The effect of explanations on mathematical reasoning tasks
NASA Astrophysics Data System (ADS)
Norqvist, Mathias
2018-01-01
Studies in mathematics education often point to the necessity for students to engage in more cognitively demanding activities than just solving tasks by applying given solution methods. Previous studies have shown that students that engage in creative mathematically founded reasoning to construct a solution method, perform significantly better in follow up tests than students that are given a solution method and engage in algorithmic reasoning. However, teachers and textbooks, at least occasionally, provide explanations together with an algorithmic method, and this could possibly be more efficient than creative reasoning. In this study, three matched groups practiced with either creative, algorithmic, or explained algorithmic tasks. The main finding was that students that practiced with creative tasks did, outperform the students that practiced with explained algorithmic tasks in a post-test, despite a much lower practice score. The two groups that got a solution method presented, performed similarly in both practice and post-test, even though one group got an explanation to the given solution method. Additionally, there were some differences between the groups in which variables predicted the post-test score.
Accounting for False Positive HIV Tests: Is Visceral Leishmaniasis Responsible?
Shanks, Leslie; Ritmeijer, Koert; Piriou, Erwan; Siddiqui, M. Ruby; Kliescikova, Jarmila; Pearce, Neil; Ariti, Cono; Muluneh, Libsework; Masiga, Johnson; Abebe, Almaz
2015-01-01
Background Co-infection with HIV and visceral leishmaniasis is an important consideration in treatment of either disease in endemic areas. Diagnosis of HIV in resource-limited settings relies on rapid diagnostic tests used together in an algorithm. A limitation of the HIV diagnostic algorithm is that it is vulnerable to falsely positive reactions due to cross reactivity. It has been postulated that visceral leishmaniasis (VL) infection can increase this risk of false positive HIV results. This cross sectional study compared the risk of false positive HIV results in VL patients with non-VL individuals. Methodology/Principal Findings Participants were recruited from 2 sites in Ethiopia. The Ethiopian algorithm of a tiebreaker using 3 rapid diagnostic tests (RDTs) was used to test for HIV. The gold standard test was the Western Blot, with indeterminate results resolved by PCR testing. Every RDT screen positive individual was included for testing with the gold standard along with 10% of all negatives. The final analysis included 89 VL and 405 non-VL patients. HIV prevalence was found to be 12.8% (47/ 367) in the VL group compared to 7.9% (200/2526) in the non-VL group. The RDT algorithm in the VL group yielded 47 positives, 4 false positives, and 38 negatives. The same algorithm for those without VL had 200 positives, 14 false positives, and 191 negatives. Specificity and positive predictive value for the group with VL was less than the non-VL group; however, the difference was not found to be significant (p = 0.52 and p = 0.76, respectively). Conclusion The test algorithm yielded a high number of HIV false positive results. However, we were unable to demonstrate a significant difference between groups with and without VL disease. This suggests that the presence of endemic visceral leishmaniasis alone cannot account for the high number of false positive HIV results in our study. PMID:26161864
Accounting for False Positive HIV Tests: Is Visceral Leishmaniasis Responsible?
Shanks, Leslie; Ritmeijer, Koert; Piriou, Erwan; Siddiqui, M Ruby; Kliescikova, Jarmila; Pearce, Neil; Ariti, Cono; Muluneh, Libsework; Masiga, Johnson; Abebe, Almaz
2015-01-01
Co-infection with HIV and visceral leishmaniasis is an important consideration in treatment of either disease in endemic areas. Diagnosis of HIV in resource-limited settings relies on rapid diagnostic tests used together in an algorithm. A limitation of the HIV diagnostic algorithm is that it is vulnerable to falsely positive reactions due to cross reactivity. It has been postulated that visceral leishmaniasis (VL) infection can increase this risk of false positive HIV results. This cross sectional study compared the risk of false positive HIV results in VL patients with non-VL individuals. Participants were recruited from 2 sites in Ethiopia. The Ethiopian algorithm of a tiebreaker using 3 rapid diagnostic tests (RDTs) was used to test for HIV. The gold standard test was the Western Blot, with indeterminate results resolved by PCR testing. Every RDT screen positive individual was included for testing with the gold standard along with 10% of all negatives. The final analysis included 89 VL and 405 non-VL patients. HIV prevalence was found to be 12.8% (47/ 367) in the VL group compared to 7.9% (200/2526) in the non-VL group. The RDT algorithm in the VL group yielded 47 positives, 4 false positives, and 38 negatives. The same algorithm for those without VL had 200 positives, 14 false positives, and 191 negatives. Specificity and positive predictive value for the group with VL was less than the non-VL group; however, the difference was not found to be significant (p = 0.52 and p = 0.76, respectively). The test algorithm yielded a high number of HIV false positive results. However, we were unable to demonstrate a significant difference between groups with and without VL disease. This suggests that the presence of endemic visceral leishmaniasis alone cannot account for the high number of false positive HIV results in our study.
Testing the accuracy of redshift-space group-finding algorithms
NASA Astrophysics Data System (ADS)
Frederic, James J.
1995-04-01
Using simulated redshift surveys generated from a high-resolution N-body cosmological structure simulation, we study algorithms used to identify groups of galaxies in redshift space. Two algorithms are investigated; both are friends-of-friends schemes with variable linking lengths in the radial and transverse dimenisons. The chief difference between the algorithms is in the redshift linking length. The algorithm proposed by Huchra & Geller (1982) uses a generous linking length designed to find 'fingers of god,' while that of Nolthenius & White (1987) uses a smaller linking length to minimize contamination by projection. We find that neither of the algorithms studied is intrinsically superior to the other; rather, the ideal algorithm as well as the ideal algorithm parameters depends on the purpose for which groups are to be studied. The Huchra & Geller algorithm misses few real groups, at the cost of including some spurious groups and members, while the Nolthenius & White algorithm misses high velocity dispersion groups and members but is less likely to include interlopers in its group assignments. Adjusting the parameters of either algorithm results in a trade-off between group accuracy and completeness. In a companion paper we investigate the accuracy of virial mass estimates and clustering properties of groups identified using these algorithms.
Wang, Wendy T J; Olson, Sharon L; Campbell, Anne H; Hanten, William P; Gleeson, Peggy B
2003-03-01
The purpose of this study was to determine the effectiveness of an individualized physical therapy intervention in treating neck pain based on a clinical reasoning algorithm. Treatment effectiveness was examined by assessing changes in impairment, physical performance, and disability in response to intervention. One treatment group of 30 patients with neck pain completed physical therapy treatment. The control group of convenience was formed by a cohort group of 27 subjects who also had neck pain but did not receive treatment for various reasons. There were no significant differences between groups in demographic data and the initial test scores of the outcome measures. A quasi-experimental, nonequivalent, pretest-posttest control group design was used. A physical therapist rendered an eclectic intervention to the treatment group based on a clinical decision-making algorithm. Treatment outcome measures included the following five dependent variables: cervical range of motion, numeric pain rating, timed weighted overhead endurance, the supine capital flexion endurance test, and the Patient Specific Functional Scale. Both the treatment and control groups completed the initial and follow-up examinations, with an average duration of 4 wk between tests. Five mixed analyses of variance with follow-up tests showed a significant difference for all outcome measures in the treatment group compared with the control group. After an average 4 wk of physical therapy intervention, patients in the treatment group demonstrated statistically significant increases of cervical range of motion, decrease of pain, increases of physical performance measures, and decreases in the level of disability. The control group showed no differences in all five outcome variables between the initial and follow-up test scores. This study delineated algorithm-based clinical reasoning strategies for evaluating and treating patients with cervical pain. The algorithm can help clinicians classify patients with cervical pain into clinical patterns and provides pattern-specific guidelines for physical therapy interventions. An organized and specific physical therapy program was effective in improving the status of patients with neck pain.
Group Counseling Optimization: A Novel Approach
NASA Astrophysics Data System (ADS)
Eita, M. A.; Fahmy, M. M.
A new population-based search algorithm, which we call Group Counseling Optimizer (GCO), is presented. It mimics the group counseling behavior of humans in solving their problems. The algorithm is tested using seven known benchmark functions: Sphere, Rosenbrock, Griewank, Rastrigin, Ackley, Weierstrass, and Schwefel functions. A comparison is made with the recently published comprehensive learning particle swarm optimizer (CLPSO). The results demonstrate the efficiency and robustness of the proposed algorithm.
An early-biomarker algorithm predicts lethal graft-versus-host disease and survival
Hartwell, Matthew J.; Özbek, Umut; Holler, Ernst; Major-Monfried, Hannah; Reddy, Pavan; Aziz, Mina; Hogan, William J.; Ayuk, Francis; Efebera, Yvonne A.; Hexner, Elizabeth O.; Bunworasate, Udomsak; Qayed, Muna; Ordemann, Rainer; Wölfl, Matthias; Mielke, Stephan; Chen, Yi-Bin; Devine, Steven; Jagasia, Madan; Kitko, Carrie L.; Litzow, Mark R.; Kröger, Nicolaus; Locatelli, Franco; Morales, George; Nakamura, Ryotaro; Reshef, Ran; Rösler, Wolf; Weber, Daniela; Yanik, Gregory A.; Levine, John E.; Ferrara, James L.M.
2017-01-01
BACKGROUND. No laboratory test can predict the risk of nonrelapse mortality (NRM) or severe graft-versus-host disease (GVHD) after hematopoietic cellular transplantation (HCT) prior to the onset of GVHD symptoms. METHODS. Patient blood samples on day 7 after HCT were obtained from a multicenter set of 1,287 patients, and 620 samples were assigned to a training set. We measured the concentrations of 4 GVHD biomarkers (ST2, REG3α, TNFR1, and IL-2Rα) and used them to model 6-month NRM using rigorous cross-validation strategies to identify the best algorithm that defined 2 distinct risk groups. We then applied the final algorithm in an independent test set (n = 309) and validation set (n = 358). RESULTS. A 2-biomarker model using ST2 and REG3α concentrations identified patients with a cumulative incidence of 6-month NRM of 28% in the high-risk group and 7% in the low-risk group (P < 0.001). The algorithm performed equally well in the test set (33% vs. 7%, P < 0.001) and the multicenter validation set (26% vs. 10%, P < 0.001). Sixteen percent, 17%, and 20% of patients were at high risk in the training, test, and validation sets, respectively. GVHD-related mortality was greater in high-risk patients (18% vs. 4%, P < 0.001), as was severe gastrointestinal GVHD (17% vs. 8%, P < 0.001). The same algorithm can be successfully adapted to define 3 distinct risk groups at GVHD onset. CONCLUSION. A biomarker algorithm based on a blood sample taken 7 days after HCT can consistently identify a group of patients at high risk for lethal GVHD and NRM. FUNDING. The National Cancer Institute, American Cancer Society, and the Doris Duke Charitable Foundation. PMID:28194439
Hirose, Hitoshi; Sarosiek, Konrad; Cavarocchi, Nicholas C
2014-01-01
Gastrointestinal bleed (GIB) is a known complication in patients receiving nonpulsatile ventricular assist devices (VAD). Previously, we reported a new algorithm for the workup of GIB in VAD patients using deep bowel enteroscopy. In this new algorithm, patients underwent fewer procedures, received less transfusions, and took less time to make the diagnosis than the traditional GIB algorithm group. Concurrently, we reviewed the cost-effectiveness of this new algorithm compared with the traditional workup. The procedure charges for the diagnosis and treatment of each episode of GIB was ~ $2,902 in the new algorithm group versus ~ $9,013 in the traditional algorithm group (p < 0.0001). Following the new algorithm in VAD patients with GIB resulted in fewer transfusions and diagnostic tests while attaining a substantial cost savings per episode of bleeding.
Malinovsky, Yaakov; Albert, Paul S; Roy, Anindya
2016-03-01
In the context of group testing screening, McMahan, Tebbs, and Bilder (2012, Biometrics 68, 287-296) proposed a two-stage procedure in a heterogenous population in the presence of misclassification. In earlier work published in Biometrics, Kim, Hudgens, Dreyfuss, Westreich, and Pilcher (2007, Biometrics 63, 1152-1162) also proposed group testing algorithms in a homogeneous population with misclassification. In both cases, the authors evaluated performance of the algorithms based on the expected number of tests per person, with the optimal design being defined by minimizing this quantity. The purpose of this article is to show that although the expected number of tests per person is an appropriate evaluation criteria for group testing when there is no misclassification, it may be problematic when there is misclassification. Specifically, a valid criterion needs to take into account the amount of correct classification and not just the number of tests. We propose, a more suitable objective function that accounts for not only the expected number of tests, but also the expected number of correct classifications. We then show how using this objective function that accounts for correct classification is important for design when considering group testing under misclassification. We also present novel analytical results which characterize the optimal Dorfman (1943) design under the misclassification. © 2015, The International Biometric Society.
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel; ...
2017-06-28
An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less
PCA-LBG-based algorithms for VQ codebook generation
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Yang, Po-Yuan
2015-04-01
Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.
SU-E-T-446: Group-Sparsity Based Angle Generation Method for Beam Angle Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, H
2015-06-15
Purpose: This work is to develop the effective algorithm for beam angle optimization (BAO), with the emphasis on enabling further improvement from existing treatment-dependent templates based on clinical knowledge and experience. Methods: The proposed BAO algorithm utilizes a priori beam angle templates as the initial guess, and iteratively generates angular updates for this initial set, namely angle generation method, with improved dose conformality that is quantitatively measured by the objective function. That is, during each iteration, we select “the test angle” in the initial set, and use group-sparsity based fluence map optimization to identify “the candidate angle” for updating “themore » test angle”, for which all the angles in the initial set except “the test angle”, namely “the fixed set”, are set free, i.e., with no group-sparsity penalty, and the rest of angles including “the test angle” during this iteration are in “the working set”. And then “the candidate angle” is selected with the smallest objective function value from the angles in “the working set” with locally maximal group sparsity, and replaces “the test angle” if “the fixed set” with “the candidate angle” has a smaller objective function value by solving the standard fluence map optimization (with no group-sparsity regularization). Similarly other angles in the initial set are in turn selected as “the test angle” for angular updates and this chain of updates is iterated until no further new angular update is identified for a full loop. Results: The tests using the MGH public prostate dataset demonstrated the effectiveness of the proposed BAO algorithm. For example, the optimized angular set from the proposed BAO algorithm was better the MGH template. Conclusion: A new BAO algorithm is proposed based on the angle generation method via group sparsity, with improved dose conformality from the given template. Hao Gao was partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
Strategies to improve the efficiency of celiac disease diagnosis in the laboratory.
González, Delia Almeida; de Armas, Laura García; Rodríguez, Itahisa Marcelino; Almeida, Ana Arencibia; García, Miriam García; Gannar, Fadoua; de León, Antonio Cabrera
2017-10-01
The demand for testing to detect celiac disease (CD) autoantibodies has increased, together with the cost per case diagnosed, resulting in the adoption of measures to restrict laboratory testing. We designed this study to determine whether opportunistic screening to detect CD-associated autoantibodies had advantages compared to efforts to restrict testing, and to identify the most cost-effective diagnostic strategy. We compared a group of 1678 patients in which autoantibody testing was restricted to cases in which the test referral was considered appropriate (G1) to a group of 2140 patients in which test referrals were not reviewed or restricted (G2). Two algorithms A (quantifying IgA and Tissue transglutaminase IgA [TG-IgA] in all patients), and B (quantifying only TG-IgA in all patients) were used in each group, and the cost-effectiveness of each strategy was calculated. TG-IgA autoantibodies were positive in 62 G1 patients and 69 G2 patients. Among those positive for tissue transglutaminase IgA and endomysial IgA autoantibodies, the proportion of patients with de novo autoantibodies was lower (p=0.028) in G1 (11/62) than in G2 (24/69). Algorithm B required fewer determinations than algorithm A in both G1 (2310 vs 3493; p<0.001) and G2 (2196 vs 4435; p<0.001). With algorithm B the proportion of patients in whom IgA was tested was lower (p<0.001) in G2 (29/2140) than in G1 (617/1678). The lowest cost per case diagnosed (4.63 euros/patient) was found with algorithm B in G2. We conclude that opportunistic screening has advantages compared to efforts in the laboratory to restrict CD diagnostic testing. The most cost-effective strategy was based on the use of an appropriate algorithm. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.
2016-02-01
We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05 experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0-2 years, p < 0.001) was followed by a slow or negligible degeneration (2-4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.
Inter-method Performance Study of Tumor Volumetry Assessment on Computed Tomography Test-retest Data
Buckler, Andrew J.; Danagoulian, Jovanna; Johnson, Kjell; Peskin, Adele; Gavrielides, Marios A.; Petrick, Nicholas; Obuchowski, Nancy A.; Beaumont, Hubert; Hadjiiski, Lubomir; Jarecha, Rudresh; Kuhnigk, Jan-Martin; Mantri, Ninad; McNitt-Gray, Michael; Moltz, Jan Hendrik; Nyiri, Gergely; Peterson, Sam; Tervé, Pierre; Tietjen, Christian; von Lavante, Etienne; Ma, Xiaonan; Pierre, Samantha St.; Athelogou, Maria
2015-01-01
Rationale and objectives Tumor volume change has potential as a biomarker for diagnosis, therapy planning, and treatment response. Precision was evaluated and compared among semi-automated lung tumor volume measurement algorithms from clinical thoracic CT datasets. The results inform approaches and testing requirements for establishing conformance with the Quantitative Imaging Biomarker Alliance (QIBA) CT Volumetry Profile. Materials and Methods Industry and academic groups participated in a challenge study. Intra-algorithm repeatability and inter-algorithm reproducibility were estimated. Relative magnitudes of various sources of variability were estimated using a linear mixed effects model. Segmentation boundaries were compared to provide a basis on which to optimize algorithm performance for developers. Results Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least performing), with most algorithms demonstrating improved repeatability as the tumor size increased. Inter-algorithm reproducibility determined in three partitions and found to be 58% for the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 84% when all groups but the least performer were included. The best performing partition performed markedly better on tumors with equivalent diameters above 40 mm. Larger tumors benefitted by human editing but smaller tumors did not. One-fifth to one-half of the total variability came from sources independent of the algorithms. Segmentation boundaries differed substantially, not just in overall volume but in detail. Conclusions Nine of the twelve participating algorithms pass precision requirements similar to what is indicated in the QIBA Profile, with the caveat that the current study was not designed to explicitly evaluate algorithm Profile conformance. Change in tumor volume can be measured with confidence to within ±14% using any of these nine algorithms on tumor sizes above 10 mm. No partition of the algorithms were able to meet the QIBA requirements for interchangeability down to 10 mm, though the partition comprised of the best performing algorithms did meet this requirement above a tumor size of approximately 40 mm. PMID:26376841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, G. W.; Fahim, F.; Grybos, P.
An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel that recovers composite signals and event driven strobes to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32×32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3 μm X-ray beam. The results of these tests are given in the paper assessing physical implementation of the algorithm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel
An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less
NASA Technical Reports Server (NTRS)
Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor);
1998-01-01
Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.
Schoenberg, Mike R; Lange, Rael T; Brickell, Tracey A; Saklofske, Donald H
2007-04-01
Neuropsychologic evaluation requires current test performance be contrasted against a comparison standard to determine if change has occurred. An estimate of premorbid intelligence quotient (IQ) is often used as a comparison standard. The Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is a commonly used intelligence test. However, there is no method to estimate premorbid IQ for the WISC-IV, limiting the test's utility for neuropsychologic assessment. This study develops algorithms to estimate premorbid Full Scale IQ scores. Participants were the American WISC-IV standardization sample (N = 2172). The sample was randomly divided into 2 groups (development and validation). The development group was used to generate 12 algorithms. These algorithms were accurate predictors of WISC-IV Full Scale IQ scores in healthy children and adolescents. These algorithms hold promise as a method to predict premorbid IQ for patients with known or suspected neurologic dysfunction; however, clinical validation is required.
Hierarchical group testing for multiple infections.
Hou, Peijie; Tebbs, Joshua M; Bilder, Christopher R; McMahan, Christopher S
2017-06-01
Group testing, where individuals are tested initially in pools, is widely used to screen a large number of individuals for rare diseases. Triggered by the recent development of assays that detect multiple infections at once, screening programs now involve testing individuals in pools for multiple infections simultaneously. Tebbs, McMahan, and Bilder (2013, Biometrics) recently evaluated the performance of a two-stage hierarchical algorithm used to screen for chlamydia and gonorrhea as part of the Infertility Prevention Project in the United States. In this article, we generalize this work to accommodate a larger number of stages. To derive the operating characteristics of higher-stage hierarchical algorithms with more than one infection, we view the pool decoding process as a time-inhomogeneous, finite-state Markov chain. Taking this conceptualization enables us to derive closed-form expressions for the expected number of tests and classification accuracy rates in terms of transition probability matrices. When applied to chlamydia and gonorrhea testing data from four states (Region X of the United States Department of Health and Human Services), higher-stage hierarchical algorithms provide, on average, an estimated 11% reduction in the number of tests when compared to two-stage algorithms. For applications with rarer infections, we show theoretically that this percentage reduction can be much larger. © 2016, The International Biometric Society.
Hierarchical group testing for multiple infections
Hou, Peijie; Tebbs, Joshua M.; Bilder, Christopher R.; McMahan, Christopher S.
2016-01-01
Summary Group testing, where individuals are tested initially in pools, is widely used to screen a large number of individuals for rare diseases. Triggered by the recent development of assays that detect multiple infections at once, screening programs now involve testing individuals in pools for multiple infections simultaneously. Tebbs, McMahan, and Bilder (2013, Biometrics) recently evaluated the performance of a two-stage hierarchical algorithm used to screen for chlamydia and gonorrhea as part of the Infertility Prevention Project in the United States. In this article, we generalize this work to accommodate a larger number of stages. To derive the operating characteristics of higher-stage hierarchical algorithms with more than one infection, we view the pool decoding process as a time-inhomogeneous, finite-state Markov chain. Taking this conceptualization enables us to derive closed-form expressions for the expected number of tests and classification accuracy rates in terms of transition probability matrices. When applied to chlamydia and gonorrhea testing data from four states (Region X of the United States Department of Health and Human Services), higher-stage hierarchical algorithms provide, on average, an estimated 11 percent reduction in the number of tests when compared to two-stage algorithms. For applications with rarer infections, we show theoretically that this percentage reduction can be much larger. PMID:27657666
Detection of unmanned aerial vehicles using a visible camera system.
Hu, Shuowen; Goldman, Geoffrey H; Borel-Donohue, Christoph C
2017-01-20
Unmanned aerial vehicles (UAVs) flown by adversaries are an emerging asymmetric threat to homeland security and the military. To help address this threat, we developed and tested a computationally efficient UAV detection algorithm consisting of horizon finding, motion feature extraction, blob analysis, and coherence analysis. We compare the performance of this algorithm against two variants, one using the difference image intensity as the motion features and another using higher-order moments. The proposed algorithm and its variants are tested using field test data of a group 3 UAV acquired with a panoramic video camera in the visible spectrum. The performance of the algorithms was evaluated using receiver operating characteristic curves. The results show that the proposed approach had the best performance compared to the two algorithmic variants.
Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.
2016-01-01
We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p < 0.05; experiments vs. model), in which the rapid degeneration immediately after initiation of osteoarthritis (0–2 years, p < 0.001) was followed by a slow or negligible degeneration (2–4 years, p > 0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis. PMID:26906749
NASA Technical Reports Server (NTRS)
Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.
2010-01-01
Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement
Age group classification and gender detection based on forced expiratory spirometry.
Cosgun, Sema; Ozbek, I Yucel
2015-08-01
This paper investigates the utility of forced expiratory spirometry (FES) test with efficient machine learning algorithms for the purpose of gender detection and age group classification. The proposed method has three main stages: feature extraction, training of the models and detection. In the first stage, some features are extracted from volume-time curve and expiratory flow-volume loop obtained from FES test. In the second stage, the probabilistic models for each gender and age group are constructed by training Gaussian mixture models (GMMs) and Support vector machine (SVM) algorithm. In the final stage, the gender (or age group) of test subject is estimated by using the trained GMM (or SVM) model. Experiments have been evaluated on a large database from 4571 subjects. The experimental results show that average correct classification rate performance of both GMM and SVM methods based on the FES test is more than 99.3 % and 96.8 % for gender and age group classification, respectively.
Verhoye, E; Vandecandelaere, P; De Beenhouwer, H; Coppens, G; Cartuyvels, R; Van den Abeele, A; Frans, J; Laffut, W
2015-10-01
Despite thorough analyses of the analytical performance of Clostridium difficile tests and test algorithms, the financial impact at hospital level has not been well described. Such a model should take institution-specific variables into account, such as incidence, request behaviour and infection control policies. To calculate the total hospital costs of different test algorithms, accounting for days on which infected patients with toxigenic strains were not isolated and therefore posed an infectious risk for new/secondary nosocomial infections. A mathematical algorithm was developed to gather the above parameters using data from seven Flemish hospital laboratories (Bilulu Microbiology Study Group) (number of tests, local prevalence and hospital hygiene measures). Measures of sensitivity and specificity for the evaluated tests were taken from the literature. List prices and costs of assays were provided by the manufacturer or the institutions. The calculated cost included reagent costs, personnel costs and the financial burden following due and undue isolations and antibiotic therapies. Five different test algorithms were compared. A dynamic calculation model was constructed to evaluate the cost:benefit ratio of each algorithm for a set of institution- and time-dependent inputted variables (prevalence, cost fluctuations and test performances), making it possible to choose the most advantageous algorithm for its setting. A two-step test algorithm with concomitant glutamate dehydrogenase and toxin testing, followed by a rapid molecular assay was found to be the most cost-effective algorithm. This enabled resolution of almost all cases on the day of arrival, minimizing the number of unnecessary or missing isolations. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Automated Speech Rate Measurement in Dysarthria.
Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc
2015-06-01
In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. The new algorithm was trained and tested using Dutch speech samples of 36 speakers with no history of speech impairment and 40 speakers with mild to moderate dysarthria. We tested the algorithm under various conditions: according to speech task type (sentence reading, passage reading, and storytelling) and algorithm optimization method (speaker group optimization and individual speaker optimization). Correlations between automated and human SR determination were calculated for each condition. High correlations between automated and human SR determination were found in the various testing conditions. The new algorithm measures SR in a sufficiently reliable manner. It is currently being integrated in a clinical software tool for assessing and managing prosody in dysarthric speech. Further research is needed to fine-tune the algorithm to severely dysarthric speech, to make the algorithm less sensitive to background noise, and to evaluate how the algorithm deals with syllabic consonants.
Internet Protocol Security (IPSEC): Testing and Implications on IPv4 and IPv6 Networks
2008-08-27
Message Authentication Code-Message Digest 5-96). Due to the processing power consumption and slowness of public key authentication methods, RSA ...MODP) group with a 768 -bit modulus 2. a MODP group with a 1024-bit modulus 3. an Elliptic Curve Group over GF[ 2n ] (EC2N) group with a 155-bit...nonces, digital signatures using the Digital Signature Algorithm, and the Rivest-Shamir- Adelman ( RSA ) algorithm. For more information about the
A new approach of data clustering using a flock of agents.
Picarougne, Fabien; Azzag, Hanene; Venturini, Gilles; Guinot, Christiane
2007-01-01
This paper presents a new bio-inspired algorithm (FClust) that dynamically creates and visualizes groups of data. This algorithm uses the concepts of a flock of agents that move together in a complex manner with simple local rules. Each agent represents one data. The agents move together in a 2D environment with the aim of creating homogeneous groups of data. These groups are visualized in real time, and help the domain expert to understand the underlying structure of the data set, like for example a realistic number of classes, clusters of similar data, isolated data. We also present several extensions of this algorithm, which reduce its computational cost, and make use of a 3D display. This algorithm is then tested on artificial and real-world data, and a heuristic algorithm is used to evaluate the relevance of the obtained partitioning.
2006-06-01
Scientific Research. 5PAM-Crash is a trademark of the ESI Group . 6MATLAB and SIMULINK are registered trademarks of the MathWorks. 14 maneuvers...Laboratory (ARL) to develop methodologies to evaluate robotic behavior algorithms that control the actions of individual robots or groups of robots...methodologies to evaluate robotic behavior algorithms that control the actions of individual robots or groups of robots acting as a team to perform a
Oden, Neal L; VanVeldhuisen, Paul C; Wakim, Paul G; Trivedi, Madhukar H; Somoza, Eugene; Lewis, Daniel
2011-09-01
In clinical trials of treatment for stimulant abuse, researchers commonly record both Time-Line Follow-Back (TLFB) self-reports and urine drug screen (UDS) results. To compare the power of self-report, qualitative (use vs. no use) UDS assessment, and various algorithms to generate self-report-UDS composite measures to detect treatment differences via t-test in simulated clinical trial data. We performed Monte Carlo simulations patterned in part on real data to model self-report reliability, UDS errors, dropout, informatively missing UDS reports, incomplete adherence to a urine donation schedule, temporal correlation of drug use, number of days in the study period, number of patients per arm, and distribution of drug-use probabilities. Investigated algorithms include maximum likelihood and Bayesian estimates, self-report alone, UDS alone, and several simple modifications of self-report (referred to here as ELCON algorithms) which eliminate perceived contradictions between it and UDS. Among the algorithms investigated, simple ELCON algorithms gave rise to the most powerful t-tests to detect mean group differences in stimulant drug use. Further investigation is needed to determine if simple, naïve procedures such as the ELCON algorithms are optimal for comparing clinical study treatment arms. But researchers who currently require an automated algorithm in scenarios similar to those simulated for combining TLFB and UDS to test group differences in stimulant use should consider one of the ELCON algorithms. This analysis continues a line of inquiry which could determine how best to measure outpatient stimulant use in clinical trials (NIDA. NIDA Monograph-57: Self-Report Methods of Estimating Drug Abuse: Meeting Current Challenges to Validity. NTIS PB 88248083. Bethesda, MD: National Institutes of Health, 1985; NIDA. NIDA Research Monograph 73: Urine Testing for Drugs of Abuse. NTIS PB 89151971. Bethesda, MD: National Institutes of Health, 1987; NIDA. NIDA Research Monograph 167: The Validity of Self-Reported Drug Use: Improving the Accuracy of Survey Estimates. NTIS PB 97175889. GPO 017-024-01607-1. Bethesda, MD: National Institutes of Health, 1997).
Blooming Trees: Substructures and Surrounding Groups of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Yu, Heng; Diaferio, Antonaldo; Serra, Ana Laura; Baldi, Marco
2018-06-01
We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion, and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with mass larger than 1013 h ‑1 M ⊙. With mock redshift surveys with 200 galaxies within 6 h ‑1 Mpc from the cluster center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real structure. These results improve by roughly a factor of two the performance of the best substructure identification algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.
Munshi, Saif U; Oyewale, Tajudeen O; Begum, Shahnaz; Uddin, Ziya; Tabassum, Shahina
2016-03-01
Serum-based rapid HIV testing algorithm in Bangladesh constitutes operational challenge to scaleup HIV testing and counselling (HTC) in the country. This study explored the operational feasibility of using whole blood as alternative to serum for rapid HIV testing in Bangladesh. Whole blood specimens were collected from two study groups. The groups included HIV-positive patients (n = 200) and HIV-negative individuals (n = 200) presenting at the reference laboratory in Dhaka, Bangladesh. The specimens were subjected to rapid HIV tests using the national algorithm with A1 = Alere Determine (United States), A2 = Uni-Gold (Ireland), and A3 = First Response (India). The sensitivity and specificity of the test results, and the operational cost were compared with current serum-based testing. The sensitivities [95% of confidence interval (CI)] for A1, A2, and A3 tests using whole blood were 100% (CI: 99.1-100%), 100% (CI: 99.1-100%), and 97% (CI: 96.4-98.2%), respectively, and specificities of all test kits were 100% (CI: 99.1-100%). Significant (P < 0.05) reduction in the cost of establishing HTC centre and consumables by 94 and 61%, respectively, were observed. The cost of administration and external quality assurance reduced by 39 and 43%, respectively. Overall, there was a 36% cost reduction in total operational cost of rapid HIV testing with blood when compared with serum. Considering the similar sensitivity and specificity of the two specimens, and significant cost reduction, rapid HIV testing with whole blood is feasible. A review of the national HIV rapid testing algorithm with whole blood will contribute toward improving HTC coverage in Bangladesh.
Khosravi, H R; Nodehi, Mr Golrokh; Asnaashari, Kh; Mahdavi, S R; Shirazi, A R; Gholami, S
2012-07-01
The aim of this study was to evaluate and analytically compare different calculation algorithms applied in our country radiotherapy centers base on the methodology developed by IAEA for treatment planning systems (TPS) commissioning (IAEA TEC-DOC 1583). Thorax anthropomorphic phantom (002LFC CIRS inc.), was used to measure 7 tests that simulate the whole chain of external beam TPS. The dose were measured with ion chambers and the deviation between measured and TPS calculated dose was reported. This methodology, which employs the same phantom and the same setup test cases, was tested in 4 different hospitals which were using 5 different algorithms/ inhomogeneity correction methods implemented in different TPS. The algorithms in this study were divided into two groups including correction based and model based algorithms. A total of 84 clinical test case datasets for different energies and calculation algorithms were produced, which amounts of differences in inhomogeneity points with low density (lung) and high density (bone) was decreased meaningfully with advanced algorithms. The number of deviations outside agreement criteria was increased with the beam energy and decreased with advancement of the TPS calculation algorithm. Large deviations were seen in some correction based algorithms, so sophisticated algorithms, would be preferred in clinical practices, especially for calculation in inhomogeneous media. Use of model based algorithms with lateral transport calculation, is recommended. Some systematic errors which were revealed during this study, is showing necessity of performing periodic audits on TPS in radiotherapy centers. © 2012 American Association of Physicists in Medicine.
Quality control algorithms for rainfall measurements
NASA Astrophysics Data System (ADS)
Golz, Claudia; Einfalt, Thomas; Gabella, Marco; Germann, Urs
2005-09-01
One of the basic requirements for a scientific use of rain data from raingauges, ground and space radars is data quality control. Rain data could be used more intensively in many fields of activity (meteorology, hydrology, etc.), if the achievable data quality could be improved. This depends on the available data quality delivered by the measuring devices and the data quality enhancement procedures. To get an overview of the existing algorithms a literature review and literature pool have been produced. The diverse algorithms have been evaluated to meet VOLTAIRE objectives and sorted in different groups. To test the chosen algorithms an algorithm pool has been established, where the software is collected. A large part of this work presented here is implemented in the scope of the EU-project VOLTAIRE ( Validati on of mu ltisensors precipit ation fields and numerical modeling in Mediter ran ean test sites).
Novel search algorithms for a mid-infrared spectral library of cotton contaminants.
Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A
2008-06-01
During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify correctly as many test spectra as the best standard algorithm without relying on human choice to select a standard algorithm to perform the searches.
NASA Astrophysics Data System (ADS)
Xie, ChengJun; Xu, Lin
2008-03-01
This paper presents an algorithm based on mixing transform of wave band grouping to eliminate spectral redundancy, the algorithm adapts to the relativity difference between different frequency spectrum images, and still it works well when the band number is not the power of 2. Using non-boundary extension CDF(2,2)DWT and subtraction mixing transform to eliminate spectral redundancy, employing CDF(2,2)DWT to eliminate spatial redundancy and SPIHT+CABAC for compression coding, the experiment shows that a satisfied lossless compression result can be achieved. Using hyper-spectral image Canal of American JPL laboratory as the data set for lossless compression test, when the band number is not the power of 2, lossless compression result of this compression algorithm is much better than the results acquired by JPEG-LS, WinZip, ARJ, DPCM, the research achievements of a research team of Chinese Academy of Sciences, Minimum Spanning Tree and Near Minimum Spanning Tree, on the average the compression ratio of this algorithm exceeds the above algorithms by 41%,37%,35%,29%,16%,10%,8% respectively; when the band number is the power of 2, for 128 frames of the image Canal, taking 8, 16 and 32 respectively as the number of one group for groupings based on different numbers, considering factors like compression storage complexity, the type of wave band and the compression effect, we suggest using 8 as the number of bands included in one group to achieve a better compression effect. The algorithm of this paper has priority in operation speed and hardware realization convenience.
Warfarin Pharmacogenomics in Diverse Populations.
Kaye, Justin B; Schultz, Lauren E; Steiner, Heidi E; Kittles, Rick A; Cavallari, Larisa H; Karnes, Jason H
2017-09-01
Genotype-guided warfarin dosing algorithms are a rational approach to optimize warfarin dosing and potentially reduce adverse drug events. Diverse populations, such as African Americans and Latinos, have greater variability in warfarin dose requirements and are at greater risk for experiencing warfarin-related adverse events compared with individuals of European ancestry. Although these data suggest that patients of diverse populations may benefit from improved warfarin dose estimation, the vast majority of literature on genotype-guided warfarin dosing, including data from prospective randomized trials, is in populations of European ancestry. Despite differing frequencies of variants by race/ethnicity, most evidence in diverse populations evaluates variants that are most common in populations of European ancestry. Algorithms that do not include variants important across race/ethnic groups are unlikely to benefit diverse populations. In some race/ethnic groups, development of race-specific or admixture-based algorithms may facilitate improved genotype-guided warfarin dosing algorithms above and beyond that seen in individuals of European ancestry. These observations should be considered in the interpretation of literature evaluating the clinical utility of genotype-guided warfarin dosing. Careful consideration of race/ethnicity and additional evidence focused on improving warfarin dosing algorithms across race/ethnic groups will be necessary for successful clinical implementation of warfarin pharmacogenomics. The evidence for warfarin pharmacogenomics has a broad significance for pharmacogenomic testing, emphasizing the consideration of race/ethnicity in discovery of gene-drug pairs and development of clinical recommendations for pharmacogenetic testing. © 2017 Pharmacotherapy Publications, Inc.
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
A two-stage algorithm for Clostridium difficile including PCR: can we replace the toxin EIA?
Orendi, J M; Monnery, D J; Manzoor, S; Hawkey, P M
2012-01-01
A two step, three-test algorithm for Clostridium difficile infection (CDI) was reviewed. Stool samples were tested by enzyme immunoassays for C. difficile common antigen glutamate dehydrogenase (G) and toxin A/B (T). Samples with discordant results were tested by polymerase chain reaction detecting the toxin B gene (P). The algorithm quickly identified patients with detectable toxin A/B, whereas a large group of patients excreting toxigenic C. difficile but with toxin A/B production below detection level (G(+)T(-)P(+)) was identified separately. The average white blood cell count in patients with a G(+)T(+) result was higher than in those with a G(+)T(-)P(+) result. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter
2017-10-01
A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.
Effect of registration on corpus callosum population differences found with DBM analysis
NASA Astrophysics Data System (ADS)
Han, Zhaoying; Thornton-Wells, Tricia A.; Gore, John C.; Dawant, Benoit M.
2011-03-01
Deformation Based Morphometry (DBM) is a relatively new method used for characterizing anatomical differences among populations. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to one standard coordinate system. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithm on population differences that may be uncovered through DBM. In this study, we compared DBM results obtained with five well established non-rigid registration algorithms on the corpus callosum (CC) in thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Basis Algorithm (ABA); (2) Image Registration Toolkit (IRTK); (3) FSL Nonlinear Image Registration Tool (FSL); (4) Automatic Registration Tools (ART); and (5) the normalization algorithm available in SPM8. For each algorithm, the 3D deformation fields from all subjects to the atlas were obtained and used to calculate the Jacobian determinant (JAC) at each voxel in the mid-sagittal slice of the CC. The mean JAC maps for each group were compared quantitatively across different nonrigid registration algorithms. An ANOVA test performed on the means of the JAC over the Genu and the Splenium ROIs shows the JAC differences between nonrigid registration algorithms are statistically significant over the Genu for both groups and over the Splenium for the NC group. These results suggest that it is important to consider the effect of registration when using DBM to compute morphological differences in populations.
Hundley, Vanora A; Avan, Bilal I; Ahmed, Haris; Graham, Wendy J
2012-12-19
Clean birth practices can prevent sepsis, one of the leading causes of both maternal and newborn mortality. Evidence suggests that clean birth kits (CBKs), as part of package that includes education, are associated with a reduction in newborn mortality, omphalitis, and puerperal sepsis. However, questions remain about how best to approach the introduction of CBKs in country. We set out to develop a practical decision support tool for programme managers of public health systems who are considering the potential role of CBKs in their strategy for care at birth. Development and testing of the decision support tool was a three-stage process involving an international expert group and country level testing. Stage 1, the development of the tool was undertaken by the Birth Kit Working Group and involved a review of the evidence, a consensus meeting, drafting of the proposed tool and expert review. In Stage 2 the tool was tested with users through interviews (9) and a focus group, with federal and provincial level decision makers in Pakistan. In Stage 3 the findings from the country level testing were reviewed by the expert group. The decision support tool comprised three separate algorithms to guide the policy maker or programme manager through the specific steps required in making the country level decision about whether to use CBKs. The algorithms were supported by a series of questions (that could be administered by interview, focus group or questionnaire) to help the decision maker identify the information needed. The country level testing revealed that the decision support tool was easy to follow and helpful in making decisions about the potential role of CBKs. Minor modifications were made and the final algorithms are presented. Testing of the tool with users in Pakistan suggests that the tool facilitates discussion and aids decision making. However, testing in other countries is needed to determine whether these results can be replicated and to identify how the tool can be adapted to meet country specific needs.
Noureldine, Salem I; Najafian, Alireza; Aragon Han, Patricia; Olson, Matthew T; Genther, Dane J; Schneider, Eric B; Prescott, Jason D; Agrawal, Nishant; Mathur, Aarti; Zeiger, Martha A; Tufano, Ralph P
2016-07-01
Diagnostic molecular testing is used in the workup of thyroid nodules. While these tests appear to be promising in more definitively assigning a risk of malignancy, their effect on surgical decision making has yet to be demonstrated. To investigate the effect of diagnostic molecular profiling of thyroid nodules on the surgical decision-making process. A surgical management algorithm was developed and published after peer review that incorporated individual Bethesda System for Reporting Thyroid Cytopathology classifications with clinical, laboratory, and radiological results. This algorithm was created to formalize the decision-making process selected herein in managing patients with thyroid nodules. Between April 1, 2014, and March 31, 2015, a prospective study of patients who had undergone diagnostic molecular testing of a thyroid nodule before being seen for surgical consultation was performed. The recommended management undertaken by the surgeon was then prospectively compared with the corresponding one in the algorithm. Patients with thyroid nodules who did not undergo molecular testing and were seen for surgical consultation during the same period served as a control group. All pertinent treatment options were presented to each patient, and any deviation from the algorithm was recorded prospectively. To evaluate the appropriateness of any change (deviation) in management, the surgical histopathology diagnosis was correlated with the surgery performed. The study cohort comprised 140 patients who underwent molecular testing. Their mean (SD) age was 50.3 (14.6) years, and 75.0% (105 of 140) were female. Over a 1-year period, 20.3% (140 of 688) had undergone diagnostic molecular testing before surgical consultation, and 79.7% (548 of 688) had not undergone molecular testing. The surgical management deviated from the treatment algorithm in 12.9% (18 of 140) with molecular testing and in 10.2% (56 of 548) without molecular testing (P = .37). In the group with molecular testing, the surgical management plan of only 7.9% (11 of 140) was altered as a result of the molecular test. All but 1 of those patients were found to be overtreated relative to the surgical histopathology analysis. Molecular testing did not significantly affect the surgical decision-making process in this study. Among patients whose treatment was altered based on these markers, there was evidence of overtreatment.
The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration
NASA Astrophysics Data System (ADS)
Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.
2017-03-01
In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.
Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F
2017-04-01
Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.
A grouping method based on grid density and relationship for crowd evacuation simulation
NASA Astrophysics Data System (ADS)
Li, Yan; Liu, Hong; Liu, Guang-peng; Li, Liang; Moore, Philip; Hu, Bin
2017-05-01
Psychological factors affect the movement of people in the competitive or panic mode of evacuation, in which the density of pedestrians is relatively large and the distance among them is small. In this paper, a crowd is divided into groups according to their social relations to simulate the actual movement of crowd evacuation more realistically and increase the attractiveness of the group based on social force model. The force of group attraction is the synthesis of two forces; one is the attraction of the individuals generated by their social relations to gather, and the other is that of the group leader to the individuals within the group to ensure that the individuals follow the leader. The synthetic force determines the trajectory of individuals. The evacuation process is demonstrated using the improved social force model. In the improved social force model, the individuals with close social relations gradually present a closer and coordinated action while following the leader. In this paper, a grouping algorithm is proposed based on grid density and relationship via computer simulation to illustrate the features of the improved social force model. The definition of the parameters involved in the algorithm is given, and the effect of relational value on the grouping is tested. Reasonable numbers of grids and weights are selected. The effectiveness of the algorithm is shown through simulation experiments. A simulation platform is also established using the proposed grouping algorithm and the improved social force model for crowd evacuation simulation.
A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2013-01-01
Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014
Pooseh, Shakoor; Bernhardt, Nadine; Guevara, Alvaro; Huys, Quentin J M; Smolka, Michael N
2018-02-01
Using simple mathematical models of choice behavior, we present a Bayesian adaptive algorithm to assess measures of impulsive and risky decision making. Practically, these measures are characterized by discounting rates and are used to classify individuals or population groups, to distinguish unhealthy behavior, and to predict developmental courses. However, a constant demand for improved tools to assess these constructs remains unanswered. The algorithm is based on trial-by-trial observations. At each step, a choice is made between immediate (certain) and delayed (risky) options. Then the current parameter estimates are updated by the likelihood of observing the choice, and the next offers are provided from the indifference point, so that they will acquire the most informative data based on the current parameter estimates. The procedure continues for a certain number of trials in order to reach a stable estimation. The algorithm is discussed in detail for the delay discounting case, and results from decision making under risk for gains, losses, and mixed prospects are also provided. Simulated experiments using prescribed parameter values were performed to justify the algorithm in terms of the reproducibility of its parameters for individual assessments, and to test the reliability of the estimation procedure in a group-level analysis. The algorithm was implemented as an experimental battery to measure temporal and probability discounting rates together with loss aversion, and was tested on a healthy participant sample.
Liu, Chun; Kroll, Andreas
2016-01-01
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
Protecting patient privacy by quantifiable control of disclosures in disseminated databases.
Ohno-Machado, Lucila; Silveira, Paulo Sérgio Panse; Vinterbo, Staal
2004-08-01
One of the fundamental rights of patients is to have their privacy protected by health care organizations, so that information that can be used to identify a particular individual is not used to reveal sensitive patient data such as diagnoses, reasons for ordering tests, test results, etc. A common practice is to remove sensitive data from databases that are disseminated to the public, but this can make the disseminated database useless for important public health purposes. If the degree of anonymity of a disseminated data set could be measured, it would be possible to design algorithms that can assure that the desired level of confidentiality is achieved. Privacy protection in disseminated databases can be facilitated by the use of special ambiguation algorithms. Most of these algorithms are aimed at making one individual indistinguishable from one or more of his peers. However, even in databases considered "anonymous", it may still be possible to obtain sensitive information about some individuals or groups of individuals with the use of pattern recognition algorithms. In this article, we study the problem of determining the degree of ambiguation in disseminated databases and discuss its implications in the development and testing of "anonymization" algorithms.
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard; Boccippio, Dennis J.; Goodman, Steve J.; Boeck, William
2006-01-01
We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.
Miles, Lachlan F; Marchiori, Paolo; Falter, Florian
2017-09-01
This manuscript represents a pilot study assessing the feasibility of a single-compartment, individualised, pharmacokinetic algorithm for protamine dosing after cardiopulmonary bypass. A pilot cohort study in a specialist NHS cardiothoracic hospital targeting patients undergoing elective cardiac surgery using cardiopulmonary bypass. Patients received protamine doses according to a pharmacokinetic algorithm (n = 30) or using an empirical, fixed-dose model (n = 30). Categorical differences between the groups were evaluated using the Chi-squared test or Fisher's exact test. Continuous data was analysed using a paired Student's t-test for parametric data and the paired samples Wilcoxon test for non-parametric data. Patients who had protamine dosing according to the algorithm demonstrated a lower protamine requirement post-bypass relative to empirical management as measured by absolute dose (243 ± 49mg vs. 305 ± 34.7mg; p<0.001) and the heparin to protamine ratio (0.79 ± 0.12 vs. 1.1 ± 0.15; p<0.001). There was no difference in the pre- to post-bypass activated clotting time (ACT) ratio (1.05 ± 0.12 vs. 1.02 ± 0.15; p=0.9). Patients who received protamine according to the algorithm had no significant difference in transfusion requirement (13.3% vs. 30.0%; p=0.21). This study showed that an individualized pharmacokinetic algorithm for the reversal of heparin after cardiopulmonary bypass is feasible in comparison with a fixed dosing strategy and may reduce the protamine requirement following on-pump cardiac surgery.
MacRae, J; Darlow, B; McBain, L; Jones, O; Stubbe, M; Turner, N; Dowell, A
2015-08-21
To develop a natural language processing software inference algorithm to classify the content of primary care consultations using electronic health record Big Data and subsequently test the algorithm's ability to estimate the prevalence and burden of childhood respiratory illness in primary care. Algorithm development and validation study. To classify consultations, the algorithm is designed to interrogate clinical narrative entered as free text, diagnostic (Read) codes created and medications prescribed on the day of the consultation. Thirty-six consenting primary care practices from a mixed urban and semirural region of New Zealand. Three independent sets of 1200 child consultation records were randomly extracted from a data set of all general practitioner consultations in participating practices between 1 January 2008-31 December 2013 for children under 18 years of age (n=754,242). Each consultation record within these sets was independently classified by two expert clinicians as respiratory or non-respiratory, and subclassified according to respiratory diagnostic categories to create three 'gold standard' sets of classified records. These three gold standard record sets were used to train, test and validate the algorithm. Sensitivity, specificity, positive predictive value and F-measure were calculated to illustrate the algorithm's ability to replicate judgements of expert clinicians within the 1200 record gold standard validation set. The algorithm was able to identify respiratory consultations in the 1200 record validation set with a sensitivity of 0.72 (95% CI 0.67 to 0.78) and a specificity of 0.95 (95% CI 0.93 to 0.98). The positive predictive value of algorithm respiratory classification was 0.93 (95% CI 0.89 to 0.97). The positive predictive value of the algorithm classifying consultations as being related to specific respiratory diagnostic categories ranged from 0.68 (95% CI 0.40 to 1.00; other respiratory conditions) to 0.91 (95% CI 0.79 to 1.00; throat infections). A software inference algorithm that uses primary care Big Data can accurately classify the content of clinical consultations. This algorithm will enable accurate estimation of the prevalence of childhood respiratory illness in primary care and resultant service utilisation. The methodology can also be applied to other areas of clinical care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
ERIC Educational Resources Information Center
Wang, Chun
2013-01-01
Cognitive diagnostic computerized adaptive testing (CD-CAT) purports to combine the strengths of both CAT and cognitive diagnosis. Cognitive diagnosis models aim at classifying examinees into the correct mastery profile group so as to pinpoint the strengths and weakness of each examinee whereas CAT algorithms choose items to determine those…
Modal Identification of Tsing MA Bridge by Using Improved Eigensystem Realization Algorithm
NASA Astrophysics Data System (ADS)
QIN, Q.; LI, H. B.; QIAN, L. Z.; LAU, C.-K.
2001-10-01
This paper presents the results of research work on modal identification of Tsing Ma bridge ambient testing data by using an improved eigensystem realization algorithm. The testing was carried out before the bridge was open to traffic and after the completion of surfacing. Without traffic load, ambient excitations were much less intensive, and the bridge responses to such ambient excitation were also less intensive. Consequently, the bridge responses were significantly influenced by the random movement of heavy construction vehicles on the deck. To cut off noises in the testing data and make the ambient signals more stationary, the Chebyshev digital filter was used instead of the digital filter with a Hanning window. Random decrement (RD) functions were built to convert the ambient responses to free vibrations. An improved eigensystem realization algorithm was employed to improve the accuracy and the efficiency of modal identification. It uses cross-correlation functions ofRD functions to form the Hankel matrix instead of RD functions themselves and uses eigenvalue decomposition instead of singular value decomposition. The data for response accelerations were acquired group by group because of limited number of high-quality accelerometers and channels of data loggers available. The modes were identified group by group and then assembled by using response accelerations acquired at reference points to form modes of the complete bridge. Seventy-nine modes of the Tsing Ma bridge were identified, including five complex modes formed in accordance with unevenly distributed damping in the bridge. The identified modes in time domain were then compared with those identified in frequency domain and finite element analytical results.
Benchmarking protein classification algorithms via supervised cross-validation.
Kertész-Farkas, Attila; Dhir, Somdutta; Sonego, Paolo; Pacurar, Mircea; Netoteia, Sergiu; Nijveen, Harm; Kuzniar, Arnold; Leunissen, Jack A M; Kocsor, András; Pongor, Sándor
2008-04-24
Development and testing of protein classification algorithms are hampered by the fact that the protein universe is characterized by groups vastly different in the number of members, in average protein size, similarity within group, etc. Datasets based on traditional cross-validation (k-fold, leave-one-out, etc.) may not give reliable estimates on how an algorithm will generalize to novel, distantly related subtypes of the known protein classes. Supervised cross-validation, i.e., selection of test and train sets according to the known subtypes within a database has been successfully used earlier in conjunction with the SCOP database. Our goal was to extend this principle to other databases and to design standardized benchmark datasets for protein classification. Hierarchical classification trees of protein categories provide a simple and general framework for designing supervised cross-validation strategies for protein classification. Benchmark datasets can be designed at various levels of the concept hierarchy using a simple graph-theoretic distance. A combination of supervised and random sampling was selected to construct reduced size model datasets, suitable for algorithm comparison. Over 3000 new classification tasks were added to our recently established protein classification benchmark collection that currently includes protein sequence (including protein domains and entire proteins), protein structure and reading frame DNA sequence data. We carried out an extensive evaluation based on various machine-learning algorithms such as nearest neighbor, support vector machines, artificial neural networks, random forests and logistic regression, used in conjunction with comparison algorithms, BLAST, Smith-Waterman, Needleman-Wunsch, as well as 3D comparison methods DALI and PRIDE. The resulting datasets provide lower, and in our opinion more realistic estimates of the classifier performance than do random cross-validation schemes. A combination of supervised and random sampling was used to construct model datasets, suitable for algorithm comparison.
Burton, Barbara K; Kronn, David F; Hwu, Wuh-Liang; Kishnani, Priya S
2017-07-01
Newborn screening (NBS) for Pompe disease is done through analysis of acid α-glucosidase (GAA) activity in dried blood spots. When GAA levels are below established cutoff values, then second-tier testing is required to confirm or refute a diagnosis of Pompe disease. This article in the "Newborn Screening, Diagnosis, and Treatment for Pompe Disease" guidance supplement provides recommendations for confirmatory testing after a positive NBS result indicative of Pompe disease is obtained. Two algorithms were developed by the Pompe Disease Newborn Screening Working Group, a group of international experts on both NBS and Pompe disease, based on whether DNA sequencing is performed as part of the screening method. Using the recommendations in either algorithm will lead to 1 of 3 diagnoses: classic infantile-onset Pompe disease, late-onset Pompe disease, or no disease/not affected/carrier. Mutation analysis of the GAA gene is essential for confirming the biochemical diagnosis of Pompe disease. For NBS laboratories that do not have DNA sequencing capabilities, the responsibility of obtaining sequencing of the GAA gene will fall on the referral center. The recommendations for confirmatory testing and the initial evaluation are intended for a broad global audience. However, the Working Group recognizes that clinical practices, standards of care, and resource capabilities vary not only regionally, but also by testing centers. Individual patient needs and health status as well as local/regional insurance reimbursement programs and regulations also must be considered. Copyright © 2017 by the American Academy of Pediatrics.
An Algorithm for Creating Virtual Controls Using Integrated and Harmonized Longitudinal Data.
Hansen, William B; Chen, Shyh-Huei; Saldana, Santiago; Ip, Edward H
2018-06-01
We introduce a strategy for creating virtual control groups-cases generated through computer algorithms that, when aggregated, may serve as experimental comparators where live controls are difficult to recruit, such as when programs are widely disseminated and randomization is not feasible. We integrated and harmonized data from eight archived longitudinal adolescent-focused data sets spanning the decades from 1980 to 2010. Collectively, these studies examined numerous psychosocial variables and assessed past 30-day alcohol, cigarette, and marijuana use. Additional treatment and control group data from two archived randomized control trials were used to test the virtual control algorithm. Both randomized controlled trials (RCTs) assessed intentions, normative beliefs, and values as well as past 30-day alcohol, cigarette, and marijuana use. We developed an algorithm that used percentile scores from the integrated data set to create age- and gender-specific latent psychosocial scores. The algorithm matched treatment case observed psychosocial scores at pretest to create a virtual control case that figuratively "matured" based on age-related changes, holding the virtual case's percentile constant. Virtual controls matched treatment case occurrence, eliminating differential attrition as a threat to validity. Virtual case substance use was estimated from the virtual case's latent psychosocial score using logistic regression coefficients derived from analyzing the treatment group. Averaging across virtual cases created group estimates of prevalence. Two criteria were established to evaluate the adequacy of virtual control cases: (1) virtual control group pretest drug prevalence rates should match those of the treatment group and (2) virtual control group patterns of drug prevalence over time should match live controls. The algorithm successfully matched pretest prevalence for both RCTs. Increases in prevalence were observed, although there were discrepancies between live and virtual control outcomes. This study provides an initial framework for creating virtual controls using a step-by-step procedure that can now be revised and validated using other prevention trial data.
Machida, Haruhiko; Lin, Xiao-Zhu; Fukui, Rika; Shen, Yun; Suzuki, Shigeru; Tanaka, Isao; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko
2015-02-01
We retrospectively investigated the effect of the motion correction algorithm (MCA) on image quality and interpretability by heart rate (HR) in coronary CT angiography (CCTA). For 105 patients (6 HR groups) undergoing CCTA, 2 readers independently graded the image quality of the 4 major coronary arteries reconstructed with and without MCA at diastole with HR ≤64 bpm and at systole and diastole ≥65 bpm using a 5-point scale. For each HR group and cardiac phase, we compared per-vessel and per-segment image quality using Wilcoxon signed rank test and percentages of interpretable image quality (scores 3-5) among without MCA at diastole with HR ≤64 bpm, as a reference, with MCA at diastole ≤69 bpm and at systole 70-79 bpm using the chi-square test. The motion correction algorithm reconstruction provided similar or better image quality and interpretability in all groups, with 96-100 % per-vessel (P = 0.008 for the right coronary artery; otherwise, P > 0.05) and 99 % per-segment interpretable image quality (P = 0.0002) at diastole with HR ≤69 bpm and at systole 70-79 bpm compared to the reference (88-100 and 97 %, respectively). MCA reconstruction preserved image quality and interpretability of CCTA with HR ≤79 bpm.
Watson, Robert A
2014-08-01
To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.
Lehr, M E; Plisky, P J; Butler, R J; Fink, M L; Kiesel, K B; Underwood, F B
2013-08-01
In athletics, efficient screening tools are sought to curb the rising number of noncontact injuries and associated health care costs. The authors hypothesized that an injury prediction algorithm that incorporates movement screening performance, demographic information, and injury history can accurately categorize risk of noncontact lower extremity (LE) injury. One hundred eighty-three collegiate athletes were screened during the preseason. The test scores and demographic information were entered into an injury prediction algorithm that weighted the evidence-based risk factors. Athletes were then prospectively followed for noncontact LE injury. Subsequent analysis collapsed the groupings into two risk categories: Low (normal and slight) and High (moderate and substantial). Using these groups and noncontact LE injuries, relative risk (RR), sensitivity, specificity, and likelihood ratios were calculated. Forty-two subjects sustained a noncontact LE injury over the course of the study. Athletes identified as High Risk (n = 63) were at a greater risk of noncontact LE injury (27/63) during the season [RR: 3.4 95% confidence interval 2.0 to 6.0]. These results suggest that an injury prediction algorithm composed of performance on efficient, low-cost, field-ready tests can help identify individuals at elevated risk of noncontact LE injury. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jafari Tadi, Mojtaba; Koivisto, Tero; Pänkäälä, Mikko; Paasio, Ari; Knuutila, Timo; Teräs, Mika; Hänninen, Pekka
2015-03-01
Systolic time intervals (STI) have significant diagnostic values for a clinical assessment of the left ventricle in adults. This study was conducted to explore the feasibility of using seismocardiography (SCG) to measure the systolic timings of the cardiac cycle accurately. An algorithm was developed for the automatic localization of the cardiac events (e.g. the opening and closing moments of the aortic and mitral valves). Synchronously acquired SCG and electrocardiography (ECG) enabled an accurate beat to beat estimation of the electromechanical systole (QS2), pre-ejection period (PEP) index and left ventricular ejection time (LVET) index. The performance of the algorithm was evaluated on a healthy test group with no evidence of cardiovascular disease (CVD). STI values were corrected based on Weissler's regression method in order to assess the correlation between the heart rate and STIs. One can see from the results that STIs correlate poorly with the heart rate (HR) on this test group. An algorithm was developed to visualize the quiescent phases of the cardiac cycle. A color map displaying the magnitude of SCG accelerations for multiple heartbeats visualizes the average cardiac motions and thereby helps to identify quiescent phases. High correlation between the heart rate and the duration of the cardiac quiescent phases was observed.
