(d) estimates were presented per soil groups defined by their texture and organic matter content (Sand, Loam, Clay and Organic), although the texture class seemed not to significantly affect K(d). Where relevant, other K(d) classification systems are proposed and correlations with soil parameters are highlighted. The K(d) values obtained in this compilation are compared with earlier review data.
The social behavior and the evolution of sexually transmitted diseases
NASA Astrophysics Data System (ADS)
Gonçalves, Sebastián; Kuperman, Marcelo
2003-10-01
We introduce a model for the evolution of sexually transmitted diseases, in which the social behavior is incorporated as a determinant factor for the further propagation of the infection. The system may be regarded as a society of agents where in principle, anyone can sexually interact with any other one in the population, indeed, in this contribution only the homosexual case is analyzed. Different social behaviors are reflected in a distribution of sexual attitudes ranging from the more conservative to the more promiscuous. This is measured by what we call the promiscuity parameter. In terms of this parameter, we find a critical behavior for the evolution of the disease. There is a threshold below which the epidemic does not occur. We relate this critical value of promiscuity to what epidemiologists call the basic reproductive number, connecting it with the other parameters of the model, namely the infectivity and the infective period in a quantitative way. We consider the possibility of subjects to be grouped in couples.
Wang, Jun; Yang, Xuzhao; Wu, Jinchao; Song, Hao; Zou, Wenyuan
2015-12-01
Inverse gas chromatographic (IGC) technology was used to determine the solubility parameters of three asymmetrical dicationic ionic liquids ([ PyC5Pi] [ NTf2]2, [MpC5Pi] [NTf2]2 and [PyC6Pi] [NTf2]2) at 343.15-363.15 K. Five alkanes were applied as test probes including octane (n-C8) , decane (n-C10), dodecane (n-C12), tetradecane (n-C14), hexadecane (n-C16). Some thermodynamic parameters were obtained by IGC data analysis, such as the specific retention volumes of the solvents (V0(g)), the molar enthalpies of sorption (ΔHs(1)), the partial molar enthalpies of mixing at infinite dilution (ΔH∞91)), the molar enthalpies of vaporization (ΔH)v)), the activity coefficients at infinite dilution (Ω∞(1)), and Flory-Huggins interaction parameters (χ∞(12)) between ionic liquids and probes. The solubility parameters (δ2) of the three dicationic ionic liquids at room temperature (298.15 K) were 28.52-32.66 (J x cm(-3)) ½. The solubility parameters (δ2) of cationic structure with 4-methyl morpholine are bigger than those of the cationic structure with pyridine. The bigger the solubility parameter (δ2) is, the more the carbon numbers of linking group of the ionic liquids are. The results are of great importance to the study of the solution behavior and the applications of ionic liquid.
ECOLOGICAL THEORY. A general consumer-resource population model.
Lafferty, Kevin D; DeLeo, Giulio; Briggs, Cheryl J; Dobson, Andrew P; Gross, Thilo; Kuris, Armand M
2015-08-21
Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Petrov, O. A.; Kuzmina, E. L.; Maizlish, V. E.; Rodionov, A. V.
2014-01-01
The acid-basic interaction between tetra(4-nitro-5- tert-butyl)phthalocyanine and pyridine, 2-methylpyridine, morpholine, piperidine, n-butylamine, diethylamine, and triethylamine in benzene is studied. It is found that the intermolecular transfer of protons of NH groups from tetra(4-nitro-5- tert-butyl)phthalocyanine to morpholine and diethylamine is characterized by unusually low values of the reaction constant rates. The effect of the structure of tetra(4-nitro-5- tert-butyl)phthalocyanine and tetra(3-nitro-5- tert-butyl)phthalocyanine, and of the nature of the base on the kinetic parameters of acid-base interaction is demonstrated. A structure is proposed for complexes with the transfer of displaced phthalocyanines' protons. It is found that they undergo decomposition over time.
Caçola, Priscila M; Pant, Mohan D
2014-10-01
The purpose was to use a multi-level statistical technique to analyze how children's age, motor proficiency, and cognitive styles interact to affect accuracy on reach estimation tasks via Motor Imagery and Visual Imagery. Results from the Generalized Linear Mixed Model analysis (GLMM) indicated that only the 7-year-old age group had significant random intercepts for both tasks. Motor proficiency predicted accuracy in reach tasks, and cognitive styles (object scale) predicted accuracy in the motor imagery task. GLMM analysis is suitable to explore age and other parameters of development. In this case, it allowed an assessment of motor proficiency interacting with age to shape how children represent, plan, and act on the environment.
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao
2012-08-01
The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their sizes is 0.75.
Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S
2013-05-01
Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ke; Nissinen, Jaakko; Slager, Robert-Jan; Wu, Kai; Zaanen, Jan
2016-10-01
The physics of nematic liquid crystals has been the subject of intensive research since the late 19th century. However, the focus of this pursuit has been centered around uniaxial and biaxial nematics associated with constituents bearing a D∞ h or D2 h symmetry, respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point-group symmetry. Given the progress in tailoring nanoparticles with particular shapes and interactions, this vast family of "generalized nematics" might become accessible in the laboratory. Little is known because the order parameter theories associated with the highly symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here, we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high-energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three-dimensional point-group symmetries. We find that the most symmetrical generalized nematics are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point-group symmetry chiral building blocks, such as I , O , and T symmetric matter.
Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil
Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Guerrero, Leandro; Seely, Mary; Cowan, Don A.
2017-01-01
Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were ‘time-of-day-dependent’ which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module ‘hubs’ orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations. PMID:28071697
Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil
NASA Astrophysics Data System (ADS)
Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Guerrero, Leandro; Seely, Mary; Cowan, Don A.
2017-01-01
Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were ‘time-of-day-dependent’ which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module ‘hubs’ orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations.
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Nefedov, N. A.; Antonchik, V. A.; Bogdanov, S. D.; Kosmach, V. F.; Likhachev, A. YU.; Benton, E. V.; Crawford, H. J.
1995-01-01
A method is proposed for finding the dependence of mean multiplicities of secondaries on the nucleus-collision impact parameter from the data on the total interaction ensemble. The impact parameter has been shown to completely define the mean characteristics of an individual interaction event. A difference has been found between experimental results and the data calculated in terms of the cascade-evaporation model at impact-parameter values below 3 fm.
Liao, Kuoyao; Cai, Jingyi; Shi, Zhujun; Tian, Gang; Yan, Dong; Chen, Delin
2017-06-01
This study was conducted to investigate the effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits, in order to determine appropriate rabbit feed processing methods and processing parameters. In Exp. 1, an orthogonal design was adopted. Barrel temperature, material moisture content and feed rate were selected as test factors, and acid detergent fiber (ADF) content was selected as an evaluation index to research the optimum extrusion parameters. In Exp. 2, a two-factor design was adopted. Four kinds of rabbit feeds were processed and raw material extrusion adopted optimum extrusion parameters of Exp. 1. A total of 40 healthy and 42-day-old rabbits with similar weight were used in a randomized design, which consisted of 4 groups and 10 replicates in each group (1 rabbits in each replicate). The adaptation period lasted for 7 d, and the digestion trial lasted for 4 d. The results showed as follows: 1) ADF was significantly affected by barrel temperature ( P < 0.05); the optimum extrusion parameters were barrel temperature 125 °C, moisture content 16% and feed rate 9 Hz. 2) Raw material extrusion and steam conditioning both significantly decreased powder percentage, pulverization ratio and protein solubility ( P < 0.05), significantly improved hardness and starch gelatinization degree of rabbit feed ( P < 0.05). They both had significant interaction effects on the processing quality of rabbit feed ( P < 0.05). 3) Extrusion significantly improved the apparent digestibility of dry matter and total energy ( P < 0.05). Extrusion and steam conditioning both significantly improved the apparent digestibility of crude fiber (CF), ADF and NDF ( P < 0.05), but they had no interaction effects on the apparent digestibility of rabbit feed. Thus, using extrusion and steam conditioning technology at the same time in the weaning rabbits feed processing can improve the pellet quality and nutrient apparent digestibility of rabbit feed.
Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Rui; Feng, Chang; Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn
We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to usemore » the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.« less
Vidoni, Eric D; Boyd, Lara A
2007-09-01
Two major memory and learning systems operate in the brain: one for facts and ideas (ie, the declarative or explicit system), one for habits and behaviors (ie, the procedural or implicit system). Broadly speaking these two memory systems can operate either in concert or entirely independently of one another during the performance and learning of skilled motor behaviors. This Special Issue article has two parts. In the first, we present a review of implicit motor skill learning that is largely centered on the interactions between declarative and procedural learning and memory. Because distinct neuroanatomical substrates support unique aspects of learning and memory and thus focal injury can cause impairments that are dependent on lesion location, we also broadly consider which brain regions mediate implicit and explicit learning and memory. In the second part of this article, the interactive nature of these two memory systems is illustrated by the presentation of new data that reveal that both learning implicitly and acquiring explicit knowledge through physical practice lead to motor sequence learning. In our new data, we discovered that for healthy individuals use of the implicit versus explicit memory system differently affected variability of performance during acquisition practice; variability was higher early in practice for the implicit group and later in practice for the acquired explicit group. Despite the difference in performance variability, by retention both groups demonstrated comparable change in tracking accuracy and thus, motor sequence learning. Clinicians should be aware of the potential effects of implicit and explicit interactions when designing rehabilitation interventions, particularly when delivering explicit instructions before task practice, working with individuals with focal brain damage, and/or adjusting therapeutic parameters based on acquisition performance variability.
Novel design of interactive multimodal biofeedback system for neurorehabilitation.
Huang, He; Chen, Y; Xu, W; Sundaram, H; Olson, L; Ingalls, T; Rikakis, T; He, Jiping
2006-01-01
A previous design of a biofeedback system for Neurorehabilitation in an interactive multimodal environment has demonstrated the potential of engaging stroke patients in task-oriented neuromotor rehabilitation. This report explores the new concept and alternative designs of multimedia based biofeedback systems. In this system, the new interactive multimodal environment was constructed with abstract presentation of movement parameters. Scenery images or pictures and their clarity and orientation are used to reflect the arm movement and relative position to the target instead of the animated arm. The multiple biofeedback parameters were classified into different hierarchical levels w.r.t. importance of each movement parameter to performance. A new quantified measurement for these parameters were developed to assess the patient's performance both real-time and offline. These parameters were represented by combined visual and auditory presentations with various distinct music instruments. Overall, the objective of newly designed system is to explore what information and how to feedback information in interactive virtual environment could enhance the sensorimotor integration that may facilitate the efficient design and application of virtual environment based therapeutic intervention.
NASA Astrophysics Data System (ADS)
Yeung, Yau Yuen; Tanner, Peter A.
2013-12-01
The experimental free ion 4f2 energy level data sets comprising 12 or 13 J-multiplets of La+, Ce2+, Pr3+ and Nd4+ have been fitted by a semiempirical atomic Hamiltonian comprising 8, 10, or 12 freely-varying parameters. The root mean square errors were 16.1, 1.3, 0.3 and 0.3 cm-1, respectively for fits with 10 parameters. The fitted inter-electronic repulsion and magnetic parameters vary linearly with ionic charge, i, but better linear fits are obtained with (4-i)2, although the reason is unclear at present. The two-body configuration interaction parameters α and β exhibit a linear relation with [ΔE(bc)]-1, where ΔE(bc) is the energy difference between the 4f2 barycentre and that of the interacting configuration, namely 4f6p for La+, Ce2+, and Pr3+, and 5p54f3 for Nd4+. The linear fit provides the rationale for the negative value of α for the case of La+, where the interacting configuration is located below 4f2.
Selection, constraint, and the evolution of coloration in African starlings.
Maia, Rafael; Rubenstein, Dustin R; Shawkey, Matthew D
2016-05-01
Colorful plumage plays a prominent role in the evolution of birds, influencing communication (sexual/social selection), and crypsis (natural selection). Comparative studies have focused primarily on these selective pressures, but the mechanisms underlying color production can also be important by constraining the color gamut upon which selection acts. Iridescence is particularly interesting to study the interaction between selection and color-producing mechanisms because a broad range of colors can be produced with a shared template, and innovations to this template further expand this by increasing the parameters interacting to produce colors. We examine the patterns of ornamentation and dichromatism evolution in African starlings, a group remarkably diverse in color production mechanisms, social systems, and ecologies. We find that the presence of iridescence is ancestral to the group, being predominantly lost in females and cooperative breeders, as well as species with less labile templates. Color-producing mechanisms interact and are the main predictors of plumage ornamentation and elaboration, with little influence of selective pressures in their evolution. Dichromatism, however is influenced by social system and the loss of iridescence. Our results show the importance of considering both selection and constraints, and the different roles that they may have, in the evolution of ornamentation and dimorphism. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Integrating fluorescence and interactance measurements to improve apple maturity assessment
NASA Astrophysics Data System (ADS)
Noh, Hyun Kwon; Lu, Renfu
2006-10-01
Fluorescence and reflectance (or interactance) are promising techniques for measuring fruit quality and condition. Our previous research showed that a hyperspectral imaging technique integrating fluorescence and reflectance could improve predictions of selected quality parameters compared to single sensing techniques. The objective of this research was to use a low cost spectrometer for rapid acquisition of fluorescence and interactance spectra from apples and develop an algorithm integrating the two types of data for predicting skin and flesh color, fruit firmness, starch index, soluble solids content, and titratable acid. Experiments were performed to measure UV light induced transient fluorescence and interactance spectra from 'Golden Delicious' apples that were harvested over a period of four weeks during the 2005 harvest season. Standard destructive tests were performed to measure maturity parameters from the apples. Principal component (PC) analysis was applied to the interactance and fluorescence data. A back-propagation feedforward neural network with the inputs of PC data was used to predict individual maturity parameters. Interactance mode was consistently better than fluorescence mode in predicting the maturity parameters. Integrating interactance and fluorescence improved predictions of all parameters except flesh chroma; values of the correlation coefficient for firmness, soluble solids content, starch index, and skin and flesh hue were 0.77, 0.77, 0.89, 0.99, and 0.96 respectively, with the corresponding standard errors of 6.93 N, 0.90%, 0.97 g/L, 0.013 rad, and 0.013 rad. These results represented 4.1% to 23.5% improvements in terms of standard error, in comparison with the better results from the two single sensing methods. Integrating interactance and fluorescence can better assess apple maturity and quality.
Magnetic Ordering under Strain and Spin-Peierls Dimerization in GeCuO3
NASA Astrophysics Data System (ADS)
Filippetti, Alessio; Fiorentini, Vincenzo
2007-05-01
Studying from first principles the competition between ferromagnetic (FM) and antiferromagnetic (AF) interactions in the charge-transfer-insulator GeCuO3, we predict that a small external pressure should switch the uniform AF ground state to FM, and estimate (using exchange parameters computed as a function of strain) the competing AF couplings and the transition temperature to the dimerized spin-Peierls state. Although idealized as a one-dimensional Heisenberg antiferromagnet, GeCuO3 is found to be influenced by nonideal geometry and side groups.
Triprotic acid-base microequilibria and pharmacokinetic sequelae of cetirizine.
Marosi, Attila; Kovács, Zsuzsanna; Béni, Szabolcs; Kökösi, József; Noszál, Béla
2009-06-28
(1)H NMR-pH titrations of cetirizine, the widely used antihistamine and four related compounds were carried out and the related 11 macroscopic protonation constants were determined. The interactivity parameter between the two piperazine amine groups was obtained from two symmetric piperazine derivatives. Combining these two types of datasets, all the 12 microconstants and derived tautomeric constants of cetirizine were calculated. Upon this basis, the conflicting literature data of cetirizine microspeciation were clarified, and the pharmacokinetic absorption-distribution properties could be interpreted. The pH-dependent distribution of the microspecies is provided.
Atomic Mass and Nuclear Binding Energy for U-287 (Uranium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope U-287 (Uranium, atomic number Z = 92, mass number A = 287).
Atomic Mass and Nuclear Binding Energy for Ac-212 (Actinium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ac-212 (Actinium, atomic number Z = 89, mass number A = 212).
On aggregation in CA models in biology
NASA Astrophysics Data System (ADS)
Alber, Mark S.; Kiskowski, Audi
2001-12-01
Aggregation of randomly distributed particles into clusters of aligned particles is modeled using a cellular automata (CA) approach. The CA model accounts for interactions between more than one type of particle, in which pressures for angular alignment with neighbors compete with pressures for grouping by cell type. In the case of only one particle type clusters tend to unite into one big cluster. In the case of several types of particles the dynamics of clusters is more complicated and for specific choices of parameters particle sorting occurs simultaneously with the formation of clusters of aligned particles.
Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel
NASA Astrophysics Data System (ADS)
Balaceanu, Andreea; Singh, Smriti; Demco, Dan E.; Möller, Martin
2014-09-01
The structural and water interaction parameters for native, α-elastin biohybrid microgel crosslinked with hydrophilic and hydrophobic crosslinkers are obtained from the volume phase transition temperature behaviour, 1H high-resolution magic-angle sample spinning transverse magnetization relaxation NMR, and modified Flory-Rehner swelling theory. Firstly, considering a homogeneous morphology the number of subchains in the biohybrid microgel, the residual water in deswollen state as a function of crosslink density and the temperature dependence of the Flory biopolymer-water interaction parameters are reported for the biohybrid microgels prepared with hydrophilic (PEG-DGE) and hydrophobic (BS3) crosslinkers. The Flory-Rehner classical approach is subsequently modified taking into account the heterogeneities observed by NMR transverse relaxation measurements. Two differently mobile regions are determined, a hydrophobic domain and a crosslinking domain with relative reduced mobility. For the first time, the influence of chain mobility on the Flory interaction parameter is investigated through a modified Flory state equation. The contributions of amino-acids located in the hydrophobic and crosslinking domains in the polypeptide sequence are separated while analyzing the biopolymer-water interaction.
Update of KDBI: Kinetic Data of Bio-molecular Interaction database
Kumar, Pankaj; Han, B. C.; Shi, Z.; Jia, J.; Wang, Y. P.; Zhang, Y. T.; Liang, L.; Liu, Q. F.; Ji, Z. L.; Chen, Y. Z.
2009-01-01
Knowledge of the kinetics of biomolecular interactions is important for facilitating the study of cellular processes and underlying molecular events, and is essential for quantitative study and simulation of biological systems. Kinetic Data of Bio-molecular Interaction database (KDBI) has been developed to provide information about experimentally determined kinetic data of protein–protein, protein–nucleic acid, protein–ligand, nucleic acid–ligand binding or reaction events described in the literature. To accommodate increasing demand for studying and simulating biological systems, numerous improvements and updates have been made to KDBI, including new ways to access data by pathway and molecule names, data file in System Biology Markup Language format, more efficient search engine, access to published parameter sets of simulation models of 63 pathways, and 2.3-fold increase of data (19 263 entries of 10 532 distinctive biomolecular binding and 11 954 interaction events, involving 2635 proteins/protein complexes, 847 nucleic acids, 1603 small molecules and 45 multi-step processes). KDBI is publically available at http://bidd.nus.edu.sg/group/kdbi/kdbi.asp. PMID:18971255
Gorzkiewicz, Michał; Buczkowski, Adam; Appelhans, Dietmar; Voit, Brigitte; Pułaski, Łukasz; Pałecz, Bartłomiej; Klajnert-Maculewicz, Barbara
2018-06-10
Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues. Copyright © 2018 Elsevier B.V. All rights reserved.
Scaling of plasma-body interactions in low Earth orbit
NASA Astrophysics Data System (ADS)
Capon, C. J.; Brown, M.; Boyce, R. R.
2017-04-01
This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.
Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com
We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε{sub hb}(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stackingmore » interaction ε{sub st}(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.« less
Molybdenum disulfide and water interaction parameters
NASA Astrophysics Data System (ADS)
Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.
2017-09-01
Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.
Electronic voting to encourage interactive lectures: a randomised trial
2007-01-01
Background Electronic Voting Systems have been used for education in a variety of disciplines. Outcomes from these studies have been mixed. Because results from these studies have been mixed, we examined whether an EVS system could enhance a lecture's effect on educational outcomes. Methods A cohort of 127 Year 5 medical students at the University of Adelaide was stratified by gender, residency status and academic record then randomised into 2 groups of 64 and 63 students. Each group received consecutive 40-minute lectures on two clinical topics. One group received the EVS for both topics. The other group received traditional teaching only. Evaluation was undertaken with two, 15-question multiple-choice questionnaires (MCQ) assessing knowledge and problem solving and undertaken as a written paper immediately before and after the lectures and repeated online 8–12 weeks later. Standardised institutional student questionnaires were completed for each lecture and independent observers assessed student behaviour during the lectures. Lecturer's opinions were assessed by a questionnaire developed for this study. Results Two-thirds of students randomised to EVS and 59% of students randomised to traditional lectures attended. One-half of the students in the EVS group and 41% in the traditional group completed all questionnaires. There was no difference in MCQ scores between EVS and traditional lectures (p = 0.785). The cervical cancer lectures showed higher student ranking in favour of EVS in all parameters. The breast cancer lectures showed higher ranking in favour of traditional lectures in 5 of 7 parameters (p < 0.001). The observed higher-order lecturer-students interactions were increased in the EVS lecture for one lecturer and reduced for the other. Both lecturers felt that the EVS lectures were difficult to prepare, that they were able to keep to time in the traditional lectures, that the educational value of both lecture styles was similar, and that they were neutral-to-slightly favourably disposed to continue with the EVS technology. The 2 lecturers disagreed regarding the ease of preparation of the traditional lecture, their ability to keep to time in the EVS lecture, and personal satisfaction with the EVS lecture. The lecturers felt that EVS encouraged student participation and helped identify where students were having difficulty. Conclusion In this setting, EVS technology used in large group lectures did not offer significant advantages over the more traditional lecture format. PMID:17655773
Superheavy dark matter through Higgs portal operators
NASA Astrophysics Data System (ADS)
Kolb, Edward W.; Long, Andrew J.
2017-11-01
The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.
Guven, Esref O; Balbay, Mevlana D; Mete, Kilciler; Serefoglu, Ege C
2009-01-01
To evaluate the acute effects of sildenafil (50 mg) on the micturation of men with erectile dysfunction (ED) and concomitant benign prostatic hyperplasia (BPH) with lower urinary tract symptoms (LUTS) using uroflowmetric parameters. A total of 68 male patients randomized into two groups (36 treatment, 32 control groups) with International Prostate Symptom Score (IPSS) greater than 7 and International Index of Erectile Dysfunction-erectile function domain score lower than 26 were enrolled in the study. Patients in the treatment group received a single dose of 50 mg of oral sildenafil. Patients in the control group received no treatment. Prevoiding urine volumes determined ultrasonographically and voided urine volumes were also recorded. Statistical comparisons were made with the use of analysis of variance (ANOVA). Mean ages were similar between treatment and control groups (60.4 +/- 9.8 and 58.6 +/- 8.3 years, respectively, P = 0.430). In the treatment group the maximum and average flow rates increased significantly (Q (max) from 15.6 +/- 6.8 cc/s to 19.3 +/- 7.2 cc/s, P < 0.0001; Q (avg) from 7.3 +/- 3.0 cc/s to 9.1 +/- 3.0 cc/s, P < 0.0001) with sildenafil administration, while other parameters studied remained unchanged. Despite the limitations of variations of uroflowmetry, this study showed that sildenafil improves Q (max) and Q (avg) in patients suffering from ED with concomitant BPH-LUTS. Long-term studies are needed to evaluate the effects on IPSS, side effects, and drug interactions.
NASA Astrophysics Data System (ADS)
Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.
2017-08-01
The problem of the codirectional Kerr coupler has been considered several times from different point of view. In the present paper we introduce the interaction between a two-level atom and the codirectional Kerr nonlinear coupler in terms of su (2 ) Lie algebra. Under certain conditions we have adjusted the Kerr coupler and consequently we have managed to handle the problem. The wave function is obtained by using the evolution operator where the Heisnberg equation of motion is invoked to get the constants of the motion. We note that the Kerr parameter χ as well as the quantum number j plays the role of controlling the atomic inversion behavior. Also the maximum entanglement occurs after a short period of time when χ = 0. On the other hand for the entropy and the variance squeezing we observe that there is exchange between the quadrature variances. Furthermore, the variation in the quantum number j as well as in the parameter χ leads to increase or decrease in the number of fluctuations. Finally we examined the second order correlation function where classical and nonclassical phenomena are observed.
Kober, Silvia Erika; Reichert, Johanna Louise; Neuper, Christa; Wood, Guilherme
2016-04-01
The effects of age and gender on electroencephalographic (EEG) activity during a short-term memory task were assessed in a group of 40 healthy participants aged 22-63 years. Multi-channel EEG was recorded in 20 younger (mean = 24.65-year-old, 10 male) and 20 middle-aged participants (mean = 46.40-year-old, 10 male) during performance of a Sternberg task. EEG power and coherence measures were analyzed in different frequency bands. Significant interactions emerged between age and gender in memory performance and concomitant EEG parameters, suggesting that the aging process differentially influences men and women. Middle-aged women showed a lower short-term memory performance compared to young women, which was accompanied by decreasing delta and theta power and increasing brain connectivity with age in women. In contrast, men showed no age-related decline in short-term memory performance and no changes in EEG parameters. These results provide first evidence of age-related alterations in EEG activity underlying memory processes, which were already evident in the middle years of life in women but not in men. Copyright © 2016 Elsevier Inc. All rights reserved.
Matter density perturbation and power spectrum in running vacuum model
NASA Astrophysics Data System (ADS)
Geng, Chao-Qiang; Lee, Chung-Chi
2017-01-01
We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model, with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub-interaction and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behaviour as that in the Λ cold dark model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > (<)0 due to the couplings between radiation, matter and dark energy. It is clear that the observational data rule out the cases with ν < 0 and ν + σ < 0, while the allowed window for the model parameters is extremely narrow with ν , |σ | ≲ O(10^{-7}).
Indications of a late-time interaction in the dark sector.
Salvatelli, Valentina; Said, Najla; Bruni, Marco; Melchiorri, Alessandro; Wands, David
2014-10-31
We show that a general late-time interaction between cold dark matter and vacuum energy is favored by current cosmological data sets. We characterize the strength of the coupling by a dimensionless parameter q(V) that is free to take different values in four redshift bins from the primordial epoch up to today. This interacting scenario is in agreement with measurements of cosmic microwave background temperature anisotropies from the Planck satellite, supernovae Ia from Union 2.1 and redshift space distortions from a number of surveys, as well as with combinations of these different data sets. Our analysis of the 4-bin interaction shows that a nonzero interaction is likely at late times. We then focus on the case q(V)≠0 in a single low-redshift bin, obtaining a nested one parameter extension of the standard ΛCDM model. We study the Bayesian evidence, with respect to ΛCDM, of this late-time interaction model, finding moderate evidence for an interaction starting at z=0.9, dependent upon the prior range chosen for the interaction strength parameter q(V). For this case the null interaction (q(V)=0, i.e., ΛCDM) is excluded at 99% C.L.
NASA Astrophysics Data System (ADS)
Riva'i, Imam; Oktavia Wulandari, Ika; Sulistyarti, Hermin; Sabarudin, Akhmad
2018-01-01
In this study, the synthesis of Fe3O4 nanoparticles was done with surface modification using PVA with coprecipitation-ultrasonication method. Time variations and PVA concentrations were added to determine the effect on crystallite size and lattice parameters on the synthesis of Fe3O4-PVA nanoparticles. Fe3O4 characterization was done using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) instruments. FTIR was employed to determine PVA coating on the surface of Fe3O4 nanoparticles. The crystallite size and lattice parameters were analyzed using XRD. From the FTIR data, it is known that the interaction between PVA and Fe3O4 nanoparticles is characterized by Fe-O-C group at 1100 cm-1 region which is characteristic of Fe3O4-PVA nanoparticles, C-H groups of PVA in the range of 2950 cm-1 wave number, C-C of PVA regions of wave number 1405 cm-1, Fe3O4 and Fe3O4-PVA samples are in the range of 565 cm-1. In addition, the variation of ultrasonication time and the addition of PVA concentration have an effect on the crystallite size change and the lattice parameter observed from the XRD data. The use of ultrasonication time will affect the size of the crystallite become smaller and the grating lattice parameters obtained are wider. The effect of addition of PVA showed that higher concentration of PVA resulted in smaller crystallite size and larger lattice parameters. These results indicated that ultrasonication time and addition of PVA concentration greatly affect the characteristics of nanoparticles.
Mimosa: Mixture Model of Co-expression to Detect Modulators of Regulatory Interaction
NASA Astrophysics Data System (ADS)
Hansen, Matthew; Everett, Logan; Singh, Larry; Hannenhalli, Sridhar
Functionally related genes tend to be correlated in their expression patterns across multiple conditions and/or tissue-types. Thus co-expression networks are often used to investigate functional groups of genes. In particular, when one of the genes is a transcription factor (TF), the co-expression-based interaction is interpreted, with caution, as a direct regulatory interaction. However, any particular TF, and more importantly, any particular regulatory interaction, is likely to be active only in a subset of experimental conditions. Moreover, the subset of expression samples where the regulatory interaction holds may be marked by presence or absence of a modifier gene, such as an enzyme that post-translationally modifies the TF. Such subtlety of regulatory interactions is overlooked when one computes an overall expression correlation. Here we present a novel mixture modeling approach where a TF-Gene pair is presumed to be significantly correlated (with unknown coefficient) in a (unknown) subset of expression samples. The parameters of the model are estimated using a Maximum Likelihood approach. The estimated mixture of expression samples is then mined to identify genes potentially modulating the TF-Gene interaction. We have validated our approach using synthetic data and on three biological cases in cow and in yeast. While limited in some ways, as discussed, the work represents a novel approach to mine expression data and detect potential modulators of regulatory interactions.
NASA Astrophysics Data System (ADS)
Fremier, A. K.; Estrada Carmona, N.; Harper, E.; DeClerck, F.
2011-12-01
Appropriate application of complex models to estimate system behavior requires understanding the influence of model structure and parameter estimates on model output. To date, most researchers perform local sensitivity analyses, rather than global, because of computational time and quantity of data produced. Local sensitivity analyses are limited in quantifying the higher order interactions among parameters, which could lead to incomplete analysis of model behavior. To address this concern, we performed a GSA on a commonly applied equation for soil loss - the Revised Universal Soil Loss Equation. USLE is an empirical model built on plot-scale data from the USA and the Revised version (RUSLE) includes improved equations for wider conditions, with 25 parameters grouped into six factors to estimate long-term plot and watershed scale soil loss. Despite RUSLE's widespread application, a complete sensitivity analysis has yet to be performed. In this research, we applied a GSA to plot and watershed scale data from the US and Costa Rica to parameterize the RUSLE in an effort to understand the relative importance of model factors and parameters across wide environmental space. We analyzed the GSA results using Random Forest, a statistical approach to evaluate parameter importance accounting for the higher order interactions, and used Classification and Regression Trees to show the dominant trends in complex interactions. In all GSA calculations the management of cover crops (C factor) ranks the highest among factors (compared to rain-runoff erosivity, topography, support practices, and soil erodibility). This is counter to previous sensitivity analyses where the topographic factor was determined to be the most important. The GSA finding is consistent across multiple model runs, including data from the US, Costa Rica, and a synthetic dataset of the widest theoretical space. The three most important parameters were: Mass density of live and dead roots found in the upper inch of soil (C factor), slope angle (L and S factor), and percentage of land area covered by surface cover (C factor). Our findings give further support to the importance of vegetation as a vital ecosystem service provider - soil loss reduction. Concurrent, progress is already been made in Costa Rica, where dam managers are moving forward on a Payment for Ecosystem Services scheme to help keep private lands forested and to improve crop management through targeted investments. Use of complex watershed models, such as RUSLE can help managers quantify the effect of specific land use changes. Moreover, effective land management of vegetation has other important benefits, such as bundled ecosystem services (e.g. pollination, habitat connectivity, etc) and improvements of communities' livelihoods.
Probes of the catalytic site of cysteine dioxygenase.
Chai, Sergio C; Bruyere, John R; Maroney, Michael J
2006-06-09
The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.
Physiology of folic acid in health and disease.
Stanger, O
2002-04-01
Folates are important cofactors in the transfer and utilization of one-carbon-groups and play a key role in the remethylation of methionine thus providing essential methyl groups for numerous biological reactions. Furthermore, folates donate one-carbon units in the process of DNA-biosynthesis with implications for the regulation of gene expression, transcription, chromatine structure, genomic repair and genomic stability. As the role of folate deficiency in atherosclerotic cardiovascular disease, neurological and neuropsychiatric disorders, in congenital defects and carcinogenesis has become better understood, folate has been recognized as having great potential to prevent these many disorders through folate supplementation for the general population. Folate acts directly to produce antioxidant effects, interactions with enzyme endothelial NO synthase (eNOS) and effects on cofactor bioavailability of NO. Folate acts indirectly to lower homocysteine levels and insure optimal functioning of the methylation cycle. Folate metabolism provides an interesting example of gene-environmental interaction. A great part of the population, especially subgroups with higher demand, appears to have suboptimal folate intake, as determined through more sensitive parameters now widely determined. The available data strongly suggest that criteria for "folate deficiency" may have to be redefined.
