DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbst, A.K.; Rogers, A.Z.; McCray, J.A.
The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Grout formulation for disposal of low-level and hazardous waste streams containing fluoride
McDaniel, E.W.; Sams, T.L.; Tallent, O.K.
1987-06-02
A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Si Y.; Hyun, Sinjae
2013-01-10
A new disposal unit, designated as Saltstone Disposal Unit 6 (SDU6), is being designed for support of site accelerated closure goals and salt waste projections identified in the new Liquid Waste System Plan. The unit is a cylindrical disposal cell of 375 ft in diameter and 43 ft in height, and it has a minimum 30 million gallons of capacity. SRNL was requested to evaluate the impact of an increased grout placement height on the flow patterns radially spread on the floor and to determine whether grout quality is impacted by the height. The primary goals of the work aremore » to develop the baseline Computational Fluid Dynamics (CFD) model and to perform the evaluations for the flow patterns of grout material in SDU6 as a function of elevation of grout discharge port and grout rheology. Two transient grout models have been developed by taking a three-dimensional multiphase CFD approach to estimate the domain size of the grout materials radially spread on the facility floor and to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation height of the discharge port and fresh grout properties. For the CFD modeling calculations, air-grout Volume of Fluid (VOF) method combined with Bingham plastic and time-dependent grout models were used for examining the impact of fluid spread performance for the initial baseline configurations and to evaluate the impact of grout pouring height on grout quality. The grout quality was estimated in terms of the air volume fraction for the grout layer formed on the SDU6 floor, resulting in the change of grout density. The study results should be considered as preliminary scoping analyses since benchmarking analysis is not included in this task scope. Transient analyses with the Bingham plastic model were performed with the FLUENTTM code on the high performance parallel computing platform in SRNL. The analysis coupled with a transient grout aging model was performed by using ANSYS-CFX code in the parallel computing platform in Mercer University. Recommended operational guidance was developed assuming that local shear rates and flow patterns related to radial spread along the SDU floor can be used as a measure of grout performance and spatial dispersion affected by the grout height and viscosity. The 5 ft height baseline results show that when the 150 gpm grout flow with a 5 Pa yield stress and a 60 cp viscosity is poured down through a 3 inch discharge port, the grout is spread radially up to about 64 ft distance from the pouring center after 2 hours' pouring time. The air volume fraction of the grout layer is about 29% at 5 minutes' transient time, and it is reduced by about 9% in 2 hours' pouring time, resulting in the grout density consisting of about 80% grout and 20% air volume fractions. The sensitivity results show that when the discharge port is located at a higher position, a larger amount of air is trapped inside the layer formed below the discharge port at the early transient time of less than 30 minutes because of the higher impinging momentum of the grout flow on the floor, resulting in the formation of less smooth layer. The results clearly indicate that the radial spread for the 43 ft discharge port is about 10% faster than that of the 5 ft discharge port for the early transient period of 5 minutes. However, for the pouring time longer than half an hour, the discharge port height does not affect the radial distance spread on the disposal floor. When grout quality is related to grout volume fraction, the grout volume fraction for the 43 ft discharge port has lower volume fraction than the 5 ft discharge port for the transient period of the first 5 minutes. However, for the pouring time longer than half an hour, the discharge port height does not affect the grout volume fraction for the layer accumulated on the disposal floor. A modified Bingham plastic model coupled with time-dependent viscosity behavior was developed for conducting the initial scoping calculations to assess the impact of fluid residence time on radial spreading and basic flow patterns. The results for the transient viscosity model show that when grout material becomes more viscous, the thickness of the grout layer accumulated on the floor becomes higher, but the radial distance spread on the horizontal floor becomes smaller. The early transient results for the grout density with about 32% air volume fractions are in reasonable agreement with those of the idealized Bingham plastic model. It is recommended that the current models developed here be benchmarked against the experimental results for critical applications of the modeling results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Ch.; Cange, J.; Lambert, R.
In the early to mid-1960's, liquid low-level wastes (LLLW) generated at Oak Ridge National Laboratory were disposed of in specially-constructed, gravel-filled trenches within the Melton Valley watershed at the lab. The initial selected remedy for Trenches 5 and 7 was in situ vitrification; however, an amendment to the record of decision changed the remedy to in situ grouting of the trenches. The work was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout. At the HRE fuel wells,more » a 1-m ring of soil surrounding the fuel wells was grouted with acrylamide. The results of the hydraulic conductivity tests ranged from 4.74 x 10{sup -6} to 3.60 x 10{sup -7} cm/sec, values that were well below the 1 x 10{sup -5} cm/sec design criterion. In summary: The ISG Project was conducted to decrease hydraulic conductivity and thereby decrease water flow and contaminate migration from the area of the trenches. The initial remedy for Trenches 5 and 7 in the Melton Valley ROD was for in situ vitrification of the trench matrix. The remedy was changed to in situ grouting of the trenches and HRE fuel wells through an amendment to the ROD after moisture was found in the trenches. The grouting of the trenches was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout to further reduce water infiltration. Soil backfill above each of the seven HRE fuel wells was removed to a depth of approximately 1 m by augering, and the soils were replaced with a cement plug to prevent water infiltration from migrating down the original borehole. Soil surrounding the fuel wells was then grouted with acrylamide to ensure water infiltration through the HRE fuel wells is prevented. A summary of the quantities used is shown. After completion of grouting, in-situ hydraulic conductivities of the grouted materials were measured to verify attainment of the design objective. The areas were then covered with multi-layer caps as part of the MV hydrologic isolation project. (authors)« less
Liquid Secondary Waste Grout Formulation and Waste Form Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Williams, B. D.; Snyder, Michelle M. V.