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.; Oganesyan, Vadim; Refael, Gil; Tian, Binbin
Many-body localization is a dynamical phase of matter that is characterized by the absence of thermalization. One of the key characteristics of many-body localized systems is the emergence of a large (possibly maximal) number of local integrals of motion (local quantum numbers) and corresponding conserved quantities. We formulate a robust algorithm for identifying these conserved quantities, based on Wegner's flow equations - a form of the renormalization group that works by disentangling the degrees of freedom of the system as opposed to integrating them out. We test our algorithm by explicit numerical comparison with more engineering based algorithms - Jacobi rotations and bi-partite matching. We find that the Wegner flow algorithm indeed produces the more local conserved quantities and is therefore more optimal. A preliminary analysis of the conserved quantities produced by the Wegner flow algorithm reveals the existence of at least two different localization lengthscales. Work was supported by AFOSR FA9550-10-1-0524 and FA9550-12-1-0057, the Kaufmann foundation, and SciDAC FG02-12ER46875.
On the Effect of Group Structures on Ranking Strategies in Folksonomies
NASA Astrophysics Data System (ADS)
Abel, Fabian; Henze, Nicola; Krause, Daniel; Kriesell, Matthias
Folksonomies have shown interesting potential for improving information discovery and exploration. Recent folksonomy systems explore the use of tag assignments, which combine Web resources with annotations (tags), and the users that have created the annotations. This article investigates on the effect of grouping resources in folksonomies, i.e. creating sets of resources, and using this additional structure for the tasks of search & ranking, and for tag recommendations. We propose several group-sensitive extensions of graph-based search and recommendation algorithms, and compare them with non group-sensitive versions. Our experiments show that the quality of search result ranking can be significantly improved by introducing and exploiting the grouping of resources (one-tailed t-Test, level of significance α=0.05). Furthermore, tag recommendations profit from the group context, and it is possible to make very good recommendations even for untagged resources- which currently known tag recommendation algorithms cannot fulfill.
Effect of patient selection method on provider group performance estimates.
Thorpe, Carolyn T; Flood, Grace E; Kraft, Sally A; Everett, Christine M; Smith, Maureen A
2011-08-01
Performance measurement at the provider group level is increasingly advocated, but different methods for selecting patients when calculating provider group performance have received little evaluation. We compared 2 currently used methods according to characteristics of the patients selected and impact on performance estimates. We analyzed Medicare claims data for fee-for-service beneficiaries with diabetes ever seen at an academic multispeciality physician group in 2003 to 2004. We examined sample size, sociodemographics, clinical characteristics, and receipt of recommended diabetes monitoring in 2004 for the groups of patients selected using 2 methods implemented in large-scale performance initiatives: the Plurality Provider Algorithm and the Diabetes Care Home method. We examined differences among discordantly assigned patients to determine evidence for differential selection regarding these measures. Fewer patients were selected under the Diabetes Care Home method (n=3558) than the Plurality Provider Algorithm (n=4859). Compared with the Plurality Provider Algorithm, the Diabetes Care Home method preferentially selected patients who were female, not entitled because of disability, older, more likely to have hypertension, and less likely to have kidney disease and peripheral vascular disease, and had lower levels of predicted utilization. Diabetes performance was higher under Diabetes Care Home method, with 67% versus 58% receiving >1 A1c tests, 70% versus 65% receiving ≥1 low-density lipoprotein (LDL) test, and 38% versus 37% receiving an eye examination. The method used to select patients when calculating provider group performance may affect patient case mix and estimated performance levels, and warrants careful consideration when comparing performance estimates.
Automated extraction and classification of time-frequency contours in humpback vocalizations.
Ou, Hui; Au, Whitlow W L; Zurk, Lisa M; Lammers, Marc O
2013-01-01
A time-frequency contour extraction and classification algorithm was created to analyze humpback whale vocalizations. The algorithm automatically extracted contours of whale vocalization units by searching for gray-level discontinuities in the spectrogram images. The unit-to-unit similarity was quantified by cross-correlating the contour lines. A library of distinctive humpback units was then generated by applying an unsupervised, cluster-based learning algorithm. The purpose of this study was to provide a fast and automated feature selection tool to describe the vocal signatures of animal groups. This approach could benefit a variety of applications such as species description, identification, and evolution of song structures. The algorithm was tested on humpback whale song data recorded at various locations in Hawaii from 2002 to 2003. Results presented in this paper showed low probability of false alarm (0%-4%) under noisy environments with small boat vessels and snapping shrimp. The classification algorithm was tested on a controlled set of 30 units forming six unit types, and all the units were correctly classified. In a case study on humpback data collected in the Auau Chanel, Hawaii, in 2002, the algorithm extracted 951 units, which were classified into 12 distinctive types.
A similarity based agglomerative clustering algorithm in networks
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong
2018-04-01
The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.
Aerocapture Guidance Algorithm Comparison Campaign
NASA Technical Reports Server (NTRS)
Rousseau, Stephane; Perot, Etienne; Graves, Claude; Masciarelli, James P.; Queen, Eric
2002-01-01
The aerocapture is a promising technique for the future human interplanetary missions. The Mars Sample Return was initially based on an insertion by aerocapture. A CNES orbiter Mars Premier was developed to demonstrate this concept. Mainly due to budget constraints, the aerocapture was cancelled for the French orbiter. A lot of studies were achieved during the three last years to develop and test different guidance algorithms (APC, EC, TPC, NPC). This work was shared between CNES and NASA, with a fruitful joint working group. To finish this study an evaluation campaign has been performed to test the different algorithms. The objective was to assess the robustness, accuracy, capability to limit the load, and the complexity of each algorithm. A simulation campaign has been specified and performed by CNES, with a similar activity on the NASA side to confirm the CNES results. This evaluation has demonstrated that the numerical guidance principal is not competitive compared to the analytical concepts. All the other algorithms are well adapted to guaranty the success of the aerocapture. The TPC appears to be the more robust, the APC the more accurate, and the EC appears to be a good compromise.
Cho-Vega, Jeong Hee
2016-07-01
Atypical spitzoid tumors are a morphologically diverse group of rare melanocytic lesions most frequently seen in children and young adults. As atypical spitzoid tumors bear striking resemblance to Spitz nevus and spitzoid melanomas clinically and histopathologically, it is crucial to determine its malignant potential and predict its clinical behavior. To date, many researchers have attempted to differentiate atypical spitzoid tumors from unequivocal melanomas based on morphological, immonohistochemical, and molecular diagnostic differences. A diagnostic algorithm is proposed here to assess the malignant potential of atypical spitzoid tumors by using a combination of immunohistochemical and cytogenetic/molecular tests. Together with classical morphological evaluation, this algorithm includes a set of immunohistochemistry assays (p16(Ink4a), a dual-color Ki67/MART-1, and HMB45), fluorescence in situ hybridization (FISH) with five probes (6p25, 8q24, 11q13, CEN9, and 9p21), and an array-based comparative genomic hybridization. This review discusses details of the algorithm, the rationale of each test used in the algorithm, and utility of this algorithm in routine dermatopathology practice. This algorithmic approach will provide a comprehensive diagnostic tool that complements conventional histological criteria and will significantly contribute to improve the diagnosis and prediction of the clinical behavior of atypical spitzoid tumors.
NASA Astrophysics Data System (ADS)
Nam, Kyoung Won; Kim, In Young; Kang, Ho Chul; Yang, Hee Kyung; Yoon, Chang Ki; Hwang, Jeong Min; Kim, Young Jae; Kim, Tae Yun; Kim, Kwang Gi
2012-10-01
Accurate measurement of binocular misalignment between both eyes is important for proper preoperative management, surgical planning, and postoperative evaluation of patients with strabismus. In this study, we proposed a new computerized diagnostic algorithm that can calculate the angle of binocular eye misalignment photographically by using a dedicated three-dimensional eye model mimicking the structure of the natural human eye. To evaluate the performance of the proposed algorithm, eight healthy volunteers and eight individuals with strabismus were recruited in this study, the horizontal deviation angle, vertical deviation angle, and angle of eye misalignment were calculated and the angular differences between the healthy and the strabismus groups were evaluated using the nonparametric Mann-Whitney test and the Pearson correlation test. The experimental results demonstrated a statistically significant difference between the healthy and strabismus groups (p = 0.015 < 0.05), but no statistically significant difference between the proposed method and the Krimsky test (p = 0.912 > 0.05). The measurements of the two methods were highly correlated (r = 0.969, p < 0.05). From the experimental results, we believe that the proposed diagnostic method has the potential to be a diagnostic tool that measures the physical disorder of the human eye to diagnose non-invasively the severity of strabismus.
Testing and evaluation of tactical electro-optical sensors
NASA Astrophysics Data System (ADS)
Middlebrook, Christopher T.; Smith, John G.
2002-07-01
As integrated electro-optical sensor payloads (multi- sensors) comprised of infrared imagers, visible imagers, and lasers advance in performance, the tests and testing methods must also advance in order to fully evaluate them. Future operational requirements will require integrated sensor payloads to perform missions at further ranges and with increased targeting accuracy. In order to meet these requirements sensors will require advanced imaging algorithms, advanced tracking capability, high-powered lasers, and high-resolution imagers. To meet the U.S. Navy's testing requirements of such multi-sensors, the test and evaluation group in the Night Vision and Chemical Biological Warfare Department at NAVSEA Crane is developing automated testing methods, and improved tests to evaluate imaging algorithms, and procuring advanced testing hardware to measure high resolution imagers and line of sight stabilization of targeting systems. This paper addresses: descriptions of the multi-sensor payloads tested, testing methods used and under development, and the different types of testing hardware and specific payload tests that are being developed and used at NAVSEA Crane.
Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi
2017-05-04
Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.
Redd, Andrew M; Gundlapalli, Adi V; Divita, Guy; Carter, Marjorie E; Tran, Le-Thuy; Samore, Matthew H
2017-07-01
Templates in text notes pose challenges for automated information extraction algorithms. We propose a method that identifies novel templates in plain text medical notes. The identification can then be used to either include or exclude templates when processing notes for information extraction. The two-module method is based on the framework of information foraging and addresses the hypothesis that documents containing templates and the templates within those documents can be identified by common features. The first module takes documents from the corpus and groups those with common templates. This is accomplished through a binned word count hierarchical clustering algorithm. The second module extracts the templates. It uses the groupings and performs a longest common subsequence (LCS) algorithm to obtain the constituent parts of the templates. The method was developed and tested on a random document corpus of 750 notes derived from a large database of US Department of Veterans Affairs (VA) electronic medical notes. The grouping module, using hierarchical clustering, identified 23 groups with 3 documents or more, consisting of 120 documents from the 750 documents in our test corpus. Of these, 18 groups had at least one common template that was present in all documents in the group for a positive predictive value of 78%. The LCS extraction module performed with 100% positive predictive value, 94% sensitivity, and 83% negative predictive value. The human review determined that in 4 groups the template covered the entire document, with the remaining 14 groups containing a common section template. Among documents with templates, the number of templates per document ranged from 1 to 14. The mean and median number of templates per group was 5.9 and 5, respectively. The grouping method was successful in finding like documents containing templates. Of the groups of documents containing templates, the LCS module was successful in deciphering text belonging to the template and text that was extraneous. Major obstacles to improved performance included documents composed of multiple templates, templates that included other templates embedded within them, and variants of templates. We demonstrate proof of concept of the grouping and extraction method of identifying templates in electronic medical records in this pilot study and propose methods to improve performance and scaling up. Published by Elsevier Inc.
Undertriage in older emergency department patients--tilting against windmills?
Grossmann, Florian F; Zumbrunn, Thomas; Ciprian, Sandro; Stephan, Frank-Peter; Woy, Natascha; Bingisser, Roland; Nickel, Christian H
2014-01-01
The aim of this study was to investigate the long-term effect of a teaching intervention designed to reduce undertriage rates in older ED patients. Further, to test the hypothesis that non-adherence to the Emergency Severity Index (ESI) triage algorithm is associated with undertriage. Additionally, to detect patient related risk factors for undertriage. Pre-post-test design. The study sample consisted of all patients aged 65 years or older presenting to the ED of an urban tertiary and primary care center in the study periods. A teaching intervention designed to increase adherence to the triage algorithm. To assess, if the intervention resulted in an increase of factual knowledge, nurses took a test before and immediately after the teaching intervention. Undertriage rates were assessed one year after the intervention and compared to the pre-test period. In the pre-test group 519 patients were included, and 394 in the post-test-group. Factual knowledge among triage nurses was high already before the teaching intervention. Prevalence of undertriaged patients before (22.5%) and one year after the intervention (24.2%) was not significantly different (χ2 = 0.248, df = 1, p = 0.619). Sex, age, mode of arrival, and type of complaint were not identified as independent risk factors for undertriage. However, undertriage rates increased with advancing age. Adherence to the ESI algorithm is associated with correct triage decisions. Undertriage of older ED patients remained unchanged over time. Reasons for undertriage seem to be more complex than anticipated. Therefore, additional contributing factors should be addressed.
Analyzing the BBOB results by means of benchmarking concepts.
Mersmann, O; Preuss, M; Trautmann, H; Bischl, B; Weihs, C
2015-01-01
We present methods to answer two basic questions that arise when benchmarking optimization algorithms. The first one is: which algorithm is the "best" one? and the second one is: which algorithm should I use for my real-world problem? Both are connected and neither is easy to answer. We present a theoretical framework for designing and analyzing the raw data of such benchmark experiments. This represents a first step in answering the aforementioned questions. The 2009 and 2010 BBOB benchmark results are analyzed by means of this framework and we derive insight regarding the answers to the two questions. Furthermore, we discuss how to properly aggregate rankings from algorithm evaluations on individual problems into a consensus, its theoretical background and which common pitfalls should be avoided. Finally, we address the grouping of test problems into sets with similar optimizer rankings and investigate whether these are reflected by already proposed test problem characteristics, finding that this is not always the case.
NASA Astrophysics Data System (ADS)
Huang, Jian; Liu, Gui-xiong
2016-09-01
The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm ( k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample S r was classified by the k-NN algorithm with training set T z according to the feature vector, which was formed from number of pixels, eccentricity ratio, compactness ratio, and Euler's numbers. Last, while the classification confidence coefficient equaled k, made S r as one sample of pre-training set T z '. The training set T z increased to T z+1 by T z ' if T z ' was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65%identification accuracy, also selected five groups of samples to enlarge the training set from T 0 to T 5 by itself.
Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.
Mei, Gang; Xu, Nengxiong; Xu, Liangliang
2016-01-01
This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.
An Overview of the JPSS Ground Project Algorithm Integration Process
NASA Astrophysics Data System (ADS)
Vicente, G. A.; Williams, R.; Dorman, T. J.; Williamson, R. C.; Shaw, F. J.; Thomas, W. M.; Hung, L.; Griffin, A.; Meade, P.; Steadley, R. S.; Cember, R. P.
2015-12-01
The smooth transition, implementation and operationalization of scientific software's from the National Oceanic and Atmospheric Administration (NOAA) development teams to the Join Polar Satellite System (JPSS) Ground Segment requires a variety of experiences and expertise. This task has been accomplished by a dedicated group of scientist and engineers working in close collaboration with the NOAA Satellite and Information Services (NESDIS) Center for Satellite Applications and Research (STAR) science teams for the JPSS/Suomi-NPOES Preparatory Project (S-NPP) Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) instruments. The presentation purpose is to describe the JPSS project process for algorithm implementation from the very early delivering stages by the science teams to the full operationalization into the Interface Processing Segment (IDPS), the processing system that provides Environmental Data Records (EDR's) to NOAA. Special focus is given to the NASA Data Products Engineering and Services (DPES) Algorithm Integration Team (AIT) functional and regression test activities. In the functional testing phase, the AIT uses one or a few specific chunks of data (granules) selected by the NOAA STAR Calibration and Validation (cal/val) Teams to demonstrate that a small change in the code performs properly and does not disrupt the rest of the algorithm chain. In the regression testing phase, the modified code is placed into to the Government Resources for Algorithm Verification, Integration, Test and Evaluation (GRAVITE) Algorithm Development Area (ADA), a simulated and smaller version of the operational IDPS. Baseline files are swapped out, not edited and the whole code package runs in one full orbit of Science Data Records (SDR's) using Calibration Look Up Tables (Cal LUT's) for the time of the orbit. The purpose of the regression test is to identify unintended outcomes. Overall the presentation provides a general and easy to follow overview of the JPSS Algorithm Change Process (ACP) and is intended to facility the audience understanding of a very extensive and complex process.
A genetic-based algorithm for personalized resistance training
Kiely, J; Suraci, B; Collins, DJ; de Lorenzo, D; Pickering, C; Grimaldi, KA
2016-01-01
Association studies have identified dozens of genetic variants linked to training responses and sport-related traits. However, no intervention studies utilizing the idea of personalised training based on athlete's genetic profile have been conducted. Here we propose an algorithm that allows achieving greater results in response to high- or low-intensity resistance training programs by predicting athlete's potential for the development of power and endurance qualities with the panel of 15 performance-associated gene polymorphisms. To develop and validate such an algorithm we performed two studies in independent cohorts of male athletes (study 1: athletes from different sports (n = 28); study 2: soccer players (n = 39)). In both studies athletes completed an eight-week high- or low-intensity resistance training program, which either matched or mismatched their individual genotype. Two variables of explosive power and aerobic fitness, as measured by the countermovement jump (CMJ) and aerobic 3-min cycle test (Aero3) were assessed pre and post 8 weeks of resistance training. In study 1, the athletes from the matched groups (i.e. high-intensity trained with power genotype or low-intensity trained with endurance genotype) significantly increased results in CMJ (P = 0.0005) and Aero3 (P = 0.0004). Whereas, athletes from the mismatched group (i.e. high-intensity trained with endurance genotype or low-intensity trained with power genotype) demonstrated non-significant improvements in CMJ (P = 0.175) and less prominent results in Aero3 (P = 0.0134). In study 2, soccer players from the matched group also demonstrated significantly greater (P < 0.0001) performance changes in both tests compared to the mismatched group. Among non- or low responders of both studies, 82% of athletes (both for CMJ and Aero3) were from the mismatched group (P < 0.0001). Our results indicate that matching the individual's genotype with the appropriate training modality leads to more effective resistance training. The developed algorithm may be used to guide individualised resistance-training interventions. PMID:27274104
Fang, Chen; Li, Chunfei; Cabrerizo, Mercedes; Barreto, Armando; Andrian, Jean; Rishe, Naphtali; Loewenstein, David; Duara, Ranjan; Adjouadi, Malek
2018-04-12
Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer's disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.
NASA Astrophysics Data System (ADS)
Rahman Syahputra, Edy; Agustina Dalimunthe, Yulia; Irvan
2017-12-01
Many students are confused in choosing their own field of specialization, ultimately choosing areas of specialization that are incompatible with a variety of reasons such as just following a friend or because of the area of interest of many choices without knowing whether they have Competencies in the chosen field of interest. This research aims to apply Clustering method with Fuzzy C-means algorithm to classify students in the chosen interest field. The Fuzzy C-Means algorithm is one of the easiest and often used algorithms in data grouping techniques because it makes efficient estimates and does not require many parameters. Several studies have led to the conclusion that the Fuzzy C-Means algorithm can be used to group data based on certain attributes. In this research will be used Fuzzy C-Means algorithm to classify student data based on the value of core subjects in the selection of specialization field. This study also tested the accuracy of the Fuzzy C-Means algorithm in the determination of interest area. The study was conducted on the STT-Harapan Medan Information System Study program, and the object of research is the value of all students of STT-Harapan Medan Information System Study Program 2012. From this research, it is expected to get the specialization field, according to the students' ability based on the prerequisite principal value.
Lukashin, A V; Fuchs, R
2001-05-01
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.
Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm.
Luo, Ai-Jing; Chang, Wei-Fu; Xin, Zi-Rui; Ling, Hao; Li, Jun-Jie; Dai, Ping-Ping; Deng, Xuan-Tong; Zhang, Lei; Li, Shao-Gang
2018-01-01
To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP) and build up an area-specified senile cataract diagnosis related group (DRG) of Shanghai thereby formulating the reference range of HECP and providing scientific basis for the fair use and supervision of the health care insurance fund. The data was collected from the first page of the medical records of 22 097 hospitalized patients from tertiary hospitals in Shanghai from 2010 to 2012 whose major diagnosis were senile cataract. Firstly, we analyzed the influence factors of HECP using univariate and multivariate analysis. DRG grouping was conducted according to the exhaustive Chi-squared automatic interaction detector (E-CHAID) model, using HECP as target variable. Finally we evaluated the grouping results using non-parametric test such as Kruskal-Wallis H test, RIV, CV, etc. The 6 DRGs were established as well as criterion of HECP, using age, sex, type of surgery and whether complications/comorbidities occurred as the key variables of classification node of senile cataract cases. The grouping of senile cataract cases based on E-CHAID algorithm is reasonable. And the criterion of HECP based on DRG can provide a feasible way of management in the fair use and supervision of medical insurance fund.
Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm
Luo, Ai-Jing; Chang, Wei-Fu; Xin, Zi-Rui; Ling, Hao; Li, Jun-Jie; Dai, Ping-Ping; Deng, Xuan-Tong; Zhang, Lei; Li, Shao-Gang
2018-01-01
AIM To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP) and build up an area-specified senile cataract diagnosis related group (DRG) of Shanghai thereby formulating the reference range of HECP and providing scientific basis for the fair use and supervision of the health care insurance fund. METHODS The data was collected from the first page of the medical records of 22 097 hospitalized patients from tertiary hospitals in Shanghai from 2010 to 2012 whose major diagnosis were senile cataract. Firstly, we analyzed the influence factors of HECP using univariate and multivariate analysis. DRG grouping was conducted according to the exhaustive Chi-squared automatic interaction detector (E-CHAID) model, using HECP as target variable. Finally we evaluated the grouping results using non-parametric test such as Kruskal-Wallis H test, RIV, CV, etc. RESULTS The 6 DRGs were established as well as criterion of HECP, using age, sex, type of surgery and whether complications/comorbidities occurred as the key variables of classification node of senile cataract cases. CONCLUSION The grouping of senile cataract cases based on E-CHAID algorithm is reasonable. And the criterion of HECP based on DRG can provide a feasible way of management in the fair use and supervision of medical insurance fund. PMID:29487824
Arts, E E A; Popa, C D; Den Broeder, A A; Donders, R; Sandoo, A; Toms, T; Rollefstad, S; Ikdahl, E; Semb, A G; Kitas, G D; Van Riel, P L C M; Fransen, J
2016-04-01
Predictive performance of cardiovascular disease (CVD) risk calculators appears suboptimal in rheumatoid arthritis (RA). A disease-specific CVD risk algorithm may improve CVD risk prediction in RA. The objectives of this study are to adapt the Systematic COronary Risk Evaluation (SCORE) algorithm with determinants of CVD risk in RA and to assess the accuracy of CVD risk prediction calculated with the adapted SCORE algorithm. Data from the Nijmegen early RA inception cohort were used. The primary outcome was first CVD events. The SCORE algorithm was recalibrated by reweighing included traditional CVD risk factors and adapted by adding other potential predictors of CVD. Predictive performance of the recalibrated and adapted SCORE algorithms was assessed and the adapted SCORE was externally validated. Of the 1016 included patients with RA, 103 patients experienced a CVD event. Discriminatory ability was comparable across the original, recalibrated and adapted SCORE algorithms. The Hosmer-Lemeshow test results indicated that all three algorithms provided poor model fit (p<0.05) for the Nijmegen and external validation cohort. The adapted SCORE algorithm mainly improves CVD risk estimation in non-event cases and does not show a clear advantage in reclassifying patients with RA who develop CVD (event cases) into more appropriate risk groups. This study demonstrates for the first time that adaptations of the SCORE algorithm do not provide sufficient improvement in risk prediction of future CVD in RA to serve as an appropriate alternative to the original SCORE. Risk assessment using the original SCORE algorithm may underestimate CVD risk in patients with RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Performance of Blind Source Separation Algorithms for FMRI Analysis using a Group ICA Method
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D.
2007-01-01
Independent component analysis (ICA) is a popular blind source separation (BSS) technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist, however the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely information maximization, maximization of non-gaussianity, joint diagonalization of cross-cumulant matrices, and second-order correlation based methods when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study the variability among different ICA algorithms and propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA, and JADE all yield reliable results; each having their strengths in specific areas. EVD, an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for the iterative ICA algorithms, it is important to investigate the variability of the estimates from different runs. We test the consistency of the iterative algorithms, Infomax and FastICA, by running the algorithm a number of times with different initializations and note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis. PMID:17540281
Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D
2007-06-01
Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.
2016-01-01
Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GN&C), Thrust Vector Control (TVC), liquid engines, and the astronaut crew office. Since the algorithms are realized using model-based engineering (MBE) methods from a hybrid of the Unified Modeling Language (UML) and Systems Modeling Language (SysML), SFE methods are a natural fit to provide an in depth analysis of the interactive behavior of these algorithms with the SLS LV subsystem models. For this, the M&FM algorithms and the SLS LV subsystem models are modeled using constructs provided by Matlab which also enables modeling of the accompanying interfaces providing greater flexibility for integrated testing and analysis, which helps forecast expected behavior in forward VMET integrated testing activities. In VMET, the M&FM algorithms are prototyped and implemented using the same C++ programming language and similar state machine architectural concepts used by the FSW group. Due to the interactive complexity of the algorithms, VMET testing thus far has verified all the individual M&FM subsystem algorithms with select subsystem vendor models but is steadily progressing to assessing the interactive behavior of these algorithms with LV subsystems, as represented by subsystem models. The novel SFE applications has proven to be useful for quick look analysis into early integrated system behavior and assessment of the M&FM algorithms with the modeled LV subsystems. This early MBE analysis generates vital insight into the integrated system behaviors, algorithm sensitivities, design issues, and has aided in the debugging of the M&FM algorithms well before full testing can begin in more expensive, higher fidelity but more arduous environments such as VMET, FSW testing, and the Systems Integration Lab7 (SIL). SFE has exhibited both expected and unexpected behaviors in nominal and off nominal test cases prior to full VMET testing. In many findings, these behavioral characteristics were used to correct the M&FM algorithms, enable better test coverage, and develop more effective test cases for each of the LV subsystems. This has improved the fidelity of testing and planning for the next generation of M&FM algorithms as the SLS program evolves from non-crewed to crewed flight, impacting subsystem configurations and the M&FM algorithms that control them. SFE analysis has improved robustness and reliability of the M&FM algorithms by revealing implementation errors and documentation inconsistencies. It is also improving planning efficiency for future VMET testing of the M&FM algorithms hosted in the LV flight computers, further reducing risk for the SLS launch infrastructure, the SLS LV, and most importantly the crew.
Lisovskiĭ, A A; Pavlinov, I Ia
2008-01-01
Any morphospace is partitioned by the forms of group variation, its structure is described by a set of scalar (range, overlap) and vector (direction) characteristics. They are analyzed quantitatively for the sex and age variations in the sample of 200 skulls of the pine marten described by 14 measurable traits. Standard dispersion and variance components analyses are employed, accompanied with several resampling methods (randomization and bootstrep); effects of changes in the analysis design on results of the above methods are also considered. Maximum likelihood algorithm of variance components analysis is shown to give an adequate estimates of portions of particular forms of group variation within the overall disparity. It is quite stable in respect to changes of the analysis design and therefore could be used in the explorations of the real data with variously unbalanced designs. A new algorithm of estimation of co-directionality of particular forms of group variation within the overall disparity is elaborated, which includes angle measures between eigenvectors of covariation matrices of effects of group variations calculated by dispersion analysis. A null hypothesis of random portion of a given group variation could be tested by means of randomization of the respective grouping variable. A null hypothesis of equality of both portions and directionalities of different forms of group variation could be tested by means of the bootstrep procedure.
Performance of rapid tests and algorithms for HIV screening in Abidjan, Ivory Coast.
Loukou, Y G; Cabran, M A; Yessé, Zinzendorf Nanga; Adouko, B M O; Lathro, S J; Agbessi-Kouassi, K B T
2014-01-01
Seven rapid diagnosis tests (RDTs) of HIV were evaluated by a panel group who collected serum samples from patients in Abidjan (HIV-1 = 203, HIV-2 = 25, HIV-dual = 25, HIV = 305). Kit performances were recorded after the reference techniques (enzyme-linked immunosorbent assay). The following RDTs showed a sensitivity of 100% and a specificity higher than 99%: Determine, Oraquick, SD Bioline, BCP, and Stat-Pak. These kits were used to establish infection screening strategies. The combination with 2 or 3 of these tests in series or parallel algorithms showed that series combinations with 2 tests (Oraquick and Bioline) and 3 tests (Determine, BCP, and Stat-Pak) gave the best performances (sensitivity, specificity, positive predictive value, and negative predictive value of 100%). However, the combination with 2 tests appeared to be more onerous than the combination with 3 tests. The combination with Determine, BCP, and Stat-Pak tests serving as a tiebreaker could be an alternative to the HIV/AIDS serological screening in Abidjan.
An improved multi-domain convolution tracking algorithm
NASA Astrophysics Data System (ADS)
Sun, Xin; Wang, Haiying; Zeng, Yingsen
2018-04-01
Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.
The pathway to earthquake early warning in the US
NASA Astrophysics Data System (ADS)
Allen, R. M.; Given, D. D.; Heaton, T. H.; Vidale, J. E.; West Coast Earthquake Early Warning Development Team
2013-05-01
The development of earthquake early warning capabilities in the United States is now accelerating and expanding as the technical capability to provide warning is demonstrated and additional funding resources are making it possible to expand the current testing region to the entire west coast (California, Oregon and Washington). Over the course of the next two years we plan to build a prototype system that will provide a blueprint for a full public system in the US. California currently has a demonstrations warning system, ShakeAlert, that provides alerts to a group of test users from the public and private sector. These include biotech companies, technology companies, the entertainment industry, the transportation sector, and the emergency planning and response community. Most groups are currently in an evaluation mode, receiving the alerts and developing protocols for future response. The Bay Area Rapid Transit (BART) system is the one group who has now implemented an automated response to the warning system. BART now stops trains when an earthquake of sufficient size is detected. Research and development also continues to develop improved early warning algorithms to better predict the distribution of shaking in large earthquakes when the finiteness of the source becomes important. The algorithms under development include the use of both seismic and GPS instrumentation and integration with existing point source algorithms. At the same time, initial testing and development of algorithms in and for the Pacific Northwest is underway. In this presentation we will review the current status of the systems, highlight the new research developments, and lay out a pathway to a full public system for the US west coast. The research and development described is ongoing at Caltech, UC Berkeley, University of Washington, ETH Zurich, Southern California Earthquake Center, and the US Geological Survey, and is funded by the Gordon and Betty Moore Foundation and the US Geological Survey.
Prince, Martin J; de Rodriguez, Juan Llibre; Noriega, L; Lopez, A; Acosta, Daisy; Albanese, Emiliano; Arizaga, Raul; Copeland, John RM; Dewey, Michael; Ferri, Cleusa P; Guerra, Mariella; Huang, Yueqin; Jacob, KS; Krishnamoorthy, ES; McKeigue, Paul; Sousa, Renata; Stewart, Robert J; Salas, Aquiles; Sosa, Ana Luisa; Uwakwa, Richard
2008-01-01
Background The criterion for dementia implicit in DSM-IV is widely used in research but not fully operationalised. The 10/66 Dementia Research Group sought to do this using assessments from their one phase dementia diagnostic research interview, and to validate the resulting algorithm in a population-based study in Cuba. Methods The criterion was operationalised as a computerised algorithm, applying clinical principles, based upon the 10/66 cognitive tests, clinical interview and informant reports; the Community Screening Instrument for Dementia, the CERAD 10 word list learning and animal naming tests, the Geriatric Mental State, and the History and Aetiology Schedule – Dementia Diagnosis and Subtype. This was validated in Cuba against a local clinician DSM-IV diagnosis and the 10/66 dementia diagnosis (originally calibrated probabilistically against clinician DSM-IV diagnoses in the 10/66 pilot study). Results The DSM-IV sub-criteria were plausibly distributed among clinically diagnosed dementia cases and controls. The clinician diagnoses agreed better with 10/66 dementia diagnosis than with the more conservative computerized DSM-IV algorithm. The DSM-IV algorithm was particularly likely to miss less severe dementia cases. Those with a 10/66 dementia diagnosis who did not meet the DSM-IV criterion were less cognitively and functionally impaired compared with the DSMIV confirmed cases, but still grossly impaired compared with those free of dementia. Conclusion The DSM-IV criterion, strictly applied, defines a narrow category of unambiguous dementia characterized by marked impairment. It may be specific but incompletely sensitive to clinically relevant cases. The 10/66 dementia diagnosis defines a broader category that may be more sensitive, identifying genuine cases beyond those defined by our DSM-IV algorithm, with relevance to the estimation of the population burden of this disorder. PMID:18577205
Demircik, Filiz; Klonoff, David; Musholt, Petra B; Ramljak, Sanja; Pfützner, Andreas
2016-10-01
Devices employing electrochemistry-based correction algorithms (EBCAs) are optimized for patient use and require special handling procedures when tested in the laboratory. This study investigated the impact of sample handling on the results of an accuracy and hematocrit interference test performed with BG*Star, iBG*Star; OneTouch Verio Pro and Accu-Chek Aviva versus YSI Stat 2300. Venous heparinized whole blood was manipulated to contain three different blood glucose concentrations (64-74, 147-163, and 313-335 mg/dL) and three different hematocrit levels (30%, 45%, and 60%). Sample preparation was done by either a very EBCA-experienced laboratory testing team (A), a group experienced with other meters but not EBCAs (B), or a team inexperienced with meter testing (C). Team A ensured physiological pO 2 and specific sample handling requirements, whereas teams B and C did not consider pO 2 . Each sample was tested four times with each device. In a separate experiment, a different group similar to group B performed the experiment before (D1) and after (D2) appropriate sample handling training. Mean absolute deviation from YSI was calculated as a metrix for all groups and devices. Mean absolute relative difference was 4.3% with team A (B: 9.2%, C: 5.2%). Team B had much higher readings and team C produced 100% of "sample composition" errors with high hematocrit levels. In a separate experiment, group D showed a result similar to group B before the training and improved significantly when considering the sample handling requirements (D1: 9.4%, D2: 4.5%, P < 0.05). Laboratory performance testing of EBCA devices should only be performed by trained staff considering specific sample handling requirements. The results suggest that healthcare centers should evaluate EBCA-based devices with capillary blood from patients in accordance with the instructions for use to achieve reliable results.
Community detection using preference networks
NASA Astrophysics Data System (ADS)
Tasgin, Mursel; Bingol, Haluk O.
2018-04-01
Community detection is the task of identifying clusters or groups of nodes in a network where nodes within the same group are more connected with each other than with nodes in different groups. It has practical uses in identifying similar functions or roles of nodes in many biological, social and computer networks. With the availability of very large networks in recent years, performance and scalability of community detection algorithms become crucial, i.e. if time complexity of an algorithm is high, it cannot run on large networks. In this paper, we propose a new community detection algorithm, which has a local approach and is able to run on large networks. It has a simple and effective method; given a network, algorithm constructs a preference network of nodes where each node has a single outgoing edge showing its preferred node to be in the same community with. In such a preference network, each connected component is a community. Selection of the preferred node is performed using similarity based metrics of nodes. We use two alternatives for this purpose which can be calculated in 1-neighborhood of nodes, i.e. number of common neighbors of selector node and its neighbors and, the spread capability of neighbors around the selector node which is calculated by the gossip algorithm of Lind et.al. Our algorithm is tested on both computer generated LFR networks and real-life networks with ground-truth community structure. It can identify communities accurately in a fast way. It is local, scalable and suitable for distributed execution on large networks.
Predicting Recovery Potential for Individual Stroke Patients Increases Rehabilitation Efficiency.
Stinear, Cathy M; Byblow, Winston D; Ackerley, Suzanne J; Barber, P Alan; Smith, Marie-Claire
2017-04-01
Several clinical measures and biomarkers are associated with motor recovery after stroke, but none are used to guide rehabilitation for individual patients. The objective of this study was to evaluate the implementation of upper limb predictions in stroke rehabilitation, by combining clinical measures and biomarkers using the Predict Recovery Potential (PREP) algorithm. Predictions were provided for patients in the implementation group (n=110) and withheld from the comparison group (n=82). Predictions guided rehabilitation therapy focus for patients in the implementation group. The effects of predictive information on clinical practice (length of stay, therapist confidence, therapy content, and dose) were evaluated. Clinical outcomes (upper limb function, impairment and use, independence, and quality of life) were measured 3 and 6 months poststroke. The primary clinical practice outcome was inpatient length of stay. The primary clinical outcome was Action Research Arm Test score 3 months poststroke. Length of stay was 1 week shorter for the implementation group (11 days; 95% confidence interval, 9-13 days) than the comparison group (17 days; 95% confidence interval, 14-21 days; P =0.001), controlling for upper limb impairment, age, sex, and comorbidities. Therapists were more confident ( P =0.004) and modified therapy content according to predictions for the implementation group ( P <0.05). The algorithm correctly predicted the primary clinical outcome for 80% of patients in both groups. There were no adverse effects of algorithm implementation on patient outcomes at 3 or 6 months poststroke. PREP algorithm predictions modify therapy content and increase rehabilitation efficiency after stroke without compromising clinical outcome. URL: http://anzctr.org.au. Unique identifier: ACTRN12611000755932. © 2017 American Heart Association, Inc.
A MULTICORE BASED PARALLEL IMAGE REGISTRATION METHOD
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2012-01-01
Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform. PMID:19964921
The artificial-free technique along the objective direction for the simplex algorithm
NASA Astrophysics Data System (ADS)
Boonperm, Aua-aree; Sinapiromsaran, Krung
2014-03-01
The simplex algorithm is a popular algorithm for solving linear programming problems. If the origin point satisfies all constraints then the simplex can be started. Otherwise, artificial variables will be introduced to start the simplex algorithm. If we can start the simplex algorithm without using artificial variables then the simplex iterate will require less time. In this paper, we present the artificial-free technique for the simplex algorithm by mapping the problem into the objective plane and splitting constraints into three groups. In the objective plane, one of variables which has a nonzero coefficient of the objective function is fixed in terms of another variable. Then it can split constraints into three groups: the positive coefficient group, the negative coefficient group and the zero coefficient group. Along the objective direction, some constraints from the positive coefficient group will form the optimal solution. If the positive coefficient group is nonempty, the algorithm starts with relaxing constraints from the negative coefficient group and the zero coefficient group. We guarantee the feasible region obtained from the positive coefficient group to be nonempty. The transformed problem is solved using the simplex algorithm. Additional constraints from the negative coefficient group and the zero coefficient group will be added to the solved problem and use the dual simplex method to determine the new optimal solution. An example shows the effectiveness of our algorithm.
2017-01-01
Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing—with its unique statistical properties—became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca. PMID:28817636
Ramachandran, Parameswaran; Sánchez-Taltavull, Daniel; Perkins, Theodore J
2017-01-01
Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing-with its unique statistical properties-became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves.
A generalised significance test for individual communities in networks.
Kojaku, Sadamori; Masuda, Naoki
2018-05-09
Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.
A fast parallel clustering algorithm for molecular simulation trajectories.
Zhao, Yutong; Sheong, Fu Kit; Sun, Jian; Sander, Pedro; Huang, Xuhui
2013-01-15
We implemented a GPU-powered parallel k-centers algorithm to perform clustering on the conformations of molecular dynamics (MD) simulations. The algorithm is up to two orders of magnitude faster than the CPU implementation. We tested our algorithm on four protein MD simulation datasets ranging from the small Alanine Dipeptide to a 370-residue Maltose Binding Protein (MBP). It is capable of grouping 250,000 conformations of the MBP into 4000 clusters within 40 seconds. To achieve this, we effectively parallelized the code on the GPU and utilize the triangle inequality of metric spaces. Furthermore, the algorithm's running time is linear with respect to the number of cluster centers. In addition, we found the triangle inequality to be less effective in higher dimensions and provide a mathematical rationale. Finally, using Alanine Dipeptide as an example, we show a strong correlation between cluster populations resulting from the k-centers algorithm and the underlying density. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Romano, Paul Kollath
Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with measured data from simulations in OpenMC on a full-core benchmark problem. Finally, a novel algorithm for decomposing large tally data was proposed, analyzed, and implemented/tested in OpenMC. The algorithm relies on disjoint sets of compute processes and tally servers. The analysis showed that for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead. Tests were performed on Intrepid and Titan and demonstrated that the algorithm did indeed perform well over a wide range of parameters. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves. The complex kurtosis algorithm has the potential to reduce data rate due to onboard processing in addition to improving RFI detection performance.
Algorithm for covert convoy of a moving target using a group of autonomous robots
NASA Astrophysics Data System (ADS)
Polyakov, Igor; Shvets, Evgeny
2018-04-01
An important application of autonomous robot systems is to substitute human personnel in dangerous environments to reduce their involvement and subsequent risk on human lives. In this paper we solve the problem of covertly convoying a civilian in a dangerous area with a group of unmanned ground vehicles (UGVs) using social potential fields. The novelty of our work lies in the usage of UGVs as compared to the unmanned aerial vehicles typically employed for this task in the approaches described in literature. Additionally, in our paper we assume that the group of UGVs should simultaneously solve the problem of patrolling to detect intruders on the area. We develop a simulation system to test our algorithms, provide numerical results and give recommendations on how to tune the potentials governing robots' behaviour to prioritize between patrolling and convoying tasks.
Test Generation Algorithm for Fault Detection of Analog Circuits Based on Extreme Learning Machine
Zhou, Jingyu; Tian, Shulin; Yang, Chenglin; Ren, Xuelong
2014-01-01
This paper proposes a novel test generation algorithm based on extreme learning machine (ELM), and such algorithm is cost-effective and low-risk for analog device under test (DUT). This method uses test patterns derived from the test generation algorithm to stimulate DUT, and then samples output responses of the DUT for fault classification and detection. The novel ELM-based test generation algorithm proposed in this paper contains mainly three aspects of innovation. Firstly, this algorithm saves time efficiently by classifying response space with ELM. Secondly, this algorithm can avoid reduced test precision efficiently in case of reduction of the number of impulse-response samples. Thirdly, a new process of test signal generator and a test structure in test generation algorithm are presented, and both of them are very simple. Finally, the abovementioned improvement and functioning are confirmed in experiments. PMID:25610458
An efficient coding algorithm for the compression of ECG signals using the wavelet transform.
Rajoub, Bashar A
2002-04-01
A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.
Segmenting texts from outdoor images taken by mobile phones using color features
NASA Astrophysics Data System (ADS)
Liu, Zongyi; Zhou, Hanning
2011-01-01
Recognizing texts from images taken by mobile phones with low resolution has wide applications. It has been shown that a good image binarization can substantially improve the performances of OCR engines. In this paper, we present a framework to segment texts from outdoor images taken by mobile phones using color features. The framework consists of three steps: (i) the initial process including image enhancement, binarization and noise filtering, where we binarize the input images in each RGB channel, and apply component level noise filtering; (ii) grouping components into blocks using color features, where we compute the component similarities by dynamically adjusting the weights of RGB channels, and merge groups hierachically, and (iii) blocks selection, where we use the run-length features and choose the Support Vector Machine (SVM) as the classifier. We tested the algorithm using 13 outdoor images taken by an old-style LG-64693 mobile phone with 640x480 resolution. We compared the segmentation results with Tsar's algorithm, a state-of-the-art camera text detection algorithm, and show that our algorithm is more robust, particularly in terms of the false alarm rates. In addition, we also evaluated the impacts of our algorithm on the Abbyy's FineReader, one of the most popular commercial OCR engines in the market.
Bjoerke-Bertheussen, Jeanette; Schoeyen, Helle; Andreassen, Ole A; Malt, Ulrik F; Oedegaard, Ketil J; Morken, Gunnar; Sundet, Kjetil; Vaaler, Arne E; Auestad, Bjoern; Kessler, Ute
2017-12-21
Electroconvulsive therapy is an effective treatment for bipolar depression, but there are concerns about whether it causes long-term neurocognitive impairment. In this multicenter randomized controlled trial, in-patients with treatment-resistant bipolar depression were randomized to either algorithm-based pharmacologic treatment or right unilateral electroconvulsive therapy. After the 6-week treatment period, all of the patients received maintenance pharmacotherapy as recommended by their clinician guided by a relevant treatment algorithm. Patients were assessed at baseline and at 6 months. Neurocognitive functions were assessed using the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery, and autobiographical memory consistency was assessed using the Autobiographical Memory Interview-Short Form. Seventy-three patients entered the trial, of whom 51 and 26 completed neurocognitive assessments at baseline and 6 months, respectively. The MATRICS Consensus Cognitive Battery composite score improved by 4.1 points in both groups (P = .042) from baseline to 6 months (from 40.8 to 44.9 and from 41.9 to 46.0 in the algorithm-based pharmacologic treatment and electroconvulsive therapy groups, respectively). The Autobiographical Memory Interview-Short Form consistency scores were reduced in both groups (72.3% vs 64.3% in the algorithm-based pharmacologic treatment and electroconvulsive therapy groups, respectively; P = .085). This study did not find that right unilateral electroconvulsive therapy caused long-term impairment in neurocognitive functions compared to algorithm-based pharmacologic treatment in bipolar depression as measured using standard neuropsychological tests, but due to the low number of patients in the study the results should be interpreted with caution. ClinicalTrials.gov: NCT00664976. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Boehnke, Mitchell; Patel, Nayana; McKinney, Kristin; Clark, Toshimasa
The Society of Radiologists in Ultrasound (SRU 2005) and American Thyroid Association (ATA 2009 and ATA 2015) have published algorithms regarding thyroid nodule management. Kwak et al. and other groups have described models that estimate thyroid nodules' malignancy risk. The aim of our study is to use Kwak's model to evaluate the tradeoffs of both sensitivity and specificity of SRU 2005, ATA 2009 and ATA 2015 management algorithms. 1,000,000 thyroid nodules were modeled in MATLAB. Ultrasound characteristics were modeled after published data. Malignancy risk was estimated per Kwak's model and assigned as a binary variable. All nodules were then assessed using the published management algorithms. With the malignancy variable as condition positivity and algorithms' recommendation for FNA as test positivity, diagnostic performance was calculated. Modeled nodule characteristics mimic those of Kwak et al. 12.8% nodules were assigned as malignant (malignancy risk range of 2.0-98%). FNA was recommended for 41% of nodules by SRU 2005, 66% by ATA 2009, and 82% by ATA 2015. Sensitivity and specificity is significantly different (< 0.0001): 49% and 60% for SRU; 81% and 36% for ATA 2009; and 95% and 20% for ATA 2015. SRU 2005, ATA 2009 and ATA 2015 algorithms are used routinely in clinical practice to determine whether thyroid nodule biopsy is indicated. We demonstrate significant differences in these algorithms' diagnostic performance, which result in a compromise between sensitivity and specificity. Copyright © 2017 Elsevier Inc. All rights reserved.
A data distributed parallel algorithm for ray-traced volume rendering
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.
1993-01-01
This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.
An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming
2017-02-01
In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.
Genetic evolutionary taboo search for optimal marker placement in infrared patient setup
NASA Astrophysics Data System (ADS)
Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.
2007-09-01
In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David
2015-01-01
The engineering development of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS) requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The nominal and off-nominal characteristics of SLS's elements and subsystems must be understood and matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex systems engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model-based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model-based algorithms and their development lifecycle from inception through FSW certification are an important focus of SLS's development effort to further ensure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. To test and validate these M&FM algorithms a dedicated test-bed was developed for full Vehicle Management End-to-End Testing (VMET). For addressing fault management (FM) early in the development lifecycle for the SLS program, NASA formed the M&FM team as part of the Integrated Systems Health Management and Automation Branch under the Spacecraft Vehicle Systems Department at the Marshall Space Flight Center (MSFC). To support the development of the FM algorithms, the VMET developed by the M&FM team provides the ability to integrate the algorithms, perform test cases, and integrate vendor-supplied physics-based launch vehicle (LV) subsystem models. Additionally, the team has developed processes for implementing and validating the M&FM algorithms for concept validation and risk reduction. The flexibility of the VMET capabilities enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS, GNC, and others. One of the principal functions of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software test and validation processes. In any software development process there is inherent risk in the interpretation and implementation of concepts from requirements and test cases into flight software compounded with potential human errors throughout the development and regression testing lifecycle. Risk reduction is addressed by the M&FM group but in particular by the Analysis Team working with other organizations such as S&MA, Structures and Environments, GNC, Orion, Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission (LOM) and Loss of Crew (LOC) probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses to be tested in VMET to ensure reliable failure detection, and confirm responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - the ARINC 6535-partitioned Operating System, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM such as telemetry packing and processing. The baseline plan for use of VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by FSW. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure their effectiveness and performance in the exterior FSW development and test processes. This paper is outlined in a systematic fashion analogous to a lifecycle process flow for engineering development of algorithms into software and testing. Section I describes the NASA SLS M&FM context, presenting the current infrastructure, leading principles, methods, and participants. Section II defines the testing philosophy of the M&FM algorithms as related to VMET followed by section III, which presents the modeling methods of the algorithms to be tested and validated in VMET. Its details are then further presented in section IV followed by Section V presenting integration, test status, and state analysis. Finally, section VI addresses the summary and forward directions followed by the appendices presenting relevant information on terminology and documentation.
A semi-supervised classification algorithm using the TAD-derived background as training data
NASA Astrophysics Data System (ADS)
Fan, Lei; Ambeau, Brittany; Messinger, David W.
2013-05-01
In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.
Development, Comparisons and Evaluation of Aerosol Retrieval Algorithms
NASA Astrophysics Data System (ADS)
de Leeuw, G.; Holzer-Popp, T.; Aerosol-cci Team
2011-12-01
The Climate Change Initiative (cci) of the European Space Agency (ESA) has brought together a team of European Aerosol retrieval groups working on the development and improvement of aerosol retrieval algorithms. The goal of this cooperation is the development of methods to provide the best possible information on climate and climate change based on satellite observations. To achieve this, algorithms are characterized in detail as regards the retrieval approaches, the aerosol models used in each algorithm, cloud detection and surface treatment. A round-robin intercomparison of results from the various participating algorithms serves to identify the best modules or combinations of modules for each sensor. Annual global datasets including their uncertainties will then be produced and validated. The project builds on 9 existing algorithms to produce spectral aerosol optical depth (AOD and Ångström exponent) as well as other aerosol information; two instruments are included to provide the absorbing aerosol index (AAI) and stratospheric aerosol information. The algorithms included are: - 3 for ATSR (ORAC developed by RAL / Oxford university, ADV developed by FMI and the SU algorithm developed by Swansea University ) - 2 for MERIS (BAER by Bremen university and the ESA standard handled by HYGEOS) - 1 for POLDER over ocean (LOA) - 1 for synergetic retrieval (SYNAER by DLR ) - 1 for OMI retreival of the absorbing aerosol index with averaging kernel information (KNMI) - 1 for GOMOS stratospheric extinction profile retrieval (BIRA) The first seven algorithms aim at the retrieval of the AOD. However, each of the algorithms used differ in their approach, even for algorithms working with the same instrument such as ATSR or MERIS. To analyse the strengths and weaknesses of each algorithm several tests are made. The starting point for comparison and measurement of improvements is a retrieval run for 1 month, September 2008. The data from the same month are subsequently used for several runs with a prescribed set of aerosol models and an a priori data set derived from the median of AEROCOM model runs. The aerosol models and a priori data can be used in several ways, i.e. fully prescribed or with some freedom to choose a combination of aerosol models, based on the a priori or not. Another test gives insight in the effect of the cloud masks used, i.e. retrievals using the same cloud mask (the AATSR APOLLO cloud mask for collocated instruments) are compared with runs using the standard cloud masks. Tests to determine the influence of surface treatment are planned as well. The results of all these tests are evaluated by an independent team which compares the retrieval results with ground-based remote sensing (in particular AERONET) and in-situ data, and by a scoring method. Results are compared with other satellites such as MODIS and MISR. Blind tests using synthetic data are part of the algorithm characterization. The presentation will summarize results of the ongoing phase 1 inter-comparison and evaluation work within the Aerosol_cci project.
An efficient group multicast routing for multimedia communication
NASA Astrophysics Data System (ADS)
Wang, Yanlin; Sun, Yugen; Yan, Xinfang
2004-04-01
Group multicasting is a kind of communication mechanism whereby each member of a group sends messages to all the other members of the same group. Group multicast routing algorithms capable of satisfying quality of service (QoS) requirements of multimedia applications are essential for high-speed networks. We present a heuristic algorithm for group multicast routing with end to end delay constraint. Source-specific routing trees for each member are generated in our algorithm, which satisfy member"s bandwidth and end to end delay requirements. Simulations over random network were carried out to compare proposed algorithm performance with Low and Song"s. The experimental results show that our proposed algorithm performs better in terms of network cost and ability in constructing feasible multicast trees for group members. Moreover, our algorithm achieves good performance in balancing traffic, which can avoid link blocking and enhance the network behavior efficiently.
Shanks, Leslie; Siddiqui, M Ruby; Kliescikova, Jarmila; Pearce, Neil; Ariti, Cono; Muluneh, Libsework; Pirou, Erwan; Ritmeijer, Koert; Masiga, Johnson; Abebe, Almaz
2015-02-03
In Ethiopia a tiebreaker algorithm using 3 rapid diagnostic tests (RDTs) in series is used to diagnose HIV. Discordant results between the first 2 RDTs are resolved by a third 'tiebreaker' RDT. Médecins Sans Frontières uses an alternate serial algorithm of 2 RDTs followed by a confirmation test for all double positive RDT results. The primary objective was to compare the performance of the tiebreaker algorithm with a serial algorithm, and to evaluate the addition of a confirmation test to both algorithms. A secondary objective looked at the positive predictive value (PPV) of weakly reactive test lines. The study was conducted in two HIV testing sites in Ethiopia. Study participants were recruited sequentially until 200 positive samples were reached. Each sample was re-tested in the laboratory on the 3 RDTs and on a simple to use confirmation test, the Orgenics Immunocomb Combfirm® (OIC). The gold standard test was the Western Blot, with indeterminate results resolved by PCR testing. 2620 subjects were included with a HIV prevalence of 7.7%. Each of the 3 RDTs had an individual specificity of at least 99%. The serial algorithm with 2 RDTs had a single false positive result (1 out of 204) to give a PPV of 99.5% (95% CI 97.3%-100%). The tiebreaker algorithm resulted in 16 false positive results (PPV 92.7%, 95% CI: 88.4%-95.8%). Adding the OIC confirmation test to either algorithm eliminated the false positives. All the false positives had at least one weakly reactive test line in the algorithm. The PPV of weakly reacting RDTs was significantly lower than those with strongly positive test lines. The risk of false positive HIV diagnosis in a tiebreaker algorithm is significant. We recommend abandoning the tie-breaker algorithm in favour of WHO recommended serial or parallel algorithms, interpreting weakly reactive test lines as indeterminate results requiring further testing except in the setting of blood transfusion, and most importantly, adding a confirmation test to the RDT algorithm. It is now time to focus research efforts on how best to translate this knowledge into practice at the field level. Clinical Trial registration #: NCT01716299.
Masciotra, Silvina; Smith, Amanda J; Youngpairoj, Ae S; Sprinkle, Patrick; Miles, Isa; Sionean, Catlainn; Paz-Bailey, Gabriela; Johnson, Jeffrey A; Owen, S Michele
2013-12-01
Until recently most testing algorithms in the United States (US) utilized Western blot (WB) as the supplemental test. CDC has proposed an algorithm for HIV diagnosis which includes an initial screen with a Combo Antigen/Antibody 4th generation-immunoassay (IA), followed by an HIV-1/2 discriminatory IA of initially reactive-IA specimens. Discordant results in the proposed algorithm are resolved by nucleic acid-amplification testing (NAAT). Evaluate the results obtained with the CDC proposed laboratory-based algorithm using specimens from men who have sex with men (MSM) obtained in five metropolitan statistical areas (MSAs). Specimens from 992 MSM from five MSAs participating in the CDC's National HIV Behavioral Surveillance System in 2011 were tested at local facilities and CDC. The five MSAs utilized algorithms of various screening assays and specimen types, and WB as the supplemental test. At the CDC, serum/plasma specimens were screened with 4th generation-IA and the Multispot HIV-1/HIV-2 discriminatory assay was used as the supplemental test. NAAT was used to resolve discordant results and to further identify acute HIV infections from all screened-non-reactive missed by the proposed algorithm. Performance of the proposed algorithm was compared to site-specific WB-based algorithms. The proposed algorithm detected 254 infections. The WB-based algorithms detected 19 fewer infections; 4 by oral fluid (OF) rapid testing and 15 by WB supplemental testing (12 OF and 3 blood). One acute infection was identified by NAAT from all screened-non-reactive specimens. The proposed algorithm identified more infections than the WB-based algorithms in a high-risk MSM population. OF testing was associated with most of the discordant results between algorithms. HIV testing with the proposed algorithm can increase diagnosis of infected individuals, including early infections. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Avery, Patrick; Zurek, Eva
2017-04-01
A new algorithm, RANDSPG, that can be used to generate trial crystal structures with specific space groups and compositions is described. The program has been designed for systems where the atoms are independent of one another, and it is therefore primarily suited towards inorganic systems. The structures that are generated adhere to user-defined constraints such as: the lattice shape and size, stoichiometry, set of space groups to be generated, and factors that influence the minimum interatomic separations. In addition, the user can optionally specify if the most general Wyckoff position is to be occupied or constrain select atoms to specific Wyckoff positions. Extensive testing indicates that the algorithm is efficient and reliable. The library is lightweight, portable, dependency-free and is published under a license recognized by the Open Source Initiative. A web interface for the algorithm is publicly accessible at http://xtalopt.openmolecules.net/randSpg/randSpg.html. RANDSPG has also been interfaced with the XTALOPT evolutionary algorithm for crystal structure prediction, and it is illustrated that the use of symmetric lattices in the first generation of randomly created individuals decreases the number of structures that need to be optimized to find the global energy minimum.
Koller, Tomas; Kollerova, Jana; Huorka, Martin; Meciarova, Iveta; Payer, Juraj
2014-10-01
Staging for liver fibrosis is recommended in the management of hepatitis C as an argument for treatment priority. Our aim was to construct a noninvasive algorithm to predict the significant liver fibrosis (SLF) using common biochemical markers and compare it with some existing models. The study group included 104 consecutive cases; SLF was defined as Ishak fibrosis stage greater than 2. The patient population was assigned randomly to the training and the validation groups of 52 cases each. The training group was used to construct the algorithm from parameters with the best predictive value. Each parameter was assigned a score that was added to the noninvasive fibrosis score (NFS). The accuracy of NFS in predicting SLF was tested in the validation group and compared with APRI, FIB4, and Forns models. Our algorithm used age, alkaline phosphatase, ferritin, APRI, α2 macroglobulin, and insulin and the NFS ranged from -4 to 5. The probability of SLF was 2.6 versus 77.1% in NFS<0 and NFS>0, leaving NFS=0 in a gray zone (29.8% of cases). The area under the receiver operating curve was 0.895 and 0.886, with a specificity, sensitivity, and diagnostic accuracy of 85.1, 92.3, and 87.5% versus 77.8, 100, and 87.9% for the training and the validation group. In comparison, the area under the receiver operating curve for APRI=0.810, FIB4=0.781, and Forns=0.703 with a diagnostic accuracy of 83.9, 72.3, and 62% and gray zone cases in 46.15, 37.5, and 44.2%. We devised an algorithm to calculate the NFS to predict SLF with good accuracy, fewer cases in the gray zone, and a straightforward clinical interpretation. NFS could be used for the initial evaluation of the treatment priority.