Thirthalli, Jagadisha; Harish, Thippeswamy; Gangadhar, Bangalore N
2011-03-01
To compare patients on lithium and those not on lithium with regard to adverse effects while receiving ECT. Inpatients with schizophrenia, non-organic psychosis, mania and depression, who were prescribed ECTs either on (n=27) or not (n=28) on lithium were studied. Clinicians blind to lithium-status recorded seizure parameters, interaction with succinyl choline, cardiovascular response, recovery from ECT and immediate post-ECT complications. The lithium group showed no significant difference in terms of seizure variables, apnea time, and recovery from anaesthesia when compared to the non-lithium group. Average maximum heart rate, average maximum systolic blood pressure and average maximum rate pressure product were significantly lower in patients who had combined lithium and ECT. In lithium patients the average time to post-ECT recovery was directly correlated with serum lithium level. Though concurrent lithium is by and large safe during ECT, it benefits to maintain serum lithium level at lower end of therapeutic range. However, the findings can be applied to relatively young patients with no risk factors for ECT-complications.
NASA Astrophysics Data System (ADS)
Perpétuo, Genivaldo J.; Gonçalves, Rafael S.; Janczak, Jan
2015-09-01
The single crystals of 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate were grown using a solution growth technique. The compound crystallises in the centrosymmetric P21/c space group of the monoclinic system. The conformation of the 1-(diaminomethylene)thiouron-1-ium cation is not strictly planar, but twisted. Both arms of the cation are oppositely rotated by 8.5(1)° around the Csbnd N bonds involving the central N atom. The arrangement of oppositely charged components, i.e. 1-(diaminomethylene)thiouron-1-ium cations and 4-hydroxybenzenesulfonate anions in the crystal is mainly determined by ionic and hydrogen-bonding interactions forming supramolecular network. The possible hydrogen-bonding interactions between cation and anion units were analysed on the basis of molecular orbital calculations. The obtained deuterated analogue crystallises similar as H-compound in the monoclinic system (P21/c) with quite similar lattice parameters. The compound was also characterised by the FT-IR and Raman spectroscopies. The characteristic bands of the functional and skeletal groups of the protiated and deuterated analogue of 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate are discussed.
Experimental Effects of Acute Exercise and Meditation on Parameters of Cognitive Function.
Edwards, Meghan K; Loprinzi, Paul D
2018-05-29
Single bouts of aerobic exercise and meditation have been shown to improve cognitive function. Yet to be examined in the literature, we sought to examine the effects of a combination of acute bouts of aerobic exercise and meditation on cognitive function among young adults. Participants ( n = 66, mean (SD) age = 21 (2)) were randomly assigned to walk then meditate, meditate then walk, or to sit (inactive control). All walking and meditation bouts were 10 min in duration. Participants' cognition was monitored before and after the intervention using Identification, Set Shifting, Stroop, and Trail Making tasks. Additionally, a subjective assessment of cognitive function was implemented before and after the intervention. Significant group by time interaction effects were observed when examining the Stroop congruent trials ( P = 0.05). Post hoc paired t -tests revealed that reaction time significantly decreased from baseline to post-intervention in both combination groups ( P < 0.001 for both), but not in the control group ( P = 0.09). Regarding all other cognitive assessments, there were no significant group by time interaction effects ( P > 0.05). Cognitive function was not substantially affected by a combination of brief meditation and exercise, though there is evidence to suggest that this combination may have beneficial effects on certain aspects of cognition. Future work should be conducted to evaluate the influences of different doses of exercise and meditation on cognitive functioning.
Miranda-Castilleja, Dalia E; Martínez-Peniche, Ramón Á; Nadal Roquet-Jalmar, Montserrat; Aldrete-Tapia, J Alejandro; Arvizu-Medrano, Sofía M
2018-06-15
Despite the importance of strain compatibility, most of the enological strain selection studies are carried out separately on yeasts and lactic acid bacteria (LAB). In this study, the enological traits and interactions between native yeasts and LAB were studied. The H 2 S and acetic acid production, growth rates at 8 °C, killer phenotypes, flocculation, and tolerance to must and wine inhibitors were determined for 25 Saccharomyces yeasts. The ability to grow under two wine-like conditions was also determined in 37 LAB (Oenococcus oeni and Lactobacillus plantarum). The yeast-LAB compatibility of selected strains was tested in a sequential scheme. Finally, microvinification trials were performed using two strains from each group to determine the efficiencies and quality parameters. The phenotypic characterization by the K-means and hierarchical clusters indicated a correlation between flocculation and optical density increase in simulated must and wine medium (r = -0.415) and grouped the prominent yeasts SR19, SR26, and N05 as moderately flocculent, killer, acid producing, and highly tolerant strains. Among the LAB, L. plantarum FU39 grew 230% more than the rest. With regard to interactions, LAB growth stimulation (14-fold on average) due to the previous action of yeasts, particularly of SR19, was observed. The final quality of all wines was similar, but yeast SR19 performed a faster and more efficient fermentation than did N05, Also L. plantarum FU39 fermented faster than did O. oeni VC32. The use of quantitative data, and multivariate analyses allowed an integrative approach to the selection of a compatible and efficient pair of enological yeast-LAB strains. An alternative scheme is proposed for the joint selection of yeast and lactic acid bacteria strains, which allows us to foresee the interactions that may occur between them during winemaking. The kinetic parameters, turbidimetrically measured and analyzed by multivariate methods, simplify the detection of outstanding selectable microorganisms. This methodology can be implemented at any cellar or even any fermentative industry that aims to select compatible yeast and lactic acid bacteria. © 2018 Institute of Food Technologists®.
Jessen, Jari Due; Lund, Henrik Hautop
2017-01-19
Loss of functional capabilities due to inactivity is one of the most common reasons for fall accidents, and it has been well established that loss of capabilities can be effectively reduced by physical activity. Pilot studies indicate a possible improvement in functional abilities of community dwelling elderly as a result of short-term playing with an exergame system in the form of interactive modular tiles. Such playful training may be motivational to perform and viewed by the subjects to offer life-fulfilling quality, while providing improvement in physical abilities, e.g. related to prevent fall accidents. The RCT will test for a variety of health parameters of community-dwelling elderly playing on interactive modular tiles. The study will be a single blinded, randomized controlled trial with 60 community-dwelling adults 70+ years. The trial will consist an intervention group of 30 participants training with the interactive modular tiles, and a control group of 30 participants that will receive the usual care provided to non-patient elderly. The intervention period will be 12 weeks. The intervention group will perform group training (4-5 individuals for 1 h training session with each participant receiving 13 min training) on the interactive tiles twice a week. Follow-up tests include 6-min Walk Test (6MWT), the 8-ft Timed Up & Go Test (TUG), and the Chair-Stand Test (CS) from the Senior Fitness Test, along with balancing tests (static test on Wii Board and Line Walk test). Secondary outcomes related to adherence, motivation and acceptability will be investigated through semi-structured interviews. Data will be collected from pre- and post-tests. Data will be analyzed for statistically significant differences by checking that there is a Gaussian distribution and then using paired t-test, otherwise using Wilcoxon signed-rank test. "Intention to treat" analysis will be done. The trial tests for increased mobility, agility, balancing and general fitness of community-dwelling elderly as a result of playing, in this case on modular interactive tiles. A positive outcome may help preventing loss of functional capabilities due to inactivity. ClinicalTrials.gov: Nr. NCT02496702 , Initial Release date 7/7-2015.
Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu
2012-05-01
Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.
Kanchi, Subbarao; Gosika, Mounika; Ayappa, K G; Maiti, Prabal K
2018-06-13
The understanding of dendrimer interactions with cell membranes has great importance in drug/gene delivery based therapeutics. Although molecular simulations have been used to understand the nature of dendrimer interactions with lipid membranes, its dependency on available force field parameters is poorly understood. In this study, we have carried out fully atomistic molecular dynamics (MD) simulations of a protonated G3 poly(amido amine) (PAMAM) dendrimer-dimyristoylphosphatidylcholine (DMPC) lipid bilayer complex using three different force fields (FFs) namely, CHARMM, GAFF, and GROMOS in the presence of explicit water to understand the structure of the lipid-dendrimer complex and nature of their interaction. CHARMM and GAFF dendrimers initially in contact with the lipid head groups were found to move away from the lipid bilayer during the course of simulation; however, the dendrimer remained strongly bound to the lipid head groups with the GROMOS FF. Potential of the mean force (PMF) computations of the dendrimer along the bilayer normal showed a repulsive barrier (∼20 kcal/mol) between dendrimer and lipid bilayer in the case of CHARMM and GAFF force fields. In contrast, an attractive interaction (∼40 kcal/mol) is obtained with the GROMOS force field, consistent with experimental observations of membrane binding observed with lower generation G3 PAMAM dendrimers. This difference with the GROMOS dendrimer is attributed to the strong dendrimer-lipid interaction and lowered surface hydration of the dendrimer. Assessing the role of solvent, we find that the CHARMM and GAFF dendrimers strongly bind to the lipid bilayer with an implicit solvent (Generalized Born) model, whereas binding is not observed with explicit water (TIP3P). The opposing nature of dendrimer-membrane interactions in the presence of explicit and implicit solvents demonstrates that hydration effects play an important role in modulating the dendrimer-lipid interaction warranting a case for refinement of the existing dendrimer/lipid force fields.
Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin
2016-12-25
Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.
Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin
2016-01-01
Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect. PMID:28029143
Arjunan, V; Devi, L; Remya, P; Mohan, S
2013-09-01
The FTIR and FT-Raman spectra of 3,4-dimethoxybenzonitrile (34DMBN) have been analysed. Quantum chemical studies were performed with B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVTZ basis sets. The electron donating effect of -OCH3 and electron withdrawing effect of -C≡N groups on the ring parameters were thoroughly analysed. The structural parameters, energies, thermodynamic properties, vibrational frequencies and the NBO charges of 34DMBN were determined. The (1)H and (13)C chemical shifts with respect to TMS were investigated and also calculated theoretically using the gauge independent atomic orbital method and compared with the experimental data. The delocalisation energy of different types of bonding interactions was investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
Molecular Dynamics of β-Hairpin Models of Epigenetic Recognition Motifs
Zheng, Xiange; Wu, Chuanjie; Ponder, Jay W.; Marshall, Garland R.
2012-01-01
The conformations and stabilities of the β-hairpin model peptides of Waters1,2 have been experimentally characterized as a function of lysine ε-methylation. These models were developed to explore molecular recognition of known epigenetic recognition motifs. This system offered an opportunity to computationally examine the role of cation-π interactions, desolvation of the ε-methylated ammonium groups, and aromatic/aromatic interactions on the observed differences in NMR spectra. AMOEBA, a second-generation force field4, was chosen as it includes both multipole electrostatics and polarizability thought to be essential to accurately characterize such interactions. Independent parameterization of ε-methylated amines was required from which aqueous solvation free energies were estimated and shown to agree with literature values. Molecular dynamics simulations (100 ns) using the derived parameters with model peptides, such as Ac-R-W-V-W-V-N-G-Orn-K(Me)n -I-L-Q-NH2, where n = 0, 1, 2, or 3, were conducted in explicit solvent. Distances between the centers of the indole rings of the two-tryptophan residues, 2 and 4, and the ε-methylated ammonium group on Lys-9 as well as the distance between the N- and C-termini were monitored to estimate the strength and orientation of the cation-π and aromatic/aromatic interactions. In agreement with the experimental data, the stability of the β-hairpin increased significantly with lysine ε-methylation. The ability of MD simulations to reproduce the observed NOEs for the four peptides was further estimated for the monopole-based force fields, AMBER, CHARMM, and OPLSAA. AMOEBA correctly predicted over 80% of the observed NOEs for all four peptides, while the three-monopole force fields were 40–50% predictive in only two cases and approximately 10% in the other ten examples. Preliminary analysis suggests that the decreased cost of desolvation of the substituted ammonium group significantly compensated for the reduced cation-π interaction resulting from the increased separation due to steric bulk of the ε-methylated amines. PMID:22934656
Cranston, L. M.; Kenyon, P. R.; Corner-Thomas, R. A.; Morris, S. T.
2017-01-01
Objective The present study aimed to determine the impact of ewe body condition score (BCS) (over a range of 2.0 to 3.0) and nutritional treatments (consisting of differing herbage masses) during very late pregnancy and lactation and their potential interaction on the performance of twin-bearing ewes and their lambs to weaning. Methods On day 142 of pregnancy, twin-bearing ewes with a BCS of 2.0, 2.5, or 3.0 were allocated to a “Moderate’ or ‘Unrestricted’ nutritional treatment until day 95 of lactation (weaning). The nutritional treatments aimed to achieve average herbage masses of 1,200 to 1,300 kg dry matter (DM)/ha (Moderate) and 1,500 to 1,800 kg DM/ha (Unrestricted). Results There were no three-way interactions between ewe BCS group, nutritional treatment and time for any ewe or lamb parameter. The nutritional treatments had no effect (p>0.05) on lamb birth or weaning weight. Lambs born to Moderate ewes had greater survival and total litter weight at weaning (p<0.05). Regardless of BCS group, Unrestricted treatment ewes had greater body condition and back-fat depth at weaning than Moderate treatment ewes (p<0.05). Ewes of BCS 2.0 group reared lighter lambs to weaning (p<0.05) and tended to have a lower total litter weight (p = 0.06) than BCS 3.0 group ewes. Conclusion This study suggests farmers should aim to have all ewes with a BCS of 2.5 or 3 in late pregnancy for optimal lamb weaning performance. Furthermore, there is no benefit to lamb production of offering ewes pasture masses >1,200 kg DM/ha during very late pregnancy and lactation. PMID:28231701
Cranston, L M; Kenyon, P R; Corner-Thomas, R A; Morris, S T
2017-09-01
The present study aimed to determine the impact of ewe body condition score (BCS) (over a range of 2.0 to 3.0) and nutritional treatments (consisting of differing herbage masses) during very late pregnancy and lactation and their potential interaction on the performance of twin-bearing ewes and their lambs to weaning. On day 142 of pregnancy, twin-bearing ewes with a BCS of 2.0, 2.5, or 3.0 were allocated to a "Moderate' or 'Unrestricted' nutritional treatment until day 95 of lactation (weaning). The nutritional treatments aimed to achieve average herbage masses of 1,200 to 1,300 kg dry matter (DM)/ha (Moderate) and 1,500 to 1,800 kg DM/ha (Unrestricted). There were no three-way interactions between ewe BCS group, nutritional treatment and time for any ewe or lamb parameter. The nutritional treatments had no effect (p>0.05) on lamb birth or weaning weight. Lambs born to Moderate ewes had greater survival and total litter weight at weaning (p<0.05). Regardless of BCS group, Unrestricted treatment ewes had greater body condition and back-fat depth at weaning than Moderate treatment ewes (p<0.05). Ewes of BCS 2.0 group reared lighter lambs to weaning (p<0.05) and tended to have a lower total litter weight (p = 0.06) than BCS 3.0 group ewes. This study suggests farmers should aim to have all ewes with a BCS of 2.5 or 3 in late pregnancy for optimal lamb weaning performance. Furthermore, there is no benefit to lamb production of offering ewes pasture masses >1,200 kg DM/ha during very late pregnancy and lactation.
Pharmacokinetic interaction between febuxostat and morin in rats.
Sahu, Kapendra; Siddiqui, Anees A; Shaharyar, Mohammad; Malik, Sachin
2014-03-01
Due to wide consumption of flavonoids in the dietary supplement, and an imperative role of CYPs and P-glycoprotein inhibition in drug disposition. So there is increasing scientific interest in drug-flavonoid interactions. The present study aims to investigate the effect of morin, a flavonoid, on the pharmacokinetics of febuxostat in rats. A simple ultra-performance liquid chromatography method has been developed for the calculation of febuxostat in 100 µl rat plasma using febuxostat D7 as an internal standard (IS). The assay procedure involved a single-step, liquid-liquid extraction of febuxostat and IS from plasma with methanol. Pharmacokinetic parameters of febuxostat were determined in rats after an oral administration of febuxostat (5 mg/kg) to rats in the control, coadministered and pretreated groups of morin (10 mg/kg). Compared to the control rats given febuxostat alone, the Cmax and AUC of febuxostat increased by 18 - 20 and 47 - 50%, respectively, in rats pretreated with morin. The plasma half-life (t1/2) of the pretreated group is increased by 2.5-fold compared with the control group. Consequently, relative bioavailability values of febuxostat in the rats pretreated with morin were significantly higher (p < 0.05) than those from the control and coadministered groups. Increased bioavailability indicates that the presence of morin could be effective in inhibiting CYP1A1, CYP1A2 and CYP3A4-mediated metabolism and/or effective in inhibiting P-glycoprotein-mediated cellular efflux of febuxostat. The presence of morin significantly enhanced the oral exposure of febuxostat, suggesting that concurrent use of morin or morin-containing dietary supplements with febuxostat should be verified to avoid drug-flavonoid interactions.