Kirschstein, Timo; Wolters, Alexander; Lenz, Jan-Hendrik; Fröhlich, Susanne; Hakenberg, Oliver; Kundt, Günther; Darmüntzel, Martin; Hecker, Michael; Altiner, Attila; Müller-Hilke, Brigitte
2016-01-01
The amendment of the Medical Licensing Act (ÄAppO) in Germany in 2002 led to the introduction of graded assessments in the clinical part of medical studies. This, in turn, lent new weight to the importance of written tests, even though the minimum requirements for exam quality are sometimes difficult to reach. Introducing exam quality as a criterion for the award of performance-based allocation of funds is expected to steer the attention of faculty members towards more quality and perpetuate higher standards. However, at present there is a lack of suitable algorithms for calculating exam quality. In the spring of 2014, the students' dean commissioned the "core group" for curricular improvement at the University Medical Center in Rostock to revise the criteria for the allocation of performance-based funds for teaching. In a first approach, we developed an algorithm that was based on the results of the most common type of exam in medical education, multiple choice tests. It included item difficulty and discrimination, reliability as well as the distribution of grades achieved. This algorithm quantitatively describes exam quality of multiple choice exams. However, it can also be applied to exams involving short assay questions and the OSCE. It thus allows for the quantitation of exam quality in the various subjects and - in analogy to impact factors and third party grants - a ranking among faculty. Our algorithm can be applied to all test formats in which item difficulty, the discriminatory power of the individual items, reliability of the exam and the distribution of grades are measured. Even though the content validity of an exam is not considered here, we believe that our algorithm is suitable as a general basis for performance-based allocation of funds.
Cloud cover determination in polar regions from satellite imagery
NASA Technical Reports Server (NTRS)
Barry, R. G.; Key, J.
1989-01-01
The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.
A Cancer Gene Selection Algorithm Based on the K-S Test and CFS.
Su, Qiang; Wang, Yina; Jiang, Xiaobing; Chen, Fuxue; Lu, Wen-Cong
2017-01-01
To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S) test and correlation-based feature selection (CFS) principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test. We adopted support vector machines (SVM) as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR), and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms. The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen
2015-01-01
The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. Additionally, the team has developed processes for implementing and validating these algorithms for concept validation and risk reduction for the SLS program. The flexibility of the Vehicle Management End-to-end Testbed (VMET) enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS. The intent of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software development infrastructure and its related testing entities. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test cases into flight software compounded with potential human errors throughout the development lifecycle. Risk reduction is addressed by the M&FM analysis group working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses that can be tested in VMET to ensure that failures can be detected, and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM such as telemetry packing and processing. The baseline plan for use of VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes.
Private algorithms for the protected in social network search
Kearns, Michael; Roth, Aaron; Wu, Zhiwei Steven; Yaroslavtsev, Grigory
2016-01-01
Motivated by tensions between data privacy for individual citizens and societal priorities such as counterterrorism and the containment of infectious disease, we introduce a computational model that distinguishes between parties for whom privacy is explicitly protected, and those for whom it is not (the targeted subpopulation). The goal is the development of algorithms that can effectively identify and take action upon members of the targeted subpopulation in a way that minimally compromises the privacy of the protected, while simultaneously limiting the expense of distinguishing members of the two groups via costly mechanisms such as surveillance, background checks, or medical testing. Within this framework, we provide provably privacy-preserving algorithms for targeted search in social networks. These algorithms are natural variants of common graph search methods, and ensure privacy for the protected by the careful injection of noise in the prioritization of potential targets. We validate the utility of our algorithms with extensive computational experiments on two large-scale social network datasets. PMID:26755606
Private algorithms for the protected in social network search.
Kearns, Michael; Roth, Aaron; Wu, Zhiwei Steven; Yaroslavtsev, Grigory
2016-01-26
Motivated by tensions between data privacy for individual citizens and societal priorities such as counterterrorism and the containment of infectious disease, we introduce a computational model that distinguishes between parties for whom privacy is explicitly protected, and those for whom it is not (the targeted subpopulation). The goal is the development of algorithms that can effectively identify and take action upon members of the targeted subpopulation in a way that minimally compromises the privacy of the protected, while simultaneously limiting the expense of distinguishing members of the two groups via costly mechanisms such as surveillance, background checks, or medical testing. Within this framework, we provide provably privacy-preserving algorithms for targeted search in social networks. These algorithms are natural variants of common graph search methods, and ensure privacy for the protected by the careful injection of noise in the prioritization of potential targets. We validate the utility of our algorithms with extensive computational experiments on two large-scale social network datasets.
The New CCSDS Image Compression Recommendation
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Armbruster, Philippe; Kiely, Aaron; Masschelein, Bart; Moury, Gilles; Schaefer, Christoph
2005-01-01
The Consultative Committee for Space Data Systems (CCSDS) data compression working group has recently adopted a recommendation for image data compression, with a final release expected in 2005. The algorithm adopted in the recommendation consists of a two-dimensional discrete wavelet transform of the image, followed by progressive bit-plane coding of the transformed data. The algorithm can provide both lossless and lossy compression, and allows a user to directly control the compressed data volume or the fidelity with which the wavelet-transformed data can be reconstructed. The algorithm is suitable for both frame-based image data and scan-based sensor data, and has applications for near-Earth and deep-space missions. The standard will be accompanied by free software sources on a future web site. An Application-Specific Integrated Circuit (ASIC) implementation of the compressor is currently under development. This paper describes the compression algorithm along with the requirements that drove the selection of the algorithm. Performance results and comparisons with other compressors are given for a test set of space images.
Pavón, Margarita Valencia; Cucina, Andrea; Tiesler, Vera
2010-03-01
This study develops new histomorphological algorithms for Maya populations' human ribs and tests the applicability of published algorithms. Thin sections from the fourth rib of 36 individuals of known age were analyzed under polarized light microscopy. Osteon population density (OPD, the concentration of intact and fragmented osteons per mm(2)), cortical area (CA), and osteon size (OS) were recorded. Seven algorithms were calculated, using all combinations of variables, and compared to the performance of published formulas. The OPD-based formulas deviate from the known age 8.7 years on average, while those from OS and CA deviate between 10.7 and 12.8 years. In comparison, our OPD-based algorithms perform better than the one by Stout and Paine and much better than Cho et al. In conclusion, algorithms should be developed using OPD for different ethnic groups; although Stout and Paine's can be used for Maya and maybe Mesoamerican individuals.
Trees, bialgebras and intrinsic numerical algorithms
NASA Technical Reports Server (NTRS)
Crouch, Peter; Grossman, Robert; Larson, Richard
1990-01-01
Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.
An imperialist competitive algorithm for virtual machine placement in cloud computing
NASA Astrophysics Data System (ADS)
Jamali, Shahram; Malektaji, Sepideh; Analoui, Morteza
2017-05-01
Cloud computing, the recently emerged revolution in IT industry, is empowered by virtualisation technology. In this paradigm, the user's applications run over some virtual machines (VMs). The process of selecting proper physical machines to host these virtual machines is called virtual machine placement. It plays an important role on resource utilisation and power efficiency of cloud computing environment. In this paper, we propose an imperialist competitive-based algorithm for the virtual machine placement problem called ICA-VMPLC. The base optimisation algorithm is chosen to be ICA because of its ease in neighbourhood movement, good convergence rate and suitable terminology. The proposed algorithm investigates search space in a unique manner to efficiently obtain optimal placement solution that simultaneously minimises power consumption and total resource wastage. Its final solution performance is compared with several existing methods such as grouping genetic and ant colony-based algorithms as well as bin packing heuristic. The simulation results show that the proposed method is superior to other tested algorithms in terms of power consumption, resource wastage, CPU usage efficiency and memory usage efficiency.
Onukwugha, Eberechukwu; Qi, Ran; Jayasekera, Jinani; Zhou, Shujia
2016-02-01
Prognostic classification approaches are commonly used in clinical practice to predict health outcomes. However, there has been limited focus on use of the general approach for predicting costs. We applied a grouping algorithm designed for large-scale data sets and multiple prognostic factors to investigate whether it improves cost prediction among older Medicare beneficiaries diagnosed with prostate cancer. We analysed the linked Surveillance, Epidemiology and End Results (SEER)-Medicare data, which included data from 2000 through 2009 for men diagnosed with incident prostate cancer between 2000 and 2007. We split the survival data into two data sets (D0 and D1) of equal size. We trained the classifier of the Grouping Algorithm for Cancer Data (GACD) on D0 and tested it on D1. The prognostic factors included cancer stage, age, race and performance status proxies. We calculated the average difference between observed D1 costs and predicted D1 costs at 5 years post-diagnosis with and without the GACD. The sample included 110,843 men with prostate cancer. The median age of the sample was 74 years, and 10% were African American. The average difference (mean absolute error [MAE]) per person between the real and predicted total 5-year cost was US$41,525 (MAE US$41,790; 95% confidence interval [CI] US$41,421-42,158) with the GACD and US$43,113 (MAE US$43,639; 95% CI US$43,062-44,217) without the GACD. The 5-year cost prediction without grouping resulted in a sample overestimate of US$79,544,508. The grouping algorithm developed for complex, large-scale data improves the prediction of 5-year costs. The prediction accuracy could be improved by utilization of a richer set of prognostic factors and refinement of categorical specifications.
A hybrid algorithm for clustering of time series data based on affinity search technique.
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966
Optical Coherence Tomography (OCT) Device Independent Intraretinal Layer Segmentation
Ehnes, Alexander; Wenner, Yaroslava; Friedburg, Christoph; Preising, Markus N.; Bowl, Wadim; Sekundo, Walter; zu Bexten, Erdmuthe Meyer; Stieger, Knut; Lorenz, Birgit
2014-01-01
Purpose To develop and test an algorithm to segment intraretinal layers irrespectively of the actual Optical Coherence Tomography (OCT) device used. Methods The developed algorithm is based on the graph theory optimization. The algorithm's performance was evaluated against that of three expert graders for unsigned boundary position difference and thickness measurement of a retinal layer group in 50 and 41 B-scans, respectively. Reproducibility of the algorithm was tested in 30 C-scans of 10 healthy subjects each with the Spectralis and the Stratus OCT. Comparability between different devices was evaluated in 84 C-scans (volume or radial scans) obtained from 21 healthy subjects, two scans per subject with the Spectralis OCT, and one scan per subject each with the Stratus OCT and the RTVue-100 OCT. Each C-scan was segmented and the mean thickness for each retinal layer in sections of the early treatment of diabetic retinopathy study (ETDRS) grid was measured. Results The algorithm was able to segment up to 11 intraretinal layers. Measurements with the algorithm were within the 95% confidence interval of a single grader and the difference was smaller than the interindividual difference between the expert graders themselves. The cross-device examination of ETDRS-grid related layer thicknesses highly agreed between the three OCT devices. The algorithm correctly segmented a C-scan of a patient with X-linked retinitis pigmentosa. Conclusions The segmentation software provides device-independent, reliable, and reproducible analysis of intraretinal layers, similar to what is obtained from expert graders. Translational Relevance Potential application of the software includes routine clinical practice and multicenter clinical trials. PMID:24820053
A unified framework for group independent component analysis for multi-subject fMRI data
Guo, Ying; Pagnoni, Giuseppe
2008-01-01
Independent component analysis (ICA) is becoming increasingly popular for analyzing functional magnetic resonance imaging (fMRI) data. While ICA has been successfully applied to single-subject analysis, the extension of ICA to group inferences is not straightforward and remains an active topic of research. Current group ICA models, such as the GIFT (Calhoun et al., 2001) and tensor PICA (Beckmann and Smith, 2005), make different assumptions about the underlying structure of the group spatio-temporal processes and are thus estimated using algorithms tailored for the assumed structure, potentially leading to diverging results. To our knowledge, there are currently no methods for assessing the validity of different model structures in real fMRI data and selecting the most appropriate one among various choices. In this paper, we propose a unified framework for estimating and comparing group ICA models with varying spatio-temporal structures. We consider a class of group ICA models that can accommodate different group structures and include existing models, such as the GIFT and tensor PICA, as special cases. We propose a maximum likelihood (ML) approach with a modified Expectation-Maximization (EM) algorithm for the estimation of the proposed class of models. Likelihood ratio tests (LRT) are presented to compare between different group ICA models. The LRT can be used to perform model comparison and selection, to assess the goodness-of-fit of a model in a particular data set, and to test group differences in the fMRI signal time courses between subject subgroups. Simulation studies are conducted to evaluate the performance of the proposed method under varying structures of group spatio-temporal processes. We illustrate our group ICA method using data from an fMRI study that investigates changes in neural processing associated with the regular practice of Zen meditation. PMID:18650105
Latifi, Kujtim; Oliver, Jasmine; Baker, Ryan; Dilling, Thomas J; Stevens, Craig W; Kim, Jongphil; Yue, Binglin; Demarco, Marylou; Zhang, Geoffrey G; Moros, Eduardo G; Feygelman, Vladimir
2014-04-01
Pencil beam (PB) and collapsed cone convolution (CCC) dose calculation algorithms differ significantly when used in the thorax. However, such differences have seldom been previously directly correlated with outcomes of lung stereotactic ablative body radiation (SABR). Data for 201 non-small cell lung cancer patients treated with SABR were analyzed retrospectively. All patients were treated with 50 Gy in 5 fractions of 10 Gy each. The radiation prescription mandated that 95% of the planning target volume (PTV) receive the prescribed dose. One hundred sixteen patients were planned with BrainLab treatment planning software (TPS) with the PB algorithm and treated on a Novalis unit. The other 85 were planned on the Pinnacle TPS with the CCC algorithm and treated on a Varian linac. Treatment planning objectives were numerically identical for both groups. The median follow-up times were 24 and 17 months for the PB and CCC groups, respectively. The primary endpoint was local/marginal control of the irradiated lesion. Gray's competing risk method was used to determine the statistical differences in local/marginal control rates between the PB and CCC groups. Twenty-five patients planned with PB and 4 patients planned with the CCC algorithms to the same nominal doses experienced local recurrence. There was a statistically significant difference in recurrence rates between the PB and CCC groups (hazard ratio 3.4 [95% confidence interval: 1.18-9.83], Gray's test P=.019). The differences (Δ) between the 2 algorithms for target coverage were as follows: ΔD99GITV = 7.4 Gy, ΔD99PTV = 10.4 Gy, ΔV90GITV = 13.7%, ΔV90PTV = 37.6%, ΔD95PTV = 9.8 Gy, and ΔDISO = 3.4 Gy. GITV = gross internal tumor volume. Local control in patients receiving who were planned to the same nominal dose with PB and CCC algorithms were statistically significantly different. Possible alternative explanations are described in the report, although they are not thought likely to explain the difference. We conclude that the difference is due to relative dosimetric underdosing of tumors with the PB algorithm. Copyright © 2014 Elsevier Inc. All rights reserved.
Chang, Jinyuan; Zhou, Wen; Zhou, Wen-Xin; Wang, Lan
2017-03-01
Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence, the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and are available on CRAN. © 2016, The International Biometric Society.
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
40 CFR 51.357 - Test procedures and standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... invalid test condition, unsafe conditions, fast pass/fail algorithms, or, in the case of the on-board... using approved fast pass or fast fail algorithms and multiple pass/fail algorithms may be used during the test cycle to eliminate false failures. The transient test procedure, including algorithms and...
[Factor XIII-guided treatment algorithm reduces blood transfusion in burn surgery].
Carneiro, João Miguel Gonçalves Valadares de Morais; Alves, Joana; Conde, Patrícia; Xambre, Fátima; Almeida, Emanuel; Marques, Céline; Luís, Mariana; Godinho, Ana Maria Mano Garção; Fernandez-Llimos, Fernando
Major burn surgery causes large hemorrhage and coagulation dysfunction. Treatment algorithms guided by ROTEM ® and factor VIIa reduce the need for blood products, but there is no evidence regarding factor XIII. Factor XIII deficiency changes clot stability and decreases wound healing. This study evaluates the efficacy and safety of factor XIII correction and its repercussion on transfusion requirements in burn surgery. Randomized retrospective study with 40 patients undergoing surgery at the Burn Unit, allocated into Group A those with factor XIII assessment (n = 20), and Group B, those without assessment (n = 20). Erythrocyte transfusion was guided by a hemoglobin trigger of 10g.dL -1 and the other blood products by routine coagulation and ROTEM ® tests. Analysis of blood product consumption included units of erythrocytes, fresh frozen plasma, platelets, and fibrinogen. The coagulation biomarker analysis compared the pre- and post-operative values. Group A (with factor XIII study) and Group B had identical total body surface area burned. All patients in Group A had a preoperative factor XIII deficiency, whose correction significantly reduced units of erythrocyte concentrate transfusion (1.95 vs. 4.05, p = 0.001). Pre- and post-operative coagulation biomarkers were similar between groups, revealing that routine coagulation tests did not identify factor XIII deficiency. There were no recorded thromboembolic events. Correction of factor XIII deficiency in burn surgery proved to be safe and effective for reducing perioperative transfusion of erythrocyte units. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing
2016-03-03
This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.
An open-source framework for stress-testing non-invasive foetal ECG extraction algorithms.
Andreotti, Fernando; Behar, Joachim; Zaunseder, Sebastian; Oster, Julien; Clifford, Gari D
2016-05-01
Over the past decades, many studies have been published on the extraction of non-invasive foetal electrocardiogram (NI-FECG) from abdominal recordings. Most of these contributions claim to obtain excellent results in detecting foetal QRS (FQRS) complexes in terms of location. A small subset of authors have investigated the extraction of morphological features from the NI-FECG. However, due to the shortage of available public databases, the large variety of performance measures employed and the lack of open-source reference algorithms, most contributions cannot be meaningfully assessed. This article attempts to address these issues by presenting a standardised methodology for stress testing NI-FECG algorithms, including absolute data, as well as extraction and evaluation routines. To that end, a large database of realistic artificial signals was created, totaling 145.8 h of multichannel data and over one million FQRS complexes. An important characteristic of this dataset is the inclusion of several non-stationary events (e.g. foetal movements, uterine contractions and heart rate fluctuations) that are critical for evaluating extraction routines. To demonstrate our testing methodology, three classes of NI-FECG extraction algorithms were evaluated: blind source separation (BSS), template subtraction (TS) and adaptive methods (AM). Experiments were conducted to benchmark the performance of eight NI-FECG extraction algorithms on the artificial database focusing on: FQRS detection and morphological analysis (foetal QT and T/QRS ratio). The overall median FQRS detection accuracies (i.e. considering all non-stationary events) for the best performing methods in each group were 99.9% for BSS, 97.9% for AM and 96.0% for TS. Both FQRS detections and morphological parameters were shown to heavily depend on the extraction techniques and signal-to-noise ratio. Particularly, it is shown that their evaluation in the source domain, obtained after using a BSS technique, should be avoided. Data, extraction algorithms and evaluation routines were released as part of the fecgsyn toolbox on Physionet under an GNU GPL open-source license. This contribution provides a standard framework for benchmarking and regulatory testing of NI-FECG extraction algorithms.
An affine projection algorithm using grouping selection of input vectors
NASA Astrophysics Data System (ADS)
Shin, JaeWook; Kong, NamWoong; Park, PooGyeon
2011-10-01
This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.
Localization of Pathology on Complex Architecture Building Surfaces
NASA Astrophysics Data System (ADS)
Sidiropoulos, A. A.; Lakakis, K. N.; Mouza, V. K.
2017-02-01
The technology of 3D laser scanning is considered as one of the most common methods for heritage documentation. The point clouds that are being produced provide information of high detail, both geometric and thematic. There are various studies that examine techniques of the best exploitation of this information. In this study, an algorithm of pathology localization, such as cracks and fissures, on complex building surfaces is being tested. The algorithm makes use of the points' position in the point cloud and tries to distinguish them in two groups-patterns; pathology and non-pathology. The extraction of the geometric information that is being used for recognizing the pattern of the points is being accomplished via Principal Component Analysis (PCA) in user-specified neighborhoods in the whole point cloud. The implementation of PCA leads to the definition of the normal vector at each point of the cloud. Two tests that operate separately examine both local and global geometric criteria among the points and conclude which of them should be categorized as pathology. The proposed algorithm was tested on parts of the Gazi Evrenos Baths masonry, which are located at the city of Giannitsa at Northern Greece.
Ko, Rachel Jia Min; Lim, Swee Han; Wu, Vivien Xi; Leong, Tak Yam; Liaw, Sok Ying
2018-01-01
INTRODUCTION Simplifying the learning of cardiopulmonary resuscitation (CPR) is advocated to improve skill acquisition and retention. A simplified CPR training programme focusing on continuous chest compression, with a simple landmark tracing technique, was introduced to laypeople. The study aimed to examine the effectiveness of the simplified CPR training in improving lay rescuers’ CPR performance as compared to standard CPR. METHODS A total of 85 laypeople (aged 21–60 years) were recruited and randomly assigned to undertake either a two-hour simplified or standard CPR training session. They were tested two months after the training on a simulated cardiac arrest scenario. Participants’ performance on the sequence of CPR steps was observed and evaluated using a validated CPR algorithm checklist. The quality of chest compression and ventilation was assessed from the recording manikins. RESULTS The simplified CPR group performed significantly better on the CPR algorithm when compared to the standard CPR group (p < 0.01). No significant difference was found between the groups in time taken to initiate CPR. However, a significantly higher number of compressions and proportion of adequate compressions was demonstrated by the simplified group than the standard group (p < 0.01). Hands-off time was significantly shorter in the simplified CPR group than in the standard CPR group (p < 0.001). CONCLUSION Simplifying the learning of CPR by focusing on continuous chest compressions, with simple hand placement for chest compression, could lead to better acquisition and retention of CPR algorithms, and better quality of chest compressions than standard CPR. PMID:29167910
Ko, Rachel Jia Min; Lim, Swee Han; Wu, Vivien Xi; Leong, Tak Yam; Liaw, Sok Ying
2018-04-01
Simplifying the learning of cardiopulmonary resuscitation (CPR) is advocated to improve skill acquisition and retention. A simplified CPR training programme focusing on continuous chest compression, with a simple landmark tracing technique, was introduced to laypeople. The study aimed to examine the effectiveness of the simplified CPR training in improving lay rescuers' CPR performance as compared to standard CPR. A total of 85 laypeople (aged 21-60 years) were recruited and randomly assigned to undertake either a two-hour simplified or standard CPR training session. They were tested two months after the training on a simulated cardiac arrest scenario. Participants' performance on the sequence of CPR steps was observed and evaluated using a validated CPR algorithm checklist. The quality of chest compression and ventilation was assessed from the recording manikins. The simplified CPR group performed significantly better on the CPR algorithm when compared to the standard CPR group (p < 0.01). No significant difference was found between the groups in time taken to initiate CPR. However, a significantly higher number of compressions and proportion of adequate compressions was demonstrated by the simplified group than the standard group (p < 0.01). Hands-off time was significantly shorter in the simplified CPR group than in the standard CPR group (p < 0.001). Simplifying the learning of CPR by focusing on continuous chest compressions, with simple hand placement for chest compression, could lead to better acquisition and retention of CPR algorithms, and better quality of chest compressions than standard CPR. Copyright: © Singapore Medical Association.
Milewski, Marek C; Kamel, Karol; Kurzynska-Kokorniak, Anna; Chmielewski, Marcin K; Figlerowicz, Marek
2017-10-01
Experimental methods based on DNA and RNA hybridization, such as multiplex polymerase chain reaction, multiplex ligation-dependent probe amplification, or microarray analysis, require the use of mixtures of multiple oligonucleotides (primers or probes) in a single test tube. To provide an optimal reaction environment, minimal self- and cross-hybridization must be achieved among these oligonucleotides. To address this problem, we developed EvOligo, which is a software package that provides the means to design and group DNA and RNA molecules with defined lengths. EvOligo combines two modules. The first module performs oligonucleotide design, and the second module performs oligonucleotide grouping. The software applies a nearest-neighbor model of nucleic acid interactions coupled with a parallel evolutionary algorithm to construct individual oligonucleotides, and to group the molecules that are characterized by the weakest possible cross-interactions. To provide optimal solutions, the evolutionary algorithm sorts oligonucleotides into sets, preserves preselected parts of the oligonucleotides, and shapes their remaining parts. In addition, the oligonucleotide sets can be designed and grouped based on their melting temperatures. For the user's convenience, EvOligo is provided with a user-friendly graphical interface. EvOligo was used to design individual oligonucleotides, oligonucleotide pairs, and groups of oligonucleotide pairs that are characterized by the following parameters: (1) weaker cross-interactions between the non-complementary oligonucleotides and (2) more uniform ranges of the oligonucleotide pair melting temperatures than other available software products. In addition, in contrast to other grouping algorithms, EvOligo offers time-efficient sorting of paired and unpaired oligonucleotides based on various parameters defined by the user.
Han, Zhaoying; Thornton-Wells, Tricia A.; Dykens, Elisabeth M.; Gore, John C.; Dawant, Benoit M.
2014-01-01
Deformation Based Morphometry (DBM) is a widely used method for characterizing anatomical differences across groups. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a DBM atlas. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithms on group differences that may be uncovered through DBM. In this study, we compared group atlas creation and DBM results obtained with five well-established non-rigid registration algorithms using thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Bases Algorithm (ABA); (2) The Image Registration Toolkit (IRTK); (3) The FSL Nonlinear Image Registration Tool (FSL); (4) The Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. Results indicate that the choice of algorithm has little effect on the creation of group atlases. However, regions of differences between groups detected with DBM vary from algorithm to algorithm both qualitatively and quantitatively. The unique nature of the data set used in this study also permits comparison of visible anatomical differences between the groups and regions of difference detected by each algorithm. Results show that the interpretation of DBM results is difficult. Four out of the five algorithms we have evaluated detect bilateral differences between the two groups in the insular cortex, the basal ganglia, orbitofrontal cortex, as well as in the cerebellum. These correspond to differences that have been reported in the literature and that are visible in our samples. But our results also show that some algorithms detect regions that are not detected by the others and that the extent of the detected regions varies from algorithm to algorithm. These results suggest that using more than one algorithm when performing DBM studies would increase confidence in the results. Properties of the algorithms such as the similarity measure they maximize and the regularity of the deformation fields, as well as the location of differences detected with DBM, also need to be taken into account in the interpretation process. PMID:22459439
Billeci, Lucia; Varanini, Maurizio
2017-01-01
The non-invasive fetal electrocardiogram (fECG) technique has recently received considerable interest in monitoring fetal health. The aim of our paper is to propose a novel fECG algorithm based on the combination of the criteria of independent source separation and of a quality index optimization (ICAQIO-based). The algorithm was compared with two methods applying the two different criteria independently—the ICA-based and the QIO-based methods—which were previously developed by our group. All three methods were tested on the recently implemented Fetal ECG Synthetic Database (FECGSYNDB). Moreover, the performance of the algorithm was tested on real data from the PhysioNet fetal ECG Challenge 2013 Database. The proposed combined method outperformed the other two algorithms on the FECGSYNDB (ICAQIO-based: 98.78%, QIO-based: 97.77%, ICA-based: 97.61%). Significant differences were obtained in particular in the conditions when uterine contractions and maternal and fetal ectopic beats occurred. On the real data, all three methods obtained very high performances, with the QIO-based method proving slightly better than the other two (ICAQIO-based: 99.38%, QIO-based: 99.76%, ICA-based: 99.37%). The findings from this study suggest that the proposed method could potentially be applied as a novel algorithm for accurate extraction of fECG, especially in critical recording conditions. PMID:28509860
Xie, Xiaobin; Zhang, Xiaojun; Fu, Jidi; Wang, Huaizhou; Jonas, Jost B; Peng, Xiaoxia; Tian, Guohong; Xian, Junfang; Ritch, Robert; Li, Lei; Kang, Zefeng; Zhang, Shoukang; Yang, Diya; Wang, Ningli
2013-07-24
The orbital subarachnoid space surrounding the optic nerve is continuous with the circulation system for cerebrospinal fluid (CSF) and can be visualized by using magnetic resonance imaging (MRI). We hypothesized that the orbital subarachnoid space width (OSASW) is correlated with and can serve as a surrogate for intracranial pressure (ICP). Our aim was to develop a method for a noninvasive measurement of the intracranial CSF-pressure (CSF-P) based on MRI-assisted OSASW. The prospective observational comparative study included neurology patients who underwent lumbar CSF-P measurement and 3.0-Tesla orbital magnetic resonance imaging (MRI) for other clinical reasons. The width of the orbital subarachnoid space (OSASW) around the optic nerve was measured with MRI at 3, 9, and 15 mm behind the globe. The study population was randomly divided into a training group and a test group. After adjusting for body mass index (BMI) and mean arterial blood pressure (MABP), algorithms for the associations between CSF-P and OSASW were calculated in the training group. The algorithms were subsequently verified in the test group. Main outcome measures were the width of the orbital subarachnoid space (OSASW) and the lumbar cerebrospinal fluid pressure (CSF-P). Seventy-two patients were included in the study. In the training group, the algorithms for the associations between CSF-P and OSASW were as follows: (a) CSF-P = 9.31 × OSASW (at 3 mm) + 0.48 × BMI + 0.14 × MABP-19.94; (b) CSF-P = 16.95 × OSASW (at 9 mm) + 0.39 × BMI + 0.14 × MABP-20.90; and (c) CSF-P = 17.54 × OSASW (at 15 mm) + 0.47 × BMI + 0.13 × MABP-21.52. Applying these algorithms in the independent test group, the measured lumbar CSF-P (13.6 ± 5.1 mm Hg) did not differ significantly from the calculated MRI-derived CSF-P (OSASW at 3 mm: 12.7 ± 4.2 mm Hg (P = 0.07); at 9 mm: 13.4 ± 5.1 mm Hg (P = 0.35); and at 15 mm: 14.0 ± 4.9 mm Hg (P = 0.87)). Intraclass correlation coefficients (ICCs) were higher for the CSF-P assessment based on OSASW at 9 mm and at 15 mm behind the globe (all ICCs, 0.87) than for OSASW measurements at 3 mm (ICC, 0.80). In patients with normal, moderately decreased or elevated ICP, MRI-assisted measurement of the OSASW appears to be useful for the noninvasive quantitative estimation of ICP, if BMI and MABP as contributing parameters are taken into account. Clinical trial registered with the Chinese Clinical Trial Registry: ChiCTR-OCC-11001271.
A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping
Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi
2015-01-01
Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted MHNNA with remote sensing techniques (as based on ALOS images). PMID:26729148
Effectiveness of basic life support instruction in physical education students--a pilot study.
Bielec, Grzegorz; Klajman, Paweł; Pęczak-Graczyk, Alicja
2014-01-01
According to the literature, 40% of injuries affecting school-age children are sports related. The role of physical education students, as future teachers, seems to be of high importance in terms of protecting children's safety during sports classes. The aim is to evaluate the level of basic life support (BLS) knowledge and skills in physical education students instructed with the use of different methods. Second-year physical education students (n=104, M age=20±0.6 years) were randomly assigned to three groups: experimental 1 (E1), experimental 2 (E2), and control (C). Group E1 students participated in a 2-hour BLS course based on computer-assisted presentations. Group E2 trainees practiced BLS algorithm in pairs during a 2-hour course. No manikins were used in both intervention groups. Students of Group C were asked to learn BLS algorithm on their own. All groups fulfilled a 10-question multiple-choice test on BLS at the beginning and the end of the experiment. After completing the course participants performed BLS on a manikin. The results of knowledge test were not significant before an experiment but differed essentially among the groups afterward (analysis of variance contrast analysis, p<.05). Regardless of teaching method used, no significant differences were found among the students in preparatory BLS actions and cardiopulmonary resuscitation (CPR) performance on a manikin. The level of CPR performance was very low in all groups. Students of both intervention groups improved their BLS knowledge after the training. Teaching methods used in the current study seemed to be ineffective in terms of practical CPR skills. Access to greater number of modern manikins should improve the BLS training in physical education students. Moreover, permanent consultation on instructional methods with emergency medicine experts is recommended for university teachers.
Video quality assessment using a statistical model of human visual speed perception.
Wang, Zhou; Li, Qiang
2007-12-01
Motion is one of the most important types of information contained in natural video, but direct use of motion information in the design of video quality assessment algorithms has not been deeply investigated. Here we propose to incorporate a recent model of human visual speed perception [Nat. Neurosci. 9, 578 (2006)] and model visual perception in an information communication framework. This allows us to estimate both the motion information content and the perceptual uncertainty in video signals. Improved video quality assessment algorithms are obtained by incorporating the model as spatiotemporal weighting factors, where the weight increases with the information content and decreases with the perceptual uncertainty. Consistent improvement over existing video quality assessment algorithms is observed in our validation with the video quality experts group Phase I test data set.
An algorithm to identify functional groups in organic molecules.
Ertl, Peter
2017-06-07
The concept of functional groups forms a basis of organic chemistry, medicinal chemistry, toxicity assessment, spectroscopy and also chemical nomenclature. All current software systems to identify functional groups are based on a predefined list of substructures. We are not aware of any program that can identify all functional groups in a molecule automatically. The algorithm presented in this article is an attempt to solve this scientific challenge. An algorithm to identify functional groups in a molecule based on iterative marching through its atoms is described. The procedure is illustrated by extracting functional groups from the bioactive portion of the ChEMBL database, resulting in identification of 3080 unique functional groups. A new algorithm to identify all functional groups in organic molecules is presented. The algorithm is relatively simple and full details with examples are provided, therefore implementation in any cheminformatics toolkit should be relatively easy. The new method allows the analysis of functional groups in large chemical databases in a way that was not possible using previous approaches. Graphical abstract .
Advancing MODFLOW Applying the Derived Vector Space Method
NASA Astrophysics Data System (ADS)
Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.
2015-12-01
The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)
Effects of Device on Video Head Impulse Test (vHIT) Gain.
Janky, Kristen L; Patterson, Jessie N; Shepard, Neil T; Thomas, Megan L A; Honaker, Julie A
2017-10-01
Numerous video head impulse test (vHIT) devices are available commercially; however, gain is not calculated uniformly. An evaluation of these devices/algorithms in healthy controls and patients with vestibular loss is necessary for comparing and synthesizing work that utilizes different devices and gain calculations. Using three commercially available vHIT devices/algorithms, the purpose of the present study was to compare: (1) horizontal canal vHIT gain among devices/algorithms in normal control subjects; (2) the effects of age on vHIT gain for each device/algorithm in normal control subjects; and (3) the clinical performance of horizontal canal vHIT gain between devices/algorithms for differentiating normal versus abnormal vestibular function. Prospective. Sixty-one normal control adult subjects (range 20-78) and eleven adults with unilateral or bilateral vestibular loss (range 32-79). vHIT was administered using three different devices/algorithms, randomized in order, for each subject on the same day: (1) Impulse (Otometrics, Schaumberg, IL; monocular eye recording, right eye only; using area under the curve gain), (2) EyeSeeCam (Interacoustics, Denmark; monocular eye recording, left eye only; using instantaneous gain), and (3) VisualEyes (MicroMedical, Chatham, IL, binocular eye recording; using position gain). There was a significant mean difference in vHIT gain among devices/algorithms for both the normal control and vestibular loss groups. vHIT gain was significantly larger in the ipsilateral direction of the eye used to measure gain; however, in spite of the significant mean differences in vHIT gain among devices/algorithms and the significant directional bias, classification of "normal" versus "abnormal" gain is consistent across all compared devices/algorithms, with the exception of instantaneous gain at 40 msec. There was not an effect of age on vHIT gain up to 78 years regardless of the device/algorithm. These findings support that vHIT gain is significantly different between devices/algorithms, suggesting that care should be taken when making direct comparisons of absolute gain values between devices/algorithms. American Academy of Audiology
Scoring clustering solutions by their biological relevance.
Gat-Viks, I; Sharan, R; Shamir, R
2003-12-12
A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering gene expression data into homogeneous groups was shown to be instrumental in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on clustering algorithms for gene expression analysis, very few works addressed the systematic comparison and evaluation of clustering results. Typically, different clustering algorithms yield different clustering solutions on the same data, and there is no agreed upon guideline for choosing among them. We developed a novel statistically based method for assessing a clustering solution according to prior biological knowledge. Our method can be used to compare different clustering solutions or to optimize the parameters of a clustering algorithm. The method is based on projecting vectors of biological attributes of the clustered elements onto the real line, such that the ratio of between-groups and within-group variance estimators is maximized. The projected data are then scored using a non-parametric analysis of variance test, and the score's confidence is evaluated. We validate our approach using simulated data and show that our scoring method outperforms several extant methods, including the separation to homogeneity ratio and the silhouette measure. We apply our method to evaluate results of several clustering methods on yeast cell-cycle gene expression data. The software is available from the authors upon request.
Sparse Measurement Systems: Applications, Analysis, Algorithms and Design
ERIC Educational Resources Information Center
Narayanaswamy, Balakrishnan
2011-01-01
This thesis deals with "large-scale" detection problems that arise in many real world applications such as sensor networks, mapping with mobile robots and group testing for biological screening and drug discovery. These are problems where the values of a large number of inputs need to be inferred from noisy observations and where the…
SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2014-01-01
Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).
Retinopathy of Prematurity-assist: Novel Software for Detecting Plus Disease
Pour, Elias Khalili; Pourreza, Hamidreza; Zamani, Kambiz Ameli; Mahmoudi, Alireza; Sadeghi, Arash Mir Mohammad; Shadravan, Mahla; Karkhaneh, Reza; Pour, Ramak Rouhi
2017-01-01
Purpose To design software with a novel algorithm, which analyzes the tortuosity and vascular dilatation in fundal images of retinopathy of prematurity (ROP) patients with an acceptable accuracy for detecting plus disease. Methods Eighty-seven well-focused fundal images taken with RetCam were classified to three groups of plus, non-plus, and pre-plus by agreement between three ROP experts. Automated algorithms in this study were designed based on two methods: the curvature measure and distance transform for assessment of tortuosity and vascular dilatation, respectively as two major parameters of plus disease detection. Results Thirty-eight plus, 12 pre-plus, and 37 non-plus images, which were classified by three experts, were tested by an automated algorithm and software evaluated the correct grouping of images in comparison to expert voting with three different classifiers, k-nearest neighbor, support vector machine and multilayer perceptron network. The plus, pre-plus, and non-plus images were analyzed with 72.3%, 83.7%, and 84.4% accuracy, respectively. Conclusions The new automated algorithm used in this pilot scheme for diagnosis and screening of patients with plus ROP has acceptable accuracy. With more improvements, it may become particularly useful, especially in centers without a skilled person in the ROP field. PMID:29022295
Naidoo, Pren; van Niekerk, Margaret; du Toit, Elizabeth; Beyers, Nulda; Leon, Natalie
2015-10-28
Although new molecular diagnostic tests such as GenoType MTBDRplus and Xpert® MTB/RIF have reduced multidrug-resistant tuberculosis (MDR-TB) treatment initiation times, patients' experiences of diagnosis and treatment initiation are not known. This study aimed to explore and compare MDR-TB patients' experiences of their diagnostic and treatment initiation pathway in GenoType MTBDRplus and Xpert® MTB/RIF-based diagnostic algorithms. The study was undertaken in Cape Town, South Africa where primary health-care services provided free TB diagnosis and treatment. A smear, culture and GenoType MTBDRplus diagnostic algorithm was used in 2010, with Xpert® MTB/RIF phased in from 2011-2013. Participants diagnosed in each algorithm at four facilities were purposively sampled, stratifying by age, gender and MDR-TB risk profiles. We conducted in-depth qualitative interviews using a semi-structured interview guide. Through constant comparative analysis we induced common and divergent themes related to symptom recognition, health-care access, testing for MDR-TB and treatment initiation within and between groups. Data were triangulated with clinical information and health visit data from a structured questionnaire. We identified both enablers and barriers to early MDR-TB diagnosis and treatment. Half the patients had previously been treated for TB; most recognised recurring symptoms and reported early health-seeking. Those who attributed symptoms to other causes delayed health-seeking. Perceptions of poor public sector services were prevalent and may have contributed both to deferred health-seeking and to patient's use of the private sector, contributing to delays. However, once on treatment, most patients expressed satisfaction with public sector care. Two patients in the Xpert® MTB/RIF-based algorithm exemplified its potential to reduce delays, commencing MDR-TB treatment within a week of their first health contact. However, most patients in both algorithms experienced substantial delays. Avoidable health system delays resulted from providers not testing for TB at initial health contact, non-adherence to testing algorithms, results not being available and failure to promptly recall patients with positive results. Whilst the introduction of rapid tests such as Xpert® MTB/RIF can expedite MDR-TB diagnosis and treatment initiation, the full benefits are unlikely to be realised without reducing delays in health-seeking and addressing the structural barriers present in the health-care system.
Doble, Brett; Lorgelly, Paula
2016-04-01
To determine the external validity of existing mapping algorithms for predicting EQ-5D-3L utility values from EORTC QLQ-C30 responses and to establish their generalizability in different types of cancer. A main analysis (pooled) sample of 3560 observations (1727 patients) and two disease severity patient samples (496 and 93 patients) with repeated observations over time from Cancer 2015 were used to validate the existing algorithms. Errors were calculated between observed and predicted EQ-5D-3L utility values using a single pooled sample and ten pooled tumour type-specific samples. Predictive accuracy was assessed using mean absolute error (MAE) and standardized root-mean-squared error (RMSE). The association between observed and predicted EQ-5D utility values and other covariates across the distribution was tested using quantile regression. Quality-adjusted life years (QALYs) were calculated using observed and predicted values to test responsiveness. Ten 'preferred' mapping algorithms were identified. Two algorithms estimated via response mapping and ordinary least-squares regression using dummy variables performed well on number of validation criteria, including accurate prediction of the best and worst QLQ-C30 health states, predicted values within the EQ-5D tariff range, relatively small MAEs and RMSEs, and minimal differences between estimated QALYs. Comparison of predictive accuracy across ten tumour type-specific samples highlighted that algorithms are relatively insensitive to grouping by tumour type and affected more by differences in disease severity. Two of the 'preferred' mapping algorithms suggest more accurate predictions, but limitations exist. We recommend extensive scenario analyses if mapped utilities are used in cost-utility analyses.
Berres, M; Kukull, W A; Miserez, A R; Monsch, A U; Monsell, S E; Spiegel, R
2014-01-01
The PGSA (Placebo Group Simulation Approach) aims at avoiding problems of sample representativeness and ethical issues typical of placebo-controlled secondary prevention trials with MCI patients. The PGSA uses mathematical modeling to forecast the distribution of quantified outcomes of MCI patient groups based on their own baseline data established at the outset of clinical trials. These forecasted distributions are then compared with the distribution of actual outcomes observed on candidate treatments, thus substituting for a concomitant placebo group. Here we investigate whether a PGSA algorithm that was developed from the MCI population of ADNI 1*, can reliably simulate the distribution of composite neuropsychological outcomes from a larger, independently selected MCI subject sample. Data available from the National Alzheimer's Coordinating Center (NACC) were used. We included 1523 patients with single or multiple domain amnestic mild cognitive impairment (aMCI) and at least two follow-ups after baseline. In order to strengthen the analysis and to verify whether there was a drift over time in the neuropsychological outcomes, the NACC subject sample was split into 3 subsamples of similar size. The previously described PGSA algorithm for the trajectory of a composite neuropsychological test battery (NTB) score was adapted to the test battery used in NACC. Nine demographic, clinical, biological and neuropsychological candidate predictors were included in a mixed model; this model and its error terms were used to simulate trajectories of the adapted NTB. The distributions of empirically observed and simulated data after 1, 2 and 3 years were very similar, with some over-estimation of decline in all 3 subgroups. The by far most important predictor of the NTB trajectories is the baseline NTB score. Other significant predictors are the MMSE baseline score and the interactions of time with ApoE4 and FAQ (functional abilities). These are essentially the same predictors as determined for the original NTB score. An algorithm comprising a small number of baseline variables, notably cognitive performance at baseline, forecasts the group trajectory of cognitive decline in subsequent years with high accuracy. The current analysis of 3 independent subgroups of aMCI patients from the NACC database supports the validity of the PGSA longitudinal algorithm for a NTB. Use of the PGSA in long-term secondary AD prevention trials deserves consideration.
Portable Health Algorithms Test System
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.
2010-01-01
A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.
Demirci, Oguz; Clark, Vincent P; Calhoun, Vince D
2008-02-15
Schizophrenia is diagnosed based largely upon behavioral symptoms. Currently, no quantitative, biologically based diagnostic technique has yet been developed to identify patients with schizophrenia. Classification of individuals into patient with schizophrenia and healthy control groups based on quantitative biologically based data is of great interest to support and refine psychiatric diagnoses. We applied a novel projection pursuit technique on various components obtained with independent component analysis (ICA) of 70 subjects' fMRI activation maps obtained during an auditory oddball task. The validity of the technique was tested with a leave-one-out method and the detection performance varied between 80% and 90%. The findings suggest that the proposed data reduction algorithm is effective in classifying individuals into schizophrenia and healthy control groups and may eventually prove useful as a diagnostic tool.
Chen, Hongming; Carlsson, Lars; Eriksson, Mats; Varkonyi, Peter; Norinder, Ulf; Nilsson, Ingemar
2013-06-24
A novel methodology was developed to build Free-Wilson like local QSAR models by combining R-group signatures and the SVM algorithm. Unlike Free-Wilson analysis this method is able to make predictions for compounds with R-groups not present in a training set. Eleven public data sets were chosen as test cases for comparing the performance of our new method with several other traditional modeling strategies, including Free-Wilson analysis. Our results show that the R-group signature SVM models achieve better prediction accuracy compared with Free-Wilson analysis in general. Moreover, the predictions of R-group signature models are also comparable to the models using ECFP6 fingerprints and signatures for the whole compound. Most importantly, R-group contributions to the SVM model can be obtained by calculating the gradient for R-group signatures. For most of the studied data sets, a significant correlation with that of a corresponding Free-Wilson analysis is shown. These results suggest that the R-group contribution can be used to interpret bioactivity data and highlight that the R-group signature based SVM modeling method is as interpretable as Free-Wilson analysis. Hence the signature SVM model can be a useful modeling tool for any drug discovery project.
Pediatric Brain Extraction Using Learning-based Meta-algorithm
Shi, Feng; Wang, Li; Dai, Yakang; Gilmore, John H.; Lin, Weili; Shen, Dinggang
2012-01-01
Magnetic resonance imaging of pediatric brain provides valuable information for early brain development studies. Automated brain extraction is challenging due to the small brain size and dynamic change of tissue contrast in the developing brains. In this paper, we propose a novel Learning Algorithm for Brain Extraction and Labeling (LABEL) specially for the pediatric MR brain images. The idea is to perform multiple complementary brain extractions on a given testing image by using a meta-algorithm, including BET and BSE, where the parameters of each run of the meta-algorithm are effectively learned from the training data. Also, the representative subjects are selected as exemplars and used to guide brain extraction of new subjects in different age groups. We further develop a level-set based fusion method to combine multiple brain extractions together with a closed smooth surface for obtaining the final extraction. The proposed method has been extensively evaluated in subjects of three representative age groups, such as neonate (less than 2 months), infant (1–2 years), and child (5–18 years). Experimental results show that, with 45 subjects for training (15 neonates, 15 infant, and 15 children), the proposed method can produce more accurate brain extraction results on 246 testing subjects (75 neonates, 126 infants, and 45 children), i.e., at average Jaccard Index of 0.953, compared to those by BET (0.918), BSE (0.902), ROBEX (0.901), GCUT (0.856), and other fusion methods such as Majority Voting (0.919) and STAPLE (0.941). Along with the largely-improved computational efficiency, the proposed method demonstrates its ability of automated brain extraction for pediatric MR images in a large age range. PMID:22634859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latifi, Kujtim, E-mail: Kujtim.Latifi@Moffitt.org; Oliver, Jasmine; Department of Physics, University of South Florida, Tampa, Florida
Purpose: Pencil beam (PB) and collapsed cone convolution (CCC) dose calculation algorithms differ significantly when used in the thorax. However, such differences have seldom been previously directly correlated with outcomes of lung stereotactic ablative body radiation (SABR). Methods and Materials: Data for 201 non-small cell lung cancer patients treated with SABR were analyzed retrospectively. All patients were treated with 50 Gy in 5 fractions of 10 Gy each. The radiation prescription mandated that 95% of the planning target volume (PTV) receive the prescribed dose. One hundred sixteen patients were planned with BrainLab treatment planning software (TPS) with the PB algorithm and treatedmore » on a Novalis unit. The other 85 were planned on the Pinnacle TPS with the CCC algorithm and treated on a Varian linac. Treatment planning objectives were numerically identical for both groups. The median follow-up times were 24 and 17 months for the PB and CCC groups, respectively. The primary endpoint was local/marginal control of the irradiated lesion. Gray's competing risk method was used to determine the statistical differences in local/marginal control rates between the PB and CCC groups. Results: Twenty-five patients planned with PB and 4 patients planned with the CCC algorithms to the same nominal doses experienced local recurrence. There was a statistically significant difference in recurrence rates between the PB and CCC groups (hazard ratio 3.4 [95% confidence interval: 1.18-9.83], Gray's test P=.019). The differences (Δ) between the 2 algorithms for target coverage were as follows: ΔD99{sub GITV} = 7.4 Gy, ΔD99{sub PTV} = 10.4 Gy, ΔV90{sub GITV} = 13.7%, ΔV90{sub PTV} = 37.6%, ΔD95{sub PTV} = 9.8 Gy, and ΔD{sub ISO} = 3.4 Gy. GITV = gross internal tumor volume. Conclusions: Local control in patients receiving who were planned to the same nominal dose with PB and CCC algorithms were statistically significantly different. Possible alternative explanations are described in the report, although they are not thought likely to explain the difference. We conclude that the difference is due to relative dosimetric underdosing of tumors with the PB algorithm.« less
Methodology for creating dedicated machine and algorithm on sunflower counting
NASA Astrophysics Data System (ADS)
Muracciole, Vincent; Plainchault, Patrick; Mannino, Maria-Rosaria; Bertrand, Dominique; Vigouroux, Bertrand
2007-09-01
In order to sell grain lots in European countries, seed industries need a government certification. This certification requests purity testing, seed counting in order to quantify specified seed species and other impurities in lots, and germination testing. These analyses are carried out within the framework of international trade according to the methods of the International Seed Testing Association. Presently these different analyses are still achieved manually by skilled operators. Previous works have already shown that seeds can be characterized by around 110 visual features (morphology, colour, texture), and thus have presented several identification algorithms. Until now, most of the works in this domain are computer based. The approach presented in this article is based on the design of dedicated electronic vision machine aimed to identify and sort seeds. This machine is composed of a FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor) and a PC bearing the GUI (Human Machine Interface) of the system. Its operation relies on the stroboscopic image acquisition of a seed falling in front of a camera. A first machine was designed according to this approach, in order to simulate all the vision chain (image acquisition, feature extraction, identification) under the Matlab environment. In order to perform this task into dedicated hardware, all these algorithms were developed without the use of the Matlab toolbox. The objective of this article is to present a design methodology for a special purpose identification algorithm based on distance between groups into dedicated hardware machine for seed counting.
Lung partitioning for x-ray CAD applications
NASA Astrophysics Data System (ADS)
Annangi, Pavan; Raja, Anand
2011-03-01
Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.
Algorithms and programming tools for image processing on the MPP, part 2
NASA Technical Reports Server (NTRS)
Reeves, Anthony P.
1986-01-01
A number of algorithms were developed for image warping and pyramid image filtering. Techniques were investigated for the parallel processing of a large number of independent irregular shaped regions on the MPP. In addition some utilities for dealing with very long vectors and for sorting were developed. Documentation pages for the algorithms which are available for distribution are given. The performance of the MPP for a number of basic data manipulations was determined. From these results it is possible to predict the efficiency of the MPP for a number of algorithms and applications. The Parallel Pascal development system, which is a portable programming environment for the MPP, was improved and better documentation including a tutorial was written. This environment allows programs for the MPP to be developed on any conventional computer system; it consists of a set of system programs and a library of general purpose Parallel Pascal functions. The algorithms were tested on the MPP and a presentation on the development system was made to the MPP users group. The UNIX version of the Parallel Pascal System was distributed to a number of new sites.
Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos
2017-04-13
Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm
NASA Astrophysics Data System (ADS)
Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun
2017-12-01
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
NASA Astrophysics Data System (ADS)
Danala, Gopichandh; Wang, Yunzhi; Thai, Theresa; Gunderson, Camille C.; Moxley, Katherine M.; Moore, Kathleen; Mannel, Robert S.; Cheng, Samuel; Liu, Hong; Zheng, Bin; Qiu, Yuchen
2017-02-01
Accurate tumor segmentation is a critical step in the development of the computer-aided detection (CAD) based quantitative image analysis scheme for early stage prognostic evaluation of ovarian cancer patients. The purpose of this investigation is to assess the efficacy of several different methods to segment the metastatic tumors occurred in different organs of ovarian cancer patients. In this study, we developed a segmentation scheme consisting of eight different algorithms, which can be divided into three groups: 1) Region growth based methods; 2) Canny operator based methods; and 3) Partial differential equation (PDE) based methods. A number of 138 tumors acquired from 30 ovarian cancer patients were used to test the performance of these eight segmentation algorithms. The results demonstrate each of the tested tumors can be successfully segmented by at least one of the eight algorithms without the manual boundary correction. Furthermore, modified region growth, classical Canny detector, and fast marching, and threshold level set algorithms are suggested in the future development of the ovarian cancer related CAD schemes. This study may provide meaningful reference for developing novel quantitative image feature analysis scheme to more accurately predict the response of ovarian cancer patients to the chemotherapy at early stage.
Spyrou, Loukianos; Martín-Lopez, David; Valentín, Antonio; Alarcón, Gonzalo; Sanei, Saeid
2016-06-01
Interictal epileptiform discharges (IEDs) are transient neural electrical activities that occur in the brain of patients with epilepsy. A problem with the inspection of IEDs from the scalp electroencephalogram (sEEG) is that for a subset of epileptic patients, there are no visually discernible IEDs on the scalp, rendering the above procedures ineffective, both for detection purposes and algorithm evaluation. On the other hand, intracranially placed electrodes yield a much higher incidence of visible IEDs as compared to concurrent scalp electrodes. In this work, we utilize concurrent scalp and intracranial EEG (iEEG) from a group of temporal lobe epilepsy (TLE) patients with low number of scalp-visible IEDs. The aim is to determine whether by considering the timing information of the IEDs from iEEG, the resulting concurrent sEEG contains enough information for the IEDs to be reliably distinguished from non-IED segments. We develop an automatic detection algorithm which is tested in a leave-subject-out fashion, where each test subject's detection algorithm is based on the other patients' data. The algorithm obtained a [Formula: see text] accuracy in recognizing scalp IED from non-IED segments with [Formula: see text] accuracy when trained and tested on the same subject. Also, it was able to identify nonscalp-visible IED events for most patients with a low number of false positive detections. Our results represent a proof of concept that IED information for TLE patients is contained in scalp EEG even if they are not visually identifiable and also that between subject differences in the IED topology and shape are small enough such that a generic algorithm can be used.
NASA Astrophysics Data System (ADS)
Niazmardi, S.; Safari, A.; Homayouni, S.
2017-09-01
Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.
The serial message-passing schedule for LDPC decoding algorithms
NASA Astrophysics Data System (ADS)
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
NASA Technical Reports Server (NTRS)
Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen
1987-01-01
NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.
Perceptron Genetic to Recognize Openning Strategy Ruy Lopez
NASA Astrophysics Data System (ADS)
Azmi, Zulfian; Mawengkang, Herman
2018-01-01
The application of Perceptron method is not effective for coding on hardware based systems because it is not real time learning. With Genetic algorithm approach in calculating and searching the best weight (fitness value) system will do learning only one iteration. And the results of this analysis were tested in the case of the introduction of the opening pattern of chess Ruy Lopez. The Analysis with Perceptron Model with Algorithm Approach Genetics from group Artificial Neural Network for open Ruy Lopez. The data is processed with base open chess, with step eight a position white Pion from end open chess. Using perceptron method have many input and one output process many weight and refraction until output equal goal. Data trained and test with software Matlab and system can recognize the chess opening Ruy Lopez or Not open Ruy Lopez with Real time.
VANNI, S.; CASATI, C.; MORONI, F.; RISSO, M.; OTTAVIANI, M.; NAZERIAN, P.; GRIFONI, S.; VANNUCCHI, P.
2014-01-01
SUMMARY Vertigo is generally due to a benign disorder, but it is the most common symptom associated with misdiagnosis of stroke. In this pilot study, we preliminarily assessed the diagnostic performance of a structured bedside algorithm to differentiate central from non-central acute vertigo (AV). Adult patients presenting to a single Emergency Department with vertigo were evaluated with STANDING (SponTAneous Nystagmus, Direction, head Impulse test, standiNG) by one of five trained emergency physicians or evaluated ordinarily by the rest of the medical staff (control group). The gold standard was a complete audiologic evaluation by a clinicians who are experts in assessing dizzy patients and neuroimaging. Reliability, sensibility and specificity of STANDING were calculated. Moreover, to evaluate the potential clinical impact of STANDING, neuroimaging and hospitalisation rates were compared with control group. A total of 292 patients were included, and 48 (16.4%) had a diagnosis of central AV. Ninety-eight (33.4%) patients were evaluated with STANDING. The test had good interobserver agreement (k = 0.76), with very high sensitivity (100%, 95%CI 72.3-100%) and specificity (94.3%, 95%CI 90.7-94.3%). Furthermore, hospitalisation and neuroimaging test rates were lower in the STANDING than in the control group (27.6% vs. 50.5% and 31.6% vs. 71.1%, respectively). In conclusion, STANDING seems to be a promising simple structured bedside algorithm that in this preliminary study identified central AV with a very high sensitivity, and was associated with significant reduction of neuroimaging and hospitalisation rates. PMID:25762835
Testing an earthquake prediction algorithm
Kossobokov, V.G.; Healy, J.H.; Dewey, J.W.
1997-01-01
A test to evaluate earthquake prediction algorithms is being applied to a Russian algorithm known as M8. The M8 algorithm makes intermediate term predictions for earthquakes to occur in a large circle, based on integral counts of transient seismicity in the circle. In a retroactive prediction for the period January 1, 1985 to July 1, 1991 the algorithm as configured for the forward test would have predicted eight of ten strong earthquakes in the test area. A null hypothesis, based on random assignment of predictions, predicts eight earthquakes in 2.87% of the trials. The forward test began July 1, 1991 and will run through December 31, 1997. As of July 1, 1995, the algorithm had forward predicted five out of nine earthquakes in the test area, which success ratio would have been achieved in 53% of random trials with the null hypothesis.
Kang, Le; Carter, Randy; Darcy, Kathleen; Kauderer, James; Liao, Shu-Yuan
2013-01-01
In this article we use a latent class model (LCM) with prevalence modeled as a function of covariates to assess diagnostic test accuracy in situations where the true disease status is not observed, but observations on three or more conditionally independent diagnostic tests are available. A fast Monte Carlo EM (MCEM) algorithm with binary (disease) diagnostic data is implemented to estimate parameters of interest; namely, sensitivity, specificity, and prevalence of the disease as a function of covariates. To obtain standard errors for confidence interval construction of estimated parameters, the missing information principle is applied to adjust information matrix estimates. We compare the adjusted information matrix based standard error estimates with the bootstrap standard error estimates both obtained using the fast MCEM algorithm through an extensive Monte Carlo study. Simulation demonstrates that the adjusted information matrix approach estimates the standard error similarly with the bootstrap methods under certain scenarios. The bootstrap percentile intervals have satisfactory coverage probabilities. We then apply the LCM analysis to a real data set of 122 subjects from a Gynecologic Oncology Group (GOG) study of significant cervical lesion (S-CL) diagnosis in women with atypical glandular cells of undetermined significance (AGC) to compare the diagnostic accuracy of a histology-based evaluation, a CA-IX biomarker-based test and a human papillomavirus (HPV) DNA test. PMID:24163493
Model-based testing with UML applied to a roaming algorithm for bluetooth devices.
Dai, Zhen Ru; Grabowski, Jens; Neukirchen, Helmut; Pals, Holger
2004-11-01
In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004, it has become an official standard of the OMG. The UML 2.0 Testing Profile provides support for UML based model-driven testing. This paper introduces a methodology on how to use the testing profile in order to modify and extend an existing UML design model for test issues. The application of the methodology will be explained by applying it to an existing UML Model for a Bluetooth device.
Evidence-based best practices for EGFR T790M testing in lung cancer in Canada.
Stockley, T; Souza, C A; Cheema, P K; Melosky, B; Kamel-Reid, S; Tsao, M S; Spatz, A; Karsan, A
2018-04-01
Epidermal growth factor receptor (egfr) tyrosine kinase inhibitors (tkis) are recommended as first-line systemic therapy for patients with non-small-cell lung cancer (nsclc) having mutations in the EGFR gene. Resistance to tkis eventually occurs in all nsclc patients treated with such drugs. In patients with resistance to tkis caused by the EGFR T790M mutation, the third-generation tki osimertinib is now the standard of care. For optimal patient management, accurate EGFR T790M testing is required. A multidisciplinary working group of pathologists, laboratory medicine specialists, medical oncologists, a respirologist, and a thoracic radiologist from across Canada was convened to discuss best practices for EGFR T790M mutation testing in Canada. The group made recommendations in the areas of the testing algorithm and the pre-analytic, analytic, and post-analytic aspects of clinical testing for both tissue testing and liquid biopsy circulating tumour dna testing. The recommendations aim to improve EGFR T790M testing in Canada and to thereby improve patient care.
Huang, Ting-Shuo; Huang, Shie-Shian; Shyu, Yu-Chiau; Lee, Chun-Hui; Jwo, Shyh-Chuan; Chen, Pei-Jer; Chen, Huang-Yang
2014-01-01
Procalcitonin (PCT)-based algorithms have been used to guide antibiotic therapy in several clinical settings. However, evidence supporting PCT-based algorithms for secondary peritonitis after emergency surgery is scanty. In this study, we aimed to investigate whether a PCT-based algorithm could safely reduce antibiotic exposure in this population. From April 2012 to March 2013, patients that had secondary peritonitis diagnosed at the emergency department and underwent emergency surgery were screened for eligibility. PCT levels were obtained pre-operatively, on post-operative days 1, 3, 5, and 7, and on subsequent days if needed. Antibiotics were discontinued if PCT was <1.0 ng/mL or decreased by 80% versus day 1, with resolution of clinical signs. Primary endpoints were time to discontinuation of intravenous antibiotics for the first episode and adverse events. Historical controls were retrieved for propensity score matching. After matching, 30 patients in the PCT group and 60 in the control were included for analysis. The median duration of antibiotic exposure in PCT group was 3.4 days (interquartile range [IQR] 2.2 days), while 6.1 days (IQR 3.2 days) in control (p < 0.001). The PCT algorithm significantly improves time to antibiotic discontinuation (p < 0.001, log-rank test). The rates of adverse events were comparable between 2 groups. Multivariate-adjusted extended Cox model demonstrated that the PCT-based algorithm was significantly associated with a 87% reduction in hazard of antibiotic exposure within 7 days (hazard ratio [HR] 0.13, 95% CI 0.07-0.21, p < 0.001), and a 68% reduction in hazard after 7 days (adjusted HR 0.32, 95% CI 0.11-0.99, p = 0.047). Advanced age, coexisting pulmonary diseases, and higher severity of illness were significantly associated with longer durations of antibiotic use. The PCT-based algorithm safely reduces antibiotic exposure in this study. Further randomized trials are needed to confirm our findings and incorporate cost-effectiveness analysis. Australian New Zealand Clinical Trials Registry ACTRN12612000601831.
Koltz, Peter F; Frey, Jordan D; Bell, Derek E; Girotto, John A; Christiano, Jose G; Langstein, Howard N
2013-11-01
Ventral hernia repair (VHR) continues to evolve and now frequently includes some form of component separation (CS) for large defects. To determine the optimal technique for VHR, we evaluated our outcomes before and after we refined and simplified our algorithm for repair. One hundred five consecutive patients undergoing VHR for large midline hernias over 9 years were examined. Patients were divided into those operated on after (group 1) and before (group 2) the institution of our simplified algorithm. Our algorithm emphasizes careful patient selection and a stepwise approach including, but not limited to, bilateral CS if appropriate, preservation of large perforators, retrorectus mesh placement as appropriate, linea alba or midline fascial closure, and vertical panniculectomy. Primary outcomes evaluated included wound infection, dehiscence, and hernia recurrence. Seventy-eight (74.3%) patients underwent repair using our algorithm (group 1), whereas 27 (25.7%) underwent repair before utilization of this algorithm (group 2). Ninety-eight (93.3%) underwent CS, whereas 7 (6.7%) underwent another form of VHR. There was no significant difference in patient age or defect size. The mean follow-up period in days for patients in group 1 and group 2 were 184.02 and 526.06, respectively (P < 0.001). Hernia recurrence in group 1 was 2.6% versus 29.6% in group 2 (P < 0.001). The incidence of wound infection in group 1 was 10.3%, whereas that in group 2 was 33.3% (P < 0.001). The rate of wound dehiscence in group 1 was 17.9% versus 25.9% in group 2 (P < 0.001). Simplifying and unifying our algorithm for VHR, notably with utilization of CS, has yielded improved results. Recurrence and wound healing complications using this approach are favorable compared with published outcomes.
NASA Astrophysics Data System (ADS)
Huang, Ding-jiang; Ivanova, Nataliya M.
2016-02-01
In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.
Similarity regularized sparse group lasso for cup to disc ratio computation.
Cheng, Jun; Zhang, Zhuo; Tao, Dacheng; Wong, Damon Wing Kee; Liu, Jiang; Baskaran, Mani; Aung, Tin; Wong, Tien Yin
2017-08-01
Automatic cup to disc ratio (CDR) computation from color fundus images has shown to be promising for glaucoma detection. Over the past decade, many algorithms have been proposed. In this paper, we first review the recent work in the area and then present a novel similarity-regularized sparse group lasso method for automated CDR estimation. The proposed method reconstructs the testing disc image based on a set of reference disc images by integrating the similarity between testing and the reference disc images with the sparse group lasso constraints. The reconstruction coefficients are then used to estimate the CDR of the testing image. The proposed method has been validated using 650 images with manually annotated CDRs. Experimental results show an average CDR error of 0.0616 and a correlation coefficient of 0.7, outperforming other methods. The areas under curve in the diagnostic test reach 0.843 and 0.837 when manual and automatically segmented discs are used respectively, better than other methods as well.
Emanuele, Vincent A; Panicker, Gitika; Gurbaxani, Brian M; Lin, Jin-Mann S; Unger, Elizabeth R
2012-01-01
SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.
Automated video-based detection of nocturnal convulsive seizures in a residential care setting.
Geertsema, Evelien E; Thijs, Roland D; Gutter, Therese; Vledder, Ben; Arends, Johan B; Leijten, Frans S; Visser, Gerhard H; Kalitzin, Stiliyan N
2018-06-01
People with epilepsy need assistance and are at risk of sudden death when having convulsive seizures (CS). Automated real-time seizure detection systems can help alert caregivers, but wearable sensors are not always tolerated. We determined algorithm settings and investigated detection performance of a video algorithm to detect CS in a residential care setting. The algorithm calculates power in the 2-6 Hz range relative to 0.5-12.5 Hz range in group velocity signals derived from video-sequence optical flow. A detection threshold was found using a training set consisting of video-electroencephalogaphy (EEG) recordings of 72 CS. A test set consisting of 24 full nights of 12 new subjects in residential care and additional recordings of 50 CS selected randomly was used to estimate performance. All data were analyzed retrospectively. The start and end of CS (generalized clonic and tonic-clonic seizures) and other seizures considered desirable to detect (long generalized tonic, hyperkinetic, and other major seizures) were annotated. The detection threshold was set to the value that obtained 97% sensitivity in the training set. Sensitivity, latency, and false detection rate (FDR) per night were calculated in the test set. A seizure was detected when the algorithm output exceeded the threshold continuously for 2 seconds. With the detection threshold determined in the training set, all CS were detected in the test set (100% sensitivity). Latency was ≤10 seconds in 78% of detections. Three/five hyperkinetic and 6/9 other major seizures were detected. Median FDR was 0.78 per night and no false detections occurred in 9/24 nights. Our algorithm could improve safety unobtrusively by automated real-time detection of CS in video registrations, with an acceptable latency and FDR. The algorithm can also detect some other motor seizures requiring assistance. © 2018 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Recognition of military-specific physical activities with body-fixed sensors.
Wyss, Thomas; Mäder, Urs
2010-11-01
The purpose of this study was to develop and validate an algorithm for recognizing military-specific, physically demanding activities using body-fixed sensors. To develop the algorithm, the first group of study participants (n = 15) wore body-fixed sensors capable of measuring acceleration, step frequency, and heart rate while completing six military-specific activities: walking, marching with backpack, lifting and lowering loads, lifting and carrying loads, digging, and running. The accuracy of the algorithm was tested in these isolated activities in a laboratory setting (n = 18) and in the context of daily military training routine (n = 24). The overall recognition rates during isolated activities and during daily military routine activities were 87.5% and 85.5%, respectively. We conclude that the algorithm adequately recognized six military-specific physical activities based on sensor data alone both in a laboratory setting and in the military training environment. By recognizing type of physical activities this objective method provides additional information on military-job descriptions.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
A practical approach to implementing new CDC GBS guidelines.
Hill, Shawna M; Bridges, Margie A; Knudsen, Alexis L; Vezeau, Toni M
2013-01-01
Group beta streptococcus (GBS) is a well-documented pathogen causing serious maternal and fetal morbidity and mortality. The CDC guidelines for managing clients who test positive for GBS in pregnancy were revised and published in 2010. However, CDC and extant literature provide limited guidance on implementation strategies for these new recommendations. Although several algorithms are included in the CDC (2010) document, none combine the maternal risk factors for practical and consistent implementation from pregnancy to newborn. In response to confusion upon initial education of these guidelines, we developed an algorithm for maternal intrapartum management. In addition, we clarified the CDC (2010) newborn algorithm in response to provider request. Without altering the recommendations, both algorithms provide clarification of the CDC (2010) guidelines. The nursing process provides an organizational structure for the discussion of our efforts to translate the complex guidelines into practice. This article could provide other facilities with tools for dealing with specific aspects of the complex clinical management of perinatal GBS.
NASA Astrophysics Data System (ADS)
Liu, Chong-xin; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Tian, Qing-hua; Tian, Feng; Wang, Yong-jun; Rao, Lan; Mao, Yaya; Li, Deng-ao
2018-01-01
During the last decade, the orthogonal frequency division multiplexing radio-over-fiber (OFDM-ROF) system with adaptive modulation technology is of great interest due to its capability of raising the spectral efficiency dramatically, reducing the effects of fiber link or wireless channel, and improving the communication quality. In this study, according to theoretical analysis of nonlinear distortion and frequency selective fading on the transmitted signal, a low-complexity adaptive modulation algorithm is proposed in combination with sub-carrier grouping technology. This algorithm achieves the optimal performance of the system by calculating the average combined signal-to-noise ratio of each group and dynamically adjusting the origination modulation format according to the preset threshold and user's requirements. At the same time, this algorithm takes the sub-carrier group as the smallest unit in the initial bit allocation and the subsequent bit adjustment. So, the algorithm complexity is only 1 /M (M is the number of sub-carriers in each group) of Fischer algorithm, which is much smaller than many classic adaptive modulation algorithms, such as Hughes-Hartogs algorithm, Chow algorithm, and is in line with the development direction of green and high speed communication. Simulation results show that the performance of OFDM-ROF system with the improved algorithm is much better than those without adaptive modulation, and the BER of the former achieves 10e1 to 10e2 times lower than the latter when SNR values gets larger. We can obtain that this low complexity adaptive modulation algorithm is extremely useful for the OFDM-ROF system.
Shoemaker, W C; Patil, R; Appel, P L; Kram, H B
1992-11-01
A generalized decision tree or clinical algorithm for treatment of high-risk elective surgical patients was developed from a physiologic model based on empirical data. First, a large data bank was used to do the following: (1) describe temporal hemodynamic and oxygen transport patterns that interrelate cardiac, pulmonary, and tissue perfusion functions in survivors and nonsurvivors; (2) define optimal therapeutic goals based on the supranormal oxygen transport values of high-risk postoperative survivors; (3) compare the relative effectiveness of alternative therapies in a wide variety of clinical and physiologic conditions; and (4) to develop criteria for titration of therapy to the endpoints of the supranormal optimal goals using cardiac index (CI), oxygen delivery (DO2), and oxygen consumption (VO2) as proxy outcome measures. Second, a general purpose algorithm was generated from these data and tested in preoperatively randomized clinical trials of high-risk surgical patients. Improved outcome was demonstrated with this generalized algorithm. The concept that the supranormal values represent compensations that have survival value has been corroborated by several other groups. We now propose a unique approach to refine the generalized algorithm to develop customized algorithms and individualized decision analysis for each patient's unique problems. The present article describes a preliminary evaluation of the feasibility of artificial intelligence techniques to accomplish individualized algorithms that may further improve patient care and outcome.
Mester, David; Ronin, Yefim; Schnable, Patrick; Aluru, Srinivas; Korol, Abraham
2015-01-01
Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time. PMID:25867943
Predicting coronary artery disease using different artificial neural network models.
Colak, M Cengiz; Colak, Cemil; Kocatürk, Hasan; Sağiroğlu, Seref; Barutçu, Irfan
2008-08-01
Eight different learning algorithms used for creating artificial neural network (ANN) models and the different ANN models in the prediction of coronary artery disease (CAD) are introduced. This work was carried out as a retrospective case-control study. Overall, 124 consecutive patients who had been diagnosed with CAD by coronary angiography (at least 1 coronary stenosis > 50% in major epicardial arteries) were enrolled in the work. Angiographically, the 113 people (group 2) with normal coronary arteries were taken as control subjects. Multi-layered perceptrons ANN architecture were applied. The ANN models trained with different learning algorithms were performed in 237 records, divided into training (n=171) and testing (n=66) data sets. The performance of prediction was evaluated by sensitivity, specificity and accuracy values based on standard definitions. The results have demonstrated that ANN models trained with eight different learning algorithms are promising because of high (greater than 71%) sensitivity, specificity and accuracy values in the prediction of CAD. Accuracy, sensitivity and specificity values varied between 83.63%-100%, 86.46%-100% and 74.67%-100% for training, respectively. For testing, the values were more than 71% for sensitivity, 76% for specificity and 81% for accuracy. It may be proposed that the use of different learning algorithms other than backpropagation and larger sample sizes can improve the performance of prediction. The proposed ANN models trained with these learning algorithms could be used a promising approach for predicting CAD without the need for invasive diagnostic methods and could help in the prognostic clinical decision.
VizieR Online Data Catalog: Gamma-ray AGN type determination (Hassan+, 2013)
NASA Astrophysics Data System (ADS)
Hassan, T.; Mirabal, N.; Contreras, J. L.; Oya, I.
2013-11-01
In this paper, we employ Support Vector Machines (SVMs) and Random Forest (RF) that embody two of the most robust supervised learning algorithms available today. We are interested in building classifiers that can distinguish between two AGN classes: BL Lacs and FSRQs. In the 2FGL, there is a total set of 1074 identified/associated AGN objects with the following labels: 'bzb' (BL Lacs), 'bzq' (FSRQs), 'agn' (other non-blazar AGN) and 'agu' (active galaxies of uncertain type). From this global set, we group the identified/associated blazars ('bzb' and 'bzq' labels) as the training/testing set of our algorithms. (2 data files).
Morrison, C S; Sekadde-Kigondu, C; Miller, W C; Weiner, D H; Sinei, S K
1999-02-01
Sexually transmitted diseases (STD) are an important contraindication for intrauterine device (IUD) insertion. Nevertheless, laboratory testing for STD is not possible in many settings. The objective of this study is to evaluate the use of risk assessment algorithms to predict STD and subsequent IUD-related complications among IUD candidates. Among 615 IUD users in Kenya, the following algorithms were evaluated: 1) an STD algorithm based on US Agency for International Development (USAID) Technical Working Group guidelines: 2) a Centers for Disease Control and Prevention (CDC) algorithm for management of chlamydia; and 3) a data-derived algorithm modeled from study data. Algorithms were evaluated for prediction of chlamydial and gonococcal infection at 1 month and complications (pelvic inflammatory disease [PID], IUD removals, and IUD expulsions) over 4 months. Women with STD were more likely to develop complications than women without STD (19% vs 6%; risk ratio = 2.9; 95% CI 1.3-6.5). For STD prediction, the USAID algorithm was 75% sensitive and 48% specific, with a positive likelihood ratio (LR+) of 1.4. The CDC algorithm was 44% sensitive and 72% specific, LR+ = 1.6. The data-derived algorithm was 91% sensitive and 56% specific, with LR+ = 2.0 and LR- = 0.2. Category-specific LR for this algorithm identified women with very low (< 1%) and very high (29%) infection probabilities. The data-derived algorithm was also the best predictor of IUD-related complications. These results suggest that use of STD algorithms may improve selection of IUD users. Women at high risk for STD could be counseled to avoid IUD, whereas women at moderate risk should be monitored closely and counseled to use condoms.
An extension of the QZ algorithm for solving the generalized matrix eigenvalue problem
NASA Technical Reports Server (NTRS)
Ward, R. C.
1973-01-01
This algorithm is an extension of Moler and Stewart's QZ algorithm with some added features for saving time and operations. Also, some additional properties of the QR algorithm which were not practical to implement in the QZ algorithm can be generalized with the combination shift QZ algorithm. Numerous test cases are presented to give practical application tests for algorithm. Based on results, this algorithm should be preferred over existing algorithms which attempt to solve the class of generalized eigenproblems where both matrices are singular or nearly singular.
Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation
Shen, Liang; Huang, Xiaotao; Fan, Chongyi
2018-01-01
Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used in both research and engineering fields. However, the original PSO generally suffers from premature convergence, especially in multimodal problems. In this paper, we propose a double-group PSO (DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution framework. The individuals are divided into two groups: an advantaged group and a disadvantaged group. The advantaged group works according to the original PSO, while two new strategies are developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing image segmentation. The results show that the proposed algorithm outperforms five other popular algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the proposed algorithm. PMID:29724013
Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation.
Shen, Liang; Huang, Xiaotao; Fan, Chongyi
2018-05-01
Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used in both research and engineering fields. However, the original PSO generally suffers from premature convergence, especially in multimodal problems. In this paper, we propose a double-group PSO (DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution framework. The individuals are divided into two groups: an advantaged group and a disadvantaged group. The advantaged group works according to the original PSO, while two new strategies are developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing image segmentation. The results show that the proposed algorithm outperforms five other popular algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the proposed algorithm.
A Procedure to Detect Item Bias Present Simultaneously in Several Items
1991-04-25
exhibit a coherent and major biasing influence at the test level. In partic- ular, this can be true even if each individual item displays only a minor...response functions (IRFs) without the use of item parameter estimation algorithms when the sample size is too small for their use. Thissen, Steinberg...convention). A random sample of examinees is drawn from each group, and a test of N items is administered to them. Typically it is suspected that a
Simulation System of Car Crash Test in C-NCAP Analysis Based on an Improved Apriori Algorithm*
NASA Astrophysics Data System (ADS)
Xiang, LI
In order to analysis car crash test in C-NCAP, an improved algorithm is given based on Apriori algorithm in this paper. The new algorithm is implemented with vertical data layout, breadth first searching, and intersecting. It takes advantage of the efficiency of vertical data layout and intersecting, and prunes candidate frequent item sets like Apriori. Finally, the new algorithm is applied in simulation of car crash test analysis system. The result shows that the relations will affect the C-NCAP test results, and it can provide a reference for the automotive design.
Chang, Chih-Hua
2015-03-09
This paper proposes new inversion algorithms for the estimation of Chlorophyll-a concentration (Chla) and the ocean's inherent optical properties (IOPs) from the measurement of remote sensing reflectance (Rrs). With in situ data from the NASA bio-optical marine algorithm data set (NOMAD), inversion algorithms were developed by the novel gene expression programming (GEP) approach, which creates, manipulates and selects the most appropriate tree-structured functions based on evolutionary computing. The limitations and validity of the proposed algorithms are evaluated by simulated Rrs spectra with respect to NOMAD, and a closure test for IOPs obtained at a single reference wavelength. The application of GEP-derived algorithms is validated against in situ, synthetic and satellite match-up data sets compiled by NASA and the International Ocean Color Coordinate Group (IOCCG). The new algorithms are able to provide Chla and IOPs retrievals to those derived by other state-of-the-art regression approaches and obtained with the semi- and quasi-analytical algorithms, respectively. In practice, there are no significant differences between GEP, support vector regression, and multilayer perceptron model in terms of the overall performance. The GEP-derived algorithms are successfully applied in processing the images taken by the Sea Wide Field-of-view Sensor (SeaWiFS), generate Chla and IOPs maps which show better details of developing algal blooms, and give more information on the distribution of water constituents between different water bodies.
A Strategy toward Collaborative Filter Recommended Location Service for Privacy Protection
Wang, Peng; Yang, Jing; Zhang, Jianpei
2018-01-01
A new collaborative filtered recommendation strategy was proposed for existing privacy and security issues in location services. In this strategy, every user establishes his/her own position profiles according to their daily position data, which is preprocessed using a density clustering method. Then, density prioritization was used to choose similar user groups as service request responders and the neighboring users in the chosen groups recommended appropriate location services using a collaborative filter recommendation algorithm. The two filter algorithms based on position profile similarity and position point similarity measures were designed in the recommendation, respectively. At the same time, the homomorphic encryption method was used to transfer location data for effective protection of privacy and security. A real location dataset was applied to test the proposed strategy and the results showed that the strategy provides better location service and protects users’ privacy. PMID:29751670
A Strategy toward Collaborative Filter Recommended Location Service for Privacy Protection.
Wang, Peng; Yang, Jing; Zhang, Jianpei
2018-05-11
A new collaborative filtered recommendation strategy was proposed for existing privacy and security issues in location services. In this strategy, every user establishes his/her own position profiles according to their daily position data, which is preprocessed using a density clustering method. Then, density prioritization was used to choose similar user groups as service request responders and the neighboring users in the chosen groups recommended appropriate location services using a collaborative filter recommendation algorithm. The two filter algorithms based on position profile similarity and position point similarity measures were designed in the recommendation, respectively. At the same time, the homomorphic encryption method was used to transfer location data for effective protection of privacy and security. A real location dataset was applied to test the proposed strategy and the results showed that the strategy provides better location service and protects users' privacy.
García-Massó, X; Serra-Añó, P; Gonzalez, L M; Ye-Lin, Y; Prats-Boluda, G; Garcia-Casado, J
2015-10-01
This was a cross-sectional study. The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI). The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers. We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%). With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.
Hoenigl, Martin; Graff-Zivin, Joshua; Little, Susan J.
2016-01-01
Background. In nonhealthcare settings, widespread screening for acute human immunodeficiency virus (HIV) infection (AHI) is limited by cost and decision algorithms to better prioritize use of resources. Comparative cost analyses for available strategies are lacking. Methods. To determine cost-effectiveness of community-based testing strategies, we evaluated annual costs of 3 algorithms that detect AHI based on HIV nucleic acid amplification testing (EarlyTest algorithm) or on HIV p24 antigen (Ag) detection via Architect (Architect algorithm) or Determine (Determine algorithm) as well as 1 algorithm that relies on HIV antibody testing alone (Antibody algorithm). The cost model used data on men who have sex with men (MSM) undergoing community-based AHI screening in San Diego, California. Incremental cost-effectiveness ratios (ICERs) per diagnosis of AHI were calculated for programs with HIV prevalence rates between 0.1% and 2.9%. Results. Among MSM in San Diego, EarlyTest was cost-savings (ie, ICERs per AHI diagnosis less than $13.000) when compared with the 3 other algorithms. Cost analyses relative to regional HIV prevalence showed that EarlyTest was cost-effective (ie, ICERs less than $69.547) for similar populations of MSM with an HIV prevalence rate >0.4%; Architect was the second best alternative for HIV prevalence rates >0.6%. Conclusions. Identification of AHI by the dual EarlyTest screening algorithm is likely to be cost-effective not only among at-risk MSM in San Diego but also among similar populations of MSM with HIV prevalence rates >0.4%. PMID:26508512
Keohane, Bernie M; Mason, Steve M; Baguley, David M
2004-02-01
A novel auditory brainstem response (ABR) detection and scoring algorithm, entitled the Vector algorithm is described. An independent clinical evaluation of the algorithm using 464 tests (120 non-stimulated and 344 stimulated tests) on 60 infants, with a mean age of approximately 6.5 weeks, estimated test sensitivity greater than 0.99 and test specificity at 0.87 for one test. Specificity was estimated to be greater than 0.95 for a two stage screen. Test times were of the order of 1.5 minutes per ear for detection of an ABR and 4.5 minutes per ear in the absence of a clear response. The Vector algorithm is commercially available for both automated screening and threshold estimation in hearing screening devices.
Injecting Errors for Testing Built-In Test Software
NASA Technical Reports Server (NTRS)
Gender, Thomas K.; Chow, James
2010-01-01
Two algorithms have been conceived to enable automated, thorough testing of Built-in test (BIT) software. The first algorithm applies to BIT routines that define pass/fail criteria based on values of data read from such hardware devices as memories, input ports, or registers. This algorithm simulates effects of errors in a device under test by (1) intercepting data from the device and (2) performing AND operations between the data and the data mask specific to the device. This operation yields values not expected by the BIT routine. This algorithm entails very small, permanent instrumentation of the software under test (SUT) for performing the AND operations. The second algorithm applies to BIT programs that provide services to users application programs via commands or callable interfaces and requires a capability for test-driver software to read and write the memory used in execution of the SUT. This algorithm identifies all SUT code execution addresses where errors are to be injected, then temporarily replaces the code at those addresses with small test code sequences to inject latent severe errors, then determines whether, as desired, the SUT detects the errors and recovers
Stuart, Samuel; Hickey, Aodhán; Galna, Brook; Lord, Sue; Rochester, Lynn; Godfrey, Alan
2017-01-01
Detection of saccades (fast eye-movements) within raw mobile electrooculography (EOG) data involves complex algorithms which typically process data acquired during seated static tasks only. Processing of data during dynamic tasks such as walking is relatively rare and complex, particularly in older adults or people with Parkinson's disease (PD). Development of algorithms that can be easily implemented to detect saccades is required. This study aimed to develop an algorithm for the detection and measurement of saccades in EOG data during static (sitting) and dynamic (walking) tasks, in older adults and PD. Eye-tracking via mobile EOG and infra-red (IR) eye-tracker (with video) was performed with a group of older adults (n = 10) and PD participants (n = 10) (⩾50 years). Horizontal saccades made between targets set 5°, 10° and 15° apart were first measured while seated. Horizontal saccades were then measured while a participant walked and executed a 40° turn left and right. The EOG algorithm was evaluated by comparing the number of correct saccade detections and agreement (ICC 2,1 ) between output from visual inspection of eye-tracker videos and IR eye-tracker. The EOG algorithm detected 75-92% of saccades compared to video inspection and IR output during static testing, with fair to excellent agreement (ICC 2,1 0.49-0.93). However, during walking EOG saccade detection reduced to 42-88% compared to video inspection or IR output, with poor to excellent (ICC 2,1 0.13-0.88) agreement between methodologies. The algorithm was robust during seated testing but less so during walking, which was likely due to increased measurement and analysis error with a dynamic task. Future studies may consider a combination of EOG and IR for comprehensive measurement.
A pragmatic evidence-based clinical management algorithm for burning mouth syndrome.
Kim, Yohanan; Yoo, Timothy; Han, Peter; Liu, Yuan; Inman, Jared C
2018-04-01
Burning mouth syndrome is a poorly understood disease process with no current standard of treatment. The goal of this article is to provide an evidence-based, practical, clinical algorithm as a guideline for the treatment of burning mouth syndrome. Using available evidence and clinical experience, a multi-step management algorithm was developed. A retrospective cohort study was then performed, following STROBE statement guidelines, comparing outcomes of patients who were managed using the algorithm and those who were managed without. Forty-seven patients were included in the study, with 21 (45%) managed using the algorithm and 26 (55%) managed without. The mean age overall was 60.4 ±16.5 years, and most patients (39, 83%) were female. Cohorts showed no statistical difference in age, sex, overall follow-up time, dysgeusia, geographic tongue, or psychiatric disorder; xerostomia, however, was significantly different, skewed toward the algorithm group. Significantly more non-algorithm patients did not continue care (69% vs. 29%, p =0.001). The odds ratio of not continuing care for the non-algorithm group compared to the algorithm group was 5.6 [1.6, 19.8]. Improvement in pain was significantly more likely in the algorithm group ( p =0.001), with an odds ratio of 27.5 [3.1, 242.0]. We present a basic clinical management algorithm for burning mouth syndrome which may increase the likelihood of pain improvement and patient follow-up. Key words: Burning mouth syndrome, burning tongue, glossodynia, oral pain, oral burning, therapy, treatment.
[Chronic diarrhoea: Definition, classification and diagnosis].
Fernández-Bañares, Fernando; Accarino, Anna; Balboa, Agustín; Domènech, Eugeni; Esteve, Maria; Garcia-Planella, Esther; Guardiola, Jordi; Molero, Xavier; Rodríguez-Luna, Alba; Ruiz-Cerulla, Alexandra; Santos, Javier; Vaquero, Eva
2016-10-01
Chronic diarrhoea is a common presenting symptom in both primary care medicine and in specialized gastroenterology clinics. It is estimated that >5% of the population has chronic diarrhoea and nearly 40% of these patients are older than 60 years. Clinicians often need to select the best diagnostic approach to these patients and choose between the multiple diagnostic tests available. In 2014 the Catalan Society of Gastroenterology formed a working group with the main objective of creating diagnostic algorithms based on clinical practice and to evaluate diagnostic tests and the scientific evidence available for their use. The GRADE system was used to classify scientific evidence and strength of recommendations. The consensus document contains 28 recommendations and 6 diagnostic algorithms. The document also describes criteria for referral from primary to specialized care. Copyright © 2015 Elsevier España, S.L.U. y AEEH y AEG. All rights reserved.
Solder Joint Health Monitoring Testbed
NASA Technical Reports Server (NTRS)
Delaney, Michael M.; Flynn, James; Browder, Mark
2009-01-01
A method of monitoring the health of selected solder joints, called SJ-BIST, has been developed by Ridgetop Group Inc. under a Small Business Innovative Research (SBIR) contract. The primary goal of this research program is to test and validate this method in a flight environment using realistically seeded faults in selected solder joints. An additional objective is to gather environmental data for future development of physics-based and data-driven prognostics algorithms. A test board is being designed using a Xilinx FPGA. These boards will be tested both in flight and on the ground using a shaker table and an altitude chamber.
Bio-ALIRT biosurveillance detection algorithm evaluation.
Siegrist, David; Pavlin, J
2004-09-24
Early detection of disease outbreaks by a medical biosurveillance system relies on two major components: 1) the contribution of early and reliable data sources and 2) the sensitivity, specificity, and timeliness of biosurveillance detection algorithms. This paper describes an effort to assess leading detection algorithms by arranging a common challenge problem and providing a common data set. The objectives of this study were to determine whether automated detection algorithms can reliably and quickly identify the onset of natural disease outbreaks that are surrogates for possible terrorist pathogen releases, and do so at acceptable false-alert rates (e.g., once every 2-6 weeks). Historic de-identified data were obtained from five metropolitan areas over 23 months; these data included International Classification of Diseases, Ninth Revision (ICD-9) codes related to respiratory and gastrointestinal illness syndromes. An outbreak detection group identified and labeled two natural disease outbreaks in these data and provided them to analysts for training of detection algorithms. All outbreaks in the remaining test data were identified but not revealed to the detection groups until after their analyses. The algorithms established a probability of outbreak for each day's counts. The probability of outbreak was assessed as an "actual" alert for different false-alert rates. The best algorithms were able to detect all of the outbreaks at false-alert rates of one every 2-6 weeks. They were often able to detect for the same day human investigators had identified as the true start of the outbreak. Because minimal data exists for an actual biologic attack, determining how quickly an algorithm might detect such an attack is difficult. However, application of these algorithms in combination with other data-analysis methods to historic outbreak data indicates that biosurveillance techniques for analyzing syndrome counts can rapidly detect seasonal respiratory and gastrointestinal illness outbreaks. Further research is needed to assess the value of electronic data sources for predictive detection. In addition, simulations need to be developed and implemented to better characterize the size and type of biologic attack that can be detected by current methods by challenging them under different projected operational conditions.
Kalderstam, Jonas; Edén, Patrik; Ohlsson, Mattias
2015-01-01
We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN) are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox) is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart), which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart's predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do.
Utility-based designs for randomized comparative trials with categorical outcomes
Murray, Thomas A.; Thall, Peter F.; Yuan, Ying
2016-01-01
A general utility-based testing methodology for design and conduct of randomized comparative clinical trials with categorical outcomes is presented. Numerical utilities of all elementary events are elicited to quantify their desirabilities. These numerical values are used to map the categorical outcome probability vector of each treatment to a mean utility, which is used as a one-dimensional criterion for constructing comparative tests. Bayesian tests are presented, including fixed sample and group sequential procedures, assuming Dirichlet-multinomial models for the priors and likelihoods. Guidelines are provided for establishing priors, eliciting utilities, and specifying hypotheses. Efficient posterior computation is discussed, and algorithms are provided for jointly calibrating test cutoffs and sample size to control overall type I error and achieve specified power. Asymptotic approximations for the power curve are used to initialize the algorithms. The methodology is applied to re-design a completed trial that compared two chemotherapy regimens for chronic lymphocytic leukemia, in which an ordinal efficacy outcome was dichotomized and toxicity was ignored to construct the trial’s design. The Bayesian tests also are illustrated by several types of categorical outcomes arising in common clinical settings. Freely available computer software for implementation is provided. PMID:27189672
Awaysheh, Abdullah; Wilcke, Jeffrey; Elvinger, François; Rees, Loren; Fan, Weiguo; Zimmerman, Kurt L
2016-11-01
Inflammatory bowel disease (IBD) and alimentary lymphoma (ALA) are common gastrointestinal diseases in cats. The very similar clinical signs and histopathologic features of these diseases make the distinction between them diagnostically challenging. We tested the use of supervised machine-learning algorithms to differentiate between the 2 diseases using data generated from noninvasive diagnostic tests. Three prediction models were developed using 3 machine-learning algorithms: naive Bayes, decision trees, and artificial neural networks. The models were trained and tested on data from complete blood count (CBC) and serum chemistry (SC) results for the following 3 groups of client-owned cats: normal, inflammatory bowel disease (IBD), or alimentary lymphoma (ALA). Naive Bayes and artificial neural networks achieved higher classification accuracy (sensitivities of 70.8% and 69.2%, respectively) than the decision tree algorithm (63%, p < 0.0001). The areas under the receiver-operating characteristic curve for classifying cases into the 3 categories was 83% by naive Bayes, 79% by decision tree, and 82% by artificial neural networks. Prediction models using machine learning provided a method for distinguishing between ALA-IBD, ALA-normal, and IBD-normal. The naive Bayes and artificial neural networks classifiers used 10 and 4 of the CBC and SC variables, respectively, to outperform the C4.5 decision tree, which used 5 CBC and SC variables in classifying cats into the 3 classes. These models can provide another noninvasive diagnostic tool to assist clinicians with differentiating between IBD and ALA, and between diseased and nondiseased cats. © 2016 The Author(s).
Camera-pose estimation via projective Newton optimization on the manifold.
Sarkis, Michel; Diepold, Klaus
2012-04-01
Determining the pose of a moving camera is an important task in computer vision. In this paper, we derive a projective Newton algorithm on the manifold to refine the pose estimate of a camera. The main idea is to benefit from the fact that the 3-D rigid motion is described by the special Euclidean group, which is a Riemannian manifold. The latter is equipped with a tangent space defined by the corresponding Lie algebra. This enables us to compute the optimization direction, i.e., the gradient and the Hessian, at each iteration of the projective Newton scheme on the tangent space of the manifold. Then, the motion is updated by projecting back the variables on the manifold itself. We also derive another version of the algorithm that employs homeomorphic parameterization to the special Euclidean group. We test the algorithm on several simulated and real image data sets. Compared with the standard Newton minimization scheme, we are now able to obtain the full numerical formula of the Hessian with a 60% decrease in computational complexity. Compared with Levenberg-Marquardt, the results obtained are more accurate while having a rather similar complexity.
A simple algorithm for the identification of clinical COPD phenotypes.
Burgel, Pierre-Régis; Paillasseur, Jean-Louis; Janssens, Wim; Piquet, Jacques; Ter Riet, Gerben; Garcia-Aymerich, Judith; Cosio, Borja; Bakke, Per; Puhan, Milo A; Langhammer, Arnulf; Alfageme, Inmaculada; Almagro, Pere; Ancochea, Julio; Celli, Bartolome R; Casanova, Ciro; de-Torres, Juan P; Decramer, Marc; Echazarreta, Andrés; Esteban, Cristobal; Gomez Punter, Rosa Mar; Han, MeiLan K; Johannessen, Ane; Kaiser, Bernhard; Lamprecht, Bernd; Lange, Peter; Leivseth, Linda; Marin, Jose M; Martin, Francis; Martinez-Camblor, Pablo; Miravitlles, Marc; Oga, Toru; Sofia Ramírez, Ana; Sin, Don D; Sobradillo, Patricia; Soler-Cataluña, Juan J; Turner, Alice M; Verdu Rivera, Francisco Javier; Soriano, Joan B; Roche, Nicolas
2017-11-01
This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses.Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative International Assessment (3CIA) initiative.Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated that the variables relevant for patient grouping differed markedly between patients with isolated respiratory disease (FEV 1 , dyspnoea grade) and those with multi-morbidity (dyspnoea grade, age, FEV 1 and body mass index). Application of this algorithm to the 3CIA cohorts confirmed that it identified subgroups of patients with different clinical characteristics, mortality rates (median, from 4% to 27%) and age at death (median, from 68 to 76 years).A simple algorithm, integrating respiratory characteristics and comorbidities, allowed the identification of clinically relevant COPD phenotypes. Copyright ©ERS 2017.
Using modified fruit fly optimisation algorithm to perform the function test and case studies
NASA Astrophysics Data System (ADS)
Pan, Wen-Tsao
2013-06-01
Evolutionary computation is a computing mode established by practically simulating natural evolutionary processes based on the concept of Darwinian Theory, and it is a common research method. The main contribution of this paper was to reinforce the function of searching for the optimised solution using the fruit fly optimization algorithm (FOA), in order to avoid the acquisition of local extremum solutions. The evolutionary computation has grown to include the concepts of animal foraging behaviour and group behaviour. This study discussed three common evolutionary computation methods and compared them with the modified fruit fly optimization algorithm (MFOA). It further investigated the ability of the three mathematical functions in computing extreme values, as well as the algorithm execution speed and the forecast ability of the forecasting model built using the optimised general regression neural network (GRNN) parameters. The findings indicated that there was no obvious difference between particle swarm optimization and the MFOA in regards to the ability to compute extreme values; however, they were both better than the artificial fish swarm algorithm and FOA. In addition, the MFOA performed better than the particle swarm optimization in regards to the algorithm execution speed, and the forecast ability of the forecasting model built using the MFOA's GRNN parameters was better than that of the other three forecasting models.
Comparing Binaural Pre-processing Strategies III
Warzybok, Anna; Ernst, Stephan M. A.
2015-01-01
A comprehensive evaluation of eight signal pre-processing strategies, including directional microphones, coherence filters, single-channel noise reduction, binaural beamformers, and their combinations, was undertaken with normal-hearing (NH) and hearing-impaired (HI) listeners. Speech reception thresholds (SRTs) were measured in three noise scenarios (multitalker babble, cafeteria noise, and single competing talker). Predictions of three common instrumental measures were compared with the general perceptual benefit caused by the algorithms. The individual SRTs measured without pre-processing and individual benefits were objectively estimated using the binaural speech intelligibility model. Ten listeners with NH and 12 HI listeners participated. The participants varied in age and pure-tone threshold levels. Although HI listeners required a better signal-to-noise ratio to obtain 50% intelligibility than listeners with NH, no differences in SRT benefit from the different algorithms were found between the two groups. With the exception of single-channel noise reduction, all algorithms showed an improvement in SRT of between 2.1 dB (in cafeteria noise) and 4.8 dB (in single competing talker condition). Model predictions with binaural speech intelligibility model explained 83% of the measured variance of the individual SRTs in the no pre-processing condition. Regarding the benefit from the algorithms, the instrumental measures were not able to predict the perceptual data in all tested noise conditions. The comparable benefit observed for both groups suggests a possible application of noise reduction schemes for listeners with different hearing status. Although the model can predict the individual SRTs without pre-processing, further development is necessary to predict the benefits obtained from the algorithms at an individual level. PMID:26721922
GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.
Academic consortium for the evaluation of computer-aided diagnosis (CADx) in mammography
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Freedman, Matthew T.; Wu, Chris Y.; Lo, Shih-Chung B.; Floyd, Carey E., Jr.; Lo, Joseph Y.; Chan, Heang-Ping; Helvie, Mark A.; Petrick, Nicholas; Sahiner, Berkman; Wei, Datong; Chakraborty, Dev P.; Clarke, Laurence P.; Kallergi, Maria; Clark, Bob; Kim, Yongmin
1995-04-01
Computer aided diagnosis (CADx) is a promising technology for the detection of breast cancer in screening mammography. A number of different approaches have been developed for CADx research that have achieved significant levels of performance. Research teams now recognize the need for a careful and detailed evaluation study of approaches to accelerate the development of CADx, to make CADx more clinically relevant and to optimize the CADx algorithms based on unbiased evaluations. The results of such a comparative study may provide each of the participating teams with new insights into the optimization of their individual CADx algorithms. This consortium of experienced CADx researchers is working as a group to compare results of the algorithms and to optimize the performance of CADx algorithms by learning from each other. Each institution will be contributing an equal number of cases that will be collected under a standard protocol for case selection, truth determination, and data acquisition to establish a common and unbiased database for the evaluation study. An evaluation procedure for the comparison studies are being developed to analyze the results of individual algorithms for each of the test cases in the common database. Optimization of individual CADx algorithms can be made based on the comparison studies. The consortium effort is expected to accelerate the eventual clinical implementation of CADx algorithms at participating institutions.
Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem
NASA Astrophysics Data System (ADS)
Korayem, L.; Khorsid, M.; Kassem, S. S.
2015-05-01
The capacitated vehicle routing problem (CVRP) is a class of the vehicle routing problems (VRPs). In CVRP a set of identical vehicles having fixed capacities are required to fulfill customers' demands for a single commodity. The main objective is to minimize the total cost or distance traveled by the vehicles while satisfying a number of constraints, such as: the capacity constraint of each vehicle, logical flow constraints, etc. One of the methods employed in solving the CVRP is the cluster-first route-second method. It is a technique based on grouping of customers into a number of clusters, where each cluster is served by one vehicle. Once clusters are formed, a route determining the best sequence to visit customers is established within each cluster. The recently bio-inspired grey wolf optimizer (GWO), introduced in 2014, has proven to be efficient in solving unconstrained, as well as, constrained optimization problems. In the current research, our main contributions are: combining GWO with the traditional K-means clustering algorithm to generate the ‘K-GWO’ algorithm, deriving a capacitated version of the K-GWO algorithm by incorporating a capacity constraint into the aforementioned algorithm, and finally, developing 2 new clustering heuristics. The resulting algorithm is used in the clustering phase of the cluster-first route-second method to solve the CVR problem. The algorithm is tested on a number of benchmark problems with encouraging results.
Odaga, John; Sinclair, David; Lokong, Joseph A; Donegan, Sarah; Hopkins, Heidi; Garner, Paul
2014-04-17
In 2010, the World Health Organization recommended that all patients with suspected malaria are tested for malaria before treatment. In rural African settings light microscopy is often unavailable. Diagnosis has relied on detecting fever, and most people were given antimalarial drugs presumptively. Rapid diagnostic tests (RDTs) provide a point-of-care test that may improve management, particularly of people for whom the RDT excludes the diagnosis of malaria. To evaluate whether introducing RDTs into algorithms for diagnosing and treating people with fever improves health outcomes, reduces antimalarial prescribing, and is safe, compared to algorithms using clinical diagnosis. We searched the Cochrane Infectious Disease Group Specialized Register; CENTRAL (The Cochrane Library); MEDLINE; EMBASE; CINAHL; LILACS; and the metaRegister of Controlled Trials for eligible trials up to 10 January 2014. We contacted researchers in the field and reviewed the reference lists of all included trials to identify any additional trials. Individual or cluster randomized trials (RCTs) comparing RDT-supported algorithms and algorithms using clinical diagnosis alone for diagnosing and treating people with fever living in malaria-endemic settings. Two authors independently applied the inclusion criteria and extracted data. We combined data from individually and cluster RCTs using the generic inverse variance method. We presented all outcomes as risk ratios (RR) with 95% confidence intervals (CIs), and assessed the quality of evidence using the GRADE approach. We included seven trials, enrolling 17,505 people with fever or reported history of fever in this review; two individually randomized trials and five cluster randomized trials. All trials were conducted in rural African settings.In most trials the health workers diagnosing and treating malaria were nurses or clinical officers with less than one week of training in RDT supported diagnosis. Health worker prescribing adherence to RDT results was highly variable: the number of participants with a negative RDT result who received antimalarials ranged from 0% to 81%.Overall, RDT supported diagnosis had little or no effect on the number of participants remaining unwell at four to seven days after treatment (6990 participants, five trials, low quality evidence); but using RDTs reduced prescribing of antimalarials by up to three-quarters (17,287 participants, seven trials, moderate quality evidence). As would be expected, the reduction in antimalarial prescriptions was highest where health workers adherence to the RDT result was high, and where the true prevalence of malaria was lower.Using RDTs to support diagnosis did not have a consistent effect on the prescription of antibiotics, with some trials showing higher antibiotic prescribing and some showing lower prescribing in the RDT group (13,573 participants, five trials, very low quality evidence).One trial reported malaria microscopy on all enrolled patients in an area of moderate endemicity, so we could compare the number of patients in the RDT and clinical diagnosis groups that actually had microscopy confirmed malaria infection but did not receive antimalarials. No difference was detected between the two diagnostic strategies (1280 participants, one trial, low quality evidence). Algorithms incorporating RDTs can substantially reduce antimalarial prescribing if health workers adhere to the test results. Introducing RDTs has not been shown to improve health outcomes for patients, but adherence to the test result does not seem to result in worse clinical outcomes than presumptive treatment.Concentrating on improving the care of RDT negative patients could improve health outcomes in febrile children.
Liu, Haorui; Yi, Fengyan; Yang, Heli
2016-01-01
The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584
NASA Astrophysics Data System (ADS)
Chang, Bingguo; Chen, Xiaofei
2018-05-01
Ultrasonography is an important examination for the diagnosis of chronic liver disease. The doctor gives the liver indicators and suggests the patient's condition according to the description of ultrasound report. With the rapid increase in the amount of data of ultrasound report, the workload of professional physician to manually distinguish ultrasound results significantly increases. In this paper, we use the spectral clustering method to cluster analysis of the description of the ultrasound report, and automatically generate the ultrasonic diagnostic diagnosis by machine learning. 110 groups ultrasound examination report of chronic liver disease were selected as test samples in this experiment, and the results were validated by spectral clustering and compared with k-means clustering algorithm. The results show that the accuracy of spectral clustering is 92.73%, which is higher than that of k-means clustering algorithm, which provides a powerful ultrasound-assisted diagnosis for patients with chronic liver disease.
Validation of Community Models: Identifying Events in Space Weather Model Timelines
NASA Technical Reports Server (NTRS)
MacNeice, Peter
2009-01-01
I develop and document a set of procedures which test the quality of predictions of solar wind speed and polarity of the interplanetary magnetic field (IMF) made by coupled models of the ambient solar corona and heliosphere. The Wang-Sheeley-Arge (WSA) model is used to illustrate the application of these validation procedures. I present an algorithm which detects transitions of the solar wind from slow to high speed. I also present an algorithm which processes the measured polarity of the outward directed component of the IMF. This removes high-frequency variations to expose the longer-scale changes that reflect IMF sector changes. I apply these algorithms to WSA model predictions made using a small set of photospheric synoptic magnetograms obtained by the Global Oscillation Network Group as input to the model. The results of this preliminary validation of the WSA model (version 1.6) are summarized.
Guler, Hasan; Kilic, Ugur
2018-03-01
Weaning is important for patients and clinicians who have to determine correct weaning time so that patients do not become addicted to the ventilator. There are already some predictors developed, such as the rapid shallow breathing index (RSBI), the pressure time index (PTI), and Jabour weaning index. Many important dimensions of weaning are sometimes ignored by these predictors. This is an attempt to develop a knowledge-based weaning process via fuzzy logic that eliminates the disadvantages of the present predictors. Sixteen vital parameters listed in published literature have been used to determine the weaning decisions in the developed system. Since there are considered to be too many individual parameters in it, related parameters were grouped together to determine acid-base balance, adequate oxygenation, adequate pulmonary function, hemodynamic stability, and the psychological status of the patients. To test the performance of the developed algorithm, 20 clinical scenarios were generated using Monte Carlo simulations and the Gaussian distribution method. The developed knowledge-based algorithm and RSBI predictor were applied to the generated scenarios. Finally, a clinician evaluated each clinical scenario independently. The Student's t test was used to show the statistical differences between the developed weaning algorithm, RSBI, and the clinician's evaluation. According to the results obtained, there were no statistical differences between the proposed methods and the clinician evaluations.
Obtaining highly excited eigenstates of the localized XX chain via DMRG-X.
Devakul, Trithep; Khemani, Vedika; Pollmann, Frank; Huse, David A; Sondhi, S L
2017-12-13
We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes. We discuss the theoretical constraints on the performance of the algorithm from the entanglement properties of the eigenstates, and its actual performance at different values of disorder. A small but significant improvement to the algorithm is also presented, which helps significantly with convergence. We find that, at high entanglement, DMRG-X shows a bias towards eigenstates with low entanglement, but can be improved with increased bond dimension. This result suggests that one must be careful when applying the algorithm for interacting many-body localized spin models near a transition.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).
Obtaining highly excited eigenstates of the localized XX chain via DMRG-X
NASA Astrophysics Data System (ADS)
Devakul, Trithep; Khemani, Vedika; Pollmann, Frank; Huse, David A.; Sondhi, S. L.
2017-10-01
We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes. We discuss the theoretical constraints on the performance of the algorithm from the entanglement properties of the eigenstates, and its actual performance at different values of disorder. A small but significant improvement to the algorithm is also presented, which helps significantly with convergence. We find that, at high entanglement, DMRG-X shows a bias towards eigenstates with low entanglement, but can be improved with increased bond dimension. This result suggests that one must be careful when applying the algorithm for interacting many-body localized spin models near a transition. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.
NASA Astrophysics Data System (ADS)
Min, Min; Wu, Chunqiang; Li, Chuan; Liu, Hui; Xu, Na; Wu, Xiao; Chen, Lin; Wang, Fu; Sun, Fenglin; Qin, Danyu; Wang, Xi; Li, Bo; Zheng, Zhaojun; Cao, Guangzhen; Dong, Lixin
2017-08-01
Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.
NASA Astrophysics Data System (ADS)
Howerton, William
This thesis presents a method for the integration of complex network control algorithms with localized agent specific algorithms for maneuvering and obstacle avoidance. This method allows for successful implementation of group and agent specific behaviors. It has proven to be robust and will work for a variety of vehicle platforms. Initially, a review and implementation of two specific algorithms will be detailed. The first, a modified Kuramoto model was developed by Xu [1] which utilizes tools from graph theory to efficiently perform the task of distributing agents. The second algorithm developed by Kim [2] is an effective method for wheeled robots to avoid local obstacles using a limit-cycle navigation method. The results of implementing these methods on a test-bed of wheeled robots will be presented. Control issues related to outside disturbances not anticipated in the original theory are then discussed. A novel method of using simulated agents to separate the task of distributing agents from agent specific velocity and heading commands has been developed and implemented to address these issues. This new method can be used to combine various behaviors and is not limited to a specific control algorithm.
Frömke, Cornelia; Hothorn, Ludwig A; Kropf, Siegfried
2008-01-27
In many research areas it is necessary to find differences between treatment groups with several variables. For example, studies of microarray data seek to find a significant difference in location parameters from zero or one for ratios thereof for each variable. However, in some studies a significant deviation of the difference in locations from zero (or 1 in terms of the ratio) is biologically meaningless. A relevant difference or ratio is sought in such cases. This article addresses the use of relevance-shifted tests on ratios for a multivariate parallel two-sample group design. Two empirical procedures are proposed which embed the relevance-shifted test on ratios. As both procedures test a hypothesis for each variable, the resulting multiple testing problem has to be considered. Hence, the procedures include a multiplicity correction. Both procedures are extensions of available procedures for point null hypotheses achieving exact control of the familywise error rate. Whereas the shift of the null hypothesis alone would give straight-forward solutions, the problems that are the reason for the empirical considerations discussed here arise by the fact that the shift is considered in both directions and the whole parameter space in between these two limits has to be accepted as null hypothesis. The first algorithm to be discussed uses a permutation algorithm, and is appropriate for designs with a moderately large number of observations. However, many experiments have limited sample sizes. Then the second procedure might be more appropriate, where multiplicity is corrected according to a concept of data-driven order of hypotheses.
Error Rates in Users of Automatic Face Recognition Software
White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.
2015-01-01
In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631
Hoenigl, Martin; Graff-Zivin, Joshua; Little, Susan J
2016-02-15
In nonhealthcare settings, widespread screening for acute human immunodeficiency virus (HIV) infection (AHI) is limited by cost and decision algorithms to better prioritize use of resources. Comparative cost analyses for available strategies are lacking. To determine cost-effectiveness of community-based testing strategies, we evaluated annual costs of 3 algorithms that detect AHI based on HIV nucleic acid amplification testing (EarlyTest algorithm) or on HIV p24 antigen (Ag) detection via Architect (Architect algorithm) or Determine (Determine algorithm) as well as 1 algorithm that relies on HIV antibody testing alone (Antibody algorithm). The cost model used data on men who have sex with men (MSM) undergoing community-based AHI screening in San Diego, California. Incremental cost-effectiveness ratios (ICERs) per diagnosis of AHI were calculated for programs with HIV prevalence rates between 0.1% and 2.9%. Among MSM in San Diego, EarlyTest was cost-savings (ie, ICERs per AHI diagnosis less than $13.000) when compared with the 3 other algorithms. Cost analyses relative to regional HIV prevalence showed that EarlyTest was cost-effective (ie, ICERs less than $69.547) for similar populations of MSM with an HIV prevalence rate >0.4%; Architect was the second best alternative for HIV prevalence rates >0.6%. Identification of AHI by the dual EarlyTest screening algorithm is likely to be cost-effective not only among at-risk MSM in San Diego but also among similar populations of MSM with HIV prevalence rates >0.4%. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Williams, C. R.
2012-12-01
The NASA Global Precipitation Mission (GPM) raindrop size distribution (DSD) Working Group is composed of NASA PMM Science Team Members and is charged to "investigate the correlations between DSD parameters using Ground Validation (GV) data sets that support, or guide, the assumptions used in satellite retrieval algorithms." Correlations between DSD parameters can be used to constrain the unknowns and reduce the degrees-of-freedom in under-constrained satellite algorithms. Over the past two years, the GPM DSD Working Group has analyzed GV data and has found correlations between the mass-weighted mean raindrop diameter (Dm) and the mass distribution standard deviation (Sm) that follows a power-law relationship. This Dm-Sm power-law relationship appears to be robust and has been observed in surface disdrometer and vertically pointing radar observations. One benefit of a Dm-Sm power-law relationship is that a three parameter DSD can be modeled with just two parameters: Dm and Nw that determines the DSD amplitude. In order to incorporate observed DSD correlations into satellite algorithms, the GPM DSD Working Group is developing scattering and integral tables that can be used by satellite algorithms. Scattering tables describe the interaction of electromagnetic waves on individual particles to generate cross sections of backscattering, extinction, and scattering. Scattering tables are independent of the distribution of particles. Integral tables combine scattering table outputs with DSD parameters and DSD correlations to generate integrated normalized reflectivity, attenuation, scattering, emission, and asymmetry coefficients. Integral tables contain both frequency dependent scattering properties and cloud microphysics. The GPM DSD Working Group has developed scattering tables for raindrops at both Dual Precipitation Radar (DPR) frequencies and at all GMI radiometer frequencies less than 100 GHz. Scattering tables include Mie and T-matrix scattering with H- and V-polarization at the instrument view angles of nadir to 17 degrees (for DPR) and 48 & 53 degrees off nadir (for GMI). The GPM DSD Working Group is generating integral tables with GV observed DSD correlations and is performing sensitivity and verification tests. One advantage of keeping scattering tables separate from integral tables is that research can progress on the electromagnetic scattering of particles independent of cloud microphysics research. Another advantage of keeping the tables separate is that multiple scattering tables will be needed for frozen precipitation. Scattering tables are being developed for individual frozen particles based on habit, density and operating frequency. And a third advantage of keeping scattering and integral tables separate is that this framework provides an opportunity to communicate GV findings about DSD correlations into integral tables, and thus, into satellite algorithms.
Eller, Leigh A; Eller, Michael A; Ouma, Benson J; Kataaha, Peter; Bagaya, Bernard S; Olemukan, Robert L; Erima, Simon; Kawala, Lilian; de Souza, Mark S; Kibuuka, Hannah; Wabwire-Mangen, Fred; Peel, Sheila A; O'Connell, Robert J; Robb, Merlin L; Michael, Nelson L
2007-10-01
The use of rapid tests for human immunodeficiency virus (HIV) has become standard in HIV testing algorithms employed in resource-limited settings. We report an extensive HIV rapid test validation study conducted among Ugandan blood bank donors at low risk for HIV infection. The operational characteristics of four readily available commercial HIV rapid test kits were first determined with 940 donor samples and were used to select a serial testing algorithm. Uni-Gold Recombigen HIV was used as the screening test, followed by HIV-1/2 STAT-PAK for reactive samples. OraQuick HIV-1 testing was performed if the first two test results were discordant. This algorithm was then tested with 5,252 blood donor samples, and the results were compared to those of enzyme immunoassays (EIAs) and Western blotting. The unadjusted algorithm sensitivity and specificity were 98.6 and 99.9%, respectively. The adjusted sensitivity and specificity were 100 and 99.96%, respectively. This HIV testing algorithm is a suitable alternative to EIAs and Western blotting for Ugandan blood donors.
Hung, Andrew J; Chen, Jian; Che, Zhengping; Nilanon, Tanachat; Jarc, Anthony; Titus, Micha; Oh, Paul J; Gill, Inderbir S; Liu, Yan
2018-05-01
Surgical performance is critical for clinical outcomes. We present a novel machine learning (ML) method of processing automated performance metrics (APMs) to evaluate surgical performance and predict clinical outcomes after robot-assisted radical prostatectomy (RARP). We trained three ML algorithms utilizing APMs directly from robot system data (training material) and hospital length of stay (LOS; training label) (≤2 days and >2 days) from 78 RARP cases, and selected the algorithm with the best performance. The selected algorithm categorized the cases as "Predicted as expected LOS (pExp-LOS)" and "Predicted as extended LOS (pExt-LOS)." We compared postoperative outcomes of the two groups (Kruskal-Wallis/Fisher's exact tests). The algorithm then predicted individual clinical outcomes, which we compared with actual outcomes (Spearman's correlation/Fisher's exact tests). Finally, we identified five most relevant APMs adopted by the algorithm during predicting. The "Random Forest-50" (RF-50) algorithm had the best performance, reaching 87.2% accuracy in predicting LOS (73 cases as "pExp-LOS" and 5 cases as "pExt-LOS"). The "pExp-LOS" cases outperformed the "pExt-LOS" cases in surgery time (3.7 hours vs 4.6 hours, p = 0.007), LOS (2 days vs 4 days, p = 0.02), and Foley duration (9 days vs 14 days, p = 0.02). Patient outcomes predicted by the algorithm had significant association with the "ground truth" in surgery time (p < 0.001, r = 0.73), LOS (p = 0.05, r = 0.52), and Foley duration (p < 0.001, r = 0.45). The five most relevant APMs, adopted by the RF-50 algorithm in predicting, were largely related to camera manipulation. To our knowledge, ours is the first study to show that APMs and ML algorithms may help assess surgical RARP performance and predict clinical outcomes. With further accrual of clinical data (oncologic and functional data), this process will become increasingly relevant and valuable in surgical assessment and training.