A quantitative study of nanoparticle skin penetration with interactive segmentation.
Lee, Onseok; Lee, See Hyun; Jeong, Sang Hoon; Kim, Jaeyoung; Ryu, Hwa Jung; Oh, Chilhwan; Son, Sang Wook
2016-10-01
In the last decade, the application of nanotechnology techniques has expanded within diverse areas such as pharmacology, medicine, and optical science. Despite such wide-ranging possibilities for implementation into practice, the mechanisms behind nanoparticle skin absorption remain unknown. Moreover, the main mode of investigation has been qualitative analysis. Using interactive segmentation, this study suggests a method of objectively and quantitatively analyzing the mechanisms underlying the skin absorption of nanoparticles. Silica nanoparticles (SNPs) were assessed using transmission electron microscopy and applied to the human skin equivalent model. Captured fluorescence images of this model were used to evaluate degrees of skin penetration. These images underwent interactive segmentation and image processing in addition to statistical quantitative analyses of calculated image parameters including the mean, integrated density, skewness, kurtosis, and area fraction. In images from both groups, the distribution area and intensity of fluorescent silica gradually increased in proportion to time. Since statistical significance was achieved after 2 days in the negative charge group and after 4 days in the positive charge group, there is a periodic difference. Furthermore, the quantity of silica per unit area showed a dramatic change after 6 days in the negative charge group. Although this quantitative result is identical to results obtained by qualitative assessment, it is meaningful in that it was proven by statistical analysis with quantitation by using image processing. The present study suggests that the surface charge of SNPs could play an important role in the percutaneous absorption of NPs. These findings can help achieve a better understanding of the percutaneous transport of NPs. In addition, these results provide important guidance for the design of NPs for biomedical applications.
Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro
2018-06-01
Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2 s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.
Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury.
Ravi, S; Selvaraj, M
2014-04-14
A novel incessant formation of chain like mesoporous silica (ICMS) has been easily materialized using a mixed surfactant (Pluronic P123 and FC-4) as a structuring reagent in conjunction with a thiol precursor (3-MPS) through a one-pot synthetic method. A particular thiol concentration facilitated the interaction of the micelle head groups to form long-chain micelles, where FC-4 enhanced further growth. The rapid interactions of the micelles and the condensation of silicic acid and its oligomeric derivatives by coordinating 3-MPS through hydrogen bonding interactions leads to form ICMS. The characterization results for the ICMS illustrated that it has an ordered hexagonal pore geometry. The capability of the ICMS for Hg(2+) adsorption was extensively studied under different optimal parameters and the adsorption isothermal values clearly fit with the Langmuir and Freundlich isothermal plots. This novel material exhibited an unprecedentedly high binding affinity toward even microgram levels of mercury ions in wastewater, compared to other thiol-based mesoporous silica.
Microwave dielectric study of an oligomeric electrolyte gelator by time domain reflectometry.
Kundu, Shyamal Kumar; Yagihara, Shin; Yoshida, Masaru; Shibayama, Mitsuhiro
2009-07-30
The dynamics of water molecules in aqueous solutions of an oligomeric electrolyte gelator, poly[pyridinium-1,4-diyliminocarbonyl-1,4-phenylene-methylene chloride] (1-Cl) was characterized by microwave dielectric measurements using the time domain reflectometry method. The dielectric dispersion and absorption curves related to the orientational motion of water molecules were described by the Cole-Cole equation. Discontinuities were observed in the concentration dependence of the dielectric relaxation strength, Deltaepsilonh, as well as in the Cole-Cole parameter, betah. These discontinuities were observed between the samples with concentrations of 6 and 7 g/L 1-Cl/water, which correspond to a change in the transparency. Such a discontinuity corresponds to the observation of the critical concentration of gelation. The interaction between water and 1-Cl molecules was discussed from the tauh-betah diagram. As 1-Cl carries an amide group, it could be expected that 1-Cl may interact hydrophilically with water, but the present result suggests that 1-Cl interact hydrophobically with water.
Shahabadi, Nahid; Fili, Soraya Moradi
2014-01-24
The interaction of mesalamine (5-aminosalicylic acid (5-ASA)) with bovine serum albumin (BSA) was investigated by fluorescence quenching, absorption spectroscopy, circular dichroism (CD) techniques, and molecular docking. Thermodynamic parameters (ΔH<0 and ΔS 0) indicated that the hydrogen bond and electrostatic forces played the major role in the binding of 5-ASA to BSA. The results of CD and UV-vis spectroscopy showed that the binding of this drug to BSA induces some conformational changes in BSA. Displacement experiments predicted that the binding of 5-ASA to BSA is located within domain III, Sudlows site 2, that these observations were substantiated by molecular docking studies. In addition, the docking result shows that the 5-ASA in its anionic form mainly interacts with Gln-416 residue through one hydrogen bond between H atom of 5-ASA anion and the adjacent O atom of the hydroxyl group of Gln-416. Copyright © 2013 Elsevier B.V. All rights reserved.
2013-01-01
Background Achieving target levels of laboratory parameters of bone and mineral metabolism in chronic kidney disease (CKD) patients is important but also difficult in those living with end-stage kidney disease. This study aimed to determine if there are age-related differences in chronic kidney disease-mineral and bone disorder (CKD-MBD) characteristics, including treatment practice in Hungarian dialysis patients. Methods Data were collected retrospectively from a large cohort of dialysis patients in Hungary. Patients on hemodialysis and peritoneal dialysis were also included. The enrolled patients were allocated into two groups based on their age (<65 years and ≥65 years). Characteristics of the age groups and differences in disease-related (epidemiology, laboratory, and treatment practice) parameters between the groups were analyzed. Results A total of 5008 patients were included in the analysis and the mean age was 63.4±14.2 years. A total of 47.2% of patients were women, 32.8% had diabetes, and 11.4% were on peritoneal dialysis. Diabetes (37.9% vs 27.3%), bone disease (42.9% vs 34.1%), and soft tissue calcification (56.3% vs 44.7%) were more prevalent in the older group than the younger group (p<0.001 for all). We found an inverse relationship between age and parathyroid hormone (PTH) levels (p<0.001). Serum PTH levels were lower in patients with diabetes compared with those without diabetes below 80 years (p<0.001). Diabetes and age were independently associated with serum PTH levels (interaction: diabetes × age groups, p=0.138). Older patients were more likely than younger patients to achieve laboratory target ranges for each parameter (Ca: 66.9% vs 62.1%, p<0.001; PO4: 52.6% vs 49.2%, p<0.05; and PTH: 50.6% vs 46.6%, p<0.01), and for combined parameters (19.8% vs 15.8%, p<0.001). Older patients were less likely to receive related medication than younger patients (66.9% vs 79.7%, p<0.001). Conclusions The achievement of laboratory target ranges for bone and mineral metabolism and clinical practice in CKD depends on the age of the patients. A greater proportion of older patients met target criteria and received less medication compared with younger patients. PMID:23865464
NASA Astrophysics Data System (ADS)
Ghiassian, Susan; Pevzner, Sam; Rolland, Thomas; Tassan, Murat; Barabasi, Albert Laszlo; Vidal, Mark; CCNR, Northeastern University Collaboration; Dana Farber Cancer Institute Collaboration
2014-03-01
Protein-protein interaction maps and interactomes are the blueprint of Network Medicine and systems biology and are being experimentally studied by different groups. Despite the wide usage of Literature Curated Interactome (LCI), these sources are biased towards different parameters such as highly studied proteins. Yeast two hybrid method is a high throughput experimental setup which screens proteins in an unbiased fashion. Current knowledge of protein interactions is far from complete. In fact the previous offered data from Y2H method (2005), is estimated to offer only 5% of all potential protein interactions. Currently this coverage has increased to 20% of what is known as reference HI In this work we study the topological properties of Y2H protein-protein interactions network with LCI and show although they both agree on some properties, LCI shows a clear unbiased nature of interaction selections. Most importantly, we assess the properties of PPI as it evolves with increasing the coverage. We show that, the newly discovered interactions tend to connect proteins that have been closer than average in the previous PPI release. reinforcing the modular structure of PPI. Furthermore, we show, some unseen effects on PPI (as opposed to LCI) can be explained by its incompleteness.
Yoo, Jung-Hwa; Yim, Sung-Vin
2018-01-01
Background Bojungikki-tang (BJIKT) is a widely used traditional herbal formula in China, Japan, and Korea. There have been reports that several herbs among BJIKT have interactions with antiplatelet drugs, such as aspirin. This study aimed to assess whether BJIKT interacts with aspirin in terms of pharmacokinetics (PK) and pharmacodynamics (PD) in healthy subjects and ischemic stroke patients. Methods The phase I interaction trial was a randomized, open-label, crossover study of 10 healthy male subjects, and the phase III interaction trial was a randomized, placebo-controlled, parallel study of 43 ischemic stroke patients. Each participant randomly received aspirin + BJIKT or aspirin + placebo. For PK analysis, plasma acetyl salicylic acid (ASA) and salicylic acid (SA) were evaluated, and, for PD analysis, platelet aggregation and plasma thromboxane B2 (TxB2) were measured. Results In the PK parameters, mean area under curve, maximum concertation, and peak concentration time of ASA and SA were not different between two groups in healthy subjects and ischemic stroke patients. In the PD profiles, TxB2 concentrations and platelet aggregation were not affected by coadministration of BJIKT in healthy subjects and ischemic stroke patients. Conclusions These results suggest that coadministration of BJIKT with aspirin may not result in herb-drug interaction. PMID:29599812
NASA Astrophysics Data System (ADS)
Capitán, José A.; Manrubia, Susanna
2015-12-01
The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.
Capitán, José A; Manrubia, Susanna
2015-12-01
The distribution of human linguistic groups presents a number of interesting and nontrivial patterns. The distributions of the number of speakers per language and the area each group covers follow log-normal distributions, while population and area fulfill an allometric relationship. The topology of networks of spatial contacts between different linguistic groups has been recently characterized, showing atypical properties of the degree distribution and clustering, among others. Human demography, spatial conflicts, and the construction of networks of contacts between linguistic groups are mutually dependent processes. Here we introduce an adaptive network model that takes all of them into account and successfully reproduces, using only four model parameters, not only those features of linguistic groups already described in the literature, but also correlations between demographic and topological properties uncovered in this work. Besides their relevance when modeling and understanding processes related to human biogeography, our adaptive network model admits a number of generalizations that broaden its scope and make it suitable to represent interactions between agents based on population dynamics and competition for space.
First and Higher Order Effects on Zero Order Radiative Transfer Model
NASA Astrophysics Data System (ADS)
Neelam, M.; Mohanty, B.
2014-12-01
Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.
Observational constraint on the interacting dark energy models including the Sandage-Loeb test
NASA Astrophysics Data System (ADS)
Zhang, Ming-Jian; Liu, Wen-Biao
2014-05-01
Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.
Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism.
Carneiro-Ramos, M S; Silva, V B; Santos, R A S; Barreto-Chaves, M L M
2006-11-01
We have previously demonstrated the interaction between the RAS and thyroid hormones (TH). The present study was designed to determine the role of TH in the local regulation of ACE activity and expression in different tissues. Adult male Wistar rats were randomized into three groups: T4-25 and T4-100 (0.025 and 0.100mg/kg of body weight/day of l-thyroxine for 14 days, respectively) and control. Hemodynamic parameters as well as cardiac and renal hypertrophy were evaluated. ACE activity and mRNA levels were determined by Fluorimetric and Northern blot assays, respectively. Both doses increased SBP and HR, as well as inducing cardiac and renal hypertrophy. Pulmonary and serum ACE levels were comparable among the groups. Both doses promoted increased renal ACE activity and expression but surprisingly ACE was diminished in the heart in both hyperthyroid groups. This change was mediated by a tissue-specific transcription mechanism.
Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.
Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim
2014-07-08
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.
The Influence of Interactions and Minor Mergers on the Structure of Galactic Disks
NASA Astrophysics Data System (ADS)
Schwarzkopf, U.
1999-07-01
A detailed statistical study is presented focused on the effects of minor mergers and tidal interactions on the radial and vertical structure of galactic disks. The fundamental disk parameters of 112 highly-inclined/edge-on galaxies are studied in optical and in near-infrared passbands. This sample consists of two subsamples of 65 non-interacting and 47 interacting/merging galaxies. Additionally, 41 of these galaxies were observed in the near-infrared. A 3-dimensional disk modelling and -fitting procedure was applied in order to analyze and to compare characteristic disk parameters of all sample galaxies. Furthermore, n-body simulations were performed in order to study the influence of minor mergers in the mass range Msat/Mdisk 0.1 on the vertical structure of disks in spiral galaxies. In particular, the dependence of vertical, tidally-triggered disk thickening on initial disk parameters is investigated. The quantitative results of both simulation and observation are compared in order to find similarities in the distribution of characteristic disk parameters.
Dibetsoe, Masego; Olasunkanmi, Lukman O; Fayemi, Omolola E; Yesudass, Sasikumar; Ramaganthan, Baskar; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E
2015-08-28
The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I(-) ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the quantum chemical parameters obtained with B3LYP/6-31G (d,p) method show that a combination of two quantum chemical parameters to form a composite index provides the best correlation with the experimental data.
Idrizovic, Kemal; Gjinovci, Bahri; Sekulic, Damir; Uljevic, Ognjen; João, Paulo Vicente; Spasic, Miodrag; Sattler, Tine
2018-02-24
This study compared the effects of skill-based and plyometric conditioning (both performed in addition to regular volleyball training twice a week for 12 wk) on fitness parameters in female junior volleyball players. The participants [n = 47; age: 16.6 (0.6) y; mass: 59.4 (8.1) kg; height: 175.1 (3.0) cm] were randomized into a plyometric (n = 13), a skill-based (n = 17), and a control (n = 17) groups. The variables included body height, body mass, calf girth, calf skinfold, corrected calf girth, countermovement jump, 20-m-sprint, medicine ball toss, and sit-and-reach test. Two-way analysis of variance (time × group) effects for time were significant (P < .05) for all variables except body mass. Significant group × time interactions were observed for calf skinfold [η 2 = .14; medium effect size (ES)], 20-m sprint (η 2 = .09; small ES), countermovement jump (η 2 = .29; large ES), medicine ball (η 2 = .58; large ES), with greater gains (reduction of skinfold) for plyometric group, and sit-and-reach (η 2 = .35; large ES), with greater gains in plyometric and skill-based groups. The magnitude-based inference indicated positive changes in 1) medicine ball toss and countermovement jump for all groups; 2) sit-and-reach for the plyometric and skill-based groups; and 3) 20-m sprint, calf girth, calf skinfold, and corrected calf girth for plyometric group only. Selected variables can be improved by adding 2 plyometric training sessions throughout the period of 12 weeks. Additional skill-based conditioning did not contribute to improvement in the studied variables compared with regular volleyball training.