Control of complex physically simulated robot groups
NASA Astrophysics Data System (ADS)
Brogan, David C.
2001-10-01
Actuated systems such as robots take many forms and sizes but each requires solving the difficult task of utilizing available control inputs to accomplish desired system performance. Coordinated groups of robots provide the opportunity to accomplish more complex tasks, to adapt to changing environmental conditions, and to survive individual failures. Similarly, groups of simulated robots, represented as graphical characters, can test the design of experimental scenarios and provide autonomous interactive counterparts for video games. The complexity of writing control algorithms for these groups currently hinders their use. A combination of biologically inspired heuristics, search strategies, and optimization techniques serve to reduce the complexity of controlling these real and simulated characters and to provide computationally feasible solutions.
Terra, Ricardo Mingarini; Waisberg, Daniel Reis; de Almeida, José Luiz Jesus; Devido, Marcela Santana; Pêgo-Fernandes, Paulo Manuel; Jatene, Fabio Biscegli
2012-01-01
OBJECTIVE: We aimed to evaluate whether the inclusion of videothoracoscopy in a pleural empyema treatment algorithm would change the clinical outcome of such patients. METHODS: This study performed quality-improvement research. We conducted a retrospective review of patients who underwent pleural decortication for pleural empyema at our institution from 2002 to 2008. With the old algorithm (January 2002 to September 2005), open decortication was the procedure of choice, and videothoracoscopy was only performed in certain sporadic mid-stage cases. With the new algorithm (October 2005 to December 2008), videothoracoscopy became the first-line treatment option, whereas open decortication was only performed in patients with a thick pleural peel (>2 cm) observed by chest scan. The patients were divided into an old algorithm (n = 93) and new algorithm (n = 113) group and compared. The main outcome variables assessed included treatment failure (pleural space reintervention or death up to 60 days after medical discharge) and the occurrence of complications. RESULTS: Videothoracoscopy and open decortication were performed in 13 and 80 patients from the old algorithm group and in 81 and 32 patients from the new algorithm group, respectively (p<0.01). The patients in the new algorithm group were older (41±1 vs. 46.3±16.7 years, p = 0.014) and had higher Charlson Comorbidity Index scores [0(0-3) vs. 2(0-4), p = 0.032]. The occurrence of treatment failure was similar in both groups (19.35% vs. 24.77%, p = 0.35), although the complication rate was lower in the new algorithm group (48.3% vs. 33.6%, p = 0.04). CONCLUSIONS: The wider use of videothoracoscopy in pleural empyema treatment was associated with fewer complications and unaltered rates of mortality and reoperation even though more severely ill patients were subjected to videothoracoscopic surgery. PMID:22760892
Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R
2007-09-01
A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.
Boulila, Moncef; Ben Tiba, Sawssen; Jilani, Saoussen
2013-04-01
The sequence alignments of five Tunisian isolates of Prunus necrotic ringspot virus (PNRSV) were searched for evidence of recombination and diversifying selection. Since failing to account for recombination can elevate the false positive error rate in positive selection inference, a genetic algorithm (GARD) was used first and led to the detection of potential recombination events in the coat protein-encoding gene of that virus. The Recco algorithm confirmed these results by identifying, additionally, the potential recombinants. For neutrality testing and evaluation of nucleotide polymorphism in PNRSV CP gene, Tajima's D, and Fu and Li's D and F statistical tests were used. About selection inference, eight algorithms (SLAC, FEL, IFEL, REL, FUBAR, MEME, PARRIS, and GA branch) incorporated in HyPhy package were utilized to assess the selection pressure exerted on the expression of PNRSV capsid. Inferred phylogenies pointed out, in addition to the three classical groups (PE-5, PV-32, and PV-96), the delineation of a fourth cluster having the new proposed designation SW6, and a fifth clade comprising four Tunisian PNRSV isolates which underwent recombination and selective pressure and to which the name Tunisian outgroup was allocated.
A Statistical Method to Distinguish Functional Brain Networks
Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.
2017-01-01
One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045
A Statistical Method to Distinguish Functional Brain Networks.
Fujita, André; Vidal, Maciel C; Takahashi, Daniel Y
2017-01-01
One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism ( p < 0.001).
NASA Astrophysics Data System (ADS)
Miranda, David A.; Corzo, Sandra P.; González-Correa, Carlos-A.
2012-12-01
Electrical Impedance Spectroscopy (EIS) allows the study of the electrical properties of materials and structures such as biological tissues. EIS can be used as a diagnostic tool for the identification of pathological conditions such as cervical cancer. We used EIS in combination with genetic algorithms to characterize cervical epithelial squamous tissue in a heterogeneous sample of 56 Colombian women. All volunteers had a cytology taken for Papanicolau test and biopsy taken for histopathological analysis from those with a positive result (9 subjects). ROC analysis of the results suggest a sensitivity and specificity in the order of 0.73 and 0.86, respectively.
A pragmatic evidence-based clinical management algorithm for burning mouth syndrome
Yoo, Timothy; Han, Peter; Liu, Yuan; Inman, Jared C.
2018-01-01
Background Burning mouth syndrome is a poorly understood disease process with no current standard of treatment. The goal of this article is to provide an evidence-based, practical, clinical algorithm as a guideline for the treatment of burning mouth syndrome. Material and Methods Using available evidence and clinical experience, a multi-step management algorithm was developed. A retrospective cohort study was then performed, following STROBE statement guidelines, comparing outcomes of patients who were managed using the algorithm and those who were managed without. Results Forty-seven patients were included in the study, with 21 (45%) managed using the algorithm and 26 (55%) managed without. The mean age overall was 60.4 ±16.5 years, and most patients (39, 83%) were female. Cohorts showed no statistical difference in age, sex, overall follow-up time, dysgeusia, geographic tongue, or psychiatric disorder; xerostomia, however, was significantly different, skewed toward the algorithm group. Significantly more non-algorithm patients did not continue care (69% vs. 29%, p=0.001). The odds ratio of not continuing care for the non-algorithm group compared to the algorithm group was 5.6 [1.6, 19.8]. Improvement in pain was significantly more likely in the algorithm group (p=0.001), with an odds ratio of 27.5 [3.1, 242.0]. Conclusions We present a basic clinical management algorithm for burning mouth syndrome which may increase the likelihood of pain improvement and patient follow-up. Key words:Burning mouth syndrome, burning tongue, glossodynia, oral pain, oral burning, therapy, treatment. PMID:29750091
Comulang: towards a collaborative e-learning system that supports student group modeling.
Troussas, Christos; Virvou, Maria; Alepis, Efthimios
2013-01-01
This paper describes an e-learning system that is expected to further enhance the educational process in computer-based tutoring systems by incorporating collaboration between students and work in groups. The resulting system is called "Comulang" while as a test bed for its effectiveness a multiple language learning system is used. Collaboration is supported by a user modeling module that is responsible for the initial creation of student clusters, where, as a next step, working groups of students are created. A machine learning clustering algorithm works towards group formatting, so that co-operations between students from different clusters are attained. One of the resulting system's basic aims is to provide efficient student groups whose limitations and capabilities are well balanced.
2D Affine and Projective Shape Analysis.
Bryner, Darshan; Klassen, Eric; Huiling Le; Srivastava, Anuj
2014-05-01
Current techniques for shape analysis tend to seek invariance to similarity transformations (rotation, translation, and scale), but certain imaging situations require invariance to larger groups, such as affine or projective groups. Here we present a general Riemannian framework for shape analysis of planar objects where metrics and related quantities are invariant to affine and projective groups. Highlighting two possibilities for representing object boundaries-ordered points (or landmarks) and parameterized curves-we study different combinations of these representations (points and curves) and transformations (affine and projective). Specifically, we provide solutions to three out of four situations and develop algorithms for computing geodesics and intrinsic sample statistics, leading up to Gaussian-type statistical models, and classifying test shapes using such models learned from training data. In the case of parameterized curves, we also achieve the desired goal of invariance to re-parameterizations. The geodesics are constructed by particularizing the path-straightening algorithm to geometries of current manifolds and are used, in turn, to compute shape statistics and Gaussian-type shape models. We demonstrate these ideas using a number of examples from shape and activity recognition.
CNES-NASA Studies of the Mars Sample Return Orbiter Aerocapture Phase
NASA Technical Reports Server (NTRS)
Fraysse, H.; Powell, R.; Rousseau, S.; Striepe, S.
2000-01-01
A Mars Sample Return (MSR) mission has been proposed as a joint CNES (Centre National d'Etudes Spatiales) and NASA effort in the ongoing Mars Exploration Program. The MSR mission is designed to return the first samples of Martian soil to Earth. The primary elements of the mission are a lander, rover, ascent vehicle, orbiter, and an Earth entry vehicle. The Orbiter has been allocated only 2700 kg on the launch phase to perform its part of the mission. This mass restriction has led to the decision to use an aerocapture maneuver at Mars for the orbiter. Aerocapture replaces the initial propulsive capture maneuver with a single atmospheric pass. This atmospheric pass will result in the proper apoapsis, but a periapsis raise maneuver is required at the first apoapsis. The use of aerocapture reduces the total mass requirement by approx. 45% for the same payload. This mission will be the first to use the aerocapture technique. Because the spacecraft is flying through the atmosphere, guidance algorithms must be developed that will autonomously provide the proper commands to reach the desired orbit while not violating any of the design parameters (e.g. maximum deceleration, maximum heating rate, etc.). The guidance algorithm must be robust enough to account for uncertainties in delivery states, atmospheric conditions, mass properties, control system performance, and aerodynamics. To study this very critical phase of the mission, a joint CNES-NASA technical working group has been formed. This group is composed of atmospheric trajectory specialists from CNES, NASA Langley Research Center and NASA Johnson Space Center. This working group is tasked with developing and testing guidance algorithms, as well as cross-validating CNES and NASA flight simulators for the Mars atmospheric entry phase of this mission. The final result will be a recommendation to CNES on the algorithm to use, and an evaluation of the flight risks associated with the algorithm. This paper will describe the aerocapture phase of the MSR mission, the main principles of the guidance algorithms that are under development, the atmospheric entry simulators developed for the evaluations, the process for the evaluations, and preliminary results from the evaluations.
Pascual-García, Alberto; Abia, David; Ortiz, Angel R; Bastolla, Ugo
2009-03-01
Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert classifications. As a domain set, we have selected a consensus set of 2,890 domains decomposed very similarly in SCOP and CATH. As an alignment algorithm, we used a global version of MAMMOTH developed in our group, which is both rapid and accurate. As a similarity measure, we used the size-normalized contact overlap, and as a clustering algorithm, we used average linkage. The resulting automatic classification at the cross-over point was more consistent than expert ones with respect to the structure similarity measure, with 86% of the clusters corresponding to subsets of either SCOP or CATH superfamilies and fewer than 5% containing domains in distinct folds according to both SCOP and CATH. Almost 15% of SCOP superfamilies and 10% of CATH superfamilies were split, consistent with the notion of fold change in protein evolution. These results were qualitatively robust for all choices that we tested, although we did not try to use alignment algorithms developed by other groups. Folds defined in SCOP and CATH would be completely joined in the regime of large transitivity violations where clustering is more arbitrary. Consistently, the agreement between SCOP and CATH at fold level was lower than their agreement with the automatic classification obtained using as a clustering algorithm, respectively, average linkage (for SCOP) or single linkage (for CATH). The networks representing significant evolutionary and structural relationships between clusters beyond the cross-over point may allow us to perform evolutionary, structural, or functional analyses beyond the limits of classification schemes. These networks and the underlying clusters are available at http://ub.cbm.uam.es/research/ProtNet.php.
Computer Aided Synthesis or Measurement Schemes for Telemetry applications
1997-09-02
5.2.5. Frame structure generation The algorithm generating the frame structure should take as inputs the sampling frequency requirements of the channels...these channels into the frame structure. Generally there can be a lot of ways to divide channels among groups. The algorithm implemented in...groups) first. The algorithm uses the function "try_permutation" recursively to distribute channels among the groups, and the function "try_subtable
Apriori Versions Based on MapReduce for Mining Frequent Patterns on Big Data.
Luna, Jose Maria; Padillo, Francisco; Pechenizkiy, Mykola; Ventura, Sebastian
2017-09-27
Pattern mining is one of the most important tasks to extract meaningful and useful information from raw data. This task aims to extract item-sets that represent any type of homogeneity and regularity in data. Although many efficient algorithms have been developed in this regard, the growing interest in data has caused the performance of existing pattern mining techniques to be dropped. The goal of this paper is to propose new efficient pattern mining algorithms to work in big data. To this aim, a series of algorithms based on the MapReduce framework and the Hadoop open-source implementation have been proposed. The proposed algorithms can be divided into three main groups. First, two algorithms [Apriori MapReduce (AprioriMR) and iterative AprioriMR] with no pruning strategy are proposed, which extract any existing item-set in data. Second, two algorithms (space pruning AprioriMR and top AprioriMR) that prune the search space by means of the well-known anti-monotone property are proposed. Finally, a last algorithm (maximal AprioriMR) is also proposed for mining condensed representations of frequent patterns. To test the performance of the proposed algorithms, a varied collection of big data datasets have been considered, comprising up to 3 · 10#x00B9;⁸ transactions and more than 5 million of distinct single-items. The experimental stage includes comparisons against highly efficient and well-known pattern mining algorithms. Results reveal the interest of applying MapReduce versions when complex problems are considered, and also the unsuitability of this paradigm when dealing with small data.
Xu, Hang; Su, Shi; Tang, Wuji; Wei, Meng; Wang, Tao; Wang, Dongjin; Ge, Weihong
2015-09-01
A large number of warfarin pharmacogenetics algorithms have been published. Our research was aimed to evaluate the performance of the selected pharmacogenetic algorithms in patients with surgery of heart valve replacement and heart valvuloplasty during the phase of initial and stable anticoagulation treatment. 10 pharmacogenetic algorithms were selected by searching PubMed. We compared the performance of the selected algorithms in a cohort of 193 patients during the phase of initial and stable anticoagulation therapy. Predicted dose was compared to therapeutic dose by using a predicted dose percentage that falls within 20% threshold of the actual dose (percentage within 20%) and mean absolute error (MAE). The average warfarin dose for patients was 3.05±1.23mg/day for initial treatment and 3.45±1.18mg/day for stable treatment. The percentages of the predicted dose within 20% of the therapeutic dose were 44.0±8.8% and 44.6±9.7% for the initial and stable phases, respectively. The MAEs of the selected algorithms were 0.85±0.18mg/day and 0.93±0.19mg/day, respectively. All algorithms had better performance in the ideal group than in the low dose and high dose groups. The only exception is the Wadelius et al. algorithm, which had better performance in the high dose group. The algorithms had similar performance except for the Wadelius et al. and Miao et al. algorithms, which had poor accuracy in our study cohort. The Gage et al. algorithm had better performance in both phases of initial and stable treatment. Algorithms had relatively higher accuracy in the >50years group of patients on the stable phase. Copyright © 2015 Elsevier Ltd. All rights reserved.
E2F3a gene expression has prognostic significance in childhood acute lymphoblastic leukemia.
Wang, Kai-Ling; Mei, Yan-Yan; Cui, Lei; Zhao, Xiao-Xi; Li, Wei-Jing; Gao, Chao; Liu, Shu-Guang; Jiao, Ying; Liu, Fei-Fei; Wu, Min-Yuan; Ding, Wei; Li, Zhi-Gang
2014-10-01
To study E2F3a expression and its clinical significance in children with acute lymphoblastic leukemia (ALL). We quantified E2F3a expression at diagnosis in 148 children with ALL by real-time PCR. In the test cohort (n = 48), receiver operating characteristic (ROC) curve was used to find the best cut-off point to divide the patients into E2F3a low- and high-expression groups. The prognostic significance of E2F3a expression was investigated in the test cohort and confirmed in the validation cohort (n = 100). The correlations of E2F3a expression with the clinical features and treatment outcome of these patients were analyzed. ROC curve analysis indicated that the best cut-off point of E2F3a expression was 0.3780. In the test cohort, leukemia-free survival (LFS) and event-free survival (EFS) of the low-expression group were lower than those of the high-expression group (log rank: P = 0.026 for both). This finding was verified in the validation cohort. LFS, EFS, and overall survival were also lower in the low-expression group than in the high-expression group (log rank, P = 0.015, 0.008, and 0.002 respectively). E2F3a low expression was correlated with the existence of BCR-ABL fusion. An algorithm composed of E2F3a expression and minimal residual disease (MRD) could predict relapse or induction failure more precisely than current risk stratification. These results were still significant in the ALL patients without BCR-ABL fusion. Low expression of E2F3a was associated with inferior prognosis in childhood ALL. An algorithm composed of E2F3a expression and MRD could predict relapse or induction failure more precisely than that of the current risk stratification. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Procedure of Partitioning Data Into Number of Data Sets or Data Group - A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
The goal of clustering is to decompose a dataset into similar groups based on a objective function. Some already well established clustering algorithms are there for data clustering. Objective of these data clustering algorithms are to divide the data points of the feature space into a number of groups (or classes) so that a predefined set of criteria are satisfied. The article considers the comparative study about the effectiveness and efficiency of traditional data clustering algorithms. For evaluating the performance of the clustering algorithms, Minkowski score is used here for different data sets.
Spectral gene set enrichment (SGSE).
Frost, H Robert; Li, Zhigang; Moore, Jason H
2015-03-03
Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes the statistical association between gene sets and principal components (PCs) using our principal component gene set enrichment (PCGSE) method. The overall statistical association between each gene set and the spectral structure of the data is then computed by combining the PC-level p-values using the weighted Z-method with weights set to the PC variance scaled by Tracy-Widom test p-values. Using simulated data, we show that the SGSE algorithm can accurately recover spectral features from noisy data. To illustrate the utility of our method on real data, we demonstrate the superior performance of the SGSE method relative to standard cluster-based techniques for testing the association between MSigDB gene sets and the variance structure of microarray gene expression data. Unsupervised gene set testing can provide important information about the biological signal held in high-dimensional genomic data sets. Because it uses the association between gene sets and samples PCs to generate a measure of unsupervised enrichment, the SGSE method is independent of cluster or network creation algorithms and, most importantly, is able to utilize the statistical significance of PC eigenvalues to ignore elements of the data most likely to represent noise.
Haldorsen, Tor; Skare, Gry Baadstrand; Ursin, Giske; Bjørge, Tone
2015-02-01
High-risk human papilloma virus (hrHPV) testing was added to the cytology triage of women with equivocal screening smears in the Norwegian programme for cervical cancer screening in 2005. In this population-based observational before and after study we assessed the effect of changing the screening algorithm. In periods before and after the change 75 852 and 66 616 women, respectively, were eligible for triage, i.e. they had smear results of unsatisfactory, atypical squamous cells of undetermined significance (ASC-US), or low-grade squamous intraepithelial lesion (LSIL) at routine screening. The triage was delayed as supplementary testing started six months after the initial screening. The groups were compared with respect to results of triage and later three-year cumulative incidence of cervical intraepithelial neoplasia grade 2 or worse (CIN2+). Before and after the change in the screening algorithm 5.2% (3964/75 852) and 8.1% (5417/66 616) of women, respectively, were referred to colposcopy. Among women referred to colposcopy cumulative incidence of CIN2+ (positive predictive value of referral) increased from 42.0% [95% confidence interval (CI): 40.3 - 43.7%] in the period with cytology only to 48.0% (95% CI 46.6 - 49.4%) after the start of HPV testing. For women recalled to ordinary screening the three-year cumulative incidence decreased from 2.7% (95% CI 2.5 - 2.9%) to 1.0% (95% CI 0.9 - 1.2%) during the same period. Among women with LSIL at routine screening and HPV testing in triage, 52.5% (1976/3766) were HPV positive. The new algorithm with HPV testing implemented in 2005 resulted in an increased rate of referral to colposcopy, but in a better risk stratification with respect to precancerous disease.
NASA Technical Reports Server (NTRS)
Nyangweso, Emmanuel; Bole, Brian
2014-01-01
Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.
Multiscale 3-D shape representation and segmentation using spherical wavelets.
Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen
2007-04-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details.
Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets
Nain, Delphine; Haker, Steven; Bobick, Aaron
2013-01-01
This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details. PMID:17427745
Dynamic Group Formation Based on a Natural Phenomenon
ERIC Educational Resources Information Center
Zedadra, Amina; Lafifi, Yacine; Zedadra, Ouarda
2016-01-01
This paper presents a new approach of learners grouping in collaborative learning systems. This grouping process is based on traces left by learners. The goal is the circular dynamic grouping to achieve collaborative projects. The proposed approach consists of two main algorithms: (1) the circular grouping algorithm and (2) the dynamic grouping…
Effect of centrifuge test on blood serum lipids index of cadet pilots.
Wochyński, Zbigniew; Kowalczuk, Krzysztof; Kłossowski, Marek; Sobiech, Krzysztof A
2016-01-01
This study aimed at investigating the relationship between the lipid index (WS) in the examined cadets and duration of exposure to +Gz in the human centrifuge. The study involved 19 first-year cadets of the Polish Air Force Academy in Dęblin. Tests in the human centrifuge were repeated twice, i.e. prior to (test I) and 45 days after (test II). After exposure to +Gz, the examined cadets were divided into 2 groups. Group I (N=11) included cadets subjected to a shorter total duration of exposure to +Gz, while group II (N=8) included cadets with a longer total duration of exposure to +Gz. Total cholesterol (TC), high density lipoprotein (HDL), triglycerides (TG), and apolipoproteins A1 and B were assayed in blood serum prior to (assay A) and after (assay B) both exposures to +Gz. Low density lipoprotein (LDL) level was estimated from the Friedewald formula. WS is an own mathematical algorithm. WS was higher in group II, assay A - 10.0 and B - 10.08 of test I in the human centrifuge than in group I where the WS values were 6.91 and 6.96, respectively. WS was also higher in group II in assay A - 10.0 and B -10.1 of test II in the human centrifuge than in group I - 6.96 and 6.80, respectively. The higher value of WS in group II, both after the first and second exposure to +Gz in human centrifuge, in comparison with group I, indicated its usefulness for determination of the maximum capability of applying acceleration of the interval type during training in the human centrifuge.
Vasquez, A K; Nydam, D V; Foditsch, C; Wieland, M; Lynch, R; Eicker, S; Virkler, P D
2018-06-01
An algorithm using only computer-based records to guide selective dry-cow therapy was evaluated at a New York State dairy farm via a randomized field trial. DairyComp 305 (Valley Ag Software, Tulare, CA) and Dairy Herd Improvement Association test-day data were used to identify cows as low risk (cows that might not benefit from dry-cow antibiotics) or high risk (cows that will likely benefit). Low-risk cows were those that had all of the following: somatic cell count (SCC) ≤200,000 cells/mL at last test, an average SCC ≤200,000 cells/mL over the last 3 tests, no signs of clinical mastitis at dry-off, and no more than 1 clinical mastitis event in the current lactation. Low-risk cows were randomly assigned to receive intramammary antibiotics and external teat sealant (ABXTS) or external teat sealant only (TS) at dry-off. Using pre-dry-off and postcalving quarter-level culture results, low-risk quarters were assessed for microbiological cure risk and new infection risk. Groups were also assessed for differences in first-test milk yield and linear scores, individual milk weights for the first 30 d, and culling and mastitis events before 30 d in milk. A total of 304 cows and 1,040 quarters in the ABXTS group and 307 cows and 1,058 quarters in the TS group were enrolled. Among cows to be dried, the proportion of cows that met low-risk criteria was 64% (n = 611/953). Of cultures eligible for bacteriological cure analysis (n = 171), 93% of ABXTS cured, whereas 88% of TS cured. Of the non-cures, 95% were contributed by the minor pathogens coagulase-negative staphylococci (n = 19/20). These organisms also accounted for 57.5% of new infections (n = 77/134). We found no statistical differences between treatment groups for new infection risk (TS = 7.3% quarters experiencing new infections; ABXTS = 5.5%), milk production (ABXTS = 40.5 kg; TS = 41.2 kg), linear scores (ABXTS = 2.5; TS = 2.7), culling events (ABXTS, n = 18; TS, n = 15), or clinical mastitis events (ABXTS, n = 9; TS, n = 5). Results suggest that the algorithm used decreased dry-cow antibiotic use by approximately 60% without adversely affecting production or health outcomes. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comparison of the algorithms classifying the ABC and GCB subtypes in diffuse large B-cell lymphoma.
Boltežar, Lučka; Prevodnik, Veronika Kloboves; Perme, Maja Pohar; Gašljević, Gorana; Novaković, Barbara Jezeršek
2018-05-01
Different immunohistochemical algorithms for the classification of the activated B-cell (ABC) and germinal center B-cell (GCB) subtypes of diffuse large B-cell lymphoma (DLBCL) are applied in different laboratories. In the present study, 127 patients with DLCBL were investigated, all treated with rituximab and cyclophosphamide, hydroxydaunorubicin, oncovin and prednisone (CHOP) or CHOP-like regimens between April 2004 and December 2010. Multi-tumor tissue microarrays were prepared and were tested according to 4 algorithms: Hans; modified Hans; Choi; and modified Choi. For 39 patients, the flow cytometric quantification of CD19 and CD20 antigen expression was performed and the level of expression presented as molecules of equivalent soluble fluorochrome units. The Choi algorithm was demonstrated to be prognostic for OS and classified patients into the GCB subgroup with an HR of 0.91. No difference in the expression of the CD19 antigen between the ABC and GCB groups was observed, but the ABC subtype exhibited a decreased expression of the CD20 antigen compared with the GCB subtype.
Exploratory Item Classification Via Spectral Graph Clustering
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2017-01-01
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476
A clustering algorithm for sample data based on environmental pollution characteristics
NASA Astrophysics Data System (ADS)
Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun
2015-04-01
Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.
High precision automated face localization in thermal images: oral cancer dataset as test case
NASA Astrophysics Data System (ADS)
Chakraborty, M.; Raman, S. K.; Mukhopadhyay, S.; Patsa, S.; Anjum, N.; Ray, J. G.
2017-02-01
Automated face detection is the pivotal step in computer vision aided facial medical diagnosis and biometrics. This paper presents an automatic, subject adaptive framework for accurate face detection in the long infrared spectrum on our database for oral cancer detection consisting of malignant, precancerous and normal subjects of varied age group. Previous works on oral cancer detection using Digital Infrared Thermal Imaging(DITI) reveals that patients and normal subjects differ significantly in their facial thermal distribution. Therefore, it is a challenging task to formulate a completely adaptive framework to veraciously localize face from such a subject specific modality. Our model consists of first extracting the most probable facial regions by minimum error thresholding followed by ingenious adaptive methods to leverage the horizontal and vertical projections of the segmented thermal image. Additionally, the model incorporates our domain knowledge of exploiting temperature difference between strategic locations of the face. To our best knowledge, this is the pioneering work on detecting faces in thermal facial images comprising both patients and normal subjects. Previous works on face detection have not specifically targeted automated medical diagnosis; face bounding box returned by those algorithms are thus loose and not apt for further medical automation. Our algorithm significantly outperforms contemporary face detection algorithms in terms of commonly used metrics for evaluating face detection accuracy. Since our method has been tested on challenging dataset consisting of both patients and normal subjects of diverse age groups, it can be seamlessly adapted in any DITI guided facial healthcare or biometric applications.
2016-01-06
Senior executives from the Renault-Nissan Alliance, including Carlos Ghosn, chairman and CEO of Nissan, and Jose Munoz, chairman of Nissan North America, visited Ames for meetings and a showcase of the technical partnership between NASA and Nissan North America. The partnership allows researchers to develop and test autonomy algorithms, concepts, and integrated prototypes for a variety of vehicular transport applications – from rovers to self-driving cars. After briefings, a group take a ride in the autonomous vehicle to observed testing of Nissan’s all-electric LEAF as it performed safe autonomous drives across the center.
2017-07-07
RESEARCH ARTICLE Self-reported HIV-positive status but subsequent HIV-negative test result using rapid diagnostic testing algorithms among seven sub...America * judith.harbertson.ctr@mail.mil Abstract HIV rapid diagnostic tests (RDTs) combined in an algorithm are the current standard for HIV diagnosis...in many sub-Saharan African countries, and extensive laboratory testing has con- firmed HIV RDTs have excellent sensitivity and specificity. However
ERIC Educational Resources Information Center
Avancena, Aimee Theresa; Nishihara, Akinori; Vergara, John Paul
2012-01-01
This paper presents the online cognitive and algorithm tests, which were developed in order to determine if certain cognitive factors and fundamental algorithms correlate with the performance of students in their introductory computer science course. The tests were implemented among Management Information Systems majors from the Philippines and…
Testing Algorithmic Skills in Traditional and Non-Traditional Programming Environments
ERIC Educational Resources Information Center
Csernoch, Mária; Biró, Piroska; Máth, János; Abari, Kálmán
2015-01-01
The Testing Algorithmic and Application Skills (TAaAS) project was launched in the 2011/2012 academic year to test first year students of Informatics, focusing on their algorithmic skills in traditional and non-traditional programming environments, and on the transference of their knowledge of Informatics from secondary to tertiary education. The…
A Test Suite for 3D Radiative Hydrodynamics Simulations of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, R. H.; Nordlund, A.; Lord, J.
2006-12-01
Radiative hydrodynamics simulations of protoplanetary disks with different treatments for radiative cooling demonstrate disparate evolutions (see Durisen et al. 2006, PPV chapter). Some of these differences include the effects of convection and metallicity on disk cooling and the susceptibility of the disk to fragmentation. Because a principal reason for these differences may be the treatment of radiative cooling, the accuracy of cooling algorithms must be evaluated. In this paper we describe a radiative transport test suite, and we challenge all researchers who use radiative hydrodynamics to study protoplanetary disk evolution to evaluate their algorithms with these tests. The test suite can be used to demonstrate an algorithm's accuracy in transporting the correct flux through an atmosphere and in reaching the correct temperature structure, to test the algorithm's dependence on resolution, and to determine whether the algorithm permits of inhibits convection when expected. In addition, we use this test suite to demonstrate the accuracy of a newly developed radiative cooling algorithm that combines vertical rays with flux-limited diffusion. This research was supported in part by a Graduate Student Researchers Program fellowship.
Peeters, Bart; Geerts, Inge; Van Mullem, Mia; Micalessi, Isabel; Saegeman, Veroniek; Moerman, Jan
2016-05-01
Many hospitals opt for early postnatal discharge of newborns with a potential risk of readmission for neonatal hyperbilirubinemia. Assays/algorithms with the possibility to improve prediction of significant neonatal hyperbilirubinemia are needed to optimize screening protocols and safe discharge of neonates. This study investigated the predictive value of umbilical cord blood (UCB) testing for significant hyperbilirubinemia. Neonatal UCB bilirubin, UCB direct antiglobulin test (DAT), and blood group were determined, as well as the maternal blood group and the red blood cell antibody status. Moreover, in newborns with clinically apparent jaundice after visual assessment, plasma total bilirubin (TB) was measured. Clinical factors positively associated with UCB bilirubin were ABO incompatibility, positive DAT, presence of maternal red cell antibodies, alarming visual assessment and significant hyperbilirubinemia in the first 6 days of life. UCB bilirubin performed clinically well with an area under the receiver-operating characteristic curve (AUC) of 0.82 (95 % CI 0.80-0.84). The combined UCB bilirubin, DAT, and blood group analysis outperformed results of these parameters considered separately to detect significant hyperbilirubinemia and correlated exponentially with hyperbilirubinemia post-test probability. Post-test probabilities for neonatal hyperbilirubinemia can be calculated using exponential functions defined by UCB bilirubin, DAT, and ABO compatibility results. • The diagnostic value of the triad umbilical cord blood bilirubin measurement, direct antiglobulin testing and blood group analysis for neonatal hyperbilirubinemia remains unclear in literature. • Currently no guideline recommends screening for hyperbilirubinemia using umbilical cord blood. What is New: • Post-test probability for hyperbilirubinemia correlated exponentially with umbilical cord blood bilirubin in different risk groups defined by direct antiglobulin test and ABO blood group compatibility results. • Exponential functions can be used to calculate hyperbilirubinemia probability.
Application of Machine Learning to Predict Dietary Lapses During Weight Loss.
Goldstein, Stephanie P; Zhang, Fengqing; Thomas, John G; Butryn, Meghan L; Herbert, James D; Forman, Evan M
2018-05-01
Individuals who adhere to dietary guidelines provided during weight loss interventions tend to be more successful with weight control. Any deviation from dietary guidelines can be referred to as a "lapse." There is a growing body of research showing that lapses are predictable using a variety of physiological, environmental, and psychological indicators. With recent technological advancements, it may be possible to assess these triggers and predict dietary lapses in real time. The current study sought to use machine learning techniques to predict lapses and evaluate the utility of combining both group- and individual-level data to enhance lapse prediction. The current study trained and tested a machine learning algorithm capable of predicting dietary lapses from a behavioral weight loss program among adults with overweight/obesity (n = 12). Participants were asked to follow a weight control diet for 6 weeks and complete ecological momentary assessment (EMA; repeated brief surveys delivered via smartphone) regarding dietary lapses and relevant triggers. WEKA decision trees were used to predict lapses with an accuracy of 0.72 for the group of participants. However, generalization of the group algorithm to each individual was poor, and as such, group- and individual-level data were combined to improve prediction. The findings suggest that 4 weeks of individual data collection is recommended to attain optimal model performance. The predictive algorithm could be utilized to provide in-the-moment interventions to prevent dietary lapses and therefore enhance weight losses. Furthermore, methods in the current study could be translated to other types of health behavior lapses.
Eliseev, Platon; Balantcev, Grigory; Nikishova, Elena; Gaida, Anastasia; Bogdanova, Elena; Enarson, Donald; Ornstein, Tara; Detjen, Anne; Dacombe, Russell; Gospodarevskaya, Elena; Phillips, Patrick P J; Mann, Gillian; Squire, Stephen Bertel; Mariandyshev, Andrei
2016-01-01
In the Arkhangelsk region of Northern Russia, multidrug-resistant (MDR) tuberculosis (TB) rates in new cases are amongst the highest in the world. In 2014, MDR-TB rates reached 31.7% among new cases and 56.9% among retreatment cases. The development of new diagnostic tools allows for faster detection of both TB and MDR-TB and should lead to reduced transmission by earlier initiation of anti-TB therapy. The PROVE-IT (Policy Relevant Outcomes from Validating Evidence on Impact) Russia study aimed to assess the impact of the implementation of line probe assay (LPA) as part of an LPA-based diagnostic algorithm for patients with presumptive MDR-TB focusing on time to treatment initiation with time from first-care seeking visit to the initiation of MDR-TB treatment rather than diagnostic accuracy as the primary outcome, and to assess treatment outcomes. We hypothesized that the implementation of LPA would result in faster time to treatment initiation and better treatment outcomes. A culture-based diagnostic algorithm used prior to LPA implementation was compared to an LPA-based algorithm that replaced BacTAlert and Löwenstein Jensen (LJ) for drug sensitivity testing. A total of 295 MDR-TB patients were included in the study, 163 diagnosed with the culture-based algorithm, 132 with the LPA-based algorithm. Among smear positive patients, the implementation of the LPA-based algorithm was associated with a median decrease in time to MDR-TB treatment initiation of 50 and 66 days compared to the culture-based algorithm (BacTAlert and LJ respectively, p<0.001). In smear negative patients, the LPA-based algorithm was associated with a median decrease in time to MDR-TB treatment initiation of 78 days when compared to the culture-based algorithm (LJ, p<0.001). However, several weeks were still needed for treatment initiation in LPA-based algorithm, 24 days in smear positive, and 62 days in smear negative patients. Overall treatment outcomes were better in LPA-based algorithm compared to culture-based algorithm (p = 0.003). Treatment success rates at 20 months of treatment were higher in patients diagnosed with the LPA-based algorithm (65.2%) as compared to those diagnosed with the culture-based algorithm (44.8%). Mortality was also lower in the LPA-based algorithm group (7.6%) compared to the culture-based algorithm group (15.9%). There was no statistically significant difference in smear and culture conversion rates between the two algorithms. The results of the study suggest that the introduction of LPA leads to faster time to MDR diagnosis and earlier treatment initiation as well as better treatment outcomes for patients with MDR-TB. These findings also highlight the need for further improvements within the health system to reduce both patient and diagnostic delays to truly optimize the impact of new, rapid diagnostics.
HIV misdiagnosis in sub-Saharan Africa: performance of diagnostic algorithms at six testing sites
Kosack, Cara S.; Shanks, Leslie; Beelaert, Greet; Benson, Tumwesigye; Savane, Aboubacar; Ng’ang’a, Anne; Andre, Bita; Zahinda, Jean-Paul BN; Fransen, Katrien; Page, Anne-Laure
2017-01-01
Abstract Introduction: We evaluated the diagnostic accuracy of HIV testing algorithms at six programmes in five sub-Saharan African countries. Methods: In this prospective multisite diagnostic evaluation study (Conakry, Guinea; Kitgum, Uganda; Arua, Uganda; Homa Bay, Kenya; Doula, Cameroun and Baraka, Democratic Republic of Congo), samples from clients (greater than equal to five years of age) testing for HIV were collected and compared to a state-of-the-art algorithm from the AIDS reference laboratory at the Institute of Tropical Medicine, Belgium. The reference algorithm consisted of an enzyme-linked immuno-sorbent assay, a line-immunoassay, a single antigen-enzyme immunoassay and a DNA polymerase chain reaction test. Results: Between August 2011 and January 2015, over 14,000 clients were tested for HIV at 6 HIV counselling and testing sites. Of those, 2786 (median age: 30; 38.1% males) were included in the study. Sensitivity of the testing algorithms ranged from 89.5% in Arua to 100% in Douala and Conakry, while specificity ranged from 98.3% in Doula to 100% in Conakry. Overall, 24 (0.9%) clients, and as many as 8 per site (1.7%), were misdiagnosed, with 16 false-positive and 8 false-negative results. Six false-negative specimens were retested with the on-site algorithm on the same sample and were found to be positive. Conversely, 13 false-positive specimens were retested: 8 remained false-positive with the on-site algorithm. Conclusions: The performance of algorithms at several sites failed to meet expectations and thresholds set by the World Health Organization, with unacceptably high rates of false results. Alongside the careful selection of rapid diagnostic tests and the validation of algorithms, strictly observing correct procedures can reduce the risk of false results. In the meantime, to identify false-positive diagnoses at initial testing, patients should be retested upon initiating antiretroviral therapy. PMID:28691437
HIV misdiagnosis in sub-Saharan Africa: performance of diagnostic algorithms at six testing sites.
Kosack, Cara S; Shanks, Leslie; Beelaert, Greet; Benson, Tumwesigye; Savane, Aboubacar; Ng'ang'a, Anne; Andre, Bita; Zahinda, Jean-Paul Bn; Fransen, Katrien; Page, Anne-Laure
2017-07-03
We evaluated the diagnostic accuracy of HIV testing algorithms at six programmes in five sub-Saharan African countries. In this prospective multisite diagnostic evaluation study (Conakry, Guinea; Kitgum, Uganda; Arua, Uganda; Homa Bay, Kenya; Doula, Cameroun and Baraka, Democratic Republic of Congo), samples from clients (greater than equal to five years of age) testing for HIV were collected and compared to a state-of-the-art algorithm from the AIDS reference laboratory at the Institute of Tropical Medicine, Belgium. The reference algorithm consisted of an enzyme-linked immuno-sorbent assay, a line-immunoassay, a single antigen-enzyme immunoassay and a DNA polymerase chain reaction test. Between August 2011 and January 2015, over 14,000 clients were tested for HIV at 6 HIV counselling and testing sites. Of those, 2786 (median age: 30; 38.1% males) were included in the study. Sensitivity of the testing algorithms ranged from 89.5% in Arua to 100% in Douala and Conakry, while specificity ranged from 98.3% in Doula to 100% in Conakry. Overall, 24 (0.9%) clients, and as many as 8 per site (1.7%), were misdiagnosed, with 16 false-positive and 8 false-negative results. Six false-negative specimens were retested with the on-site algorithm on the same sample and were found to be positive. Conversely, 13 false-positive specimens were retested: 8 remained false-positive with the on-site algorithm. The performance of algorithms at several sites failed to meet expectations and thresholds set by the World Health Organization, with unacceptably high rates of false results. Alongside the careful selection of rapid diagnostic tests and the validation of algorithms, strictly observing correct procedures can reduce the risk of false results. In the meantime, to identify false-positive diagnoses at initial testing, patients should be retested upon initiating antiretroviral therapy.
The evaluation of the OSGLR algorithm for restructurable controls
NASA Technical Reports Server (NTRS)
Bonnice, W. F.; Wagner, E.; Hall, S. R.; Motyka, P.
1986-01-01
The detection and isolation of commercial aircraft control surface and actuator failures using the orthogonal series generalized likelihood ratio (OSGLR) test was evaluated. The OSGLR algorithm was chosen as the most promising algorithm based on a preliminary evaluation of three failure detection and isolation (FDI) algorithms (the detection filter, the generalized likelihood ratio test, and the OSGLR test) and a survey of the literature. One difficulty of analytic FDI techniques and the OSGLR algorithm in particular is their sensitivity to modeling errors. Therefore, methods of improving the robustness of the algorithm were examined with the incorporation of age-weighting into the algorithm being the most effective approach, significantly reducing the sensitivity of the algorithm to modeling errors. The steady-state implementation of the algorithm based on a single cruise linear model was evaluated using a nonlinear simulation of a C-130 aircraft. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling the linear models used by the algorithm on dynamic pressure and flap deflection was also considered. Since simply scheduling the linear models over the entire flight envelope is unlikely to be adequate, scheduling of the steady-state implentation of the algorithm was briefly investigated.
Using a web-based nutrition algorithm in hemodialysis patients.
Steiber, Alison L; León, Janeen B; Hand, Rosa K; Murphy, William J; Fouque, Denis; Parrott, J Scott; Kalantar-Zadeh, Kamyar; Cuppari, Lilian
2015-01-01
The purpose of this study was to test the ability of a newly developed nutrition algorithm on (1) clinical utility and (2) ability to capture patient outcomes. This was a prospective observational study, using a practice based research network structure, involving renal dietitians and hemodialysis [HD] patients. This study took place in HD outpatient units in five different countries. Hundred chronic HD patients were included in this study. To select subjects, dietitians screened and consented patients in their facilities until 4 patients "at nutrition risk" based on the algorithm screening tool were identified. Inclusion criteria were patients aged older than 19 years, not on hospice or equivalent, able to read the informed consent and ask questions, and receiving HD. The ability of the algorithm screening tool is to identify patients at nutrition risk, to guide clinicians in logical renal-modified nutrition care process chains including follow-up on relevant parameters, and capture change in outcomes over 3 months. Statistics were performed using SPSS version 20.0 and significance was set at P < .05. One hundred patients on HD, enrolled by 29 dietitians, were included in this analysis. The average number of out-of-range screening parameters per patient was 3.7 (standard deviation 1.5, range 1-7), and the most prevalent risk factors were elevated parathyroid hormone (PTH; 62.8%) and low serum cholesterol (56.5%). At the initial screening step, 8 of the 14 factors led to chains with nonrandom selection patterns (by χ(2) test with P < .05). In the subsequent diagnosis step, patients diagnosed within the insufficient protein group (n = 38), increased protein intake by 0.11 g/kg/day (P = .022). In patients with a diagnosis in the high PTH group, PTH decreased by a mean of 176.85 pg/mL (n = 19, P = .011) and in those with a diagnosis in the high phosphorous group, serum phosphorous decreased by a mean of 0.91 mg/dL (n = 33, P = .006). Finally, the relative likelihood of each assessment being completed after making the related diagnosis at the previous visit compared with those for whom that diagnosis was not made was assessed, including the likelihood of a patient's protein intake assessed after a diagnosis in the insufficient protein group was made (odds ratio = 4.08, P < .05). This study demonstrates the clinical utility of a web-based HD-specific nutrition algorithm, including the ability to track changes in outcomes over time. There is potential for future research to use this tool and investigate the comparative impact of nutrition interventions. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Counting in Lattices: Combinatorial Problems from Statistical Mechanics.
NASA Astrophysics Data System (ADS)
Randall, Dana Jill
In this thesis we consider two classical combinatorial problems arising in statistical mechanics: counting matchings and self-avoiding walks in lattice graphs. The first problem arises in the study of the thermodynamical properties of monomers and dimers (diatomic molecules) in crystals. Fisher, Kasteleyn and Temperley discovered an elegant technique to exactly count the number of perfect matchings in two dimensional lattices, but it is not applicable for matchings of arbitrary size, or in higher dimensional lattices. We present the first efficient approximation algorithm for computing the number of matchings of any size in any periodic lattice in arbitrary dimension. The algorithm is based on Monte Carlo simulation of a suitable Markov chain and has rigorously derived performance guarantees that do not rely on any assumptions. In addition, we show that these results generalize to counting matchings in any graph which is the Cayley graph of a finite group. The second problem is counting self-avoiding walks in lattices. This problem arises in the study of the thermodynamics of long polymer chains in dilute solution. While there are a number of Monte Carlo algorithms used to count self -avoiding walks in practice, these are heuristic and their correctness relies on unproven conjectures. In contrast, we present an efficient algorithm which relies on a single, widely-believed conjecture that is simpler than preceding assumptions and, more importantly, is one which the algorithm itself can test. Thus our algorithm is reliable, in the sense that it either outputs answers that are guaranteed, with high probability, to be correct, or finds a counterexample to the conjecture. In either case we know we can trust our results and the algorithm is guaranteed to run in polynomial time. This is the first algorithm for counting self-avoiding walks in which the error bounds are rigorously controlled. This work was supported in part by an AT&T graduate fellowship, a University of California dissertation year fellowship and Esprit working group "RAND". Part of this work was done while visiting ICSI and the University of Edinburgh.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David
2015-01-01
The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and detection and responses that can be tested in VMET and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM. The plan for VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes. This paper is outlined in a systematic fashion analogous to a lifecycle process flow for engineering development of algorithms into software and testing. Section I describes the NASA SLS M&FM context, presenting the current infrastructure, leading principles, methods, and participants. Section II defines the testing philosophy of the M&FM algorithms as related to VMET followed by section III, which presents the modeling methods of the algorithms to be tested and validated in VMET. Its details are then further presented in section IV followed by Section V presenting integration, test status, and state analysis. Finally, section VI addresses the summary and forward directions followed by the appendices presenting relevant information on terminology and documentation.
NASA Technical Reports Server (NTRS)
Roth, J. P.
1972-01-01
The following problems are considered: (1) methods for development of logic design together with algorithms, so that it is possible to compute a test for any failure in the logic design, if such a test exists, and developing algorithms and heuristics for the purpose of minimizing the computation for tests; and (2) a method of design of logic for ultra LSI (large scale integration). It was discovered that the so-called quantum calculus can be extended to render it possible: (1) to describe the functional behavior of a mechanism component by component, and (2) to compute tests for failures, in the mechanism, using the diagnosis algorithm. The development of an algorithm for the multioutput two-level minimization problem is presented and the program MIN 360 was written for this algorithm. The program has options of mode (exact minimum or various approximations), cost function, cost bound, etc., providing flexibility.
NASA Astrophysics Data System (ADS)
Duarte, Manuel; Mamon, Gary A.
2014-05-01
The specific star formation rates of galaxies are influenced both by their mass and by their environment. Moreover, the mass function of groups and clusters serves as a powerful cosmological tool. It is thus important to quantify the accuracy to which group properties are extracted from redshift surveys. We test here the Friends-of-Friends (FoF) grouping algorithm, which depends on two linking lengths (LLs), plane-of-sky and line-of-sight (LOS), normalized to the mean nearest neighbour separation of field galaxies. We argue, on theoretical grounds, that LLs should be b⊥ ≃ 0.11, and b∥ ≈ 1.3 to recover 95 per cent of all galaxies with projected radii within the virial radius r200 and 95 per cent of the galaxies along the LOS. We then predict that 80 to 90 per cent of the galaxies in FoF groups should lie within their parent real-space groups (RSGs), defined within their virial spheres. We test the FoF extraction for 16 × 16 pairs of LLs, using subsamples of galaxies, doubly complete in distance and luminosity, of a flux-limited mock Sloan Digital Sky Survey (SDSS) galaxy catalogue. We find that massive RSGs are more prone to fragmentation, while the fragments typically have low estimated mass, with typically 30 per cent of groups of low and intermediate estimated mass being fragments. Group merging rises drastically with estimated mass. For groups of three or more galaxies, galaxy completeness and reliability are both typically better than 80 per cent (after discarding the fragments). Estimated masses of extracted groups are biased low, by up to a factor 4 at low richness, while the inefficiency of mass estimation improves from 0.85 dex to 0.2 dex when moving from low to high multiplicity groups. The optimal LLs depend on the scientific goal for the group catalogue. We propose b⊥ ≃ 0.07, with b∥ ≃ 1.1 for studies of environmental effects, b∥ ≃ 2.5 for cosmographic studies and b∥ ≃ 5 for followups of individual groups.
ERIC Educational Resources Information Center
Kim, Seonghoon
2013-01-01
With known item response theory (IRT) item parameters, Lord and Wingersky provided a recursive algorithm for computing the conditional frequency distribution of number-correct test scores, given proficiency. This article presents a generalized algorithm for computing the conditional distribution of summed test scores involving real-number item…
NASA Technical Reports Server (NTRS)
Kleb, William L.; Wood, William A.
2004-01-01
The computational simulation community is not routinely publishing independently verifiable tests to accompany new models or algorithms. A survey reveals that only 22% of new models published are accompanied by tests suitable for independently verifying the new model. As the community develops larger codes with increased functionality, and hence increased complexity in terms of the number of building block components and their interactions, it becomes prohibitively expensive for each development group to derive the appropriate tests for each component. Therefore, the computational simulation community is building its collective castle on a very shaky foundation of components with unpublished and unrepeatable verification tests. The computational simulation community needs to begin publishing component level verification tests before the tide of complexity undermines its foundation.
Constructing Aligned Assessments Using Automated Test Construction
ERIC Educational Resources Information Center
Porter, Andrew; Polikoff, Morgan S.; Barghaus, Katherine M.; Yang, Rui
2013-01-01
We describe an innovative automated test construction algorithm for building aligned achievement tests. By incorporating the algorithm into the test construction process, along with other test construction procedures for building reliable and unbiased assessments, the result is much more valid tests than result from current test construction…
Gobin, Oliver C; Schüth, Ferdi
2008-01-01
Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
An Overview of the Total Lightning Jump Algorithm: Past, Present and Future Work
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.; Deierling, Wiebke; Kessinger, Cathy
2011-01-01
Rapid increases in total lightning prior to the onset of severe and hazardous weather have been observed for several decades. These rapid increases are known as lightning jumps and can precede the occurrence of severe weather by tens of minutes. Over the past decade, a significant effort has been made to quantify lightning jump behavior in relation to its utility as a predictor of severe and hazardous weather. Based on a study of 34 thunderstorms that occurred in the Tennessee Valley, early work conducted in our group at Huntsville determined that it was indeed possible to create a reasonable operational lightning jump algorithm (LJA) based on a statistical framework relying on the variance behavior of the lightning trending signal. We the expanded this framework and tested several variance-related LJA configurations on a much larger sample of 87 severe and non severe thunderstorms. This study determined that a configuration named the "2(sigma)" algorithm had the most promise in development of the operational LJA with a probability of detection (POD) of 87%, a false alarm rate (FAR) of 33%, a Heidke Skill Score (HSS) of 0.75. The 2(sigma) algorithm was then tested on an even larger sample of 711 thunderstorms of all types from four regions of the country where total lightning measurement capability existed. The result was very encouraging.Despite the larger number of storms and the inclusion of different regions of the country, the POD remained high (79%), the FAR was low (36%) and HSS was solid (0.71). Average lead time from jump to severe weather occurrence was 20.65 minutes, with a standard deviation of +/- 15 minutes. Also, trends in total lightning were compared to cloud to ground (CG) lightning trends, and it was determined that total lightning trends had a higher POD (79% vs 66%), lower FAR (36% vs 54 %) and a better HSS (0.71 vs 0.55). From the 711-storm case study it was determined that a majority of missed events were due to severe weather producing thunderstorms in low flashing environments. The latest efforts have been geared toward examining these low flashing storms in order to adjust the algorithm for such storms, thus enhancing the capability of the LJA. Future work will test the algorithm in real time using current satellite and radar based cell tracking methods, as well as, comparing total lightning jump occurrence to both satellite based and ground base observations of thunderstorms to create correlations between lightning jumps and the observed structures within thunderstorms. Finally this algorithm will need to be tested using Geostationary Lightning Mapper proxy data to transition the algorithm from VHF ground based lightning measurements to lower frequency space-based lightning measurements.
NASA Astrophysics Data System (ADS)
Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu
2017-09-01
In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.
Coutinho, Rita; Clear, Andrew James; Owen, Andrew; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Calaminici, Maria; Gribben, John G.
2014-01-01
Purpose The opportunity to improve therapeutic choices on the basis of molecular features of the tumour cells is on the horizon in Diffuse Large B-cell Lymphoma (DLBCL). Agents such as bortezomib exhibit selective activity against the poor outcome activated B-cell type DLBCL. In order for targeted therapies to succeed in this disease, robust strategies that segregate patients into molecular groups with high reliability are needed. While molecular studies are considered gold standard, several immunohistochemistry (IHC) algorithms have been published that claim to be able to stratify patients according to their cell-of-origin and to be relevant for patient outcome. However results are poorly reproducible by independent groups. Experimental design We investigated nine IHC algorithms for molecular classification in a dataset of DLBCL diagnostic biopsies, incorporating immunostaining for CD10, BCL6, BCL2, MUM1, FOXP1, GCET1 and LMO2. IHC profiles were assessed and agreed among three expert observers. A consensus matrix based on all scoring combinations and the number of subjects for each combination allowed to assess reliability. The survival impact of individual markers and classifiers was evaluated using Kaplan-Meier curves and the log-rank test. Results The concordance in patient’s classification across the different algorithms was low. Only 4% the tumors have been classified as GCB and 21% as ABC/non-GCB by all methods. None of the algorithms provided prognostic information in the R-CHOP treated cohort. Conclusion Further work is required to standardize IHC algorithms for DLBCL cell-of-origin classification for these to be considered reliable alternatives to molecular-based methods to be used for clinical decisions. PMID:24122791
Coutinho, Rita; Clear, Andrew James; Owen, Andrew; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; Gomes da Silva, Maria; Cabeçadas, José; Calaminici, Maria; Gribben, John G
2013-12-15
The opportunity to improve therapeutic choices on the basis of molecular features of the tumor cells is on the horizon in diffuse large B-cell lymphoma (DLBCL). Agents such as bortezomib exhibit selective activity against the poor outcome activated B-cell type (ABC) DLBCL. In order for targeted therapies to succeed in this disease, robust strategies that segregate patients into molecular groups with high reliability are needed. Although molecular studies are considered gold standard, several immunohistochemistry (IHC) algorithms have been published that claim to be able to stratify patients according to their cell-of-origin and to be relevant for patient outcome. However, results are poorly reproducible by independent groups. We investigated nine IHC algorithms for molecular classification in a dataset of DLBCL diagnostic biopsies, incorporating immunostaining for CD10, BCL6, BCL2, MUM1, FOXP1, GCET1, and LMO2. IHC profiles were assessed and agreed among three expert observers. A consensus matrix based on all scoring combinations and the number of subjects for each combination allowed us to assess reliability. The survival impact of individual markers and classifiers was evaluated using Kaplan-Meier curves and the log-rank test. The concordance in patient's classification across the different algorithms was low. Only 4% of the tumors have been classified as germinal center B-cell type (GCB) and 21% as ABC/non-GCB by all methods. None of the algorithms provided prognostic information in the R-CHOP (rituximab plus cyclophosphamide-adriamycin-vincristine-prednisone)-treated cohort. Further work is required to standardize IHC algorithms for DLBCL cell-of-origin classification for these to be considered reliable alternatives to molecular-based methods to be used for clinical decisions. ©2013 AACR.
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Chou, Ping-Yi; Chou, Jyh-Horng
2015-11-01
The aim of this study is to generate vector quantisation (VQ) codebooks by integrating principle component analysis (PCA) algorithm, Linde-Buzo-Gray (LBG) algorithm, and evolutionary algorithms (EAs). The EAs include genetic algorithm (GA), particle swarm optimisation (PSO), honey bee mating optimisation (HBMO), and firefly algorithm (FF). The study is to provide performance comparisons between PCA-EA-LBG and PCA-LBG-EA approaches. The PCA-EA-LBG approaches contain PCA-GA-LBG, PCA-PSO-LBG, PCA-HBMO-LBG, and PCA-FF-LBG, while the PCA-LBG-EA approaches contain PCA-LBG, PCA-LBG-GA, PCA-LBG-PSO, PCA-LBG-HBMO, and PCA-LBG-FF. All training vectors of test images are grouped according to PCA. The PCA-EA-LBG used the vectors grouped by PCA as initial individuals, and the best solution gained by the EAs was given for LBG to discover a codebook. The PCA-LBG approach is to use the PCA to select vectors as initial individuals for LBG to find a codebook. The PCA-LBG-EA used the final result of PCA-LBG as an initial individual for EAs to find a codebook. The search schemes in PCA-EA-LBG first used global search and then applied local search skill, while in PCA-LBG-EA first used local search and then employed global search skill. The results verify that the PCA-EA-LBG indeed gain superior results compared to the PCA-LBG-EA, because the PCA-EA-LBG explores a global area to find a solution, and then exploits a better one from the local area of the solution. Furthermore the proposed PCA-EA-LBG approaches in designing VQ codebooks outperform existing approaches shown in the literature.
Automated detection of hospital outbreaks: A systematic review of methods.
Leclère, Brice; Buckeridge, David L; Boëlle, Pierre-Yves; Astagneau, Pascal; Lepelletier, Didier
2017-01-01
Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results.
Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.
Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz
2017-06-01
Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.
Bouridane, Ahmed; Ling, Bingo Wing-Kuen
2018-01-01
This paper presents an unsupervised learning algorithm for sparse nonnegative matrix factor time–frequency deconvolution with optimized fractional β-divergence. The β-divergence is a group of cost functions parametrized by a single parameter β. The Itakura–Saito divergence, Kullback–Leibler divergence and Least Square distance are special cases that correspond to β=0, 1, 2, respectively. This paper presents a generalized algorithm that uses a flexible range of β that includes fractional values. It describes a maximization–minimization (MM) algorithm leading to the development of a fast convergence multiplicative update algorithm with guaranteed convergence. The proposed model operates in the time–frequency domain and decomposes an information-bearing matrix into two-dimensional deconvolution of factor matrices that represent the spectral dictionary and temporal codes. The deconvolution process has been optimized to yield sparse temporal codes through maximizing the likelihood of the observations. The paper also presents a method to estimate the fractional β value. The method is demonstrated on separating audio mixtures recorded from a single channel. The paper shows that the extraction of the spectral dictionary and temporal codes is significantly more efficient by using the proposed algorithm and subsequently leads to better source separation performance. Experimental tests and comparisons with other factorization methods have been conducted to verify its efficacy. PMID:29702629
Chen, Bin; Peng, Xiuming; Xie, Tiansheng; Jin, Changzhong; Liu, Fumin; Wu, Nanping
2017-07-01
Currently, there are three algorithms for screening of syphilis: traditional algorithm, reverse algorithm and European Centre for Disease Prevention and Control (ECDC) algorithm. To date, there is not a generally recognized diagnostic algorithm. When syphilis meets HIV, the situation is even more complex. To evaluate their screening performance and impact on the seroprevalence of syphilis in HIV-infected individuals, we conducted a cross-sectional study included 865 serum samples from HIV-infected patients in a tertiary hospital. Every sample (one per patient) was tested with toluidine red unheated serum test (TRUST), T. pallidum particle agglutination assay (TPPA), and Treponema pallidum enzyme immunoassay (TP-EIA) according to the manufacturer's instructions. The results of syphilis serological testing were interpreted following different algorithms respectively. We directly compared the traditional syphilis screening algorithm with the reverse syphilis screening algorithm in this unique population. The reverse algorithm achieved remarkable higher seroprevalence of syphilis than the traditional algorithm (24.9% vs. 14.2%, p < 0.0001). Compared to the reverse algorithm, the traditional algorithm also had a missed serodiagnosis rate of 42.8%. The total percentages of agreement and corresponding kappa values of tradition and ECDC algorithm compared with those of reverse algorithm were as follows: 89.4%,0.668; 99.8%, 0.994. There was a very good strength of agreement between the reverse and the ECDC algorithm. Our results supported the reverse (or ECDC) algorithm in screening of syphilis in HIV-infected populations. In addition, our study demonstrated that screening of HIV-populations using different algorithms may result in a statistically different seroprevalence of syphilis.