Tiryaki Demir, Semra; Oba, Mehmet Ersin; Erdoğan, Ezgi Tuna; Odabaşı, Mahmut; Dirim, Ayşe Burcu; Demir, Mehmet; Can, Efe; Kara, Orhan; Yekta Şendül, Selam
2015-01-01
Objectives: To investigate the correlation of visual field (VF), pattern electroretinography (PERG) and Fourier domain optical coherence tomography (FD-OCT) results in patients with ocular hypertension (OHT) and early primary open-angle glaucoma (POAG). Materials and Methods: The study included 72 eyes of 37 patients with early POAG, 76 eyes of 38 patients with OHT, and 60 eyes of 30 controls. All subjects underwent full ophthalmologic examination, VF assessment with 24-2 Humphrey standard automated perimetry (Swedish Interactive Thresholding Algorithm (SITA)-Standard), retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) thickness measurement with FD-OCT, and PERG P50 and N95 wave latency and amplitude measurements with electroretinography (Nihon Kohden). Results: With the exception of the nasal quadrant, all GCC parameters and RNFL results were significantly lower in the POAG group compared to the OHT and control groups. There was no statistically significant difference between the OHT and control group. PERG amplitudes were lower in the POAG and OHT groups than in the control group. Reduction in N95 amplitude was greater than that of P50 amplitude. No difference was detected in PERG latencies among groups. GCC was significantly correlated with VF and RNFL in the POAG group. Conclusion: Significant thinning of the GCC and RNFL occurs in addition to VF pathologies in patients with early POAG, and these examinations should be concomitantly evaluated. During diagnostic assessment of patients with early POAG, GCC and RNFL analysis by FD-OCT are highly effective. GCC is as reliable as RNLF in the early diagnosis of glaucoma and there is a highly significant correlation between them. Dysfunction of ganglion cells in patients with OHT may be detected earlier using PERG amplitude analysis. PMID:27800239
Astashkin, Andrei V; Neese, Frank; Raitsimring, Arnold M; Cooney, J Jon A; Bultman, Eric; Enemark, John H
2005-11-30
Ka band ESEEM spectroscopy was used to determine the hyperfine (hfi) and nuclear quadrupole (nqi) interaction parameters for the oxo-17O ligand in [Mo 17O(SPh)4]-, a spectroscopic model of the oxo-Mo(V) centers of enzymes. The isotropic hfi constant of 6.5 MHz found for the oxo-17O is much smaller than the values of approximately 20-40 MHz typical for the 17O nucleus of an equatorial OH(2) ligand in molybdenum enzymes. The 17O nqi parameter (e2qQ/h = 1.45 MHz, eta approximately = 0) is the first to be obtained for an oxo group in a metal complex. The parameters of the oxo-17O ligand, as well as other magnetic resonance parameters of [Mo 17O(SPh)4]- predicted by quasi-relativistic DFT calculations, were in good agreement with those obtained in experiment. From the electronic structure of the complex revealed by DFT, it follows that the SOMO is almost entirely molybdenum d(xy) and sulfur p, while the spin density on the oxo-17O is negative, determined by spin polarization mechanisms. The results of this work will enable direct experimental identification of the oxo ligand in a variety of chemical and biological systems.
Kollins, Scott H; McClernon, F Joseph; Epstein, Jeff N
2009-02-01
Smoking abstinence differentially affects cognitive functioning in smokers with ADHD, compared to non-ADHD smokers. Alternative approaches for analyzing reaction time data from these tasks may further elucidate important group differences. Adults smoking > or = 15 cigarettes with (n=12) or without (n=14) a diagnosis of ADHD completed a continuous performance task (CPT) during two sessions under two separate laboratory conditions--a 'Satiated' condition wherein participants smoked up to and during the session; and an 'Abstinent' condition, in which participants were abstinent overnight and during the session. Reaction time (RT) distributions from the CPT were modeled to fit an ex-Gaussian distribution. The indicator of central tendency for RT from the normal component of the RT distribution (mu) showed a main effect of Group (ADHD < Control) and a Group x Session interaction (ADHD group RTs decreased when abstinent). RT standard deviation for the normal component of the distribution (sigma) showed no effects. The ex-Gaussian parameter tau, which describes the mean and standard deviation of the non-normal component of the distribution, showed significant effects of session (Abstinent > Satiated), Group x Session interaction (ADHD increased significantly under Abstinent condition compared to Control), and a trend toward a main effect of Group (ADHD > Control). Alternative approaches to analyzing RT data provide a more detailed description of the effects of smoking abstinence in ADHD and non-ADHD smokers and results differ from analyses using more traditional approaches. These findings have implications for understanding the neuropsychopharmacology of nicotine and nicotine withdrawal.
Kollins, Scott H.; McClernon, F. Joseph; Epstein, Jeff N.
2009-01-01
Smoking abstinence differentially affects cognitive functioning in smokers with ADHD, compared to non-ADHD smokers. Alternative approaches for analyzing reaction time data from these tasks may further elucidate important group differences. Adults smoking ≥15 cigarettes with (n = 12) or without (n = 14) a diagnosis of ADHD completed a continuous performance task (CPT) during two sessions under two separate laboratory conditions—a ‘Satiated’ condition wherein participants smoked up to and during the session; and an ‘Abstinent’ condition, in which participants were abstinent overnight and during the session. Reaction time (RT) distributions from the CPT were modeled to fit an ex-Gaussian distribution. The indicator of central tendency for RT from the normal component of the RT distribution (mu) showed a main effect of Group (ADHD
Stress conditioning in mice: alterations in immunity and tumor growth.
Benaroya-Milshtein, Noa; Hollander, Nurit; Apter, Alan; Yaniv, Isaac; Pick, Chaim G
2011-05-01
The neuroendocrine and autonomic nervous systems are known regulators of brain-immune interaction. However, the functional significance of this interaction under stress is not fully understood. We investigated the effect of a stress paradigm by applying electric foot shock followed by three reminders, on behavior, immune parameters, and lymphoma tumor growth. Male C3H mice were divided into two groups: Group 1-exposed to electric foot shock followed by three reminders, and Group 2-untreated (controls). Sets of mice underwent the elevated plus maze, staircase, and hot plate tests. After foot shock, natural killer (NK) cell activity, and lymphocyte proliferation were measured. In addition, sets of mice were either vaccinated twice with B-cell lymphoma 38C-13 immunoglobulin for determination of anti-idiotype (Id) antibodies in sera, or inoculated with tumor cells and monitored for tumor development and survival time. Mice exposed to electric foot shock followed by the three reminders had higher NK cell activity, levels of anti-Id antibodies, and a higher proliferation rate of splenocytes in response to mitogens, than the control mice. The exposed mice also showed attenuated tumor growth. Thus, the stress paradigm inhibited tumor development and lead to some immune changes that were not accompanied by behavioral changes.
He, Meng; Zhang, Wei; Cao, Xiaoqiang; You, Xiaofang; Li, Lin
2018-01-01
Experimental and computational simulation methods are used to investigate the adsorption behavior of the surfactant nonylphenol ethoxylate (NPEO10), which contains 10 ethylene oxide groups, on the lignite surface. The adsorption of NPEO10 on lignite follow a Langmuir-type isotherm. The thermodynamic parameters of the adsorption process show that the whole process is spontaneous. X-ray photoelectron spectroscopic (XPS) analysis indicates that a significant fraction of the oxygen-containing functional groups on the lignitic surface were covered by NPEO10. Molecular dynamics (MD) simulations show that the NPEO10 molecules were found to adsorb at the water-coal interface. Moreover, polar interactions are the main effect in the adsorption process. The density distributions of coal, NPEO10, and water molecules along the Z axis show that the remaining hydrophobic portions of the surfactant extend into the solution, creating a more hydrophobic coal surface that repels water molecules. The negative interaction energy calculated from the density profiles of the head and tail groups along the three spatial directions between the surfactant and the lignitic surface suggest that the adsorption process is spontaneous. The self-diffusion coefficients show that the presence of NPEO10 causes higher water mobility by improving the hydrophobicity of lignite. PMID:29389899
Soroko, S I; Rozhkov, V P; Bekshaev, S S
2013-12-01
The paper presents a comparative analysis of frequency, spatial-temporal parameters and three-dimensional localization of EEG sources that characterize changes of cortical-subcortical interactions processes in autumn and spring periods at northern schoolchildren living in satisfactory and disadvantaged (risk group) conditions of the social (family) environment. Seasonal rearrangement of interaction between wave components of main EEG rhythms was revealed. School students present regressive changes in the EEG pattern temporal organization in spring compared to autumn, and this effect was more expressed at adolescents from group of risk. Data EEDS-tomography showed increased activity in the prefrontal, cingular and subcallosal areas of the cortex in the autumn period that could be related to the mechanisms of season depression caused by the significant reduction of the day length in the North. The increased activity of the limbic system structures which is persisted in the spring in adolescents from risk group narrows the range of regulation of adaptive reactions. Unfavorable conditions of the family environment are an additional stress factor to increased load on the regulatory mechanisms that have a negative impact on the emotional-motivation behavior of children and adolescents, thus increasing the risk of the school and of social disadaptation.
Carr, Brian I.; Giannini, Edoardo G.; Farinati, Fabio; Ciccarese, Francesca; Rapaccini, Gian Ludovico; Marco, Maria Di; Benvegnù, Luisa; Zoli, Marco; Borzio, Franco; Caturelli, Eugenio; Chiaramonte, Maria; Trevisani, Franco
2014-01-01
Background Previous work has shown that 2 general processes contribute to hepatocellular cancer (HCC) prognosis. They are: a. liver damage, monitored by indices such as blood bilirubin, prothrombin time and AST; as well as b. tumor biology, monitored by indices such as tumor size, tumor number, presence of PVT and blood AFP levels. These 2 processes may affect one another, with prognostically significant interactions between multiple tumor and host parameters. These interactions form a context that provide personalization of the prognostic meaning of these factors for every patient. Thus, a given level of bilirubin or tumor diameter might have a different significance in different personal contexts. We previously applied Network Phenotyping Strategy (NPS) to characterize interactions between liver function indices of Asian HCC patients and recognized two clinical phenotypes, S and L, differing in tumor size and tumor nodule numbers. Aims To validate the applicability of the NPS-based HCC S/L classification on an independent European HCC cohort, for which survival information was additionally available. Methods Four sets of peripheral blood parameters, including AFP-platelets, derived from routine blood parameter levels and tumor indices from the ITA.LI.CA database, were analyzed using NPS, a graph-theory based approach, which compares personal patterns of complete relationships between clinical data values to reference patterns with significant association to disease outcomes. Results Without reference to the actual tumor sizes, patients were classified by NPS into 2 subgroups with S and L phenotypes. These two phenotypes were recognized using solely the HCC screening test results, consisting of eight common blood parameters, paired by their significant correlations, including an AFP-Platelets relationship. These trends were combined with patient age, gender and self-reported alcoholism into NPS personal patient profiles. We subsequently validated (using actual scan data) that patients in L phenotype group had 1.5x larger mean tumor masses relative to S, p=6×10−16. Importantly, with the new data, liver test pattern-identified S-phenotype patients had typically 1.7 × longer survival compared to L-phenotype. NPS integrated the liver, tumor and basic demographic factors. Cirrhosis associated thrombocytopenia was typical for smaller S-tumors. In L-tumor phenotype, typical platelet levels increased with the tumor mass. Hepatic inflammation and tumor factors contributed to more aggressive L tumors, with parenchymal destruction and shorter survival. Summary NPS provides integrative interpretation for HCC behavior, identifying two tumor and survival phenotypes by clinical parameter patterns. The NPS classifier is provided as an Excel tool. The NPS system shows the importance of considering each tumor marker and parameter in the total context of all the other parameters of an individual patient. PMID:25023357
Investigation of intermolecular interaction of binary mixture of acrylonitrile with bromobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, S. D.; Pattebahadur, K. L.; Mohod, A. G.; Patil, S. S.; Khirade, P. W.
2018-04-01
In this paper, study of binary mixture of Acrylonitrile (ACN)with Bromobenzene(BB) has been carried out at eleven concentrations at room temperature. The determined density(ρ) and refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range. The aforesaid parameters are used to calculate excess parameters and fitted to the Redlich-Kister equation to determine the bj coefficients. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Bromobenzene is supported by the FTIR spectra.
Magnetic and dipole moments in indium doped barium hexaferrites
NASA Astrophysics Data System (ADS)
Trukhanov, S. V.; Trukhanov, A. V.; Turchenko, V. A.; Trukhanov, An. V.; Tishkevich, D. I.; Trukhanova, E. L.; Zubar, T. I.; Karpinsky, D. V.; Kostishyn, V. G.; Panina, L. V.; Vinnik, D. A.; Gudkova, S. A.; Trofimov, E. A.; Thakur, P.; Thakur, A.; Yang, Y.
2018-07-01
Crystal and magnetic structure of the doped BaFe12-xInxO19 samples were refined by the results of investigations using high resolution neutron powder diffraction and vibration sample magnetometry at different temperatures. The refinements were realized in frame of two space groups. The P63/mmc (No 194) centrosymmetric nonpolar and P63mc (No 186) noncentrosymmetric polar space groups were used. The unit cell parameters, ionic coordinates, thermal isotropic factors, occupation positions, bond lengths and bond angles, microstrain values were established. The magnetic and dipole moments were also defined. It is established that the In3+ cations may be located only in the Fe1 - 2a and Fe2 - 2b crystallographic positions with equal probability for the sample with lowest substitution level x = 0.1. At the x = 1.2 substitution level about half of the In3+ cations occupies the Fe5 - 12 k positions. For the last sample the remaining half of the In3+ cations is equiprobably located in the Fe1 - 2a and Fe2 - 2b positions. The spontaneous polarization was established for these compositions at 300 K. It is studied the influence of the type of substitutive cation and structural parameters on the Fe3+(i) - O2- - Fe3+(j) (i, j = 1, 2, 3, 4, 5) indirect superexchange interactions with temperature. With substitution level increase the superexchange interactions between the magnetic positions inside and outside the sublattices are broken which leads to a decrease in the value of their magnetic moments.
Teste, Bruno; Vial, Jérôme; Descroix, Stéphanie; Georgelin, Thomas; Siaugue, Jean-Michel; Petr, Jan; Varenne, Anne; Hennion, Marie-Claire
2010-06-15
A chemometric approach was developed to optimize the grafting of a bovine milk allergen: alpha-Lactalbumin (alpha-Lac) on colloidal functionalized magnetic core-shell nanoparticles (MCSNP). Such nanoparticles, functionalized with polyethyleneglycol and amino groups, exhibit a 30nm physical diameter and behave as a quasi-homogeneous system. The alpha-Lac immobilization was achieved through the covalent binding between MCSNP amino groups and alpha-Lac carboxylic moieties using the well-known tandem carbodiimide (EDC) and hydroxysulfosuccinimide (NHS). In this study, a chemometric approach was employed to highlight the parameters influencing the number of grafted proteins on the MCSNP. Three factors were evaluated: the ratio in concentration between EDC and alpha-Lac, between NHS and EDC and the concentration of alpha-Lac. After a first full factorial design to delimit the region of the space where the optimum could be located, a central composite design was then carried out to predict the best grafting conditions. It was established and experimentally confirmed that the optimum parameters are [EDC]/[alpha-Lac]=25; [NHS]/[EDC]=1.55 and alpha-Lac=24.85nmolmL(-1). In these optimal conditions, MCSNP surface was successfully saturated with alpha-Lac (34 alpha-Lac/MCSNP) with a high reproducibility (RSD=2%). The colloidal stability of MCSNP grafted with alpha-Lac as well as the immunological interactions using anti alpha-Lac antibody were then investigated in different buffers. The results emphasized that a 50mM MES buffer (pH 6) allows an efficient immune capture and a satisfying colloidal stability which provide an immunological interaction in homogeneous liquid phase.
Dennison, James E; Andersen, Melvin E; Yang, Raymond S H
2003-09-01
Gasoline consists of a few toxicologically significant components and a large number of other hydrocarbons in a complex mixture. By using an integrated, physiologically based pharmacokinetic (PBPK) modeling and lumping approach, we have developed a method for characterizing the pharmacokinetics (PKs) of gasoline in rats. The PBPK model tracks selected target components (benzene, toluene, ethylbenzene, o-xylene [BTEX], and n-hexane) and a lumped chemical group representing all nontarget components, with competitive metabolic inhibition between all target compounds and the lumped chemical. PK data was acquired by performing gas uptake PK studies with male F344 rats in a closed chamber. Chamber air samples were analyzed every 10-20 min by gas chromatography/flame ionization detection and all nontarget chemicals were co-integrated. A four-compartment PBPK model with metabolic interactions was constructed using the BTEX, n-hexane, and lumped chemical data. Target chemical kinetic parameters were refined by studies with either the single chemical alone or with all five chemicals together. o-Xylene, at high concentrations, decreased alveolar ventilation, consistent with respiratory irritation. A six-chemical interaction model with the lumped chemical group was used to estimate lumped chemical partitioning and metabolic parameters for a winter blend of gasoline with methyl t-butyl ether and a summer blend without any oxygenate. Computer simulation results from this model matched well with experimental data from single chemical, five-chemical mixture, and the two blends of gasoline. The PBPK model analysis indicated that metabolism of individual components was inhibited up to 27% during the 6-h gas uptake experiments of gasoline exposures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Laura; Genser, Krzysztof; Hatcher, Robert
Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less
Leszczuk, Mikołaj; Dudek, Łukasz; Witkowski, Marcin
The VQiPS (Video Quality in Public Safety) Working Group, supported by the U.S. Department of Homeland Security, has been developing a user guide for public safety video applications. According to VQiPS, five parameters have particular importance influencing the ability to achieve a recognition task. They are: usage time-frame, discrimination level, target size, lighting level, and level of motion. These parameters form what are referred to as Generalized Use Classes (GUCs). The aim of our research was to develop algorithms that would automatically assist classification of input sequences into one of the GUCs. Target size and lighting level parameters were approached. The experiment described reveals the experts' ambiguity and hesitation during the manual target size determination process. However, the automatic methods developed for target size classification make it possible to determine GUC parameters with 70 % compliance to the end-users' opinion. Lighting levels of the entire sequence can be classified with an efficiency reaching 93 %. To make the algorithms available for use, a test application has been developed. It is able to process video files and display classification results, the user interface being very simple and requiring only minimal user interaction.
NASA Astrophysics Data System (ADS)
Box, Andrew D.; Tata, Xerxes
2008-03-01
In a theory with broken supersymmetry, gaugino couplings renormalize differently from gauge couplings, as do higgsino couplings from Higgs boson couplings. As a result, we expect the gauge (Higgs boson) couplings and the corresponding gaugino (higgsino) couplings to evolve to different values under renormalization group evolution. We reexamine the renormalization group equations (RGEs) for these couplings in the minimal supersymmetric standard model (MSSM). To include threshold effects, we calculate the β functions using a sequence of (nonsupersymmetric) effective theories with heavy particles decoupled at the scale of their mass. We find that the difference between the SM couplings and their SUSY cousins that is ignored in the literature may be larger than two-loop effects which are included, and further that renormalization group evolution induces a nontrivial flavor structure in gaugino interactions. We present here the coupled set of RGEs for these dimensionless gauge and Yukawa-type couplings. The RGEs for the dimensionful soft-supersymmetry-breaking parameters of the MSSM will be presented in a companion paper.
Theory of the Interfacial Dzyaloshinskii-Moriya Interaction in Rashba Antiferromagnets
NASA Astrophysics Data System (ADS)
Qaiumzadeh, Alireza; Ado, Ivan A.; Duine, Rembert A.; Titov, Mikhail; Brataas, Arne
2018-05-01
In antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral Néel walls, which are attractive for use in novel information storage technologies. We introduce a framework for computing the DM interaction in two-dimensional Rashba antiferromagnets. Unlike in Rashba ferromagnets, the DM interaction is not suppressed even at low temperatures. The material parameters control both the strength and the sign of the interfacial DM interaction. Our results suggest a route toward controlling the DM interaction in AFM materials by means of doping and electric fields.
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
A Computational Model of Active Vision for Visual Search in Human-Computer Interaction
2010-08-01
processors that interact with the production rules to produce behavior, and (c) parameters that constrain the behavior of the model (e.g., the...velocity of a saccadic eye movement). While the parameters can be task-specific, the majority of the parameters are usually fixed across a wide variety...previously estimated durations. Hooge and Erkelens (1996) review these four explanations of fixation duration control. A variety of research
Controlling measurement-induced nonlocality in the Heisenberg XX model by three-spin interactions
NASA Astrophysics Data System (ADS)
Xie, Yu-Xia; Sun, Yu-Hang; Li, Zhao
2018-01-01
We investigate the well-defined measures of measurement-induced nonlocality (MIN) for thermal states of the transverse field XX model, with the addition of three-spin interaction terms being introduced. The results showed that the MINs are very sensitive to system parameters of the chain. The three-spin interactions can serve as flexible parameters for enhancing MINs of the boundary spins, and the maximum enhancement achievable by varying strengths of the three-spin interactions are different for the chain with different number of spins.
A global sensitivity analysis approach for morphogenesis models.
Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G
2015-11-21
Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
Interspecific competition underlying mutualistic networks.
Maeng, Seong Eun; Lee, Jae Woo; Lee, Deok-Sun
2012-03-09
Multiple classes of interactions may exist affecting one another in a given system. For the mutualistic networks of plants and pollinating animals, it has been known that the degree distribution is broad but often deviates from power-law form more significantly for plants than animals. To illuminate the origin of such asymmetry, we study a model network in which links are assigned under generalized preferential-selection rules between two groups of nodes and find the sensitive dependence of the resulting connectivity pattern on the model parameters. The nonlinearity of preferential selection can come from interspecific interactions among animals and among plants. The model-based analysis of real-world mutualistic networks suggests that a new animal determines its partners not only by their abundance but also under the competition with existing animal species, which leads to the stretched-exponential degree distributions of plants.
Interspecific Competition Underlying Mutualistic Networks
NASA Astrophysics Data System (ADS)
Maeng, Seong Eun; Lee, Jae Woo; Lee, Deok-Sun
2012-03-01
Multiple classes of interactions may exist affecting one another in a given system. For the mutualistic networks of plants and pollinating animals, it has been known that the degree distribution is broad but often deviates from power-law form more significantly for plants than animals. To illuminate the origin of such asymmetry, we study a model network in which links are assigned under generalized preferential-selection rules between two groups of nodes and find the sensitive dependence of the resulting connectivity pattern on the model parameters. The nonlinearity of preferential selection can come from interspecific interactions among animals and among plants. The model-based analysis of real-world mutualistic networks suggests that a new animal determines its partners not only by their abundance but also under the competition with existing animal species, which leads to the stretched-exponential degree distributions of plants.
Lang, Alexandre; Vernet, Marine; Yang, Qing; Orssaud, Christophe; Londero, Alain; Kapoula, Zoï
2013-01-01
Subjective tinnitus (ST) is a frequent but poorly understood medical condition. Recent studies demonstrated abnormalities in several types of eye movements (smooth pursuit, optokinetic nystagmus, fixation, and vergence) in ST patients. The present study investigates horizontal and vertical saccades in patients with tinnitus lateralized predominantly to the left or to the right side. Compared to left sided ST, tinnitus perceived on the right side impaired almost all the parameters of saccades (latency, amplitude, velocity, etc.) and noticeably the upward saccades. Relative to controls, saccades from both groups were more dysmetric and were characterized by increased saccade disconjugacy (i.e., poor binocular coordination). Although the precise mechanisms linking ST and saccadic control remain unexplained, these data suggest that ST can lead to detrimental auditory, visuomotor, and perhaps vestibular interactions. PMID:23550269
Interaction of chloroquine and its analogues with heme: An isothermal titration calorimetric study.
Bachhawat, K; Thomas, C J; Surolia, N; Surolia, A
2000-10-05
Quinoline-containing drugs such as chloroquine and quinine have had a long and successful history in antimalarial chemotherapy. Identification of ferriprotoporphyrin IX ([Fe(III)PPIX], haematin) as the drug receptors for these antimalarials called for investigations of the binding affinity, mode of interaction, and the conditions affecting the interaction. The parameters obtained are significant in recent times with the emergence of chloroquine resistant strains of the malaria parasites. This has underlined the need to unravel the molecular mechanism of their action so as to meet the requirement of an alternative to the existing antimalarial drugs. The isothermal titration calorimetric studies on the interaction of chloroquine with haematin lead us to propose an altered mode of binding. The initial recognition is ionic in nature mediated by the propionyl group of haematin with the quaternary nitrogen on CQ. This ionic interaction induces a conformational change, such as to favour binding of subsequent CQ molecules. On the contrary, conditions emulating the cytosolic environment (pH 7.4 and 150 mM salt) reveal the hydrophobic force to be the sole contributor driving the interaction. Interaction of a carefully selected panel of quinoline antimalarial drugs with monomeric ferriprotoporphyrin IX has also been investigated at pH 5.6 mimicking the acidic environment prevalent in the food vacuoles of parasite, the center of drug activity, which are consistent with their antimalarial activity. Copyright 2000 Academic Press.
Metastable structures and size effects in small group dynamics
Lauro Grotto, Rosapia; Guazzini, Andrea; Bagnoli, Franco
2014-01-01
In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: (1) they emerge as a consequence of the natural tendency of (both conscious and unconscious) emotions to combine into structured group patterns; (2) they have a certain degree of stability in time; (3) they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; (4) they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical “leadership” pattern, and in “cognitive” terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e., the group behaves “as if” it was assuming that). Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical setting. PMID:25071665
Density perturbation in the models reconstructed from jerk parameter
NASA Astrophysics Data System (ADS)
Sinha, Srijita; Banerjee, Narayan
2018-06-01
The present work deals with the late time evolution of the linear density contrast in the dark energy models reconstructed from the jerk parameter. It is found that the non-interacting models are favoured compared to the models where an interaction is allowed in the dark sector.
Savtchouk, Iaroslav; Carriero, Giovanni; Volterra, Andrea
2018-01-01
Recent advances in fast volumetric imaging have enabled rapid generation of large amounts of multi-dimensional functional data. While many computer frameworks exist for data storage and analysis of the multi-gigabyte Ca 2+ imaging experiments in neurons, they are less useful for analyzing Ca 2+ dynamics in astrocytes, where transients do not follow a predictable spatio-temporal distribution pattern. In this manuscript, we provide a detailed protocol and commentary for recording and analyzing three-dimensional (3D) Ca 2+ transients through time in GCaMP6f-expressing astrocytes of adult brain slices in response to axonal stimulation, using our recently developed tools to perform interactive exploration, filtering, and time-correlation analysis of the transients. In addition to the protocol, we release our in-house software tools and discuss parameters pertinent to conducting axonal stimulation/response experiments across various brain regions and conditions. Our software tools are available from the Volterra Lab webpage at https://wwwfbm.unil.ch/dnf/group/glia-an-active-synaptic-partner/member/volterra-andrea-volterra in the form of software plugins for Image J (NIH)-a de facto standard in scientific image analysis. Three programs are available: MultiROI_TZ_profiler for interactive graphing of several movable ROIs simultaneously, Gaussian_Filter5D for Gaussian filtering in several dimensions, and Correlation_Calculator for computing various cross-correlation parameters on voxel collections through time.
NASA Astrophysics Data System (ADS)
Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet
2018-05-01
Needle shaped single crystal of the title compound was grown by slow evaporation solution growth technique using ethanol as solvent. The grown single crystal was characterized using FT-IR, Single crystal XRD and Thermal analysis. The FT-IR spectrum confirms the molecular structure and identifies the different functional groups present in the compound. Single crystal XRD study reveals that the crystallized compound belongs to the monoclinic crystal system with P21/c space group and the corresponding cell parameters were identified. The thermal stability of the material was determined using both TGA and DTA analysis. The intermolecular interaction of each individual atom in the crystal lattice was estimated using Hirshfeld surface and finger print analysis.
Kim, Hunkyung; Suzuki, Takao; Kim, Miji; Kojima, Narumi; Ota, Noriyasu; Shimotoyodome, Akira; Hase, Tadashi; Hosoi, Erika; Yoshida, Hideyo
2015-01-01
To investigate the combined and separate effects of exercise and milk fat globule membrane (MFGM) supplementation on frailty, physical function, physical activity level, and hematological parameters in community-dwelling elderly Japanese women. A total of 131 frail, elderly women over 75 years were randomly assigned to one of four groups: exercise and MFGM supplementation (Ex+MFGM), exercise and placebo (Ex+Plac), MFGM supplementation, or the placebo group. The exercise group attended a 60-minute training program twice a week for three months, and the MFGM group ingested 1g of the MFGM supplement in pill form, daily for 3 months. The primary outcome measure was change in frailty status based on Fried's frailty phenotype. Secondary outcome measures included body composition, physical function and hematological parameters, and interview survey components assessing lifestyle factors. Participants were followed for 4 months post-intervention. Significant group × time interactions were observed for usual walking speed (P = 0.005), timed up & go (P<0.001), and insulin-like growth factor-binding protein 3/insulin-like growth factor 1 ratio (P = 0.013). The frailty components revealed that weight loss, exhaustion, low physical activity, and slow walking speed were reversed, but low muscle strength did not significantly changed. Frailty reversal rate was significantly higher in the Ex+MFGM (57.6%) than in the MFGM (28.1%) or placebo (30.3%) groups at post-intervention (χ2 = 8.827, P = 0.032), and at the follow-up was also significantly greater in the Ex+MFGM (45.5%) and Ex+Plac (39.4%) groups compared with the placebo (15.2%) group (χ2 = 8.607, P = 0.035). The exercise+MFGM group had the highest odds ratio (OR) for frailty reversal at post-intervention and follow-up (OR = 3.12, 95% confidence interval (CI) = 1.13-8.60; and OR = 4.67, 95% CI = 1.45-15.08, respectively). This study suggests that interventions including exercise and nutrition can improve frailty status. Statistically significant additive effects of MFGM with exercise could not be confirmed in this population, and further investigation in larger samples is necessary. The Japan Medical Association Clinical Trial Registry (JMACCT)JMA-IIA00069.
Dunlop, Rebecca A
Many theories and communication models developed from terrestrial studies focus on a simple dyadic exchange between a sender and receiver. During social interactions, the "frequency code" hypothesis suggests that frequency characteristics of vocal signals can simultaneously encode for static signaler attributes (size or sex) and dynamic information, such as motivation or emotional state. However, the additional presence of a bystander may result in a change of signaling behavior if the costs and benefits associated with the presence of this bystander are different from that of a simple dyad. In this study, two common humpback whale social calls ("wops" and "grumbles") were tested for differences related to group social behavior and the presence of bystanders. "Wop" parameters were stable with group social behavior, but were emitted at lower (14 dB) levels in the presence of a nearby singing whale compared to when a singing whale was not in the area. "Grumbles" were emitted at lower (30-39 Hz) fundamental frequencies in affiliative compared to non-affiliative groups and, in the presence of a nearby singing whale, were also emitted at lower (14 dB) levels. Vocal rates did not significantly change. The results suggest that, in humpbacks, the frequency in certain sound types relates to the social behavior of the vocalizing group, implying a frequency code system. The presence of a nearby audible bystander (a singing whale) had no effect on this frequency code, but by reducing their acoustic level, the signal-to-noise ratio at the singer would have been below 0, making it difficult for the singer to audibly detect the group. The frequency, duration, and amplitude parameters of humpback whale social vocalizations were tested between different social contexts: group social behavior (affiliating versus non-affiliating), the presence of a nearby singing whale, and the presence of a nearby non-singing group. "Grumbles" (commonly heard low-frequency unmodulated sounds) frequencies were lower in affiliating groups compared to non-affiliating groups, suggesting a change in group motivation (such as levels of aggression). "Wop" (another common sound type) structure (frequency and duration) was similar in affiliating and non-affiliating groups. In the presence of an audible bystander (a singing whale), both sound types were emitted at similar rates, but much lower amplitudes (14 dB), vastly reducing the detectability of these sounds by the singer. This suggests that these groups were acoustically avoiding the singing whale. They did not, however, acoustically respond to the presence of a nearby non-singing group.
Burns, Melissa K; Andeway, Kathleen; Eppenstein, Paula; Ruroede, Kathleen
2014-06-01
This study was designed to establish balance parameters for the Nintendo(®) (Redmond, WA) "Wii Fit™" Balance Board system with three common games, in a sample of healthy adults, and to evaluate the balance measurement reproducibility with separation by age. This was a prospective, multivariate analysis of variance, cohort study design. Seventy-five participants who satisfied all inclusion criteria and completed an informed consent were enrolled. Participants were grouped into age ranges: 21-35 years (n=24), 36-50 years (n=24), and 51-65 years (n=27). Each participant completed the following games three consecutive times, in a randomized order, during one session: "Balance Bubble" (BB) for distance and duration, "Tight Rope" (TR) for distance and duration, and "Center of Balance" (COB) on the left and right sides. COB distributed weight was fairly symmetrical across all subjects and trials; therefore, no influence was assumed on or interaction with other "Wii Fit" measurements. Homogeneity of variance statistics indicated the assumption of distribution normality of the dependent variables (rates) were tenable. The multivariate analysis of variance included dependent variables BB and TR rates (distance divided by duration to complete) with age group and trials as the independent variables. The BB rate was statistically significant (F=4.725, P<0.005), but not the TR rate. The youngest group's BB rate was significantly larger than those of the other two groups. "Wii Fit" can discriminate among age groups across trials. The results show promise as a viable tool to measure balance and distance across time (speed) and center of balance distribution.
Mono or polycrystalline alumina-modified hybrid ceramics.