NASA Technical Reports Server (NTRS)
Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2015-01-01
A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.
A Group Action Method for Construction of Strong Substitution Box
NASA Astrophysics Data System (ADS)
Jamal, Sajjad Shaukat; Shah, Tariq; Attaullah, Atta
2017-06-01
In this paper, the method to develop cryptographically strong substitution box is presented which can be used in multimedia security and data hiding techniques. The algorithm of construction depends on the action of a projective general linear group over the set of units of the finite commutative ring. The strength of substitution box and ability to create confusion is assessed with different available analyses. Moreover, the ability of resistance against malicious attacks is also evaluated. The substitution box is examined by bit independent criterion, strict avalanche criterion, nonlinearity test, linear approximation probability test and differential approximation probability test. This substitution box is equated with well-recognized substitution boxes such as AES, Gray, APA, S8, prime of residue, Xyi and Skipjack. The comparison shows encouraging results about the strength of the proposed box. The majority logic criterion is also calculated to analyze the strength and its practical implementation.
Harju, Inka; Lange, Christoph; Kostrzewa, Markus; Maier, Thomas; Rantakokko-Jalava, Kaisu; Haanperä, Marjo
2017-03-01
Reliable distinction of Streptococcus pneumoniae and viridans group streptococci is important because of the different pathogenic properties of these organisms. Differentiation between S. pneumoniae and closely related Sreptococcus mitis species group streptococci has always been challenging, even when using such modern methods as 16S rRNA gene sequencing or matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. In this study, a novel algorithm combined with an enhanced database was evaluated for differentiation between S. pneumoniae and S. mitis species group streptococci. One hundred one clinical S. mitis species group streptococcal strains and 188 clinical S. pneumoniae strains were identified by both the standard MALDI Biotyper database alone and that combined with a novel algorithm. The database update from 4,613 strains to 5,627 strains drastically improved the differentiation of S. pneumoniae and S. mitis species group streptococci: when the new database version containing 5,627 strains was used, only one of the 101 S. mitis species group isolates was misidentified as S. pneumoniae , whereas 66 of them were misidentified as S. pneumoniae when the earlier 4,613-strain MALDI Biotyper database version was used. The updated MALDI Biotyper database combined with the novel algorithm showed even better performance, producing no misidentifications of the S. mitis species group strains as S. pneumoniae All S. pneumoniae strains were correctly identified as S. pneumoniae with both the standard MALDI Biotyper database and the standard MALDI Biotyper database combined with the novel algorithm. This new algorithm thus enables reliable differentiation between pneumococci and other S. mitis species group streptococci with the MALDI Biotyper. Copyright © 2017 American Society for Microbiology.
An Efficient Functional Test Generation Method For Processors Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Hudec, Ján; Gramatová, Elena
2015-07-01
The paper presents a new functional test generation method for processors testing based on genetic algorithms and evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor description using simulation. The presented test generation method uses VHDL models of processors and the professional simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.
Hybrid flower pollination algorithm strategies for t-way test suite generation.
Nasser, Abdullah B; Zamli, Kamal Z; Alsewari, AbdulRahman A; Ahmed, Bestoun S
2018-01-01
The application of meta-heuristic algorithms for t-way testing has recently become prevalent. Consequently, many useful meta-heuristic algorithms have been developed on the basis of the implementation of t-way strategies (where t indicates the interaction strength). Mixed results have been reported in the literature to highlight the fact that no single strategy appears to be superior compared with other configurations. The hybridization of two or more algorithms can enhance the overall search capabilities, that is, by compensating the limitation of one algorithm with the strength of others. Thus, hybrid variants of the flower pollination algorithm (FPA) are proposed in the current work. Four hybrid variants of FPA are considered by combining FPA with other algorithmic components. The experimental results demonstrate that FPA hybrids overcome the problems of slow convergence in the original FPA and offers statistically superior performance compared with existing t-way strategies in terms of test suite size.
Hybrid flower pollination algorithm strategies for t-way test suite generation
Zamli, Kamal Z.; Alsewari, AbdulRahman A.
2018-01-01
The application of meta-heuristic algorithms for t-way testing has recently become prevalent. Consequently, many useful meta-heuristic algorithms have been developed on the basis of the implementation of t-way strategies (where t indicates the interaction strength). Mixed results have been reported in the literature to highlight the fact that no single strategy appears to be superior compared with other configurations. The hybridization of two or more algorithms can enhance the overall search capabilities, that is, by compensating the limitation of one algorithm with the strength of others. Thus, hybrid variants of the flower pollination algorithm (FPA) are proposed in the current work. Four hybrid variants of FPA are considered by combining FPA with other algorithmic components. The experimental results demonstrate that FPA hybrids overcome the problems of slow convergence in the original FPA and offers statistically superior performance compared with existing t-way strategies in terms of test suite size. PMID:29718918
A hybrid Jaya algorithm for reliability-redundancy allocation problems
NASA Astrophysics Data System (ADS)
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
VDLLA: A virtual daddy-long legs optimization
NASA Astrophysics Data System (ADS)
Yaakub, Abdul Razak; Ghathwan, Khalil I.
2016-08-01
Swarm intelligence is a strong optimization algorithm based on a biological behavior of insects or animals. The success of any optimization algorithm is depending on the balance between exploration and exploitation. In this paper, we present a new swarm intelligence algorithm, which is based on daddy long legs spider (VDLLA) as a new optimization algorithm with virtual behavior. In VDLLA, each agent (spider) has nine positions which represent the legs of spider and each position represent one solution. The proposed VDLLA is tested on four standard functions using average fitness, Medium fitness and standard deviation. The results of proposed VDLLA have been compared against Particle Swarm Optimization (PSO), Differential Evolution (DE) and Bat Inspired Algorithm (BA). Additionally, the T-Test has been conducted to show the significant deference between our proposed and other algorithms. VDLLA showed very promising results on benchmark test functions for unconstrained optimization problems and also significantly improved the original swarm algorithms.
Weh, Julia; Antoni, Christoph; Weiß, Christel; Findeisen, Peter; Ebert, Matthias; Böcker, Ulrich
2013-09-01
This study evaluates potential markers in blood and stools for their ability to distinguish bacterial from viral gastroenteritis. A total of 108 patients were prospectively recruited, of which 27 showed bacterial, 30 viral, and 51 no detectable pathogen, respectively. Cytokines, C-reactive protein (CRP), and white blood cells as well as the 2 fecal markers lactoferrin and calprotectin were determined. Statistics comprised Kruskal-Wallis test and U test in addition to an assessment of receiver operating characteristic. Interferon γ (IFNγ) levels were significantly increased in the viral group compared to the bacterial and nonspecific group. For the bacterial group, both fecal markers lactoferrin and calprotectin as well as CRP were significantly higher in comparison to the other 2 groups. To differentiate between bacterial and viral gastroenteritis, CRP, serum IFNγ, and the fecal proteins lactoferrin and calprotectin may be useful. A corresponding algorithm should be evaluated prospectively. Copyright © 2013 Elsevier Inc. All rights reserved.
Are Psychotic Experiences Related to Poorer Reflective Reasoning?
Mækelæ, Martin J.; Moritz, Steffen; Pfuhl, Gerit
2018-01-01
Background: Cognitive biases play an important role in the formation and maintenance of delusions. These biases are indicators of a weak reflective mind, or reduced engaging in reflective and deliberate reasoning. In three experiments, we tested whether a bias to accept non-sense statements as profound, treat metaphorical statements as literal, and suppress intuitive responses is related to psychotic-like experiences. Methods: We tested deliberate reasoning and psychotic-like experiences in the general population and in patients with a former psychotic episode. Deliberate reasoning was assessed with the bullshit receptivity scale, the ontological confabulation scale and the cognitive reflection test (CRT). We also measured algorithmic performance with the Berlin numeracy test and the wordsum test. Psychotic-like experiences were measured with the Community Assessment of Psychic Experience (CAPE-42) scale. Results: Psychotic-like experiences were positively correlated with a larger receptivity toward bullshit, more ontological confabulations, and also a lower score on the CRT but not with algorithmic task performance. In the patient group higher psychotic-like experiences significantly correlated with higher bullshit receptivity. Conclusion: Reduced deliberate reasoning may contribute to the formation of delusions, and be a general thinking bias largely independent of a person's general intelligence. Acceptance of bullshit may be facilitated the more positive symptoms a patient has, contributing to the maintenance of the delusions. PMID:29483886
Deeper Insights into the Circumgalactic Medium using Multivariate Analysis Methods
NASA Astrophysics Data System (ADS)
Lewis, James; Churchill, Christopher W.; Nielsen, Nikole M.; Kacprzak, Glenn
2017-01-01
Drawing from a database of galaxies whose surrounding gas has absorption from MgII, called the MgII-Absorbing Galaxy Catalog (MAGIICAT, Neilsen et al 2013), we studied the circumgalactic medium (CGM) for a sample of 47 galaxies. Using multivariate analysis, in particular the k-means clustering algorithm, we determined that simultaneously examining column density (N), rest-frame B-K color, virial mass, and azimuthal angle (the projected angle between the galaxy major axis and the quasar line of sight) yields two distinct populations: (1) bluer, lower mass galaxies with higher column density along the minor axis, and (2) redder, higher mass galaxies with lower column density along the major axis. We support this grouping by running (i) two-sample, two-dimensional Kolmogorov-Smirnov (KS) tests on each of the six bivariate planes and (ii) two-sample KS tests on each of the four variables to show that the galaxies significantly cluster into two independent populations. To account for the fact that 16 of our 47 galaxies have upper limits on N, we performed Monte-Carlo tests whereby we replaced upper limits with random deviates drawn from a Schechter distribution fit, f(N). These tests strengthen the results of the KS tests. We examined the behavior of the MgII λ2796 absorption line equivalent width and velocity width for each galaxy population. We find that equivalent width and velocity width do not show similar characteristic distinctions between the two galaxy populations. We discuss the k-means clustering algorithm for optimizing the analysis of populations within datasets as opposed to using arbitrary bivariate subsample cuts. We also discuss the power of the k-means clustering algorithm in extracting deeper physical insight into the CGM in relationship to host galaxies.
Investigating prior probabilities in a multiple hypothesis test for use in space domain awareness
NASA Astrophysics Data System (ADS)
Hardy, Tyler J.; Cain, Stephen C.
2016-05-01
The goal of this research effort is to improve Space Domain Awareness (SDA) capabilities of current telescope systems through improved detection algorithms. Ground-based optical SDA telescopes are often spatially under-sampled, or aliased. This fact negatively impacts the detection performance of traditionally proposed binary and correlation-based detection algorithms. A Multiple Hypothesis Test (MHT) algorithm has been previously developed to mitigate the effects of spatial aliasing. This is done by testing potential Resident Space Objects (RSOs) against several sub-pixel shifted Point Spread Functions (PSFs). A MHT has been shown to increase detection performance for the same false alarm rate. In this paper, the assumption of a priori probability used in a MHT algorithm is investigated. First, an analysis of the pixel decision space is completed to determine alternate hypothesis prior probabilities. These probabilities are then implemented into a MHT algorithm, and the algorithm is then tested against previous MHT algorithms using simulated RSO data. Results are reported with Receiver Operating Characteristic (ROC) curves and probability of detection, Pd, analysis.
Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms
Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon
2011-01-01
Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532
Rhoads, Daniel D; Genzen, Jonathan R; Bashleben, Christine P; Faix, James D; Ansari, M Qasim
2017-01-01
-Syphilis serology screening in laboratory practice is evolving. Traditionally, the syphilis screening algorithm begins with a nontreponemal immunoassay, which is manually performed by a laboratory technologist. In contrast, the reverse algorithm begins with a treponemal immunoassay, which can be automated. The Centers for Disease Control and Prevention has recognized both approaches, but little is known about the current state of laboratory practice, which could impact test utilization and interpretation. -To assess the current state of laboratory practice for syphilis serologic screening. -In August 2015, a voluntary questionnaire was sent to the 2360 laboratories that subscribe to the College of American Pathologists syphilis serology proficiency survey. -Of the laboratories surveyed, 98% (2316 of 2360) returned the questionnaire, and about 83% (1911 of 2316) responded to at least some questions. Twenty-eight percent (378 of 1364) reported revision of their syphilis screening algorithm within the past 2 years, and 9% (170 of 1905) of laboratories anticipated changing their screening algorithm in the coming year. Sixty-three percent (1205 of 1911) reported using the traditional algorithm, 16% (304 of 1911) reported using the reverse algorithm, and 2.5% (47 of 1911) reported using both algorithms, whereas 9% (169 of 1911) reported not performing a reflex confirmation test. Of those performing the reverse algorithm, 74% (282 of 380) implemented a new testing platform when introducing the new algorithm. -The majority of laboratories still perform the traditional algorithm, but a significant minority have implemented the reverse-screening algorithm. Although the nontreponemal immunologic response typically wanes after cure and becomes undetectable, treponemal immunoassays typically remain positive for life, and it is important for laboratorians and clinicians to consider these assay differences when implementing, using, and interpreting serologic syphilis screening algorithms.
DOT National Transportation Integrated Search
1976-04-01
The development and testing of incident detection algorithms was based on Los Angeles and Minneapolis freeway surveillance data. Algorithms considered were based on times series and pattern recognition techniques. Attention was given to the effects o...
Suppes, T; Swann, A C; Dennehy, E B; Habermacher, E D; Mason, M; Crismon, M L; Toprac, M G; Rush, A J; Shon, S P; Altshuler, K Z
2001-06-01
Use of treatment guidelines for treatment of major psychiatric illnesses has increased in recent years. The Texas Medication Algorithm Project (TMAP) was developed to study the feasibility and process of developing and implementing guidelines for bipolar disorder, major depressive disorder, and schizophrenia in the public mental health system of Texas. This article describes the consensus process used to develop the first set of TMAP algorithms for the Bipolar Disorder Module (Phase 1) and the trial testing the feasibility of their implementation in inpatient and outpatient psychiatric settings across Texas (Phase 2). The feasibility trial answered core questions regarding implementation of treatment guidelines for bipolar disorder. A total of 69 patients were treated with the original algorithms for bipolar disorder developed in Phase 1 of TMAP. Results support that physicians accepted the guidelines, followed recommendations to see patients at certain intervals, and utilized sequenced treatment steps differentially over the course of treatment. While improvements in clinical symptoms (24-item Brief Psychiatric Rating Scale) were observed over the course of enrollment in the trial, these conclusions are limited by the fact that physician volunteers were utilized for both treatment and ratings. and there was no control group. Results from Phases 1 and 2 indicate that it is possible to develop and implement a treatment guideline for patients with a history of mania in public mental health clinics in Texas. TMAP Phase 3, a recently completed larger and controlled trial assessing the clinical and economic impact of treatment guidelines and patient and family education in the public mental health system of Texas, improves upon this methodology.
Schoenberg, Mike R; Lange, Rael T; Saklofske, Donald H; Suarez, Mariann; Brickell, Tracey A
2008-12-01
Determination of neuropsychological impairment involves contrasting obtained performances with a comparison standard, which is often an estimate of premorbid IQ. M. R. Schoenberg, R. T. Lange, T. A. Brickell, and D. H. Saklofske (2007) proposed the Child Premorbid Intelligence Estimate (CPIE) to predict premorbid Full Scale IQ (FSIQ) using the Wechsler Intelligence Scale for Children-4th Edition (WISC-IV; Wechsler, 2003). The CPIE includes 12 algorithms to predict FSIQ, 1 using demographic variables and 11 algorithms combining WISC-IV subtest raw scores with demographic variables. The CPIE was applied to a sample of children with acquired traumatic brain injury (TBI sample; n = 40) and a healthy demographically matched sample (n = 40). Paired-samples t tests found estimated premorbid FSIQ differed from obtained FSIQ when applied to the TBI sample (ps
A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem.
Jiang, Zi-Bin; Yang, Qiong
2016-01-01
The fruit fly optimization algorithm (FOA) is a newly developed bio-inspired algorithm. The continuous variant version of FOA has been proven to be a powerful evolutionary approach to determining the optima of a numerical function on a continuous definition domain. In this study, a discrete FOA (DFOA) is developed and applied to the traveling salesman problem (TSP), a common combinatorial problem. In the DFOA, the TSP tour is represented by an ordering of city indices, and the bio-inspired meta-heuristic search processes are executed with two elaborately designed main procedures: the smelling and tasting processes. In the smelling process, an effective crossover operator is used by the fruit fly group to search for the neighbors of the best-known swarm location. During the tasting process, an edge intersection elimination (EXE) operator is designed to improve the neighbors of the non-optimum food location in order to enhance the exploration performance of the DFOA. In addition, benchmark instances from the TSPLIB are classified in order to test the searching ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is compared to that of other meta-heuristic algorithms. The results indicate that the proposed DFOA can be effectively used to solve TSPs, especially large-scale problems.
A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem
Jiang, Zi-bin; Yang, Qiong
2016-01-01
The fruit fly optimization algorithm (FOA) is a newly developed bio-inspired algorithm. The continuous variant version of FOA has been proven to be a powerful evolutionary approach to determining the optima of a numerical function on a continuous definition domain. In this study, a discrete FOA (DFOA) is developed and applied to the traveling salesman problem (TSP), a common combinatorial problem. In the DFOA, the TSP tour is represented by an ordering of city indices, and the bio-inspired meta-heuristic search processes are executed with two elaborately designed main procedures: the smelling and tasting processes. In the smelling process, an effective crossover operator is used by the fruit fly group to search for the neighbors of the best-known swarm location. During the tasting process, an edge intersection elimination (EXE) operator is designed to improve the neighbors of the non-optimum food location in order to enhance the exploration performance of the DFOA. In addition, benchmark instances from the TSPLIB are classified in order to test the searching ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is compared to that of other meta-heuristic algorithms. The results indicate that the proposed DFOA can be effectively used to solve TSPs, especially large-scale problems. PMID:27812175
Nguyen, Hai Van; Finkelstein, Eric Andrew; Mital, Shweta; Gardner, Daphne Su-Lyn
2017-11-01
Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (<45 years) and body mass index (<25 kg/m 2 if diagnosed >30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Finding all solutions of nonlinear equations using the dual simplex method
NASA Astrophysics Data System (ADS)
Yamamura, Kiyotaka; Fujioka, Tsuyoshi
2003-03-01
Recently, an efficient algorithm has been proposed for finding all solutions of systems of nonlinear equations using linear programming. This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations using the dual simplex method. In this letter, an improved version of the LP test algorithm is proposed. By numerical examples, it is shown that the proposed algorithm could find all solutions of a system of 300 nonlinear equations in practical computation time.
Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation
Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir
2016-05-01
We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Cheukkai; Suh, Yelin; Robertson, Daniel
Purpose: The purpose of this study was to develop a novel algorithm to create a robust internal respiratory signal (IRS) for retrospective sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm combines information from the Fourier transform of the CT images and from internal anatomical features to form the IRS. The algorithm first extracts potential respiratory signals from low-frequency components in the Fourier space and selected anatomical features in the image space. A clustering algorithm then constructs groups of potential respiratory signals with similar temporal oscillation patterns. The clustered group with the largest number of similar signalsmore » is chosen to form the final IRS. To evaluate the performance of the proposed algorithm, the IRS was computed and compared with the external respiratory signal from the real-time position management (RPM) system on 80 patients. Results: In 72 (90%) of the 4D CT data sets tested, the IRS computed by the authors’ proposed algorithm matched with the RPM signal based on their normalized cross correlation. For these data sets with matching respiratory signals, the average difference between the end inspiration times (Δt{sub ins}) in the IRS and RPM signal was 0.11 s, and only 2.1% of Δt{sub ins} were more than 0.5 s apart. In the eight (10%) 4D CT data sets in which the IRS and the RPM signal did not match, the average Δt{sub ins} was 0.73 s in the nonmatching couch positions, and 35.4% of them had a Δt{sub ins} greater than 0.5 s. At couch positions in which IRS did not match the RPM signal, a correlation-based metric indicated poorer matching of neighboring couch positions in the RPM-sorted images. This implied that, when IRS did not match the RPM signal, the images sorted using the IRS showed fewer artifacts than the clinical images sorted using the RPM signal. Conclusions: The authors’ proposed algorithm can generate robust IRSs that can be used for retrospective sorting of 4D CT data. The algorithm is completely automatic and requires very little processing time. The algorithm is cost efficient and can be easily adopted for everyday clinical use.« less
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.
Suner, Aslı; Karakülah, Gökhan; Dicle, Oğuz
2014-01-01
Statistical hypothesis testing is an essential component of biological and medical studies for making inferences and estimations from the collected data in the study; however, the misuse of statistical tests is widely common. In order to prevent possible errors in convenient statistical test selection, it is currently possible to consult available test selection algorithms developed for various purposes. However, the lack of an algorithm presenting the most common statistical tests used in biomedical research in a single flowchart causes several problems such as shifting users among the algorithms, poor decision support in test selection and lack of satisfaction of potential users. Herein, we demonstrated a unified flowchart; covers mostly used statistical tests in biomedical domain, to provide decision aid to non-statistician users while choosing the appropriate statistical test for testing their hypothesis. We also discuss some of the findings while we are integrating the flowcharts into each other to develop a single but more comprehensive decision algorithm.
Effects of rooting via out-groups on in-group topology in phylogeny.
Ackerman, Margareta; Brown, Daniel G; Loker, David
2014-01-01
Users of phylogenetic methods require rooted trees, because the direction of time depends on the placement of the root. While phylogenetic trees are typically rooted by using an out-group, this mechanism is inappropriate when the addition of an out-group changes the in-group topology. We perform a formal analysis of phylogenetic algorithms under the inclusion of distant out-groups. It turns out that linkage-based algorithms (including UPGMA) and a class of bisecting methods do not modify the topology of the in-group when an out-group is included. By contrast, the popular neighbour joining algorithm fails this property in a strong sense: every data set can have its structure destroyed by some arbitrarily distant outlier. Furthermore, including multiple outliers can lead to an arbitrary topology on the in-group. The standard rooting approach that uses out-groups may be fundamentally unsuited for neighbour joining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Sean Donovan; Beall, Patrick S; Miller, Mark L
2014-08-01
Through the SNL New Mexico Small Business Assistance (NMSBA) program, several Sandia engineers worked with the Environmental Restoration Group (ERG) Inc. to verify and validate a novel algorithm used to determine the scanning Critical Level (L c ) and Minimum Detectable Concentration (MDC) (or Minimum Detectable Areal Activity) for the 102F scanning system. Through the use of Monte Carlo statistical simulations the algorithm mathematically demonstrates accuracy in determining the L c and MDC when a nearest-neighbor averaging (NNA) technique was used. To empirically validate this approach, SNL prepared several spiked sources and ran a test with the ERG 102F instrumentmore » on a bare concrete floor known to have no radiological contamination other than background naturally occurring radioactive material (NORM). The tests conclude that the NNA technique increases the sensitivity (decreases the L c and MDC) for high-density data maps that are obtained by scanning radiological survey instruments.« less
An extended affinity propagation clustering method based on different data density types.
Zhao, XiuLi; Xu, WeiXiang
2015-01-01
Affinity propagation (AP) algorithm, as a novel clustering method, does not require the users to specify the initial cluster centers in advance, which regards all data points as potential exemplars (cluster centers) equally and groups the clusters totally by the similar degree among the data points. But in many cases there exist some different intensive areas within the same data set, which means that the data set does not distribute homogeneously. In such situation the AP algorithm cannot group the data points into ideal clusters. In this paper, we proposed an extended AP clustering algorithm to deal with such a problem. There are two steps in our method: firstly the data set is partitioned into several data density types according to the nearest distances of each data point; and then the AP clustering method is, respectively, used to group the data points into clusters in each data density type. Two experiments are carried out to evaluate the performance of our algorithm: one utilizes an artificial data set and the other uses a real seismic data set. The experiment results show that groups are obtained more accurately by our algorithm than OPTICS and AP clustering algorithm itself.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1979-01-01
A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.
Kosack, Cara S.; Shanks, Leslie; Beelaert, Greet; Benson, Tumwesigye; Savane, Aboubacar; Ng'ang'a, Anne; Bita, André; Zahinda, Jean-Paul B. N.; Fransen, Katrien
2017-01-01
ABSTRACT Our objective was to evaluate the performance of HIV testing algorithms based on WHO recommendations, using data from specimens collected at six HIV testing and counseling sites in sub-Saharan Africa (Conakry, Guinea; Kitgum and Arua, Uganda; Homa Bay, Kenya; Douala, Cameroon; Baraka, Democratic Republic of Congo). A total of 2,780 samples, including 1,306 HIV-positive samples, were included in the analysis. HIV testing algorithms were designed using Determine as a first test. Second and third rapid diagnostic tests (RDTs) were selected based on site-specific performance, adhering where possible to the WHO-recommended minimum requirements of ≥99% sensitivity and specificity. The threshold for specificity was reduced to 98% or 96% if necessary. We also simulated algorithms consisting of one RDT followed by a simple confirmatory assay. The positive predictive values (PPV) of the simulated algorithms ranged from 75.8% to 100% using strategies recommended for high-prevalence settings, 98.7% to 100% using strategies recommended for low-prevalence settings, and 98.1% to 100% using a rapid test followed by a simple confirmatory assay. Although we were able to design algorithms that met the recommended PPV of ≥99% in five of six sites using the applicable high-prevalence strategy, options were often very limited due to suboptimal performance of individual RDTs and to shared falsely reactive results. These results underscore the impact of the sequence of HIV tests and of shared false-reactivity data on algorithm performance. Where it is not possible to identify tests that meet WHO-recommended specifications, the low-prevalence strategy may be more suitable. PMID:28747371
Validation of an automated seizure detection algorithm for term neonates
Mathieson, Sean R.; Stevenson, Nathan J.; Low, Evonne; Marnane, William P.; Rennie, Janet M.; Temko, Andrey; Lightbody, Gordon; Boylan, Geraldine B.
2016-01-01
Objective The objective of this study was to validate the performance of a seizure detection algorithm (SDA) developed by our group, on previously unseen, prolonged, unedited EEG recordings from 70 babies from 2 centres. Methods EEGs of 70 babies (35 seizure, 35 non-seizure) were annotated for seizures by experts as the gold standard. The SDA was tested on the EEGs at a range of sensitivity settings. Annotations from the expert and SDA were compared using event and epoch based metrics. The effect of seizure duration on SDA performance was also analysed. Results Between sensitivity settings of 0.5 and 0.3, the algorithm achieved seizure detection rates of 52.6–75.0%, with false detection (FD) rates of 0.04–0.36 FD/h for event based analysis, which was deemed to be acceptable in a clinical environment. Time based comparison of expert and SDA annotations using Cohen’s Kappa Index revealed a best performing SDA threshold of 0.4 (Kappa 0.630). The SDA showed improved detection performance with longer seizures. Conclusion The SDA achieved promising performance and warrants further testing in a live clinical evaluation. Significance The SDA has the potential to improve seizure detection and provide a robust tool for comparing treatment regimens. PMID:26055336
Park, Rachel; O'Brien, Thomas F; Huang, Susan S; Baker, Meghan A; Yokoe, Deborah S; Kulldorff, Martin; Barrett, Craig; Swift, Jamie; Stelling, John
2016-11-01
While antimicrobial resistance threatens the prevention, treatment, and control of infectious diseases, systematic analysis of routine microbiology laboratory test results worldwide can alert new threats and promote timely response. This study explores statistical algorithms for recognizing geographic clustering of multi-resistant microbes within a healthcare network and monitoring the dissemination of new strains over time. Escherichia coli antimicrobial susceptibility data from a three-year period stored in WHONET were analyzed across ten facilities in a healthcare network utilizing SaTScan's spatial multinomial model with two models for defining geographic proximity. We explored geographic clustering of multi-resistance phenotypes within the network and changes in clustering over time. Geographic clustering identified from both latitude/longitude and non-parametric facility groupings geographic models were similar, while the latter was offers greater flexibility and generalizability. Iterative application of the clustering algorithms suggested the possible recognition of the initial appearance of invasive E. coli ST131 in the clinical database of a single hospital and subsequent dissemination to others. Systematic analysis of routine antimicrobial resistance susceptibility test results supports the recognition of geographic clustering of microbial phenotypic subpopulations with WHONET and SaTScan, and iterative application of these algorithms can detect the initial appearance in and dissemination across a region prompting early investigation, response, and containment measures.
A cluster pattern algorithm for the analysis of multiparametric cell assays.
Kaufman, Menachem; Bloch, David; Zurgil, Naomi; Shafran, Yana; Deutsch, Mordechai
2005-09-01
The issue of multiparametric analysis of complex single cell assays of both static and flow cytometry (SC and FC, respectively) has become common in recent years. In such assays, the analysis of changes, applying common statistical parameters and tests, often fails to detect significant differences between the investigated samples. The cluster pattern similarity (CPS) measure between two sets of gated clusters is based on computing the difference between their density distribution functions' set points. The CPS was applied for the discrimination between two observations in a four-dimensional parameter space. The similarity coefficient (r) ranges between 0 (perfect similarity) to 1 (dissimilar). Three CPS validation tests were carried out: on the same stock samples of fluorescent beads, yielding very low r's (0, 0.066); and on two cell models: mitogenic stimulation of peripheral blood mononuclear cells (PBMC), and apoptosis induction in Jurkat T cell line by H2O2. In both latter cases, r indicated similarity (r < 0.23) within the same group, and dissimilarity (r > 0.48) otherwise. This classification and algorithm approach offers a measure of similarity between samples. It relies on the multidimensional pattern of the sample parameters. The algorithm compensates for environmental drifts in this apparatus and assay; it also may be applied to more than four dimensions.
Grude, Nils; Lindbaek, Morten
2015-01-01
Objective. To compare the clinical outcome of patients presenting with symptoms of uncomplicated cystitis who were seen by a doctor, with patients who were given treatment following a diagnostic algorithm. Design. Randomized controlled trial. Setting. Out-of-hours service, Oslo, Norway. Intervention. Women with typical symptoms of uncomplicated cystitis were included in the trial in the time period September 2010–November 2011. They were randomized into two groups. One group received standard treatment according to the diagnostic algorithm, the other group received treatment after a regular consultation by a doctor. Subjects. Women (n = 441) aged 16–55 years. Mean age in both groups 27 years. Main outcome measures. Number of days until symptomatic resolution. Results. No significant differences were found between the groups in the basic patient demographics, severity of symptoms, or percentage of urine samples with single culture growth. A median of three days until symptomatic resolution was found in both groups. By day four 79% in the algorithm group and 72% in the regular consultation group were free of symptoms (p = 0.09). The number of patients who contacted a doctor again in the follow-up period and received alternative antibiotic treatment was insignificantly higher (p = 0.08) after regular consultation than after treatment according to the diagnostic algorithm. There were no cases of severe pyelonephritis or hospital admissions during the follow-up period. Conclusion. Using a diagnostic algorithm is a safe and efficient method for treating women with symptoms of uncomplicated cystitis at an out-of-hours service. This simplification of treatment strategy can lead to a more rational use of consultation time and a stricter adherence to National Antibiotic Guidelines for a common disorder. PMID:25961367
Bollestad, Marianne; Grude, Nils; Lindbaek, Morten
2015-06-01
To compare the clinical outcome of patients presenting with symptoms of uncomplicated cystitis who were seen by a doctor, with patients who were given treatment following a diagnostic algorithm. Randomized controlled trial. Out-of-hours service, Oslo, Norway. Women with typical symptoms of uncomplicated cystitis were included in the trial in the time period September 2010-November 2011. They were randomized into two groups. One group received standard treatment according to the diagnostic algorithm, the other group received treatment after a regular consultation by a doctor. Women (n = 441) aged 16-55 years. Mean age in both groups 27 years. Number of days until symptomatic resolution. No significant differences were found between the groups in the basic patient demographics, severity of symptoms, or percentage of urine samples with single culture growth. A median of three days until symptomatic resolution was found in both groups. By day four 79% in the algorithm group and 72% in the regular consultation group were free of symptoms (p = 0.09). The number of patients who contacted a doctor again in the follow-up period and received alternative antibiotic treatment was insignificantly higher (p = 0.08) after regular consultation than after treatment according to the diagnostic algorithm. There were no cases of severe pyelonephritis or hospital admissions during the follow-up period. Using a diagnostic algorithm is a safe and efficient method for treating women with symptoms of uncomplicated cystitis at an out-of-hours service. This simplification of treatment strategy can lead to a more rational use of consultation time and a stricter adherence to National Antibiotic Guidelines for a common disorder.
Performance of an open-source heart sound segmentation algorithm on eight independent databases.
Liu, Chengyu; Springer, David; Clifford, Gari D
2017-08-01
Heart sound segmentation is a prerequisite step for the automatic analysis of heart sound signals, facilitating the subsequent identification and classification of pathological events. Recently, hidden Markov model-based algorithms have received increased interest due to their robustness in processing noisy recordings. In this study we aim to evaluate the performance of the recently published logistic regression based hidden semi-Markov model (HSMM) heart sound segmentation method, by using a wider variety of independently acquired data of varying quality. Firstly, we constructed a systematic evaluation scheme based on a new collection of heart sound databases, which we assembled for the PhysioNet/CinC Challenge 2016. This collection includes a total of more than 120 000 s of heart sounds recorded from 1297 subjects (including both healthy subjects and cardiovascular patients) and comprises eight independent heart sound databases sourced from multiple independent research groups around the world. Then, the HSMM-based segmentation method was evaluated using the assembled eight databases. The common evaluation metrics of sensitivity, specificity, accuracy, as well as the [Formula: see text] measure were used. In addition, the effect of varying the tolerance window for determining a correct segmentation was evaluated. The results confirm the high accuracy of the HSMM-based algorithm on a separate test dataset comprised of 102 306 heart sounds. An average [Formula: see text] score of 98.5% for segmenting S1 and systole intervals and 97.2% for segmenting S2 and diastole intervals were observed. The [Formula: see text] score was shown to increases with an increases in the tolerance window size, as expected. The high segmentation accuracy of the HSMM-based algorithm on a large database confirmed the algorithm's effectiveness. The described evaluation framework, combined with the largest collection of open access heart sound data, provides essential resources for evaluators who need to test their algorithms with realistic data and share reproducible results.
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
Klein, Arno; Andersson, Jesper; Ardekani, Babak A.; Ashburner, John; Avants, Brian; Chiang, Ming-Chang; Christensen, Gary E.; Collins, D. Louis; Gee, James; Hellier, Pierre; Song, Joo Hyun; Jenkinson, Mark; Lepage, Claude; Rueckert, Daniel; Thompson, Paul; Vercauteren, Tom; Woods, Roger P.; Mann, J. John; Parsey, Ramin V.
2009-01-01
All fields of neuroscience that employ brain imaging need to communicate their results with reference to anatomical regions. In particular, comparative morphometry and group analysis of functional and physiological data require coregistration of brains to establish correspondences across brain structures. It is well established that linear registration of one brain to another is inadequate for aligning brain structures, so numerous algorithms have emerged to nonlinearly register brains to one another. This study is the largest evaluation of nonlinear deformation algorithms applied to brain image registration ever conducted. Fourteen algorithms from laboratories around the world are evaluated using 8 different error measures. More than 45,000 registrations between 80 manually labeled brains were performed by algorithms including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms (“SPM2-type” and regular Normalization, Unified Segmentation, and the DARTEL Toolbox). All of these registrations were preceded by linear registration between the same image pairs using FLIRT. One of the most significant findings of this study is that the relative performances of the registration methods under comparison appear to be little affected by the choice of subject population, labeling protocol, and type of overlap measure. This is important because it suggests that the findings are generalizable to new subject populations that are labeled or evaluated using different labeling protocols. Furthermore, we ranked the 14 methods according to three completely independent analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking) and derived three almost identical top rankings of the methods. ART, SyN, IRTK, and SPM's DARTEL Toolbox gave the best results according to overlap and distance measures, with ART and SyN delivering the most consistently high accuracy across subjects and label sets. Updates will be published on the http://www.mindboggle.info/papers/ website. PMID:19195496
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
With the recent introduction of heterogeneity correction algorithms for brachytherapy, the AAPM community is still unclear on how to commission and implement these into clinical practice. The recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms. A charge of the AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is the development of a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users. In this practical medical physics course, specific examples on how to perform the commissioning process are presented, as well as descriptions of themore » clinical impact from recent literature reporting comparisons of TG-43 and heterogeneity-based dosimetry. Learning Objectives: Identify key clinical applications needing advanced dose calculation in brachytherapy. Review TG-186 and WGMBDCA guidelines, commission process, and dosimetry benchmarks. Evaluate clinical cases using commercially available systems and compare to TG-43 dosimetry.« less
A test to evaluate the earthquake prediction algorithm, M8
Healy, John H.; Kossobokov, Vladimir G.; Dewey, James W.
1992-01-01
A test of the algorithm M8 is described. The test is constructed to meet four rules, which we propose to be applicable to the test of any method for earthquake prediction: 1. An earthquake prediction technique should be presented as a well documented, logical algorithm that can be used by investigators without restrictions. 2. The algorithm should be coded in a common programming language and implementable on widely available computer systems. 3. A test of the earthquake prediction technique should involve future predictions with a black box version of the algorithm in which potentially adjustable parameters are fixed in advance. The source of the input data must be defined and ambiguities in these data must be resolved automatically by the algorithm. 4. At least one reasonable null hypothesis should be stated in advance of testing the earthquake prediction method, and it should be stated how this null hypothesis will be used to estimate the statistical significance of the earthquake predictions. The M8 algorithm has successfully predicted several destructive earthquakes, in the sense that the earthquakes occurred inside regions with linear dimensions from 384 to 854 km that the algorithm had identified as being in times of increased probability for strong earthquakes. In addition, M8 has successfully "post predicted" high percentages of strong earthquakes in regions to which it has been applied in retroactive studies. The statistical significance of previous predictions has not been established, however, and post-prediction studies in general are notoriously subject to success-enhancement through hindsight. Nor has it been determined how much more precise an M8 prediction might be than forecasts and probability-of-occurrence estimates made by other techniques. We view our test of M8 both as a means to better determine the effectiveness of M8 and as an experimental structure within which to make observations that might lead to improvements in the algorithm or conceivably lead to a radically different approach to earthquake prediction.
Chen, Derrick J; Yao, Joseph D
2017-06-01
Updated recommendations for HIV diagnostic laboratory testing published by the Centers for Disease Control and Prevention and the Association of Public Health Laboratories incorporate 4th generation HIV immunoassays, which are capable of identifying HIV infection prior to seroconversion. The purpose of this study was to compare turnaround time and cost between 3rd and 4th generation HIV immunoassay-based testing algorithms for initially reactive results. The clinical microbiology laboratory database at Mayo Clinic, Rochester, MN was queried for 3rd generation (from November 2012 to May 2014) and 4th generation (from May 2014 to November 2015) HIV immunoassay results. All results from downstream supplemental testing were recorded. Turnaround time (defined as the time of initial sample receipt in the laboratory to the time the final supplemental test in the algorithm was resulted) and cost (based on 2016 Medicare reimbursement rates) were assessed. A total of 76,454 and 78,998 initial tests were performed during the study period using the 3rd generation and 4th generation HIV immunoassays, respectively. There were 516 (0.7%) and 581 (0.7%) total initially reactive results, respectively. Of these, 304 (58.9%) and 457 (78.7%) were positive by supplemental testing. There were 10 (0.01%) cases of acute HIV infection identified with the 4th generation algorithm. The most frequent tests performed to confirm an HIV-positive case using the 3rd generation algorithm, which were reactive initial immunoassay and positive HIV-1 Western blot, took a median time of 1.1 days to complete at a cost of $45.00. In contrast, the most frequent tests performed to confirm an HIV-positive case using the 4th generation algorithm, which included a reactive initial immunoassay and positive HIV-1/-2 antibody differentiation immunoassay for HIV-1, took a median time of 0.4 days and cost $63.25. Overall median turnaround time was 2.2 and 1.5 days, and overall median cost was $63.90 and $72.50 for 3rd and 4th generation algorithms, respectively. Both 3rd and 4th generation HIV immunoassays had similar total numbers of tests performed and positivity rates during the study period. A greater proportion of reactive 4th generation immunoassays were confirmed to be positive, and the 4th generation algorithm identified several cases of acute HIV infection that would have been missed by the 3rd generation algorithm. The 4th generation algorithm had a more rapid turnaround time but higher cost for confirmed positive HIV infections and overall, compared to the 3rd generation algorithm. Copyright © 2017 Elsevier B.V. All rights reserved.
A comparison of kinematic algorithms to estimate gait events during overground running.
Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher
2015-01-01
The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.
Putting health status guided COPD management to the test: protocol of the MARCH study.
Kocks, Janwillem; de Jong, Corina; Berger, Marjolein Y; Kerstjens, Huib A M; van der Molen, Thys
2013-07-04
Chronic Obstructive Pulmonary Disease (COPD) is a disease state characterized by airflow limitation that is not fully reversible and usually progressive. Current guidelines, among which the Dutch, have so far based their management strategy mainly on lung function impairment as measured by FEV1, while it is well known that FEV1 has a poor correlation with almost all features of COPD that matter to patients. Based on this discrepancy the GOLD 2011 update included symptoms and impact in their treatment algorithm proposal. Health status measures capture both symptoms and impact and could therefore be used as a standardized way to capture the information a doctor could otherwise only collect by careful history taking and recording. We hypothesize that a treatment algorithm that is based on a simple validated 10 item health status questionnaire, the Clinical COPD Questionnaire (CCQ), improves health status (as measured by SGRQ) and classical COPD outcomes like exacerbation frequency, patient satisfaction and health care utilization compared to usual care based on guidelines. This hypothesis will be tested in a randomized controlled trial (RCT) following 330 patients for two years. During this period general practitioners will receive treatment advices every four months that are based on the patient's health status (in half of the patients, intervention group) or on lung function (the remaining half of the patients, usual care group). During the design process, the selection of outcomes and the development of the treatment algorithm were challenging. This is discussed in detail in the manuscript to facilitate researchers in designing future studies in this changing field of implementation research. Netherlands Trial Register, NTR2643.
Role of data aggregation in biosurveillance detection strategies with applications from ESSENCE.
Burkom, Howard S; Elbert, Y; Feldman, A; Lin, J
2004-09-24
Syndromic surveillance systems are used to monitor daily electronic data streams for anomalous counts of features of varying specificity. The monitored quantities might be counts of clinical diagnoses, sales of over-the-counter influenza remedies, school absenteeism among a given age group, and so forth. Basic data-aggregation decisions for these systems include determining which records to count and how to group them in space and time. This paper discusses the application of spatial and temporal data-aggregation strategies for multiple data streams to alerting algorithms appropriate to the surveillance region and public health threat of interest. Such a strategy was applied and evaluated for a complex, authentic, multisource, multiregion environment, including >2 years of data records from a system-evaluation exercise for the Defense Advanced Research Project Agency (DARPA). Multivariate and multiple univariate statistical process control methods were adapted and applied to the DARPA data collection. Comparative parametric analyses based on temporal aggregation were used to optimize the performance of these algorithms for timely detection of a set of outbreaks identified in the data by a team of epidemiologists. The sensitivity and timeliness of the most promising detection methods were tested at empirically calculated thresholds corresponding to multiple practical false-alert rates. Even at the strictest false-alert rate, all but one of the outbreaks were detected by the best method, and the best methods achieved a 1-day median time before alert over the set of test outbreaks. These results indicate that a biosurveillance system can provide a substantial alerting-timeliness advantage over traditional public health monitoring for certain outbreaks. Comparative analyses of individual algorithm results indicate further achievable improvement in sensitivity and specificity.
Protas, Hillary D; Chen, Kewei; Langbaum, Jessica B S; Fleisher, Adam S; Alexander, Gene E; Lee, Wendy; Bandy, Daniel; de Leon, Mony J; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W; Caselli, Richard J; Reiman, Eric M
2013-03-01
To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxyglucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Academic medical center. A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P = .60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P = .001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r = 0.29, P = .0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P < .05, determined by use of pairwise Fisher z tests). Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or metabolism in cognitively normal persons at increased genetic risk for Alzheimer disease.
Esteban, Santiago; Rodríguez Tablado, Manuel; Peper, Francisco; Mahumud, Yamila S; Ricci, Ricardo I; Kopitowski, Karin; Terrasa, Sergio
2017-01-01
Precision medicine requires extremely large samples. Electronic health records (EHR) are thought to be a cost-effective source of data for that purpose. Phenotyping algorithms help reduce classification errors, making EHR a more reliable source of information for research. Four algorithm development strategies for classifying patients according to their diabetes status (diabetics; non-diabetics; inconclusive) were tested (one codes-only algorithm; one boolean algorithm, four statistical learning algorithms and six stacked generalization meta-learners). The best performing algorithms within each strategy were tested on the validation set. The stacked generalization algorithm yielded the highest Kappa coefficient value in the validation set (0.95 95% CI 0.91, 0.98). The implementation of these algorithms allows for the exploitation of data from thousands of patients accurately, greatly reducing the costs of constructing retrospective cohorts for research.
Belghith, Akram; Bowd, Christopher; Medeiros, Felipe A; Hammel, Naama; Yang, Zhiyong; Weinreb, Robert N; Zangwill, Linda M
2016-02-01
We determined if the Bruch's membrane opening (BMO) location changes over time in healthy eyes and eyes with progressing glaucoma, and validated an automated segmentation algorithm for identifying the BMO in Cirrus high-definition coherence tomography (HD-OCT) images. We followed 95 eyes (35 progressing glaucoma and 60 healthy) for an average of 3.7 ± 1.1 years. A stable group of 50 eyes had repeated tests over a short period. In each B-scan of the stable group, the BMO points were delineated manually and automatically to assess the reproducibility of both segmentation methods. Moreover, the BMO location variation over time was assessed longitudinally on the aligned images in 3D space point by point in x, y, and z directions. Mean visual field mean deviation at baseline of the progressing glaucoma group was -7.7 dB. Mixed-effects models revealed small nonsignificant changes in BMO location over time for all directions in healthy eyes (the smallest P value was 0.39) and in the progressing glaucoma eyes (the smallest P value was 0.30). In the stable group, the overall intervisit-intraclass correlation coefficient (ICC) and coefficient of variation (CV) were 98.4% and 2.1%, respectively, for the manual segmentation and 98.1% and 1.9%, respectively, for the automated algorithm. Bruch's membrane opening location was stable in normal and progressing glaucoma eyes with follow-up between 3 and 4 years indicating that it can be used as reference point in monitoring glaucoma progression. The BMO location estimation with Cirrus HD-OCT using manual and automated segmentation showed excellent reproducibility.
New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.
NASA Astrophysics Data System (ADS)
Behlim, Sadaf Iqbal; Syed, Tahir Qasim; Malik, Muhammad Yameen; Vigneron, Vincent
2016-11-01
Grouping image tokens is an intermediate step needed to arrive at meaningful image representation and summarization. Usually, perceptual cues, for instance, gestalt properties inform token grouping. However, they do not take into account structural continuities that could be derived from other tokens belonging to similar structures irrespective of their location. We propose an image representation that encodes structural constraints emerging from local binary patterns (LBP), which provides a long-distance measure of similarity but in a structurally connected way. Our representation provides a grouping of pixels or larger image tokens that is free of numeric similarity measures and could therefore be extended to nonmetric spaces. The representation lends itself nicely to ubiquitous image processing applications such as connected component labeling and segmentation. We test our proposed representation on the perceptual grouping or segmentation task on the popular Berkeley segmentation dataset (BSD500) that with respect to human segmented images achieves an average F-measure of 0.559. Our algorithm achieves a high average recall of 0.787 and is therefore well-suited to other applications such as object retrieval and category-independent object recognition. The proposed merging heuristic based on levels of singular tree component has shown promising results on the BSD500 dataset and currently ranks 12th among all benchmarked algorithms, but contrary to the others, it requires no data-driven training or specialized preprocessing.
NASA Astrophysics Data System (ADS)
Roozitalab, Ali; Asgharizadeh, Ezzatollah
2013-12-01
Warranty is now an integral part of each product. Since its length is directly related to the cost of production, it should be set in such a way that it would maximize revenue generation and customers' satisfaction. Furthermore, based on the behavior of customers, it is assumed that increasing the warranty period to earn the trust of more customers leads to more sales until the market is saturated. We should bear in mind that different groups of consumers have different consumption behaviors and that performance of the product has a direct impact on the failure rate over the life of the product. Therefore, the optimum duration for every group is different. In fact, we cannot present different warranty periods for various customer groups. In conclusion, using cuckoo meta-heuristic optimization algorithm, we try to find a common period for the entire population. Results with high convergence offer a term length that will maximize the aforementioned goals simultaneously. The study was tested using real data from Appliance Company. The results indicate a significant increase in sales when the optimization approach was applied; it provides a longer warranty through increased revenue from selling, not only reducing profit margins but also increasing it.
... UPDATE: Parotitis and Influenza FAQ Parotitis and Influenza Algorithm: Interpreting Influenza Testing Results When Influenza is Circulating Algorithm: Interpreting Influenza Testing Results When Influenza is NOT ...
ERIC Educational Resources Information Center
Stanford Univ., CA. School Mathematics Study Group.
This is the second unit of a 15-unit School Mathematics Study Group (SMSG) mathematics text for high school students. Topics presented in the first chapter (Informal Algorithms and Flow Charts) include: changing a flat tire; algorithms, flow charts, and computers; assignment and variables; input and output; using a variable as a counter; decisions…
Comparison of Traditional and Reverse Syphilis Screening Algorithms in Medical Health Checkups.
Nah, Eun Hee; Cho, Seon; Kim, Suyoung; Cho, Han Ik; Chai, Jong Yil
2017-11-01
The syphilis diagnostic algorithms applied in different countries vary significantly depending on the local syphilis epidemiology and other considerations, including the expected workload, the need for automation in the laboratory and budget factors. This study was performed to investigate the efficacy of traditional and reverse syphilis diagnostic algorithms during general health checkups. In total, 1,000 blood specimens were obtained from 908 men and 92 women during their regular health checkups. Traditional screening and reverse screening were applied to the same specimens using automatic rapid plasma regain (RPR) and Treponema pallidum latex agglutination (TPLA) tests, respectively. Specimens that were reverse algorithm (TPLA) reactive, were subjected to a second treponemal test performed by using the chemiluminescent microparticle immunoassay (CMIA). Of the 1,000 specimens tested, 68 (6.8%) were reactive by reverse screening (TPLA) compared with 11 (1.1%) by traditional screening (RPR). The traditional algorithm failed to detect 48 specimens [TPLA(+)/RPR(-)/CMIA(+)]. The median TPLA cutoff index (COI) was higher in CMIA-reactive cases than in CMIA-nonreactive cases (90.5 vs 12.5 U). The reverse screening algorithm could detect the subjects with possible latent syphilis who were not detected by the traditional algorithm. Those individuals could be provided with opportunities for evaluating syphilis during their health checkups. The COI values of the initial TPLA test may be helpful in excluding false-positive TPLA test results in the reverse algorithm. © The Korean Society for Laboratory Medicine
Development and Application of a Portable Health Algorithms Test System
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Fulton, Christopher E.; Maul, William A.; Sowers, T. Shane
2007-01-01
This paper describes the development and initial demonstration of a Portable Health Algorithms Test (PHALT) System that is being developed by researchers at the NASA Glenn Research Center (GRC). The PHALT System was conceived as a means of evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT System allows systems health management algorithms to be developed in a graphical programming environment; to be tested and refined using system simulation or test data playback; and finally, to be evaluated in a real-time hardware-in-the-loop mode with a live test article. In this paper, PHALT System development is described through the presentation of a functional architecture, followed by the selection and integration of hardware and software. Also described is an initial real-time hardware-in-the-loop demonstration that used sensor data qualification algorithms to diagnose and isolate simulated sensor failures in a prototype Power Distribution Unit test-bed. Success of the initial demonstration is highlighted by the correct detection of all sensor failures and the absence of any real-time constraint violations.
Improving serum calcium test ordering according to a decision algorithm.
Faria, Daniel K; Taniguchi, Leandro U; Fonseca, Luiz A M; Ferreira-Junior, Mario; Aguiar, Francisco J B; Lichtenstein, Arnaldo; Sumita, Nairo M; Duarte, Alberto J S; Sales, Maria M
2018-05-18
To detect differences in the pattern of serum calcium tests ordering before and after the implementation of a decision algorithm. We studied patients admitted to an internal medicine ward of a university hospital on April 2013 and April 2016. Patients were classified as critical or non-critical on the day when each test was performed. Adequacy of ordering was defined according to adherence to a decision algorithm implemented in 2014. Total and ionised calcium tests per patient-day of hospitalisation significantly decreased after the algorithm implementation; and duplication of tests (total and ionised calcium measured in the same blood sample) was reduced by 49%. Overall adequacy of ionised calcium determinations increased by 23% (P=0.0001) due to the increase in the adequacy of ionised calcium ordering in non-critical conditions. A decision algorithm can be a useful educational tool to improve adequacy of the process of ordering serum calcium tests. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan
2009-02-01
The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.
Development and validation of an algorithm for laser application in wound treatment 1
da Cunha, Diequison Rite; Salomé, Geraldo Magela; Massahud, Marcelo Renato; Mendes, Bruno; Ferreira, Lydia Masako
2017-01-01
ABSTRACT Objective: To develop and validate an algorithm for laser wound therapy. Method: Methodological study and literature review. For the development of the algorithm, a review was performed in the Health Sciences databases of the past ten years. The algorithm evaluation was performed by 24 participants, nurses, physiotherapists, and physicians. For data analysis, the Cronbach’s alpha coefficient and the chi-square test for independence was used. The level of significance of the statistical test was established at 5% (p<0.05). Results: The professionals’ responses regarding the facility to read the algorithm indicated: 41.70%, great; 41.70%, good; 16.70%, regular. With regard the algorithm being sufficient for supporting decisions related to wound evaluation and wound cleaning, 87.5% said yes to both questions. Regarding the participants’ opinion that the algorithm contained enough information to support their decision regarding the choice of laser parameters, 91.7% said yes. The questionnaire presented reliability using the Cronbach’s alpha coefficient test (α = 0.962). Conclusion: The developed and validated algorithm showed reliability for evaluation, wound cleaning, and use of laser therapy in wounds. PMID:29211197
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
NASA Technical Reports Server (NTRS)
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
Tan, Li Kuo; Liew, Yih Miin; Lim, Einly; Abdul Aziz, Yang Faridah; Chee, Kok Han; McLaughlin, Robert A
2018-06-01
In this paper, we develop and validate an open source, fully automatic algorithm to localize the left ventricular (LV) blood pool centroid in short axis cardiac cine MR images, enabling follow-on automated LV segmentation algorithms. The algorithm comprises four steps: (i) quantify motion to determine an initial region of interest surrounding the heart, (ii) identify potential 2D objects of interest using an intensity-based segmentation, (iii) assess contraction/expansion, circularity, and proximity to lung tissue to score all objects of interest in terms of their likelihood of constituting part of the LV, and (iv) aggregate the objects into connected groups and construct the final LV blood pool volume and centroid. This algorithm was tested against 1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12 to 22% of the average endocardial radius. Graphical abstract Fully automated localization of the left ventricular blood pool in short axis cardiac cine MR images.
Lima, Jakelyne; Cerdeira, Louise Teixeira; Bol, Erick; Schneider, Maria Paula Cruz; Silva, Artur; Azevedo, Vasco; Abelém, Antônio Jorge Gomes
2012-01-01
Improvements in genome sequencing techniques have resulted in generation of huge volumes of data. As a consequence of this progress, the genome assembly stage demands even more computational power, since the incoming sequence files contain large amounts of data. To speed up the process, it is often necessary to distribute the workload among a group of machines. However, this requires hardware and software solutions specially configured for this purpose. Grid computing try to simplify this process of aggregate resources, but do not always offer the best performance possible due to heterogeneity and decentralized management of its resources. Thus, it is necessary to develop software that takes into account these peculiarities. In order to achieve this purpose, we developed an algorithm aimed to optimize the functionality of de novo assembly software ABySS in order to optimize its operation in grids. We run ABySS with and without the algorithm we developed in the grid simulator SimGrid. Tests showed that our algorithm is viable, flexible, and scalable even on a heterogeneous environment, which improved the genome assembly time in computational grids without changing its quality. PMID:22461785
Wen, Jianming
2012-09-01
A recent thermal ghost imaging experiment implemented in Wu's group [Chin. Phys. Lett. 279, 074216 (2012)] showed that both positive and negative images can be constructed by applying a novel algorithm. This algorithm allows us to form the images with the use of partial measurements from the reference arm (even which never passes through the object), conditioned on the object arm. In this paper, we present a simple theory that explains the experimental observation and provides an in-depth understanding of conventional ghost imaging. In particular, we theoretically show that the visibility of formed images through such an algorithm is not bounded by the standard value 1/3. In fact, it can ideally grow up to unity (with reduced imaging quality). Thus, the algorithm described here not only offers an alternative way to decode spatial correlation of thermal light, but also mimics a "bandpass filter" to remove the constant background such that the visibility or imaging contrast is improved. We further show that conditioned on one still object present in the test arm, it is possible to construct the object's image by sampling the available reference data.
St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.
2012-01-01
There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in response to sleep loss. PMID:22959616
Arnold, David T; Rowen, Donna; Versteegh, Matthijs M; Morley, Anna; Hooper, Clare E; Maskell, Nicholas A
2015-01-23
In order to estimate utilities for cancer studies where the EQ-5D was not used, the EORTC QLQ-C30 can be used to estimate EQ-5D using existing mapping algorithms. Several mapping algorithms exist for this transformation, however, algorithms tend to lose accuracy in patients in poor health states. The aim of this study was to test all existing mapping algorithms of QLQ-C30 onto EQ-5D, in a dataset of patients with malignant pleural mesothelioma, an invariably fatal malignancy where no previous mapping estimation has been published. Health related quality of life (HRQoL) data where both the EQ-5D and QLQ-C30 were used simultaneously was obtained from the UK-based prospective observational SWAMP (South West Area Mesothelioma and Pemetrexed) trial. In the original trial 73 patients with pleural mesothelioma were offered palliative chemotherapy and their HRQoL was assessed across five time points. This data was used to test the nine available mapping algorithms found in the literature, comparing predicted against observed EQ-5D values. The ability of algorithms to predict the mean, minimise error and detect clinically significant differences was assessed. The dataset had a total of 250 observations across 5 timepoints. The linear regression mapping algorithms tested generally performed poorly, over-estimating the predicted compared to observed EQ-5D values, especially when observed EQ-5D was below 0.5. The best performing algorithm used a response mapping method and predicted the mean EQ-5D with accuracy with an average root mean squared error of 0.17 (Standard Deviation; 0.22). This algorithm reliably discriminated between clinically distinct subgroups seen in the primary dataset. This study tested mapping algorithms in a population with poor health states, where they have been previously shown to perform poorly. Further research into EQ-5D estimation should be directed at response mapping methods given its superior performance in this study.
Test and Evaluation of Teleconferencing Video Codecs Transmitting at 1.5 Mbps.
1985-08-01
video teleconferencing codecs on the market as of November 1984 to facilitate the choice of an appropriate frame format and data compression algorithm...Engineer, computer company, male 5. Chapter Officer, national civic organization, female Group Y: 6. Marketing Representative, communication systems...both mon:tors to C4ve t e evi uators an idea what kind of cictures they will have to ; ucge . Special suggestions were given regardinc the sequences witn
Test Results for Entry Guidance Methods for Space Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Jones, Robert E.
2004-01-01
There are a number of approaches to advanced guidance and control that have the potential for achieving the goals of significantly increasing reusable launch vehicle (or any space vehicle that enters an atmosphere) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future vehicle concepts.
Test Results for Entry Guidance Methods for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.; Jones, Robert E.
2003-01-01
There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies (ITAGCT) has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future reusable vehicle concepts.