Kaizer, Marina R; Gonçalves, Ana Paula R; Soares, Priscilla B F; Zhang, Yu; Cesar, Paulo F; Cava, Sergio S; Moraes, Rafael R
2016-03-01
This study evaluated the effect of addition of alumina particles (polycrystalline or monocrystalline), with or without silica coating, on the optical and mechanical properties of a porcelain. Groups tested were: control (C), polycrystalline alumina (PA), polycrystalline alumina-silica (PAS), monocrystalline alumina (MA), monocrystalline alumina-silica (MAS). Polycrystalline alumina powder was synthesized using a polymeric precursor method; a commercially available monocrystalline alumina powder (sapphire) was acquired. Silica coating was obtained by immersing alumina powders in a tetraethylorthosilicate solution, followed by heat-treatment. Electrostatic stable suspension method was used to ensure homogenous dispersion of the alumina particles within the porcelain powder. The ceramic specimens were obtained by heat-pressing. Microstructure, translucency parameter, contrast ratio, opalescence index, porosity, biaxial flexural strength, roughness, and elastic constants were characterized. A better interaction between glass matrix and silica coated crystalline particles is suggested in some analyses, yet further investigation is needed to confirm it. The materials did not present significant differences in biaxial flexural strength, due to the presence of higher porosity in the groups with alumina addition. Elastic modulus was higher for MA and MAS groups. Also, these were the groups with optical qualities and roughness closer to control. The PA and PAS groups were considerably more opaque as well as rougher. Porcelains with addition of monocrystalline particles presented superior esthetic qualities compared to those with polycrystalline particles. In order to eliminate the porosity in the ceramic materials investigated herein, processing parameters need to be optimized as well as different glass frites should be tested. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Thermodynamic characterization of the interaction between prefoldin and group II chaperonin.
Sahlan, Muhamad; Zako, Tamotsu; Tai, Phan The; Ohtaki, Akashi; Noguchi, Keiichi; Maeda, Mizuo; Miyatake, Hideyuki; Dohmae, Naoshi; Yohda, Masafumi
2010-06-18
Prefoldin (PFD) is a hexameric chaperone that captures a protein substrate and transfers it to a group II chaperonin (CPN) to complete protein folding. We have studied the interaction between PFD and CPN using those from a hyperthermophilic archaeon, Thermococcus strain KS-1 (T. KS-1). In this study, we determined the crystal structure of the T. KS-1 PFDbeta2 subunit and characterized the interactions between T. KS-1 CPNs (CPNalpha and CPNbeta) and T. KS-1 PFDs (PFDalpha1-beta1 and PFDalpha2-beta2). As predicted from its amino acid sequence, the PFDbeta2 subunit conforms to a structure similar to those of the PFDbeta1 subunit and the Pyrococcus horikoshii OT3 PFDbeta subunit, with the exception of the tip of its coiled-coil domain, which is thought to be the CPN interaction site. The interactions between T. KS-1 CPNs and PFDs (CPNalpha and PFDalpha1-beta1; CPNalpha and PFDalpha2-beta2; CPNbeta and PFDalpha1-beta1; and CPNbeta and PFDalpha2-beta2) were analyzed using the Biacore T100 system at various temperatures ranging from 20 to 45 degrees C. The affinities between PFDs and CPNs increased with an increase in temperature. The thermodynamic parameters calculated from association constants showed that the interaction between PFD and CPN is entropy driven. Among the four combinations of PFD-CPN interactions, the entropy difference in binding between CPNbeta and PFDalpha2-beta2 was the largest, and affinity significantly increased at higher temperatures. Considering that expression of PFDalpha2-beta2 and CPNbeta subunit is induced upon heat shock, our results suggest that PFDalpha1-beta1 is a general PFD for T. KS-1 CPNs, whereas PFDalpha2-beta2 is specific for CPNbeta. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Kan, Zigui; Zhu, Qiang; Yang, Lijiang; Huang, Zhixiong; Jin, Biaobing; Ma, Jing
2017-05-04
Conformation of cellulose with various degree of polymerization of n = 1-12 in ionic liquid 1,3-dimethylimidazolium chloride ([C 1 mim]Cl) and the intermolecular interaction between them was studied by means of molecular dynamics (MD) simulations with fixed-charge and charge variable polarizable force fields, respectively. The integrated tempering enhanced sampling method was also employed in the simulations in order to improve the sampling efficiency. Cellulose undergoes significant conformational changes from a gaseous right-hand helical twist along the long axis to a flexible conformation in ionic liquid. The intermolecular interactions between cellulose and ionic liquid were studied by both infrared spectrum measurements and theoretical simulations. Designated by their puckering parameters, the pyranose rings of cellulose oligomers are mainly arranged in a chair conformation. With the increase in the degree of polymerization of cellulose, the boat and skew-boat conformations of cellulose appear in the MD simulations, especially in the simulations with polarization model. The number and population of hydrogen bonds between the cellulose and the chloride anions show that chloride anion is prone to form HBs whenever it approaches the hydroxyl groups of cellulose and, thus, each hydroxyl group is fully hydrogen bonded to the chloride anion. MD simulations with polarization model presented more abundant conformations than that with nonpolarization model. The application of the enhanced sampling method further enlarged the conformational spaces that could be visited by facilitating the system escaping from the local minima. It was found that the electrostatics interactions between the cellulose and ionic liquid contribute more to the total interaction energies than the van der Waals interactions. Although the interaction energy between the cellulose and anion is about 2.9 times that between the cellulose and cation, the role of cation is non-negligible. In contrast, the interaction energy between the cellulose and water is too weak to dissolve cellulose in water.
Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...
2016-05-31
Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.
D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico
2015-06-01
This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krishnan, M.
2017-05-01
We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or rapid, reliable predictions are desired.
Schabram, Ina; Eggermann, Thomas; Siegel, Steven J; Gründer, Gerhard; Zerres, Klaus; Vernaleken, Ingo
2013-01-01
The transcription factor AP-2β has been shown to impact clinical and neuropsychological properties. Apparently, it regulates the transcription of genes that code for molecules which are part of the catecholaminergic transmission system. This investigation focuses on possible effects of the transcription factor AP-2β intron 2 polymorphism on cognitive performance parameters. This hypothesis-driven investigation examined the effects and interactions of the transcription factor AP-2β intron 2 polymorphism, the Val158Met catechol-O-methyltransferase (COMT) polymorphism, and the variable number of tandem repeat polymorphism of monoamine oxidase A (MAOA) on cognitive performance parameters within a group of 200 healthy women (age: mean ± SD, 23.93 ± 3.33 years). The AP-2β polymorphism significantly influenced cognitive performance (in particular, the Trail Making Test part B), whereas the MAOA and COMT polymorphisms did not. However, there was an interaction effect of the AP-2β × MAOA × COMT genotypes on the decision bias β of the degraded-stimulus version of the continuous performance task. Only the Val158Met COMT polymorphism showed an influence on personality questionnaires (openness and self-transcendence; NEO Five-Factor Inventory, Temperament and Character Inventory). The transcription factor AP-2β intron 2 polymorphism had more influence on cognition than the MAOA and COMT polymorphisms. Possibly, the AP-2β genotype might influence cognition through pathways other than those that regulate MAOA and COMT transcription. Interactions of transcription factor AP-2β, COMT, and MAOA polymorphisms suggest higher leverage effects of transcription factor AP-2β in subjects with high dopamine availability. Copyright © 2013 S. Karger AG, Basel.
Thanuja, B; Nithya, G; Kanagam, Charles C
2012-11-01
Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Ke; Nissinen, Jaakko; Slager, Robert -Jan; ...
2016-10-31
Here, the physics of nematic liquid crystals has been the subject of intensive research since the late 19th century. However, the focus of this pursuit has been centered around uniaxial and biaxial nematics associated with constituents bearing a D ∞h or D 2h symmetry, respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point-group symmetry. Given the progress in tailoring nanoparticles with particular shapes and interactions, this vast family of “generalized nematics” might become accessible in the laboratory. Little is known because the order parameter theories associated with the highlymore » symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here, we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high-energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three-dimensional point-group symmetries. We find that the most symmetrical generalized nematics are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point-group symmetry chiral building blocks, such as I, O, and T symmetric matter.« less
NASA Astrophysics Data System (ADS)
Wang, W. C.; Lin, D. G.
2015-12-01
This study investigates the bearing capacities and mechanical behaviors of pile foundation installed on the seabed of wind farm near Chang-Hua coast of western Taiwan for the supporting structure of offshore wind turbine. A series of three-dimensional (3-D) numerical modeling of pile foundation subjected to various types of combined loading were carried out using Plaix-3D finite element program to investigate the interactive behaviors between soil and pile. In the numerical modeling, pile diameter, pile length and pile spacing were selected as design parameters to inspect their effects on the bearing capacities and deformation behaviors of the pile foundation. For a specific design parameter combination, one can obtain the corresponding loading-displacement curve, various ultimate bearing capacities, V-H (Vertical-Horizontal combined loading) ultimate bearing capacity envelope, and p-ycurve of pile foundation. Numerical results indicate that: (1) Large displacement and plastic points at ultimate state mostly distribute and concentrate in the topsoil of seabed and around pile head. (2) The soil resistance on the soil-pile interface is ascending with the increases of depth, pile diameter and pile length. (3) The vertical and horizontal bearing capacities of pile group increase significantly with the increase of pile diameter. (4) The vertical and bending moment capacities of pile group increase greatly with the increase of pile length whereas the horizontal capacity is almost insensitive to pile length. (5) The bending moment of pile is highly influenced by the pile spacing. (6) For different design parameters, the shape of ultimate bearing capacity envelopes of pile group on V-H plane is similar while the envelopes will expand as the design parameters increase. For different loading levels of bending moment, the envelopes on V-H plane will contract gradually as the bending moment loading increasing.
NASA Astrophysics Data System (ADS)
Morais, João; Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João; Tavakoli, Yaser
2017-03-01
In this paper we consider 3-form dark energy (DE) models with interactions in the dark sector. We aim to distinguish the phenomenological interactions that are defined through the dark matter (DM) and the DE energy densities. We do our analysis mainly in two stages. In the first stage, we identify the non-interacting 3-form DE model which generically leads to an abrupt late-time cosmological event which is known as the little sibling of the Big Rip (LSBR). We classify the interactions which can possibly avoid this late-time abrupt event. We also study the parameter space of the model that is consistent with the interaction between DM and DE energy densities at present as indicated by recent studies based on BAO and SDSS data. In the later stage, we observationally distinguish those interactions using the statefinder hierarchy parameters S3(1), S4(1), S3(1), S5(1). We also compute the growth factor parameter ɛ(z) for the various interactions we consider herein and use the composite null diagnostic (CND) S3(1), ɛ(z) } as a tool to characterise those interactions by measuring their departures from the concordance model. In addition, we make a preliminary analysis of our model in light of the recently released data by SDSS III on the measurement of the linear growth rate of structure.
Hernandez-Mijares, Antonio; Bañuls, Celia; Rovira-Llopis, Susana; Diaz-Morales, Noelia; Escribano-Lopez, Irene; de Pablo, Carmen; Alvarez, Angeles; Veses, Silvia; Rocha, Milagros; Victor, Victor M
2016-04-01
Cholesterol-lowering therapy has been related with several beneficial effects; however, its influence on oxidative stress and endothelial function is not fully elucidated. To investigate the effect of simvastatin and ezetimibe on mitochondrial function and leukocyte-endothelium interactions in polymorphonuclear cells of hyperlipidemic patients. Thirty-nine hyperlipidemic patients were randomly assigned to one of two groups: one received simvastatin (40 mg/day) and the other received ezetimibe (10 mg/day) for 4 weeks, after which both groups were administered combined therapy for an additional 4-week period. Lipid profile, mitochondrial parameters (oxygen consumption, reactive oxygen species (ROS) and membrane potential), glutathione levels, superoxide dismutase activity, catalase activity and leukocyte/endothelial cell interactions and adhesion molecules -VCAM-1, ICAM-1, E-selectin, were evaluated. An improvement in lipid profile was observed after administration of simvastatin or ezetimibe alone (LDLc: -40.2 vs -19.6%, respectively), though this effect was stronger with the former (p < 0.001), and a further reduction was registered when the two were combined (LDLc: -50.7% vs -56.8%, respectively). In addition to this, simvastatin, ezetimibe and simvastatin + ezetimibe significantly increased oxygen consumption, membrane potential and glutathione content, and decreased levels of ROS, thereby improving mitochondrial function. Furthermore, simvastatin + ezetimibe increased catalase activity. In addition, simvastatin and simvastatin/ezetimibe improved leukocyte/endothelium interactions by decreasing leukocyte rolling and adhesion and increasing leukocyte rolling velocity. Finally, simvastatin, ezetimibe and simvastatin + ezetimibe reduced levels of the adhesion molecule ICAM-1, and ezetimibe + simvastatin significantly decreased levels of E-selectin. Co-administration of simvastatin and ezetimibe has an additive cholesterol-lowering effect and beneficial consequences for mitochondrial function and leukocyte/endothelium interactions in leukocytes of hypercholesterolemic patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Heat transfer modelling of pulsed laser-tissue interaction
NASA Astrophysics Data System (ADS)
Urzova, J.; Jelinek, M.
2018-03-01
Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.
Multilevel selection in a resource-based model.
Ferreira, Fernando Fagundes; Campos, Paulo R A
2013-07-01
In the present work we investigate the emergence of cooperation in a multilevel selection model that assumes limiting resources. Following the work by R. J. Requejo and J. Camacho [Phys. Rev. Lett. 108, 038701 (2012)], the interaction among individuals is initially ruled by a prisoner's dilemma (PD) game. The payoff matrix may change, influenced by the resource availability, and hence may also evolve to a non-PD game. Furthermore, one assumes that the population is divided into groups, whose local dynamics is driven by the payoff matrix, whereas an intergroup competition results from the nonuniformity of the growth rate of groups. We study the probability that a single cooperator can invade and establish in a population initially dominated by defectors. Cooperation is strongly favored when group sizes are small. We observe the existence of a critical group size beyond which cooperation becomes counterselected. Although the critical size depends on the parameters of the model, it is seen that a saturation value for the critical group size is achieved. The results conform to the thought that the evolutionary history of life repeatedly involved transitions from smaller selective units to larger selective units.
Impact of ambulatory physiotherapy on motor abilities of elderly subjects with Alzheimer's disease.
Manckoundia, Patrick; Taroux, Michaël; Kubicki, Alexandre; Mourey, France
2014-01-01
We investigated the impact of ambulatory physiotherapy (AP) on motor abilities in elderly subjects with Alzheimer's disease (AD). Subjects with mild to moderate AD were included and divided into "physiotherapy group" (PG) and "no physiotherapy group" (NPG) according to whether or not they received AP between inclusion (T0) and the second time of assessment, between 15 and 36 months after inclusion (T1). The follow-up duration, Mini-Mental State Examination, Tinetti and mini motor test (MMT) scores, Timed Up & Go test (TUG), gait speed (GS), one-leg balance (OLB), history of falls within the last 6 months (HF), ability to rise from the floor (RFF) and the use of a walking aid (UWA) were recorded at T0, and after at least 15 months of follow up (T1). A total of 50 subjects were included in the NPG and 20 in the PG. At baseline, these groups were not significantly different for all the parameters recorded. The anova showed a progression of cognitive disorders in the two groups between T0 and T1 (P < 0.001), which was similar in the two groups (P = 0.83). For each postural and motor quantitative test (Tinetti, MMT, TUG, GS) the anova showed a main effect of time of assessment (All P < 0.05) associated with a group × time of assessment interaction (All P < 0.05). The comparison between the two groups with regard to the evolution of qualitative parameters showed a significant difference for the OLB test only. No significant difference was found for RFF, HF and UWA. There was a significant improvement or stability of motor abilities in the PG; while these abilities decreased in the NPG. © 2013 Japan Geriatrics Society.
Characteristics of napping in community-dwelling insomnia patients.
Jang, Kwang Ho; Lee, Jung Hie; Kim, Seong Jae; Kwon, Hyo Jeong
2018-05-01
We aimed to determine napping characteristics of community-dwelling patients with insomnia disorder (ID) compared to characteristics of normal controls (NC), and to examine the effect of napping on nocturnal sleep. Adult volunteers who were more than 18 years old were recruited from three rural public health centers in Korea. Data from actigraphy recording and a sleep diary filled out for seven days were obtained. Finally, 115 ID patients and 80 NC subjects were included in this study. Parameters and timing of nocturnal sleep and nap were compared between the ID and NC groups. Two-way analysis of covariance (ANCOVA) was performed to determine the effect of ID diagnosis and napping on sleep parameters. Sleep efficiency (SE) in the ID group was significantly lower (p = 0.010), and wake time after sleep onset (WASO) was significantly greater (p = 0.023), compared to the NC group. There was no significant difference in nocturnal sleep or nap timing between the two groups. Nap frequency in the ID group was significantly higher than that in the NC group (p = 0.025). Although ID diagnosis and napping had no independent effect on fragmentation index, their interaction had a significant effect on fragmentation index (p = 0.021). Nap frequency was positively correlated with PSQI score (r = 0.166, p = 0.033). Insomnia patients showed no significant difference in nap timing or nap duration compared to NC subjects. However, insomnia patients showed higher nap frequency. Frequent napping was associated with poorer subjective sleep quality. Therefore, although napping might not have a negative impact on nocturnal sleep maintenance in NC subjects, it did have an effect on nocturnal sleep in insomnia patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Design, Packaging and Reliability of MEMS S&A Components and Systems
2006-12-26
different parameters on stiction likelihood has been studied. The parameters are relative humidity, contact angles, surface roughness, Hamaker constant...cutoff distance of the attractive Van der Waals interaction d, =.2 nm Ah. is the Hamaker media of the materials of the sphere and the half space...interaction in air. Ah.. is the Hamaker media of the materials of the sphere and the half space interaction in water. Hamaker constant can be found using
New Gel-Like Polymers as Selective Weak-Base Anion Exchangers
Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej
2015-01-01
A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220
Identical acyl transfer reactions between pyridine N-oxides and their N-acylonium salts
NASA Astrophysics Data System (ADS)
Rybachenko, V. I.; Shroeder, G.; Chotii, K. Yu.; Kovalenko, V. V.; Red'Ko, A. N.; Gierzyk, B.