Automated detection of hospital outbreaks: A systematic review of methods
Buckeridge, David L.; Lepelletier, Didier
2017-01-01
Objectives Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. Methods We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Results Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Conclusion Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results. PMID:28441422
Oosugi, Naoya; Kitajo, Keiichi; Hasegawa, Naomi; Nagasaka, Yasuo; Okanoya, Kazuo; Fujii, Naotaka
2017-09-01
Blind source separation (BSS) algorithms extract neural signals from electroencephalography (EEG) data. However, it is difficult to quantify source separation performance because there is no criterion to dissociate neural signals and noise in EEG signals. This study develops a method for evaluating BSS performance. The idea is neural signals in EEG can be estimated by comparison with simultaneously measured electrocorticography (ECoG). Because the ECoG electrodes cover the majority of the lateral cortical surface and should capture most of the original neural sources in the EEG signals. We measured real EEG and ECoG data and developed an algorithm for evaluating BSS performance. First, EEG signals are separated into EEG components using the BSS algorithm. Second, the EEG components are ranked using the correlation coefficients of the ECoG regression and the components are grouped into subsets based on their ranks. Third, canonical correlation analysis estimates how much information is shared between the subsets of the EEG components and the ECoG signals. We used our algorithm to compare the performance of BSS algorithms (PCA, AMUSE, SOBI, JADE, fastICA) via the EEG and ECoG data of anesthetized nonhuman primates. The results (Best case >JADE = fastICA >AMUSE = SOBI ≥ PCA >random separation) were common to the two subjects. To encourage the further development of better BSS algorithms, our EEG and ECoG data are available on our Web site (http://neurotycho.org/) as a common testing platform. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Automatic cortical thickness analysis on rodent brain
NASA Astrophysics Data System (ADS)
Lee, Joohwi; Ehlers, Cindy; Crews, Fulton; Niethammer, Marc; Budin, Francois; Paniagua, Beatriz; Sulik, Kathy; Johns, Josephine; Styner, Martin; Oguz, Ipek
2011-03-01
Localized difference in the cortex is one of the most useful morphometric traits in human and animal brain studies. There are many tools and methods already developed to automatically measure and analyze cortical thickness for the human brain. However, these tools cannot be directly applied to rodent brains due to the different scales; even adult rodent brains are 50 to 100 times smaller than humans. This paper describes an algorithm for automatically measuring the cortical thickness of mouse and rat brains. The algorithm consists of three steps: segmentation, thickness measurement, and statistical analysis among experimental groups. The segmentation step provides the neocortex separation from other brain structures and thus is a preprocessing step for the thickness measurement. In the thickness measurement step, the thickness is computed by solving a Laplacian PDE and a transport equation. The Laplacian PDE first creates streamlines as an analogy of cortical columns; the transport equation computes the length of the streamlines. The result is stored as a thickness map over the neocortex surface. For the statistical analysis, it is important to sample thickness at corresponding points. This is achieved by the particle correspondence algorithm which minimizes entropy between dynamically moving sample points called particles. Since the computational cost of the correspondence algorithm may limit the number of corresponding points, we use thin-plate spline based interpolation to increase the number of corresponding sample points. As a driving application, we measured the thickness difference to assess the effects of adolescent intermittent ethanol exposure that persist into adulthood and performed t-test between the control and exposed rat groups. We found significantly differing regions in both hemispheres.
Accurate identification of microseismic P- and S-phase arrivals using the multi-step AIC algorithm
NASA Astrophysics Data System (ADS)
Zhu, Mengbo; Wang, Liguan; Liu, Xiaoming; Zhao, Jiaxuan; Peng, Ping'an
2018-03-01
Identification of P- and S-phase arrivals is the primary work in microseismic monitoring. In this study, a new multi-step AIC algorithm is proposed. This algorithm consists of P- and S-phase arrival pickers (P-picker and S-picker). The P-picker contains three steps: in step 1, a preliminary P-phase arrival window is determined by the waveform peak. Then a preliminary P-pick is identified using the AIC algorithm. Finally, the P-phase arrival window is narrowed based on the above P-pick. Thus the P-phase arrival can be identified accurately by using the AIC algorithm again. The S-picker contains five steps: in step 1, a narrow S-phase arrival window is determined based on the P-pick and the AIC curve of amplitude biquadratic time-series. In step 2, the S-picker automatically judges whether the S-phase arrival is clear to identify. In step 3 and 4, the AIC extreme points are extracted, and the relationship between the local minimum and the S-phase arrival is researched. In step 5, the S-phase arrival is picked based on the maximum probability criterion. To evaluate of the proposed algorithm, a P- and S-picks classification criterion is also established based on a source location numerical simulation. The field data tests show a considerable improvement of the multi-step AIC algorithm in comparison with the manual picks and the original AIC algorithm. Furthermore, the technique is independent of the kind of SNR. Even in the poor-quality signal group which the SNRs are below 5, the effective picking rates (the corresponding location error is <15 m) of P- and S-phase arrivals are still up to 80.9% and 76.4% respectively.
Addison, Paul S; Wang, Rui; Uribe, Alberto A; Bergese, Sergio D
2015-06-01
DPOP (∆POP or Delta-POP) is a non-invasive parameter which measures the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive surrogate parameter for pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. Many groups have reported on the DPOP parameter and its correlation with PPV using various semi-automated algorithmic implementations. The study reported here demonstrates the performance gains made by adding increasingly sophisticated signal processing components to a fully automated DPOP algorithm. A DPOP algorithm was coded and its performance systematically enhanced through a series of code module alterations and additions. Each algorithm iteration was tested on data from 20 mechanically ventilated OR patients. Correlation coefficients and ROC curve statistics were computed at each stage. For the purposes of the analysis we split the data into a manually selected 'stable' region subset of the data containing relatively noise free segments and a 'global' set incorporating the whole data record. Performance gains were measured in terms of correlation against PPV measurements in OR patients undergoing controlled mechanical ventilation. Through increasingly advanced pre-processing and post-processing enhancements to the algorithm, the correlation coefficient between DPOP and PPV improved from a baseline value of R = 0.347 to R = 0.852 for the stable data set, and, correspondingly, R = 0.225 to R = 0.728 for the more challenging global data set. Marked gains in algorithm performance are achievable for manually selected stable regions of the signals using relatively simple algorithm enhancements. Significant additional algorithm enhancements, including a correction for low perfusion values, were required before similar gains were realised for the more challenging global data set.
Efficient methods for overlapping group lasso.
Yuan, Lei; Liu, Jun; Ye, Jieping
2013-09-01
The group Lasso is an extension of the Lasso for feature selection on (predefined) nonoverlapping groups of features. The nonoverlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. Our methods and theoretical results are then generalized to tackle the general overlapping group Lasso formulation based on the l(q) norm. We further extend our algorithm to solve a nonconvex overlapping group Lasso formulation based on the capped norm regularization, which reduces the estimation bias introduced by the convex penalty. We have performed empirical evaluations using both a synthetic and the breast cancer gene expression dataset, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results show that the proposed algorithm is more efficient than existing state-of-the-art algorithms. Results also demonstrate the effectiveness of the nonconvex formulation for overlapping group Lasso.
The effects of implementing a nutritional support algorithm in critically ill medical patients.
Sungur, Gonul; Sahin, Habibe; Tasci, Sultan
2015-08-01
To determine the effect of the enteral nutrition algorithm on nutritional support in critically ill medical patients. The quasi-experimental study was conducted at a medical Intensive Care Unit of a university hospital in central Anatolia region in Turkey from June to December 2008. The patients were divided into two equal groups: the historical group was fed in routine clinical applications, while the study group was fed according to the enteral nutritional algorithm. Prior to collecting data, nurses were trained interactively about enteral nutrition and the nutritional support algorithm. The nutrition of the study group was directed by the nurses. Data were recorded during 3 days of care. SPSS 22 was used for statistical analysis. The 40 patients in the study were divided into two equal groups of 20(50%) each. The energy intake of study group was 62% of the prescribed energy requirement on the 1st, 68.5% on the 2nd and 63% on the 3rd day, whereas in the historical group 38%, 56.5% and 60% of the prescribed energy requirement were met. The consumed energy of the historical group on the 1st 2nd and 3rd day was significantly different (p=0.020). In the study group, serum total protein and albumin levels decreased significantly (p<0.05), but pre-albumin and fasting blood glucose levels were not changed on the 1st and 4th day. In the historical group, any of the serum parameters did not change. Enteral nutrition-induced complications, duration of stay in intensive care unit were not significantly different between the groups (p>0.05). The use of standard algorithms for enteral nutrition may be an effective way to meet the nutritional requirements of patients.
NASA Technical Reports Server (NTRS)
Roth, J. P.
1972-01-01
Methods for development of logic design together with algorithms for failure testing, a method for design of logic for ultra-large-scale integration, extension of quantum calculus to describe the functional behavior of a mechanism component-by-component and to computer tests for failures in the mechanism using the diagnosis algorithm, and the development of an algorithm for the multi-output 2-level minimization problem are discussed.
The Texas medication algorithm project: clinical results for schizophrenia.
Miller, Alexander L; Crismon, M Lynn; Rush, A John; Chiles, John; Kashner, T Michael; Toprac, Marcia; Carmody, Thomas; Biggs, Melanie; Shores-Wilson, Kathy; Chiles, Judith; Witte, Brad; Bow-Thomas, Christine; Velligan, Dawn I; Trivedi, Madhukar; Suppes, Trisha; Shon, Steven
2004-01-01
In the Texas Medication Algorithm Project (TMAP), patients were given algorithm-guided treatment (ALGO) or treatment as usual (TAU). The ALGO intervention included a clinical coordinator to assist the physicians and administer a patient and family education program. The primary comparison in the schizophrenia module of TMAP was between patients seen in clinics in which ALGO was used (n = 165) and patients seen in clinics in which no algorithms were used (n = 144). A third group of patients, seen in clinics using an algorithm for bipolar or major depressive disorder but not for schizophrenia, was also studied (n = 156). The ALGO group had modestly greater improvement in symptoms (Brief Psychiatric Rating Scale) during the first quarter of treatment. The TAU group caught up by the end of 12 months. Cognitive functions were more improved in ALGO than in TAU at 3 months, and this difference was greater at 9 months (the final cognitive assessment). In secondary comparisons of ALGO with the second TAU group, the greater improvement in cognitive functioning was again noted, but the initial symptom difference was not significant.
Research on fully distributed optical fiber sensing security system localization algorithm
NASA Astrophysics Data System (ADS)
Wu, Xu; Hou, Jiacheng; Liu, Kun; Liu, Tiegen
2013-12-01
A new fully distributed optical fiber sensing and location technology based on the Mach-Zehnder interferometers is studied. In this security system, a new climbing point locating algorithm based on short-time average zero-crossing rate is presented. By calculating the zero-crossing rates of the multiple grouped data separately, it not only utilizes the advantages of the frequency analysis method to determine the most effective data group more accurately, but also meets the requirement of the real-time monitoring system. Supplemented with short-term energy calculation group signal, the most effective data group can be quickly picked out. Finally, the accurate location of the climbing point can be effectively achieved through the cross-correlation localization algorithm. The experimental results show that the proposed algorithm can realize the accurate location of the climbing point and meanwhile the outside interference noise of the non-climbing behavior can be effectively filtered out.
... UPDATE: Parotitis and Influenza FAQ Parotitis and Influenza Algorithm: Interpreting Influenza Testing Results When Influenza is Circulating Algorithm: Interpreting Influenza Testing Results When Influenza is NOT ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omet, M.; Michizono, S.; Matsumoto, T.
We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less
NASA Astrophysics Data System (ADS)
Stough, T.; Green, D. S.
2017-12-01
This collaborative research to operations demonstration brings together the data and algorithms from NASA research, technology, and applications-funded projects to deliver relevant data streams, algorithms, predictive models, and visualization tools to the NOAA National Tsunami Warning Center (NTWC) and Pacific Tsunami Warning Center (PTWC). Using real-time GNSS data and models in an operational environment, we will test and evaluate an augmented capability for tsunami early warning. Each of three research groups collect data from a selected network of real-time GNSS stations, exchange data consisting of independently processed 1 Hz station displacements, and merge the output into a single, more accurate and reliable set. The resulting merged data stream is delivered from three redundant locations to the TWCs with a latency of 5-10 seconds. Data from a number of seismogeodetic stations with collocated GPS and accelerometer instruments are processed for displacements and seismic velocities and also delivered. Algorithms for locating and determining the magnitude of earthquakes as well as algorithms that compute the source function of a potential tsunami using this new data stream are included in the demonstration. The delivered data, algorithms, models and tools are hosted on NOAA-operated machines at both warning centers, and, once tested, the results will be evaluated for utility in improving the speed and accuracy of tsunami warnings. This collaboration has the potential to dramatically improve the speed and accuracy of the TWCs local tsunami information over the current seismometer-only based methods. In our first year of this work, we have established and deployed an architecture for data movement and algorithm installation at the TWC's. We are addressing data quality issues and porting algorithms into the TWCs operating environment. Our initial module deliveries will focus on estimating moment magnitude (Mw) from Peak Ground Displacement (PGD), within 2-3 minutes of the event, and coseismic displacements converging to static offsets. We will also develop visualizations of module outputs tailored to the operational environment. In the context of this work, we will also discuss this research to operations approach and other opportunities within the NASA Applied Science Disaster Program.
Smelter, Andrey; Rouchka, Eric C; Moseley, Hunter N B
2017-08-01
Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the algorithms, we developed a peak list simulator within our nmrstarlib package that generates user-defined assigned peak lists from a given BMRB entry or database of entries. In addition, over 100,000 simulated peak lists with one or two sources of variance were generated to evaluate the performance and robustness of these new registration analysis and peak grouping algorithms.
An Innovative Thinking-Based Intelligent Information Fusion Algorithm
Hu, Liang; Liu, Gang; Zhou, Jin
2013-01-01
This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information. PMID:23956699
An innovative thinking-based intelligent information fusion algorithm.
Lu, Huimin; Hu, Liang; Liu, Gang; Zhou, Jin
2013-01-01
This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.
Dionne, Audrey; Meloche-Dumas, Léamarie; Desjardins, Laurent; Turgeon, Jean; Saint-Cyr, Claire; Autmizguine, Julie; Spigelblatt, Linda; Fournier, Anne; Dahdah, Nagib
2017-03-01
Diagnosis of Kawasaki disease (KD) can be challenging in the absence of a confirmatory test or pathognomonic finding, especially when clinical criteria are incomplete. We recently proposed serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) as an adjunctive diagnostic test. We retrospectively tested a new algorithm to help KD diagnosis based on NT-proBNP, coronary artery dilation (CAD) at onset, and abnormal serum albumin or C-reactive protein (CRP). The goal was to assess the performance of the algorithm and compare its performance with that of the 2004 American Heart Association (AHA)/American Academy of Pediatrics (AAP) algorithm. The algorithm was tested on 124 KD patients with NT-proBNP measured on admission at the present institutions between 2007 and 2013. Age at diagnosis was 3.4 ± 3.0 years, with a median of five diagnostic criteria; and 55 of the 124 patients (44%) had incomplete KD. CA complications occurred in 64 (52%), with aneurysm in 14 (11%). Using this algorithm, 120/124 (97%) were to be treated, based on high NT-proBNP alone for 79 (64%); on onset CAD for 14 (11%); and on high CRP or low albumin for 27 (22%). Using the AHA/AAP algorithm, 22/47 (47%) of the eligible patients with incomplete KD would not have been referred for treatment, compared with 3/55 (5%) with the NT-proBNP algorithm (P < 0.001). This NT-proBNP-based algorithm is efficient to identify and treat patients with KD, including those with incomplete KD. This study paves the way for a prospective validation trial of the algorithm. © 2016 Japan Pediatric Society.
Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning
NASA Astrophysics Data System (ADS)
Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao
2017-04-01
Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate.
Predicting Protein–protein Association Rates using Coarse-grained Simulation and Machine Learning
Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao
2017-01-01
Protein–protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate. PMID:28418043
Predicting Protein-protein Association Rates using Coarse-grained Simulation and Machine Learning.
Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao
2017-04-18
Protein-protein interactions dominate all major biological processes in living cells. We have developed a new Monte Carlo-based simulation algorithm to study the kinetic process of protein association. We tested our method on a previously used large benchmark set of 49 protein complexes. The predicted rate was overestimated in the benchmark test compared to the experimental results for a group of protein complexes. We hypothesized that this resulted from molecular flexibility at the interface regions of the interacting proteins. After applying a machine learning algorithm with input variables that accounted for both the conformational flexibility and the energetic factor of binding, we successfully identified most of the protein complexes with overestimated association rates and improved our final prediction by using a cross-validation test. This method was then applied to a new independent test set and resulted in a similar prediction accuracy to that obtained using the training set. It has been thought that diffusion-limited protein association is dominated by long-range interactions. Our results provide strong evidence that the conformational flexibility also plays an important role in regulating protein association. Our studies provide new insights into the mechanism of protein association and offer a computationally efficient tool for predicting its rate.
NASA Astrophysics Data System (ADS)
Rahnamay Naeini, M.; Sadegh, M.; AghaKouchak, A.; Hsu, K. L.; Sorooshian, S.; Yang, T.
2017-12-01
Meta-Heuristic optimization algorithms have gained a great deal of attention in a wide variety of fields. Simplicity and flexibility of these algorithms, along with their robustness, make them attractive tools for solving optimization problems. Different optimization methods, however, hold algorithm-specific strengths and limitations. Performance of each individual algorithm obeys the "No-Free-Lunch" theorem, which means a single algorithm cannot consistently outperform all possible optimization problems over a variety of problems. From users' perspective, it is a tedious process to compare, validate, and select the best-performing algorithm for a specific problem or a set of test cases. In this study, we introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme, and allows users to select the most suitable algorithm tailored to the problem at hand. The concept of SC-SAHEL is to execute different EAs as separate parallel search cores, and let all participating EAs to compete during the course of the search. The newly developed SC-SAHEL algorithm is designed to automatically select, the best performing algorithm for the given optimization problem. This algorithm is rigorously effective in finding the global optimum for several strenuous benchmark test functions, and computationally efficient as compared to individual EAs. We benchmark the proposed SC-SAHEL algorithm over 29 conceptual test functions, and two real-world case studies - one hydropower reservoir model and one hydrological model (SAC-SMA). Results show that the proposed framework outperforms individual EAs in an absolute majority of the test problems, and can provide competitive results to the fittest EA algorithm with more comprehensive information during the search. The proposed framework is also flexible for merging additional EAs, boundary-handling techniques, and sampling schemes, and has good potential to be used in Water-Energy system optimal operation and management.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.
Research on Abnormal Detection Based on Improved Combination of K - means and SVDD
NASA Astrophysics Data System (ADS)
Hao, Xiaohong; Zhang, Xiaofeng
2018-01-01
In order to improve the efficiency of network intrusion detection and reduce the false alarm rate, this paper proposes an anomaly detection algorithm based on improved K-means and SVDD. The algorithm first uses the improved K-means algorithm to cluster the training samples of each class, so that each class is independent and compact in class; Then, according to the training samples, the SVDD algorithm is used to construct the minimum superspheres. The subordinate relationship of the samples is determined by calculating the distance of the minimum superspheres constructed by SVDD. If the test sample is less than the center of the hypersphere, the test sample belongs to this class, otherwise it does not belong to this class, after several comparisons, the final test of the effective detection of the test sample.In this paper, we use KDD CUP99 data set to simulate the proposed anomaly detection algorithm. The results show that the algorithm has high detection rate and low false alarm rate, which is an effective network security protection method.
Time-aware service-classified spectrum defragmentation algorithm for flex-grid optical networks
NASA Astrophysics Data System (ADS)
Qiu, Yang; Xu, Jing
2018-01-01
By employing sophisticated routing and spectrum assignment (RSA) algorithms together with a finer spectrum granularity (namely frequency slot) in resource allocation procedures, flex-grid optical networks can accommodate diverse kinds of services with high spectrum-allocation flexibility and resource-utilization efficiency. However, the continuity and the contiguity constraints in spectrum allocation procedures may always induce some isolated, small-sized, and unoccupied spectral blocks (known as spectrum fragments) in flex-grid optical networks. Although these spectrum fragments are left unoccupied, they can hardly be utilized by the subsequent service requests directly because of their spectral characteristics and the constraints in spectrum allocation. In this way, the existence of spectrum fragments may exhaust the available spectrum resources for a coming service request and thus worsens the networking performance. Therefore, many reactive defragmentation algorithms have been proposed to handle the fragmented spectrum resources via re-optimizing the routing paths and the spectrum resources for the existing services. But the routing-path and the spectrum-resource re-optimization in reactive defragmentation algorithms may possibly disrupt the traffic of the existing services and require extra components. By comparison, some proactive defragmentation algorithms (e.g. fragmentation-aware algorithms) were proposed to suppress spectrum fragments from their generation instead of handling the fragmented spectrum resources. Although these proactive defragmentation algorithms induced no traffic disruption and required no extra components, they always left the generated spectrum fragments unhandled, which greatly affected their efficiency in spectrum defragmentation. In this paper, by comprehensively considering the characteristics of both the reactive and the proactive defragmentation algorithms, we proposed a time-aware service-classified (TASC) spectrum defragmentation algorithm, which simultaneously employed proactive and reactive mechanisms in suppressing spectrum fragments with the awareness of services' types and their duration times. By dividing the spectrum resources into several flexible groups according to services' types and limiting both the spectrum allocation and the spectrum re-tuning for a certain service inside one specific spectrum group according to its type, the proposed TASC defragmentation algorithm cannot only suppress spectrum fragments from generation inside each spectrum group, but also handle the fragments generated between two adjacent groups. In this way, the proposed TASC algorithm gains higher efficiency in suppressing spectrum fragments than both the reactive and the proactive defragmentation algorithms. Additionally, as the generation of spectrum fragments is retrained between spectrum groups and the defragmentation procedure is limited inside each spectrum group, the induced traffic disruption for the existing services can be possibly reduced. Besides, the proposed TASC defragmentation algorithm always re-tunes the spectrum resources of the service with the maximum duration time first in spectrum defragmentation procedure, which can further reduce spectrum fragments because of the fact that the services with longer duration times always have higher possibility in inducing spectrum fragments than the services with shorter duration times. The simulation results show that the proposed TASC defragmentation algorithm can significantly reduce the number of the generated spectrum fragments while improving the service blocking performance.
Category-Specific Comparison of Univariate Alerting Methods for Biosurveillance Decision Support
Elbert, Yevgeniy; Hung, Vivian; Burkom, Howard
2013-01-01
Objective For a multi-source decision support application, we sought to match univariate alerting algorithms to surveillance data types to optimize detection performance. Introduction Temporal alerting algorithms commonly used in syndromic surveillance systems are often adjusted for data features such as cyclic behavior but are subject to overfitting or misspecification errors when applied indiscriminately. In a project for the Armed Forces Health Surveillance Center to enable multivariate decision support, we obtained 4.5 years of out-patient, prescription and laboratory test records from all US military treatment facilities. A proof-of-concept project phase produced 16 events with multiple evidence corroboration for comparison of alerting algorithms for detection performance. We used the representative streams from each data source to compare sensitivity of 6 algorithms to injected spikes, and we used all data streams from 16 known events to compare them for detection timeliness. Methods The six methods compared were: Holt-Winters generalized exponential smoothing method (1)automated choice between daily methods, regression and an exponential weighted moving average (2)adaptive daily Shewhart-type chartadaptive one-sided daily CUSUMEWMA applied to 7-day means with a trend correction; and7-day temporal scan statistic Sensitivity testing: We conducted comparative sensitivity testing for categories of time series with similar scales and seasonal behavior. We added multiples of the standard deviation of each time series as single-day injects in separate algorithm runs. For each candidate method, we then used as a sensitivity measure the proportion of these runs for which the output of each algorithm was below alerting thresholds estimated empirically for each algorithm using simulated data streams. We identified the algorithm(s) whose sensitivity was most consistently high for each data category. For each syndromic query applied to each data source (outpatient, lab test orders, and prescriptions), 502 authentic time series were derived, one for each reporting treatment facility. Data categories were selected in order to group time series with similar expected algorithm performance: Median > 100 < Median ≤ 10Median = 0Lag 7 Autocorrelation Coefficient ≥ 0.2Lag 7 Autocorrelation Coefficient < 0.2 Timeliness testing: For the timeliness testing, we avoided artificiality of simulated signals by measuring alerting detection delays in the 16 corroborated outbreaks. The multiple time series from these events gave a total of 141 time series with outbreak intervals for timeliness testing. The following measures were computed to quantify timeliness of detection: Median Detection Delay – median number of days to detect the outbreak.Penalized Mean Detection Delay –mean number of days to detect the outbreak with outbreak misses penalized as 1 day plus the maximum detection time. Results Based on the injection results, the Holt-Winters algorithm was most sensitive among time series with positive medians. The adaptive CUSUM and the Shewhart methods were most sensitive for data streams with median zero. Table 1 provides timeliness results using the 141 outbreak-associated streams on sparse (Median=0) and non-sparse data categories. [Insert table #1 here] Data median Detection Delay, days Holt-winters Regression EWMA Adaptive Shewhart Adaptive CUSUM 7-day Trend-adj. EWMA 7-day Temporal Scan Median 0 Median 3 2 4 2 4.5 2 Penalized Mean 7.2 7 6.6 6.2 7.3 7.6 Median >0 Median 2 2 2.5 2 6 4 Penalized Mean 6.1 7 7.2 7.1 7.7 6.6 The gray shading in the table 1 indicates methods with shortest detection delays for sparse and non-sparse data streams. The Holt-Winters method was again superior for non-sparse data. For data with median=0, the adaptive CUSUM was superior for a daily false alarm probability of 0.01, but the Shewhart method was timelier for more liberal thresholds. Conclusions Both kinds of detection performance analysis showed the method based on Holt-Winters exponential smoothing superior on non-sparse time series with day-of-week effects. The adaptive CUSUM and She-whart methods proved optimal on sparse data and data without weekly patterns.
A survey on keeler’s theorem and application of symmetric group for swapping game
NASA Astrophysics Data System (ADS)
Pratama, Yohanssen; Prakasa, Yohenry
2017-01-01
An episode of Futurama features two-body mind-switching machine which will not work more than once on the same pair of bodies. The problem is “Can the switching be undone so as to restore all minds to their original bodies?” Ken Keeler found an algorithm that undoes any mind-scrambling permutation, and Lihua Huang found the refinement of it. We look on the process how the puzzle can be modeled in terms group theory and using symmetric group to solve it and find the most efficient way of it. After that we will try to build the algorithm to implement it into the computer program and see the effect of the transposition notion into the algorithm complexity. The number of steps that given by the algorithm will be different and one of algorithms will have the advantage in terms of efficiency. We compare Ken Keeler and Lihua Huang algorithms to see is there any difference if we run it in the computer program, although the complexity could be remain the same.
de Lusignan, Simon; Liaw, Siaw-Teng; Dedman, Daniel; Khunti, Kamlesh; Sadek, Khaled; Jones, Simon
2015-06-05
An algorithm that detects errors in diagnosis, classification or coding of diabetes in primary care computerised medial record (CMR) systems is currently available. However, this was developed on CMR systems that are episode orientated medical records (EOMR); and do not force the user to always code a problem or link data to an existing one. More strictly problem orientated medical record (POMR) systems mandate recording a problem and linking consultation data to them. To compare the rates of detection of diagnostic accuracy using an algorithm developed in EOMR with a new POMR specific algorithm. We used data from The Health Improvement Network (THIN) database (N = 2,466,364) to identify a population of 100,513 (4.08%) patients considered likely to have diabetes. We recalibrated algorithms designed to classify cases of diabetes to take account of that POMR enforced coding consistency in the computerised medical record systems [In Practice Systems (InPS) Vision] that contribute data to THIN. We explored the different proportions of people classified as having type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) and with diabetes unclassifiable as either T1DM or T2DM. We compared proportions using chi-square tests and used Tukey's test to compare the characteristics of the people in each group. The prevalence of T1DM using the original EOMR algorithm was 0.38% (9,264/2,466,364), and for T2DM 3.22% (79,417/2,466,364). The prevalence using the new POMR algorithm was 0.31% (7,750/2,466,364) T1DM and 3.65% (89,990/2,466,364) T2DM. The EOMR algorithms also left more people unclassified 11,439 (12%), as to their type of diabetes compared with 2,380 (2.4%), for the new algorithm. Those people who were only classified by the EOMR system differed in terms of older age, and apparently better glycaemic control, despite not being prescribed medication for their diabetes (p < 0.005). Increasing the degree of problem orientation of the medical record system can improve the accuracy of recording of diagnoses and, therefore, the accuracy of using routinely collected data from CMRs to determine the prevalence of diabetes mellitus; data processing strategies should reflect the degree of problem orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlind, Andreas A.; Frieman, Joshua A.; Weinberg, David H.
2006-01-01
We identify galaxy groups and clusters in volume-limited samples of the SDSS redshift survey, using a redshift-space friends-of-friends algorithm. We optimize the friends-of-friends linking lengths to recover galaxy systems that occupy the same dark matter halos, using a set of mock catalogs created by populating halos of N-body simulations with galaxies. Extensive tests with these mock catalogs show that no combination of perpendicular and line-of-sight linking lengths is able to yield groups and clusters that simultaneously recover the true halo multiplicity function, projected size distribution, and velocity dispersion. We adopt a linking length combination that yields, for galaxy groups withmore » ten or more members: a group multiplicity function that is unbiased with respect to the true halo multiplicity function; an unbiased median relation between the multiplicities of groups and their associated halos; a spurious group fraction of less than {approx}1%; a halo completeness of more than {approx}97%; the correct projected size distribution as a function of multiplicity; and a velocity dispersion distribution that is {approx}20% too low at all multiplicities. These results hold over a range of mock catalogs that use different input recipes of populating halos with galaxies. We apply our group-finding algorithm to the SDSS data and obtain three group and cluster catalogs for three volume-limited samples that cover 3495.1 square degrees on the sky. We correct for incompleteness caused by fiber collisions and survey edges, and obtain measurements of the group multiplicity function, with errors calculated from realistic mock catalogs. These multiplicity function measurements provide a key constraint on the relation between galaxy populations and dark matter halos.« less
Explaining fruit and vegetable intake using a consumer marketing tool.
Della, Lindsay J; Dejoy, David M; Lance, Charles E
2009-10-01
In response to calls to reinvent the 5 A Day fruit and vegetable campaign, this study assesses the utility of VALS, a consumer-based audience segmentation tool that divides the U.S. population into groups leading similar lifestyles. The study examines whether the impact of theory of planned behavior (TPB) constructs varies across VALS groups in a cross-sectional sample of 1,588 U.S. adults. In a multigroup structural equation model, the VALS audience group variable moderated latent TPB relationships. Attitudes, subjective norms, and perceived behavioral control explained 57% to 70% of the variation in intention to eat fruit and vegetables across 5 different VALS groups. Perceived behavioral control and intention also predicted self-reported consumption behavior (R2 = 20% to 71% across VALS groups). Bivariate z tests were calculated to determine statistical differences in parameter estimates across groups. Nine of the bivariate z tests were statistically significant (p < or = .04), with standardized coefficients ranging from .05 to .70. These findings confirm the efficacy of using the TPB to explain variation in fruit and vegetable consumption as well as the validity of using a consumer-based algorithm to segment audiences for fruit and vegetable consumption messaging.
Connolly, Brian; Matykiewicz, Pawel; Bretonnel Cohen, K; Standridge, Shannon M; Glauser, Tracy A; Dlugos, Dennis J; Koh, Susan; Tham, Eric; Pestian, John
2014-01-01
The constant progress in computational linguistic methods provides amazing opportunities for discovering information in clinical text and enables the clinical scientist to explore novel approaches to care. However, these new approaches need evaluation. We describe an automated system to compare descriptions of epilepsy patients at three different organizations: Cincinnati Children's Hospital, the Children's Hospital Colorado, and the Children's Hospital of Philadelphia. To our knowledge, there have been no similar previous studies. In this work, a support vector machine (SVM)-based natural language processing (NLP) algorithm is trained to classify epilepsy progress notes as belonging to a patient with a specific type of epilepsy from a particular hospital. The same SVM is then used to classify notes from another hospital. Our null hypothesis is that an NLP algorithm cannot be trained using epilepsy-specific notes from one hospital and subsequently used to classify notes from another hospital better than a random baseline classifier. The hypothesis is tested using epilepsy progress notes from the three hospitals. We are able to reject the null hypothesis at the 95% level. It is also found that classification was improved by including notes from a second hospital in the SVM training sample. With a reasonably uniform epilepsy vocabulary and an NLP-based algorithm able to use this uniformity to classify epilepsy progress notes across different hospitals, we can pursue automated comparisons of patient conditions, treatments, and diagnoses across different healthcare settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Comparison of genetic algorithm methods for fuel management optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-12-31
The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.
NASA Astrophysics Data System (ADS)
Chen, Xinjia; Lacy, Fred; Carriere, Patrick
2015-05-01
Sequential test algorithms are playing increasingly important roles for quick detecting network intrusions such as portscanners. In view of the fact that such algorithms are usually analyzed based on intuitive approximation or asymptotic analysis, we develop an exact computational method for the performance analysis of such algorithms. Our method can be used to calculate the probability of false alarm and average detection time up to arbitrarily pre-specified accuracy.
Testing algorithms for critical slowing down
NASA Astrophysics Data System (ADS)
Cossu, Guido; Boyle, Peter; Christ, Norman; Jung, Chulwoo; Jüttner, Andreas; Sanfilippo, Francesco
2018-03-01
We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC) algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.
Hatt, Mathieu; Lee, John A.; Schmidtlein, Charles R.; Naqa, Issam El; Caldwell, Curtis; De Bernardi, Elisabetta; Lu, Wei; Das, Shiva; Geets, Xavier; Gregoire, Vincent; Jeraj, Robert; MacManus, Michael P.; Mawlawi, Osama R.; Nestle, Ursula; Pugachev, Andrei B.; Schöder, Heiko; Shepherd, Tony; Spezi, Emiliano; Visvikis, Dimitris; Zaidi, Habib; Kirov, Assen S.
2017-01-01
Purpose The purpose of this educational report is to provide an overview of the present state-of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an emphasis on providing the user with help in understanding the challenges and pitfalls associated with selecting and implementing a PET-AS algorithm for a particular application. Approach A brief description of the different types of PET-AS algorithms is provided using a classification based on method complexity and type. The advantages and the limitations of the current PET-AS algorithms are highlighted based on current publications and existing comparison studies. A review of the available image datasets and contour evaluation metrics in terms of their applicability for establishing a standardized evaluation of PET-AS algorithms is provided. The performance requirements for the algorithms and their dependence on the application, the radiotracer used and the evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and implementation, as well as the complementary role of manual and auto-segmentation are addressed. Findings A large number of PET-AS algorithms have been developed within the last 20 years. Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More recently, numerous papers have proposed the use of more advanced image analysis paradigms to perform semi-automated delineation of the PET images. However, the level of algorithm validation is variable and for most published algorithms is either insufficient or inconsistent which prevents recommending a single algorithm. This is compounded by the fact that realistic image configurations with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used. Large variations in the evaluation methods used in the literature point to the need for a standardized evaluation protocol. Conclusions Available comparison studies suggest that PET-AS algorithms relying on advanced image analysis paradigms provide generally more accurate segmentation than approaches based on PET activity thresholds, particularly for realistic configurations. However, this may not be the case for simple shape lesions in situations with a narrower range of parameters, where simpler methods may also perform well. Recent algorithms which employ some type of consensus or automatic selection between several PET-AS methods have potential to overcome the limitations of the individual methods when appropriately trained. In either case, accuracy evaluation is required for each different PET scanner and scanning and image reconstruction protocol. For the simpler, less robust approaches, adaptation to scanning conditions, tumor type, and tumor location by optimization of parameters is necessary. The results from the method evaluation stage can be used to estimate the contouring uncertainty. All PET-AS contours should be critically verified by a physician. A standard test, i.e., a benchmark dedicated to evaluating both existing and future PET-AS algorithms needs to be designed, to aid clinicians in evaluating and selecting PET-AS algorithms and to establish performance limits for their acceptance for clinical use. The initial steps toward designing and building such a standard are undertaken by the task group members. PMID:28120467
Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method
ERIC Educational Resources Information Center
Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen
2008-01-01
In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…
2017-01-01
Purpose The purpose of the present study was to perform a pattern analysis in patients with temporomandibular disorder (TMD) resulting from unilateral mastication due to chronic periodontitis. Methods Thirty participants with signs or symptoms of TMD who engaged in unilateral mastication due to periodontitis-related discomfort (test group) were selected. Another 30 subjects exhibiting signs or symptoms of TMD resulting from unilateral mastication not due to chronic periodontitis (control group) were also recruited. An interview-based questionnaire was administered, and an examination of the temporomandibular joint (TMJ) with determination of periodontal status was performed. Results The duration of unilateral mastication was significantly longer in the control group than in the test group. There was a significant negative correlation between the duration of unilateral mastication and the Community Periodontal Index score. Using the Research Diagnostic Criteria for TMD (RDC/TMD) axis I algorithms, all the subjects were assigned to 3 main groups. The test group exhibited significantly a higher diagnostic distribution of group III (arthralgia, osteoarthritis, or osteoarthrosis), and in both the test and control groups, the number of diagnoses was larger for the non-chewing side. The control group showed a significantly higher diagnostic distribution of group I (myofacial pain), and in both the test and control groups, the number of diagnoses was larger for the chewing side. Conclusions The results of the present study indicate that unilateral mastication due to chronic periodontitis could induce not only pain but also structural TMJ changes if adequate treatment is not administered and supported within a short time from the onset of the condition. Therefore, immediate treatment of chronic periodontitis is recommended to prevent not only the primary progress of periodontal disease, but also secondary TMJ-related problems. Furthermore, subjects who have suffered chronic long-term periodontitis without treatment should be urged to undergo a TMJ examination. PMID:28861285
Flu: What to Do If You Get Sick
... UPDATE: Parotitis and Influenza FAQ Parotitis and Influenza Algorithm: Interpreting Influenza Testing Results When Influenza is Circulating Algorithm: Interpreting Influenza Testing Results When Influenza is NOT ...
Inui, Hiroshi; Taketomi, Shuji; Nakamura, Kensuke; Sanada, Takaki; Tanaka, Sakae; Nakagawa, Takumi
2013-05-01
Few studies have demonstrated improvement in accuracy of rotational alignment using image-free navigation systems mainly due to the inconsistent registration of anatomical landmarks. We have used an image-free navigation for total knee arthroplasty, which adopts the average algorithm between two reference axes (transepicondylar axis and axis perpendicular to the Whiteside axis) for femoral component rotation control. We hypothesized that addition of another axis (condylar twisting axis measured on a preoperative radiograph) would improve the accuracy. One group using the average algorithm (double-axis group) was compared with the other group using another axis to confirm the accuracy of the average algorithm (triple-axis group). Femoral components were more accurately implanted for rotational alignment in the triple-axis group (ideal: triple-axis group 100%, double-axis group 82%, P<0.05). Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Korzeniowska, Karolina; Mandlburger, Gottfried; Klimczyk, Agata
2013-04-01
The paper presents an evaluation of different terrain point extraction algorithms for Airborne Laser Scanning (ALS) point clouds. The research area covers eight test sites in the Małopolska Province (Poland) with varying point density between 3-15points/m² and surface as well as land cover characteristics. In this paper the existing implementations of algorithms were considered. Approaches based on mathematical morphology, progressive densification, robust surface interpolation and segmentation were compared. From the group of morphological filters, the Progressive Morphological Filter (PMF) proposed by Zhang K. et al. (2003) in LIS software was evaluated. From the progressive densification filter methods developed by Axelsson P. (2000) the Martin Isenburg's implementation in LAStools software (LAStools, 2012) was chosen. The third group of methods are surface-based filters. In this study, we used the hierarchic robust interpolation approach by Kraus K., Pfeifer N. (1998) as implemented in SCOP++ (Trimble, 2012). The fourth group of methods works on segmentation. From this filtering concept the segmentation algorithm available in LIS was tested (Wichmann V., 2012). The main aim in executing the automatic classification for ground extraction was operating in default mode or with default parameters which were selected by the developers of the algorithms. It was assumed that the default settings were equivalent to the parameters on which the best results can be achieved. In case it was not possible to apply an algorithm in default mode, a combination of the available and most crucial parameters for ground extraction were selected. As a result of these analyses, several output LAS files with different ground classification were achieved. The results were described on the basis of qualitative and quantitative analyses, both being in a formal description. The classification differences were verified on point cloud data. Qualitative verification of ground extraction was made on the basis of a visual inspection of the results (Sithole G., Vosselman G., 2004; Meng X. et al., 2010). The results of these analyses were described as a graph using weighted assumption. The quantitative analyses were evaluated on a basis of Type I, Type II and Total errors (Sithole G., Vosselman G., 2003). The achieved results show that the analysed algorithms yield different classification accuracies depending on the landscape and land cover. The simplest terrain for ground extraction was flat rural area with sparse vegetation. The most difficult were mountainous areas with very dense vegetation where only a few ground points were available. Generally the LAStools algorithm gives good results in every type of terrain, but the ground surface is too smooth. The LIS Progressive Morphological Filter algorithm gives good results in forested flat and low slope areas. The surface-based algorithm from SCOP++ gives good results in mountainous areas - both forested and built-up because it better preserves steep slopes, sharp ridges and breaklines, but sometimes it fails to remove off-terrain objects from the ground class. The segmentation-based algorithm in LIS gives quite good results in built-up flat areas, but in forested areas it does not work well. Bibliography: Axelsson, P., 2000. DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIII (Pt. B4/1), 110- 117 Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry & Remote Sensing 53 (4), 193-203 LAStools website http://www.cs.unc.edu/~isenburg/lastools/ (verified in September 2012) Meng, X., Currit, N., Zhao, K., 2010. Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues. Remote Sensing 2, 833-860 Sithole, G., Vosselman, G., 2003. Report: ISPRS Comparison of Filters. Commission III, Working Group 3. Department of Geodesy, Faculty of Civil Engineering and Geosciences, Delft University of technology, The Netherlands Sithole, G., Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-Earth extraction form airborne laser scanning point clouds. ISPRS Journal of Photogrammetry & Remote Sensing 59, 85-101 Trimble, 2012 http://www.trimble.com/geospatial/aerial-software.aspx (verified in November 2012) Wichmann, V., 2012. LIS Command Reference, LASERDATA GmbH, 1-231 Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., Zhang, C., 2003. A progressive morphological filter for removing non-ground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872-882
White, Edward W; Lumley, Thomas; Goodreau, Steven M; Goldbaum, Gary; Hawes, Stephen E
2010-12-01
To produce valid seroincidence estimates, the serological testing algorithm for recent HIV seroconversion (STARHS) assumes independence between infection and testing, which may be absent in clinical data. STARHS estimates are generally greater than cohort-based estimates of incidence from observable person-time and diagnosis dates. The authors constructed a series of partial stochastic models to examine whether testing motivated by suspicion of infection could bias STARHS. One thousand Monte Carlo simulations of 10,000 men who have sex with men were generated using parameters for HIV incidence and testing frequency from data from a clinical testing population in Seattle. In one set of simulations, infection and testing dates were independent. In another set, some intertest intervals were abbreviated to reflect the distribution of intervals between suspected HIV exposure and testing in a group of Seattle men who have sex with men recently diagnosed as having HIV. Both estimation methods were applied to the simulated datasets. Both cohort-based and STARHS incidence estimates were calculated using the simulated data and compared with previously calculated, empirical cohort-based and STARHS seroincidence estimates from the clinical testing population. Under simulated independence between infection and testing, cohort-based and STARHS incidence estimates resembled cohort estimates from the clinical dataset. Under simulated motivated testing, cohort-based estimates remained unchanged, but STARHS estimates were inflated similar to empirical STARHS estimates. Varying motivation parameters appreciably affected STARHS incidence estimates, but not cohort-based estimates. Cohort-based incidence estimates are robust against dependence between testing and acquisition of infection, whereas STARHS incidence estimates are not.
An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions
NASA Astrophysics Data System (ADS)
Butler, Roger A. R.; Slaminka, Edward E.
1992-03-01
The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.
FPGA-based Klystron linearization implementations in scope of ILC
Omet, M.; Michizono, S.; Matsumoto, T.; ...
2015-01-23
We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time.
Dhar, Amrit; Minin, Vladimir N
2017-05-01
Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time
Dhar, Amrit
2017-01-01
Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780
NASA Astrophysics Data System (ADS)
Marwaha, Richa; Kumar, Anil; Kumar, Arumugam Senthil
2015-01-01
Our primary objective was to explore a classification algorithm for thermal hyperspectral data. Minimum noise fraction is applied to thermal hyperspectral data and eight pixel-based classifiers, i.e., constrained energy minimization, matched filter, spectral angle mapper (SAM), adaptive coherence estimator, orthogonal subspace projection, mixture-tuned matched filter, target-constrained interference-minimized filter, and mixture-tuned target-constrained interference minimized filter are tested. The long-wave infrared (LWIR) has not yet been exploited for classification purposes. The LWIR data contain emissivity and temperature information about an object. A highest overall accuracy of 90.99% was obtained using the SAM algorithm for the combination of thermal data with a colored digital photograph. Similarly, an object-oriented approach is applied to thermal data. The image is segmented into meaningful objects based on properties such as geometry, length, etc., which are grouped into pixels using a watershed algorithm and an applied supervised classification algorithm, i.e., support vector machine (SVM). The best algorithm in the pixel-based category is the SAM technique. SVM is useful for thermal data, providing a high accuracy of 80.00% at a scale value of 83 and a merge value of 90, whereas for the combination of thermal data with a colored digital photograph, SVM gives the highest accuracy of 85.71% at a scale value of 82 and a merge value of 90.
Schoenberg, Mike R; Lange, Rael T; Saklofske, Donald H
2007-11-01
Establishing a comparison standard in neuropsychological assessment is crucial to determining change in function. There is no available method to estimate premorbid intellectual functioning for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). The WISC-IV provided normative data for both American and Canadian children aged 6 to 16 years old. This study developed regression algorithms as a proposed method to estimate full-scale intelligence quotient (FSIQ) for the Canadian WISC-IV. Participants were the Canadian WISC-IV standardization sample (n = 1,100). The sample was randomly divided into two groups (development and validation groups). The development group was used to generate regression algorithms; 1 algorithm only included demographics, and 11 combined demographic variables with WISC-IV subtest raw scores. The algorithms accounted for 18% to 70% of the variance in FSIQ (standard error of estimate, SEE = 8.6 to 14.2). Estimated FSIQ significantly correlated with actual FSIQ (r = .30 to .80), and the majority of individual FSIQ estimates were within +/-10 points of actual FSIQ. The demographic-only algorithm was less accurate than algorithms combining demographic variables with subtest raw scores. The current algorithms yielded accurate estimates of current FSIQ for Canadian individuals aged 6-16 years old. The potential application of the algorithms to estimate premorbid FSIQ is reviewed. While promising, clinical validation of the algorithms in a sample of children and/or adolescents with known neurological dysfunction is needed to establish these algorithms as a premorbid estimation procedure.
Robust Group Sparse Beamforming for Multicast Green Cloud-RAN With Imperfect CSI
NASA Astrophysics Data System (ADS)
Shi, Yuanming; Zhang, Jun; Letaief, Khaled B.
2015-09-01
In this paper, we investigate the network power minimization problem for the multicast cloud radio access network (Cloud-RAN) with imperfect channel state information (CSI). The key observation is that network power minimization can be achieved by adaptively selecting active remote radio heads (RRHs) via controlling the group-sparsity structure of the beamforming vector. However, this yields a non-convex combinatorial optimization problem, for which we propose a three-stage robust group sparse beamforming algorithm. In the first stage, a quadratic variational formulation of the weighted mixed l1/l2-norm is proposed to induce the group-sparsity structure in the aggregated beamforming vector, which indicates those RRHs that can be switched off. A perturbed alternating optimization algorithm is then proposed to solve the resultant non-convex group-sparsity inducing optimization problem by exploiting its convex substructures. In the second stage, we propose a PhaseLift technique based algorithm to solve the feasibility problem with a given active RRH set, which helps determine the active RRHs. Finally, the semidefinite relaxation (SDR) technique is adopted to determine the robust multicast beamformers. Simulation results will demonstrate the convergence of the perturbed alternating optimization algorithm, as well as, the effectiveness of the proposed algorithm to minimize the network power consumption for multicast Cloud-RAN.
People at High Risk of Developing Flu-Related Complications
... UPDATE: Parotitis and Influenza FAQ Parotitis and Influenza Algorithm: Interpreting Influenza Testing Results When Influenza is Circulating Algorithm: Interpreting Influenza Testing Results When Influenza is NOT ...
Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms
NASA Astrophysics Data System (ADS)
Samanta, A.; Todd, L. A.
A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.
Physical environment virtualization for human activities recognition
NASA Astrophysics Data System (ADS)
Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen
2015-05-01
Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.
Improved pulse laser ranging algorithm based on high speed sampling
NASA Astrophysics Data System (ADS)
Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang
2016-10-01
Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.
Multiobjective generalized extremal optimization algorithm for simulation of daylight illuminants
NASA Astrophysics Data System (ADS)
Kumar, Srividya Ravindra; Kurian, Ciji Pearl; Gomes-Borges, Marcos Eduardo
2017-10-01
Daylight illuminants are widely used as references for color quality testing and optical vision testing applications. Presently used daylight simulators make use of fluorescent bulbs that are not tunable and occupy more space inside the quality testing chambers. By designing a spectrally tunable LED light source with an optimal number of LEDs, cost, space, and energy can be saved. This paper describes an application of the generalized extremal optimization (GEO) algorithm for selection of the appropriate quantity and quality of LEDs that compose the light source. The multiobjective approach of this algorithm tries to get the best spectral simulation with minimum fitness error toward the target spectrum, correlated color temperature (CCT) the same as the target spectrum, high color rendering index (CRI), and luminous flux as required for testing applications. GEO is a global search algorithm based on phenomena of natural evolution and is especially designed to be used in complex optimization problems. Several simulations have been conducted to validate the performance of the algorithm. The methodology applied to model the LEDs, together with the theoretical basis for CCT and CRI calculation, is presented in this paper. A comparative result analysis of M-GEO evolutionary algorithm with the Levenberg-Marquardt conventional deterministic algorithm is also presented.
Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm
ERIC Educational Resources Information Center
Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.
2009-01-01
Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…
Swarmie User Manual: A Rover Used for Multi-agent Swarm Research
NASA Technical Reports Server (NTRS)
Montague, Gilbert
2014-01-01
The ability to create multiple functional yet cost effective robots is crucial for conducting swarming robotics research. The Center Innovation Fund (CIF) swarming robotics project is a collaboration among the KSC Granular Mechanics and Regolith Operations (GMRO) group, the University of New Mexico Biological Computation Lab, and the NASA Ames Intelligent Robotics Group (IRG) that uses rovers, dubbed "Swarmies", as test platforms for genetic search algorithms. This fall, I assisted in the development of the software modules used on the Swarmies and created this guide to provide thorough instructions on how to configure your workspace to operate a Swarmie both in simulation and out in the field.
Zbroch, Tomasz; Knapp, Paweł Grzegorz; Knapp, Piotr Andrzej
2007-09-01
Increasing knowledge concerning carcinogenesis within cervical epithelium has forced us to make continues modifications of cytology classification of the cervical smears. Eventually, new descriptions of the submicroscopic cytomorphological abnormalities have enabled the implementation of Bethesda System which was meant to take place of the former Papanicolaou classification although temporarily both are sometimes used simultaneously. The aim of this study was to compare results of these two classification systems in the aspect of diagnostic accuracy verified by further tests of the diagnostic algorithm for the cervical lesion evaluation. The study was conducted in the group of women selected from general population, the criteria being the place of living and cervical cancer age risk group, in the consecutive periods of mass screening in Podlaski region. The performed diagnostic tests have been based on the commonly used algorithm, as well as identical laboratory and methodological conditions. Performed assessment revealed comparable diagnostic accuracy of both analyzing classifications, verified by histological examination, although with marked higher specificity for dysplastic lesions with decreased number of HSIL results and increased diagnosis of LSILs. Higher number of performed colposcopies and biopsies were an additional consequence of TBS classification. Results based on Bethesda System made it possible to find the sources and reasons of abnormalities with much greater precision, which enabled causing agent treatment. Two evaluated cytology classification systems, although not much different, depicted higher potential of TBS and better, more effective communication between cytology laboratory and gynecologist, making reasonable implementation of The Bethesda System in the daily cytology screening work.
Toward Developing an Unbiased Scoring Algorithm for "NASA" and Similar Ranking Tasks.
ERIC Educational Resources Information Center
Lane, Irving M.; And Others
1981-01-01
Presents both logical and empirical evidence to illustrate that the conventional scoring algorithm for ranking tasks significantly underestimates the initial level of group ability and that Slevin's alternative scoring algorithm significantly overestimates the initial level of ability. Presents a modification of Slevin's algorithm which authors…
Two Improved Algorithms for Envelope and Wavefront Reduction
NASA Technical Reports Server (NTRS)
Kumfert, Gary; Pothen, Alex
1997-01-01
Two algorithms for reordering sparse, symmetric matrices or undirected graphs to reduce envelope and wavefront are considered. The first is a combinatorial algorithm introduced by Sloan and further developed by Duff, Reid, and Scott; we describe enhancements to the Sloan algorithm that improve its quality and reduce its run time. Our test problems fall into two classes with differing asymptotic behavior of their envelope parameters as a function of the weights in the Sloan algorithm. We describe an efficient 0(nlogn + m) time implementation of the Sloan algorithm, where n is the number of rows (vertices), and m is the number of nonzeros (edges). On a collection of test problems, the improved Sloan algorithm required, on the average, only twice the time required by the simpler Reverse Cuthill-Mckee algorithm while improving the mean square wavefront by a factor of three. The second algorithm is a hybrid that combines a spectral algorithm for envelope and wavefront reduction with a refinement step that uses a modified Sloan algorithm. The hybrid algorithm reduces the envelope size and mean square wavefront obtained from the Sloan algorithm at the cost of greater running times. We illustrate how these reductions translate into tangible benefits for frontal Cholesky factorization and incomplete factorization preconditioning.
Terris-Prestholt, Fern; Vickerman, Peter; Torres-Rueda, Sergio; Santesso, Nancy; Sweeney, Sedona; Mallma, Patricia; Shelley, Katharine D; Garcia, Patricia J; Bronzan, Rachel; Gill, Michelle M; Broutet, Nathalie; Wi, Teodora; Watts, Charlotte; Mabey, David; Peeling, Rosanna W; Newman, Lori
2015-06-01
Rapid plasma reagin (RPR) is frequently used to test women for maternal syphilis. Rapid syphilis immunochromatographic strip tests detecting only Treponema pallidum antibodies (single RSTs) or both treponemal and non-treponemal antibodies (dual RSTs) are now available. This study assessed the cost-effectiveness of algorithms using these tests to screen pregnant women. Observed costs of maternal syphilis screening and treatment using clinic-based RPR and single RSTs in 20 clinics across Peru, Tanzania, and Zambia were used to model the cost-effectiveness of algorithms using combinations of RPR, single, and dual RSTs, and no and mass treatment. Sensitivity analyses determined drivers of key results. Although this analysis found screening using RPR to be relatively cheap, most (>70%) true cases went untreated. Algorithms using single RSTs were the most cost-effective in all observed settings, followed by dual RSTs, which became the most cost-effective if dual RST costs were halved. Single test algorithms dominated most sequential testing algorithms, although sequential algorithms reduced overtreatment. Mass treatment was relatively cheap and effective in the absence of screening supplies, though treated many uninfected women. This analysis highlights the advantages of introducing RSTs in three diverse settings. The results should be applicable to other similar settings. Copyright © 2015 International Federation of Gynecology and Obstetrics. All rights reserved.
Terris-Prestholt, Fern; Vickerman, Peter; Torres-Rueda, Sergio; Santesso, Nancy; Sweeney, Sedona; Mallma, Patricia; Shelley, Katharine D.; Garcia, Patricia J.; Bronzan, Rachel; Gill, Michelle M.; Broutet, Nathalie; Wi, Teodora; Watts, Charlotte; Mabey, David; Peeling, Rosanna W.; Newman, Lori
2015-01-01
Objective Rapid plasma reagin (RPR) is frequently used to test women for maternal syphilis. Rapid syphilis immunochromatographic strip tests detecting only Treponema pallidum antibodies (single RSTs) or both treponemal and non-treponemal antibodies (dual RSTs) are now available. This study assessed the cost-effectiveness of algorithms using these tests to screen pregnant women. Methods Observed costs of maternal syphilis screening and treatment using clinic-based RPR and single RSTs in 20 clinics across Peru, Tanzania, and Zambia were used to model the cost-effectiveness of algorithms using combinations of RPR, single, and dual RSTs, and no and mass treatment. Sensitivity analyses determined drivers of key results. Results Although this analysis found screening using RPR to be relatively cheap, most (> 70%) true cases went untreated. Algorithms using single RSTs were the most cost-effective in all observed settings, followed by dual RSTs, which became the most cost-effective if dual RST costs were halved. Single test algorithms dominated most sequential testing algorithms, although sequential algorithms reduced overtreatment. Mass treatment was relatively cheap and effective in the absence of screening supplies, though treated many uninfected women. Conclusion This analysis highlights the advantages of introducing RSTs in three diverse settings. The results should be applicable to other similar settings. PMID:25963907
Rabelo, Gustavo Davi; Beletti, Marcelo Emílio; Dechichi, Paula
2010-10-01
The aim of this study was to evaluate the effects of radiotherapy in cortical bone channels network. Fourteen rabbits were divided in two groups and test group received single dose of 15 Gy cobalt-60 radiation in tibia, bilaterally. The animals were sacrificed and a segment of tibia was removed and histologically processed. Histological images were taken and had their bone channels segmented and called regions of interest (ROI). Images were analyzed through developed algorithms using the SCILAB mathematical environment, getting percentage of bone matrix, ROI areas, ROI perimeters, their standard deviations and Lacunarity. The osteocytes and empty lacunae were also counted. Data were evaluated using Kolmogorov-Smirnov, Mann Whitney, and Student's t test (P < 0.05). Significant differences in bone matrix percentage, area and perimeters of the channels, their respective standard deviations and lacunarity were found between groups. In conclusion, the radiotherapy causes reduction of bone matrix and modifies the morphology of bone channels network. © 2010 Wiley-Liss, Inc.
Free-living and laboratory gait characteristics in patients with multiple sclerosis
Nair, K. P. S.; Clarke, Alison J.; Van der Meulen, Jill M.; Mazzà, Claudia
2018-01-01
Background Wearable sensors offer the potential to bring new knowledge to inform interventions in patients affected by multiple sclerosis (MS) by thoroughly quantifying gait characteristics and gait deficits from prolonged daily living measurements. The aim of this study was to characterise gait in both laboratory and daily life conditions for a group of patients with moderate to severe ambulatory impairment due to MS. To this purpose, algorithms to detect and characterise gait from wearable inertial sensors data were also validated. Methods Fourteen patients with MS were divided into two groups according to their disability level (EDSS 6.5–6.0 and EDSS 5.5–5.0, respectively). They performed both intermittent and continuous walking bouts (WBs) in a gait laboratory wearing waist and shank mounted inertial sensors. An algorithm (W-CWT) to estimate gait events and temporal parameters (mean and variability values) using data recorded from the waist mounted sensor (Dynaport, Mc Roberts) was tested against a reference algorithm (S-REF) based on the shank-worn sensors (OPAL, APDM). Subsequently, the accuracy of another algorithm (W-PAM) to detect and classify WBs was also tested. The validated algorithms were then used to quantify gait characteristics during short (sWB, 5–50 steps), intermediate (iWB, 51–100 steps) and long (lWB, >100 steps) daily living WBs and laboratory walking. Group means were compared using a two-way ANOVA. Results W-CWT compared to S-REF showed good gait event accuracy (0.05–0.10 s absolute error) and was not influenced by disability level. It slightly overestimated stride time in intermittent walking (0.012 s) and overestimated highly variability of temporal parameters in both intermittent (17.5%–58.2%) and continuous walking (11.2%–76.7%). The accuracy of W-PAM was speed-dependent and decreased with increasing disability. The ANOVA analysis showed that patients walked at a slower pace in daily living than in the laboratory. In daily living gait, all mean temporal parameters decreased as the WB duration increased. In the sWB, the patients with a lower disability score showed, on average, lower values of the temporal parameters. Variability decreased as the WB duration increased. Conclusions This study validated a method to quantify walking in real life in people with MS and showed how gait characteristics estimated from short walking bouts during daily living may be the most informative to quantify level of disability and effects of interventions in patients moderately affected by MS. The study provides a robust approach for the quantification of recognised clinically relevant outcomes and an innovative perspective in the study of real life walking. PMID:29715279
Preventing the Flu: Good Health Habits Can Help Stop Germs
... UPDATE: Parotitis and Influenza FAQ Parotitis and Influenza Algorithm: Interpreting Influenza Testing Results When Influenza is Circulating Algorithm: Interpreting Influenza Testing Results When Influenza is NOT ...