2007-10-01
28 identical acyl exchange reactions R-CO-Nu+, X- + Nu between pyridine N-oxides in acetonitrile were studied. Here, X- = BPh{4/-} and R = methyl, N,N-dimethylamino, N,N-diethylamino, 4-morpholino, 1-piperidino, N-methyl, N-phenylamino, or N,N-diphenylamino group. The IR and NMR spectroscopic characteristics of acyloxypyridinium salts were determined, and the quantum-chemical parameters of all reagents calculated. The results were subjected to correlation analysis. It was found that the rate of identical acyl transfer reactions was controlled by the interaction of frontier orbitals in the transition state.
NASA Technical Reports Server (NTRS)
Graybiel, A.; Lackner, J. R.
1980-01-01
This study investigated the relationship between the development of symptoms of motion sickness and changes in blood pressure, heart rate, and body temperature. Twelve subjects were each evaluated four times using the vestibular-visual interaction test (Graybiel and Lackner, 1980). The results were analyzed both within and across individual subjects. Neither a systematic group nor consistent individual relationship was found between the physiological parameters and the appearance of symptoms of motion sickness. These findings suggest that biofeedback control of the physiological variables studied is not likely to prevent the expression of motion sickness symptomatology.
Ghost Dark Energy with Non-Linear Interaction Term
NASA Astrophysics Data System (ADS)
Ebrahimi, E.
2016-06-01
Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.
NASA Astrophysics Data System (ADS)
Kivotides, Demosthenes
2018-03-01
The interactions between vortex tubes and magnetic-flux rings in incompressible magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, which are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, which have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields, are also indicated.
Beyond Control Panels: Direct Manipulation for Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Bradel, Lauren; North, Chris
2013-07-19
Information Visualization strives to provide visual representations through which users can think about and gain insight into information. By leveraging the visual and cognitive systems of humans, complex relationships and phenomena occurring within datasets can be uncovered by exploring information visually. Interaction metaphors for such visualizations are designed to enable users direct control over the filters, queries, and other parameters controlling how the data is visually represented. Through the evolution of information visualization, more complex mathematical and data analytic models are being used to visualize relationships and patterns in data – creating the field of Visual Analytics. However, the expectationsmore » for how users interact with these visualizations has remained largely unchanged – focused primarily on the direct manipulation of parameters of the underlying mathematical models. In this article we present an opportunity to evolve the methodology for user interaction from the direct manipulation of parameters through visual control panels, to interactions designed specifically for visual analytic systems. Instead of focusing on traditional direct manipulation of mathematical parameters, the evolution of the field can be realized through direct manipulation within the visual representation – where users can not only gain insight, but also interact. This article describes future directions and research challenges that fundamentally change the meaning of direct manipulation with regards to visual analytics, advancing the Science of Interaction.« less
Huang, Jui-Hua; Li, Ren-Hau; Huang, Shu-Ling; Sia, Hon-Ke; Chen, Yu-Ling; Tang, Feng-Cheng
2015-01-01
This study aimed to investigate (1) relations of smoking and alcohol to metabolic syndrome (MetS) and its components, with nutrition and exercise controlled; and (2) interactions between smoking/alcohol and nutrition/exercise on MetS. This cross-sectional study enrolled 4025 workers. Self-reported lifestyles, anthropometric values, blood pressure (BP), and biochemical determinations were obtained. Among males, smoking significantly increased the risk of low high-density lipoprotein cholesterol (HDL-C), high triglyceride, abdominal obesity (AO), and MetS. Additionally, smoking showed significant interaction effects with nutrition on high BP, AO, and MetS; after further analysis, nutrition did not decrease above-mentioned risks for smokers. However, there was no significant interaction of smoking with exercise on any metabolic parameter. Alcohol increased the risk of AO, but decreased low HDL-C. It also showed an interaction effect with exercise on AO; after further analysis, exercise decreased AO risk for drinkers. Among females, alcohol significantly decreased the risk of high fasting blood glucose, but did not show significant interaction with nutrition/exercise on any metabolic parameter. In conclusion, in males, smoking retained significant associations with MetS and its components, even considering benefits of nutrition; exercise kept predominance on lipid parameters regardless of smoking status. Alcohol showed inconsistencies on metabolic parameters for both genders. PMID:26694434
Huang, Jui-Hua; Li, Ren-Hau; Huang, Shu-Ling; Sia, Hon-Ke; Chen, Yu-Ling; Tang, Feng-Cheng
2015-12-16
This study aimed to investigate (1) relations of smoking and alcohol to metabolic syndrome (MetS) and its components, with nutrition and exercise controlled; and (2) interactions between smoking/alcohol and nutrition/exercise on MetS. This cross-sectional study enrolled 4025 workers. Self-reported lifestyles, anthropometric values, blood pressure (BP), and biochemical determinations were obtained. Among males, smoking significantly increased the risk of low high-density lipoprotein cholesterol (HDL-C), high triglyceride, abdominal obesity (AO), and MetS. Additionally, smoking showed significant interaction effects with nutrition on high BP, AO, and MetS; after further analysis, nutrition did not decrease above-mentioned risks for smokers. However, there was no significant interaction of smoking with exercise on any metabolic parameter. Alcohol increased the risk of AO, but decreased low HDL-C. It also showed an interaction effect with exercise on AO; after further analysis, exercise decreased AO risk for drinkers. Among females, alcohol significantly decreased the risk of high fasting blood glucose, but did not show significant interaction with nutrition/exercise on any metabolic parameter. In conclusion, in males, smoking retained significant associations with MetS and its components, even considering benefits of nutrition; exercise kept predominance on lipid parameters regardless of smoking status. Alcohol showed inconsistencies on metabolic parameters for both genders.
NASA Astrophysics Data System (ADS)
Appel, Ingo; Behrens, Silke
2017-06-01
The doping of liquid crystals with magnetic nanoparticles increases the magnetic susceptibility and the sensitivity to small magnetic fields. This offers interesting possibilities for controlling optical properties via external magnetic fields. The stabilization of magnetic nanoparticles in the liquid crystalline host, however, is challenging, since magnetic dipolar interactions and LC-mediated forces may result in their aggregation and even phase separation. So far, only few groups have investigated the long-term stability of these systems. In the present study, a set of magnetic iron oxide nanoparticles with different particle size, shape and surface properties was synthesized by thermal decomposition or co-precipitation. The magnetic nanoparticles were further integrated in a model liquid crystalline host (i.e., the lyotropic system potassium laurate/1-decanol/water) to investigate the effect of the different particle parameters on the stability of the resulting ferrolyotrope.
Steinberg, Nili; Rubinstein, Meron; Nemet, Dan; Ayalon, Moshe; Zeev, Aviva; Pantanowitz, Michal; Brosh, Tamar; Eliakim, Alon
2017-10-01
To investigate the influence of a weight-reduction program with locomotion-emphasis on improving biomechanical characteristics of children who are obese (OW). Ten children who are OW participated in a 6-month multidisciplinary childhood obesity management program (GRP1); another 10 children who are OW participated in the same multidisciplinary childhood obesity management program with additional locomotion-emphasis exercises for improving biomechanical characteristics (GRP2); and 10 control children who are OW with no intervention program. Outcomes were anthropometric measurements and temporal and foot pressure parameters. GRP2 had significantly improved foot pressure in the different walking/running speeds compared with GRP1. In the temporal parameters, pretests by speed by group interactions were significantly improved for GRP2 compared with GRP1. We found evidence to support beneficial effects of combined dietary and physical activity/locomotion-emphasis exercises on the movement characteristics of children who are OW.
Structure and dynamics of acetate anion-based ionic liquids from molecular dynamics study
NASA Astrophysics Data System (ADS)
Chandran, Aneesh; Prakash, Karthigeyan; Senapati, Sanjib
2010-08-01
Acetate anion-based ionic liquids (ILs) have found wide range of applications. The microstructure and dynamics of this IL family have not been clearly understood yet. We report molecular dynamics simulation results of three acetate anion-based ionic liquids that encompass the most common IL cations. Simulations are performed based on a set of proposed force field parameters for IL acetate anion which can be combined with existing parameters for IL cations to simulate large variety of ILs. The computed liquid density and IR spectral data for [BMIM][Ac] are found to match very well with available experimental results. The strong amino-group-associated interactions in [TMG][Ac] are seen to bring about higher cohesive energy density, stronger ion packing, and more restricted translational and rotational mobilities of the constituent ions. The IL anions are found to track the cation movements in all systems, implying that ions in ILs travel in pairs or clusters.
An expert system for prediction of chemical toxicity
Hickey, James P.; Aldridge, Andrew J.; Passino-Reader, Dora R.; Frank, Anthony M.
1992-01-01
The National Fisheries Research Center- Great Lakes has developed an interactive computer program that uses the structure of an organic molecule to predict its acute toxicity to four aquatic species. The expert system software, written in the muLISP language, identifies the skeletal structures and substituent groups of an organic molecule from a user-supplied standard chemical notation known as a SMILES string, and then generates values for four solvatochromic parameters. Multiple regression equations relate these parameters to the toxicities (expressed as log10LC50s and log10EC50s, along with 95% confidence intervals) for four species. The system is demonstrated by prediction of toxicity for anilide-type pesticides to the fathead minnow (Pimephales promelas). This software is designed for use on an IBM-compatible personal computer by personnel with minimal toxicology background for rapid estimation of chemical toxicity. The system has numerous applications, with much potential for use in the pharmaceutical industry
Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)
2017-01-01
A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.
NASA Astrophysics Data System (ADS)
Gillette, V. H.; Patiño, N. E.; Granada, J. R.; Mayer, R. E.
1989-08-01
Using a synthetic incoherent scattering function which describes the interaction of neutrons with molecular gases we provide analytical expressions for zero- and first-order scattering kernels, σ0( E0 → E), σ1( E0 → E), and total cross section σ0( E0). Based on these quantities, we have performed calculations of thermalization parameters and transport coefficients for H 2O, D 2O, C 6H 6 and (CH 2) n at room temperature. Comparison of such values with available experimental data and other calculations is satisfactory. We also generated nuclear data libraries for H 2O with 47 thermal groups at 300 K and performed some benchmark calculations ( 235U, 239Pu, PWR cell and typical APWR cell); the resulting reactivities are compared with experimental data and ENDF/B-IV calculations.
PHEPS: web-based pH-dependent Protein Electrostatics Server
Kantardjiev, Alexander A.; Atanasov, Boris P.
2006-01-01
PHEPS (pH-dependent Protein Electrostatics Server) is a web service for fast prediction and experiment planning support, as well as for correlation and analysis of experimentally obtained results, reflecting charge-dependent phenomena in globular proteins. Its implementation is based on long-term experience (PHEI package) and the need to explain measured physicochemical characteristics at the level of protein atomic structure. The approach is semi-empirical and based on a mean field scheme for description and evaluation of global and local pH-dependent electrostatic properties: protein proton binding; ionic sites proton population; free energy electrostatic term; ionic groups proton affinities (pKa,i) and their Coulomb interaction with whole charge multipole; electrostatic potential of whole molecule at fixed pH and pH-dependent local electrostatic potentials at user-defined set of points. The speed of calculation is based on fast determination of distance-dependent pair charge-charge interactions as empirical three exponential function that covers charge–charge, charge–dipole and dipole–dipole contributions. After atomic coordinates input, all standard parameters are used as defaults to facilitate non-experienced users. Special attention was given to interactive addition of non-polypeptide charges, extra ionizable groups with intrinsic pKas or fixed ions. The output information is given as plain-text, readable by ‘RasMol’, ‘Origin’ and the like. The PHEPS server is accessible at . PMID:16845042
NASA Astrophysics Data System (ADS)
Saez, David Adrian; Vöhringer-Martinez, Esteban
2015-10-01
S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.
Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide
Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim
2014-01-01
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor. PMID:25001596
A model for spatial variations in life expectancy; mortality in Chinese regions in 2000.
Congdon, Peter
2007-05-02
Life expectancy in China has been improving markedly but health gains have been uneven and there is inequality in survival chances between regions and in rural as against urban areas. This paper applies a statistical modelling approach to mortality data collected in conjunction with the 2000 Census to formally assess spatial mortality contrasts in China. The modelling approach provides interpretable summary parameters (e.g. the relative mortality risk in rural as against urban areas) and is more parsimonious in terms of parameters than the conventional life table model. Predictive fit is assessed both globally and at the level of individual five year age groups. A proportional model (age and area effects independent) has a worse fit than one allowing age-area interactions following a bilinear form. The best fit is obtained by allowing for child and oldest age mortality rates to vary spatially. There is evidence that age (21 age groups) and area (31 Chinese administrative divisions) are not proportional (i.e. independent) mortality risk factors. In fact, spatial contrasts are greatest at young ages. There is a pronounced rural survival disadvantage, and large differences in life expectancy between provinces.
Donath, Lars; Faude, Oliver; Bridenbaugh, Stephanie A; Roth, Ralf; Soltermann, Martin; Kressig, Reto W; Zahner, Lukas
2014-07-01
This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale-International [FES-I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65-85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES-I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES-I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp 2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Yajnavalka; Kumar, Sundramurthy; Jobichen, Chacko
2007-08-01
Crystals of hemextin A, a three-finger toxin isolated and purified from African Ringhals cobra (H. haemachatus), are orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 49.27, b = 49.51, c = 57.87 Å, and diffract to 1.5 Å resolution. Hemextin A was isolated and purified from African Ringhals cobra (Hemachatus haemachatus). It is a three-finger toxin that specifically inhibits blood coagulation factor VIIa and clot formation and that also interacts with hemextin B to form a unique anticoagulant complex. Hemextin A was crystallized by the hanging-drop vapour-diffusion method by equilibration against 0.2 M ammonium acetate, 0.1more » M sodium acetate trihydrate pH 4.6 and 30% PEG 4000 as the precipitating agent. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 49.27, b = 49.51, c = 57.87 Å and two molecules in the asymmetric unit. They diffracted to 1.5 Å resolution at beamline X25 at BNL.« less
Andrade, Bruna Fernanda Murbach Teles; Braga, Camila Pereira; Dos Santos, Klinsmann Carolo; Barbosa, Lidiane Nunes; Rall, Vera Lúcia Mores; Sforcin, José Maurício; Fernandes, Ana Angélica Henrique; Fernandes Júnior, Ary
2014-01-01
The effects of the inhalation of Cymbopogon martinii essential oil (EO) and geraniol on Wistar rats were evaluated for biochemical parameters and hepatic oxidative stress. Wistar rats were divided into three groups (n = 8): G1 was control group, treated with saline solution; G2 received geraniol; and G3 received C. martinii EO by inhalation during 30 days. No significant differences were observed in glycemia and triacylglycerol levels; G2 and G3 decreased (P < 0.05) total cholesterol level. There were no differences in serum protein, urea, aspartate aminotransferase activity, and total hepatic protein. Creatinine levels increased in G2 but decreased in G3. Alanine aminotransferase activity and lipid hydroperoxide were higher in G2 than in G3. Catalase and superoxide dismutase activities were higher in G3. C. martinii EO and geraniol increased glutathione peroxidase. Oxidative stress caused by geraniol may have triggered some degree of hepatic toxicity, as verified by the increase in serum creatinine and alanine aminotransferase. Therefore, the beneficial effects of EO on oxidative stress can prevent the toxicity in the liver. This proves possible interactions between geraniol and numerous chemical compounds present in C. martinii EO.
Environmental confounding in gene-environment interaction studies.
Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar
2013-07-01
We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.