Rocketdyne Safety Algorithm: Space Shuttle Main Engine Fault Detection
NASA Technical Reports Server (NTRS)
Norman, Arnold M., Jr.
1994-01-01
The Rocketdyne Safety Algorithm (RSA) has been developed to the point of use on the TTBE at MSFC on Task 4 of LeRC contract NAS3-25884. This document contains a description of the work performed, the results of the nominal test of the major anomaly test cases and a table of the resulting cutoff times, a plot of the RSA value vs. time for each anomaly case, a logic flow description of the algorithm, the algorithm code, and a development plan for future efforts.
JPSS Cryosphere Algorithms: Integration and Testing in Algorithm Development Library (ADL)
NASA Astrophysics Data System (ADS)
Tsidulko, M.; Mahoney, R. L.; Meade, P.; Baldwin, D.; Tschudi, M. A.; Das, B.; Mikles, V. J.; Chen, W.; Tang, Y.; Sprietzer, K.; Zhao, Y.; Wolf, W.; Key, J.
2014-12-01
JPSS is a next generation satellite system that is planned to be launched in 2017. The satellites will carry a suite of sensors that are already on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. The NOAA/NESDIS/STAR Algorithm Integration Team (AIT) works within the Algorithm Development Library (ADL) framework which mimics the operational JPSS Interface Data Processing Segment (IDPS). The AIT contributes in development, integration and testing of scientific algorithms employed in the IDPS. This presentation discusses cryosphere related activities performed in ADL. The addition of a new ancillary data set - NOAA Global Multisensor Automated Snow/Ice data (GMASI) - with ADL code modifications is described. Preliminary GMASI impact on the gridded Snow/Ice product is estimated. Several modifications to the Ice Age algorithm that demonstrates mis-classification of ice type for certain areas/time periods are tested in the ADL. Sensitivity runs for day time, night time and terminator zone are performed and presented. Comparisons between the original and modified versions of the Ice Age algorithm are also presented.
NASA Astrophysics Data System (ADS)
Akhmedova, Sh; Semenkin, E.
2017-02-01
Previously, a meta-heuristic approach, called Co-Operation of Biology-Related Algorithms or COBRA, for solving real-parameter optimization problems was introduced and described. COBRA’s basic idea consists of a cooperative work of five well-known bionic algorithms such as Particle Swarm Optimization, the Wolf Pack Search, the Firefly Algorithm, the Cuckoo Search Algorithm and the Bat Algorithm, which were chosen due to the similarity of their schemes. The performance of this meta-heuristic was evaluated on a set of test functions and its workability was demonstrated. Thus it was established that the idea of the algorithms’ cooperative work is useful. However, it is unclear which bionic algorithms should be included in this cooperation and how many of them. Therefore, the five above-listed algorithms and additionally the Fish School Search algorithm were used for the development of five different modifications of COBRA by varying the number of component-algorithms. These modifications were tested on the same set of functions and the best of them was found. Ways of further improving the COBRA algorithm are then discussed.
Statistical analysis for validating ACO-KNN algorithm as feature selection in sentiment analysis
NASA Astrophysics Data System (ADS)
Ahmad, Siti Rohaidah; Yusop, Nurhafizah Moziyana Mohd; Bakar, Azuraliza Abu; Yaakub, Mohd Ridzwan
2017-10-01
This research paper aims to propose a hybrid of ant colony optimization (ACO) and k-nearest neighbor (KNN) algorithms as feature selections for selecting and choosing relevant features from customer review datasets. Information gain (IG), genetic algorithm (GA), and rough set attribute reduction (RSAR) were used as baseline algorithms in a performance comparison with the proposed algorithm. This paper will also discuss the significance test, which was used to evaluate the performance differences between the ACO-KNN, IG-GA, and IG-RSAR algorithms. This study evaluated the performance of the ACO-KNN algorithm using precision, recall, and F-score, which were validated using the parametric statistical significance tests. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. In addition, the experimental results have proven that the ACO-KNN can be used as a feature selection technique in sentiment analysis to obtain quality, optimal feature subset that can represent the actual data in customer review data.
Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
A new improved artificial bee colony algorithm for ship hull form optimization
NASA Astrophysics Data System (ADS)
Huang, Fuxin; Wang, Lijue; Yang, Chi
2016-04-01
The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.
Semantic super networks: A case analysis of Wikipedia papers
NASA Astrophysics Data System (ADS)
Kostyuchenko, Evgeny; Lebedeva, Taisiya; Goritov, Alexander
2017-11-01
An algorithm for constructing super-large semantic networks has been developed in current work. Algorithm was tested using the "Cosmos" category of the Internet encyclopedia "Wikipedia" as an example. During the implementation, a parser for the syntax analysis of Wikipedia pages was developed. A graph based on list of articles and categories was formed. On the basis of the obtained graph analysis, algorithms for finding domains of high connectivity in a graph were proposed and tested. Algorithms for constructing a domain based on the number of links and the number of articles in the current subject area is considered. The shortcomings of these algorithms are shown and explained, an algorithm is developed on their joint use. The possibility of applying a combined algorithm for obtaining the final domain is shown. The problem of instability of the received domain was discovered when starting an algorithm from two neighboring vertices related to the domain.
A generalized memory test algorithm
NASA Technical Reports Server (NTRS)
Milner, E. J.
1982-01-01
A general algorithm for testing digital computer memory is presented. The test checks that (1) every bit can be cleared and set in each memory work, and (2) bits are not erroneously cleared and/or set elsewhere in memory at the same time. The algorithm can be applied to any size memory block and any size memory word. It is concise and efficient, requiring the very few cycles through memory. For example, a test of 16-bit-word-size memory requries only 384 cycles through memory. Approximately 15 seconds were required to test a 32K block of such memory, using a microcomputer having a cycle time of 133 nanoseconds.
Integration of time as a factor in ergonomic simulation.
Walther, Mario; Muñoz, Begoña Toledo
2012-01-01
The paper describes the application of a simulation based ergonomic evaluation. Within a pilot project, the algorithms of the screening method of the European Assembly Worksheet were transferred into an existing digital human model. Movement data was recorded with an especially developed hybrid Motion Capturing system. A prototype of the system was built and is currently being tested at the Volkswagen Group. First results showed the feasibility of the simulation based ergonomic evaluation with Motion Capturing.
Linnemann, Birgit; Bauersachs, Rupert; Rott, Hannelore; Halimeh, Susan; Zotz, Rainer; Gerhardt, Andrea; Boddenberg-Pätzold, Barbara; Toth, Bettina; Scholz, Ute
2016-01-01
Pregnancy and the postpartum period are associated with an increased risk of venous thromboembolism (VTE). Over the past decade, new diagnostic algorithms have been established, combining clinical probability, laboratory testing and imaging studies for the diagnosis of deep vein thrombosis (DVT) and pulmonary embolism (PE) in the non-pregnant population. However, there is no such generally accepted algorithm for the diagnosis of pregnancy-associated VTE. Studies establishing clinical prediction rules have excluded pregnant women, and prediction scores currently in use have not been prospectively validated in pregnancy or during the postpartum period. D-dimers physiologically increase throughout pregnancy and peak at delivery, so a negative D-dimer test result, based on the reference values of non-pregnant subjects, becomes unlikely in the second and third trimesters. Imaging studies therefore play a major role in confirming suspected DVT or PE in pregnant women. Major concerns have been raised against radiologic imaging because of foetal radiation exposure, and doubts about the diagnostic value of ultrasound techniques in attempting to exclude isolated iliac vein thrombosis grow stronger as pregnancy progresses. As members of the Working Group in Women's Health of the Society of Thrombosis and Haemostasis (GTH), we summarise evidence from the available literature and aim to establish a more uniform strategy for diagnosing pregnancy-associated VTE.
Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G3Cv1)
NASA Astrophysics Data System (ADS)
Robotham, A. S. G.; Norberg, P.; Driver, S. P.; Baldry, I. K.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Loveday, J.; Merson, A.; Peacock, J. A.; Brough, S.; Cameron, E.; Conselice, C. J.; Croom, S. M.; Frenk, C. S.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K. A.; Phillipps, S.; Popescu, C. C.; Prescott, M.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.
2011-10-01
Using the complete Galaxy and Mass Assembly I (GAMA-I) survey covering ˜142 deg2 to rAB= 19.4, of which ˜47 deg2 is to rAB= 19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been tested extensively on one family of mock GAMA lightcones, constructed from Λ cold dark matter N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14 388 galaxy groups (with multiplicity ≥2), including 44 186 galaxies out of a possible 110 192 galaxies, implying ˜40 per cent of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with five or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin. The G3Cv1 catalogue will be made publicly available as and when the relevant GAMA redshifts are made available at .
Song, Lele; Jia, Jia; Peng, Xiumei; Xiao, Wenhua; Li, Yuemin
2017-06-08
The SEPT9 gene methylation assay is the first FDA-approved blood assay for colorectal cancer (CRC) screening. Fecal immunochemical test (FIT), FIT-DNA test and CEA assay are also in vitro diagnostic (IVD) tests used in CRC screening. This meta-analysis aims to review the SEPT9 assay performance and compare it with other IVD CRC screening tests. By searching the Ovid MEDLINE, EMBASE, CBMdisc and CJFD database, 25 out of 180 studies were identified to report the SEPT9 assay performance. 2613 CRC cases and 6030 controls were included, and sensitivity and specificity were used to evaluate its performance at various algorithms. 1/3 algorithm exhibited the best sensitivity while 2/3 and 1/1 algorithm exhibited the best balance between sensitivity and specificity. The performance of the blood SEPT9 assay is superior to that of the serum protein markers and the FIT test in symptomatic population, while appeared to be less potent than FIT and FIT-DNA tests in asymptomatic population. In conclusion, 1/3 algorithm is recommended for CRC screening, and 2/3 or 1/1 algorithms are suitable for early detection for diagnostic purpose. The SEPT9 assay exhibited better performance in symptomatic population than in asymptomatic population.
Memetic algorithms for de novo motif-finding in biomedical sequences.
Bi, Chengpeng
2012-09-01
The objectives of this study are to design and implement a new memetic algorithm for de novo motif discovery, which is then applied to detect important signals hidden in various biomedical molecular sequences. In this paper, memetic algorithms are developed and tested in de novo motif-finding problems. Several strategies in the algorithm design are employed that are to not only efficiently explore the multiple sequence local alignment space, but also effectively uncover the molecular signals. As a result, there are a number of key features in the implementation of the memetic motif-finding algorithm (MaMotif), including a chromosome replacement operator, a chromosome alteration-aware local search operator, a truncated local search strategy, and a stochastic operation of local search imposed on individual learning. To test the new algorithm, we compare MaMotif with a few of other similar algorithms using simulated and experimental data including genomic DNA, primary microRNA sequences (let-7 family), and transmembrane protein sequences. The new memetic motif-finding algorithm is successfully implemented in C++, and exhaustively tested with various simulated and real biological sequences. In the simulation, it shows that MaMotif is the most time-efficient algorithm compared with others, that is, it runs 2 times faster than the expectation maximization (EM) method and 16 times faster than the genetic algorithm-based EM hybrid. In both simulated and experimental testing, results show that the new algorithm is compared favorably or superior to other algorithms. Notably, MaMotif is able to successfully discover the transcription factors' binding sites in the chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) data, correctly uncover the RNA splicing signals in gene expression, and precisely find the highly conserved helix motif in the transmembrane protein sequences, as well as rightly detect the palindromic segments in the primary microRNA sequences. The memetic motif-finding algorithm is effectively designed and implemented, and its applications demonstrate it is not only time-efficient, but also exhibits excellent performance while compared with other popular algorithms. Copyright © 2012 Elsevier B.V. All rights reserved.
Cargo container inspection test program at ARPA's Nonintrusive Inspection Technology Testbed
NASA Astrophysics Data System (ADS)
Volberding, Roy W.; Khan, Siraj M.
1994-10-01
An x-ray-based cargo inspection system test program is being conducted at the Advanced Research Project Agency (ARPA)-sponsored Nonintrusive Inspection Technology Testbed (NITT) located in the Port of Tacoma, Washington. The test program seeks to determine the performance that can be expected from a dual, high-energy x-ray cargo inspection system when inspecting ISO cargo containers. This paper describes an intensive, three-month, system test involving two independent test groups, one representing the criminal smuggling element and the other representing the law enforcement community. The first group, the `Red Team', prepares ISO containers for inspection at an off-site facility. An algorithm randomly selects and indicates the positions and preparation of cargoes within a container. The prepared container is dispatched to the NITT for inspection by the `Blue Team'. After in-gate processing, it is queued for examination. The Blue Team inspects the container and decides whether or not to pass the container. The shipment undergoes out-gate processing and returns to the Red Team. The results of the inspection are recorded for subsequent analysis. The test process, including its governing protocol, the cargoes, container preparation, the examination and results available at the time of submission are presented.
Heuristic rules embedded genetic algorithm for in-core fuel management optimization
NASA Astrophysics Data System (ADS)
Alim, Fatih
The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.
KODA, MASAHIKO; TOKUNAGA, SHIHO; MATONO, TOMOMITSU; SUGIHARA, TAKAAKI; NAGAHARA, TAKAKAZU; MURAWAKI, YOSHIKAZU
2011-01-01
The purpose of the present study was to compare the size and configuration of the ablation zones created by SuperSlim and CoAccess electrodes, using various ablation algorithms in ex vivo bovine liver and in clinical cases. In the experimental study, we ablated explanted bovine liver using 2 types of electrodes and 4 ablation algorithms (combinations of incremental power supply, stepwise expansion and additional low-power ablation) and evaluated the ablation area and time. In the clinical study, we compared the ablation volume and the shape of the ablation zone between both electrodes in 23 hepatocellular carcinoma (HCC) cases with the best algorithm (incremental power supply, stepwise expansion and additional low-power ablation) as derived from the experimental study. In the experimental study, the ablation area and time by the CoAccess electrode were significantly greater compared to those by the SuperSlim electrode for the single-step (algorithm 1, p=0.0209 and 0.0325, respectively) and stepwise expansion algorithms (algorithm 2, p=0.0002 and <0.0001, respectively; algorithm 3, p= 0.006 and 0.0407, respectively). However, differences were not significant for the additional low-power ablation algorithm. In the clinical study, the ablation volume and time in the CoAccess group were significantly larger and longer, respectively, compared to those in the SuperSlim group (p=0.0242 and 0.009, respectively). Round ablation zones were acquired in 91.7% of the CoAccess group, while irregular ablation zones were obtained in 45.5% of the SuperSlim group (p=0.0428). In conclusion, the CoAccess electrode achieves larger and more uniform ablation zones compared with the SuperSlim electrode, though it requires longer ablation times in experimental and clinical studies. PMID:22977647
Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms
Pacheco, Maria P.; Pfau, Thomas; Sauter, Thomas
2016-01-01
Recent progress in high-throughput data acquisition has shifted the focus from data generation to processing and understanding of how to integrate collected information. Context specific reconstruction based on generic genome scale models like ReconX or HMR has the potential to become a diagnostic and treatment tool tailored to the analysis of specific individuals. The respective computational algorithms require a high level of predictive power, robustness and sensitivity. Although multiple context specific reconstruction algorithms were published in the last 10 years, only a fraction of them is suitable for model building based on human high-throughput data. Beside other reasons, this might be due to problems arising from the limitation to only one metabolic target function or arbitrary thresholding. This review describes and analyses common validation methods used for testing model building algorithms. Two major methods can be distinguished: consistency testing and comparison based testing. The first is concerned with robustness against noise, e.g., missing data due to the impossibility to distinguish between the signal and the background of non-specific binding of probes in a microarray experiment, and whether distinct sets of input expressed genes corresponding to i.e., different tissues yield distinct models. The latter covers methods comparing sets of functionalities, comparison with existing networks or additional databases. We test those methods on several available algorithms and deduce properties of these algorithms that can be compared with future developments. The set of tests performed, can therefore serve as a benchmarking procedure for future algorithms. PMID:26834640
Breaking the indexing ambiguity in serial crystallography.
Brehm, Wolfgang; Diederichs, Kay
2014-01-01
In serial crystallography, a very incomplete partial data set is obtained from each diffraction experiment (a `snapshot'). In some space groups, an indexing ambiguity exists which requires that the indexing mode of each snapshot needs to be established with respect to a reference data set. In the absence of such re-indexing information, crystallographers have thus far resorted to a straight merging of all snapshots, yielding a perfectly twinned data set of higher symmetry which is poorly suited for structure solution and refinement. Here, two algorithms have been designed for assembling complete data sets by clustering those snapshots that are indexed in the same way, and they have been tested using 15,445 snapshots from photosystem I [Chapman et al. (2011), Nature (London), 470, 73-77] and with noisy model data. The results of the clustering are unambiguous and enabled the construction of complete data sets in the correct space group P63 instead of (twinned) P6322 that researchers have been forced to use previously in such cases of indexing ambiguity. The algorithms thus extend the applicability and reach of serial crystallography.
Improving the resolution for Lamb wave testing via a smoothed Capon algorithm
NASA Astrophysics Data System (ADS)
Cao, Xuwei; Zeng, Liang; Lin, Jing; Hua, Jiadong
2018-04-01
Lamb wave testing is promising for damage detection and evaluation in large-area structures. The dispersion of Lamb waves is often unavoidable, restricting testing resolution and making the signal hard to interpret. A smoothed Capon algorithm is proposed in this paper to estimate the accurate path length of each wave packet. In the algorithm, frequency domain whitening is firstly used to obtain the transfer function in the bandwidth of the excitation pulse. Subsequently, wavenumber domain smoothing is employed to reduce the correlation between wave packets. Finally, the path lengths are determined by distance domain searching based on the Capon algorithm. Simulations are applied to optimize the number of smoothing times. Experiments are performed on an aluminum plate consisting of two simulated defects. The results demonstrate that spatial resolution is improved significantly by the proposed algorithm.
GPU-accelerated phase extraction algorithm for interferograms: a real-time application
NASA Astrophysics Data System (ADS)
Zhu, Xiaoqiang; Wu, Yongqian; Liu, Fengwei
2016-11-01
Optical testing, having the merits of non-destruction and high sensitivity, provides a vital guideline for optical manufacturing. But the testing process is often computationally intensive and expensive, usually up to a few seconds, which is sufferable for dynamic testing. In this paper, a GPU-accelerated phase extraction algorithm is proposed, which is based on the advanced iterative algorithm. The accelerated algorithm can extract the right phase-distribution from thirteen 1024x1024 fringe patterns with arbitrary phase shifts in 233 milliseconds on average using NVIDIA Quadro 4000 graphic card, which achieved a 12.7x speedup ratio than the same algorithm executed on CPU and 6.6x speedup ratio than that on Matlab using DWANING W5801 workstation. The performance improvement can fulfill the demand of computational accuracy and real-time application.
Methods of extending crop signatures from one area to another
NASA Technical Reports Server (NTRS)
Minter, T. C. (Principal Investigator)
1979-01-01
Efforts to develop a technology for signature extension during LACIE phases 1 and 2 are described. A number of haze and Sun angle correction procedures were developed and tested. These included the ROOSTER and OSCAR cluster-matching algorithms and their modifications, the MLEST and UHMLE maximum likelihood estimation procedures, and the ATCOR procedure. All these algorithms were tested on simulated data and consecutive-day LANDSAT imagery. The ATCOR, OSCAR, and MLEST algorithms were also tested for their capability to geographically extend signatures using LANDSAT imagery.
Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V; Robles, Montserrat; Aparici, F; Martí-Bonmatí, L; García-Gómez, Juan M
2015-01-01
Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation.
De Pietri, Lesley; Ragusa, Francesca; Deleuterio, Annalisa; Begliomini, Bruno; Serra, Valentina
2016-01-01
Patients undergoing orthotopic liver transplantation are at high risk of bleeding complications. Several Authors have shown that thromboelastography (TEG)-based coagulation management and the administration of fibrinogen concentrate reduce the need for blood transfusion. We conducted a single-center, retrospective cohort observational study (Modena Polyclinic, Italy) on 386 consecutive patients undergoing liver transplantation. We assessed the impact on resource consumption and patient survival after the introduction of a new TEG-based transfusion algorithm, requiring also the introduction of the fibrinogen functional thromboelastography test and a maximum amplitude of functional fibrinogen thromboelastography transfusion cutoff (7 mm) to direct in administering fibrinogen (2012-2014, n = 118) compared with a purely TEG-based algorithm previously used (2005-2011, n = 268). After 2012, there was a significant decrease in the use of homologous blood (1502 ± 1376 vs 794 ± 717 mL, P < 0.001), fresh frozen plasma (537 ± 798 vs 98 ± 375 mL, P < 0.001), and platelets (158 ± 280 vs 75 ± 148 mL, P < 0.005), whereas the use of fibrinogen increased (0.1 ± 0.5 vs 1.4 ± 1.8 g, P < 0.001). There were no significant differences in 30-day and 6-month survival between the 2 groups. The implementation of a new coagulation management method featuring the addition of the fibrinogen functional thromboelastography test to the TEG test according to an algorithm which provides for the administration of fibrinogen has helped in reducing the need for transfusion in patients undergoing liver transplantation with no impact on their survival.
NASA Astrophysics Data System (ADS)
Thieberger, P.; Gassner, D.; Hulsart, R.; Michnoff, R.; Miller, T.; Minty, M.; Sorrell, Z.; Bartnik, A.
2018-04-01
A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.
Thieberger, Peter; Gassner, D.; Hulsart, R.; ...
2018-04-25
Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thieberger, Peter; Gassner, D.; Hulsart, R.
Here, a simple, analytically correct algorithm is developed for calculating “pencil” relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized. Lastly, the algorithm ismore » tested with BPM data from the Cornell Preinjector.« less
Thieberger, P; Gassner, D; Hulsart, R; Michnoff, R; Miller, T; Minty, M; Sorrell, Z; Bartnik, A
2018-04-01
A simple, analytically correct algorithm is developed for calculating "pencil" relativistic beam coordinates using the signals from an ideal cylindrical particle beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. The algorithm is then tested with simulations for non-relativistic beams. As an example of the data acquisition speed advantage, a Field Programmable Gate Array-based BPM readout implementation of the new algorithm has been developed and characterized. Finally, the algorithm is tested with BPM data from the Cornell Preinjector.
Sum and mean. Standard programs for activation analysis.
Lindstrom, R M
1994-01-01
Two computer programs in use for over a decade in the Nuclear Methods Group at NIST illustrate the utility of standard software: programs widely available and widely used, in which (ideally) well-tested public algorithms produce results that are well understood, and thereby capable of comparison, within the community of users. Sum interactively computes the position, net area, and uncertainty of the area of spectral peaks, and can give better results than automatic peak search programs when peaks are very small, very large, or unusually shaped. Mean combines unequal measurements of a single quantity, tests for consistency, and obtains the weighted mean and six measures of its uncertainty.
Probing glaucoma visual damage by rarebit perimetry.
Brusini, P; Salvetat, M L; Parisi, L; Zeppieri, M
2005-02-01
To compare rarebit perimetry (RBP) with standard achromatic perimetry (SAP) in detecting early glaucomatous functional damage. 43 patients with ocular hypertension (OH), 39 with early primary open angle glaucoma (POAG), and 41 controls were considered. Visual fields were assessed using the Humphrey field analyser (HFA) 30-2 and RBP tests. Differences among the groups were evaluated using Student-Newman-Keuls and chi(2) tests. Correlation between HFA and RBP parameters was assessed using the Pearson's correlation coefficients and regression analysis. Sensitivity and specificity of RBP in detecting early glaucomatous visual damage were calculated with different algorithms. RBP-mean hit rate (MHR) was respectively 88.6% (SD 4.8%) in controls; 79.1% (10.9%) in the OH group; 64.3% (13.8%) in the POAG group (differences statistically significant). Good correlation in the POAG group was found between HFA-mean deviation and RBP-MHR. Largest AROC (0.95) and optimal sensitivity (97.4%) were obtained when an abnormal RBP test was defined as having (at least 1): MHR <80%; >15 areas with a non-hit rate of >10%; > or =2 areas with a non-hit rate of >50%; at least one area with a non-hit rate of > or =70%. The RBP appeared to be a rapid, comfortable, and easily available perimetric test (requiring only a PC device), showing a high sensitivity and specificity in detecting early glaucomatous visual field defects.
Pre-Launch Performance Testing of the ICESat-2/ATLAS Flight Science Receiver Algorithms
NASA Astrophysics Data System (ADS)
Mcgarry, J.; Carabajal, C. C.; Saba, J. L.; Rackley, A.; Holland, S.
2016-12-01
NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be the single instrument on the ICESat-2 spacecraft which is expected to launch in late 2017 with a 3 year mission lifetime. The ICESat-2 planned orbital altitude is 500 km with a 92 degree inclination and 91-day repeat tracks. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz and a 6 spot pattern on the Earth's surface. Without some method of reducing the received data, the volume of ATLAS telemetry would far exceed the normal X-band downlink capability. To reduce the data volume to an acceptable level a set of onboard Receiver Algorithms has been developed. These Algorithms limit the daily data volume by distinguishing surface echoes from the background noise and allowing the instrument to telemeter data from only a small vertical region about the signal. This is accomplished through the use of an onboard Digital Elevation Model (DEM), signal processing techniques, and onboard relief and surface reference maps. The ATLAS Receiver Algorithms have been completed and have been verified during Instrument testing in the spacecraft assembly area at the Goddard Space Flight Center in late 2015 and early 2016. Testing has been performed at ambient temperature with a pressure of one atmosphere as well as at the expected hot and cold temperatures in a vacuum. Results from testing to date show the Receiver Algorithms have the ability to handle a wide range of signal and noise levels with a very good sensitivity at relatively low signal to noise ratios. Testing with the ATLAS instrument and flight software shows very good agreement with previous Simulator testing and all of the requirements for ATLAS Receiver Algorithms were successfully verified during Run for the Record Testing in December 2015. This poster will describe the performance of the ATLAS Flight Science Receiver Algorithms during the Run for Record and Comprehensive Performance Testing performed at Goddard, which will give insight into the future on-orbit performance of the Algorithms. See the companion poster (Carabajal, et al) in this session.
Park, Rachel; O'Brien, Thomas F.; Huang, Susan S.; Baker, Meghan A.; Yokoe, Deborah S.; Kulldorff, Martin; Barrett, Craig; Swift, Jamie; Stelling, John
2016-01-01
Objectives While antimicrobial resistance threatens the prevention, treatment, and control of infectious diseases, systematic analysis of routine microbiology laboratory test results worldwide can alert new threats and promote timely response. This study explores statistical algorithms for recognizing geographic clustering of multi-resistant microbes within a healthcare network and monitoring the dissemination of new strains over time. Methods Escherichia coli antimicrobial susceptibility data from a three-year period stored in WHONET were analyzed across ten facilities in a healthcare network utilizing SaTScan's spatial multinomial model with two models for defining geographic proximity. We explored geographic clustering of multi-resistance phenotypes within the network and changes in clustering over time. Results Geographic clustering identified from both latitude/longitude and non-parametric facility groupings geographic models were similar, while the latter was offers greater flexibility and generalizability. Iterative application of the clustering algorithms suggested the possible recognition of the initial appearance of invasive E. coli ST131 in the clinical database of a single hospital and subsequent dissemination to others. Conclusion Systematic analysis of routine antimicrobial resistance susceptibility test results supports the recognition of geographic clustering of microbial phenotypic subpopulations with WHONET and SaTScan, and iterative application of these algorithms can detect the initial appearance in and dissemination across a region prompting early investigation, response, and containment measures. PMID:27530311
Early Examples from the Integrated Multi-Satellite Retrievals for GPM (IMERG)
NASA Astrophysics Data System (ADS)
Huffman, George; Bolvin, David; Braithwaite, Daniel; Hsu, Kuolin; Joyce, Robert; Kidd, Christopher; Sorooshian, Soroosh; Xie, Pingping
2014-05-01
The U.S. GPM Science Team's Day-1 algorithm for computing combined precipitation estimates as part of GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). The goal is to compute the best time series of (nearly) global precipitation from "all" precipitation-relevant satellites and global surface precipitation gauge analyses. IMERG is being developed as a unified U.S. algorithm drawing on strengths in the three contributing groups, whose previous work includes: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA); 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH); and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). We review the IMERG design and development, plans for testing, and current status. Some of the lessons learned in running and reprocessing the previous data sets include the importance of quality-controlling input data sets, strategies for coping with transitions in the various input data sets, and practical approaches to retrospective analysis of multiple output products (namely the real- and post-real-time data streams). IMERG output will be illustrated using early test data, including the variety of supporting fields, such as the merged-microwave and infrared estimates, and the precipitation type. We end by considering recent changes in input data specifications, the transition from TRMM-based calibration to GPM-based, and further "Day 2" development.
Target detection using the background model from the topological anomaly detection algorithm
NASA Astrophysics Data System (ADS)
Dorado Munoz, Leidy P.; Messinger, David W.; Ziemann, Amanda K.
2013-05-01
The Topological Anomaly Detection (TAD) algorithm has been used as an anomaly detector in hyperspectral and multispectral images. TAD is an algorithm based on graph theory that constructs a topological model of the background in a scene, and computes an anomalousness ranking for all of the pixels in the image with respect to the background in order to identify pixels with uncommon or strange spectral signatures. The pixels that are modeled as background are clustered into groups or connected components, which could be representative of spectral signatures of materials present in the background. Therefore, the idea of using the background components given by TAD in target detection is explored in this paper. In this way, these connected components are characterized in three different approaches, where the mean signature and endmembers for each component are calculated and used as background basis vectors in Orthogonal Subspace Projection (OSP) and Adaptive Subspace Detector (ASD). Likewise, the covariance matrix of those connected components is estimated and used in detectors: Constrained Energy Minimization (CEM) and Adaptive Coherence Estimator (ACE). The performance of these approaches and the different detectors is compared with a global approach, where the background characterization is derived directly from the image. Experiments and results using self-test data set provided as part of the RIT blind test target detection project are shown.
Tambur, Anat R.; Leventhal, Joseph; Kaufman, Dixon B.; Friedewald, John; Miller, Joshua; Abecassis, Michael M.
2014-01-01
Background Patients with human leukocyte antigen antibodies constitute a significantly disadvantaged population among those awaiting renal transplantation. We speculated that more understanding of the patients’ antibody makeup would allow a more “immunologic” evaluation of crossmatch data, facilitate the use of virtual crossmatch (XM), and lead to more transplantability of these patients. Methods We retrospectively compared the transplantability and transplant outcome of two consecutive patient populations transplanted in our center. Group I (n=374) was evaluated using solid-phase base testing for determination of percentage panel reactive antibody (“PRA screen”) with limited antibody identification testing. Group II (n=333) was tested in a more comprehensive manner with major emphasis on antibody identification, antibody strength assignment, and the use of pronase for crossmatch. Results Given this approach, 49% (166/333) of the transplanted patients in group II were sensitized compared with 40% (150/374) of the recipients in group I; P=0.012. Transplant outcome at 1-year posttransplant was similar in both groups. Conclusions We conclude that comprehensive evaluation of human leukocyte antigen sensitization and application of immunologic in analyzing compatibility between donor and recipient can increase the transplantability of sensitized patients while maintaining similar outcome. Our approach is in line with United Network for Organ Sharing new guidelines for calculated panel reactive antibody and virtual XM analysis. We hope this report will prompt additional transplant programs to consider how they will use the new United Network for Organ Sharing algorithms. PMID:18946342
Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A
2017-01-15
Researchers often rely on simple methods to identify involvement of neurons in a particular motor task. The historical approach has been to inspect large groups of neurons and subjectively separate neurons into groups based on the expertise of the investigator. In cases where neuron populations are small it is reasonable to inspect these neuronal recordings and their firing rates carefully to avoid data omissions. In this paper, a new methodology is presented for automatic objective classification of neurons recorded in association with behavioral tasks into groups. By identifying characteristics of neurons in a particular group, the investigator can then identify functional classes of neurons based on their relationship to the task. The methodology is based on integration of a multiple signal classification (MUSIC) algorithm to extract relevant features from the firing rate and an expectation-maximization Gaussian mixture algorithm (EM-GMM) to cluster the extracted features. The methodology is capable of identifying and clustering similar firing rate profiles automatically based on specific signal features. An empirical wavelet transform (EWT) was used to validate the features found in the MUSIC pseudospectrum and the resulting signal features captured by the methodology. Additionally, this methodology was used to inspect behavioral elements of neurons to physiologically validate the model. This methodology was tested using a set of data collected from awake behaving non-human primates. Copyright © 2016 Elsevier B.V. All rights reserved.
A Frequency-Domain Substructure System Identification Algorithm
NASA Technical Reports Server (NTRS)
Blades, Eric L.; Craig, Roy R., Jr.
1996-01-01
A new frequency-domain system identification algorithm is presented for system identification of substructures, such as payloads to be flown aboard the Space Shuttle. In the vibration test, all interface degrees of freedom where the substructure is connected to the carrier structure are either subjected to active excitation or are supported by a test stand with the reaction forces measured. The measured frequency-response data is used to obtain a linear, viscous-damped model with all interface-degree of freedom entries included. This model can then be used to validate analytical substructure models. This procedure makes it possible to obtain not only the fixed-interface modal data associated with a Craig-Bampton substructure model, but also the data associated with constraint modes. With this proposed algorithm, multiple-boundary-condition tests are not required, and test-stand dynamics is accounted for without requiring a separate modal test or finite element modeling of the test stand. Numerical simulations are used in examining the algorithm's ability to estimate valid reduced-order structural models. The algorithm's performance when frequency-response data covering narrow and broad frequency bandwidths is used as input is explored. Its performance when noise is added to the frequency-response data and the use of different least squares solution techniques are also examined. The identified reduced-order models are also compared for accuracy with other test-analysis models and a formulation for a Craig-Bampton test-analysis model is also presented.
Prime Numbers Comparison using Sieve of Eratosthenes and Sieve of Sundaram Algorithm
NASA Astrophysics Data System (ADS)
Abdullah, D.; Rahim, R.; Apdilah, D.; Efendi, S.; Tulus, T.; Suwilo, S.
2018-03-01
Prime numbers are numbers that have their appeal to researchers due to the complexity of these numbers, many algorithms that can be used to generate prime numbers ranging from simple to complex computations, Sieve of Eratosthenes and Sieve of Sundaram are two algorithm that can be used to generate Prime numbers of randomly generated or sequential numbered random numbers, testing in this study to find out which algorithm is better used for large primes in terms of time complexity, the test also assisted with applications designed using Java language with code optimization and Maximum memory usage so that the testing process can be simultaneously and the results obtained can be objective
ERIC Educational Resources Information Center
Cai, Li
2013-01-01
Lord and Wingersky's (1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined…
A Subsystem Test Bed for Chinese Spectral Radioheliograph
NASA Astrophysics Data System (ADS)
Zhao, An; Yan, Yihua; Wang, Wei
2014-11-01
The Chinese Spectral Radioheliograph is a solar dedicated radio interferometric array that will produce high spatial resolution, high temporal resolution, and high spectral resolution images of the Sun simultaneously in decimetre and centimetre wave range. Digital processing of intermediate frequency signal is an important part in a radio telescope. This paper describes a flexible and high-speed digital down conversion system for the CSRH by applying complex mixing, parallel filtering, and extracting algorithms to process IF signal at the time of being designed and incorporates canonic-signed digit coding and bit-plane method to improve program efficiency. The DDC system is intended to be a subsystem test bed for simulation and testing for CSRH. Software algorithms for simulation and hardware language algorithms based on FPGA are written which use less hardware resources and at the same time achieve high performances such as processing high-speed data flow (1 GHz) with 10 MHz spectral resolution. An experiment with the test bed is illustrated by using geostationary satellite data observed on March 20, 2014. Due to the easy alterability of the algorithms on FPGA, the data can be recomputed with different digital signal processing algorithms for selecting optimum algorithm.
Real-time algorithm for acoustic imaging with a microphone array.
Huang, Xun
2009-05-01
Acoustic phased array has become an important testing tool in aeroacoustic research, where the conventional beamforming algorithm has been adopted as a classical processing technique. The computation however has to be performed off-line due to the expensive cost. An innovative algorithm with real-time capability is proposed in this work. The algorithm is similar to a classical observer in the time domain while extended for the array processing to the frequency domain. The observer-based algorithm is beneficial mainly for its capability of operating over sampling blocks recursively. The expensive experimental time can therefore be reduced extensively since any defect in a testing can be corrected instantaneously.
Bron, Esther E; Smits, Marion; van der Flier, Wiesje M; Vrenken, Hugo; Barkhof, Frederik; Scheltens, Philip; Papma, Janne M; Steketee, Rebecca M E; Méndez Orellana, Carolina; Meijboom, Rozanna; Pinto, Madalena; Meireles, Joana R; Garrett, Carolina; Bastos-Leite, António J; Abdulkadir, Ahmed; Ronneberger, Olaf; Amoroso, Nicola; Bellotti, Roberto; Cárdenas-Peña, David; Álvarez-Meza, Andrés M; Dolph, Chester V; Iftekharuddin, Khan M; Eskildsen, Simon F; Coupé, Pierrick; Fonov, Vladimir S; Franke, Katja; Gaser, Christian; Ledig, Christian; Guerrero, Ricardo; Tong, Tong; Gray, Katherine R; Moradi, Elaheh; Tohka, Jussi; Routier, Alexandre; Durrleman, Stanley; Sarica, Alessia; Di Fatta, Giuseppe; Sensi, Francesco; Chincarini, Andrea; Smith, Garry M; Stoyanov, Zhivko V; Sørensen, Lauge; Nielsen, Mads; Tangaro, Sabina; Inglese, Paolo; Wachinger, Christian; Reuter, Martin; van Swieten, John C; Niessen, Wiro J; Klein, Stefan
2015-05-01
Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n=30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, C; Suh, Y; Robertson, D
Purpose: To develop a novel algorithm to generate internal respiratory signals for sorting of four-dimensional (4D) computed tomography (CT) images. Methods: The proposed algorithm extracted multiple time resolved features as potential respiratory signals. These features were taken from the 4D CT images and its Fourier transformed space. Several low-frequency locations in the Fourier space and selected anatomical features from the images were used as potential respiratory signals. A clustering algorithm was then used to search for the group of appropriate potential respiratory signals. The chosen signals were then normalized and averaged to form the final internal respiratory signal. Performance ofmore » the algorithm was tested in 50 4D CT data sets and results were compared with external signals from the real-time position management (RPM) system. Results: In almost all cases, the proposed algorithm generated internal respiratory signals that visibly matched the external respiratory signals from the RPM system. On average, the end inspiration times calculated by the proposed algorithm were within 0.1 s of those given by the RPM system. Less than 3% of the calculated end inspiration times were more than one time frame away from those given by the RPM system. In 3 out of the 50 cases, the proposed algorithm generated internal respiratory signals that were significantly smoother than the RPM signals. In these cases, images sorted using the internal respiratory signals showed fewer artifacts in locations corresponding to the discrepancy in the internal and external respiratory signals. Conclusion: We developed a robust algorithm that generates internal respiratory signals from 4D CT images. In some cases, it even showed the potential to outperform the RPM system. The proposed algorithm is completely automatic and generally takes less than 2 min to process. It can be easily implemented into the clinic and can potentially replace the use of external surrogates.« less
Machine learning in APOGEE. Unsupervised spectral classification with K-means
NASA Astrophysics Data System (ADS)
Garcia-Dias, Rafael; Allende Prieto, Carlos; Sánchez Almeida, Jorge; Ordovás-Pascual, Ignacio
2018-05-01
Context. The volume of data generated by astronomical surveys is growing rapidly. Traditional analysis techniques in spectroscopy either demand intensive human interaction or are computationally expensive. In this scenario, machine learning, and unsupervised clustering algorithms in particular, offer interesting alternatives. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) offers a vast data set of near-infrared stellar spectra, which is perfect for testing such alternatives. Aims: Our research applies an unsupervised classification scheme based on K-means to the massive APOGEE data set. We explore whether the data are amenable to classification into discrete classes. Methods: We apply the K-means algorithm to 153 847 high resolution spectra (R ≈ 22 500). We discuss the main virtues and weaknesses of the algorithm, as well as our choice of parameters. Results: We show that a classification based on normalised spectra captures the variations in stellar atmospheric parameters, chemical abundances, and rotational velocity, among other factors. The algorithm is able to separate the bulge and halo populations, and distinguish dwarfs, sub-giants, RC, and RGB stars. However, a discrete classification in flux space does not result in a neat organisation in the parameters' space. Furthermore, the lack of obvious groups in flux space causes the results to be fairly sensitive to the initialisation, and disrupts the efficiency of commonly-used methods to select the optimal number of clusters. Our classification is publicly available, including extensive online material associated with the APOGEE Data Release 12 (DR12). Conclusions: Our description of the APOGEE database can help greatly with the identification of specific types of targets for various applications. We find a lack of obvious groups in flux space, and identify limitations of the K-means algorithm in dealing with this kind of data. Full Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A98
Application of the Hughes-LIU algorithm to the 2-dimensional heat equation
NASA Technical Reports Server (NTRS)
Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.
1982-01-01
An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.
Vaccination: Who Should Do It, Who Should Not and Who Should Take Precautions
... UPDATE: Parotitis and Influenza FAQ Parotitis and Influenza Algorithm: Interpreting Influenza Testing Results When Influenza is Circulating Algorithm: Interpreting Influenza Testing Results When Influenza is NOT ...
A comparison of the fractal and JPEG algorithms
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Shahshahani, M.
1991-01-01
A proprietary fractal image compression algorithm and the Joint Photographic Experts Group (JPEG) industry standard algorithm for image compression are compared. In every case, the JPEG algorithm was superior to the fractal method at a given compression ratio according to a root mean square criterion and a peak signal to noise criterion.
A neural network - based algorithm for predicting stone -free status after ESWL therapy
Seckiner, Ilker; Seckiner, Serap; Sen, Haluk; Bayrak, Omer; Dogan, Kazım; Erturhan, Sakip
2017-01-01
ABSTRACT Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones. Materials and Methods: Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables. Regression analysis and the ANN method were applied to predict treatment success using the same series of data. Results: Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group. Conclusions: Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones. PMID:28727384
Variational optimization algorithms for uniform matrix product states
NASA Astrophysics Data System (ADS)
Zauner-Stauber, V.; Vanderstraeten, L.; Fishman, M. T.; Verstraete, F.; Haegeman, J.
2018-01-01
We combine the density matrix renormalization group (DMRG) with matrix product state tangent space concepts to construct a variational algorithm for finding ground states of one-dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform matrix product state algorithm (VUMPS) with infinite density matrix renormalization group (IDMRG) and with infinite time evolving block decimation (ITEBD) reveals substantial gains in convergence speed and precision. We also demonstrate that VUMPS works very efficiently for Hamiltonians with long-range interactions and also for the simulation of two-dimensional models on infinite cylinders. The new algorithm can be conveniently implemented as an extension of an already existing DMRG implementation.
Learning algorithms for human-machine interfaces.
Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A
2009-05-01
The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.
Learning Algorithms for Human–Machine Interfaces
Fishbach, Alon; Mussa-Ivaldi, Ferdinando A.
2012-01-01
The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore–Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction. PMID:19203886
The Texas Medication Algorithm Project antipsychotic algorithm for schizophrenia: 2006 update.
Moore, Troy A; Buchanan, Robert W; Buckley, Peter F; Chiles, John A; Conley, Robert R; Crismon, M Lynn; Essock, Susan M; Finnerty, Molly; Marder, Stephen R; Miller, Del D; McEvoy, Joseph P; Robinson, Delbert G; Schooler, Nina R; Shon, Steven P; Stroup, T Scott; Miller, Alexander L
2007-11-01
A panel of academic psychiatrists and pharmacists, clinicians from the Texas public mental health system, advocates, and consumers met in June 2006 in Dallas, Tex., to review recent evidence in the pharmacologic treatment of schizophrenia. The goal of the consensus conference was to update and revise the Texas Medication Algorithm Project (TMAP) algorithm for schizophrenia used in the Texas Implementation of Medication Algorithms, a statewide quality assurance program for treatment of major psychiatric illness. Four questions were identified via premeeting teleconferences. (1) Should antipsychotic treatment of first-episode schizophrenia be different from that of multiepisode schizophrenia? (2) In which algorithm stages should first-generation antipsychotics (FGAs) be an option? (3) How many antipsychotic trials should precede a clozapine trial? (4) What is the status of augmentation strategies for clozapine? Subgroups reviewed the evidence in each area and presented their findings at the conference. The algorithm was updated to incorporate the following recommendations. (1) Persons with first-episode schizophrenia typically require lower antipsychotic doses and are more sensitive to side effects such as weight gain and extrapyramidal symptoms (group consensus). Second-generation antipsychotics (SGAs) are preferred for treatment of first-episode schizophrenia (majority opinion). (2) FGAs should be included in algorithm stages after first episode that include SGAs other than clozapine as options (group consensus). (3) The recommended number of trials of other antipsychotics that should precede a clozapine trial is 2, but earlier use of clozapine should be considered in the presence of persistent problems such as suicidality, comorbid violence, and substance abuse (group consensus). (4) Augmentation is reasonable for persons with inadequate response to clozapine, but published results on augmenting agents have not identified replicable positive results (group consensus). These recommendations are meant to provide a framework for clinical decision making, not to replace clinical judgment. As with any algorithm, treatment practices will evolve beyond the recommendations of this consensus conference as new evidence and additional medications become available.
Haemoglobinopathy diagnosis: algorithms, lessons and pitfalls.
Bain, Barbara J
2011-09-01
Diagnosis of haemoglobinopathies, including thalassaemias, can result from either a clinical suspicion of a disorder of globin chain synthesis or from follow-up of an abnormality detected during screening. Screening may be carried out as part of a well defined screening programme or be an ad hoc or opportunistic test. Screening may be preoperative, neonatal, antenatal, preconceptual, premarriage or targeted at specific groups perceived to be at risk. Screening in the setting of haemoglobinopathies may be directed at optimising management of a disorder by early diagnosis, permitting informed reproductive choice or preventing a serious disorder by offering termination of pregnancy. Diagnostic methods and algorithms will differ according to the setting. As the primary test, high performance liquid chromatography is increasingly used and haemoglobin electrophoresis less so with isoelectric focussing being largely confined to screening programmes and referral centres, particularly in newborns. Capillary electrophoresis is being increasingly used. All these methods permit only a presumptive diagnosis with definitive diagnosis requiring either DNA analysis or protein analysis, for example by tandem mass spectrometry. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kang, J E; Yu, J M; Choi, J H; Chung, I-M; Pyun, W B; Kim, S A; Lee, E K; Han, N Y; Yoon, J-H; Oh, J M; Rhie, S J
2018-06-01
Drug therapies are critical for preventing secondary complications in acute coronary syndrome (ACS). The purpose of this study was to develop and apply a pharmaceutical care service (PCS) algorithm for ACS and confirm that it is applicable through a prospective clinical trial. The ACS-PCS algorithm was developed according to extant evidence-based treatment and pharmaceutical care guidelines. Quality assurance was conducted through two methods: literature comparison and expert panel evaluation. The literature comparison was used to compare the content of the algorithm with the referenced guidelines. Expert evaluations were conducted by nine experts for 75 questionnaire items. A trial was conducted to confirm its effectiveness. Seventy-nine patients were assigned to either the pharmacist-included multidisciplinary team care (MTC) group or the usual care (UC) group. The endpoints of the trial were the prescription rate of two important drugs, readmission, emergency room (ER) visit and mortality. The main frame of the algorithm was structured with three tasks: medication reconciliation, medication optimization and transition of care. The contents and context of the algorithm were compliant with class I recommendations and the main service items from the evidence-based guidelines. Opinions from the expert panel were mostly positive. There were significant differences in beta-blocker prescription rates in the overall period (P = .013) and ER visits (four cases, 9.76%, P = .016) in the MTC group compared to the UC group, respectively. We developed a PCS algorithm for ACS based on the contents of evidence-based drug therapy and the core concept of pharmacist services. © 2018 John Wiley & Sons Ltd.
The Impact of Receiving the Same Items on Consecutive Computer Adaptive Test Administrations.
ERIC Educational Resources Information Center
O'Neill, Thomas; Lunz, Mary E.; Thiede, Keith
2000-01-01
Studied item exposure in a computerized adaptive test when the item selection algorithm presents examinees with questions they were asked in a previous test administration. Results with 178 repeat examinees on a medical technologists' test indicate that the combined use of an adaptive algorithm to select items and latent trait theory to estimate…
Uncertainties in the Item Parameter Estimates and Robust Automated Test Assembly
ERIC Educational Resources Information Center
Veldkamp, Bernard P.; Matteucci, Mariagiulia; de Jong, Martijn G.
2013-01-01
Item response theory parameters have to be estimated, and because of the estimation process, they do have uncertainty in them. In most large-scale testing programs, the parameters are stored in item banks, and automated test assembly algorithms are applied to assemble operational test forms. These algorithms treat item parameters as fixed values,…
NASA Technical Reports Server (NTRS)
Hall, Steven R.; Walker, Bruce K.
1990-01-01
A new failure detection and isolation algorithm for linear dynamic systems is presented. This algorithm, the Orthogonal Series Generalized Likelihood Ratio (OSGLR) test, is based on the assumption that the failure modes of interest can be represented by truncated series expansions. This assumption leads to a failure detection algorithm with several desirable properties. Computer simulation results are presented for the detection of the failures of actuators and sensors of a C-130 aircraft. The results show that the OSGLR test generally performs as well as the GLR test in terms of time to detect a failure and is more robust to failure mode uncertainty. However, the OSGLR test is also somewhat more sensitive to modeling errors than the GLR test.
Test Scheduling for Core-Based SOCs Using Genetic Algorithm Based Heuristic Approach
NASA Astrophysics Data System (ADS)
Giri, Chandan; Sarkar, Soumojit; Chattopadhyay, Santanu
This paper presents a Genetic algorithm (GA) based solution to co-optimize test scheduling and wrapper design for core based SOCs. Core testing solutions are generated as a set of wrapper configurations, represented as rectangles with width equal to the number of TAM (Test Access Mechanism) channels and height equal to the corresponding testing time. A locally optimal best-fit heuristic based bin packing algorithm has been used to determine placement of rectangles minimizing the overall test times, whereas, GA has been utilized to generate the sequence of rectangles to be considered for placement. Experimental result on ITC'02 benchmark SOCs shows that the proposed method provides better solutions compared to the recent works reported in the literature.
Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya
2014-01-01
Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727
Diagnostic algorithm for relapsing acquired demyelinating syndromes in children.
Hacohen, Yael; Mankad, Kshitij; Chong, W K; Barkhof, Frederik; Vincent, Angela; Lim, Ming; Wassmer, Evangeline; Ciccarelli, Olga; Hemingway, Cheryl
2017-07-18
To establish whether children with relapsing acquired demyelinating syndromes (RDS) and myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) show distinctive clinical and radiologic features and to generate a diagnostic algorithm for the main RDS for clinical use. A panel reviewed the clinical characteristics, MOG-Ab and aquaporin-4 (AQP4) Ab, intrathecal oligoclonal bands, and Epstein-Barr virus serology results of 110 children with RDS. A neuroradiologist blinded to the diagnosis scored the MRI scans. Clinical, radiologic, and serologic tests results were compared. The findings showed that 56.4% of children were diagnosed with multiple sclerosis (MS), 25.4% with neuromyelitis optica spectrum disorder (NMOSD), 12.7% with multiphasic disseminated encephalomyelitis (MDEM), and 5.5% with relapsing optic neuritis (RON). Blinded analysis defined baseline MRI as typical of MS in 93.5% of children with MS. Acute disseminated encephalomyelitis presentation was seen only in the non-MS group. Of NMOSD cases, 30.7% were AQP4-Ab positive. MOG-Ab were found in 83.3% of AQP4-Ab-negative NMOSD, 100% of MDEM, and 33.3% of RON. Children with MOG-Ab were younger, were less likely to present with area postrema syndrome, and had lower disability, longer time to relapse, and more cerebellar peduncle lesions than children with AQP4-Ab NMOSD. A diagnostic algorithm applicable to any episode of CNS demyelination leads to 4 main phenotypes: MS, AQP4-Ab NMOSD, MOG-Ab-associated disease, and antibody-negative RDS. Children with MS and AQP4-Ab NMOSD showed features typical of adult cases. Because MOG-Ab-positive children showed notable and distinctive clinical and MRI features, they were grouped into a unified phenotype (MOG-Ab-associated disease), included in a new diagnostic algorithm. © 2017 American Academy of Neurology.
Beheshti, Iman; Demirel, Hasan; Matsuda, Hiroshi
2017-04-01
We developed a novel computer-aided diagnosis (CAD) system that uses feature-ranking and a genetic algorithm to analyze structural magnetic resonance imaging data; using this system, we can predict conversion of mild cognitive impairment (MCI)-to-Alzheimer's disease (AD) at between one and three years before clinical diagnosis. The CAD system was developed in four stages. First, we used a voxel-based morphometry technique to investigate global and local gray matter (GM) atrophy in an AD group compared with healthy controls (HCs). Regions with significant GM volume reduction were segmented as volumes of interest (VOIs). Second, these VOIs were used to extract voxel values from the respective atrophy regions in AD, HC, stable MCI (sMCI) and progressive MCI (pMCI) patient groups. The voxel values were then extracted into a feature vector. Third, at the feature-selection stage, all features were ranked according to their respective t-test scores and a genetic algorithm designed to find the optimal feature subset. The Fisher criterion was used as part of the objective function in the genetic algorithm. Finally, the classification was carried out using a support vector machine (SVM) with 10-fold cross validation. We evaluated the proposed automatic CAD system by applying it to baseline values from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (160 AD, 162 HC, 65 sMCI and 71 pMCI subjects). The experimental results indicated that the proposed system is capable of distinguishing between sMCI and pMCI patients, and would be appropriate for practical use in a clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiagent Reinforcement Learning With Sparse Interactions by Negotiation and Knowledge Transfer.
Zhou, Luowei; Yang, Pei; Chen, Chunlin; Gao, Yang
2017-05-01
Reinforcement learning has significant applications for multiagent systems, especially in unknown dynamic environments. However, most multiagent reinforcement learning (MARL) algorithms suffer from such problems as exponential computation complexity in the joint state-action space, which makes it difficult to scale up to realistic multiagent problems. In this paper, a novel algorithm named negotiation-based MARL with sparse interactions (NegoSIs) is presented. In contrast to traditional sparse-interaction-based MARL algorithms, NegoSI adopts the equilibrium concept and makes it possible for agents to select the nonstrict equilibrium-dominating strategy profile (nonstrict EDSP) or meta equilibrium for their joint actions. The presented NegoSI algorithm consists of four parts: 1) the equilibrium-based framework for sparse interactions; 2) the negotiation for the equilibrium set; 3) the minimum variance method for selecting one joint action; and 4) the knowledge transfer of local Q -values. In this integrated algorithm, three techniques, i.e., unshared value functions, equilibrium solutions, and sparse interactions are adopted to achieve privacy protection, better coordination and lower computational complexity, respectively. To evaluate the performance of the presented NegoSI algorithm, two groups of experiments are carried out regarding three criteria: 1) steps of each episode; 2) rewards of each episode; and 3) average runtime. The first group of experiments is conducted using six grid world games and shows fast convergence and high scalability of the presented algorithm. Then in the second group of experiments NegoSI is applied to an intelligent warehouse problem and simulated results demonstrate the effectiveness of the presented NegoSI algorithm compared with other state-of-the-art MARL algorithms.
Weigel, Ralf; Schlickum, Linda; Weisser, Gerald; Krauss, Joachim K
2015-01-01
Surgical treatment for chronic subdural haematoma (CSH) has been analysed by applying evidence-based medicine (EBM) criteria earlier. Whether implementation of EBM-derived key factors into an optimised treatment algorithm would improve outcome, however, needs to be clarified. Symptomatic patients with CSH who fulfilled the inclusion criteria were either assigned to an optimised treatment algorithm (OA-EBM group) or to a control group treated by the standard departmental surgical technique (SDST group) in a prospective design. For the OA-EBM algorithm only one burr hole, extensive intraoperative irrigation and a closed system drainage with meticulous avoidance of entry of air was mandatory. A two-catheter technique was used to reduce intracavital air. Final endpoints were neurological outcome (Markwalder Score), recurrence and the amount of intracranial air. A total of 93 out of 117 patients were evaluated accounting for 113 cases because 20 patients had bilateral haematomas. Demographic data of 68 cases in the SDST group did not differ from 45 cases in the OA-EBM group. The Markwalder Score showed greater improvement in the OA-EBM group (0.5 ± 0.6 vs. 1.0 ± 1.0, p = 0.003). The recurrence rate was 18% (12 patients) in the SDST group versus 2% (1 patient) in the OA-EBM group (p < 0.05). The amount of intracranial air was significantly lower in the OA-EBM group (3.3 ± 5.0 cm(3) vs. 5.2 ± 7.7 cm(3)) with p = 0.04. In the standard group computerised tomography scanning was performed slightly earlier (3 ± 1.7 days vs. 3.6 ± 1.4 days). When comparing only non-recurrent cases in both groups no significant difference was apparent. Implementation of EBM key factors into a treatment algorithm for CSH can improve neurological outcome in a typical neurosurgical department, reduce recurrence and minimise the amount of postoperative air within the haematoma cavity.
NASA Astrophysics Data System (ADS)
Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.
2016-03-01
The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities.
A multi-group firefly algorithm for numerical optimization
NASA Astrophysics Data System (ADS)
Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun
2017-08-01
To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.
Analysis of retinal and cortical components of Retinex algorithms
NASA Astrophysics Data System (ADS)
Yeonan-Kim, Jihyun; Bertalmío, Marcelo
2017-05-01
Following Land and McCann's first proposal of the Retinex theory, numerous Retinex algorithms that differ considerably both algorithmically and functionally have been developed. We clarify the relationships among various Retinex families by associating their spatial processing structures to the neural organizations in the retina and the primary visual cortex in the brain. Some of the Retinex algorithms have a retina-like processing structure (Land's designator idea and NASA Retinex), and some show a close connection with the cortical structures in the primary visual area of the brain (two-dimensional L&M Retinex). A third group of Retinexes (the variational Retinex) manifests an explicit algorithmic relation to Wilson-Cowan's physiological model. We intend to overview these three groups of Retinexes with the frame of reference in the biological visual mechanisms.
GREIT: a unified approach to 2D linear EIT reconstruction of lung images.
Adler, Andy; Arnold, John H; Bayford, Richard; Borsic, Andrea; Brown, Brian; Dixon, Paul; Faes, Theo J C; Frerichs, Inéz; Gagnon, Hervé; Gärber, Yvo; Grychtol, Bartłomiej; Hahn, Günter; Lionheart, William R B; Malik, Anjum; Patterson, Robert P; Stocks, Janet; Tizzard, Andrew; Weiler, Norbert; Wolf, Gerhard K
2009-06-01
Electrical impedance tomography (EIT) is an attractive method for clinically monitoring patients during mechanical ventilation, because it can provide a non-invasive continuous image of pulmonary impedance which indicates the distribution of ventilation. However, most clinical and physiological research in lung EIT is done using older and proprietary algorithms; this is an obstacle to interpretation of EIT images because the reconstructed images are not well characterized. To address this issue, we develop a consensus linear reconstruction algorithm for lung EIT, called GREIT (Graz consensus Reconstruction algorithm for EIT). This paper describes the unified approach to linear image reconstruction developed for GREIT. The framework for the linear reconstruction algorithm consists of (1) detailed finite element models of a representative adult and neonatal thorax, (2) consensus on the performance figures of merit for EIT image reconstruction and (3) a systematic approach to optimize a linear reconstruction matrix to desired performance measures. Consensus figures of merit, in order of importance, are (a) uniform amplitude response, (b) small and uniform position error, (c) small ringing artefacts, (d) uniform resolution, (e) limited shape deformation and (f) high resolution. Such figures of merit must be attained while maintaining small noise amplification and small sensitivity to electrode and boundary movement. This approach represents the consensus of a large and representative group of experts in EIT algorithm design and clinical applications for pulmonary monitoring. All software and data to implement and test the algorithm have been made available under an open source license which allows free research and commercial use.