This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting themore » U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption K d (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collard, L.B.
2003-08-25
This Special Analysis (SA) addresses two contaminants of concern, H-3 and I-129, in three Effluent Treatment Facility (ETF) Activated Carbon Vessels awaiting disposal as solid waste. The Unreviewed Disposal Question (UDQ) evaluation listed two options for disposal of this waste, disposal as Components-in-Grout (CIG) or disposal in Slit Trenches with sealed openings to restrict release of H-3 form the vessels. Consumption of the CIG inventory limit and consumption of CIG facility volume are shown for the ETF vessels to allow easy comparison with the consumption of Slit Trench inventory limit and consumption of the Slit Trench facility volume . Themore » inventory projections are based on doubling the inventory of the three ETF vessels in the E-Area to account for the unknown inventory of three ETF vessels in the ETF. When the grout ultimately is assumed to degrade hydraulically, the water movement is not impeded as much as the release is accelerated by the presence of the grout. Under these conditions for the CIG trenches relative to the Slit Trenches, the well concentrations are higher, the inventory limit is lower and for a given inventory the inventory limit consumption is higher.« less
CsIX/TRU Grout Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. J. Losinski; C. M. Barnes; B. K. Grover
A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shippedmore » to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.« less
Improved method and composition for immobilization of waste in cement-based material
Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.
1987-10-01
A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.
Secondary Waste Simulant Development for Cast Stone Formulation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.
Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integratedmore » Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.« less
Test plan for formulation and evaluation of grouted waste forms with shine process wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, W. L.; Jerden, J. L.
2015-09-01
The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.
Comparing the shear strength of grouted fractures: conventional methods vs biomineralisation
NASA Astrophysics Data System (ADS)
El Mountassir, G.; Tobler, D. J.; Moir, H.; Lunn, R. J.; Phoenix, V. R.
2011-12-01
For many engineering applications, such as geological disposal of nuclear waste, underground railways etc., it is necessary to limit fluid flow through fractures. The particle size of conventional cementitious grouts limits the size of fractures into which they can penetrate. To address this issue increasingly microfine and ultrafine cement grouts are becoming commercially available. Despite this the radius of penetration remains dependent on the grout viscosity alongside injection pressure, pumping rate, grout setting time and grout cohesion. As such lower viscosity aqueous solutions may have a greater radius of penetration potentially requiring fewer injection points. In addition cementitious grouts typically undergo volumetric shrinkage during setting. In many applications this change in volume may not be of particular importance but in others where a very low hydraulic conductivity is a critical design criterion, as in nuclear waste repositories, this reduction in volume may be highly significant. This study investigates the use of microbially induced carbonate precipitation (MCP) as a technique for grouting fine aperture rock fractures. Artificial fractures were created in granite cores and were subjected to conventional cementitious grouting methods and MCP. Following treatment the hydraulic and mechanical properties of the grouted fractures were investigated. The mechanical properties of grouts after setting is not usually considered to be a significant issue, but in applications which consider much longer timescales (100,000 years) grouts which result in fractures with improved strength and lower hydraulic conductivity are likely to be preferred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less
Using Frozen Barriers for Containment of Contaminants
2017-09-21
barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2: Corrosion in water.
Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Pullin, H; Davenport, A; Street, S; Scott, T B
2018-06-18
To reflect potential conditions in a geological disposal facility, uranium was encapsulated in grout and submersed in de-ionised water for time periods between 2-47 weeks. Synchrotron X-ray Powder Diffraction and X-ray Tomography were used to identify the dominant corrosion products and measure their dimensions. Uranium dioxide was observed as the dominant corrosion product and time dependent thickness measurements were used to calculate oxidation rates. The effectiveness of physical and chemical grout properties to uranium corrosion and mobilisation is discussed and Inductively Coupled Plasma Mass Spectrometry was used to measure 238 U (aq) content in the residual water of several samples.
Design and Control of Chemical Grouting : Volume 3 - Engineering Practice
DOT National Transportation Integrated Search
1983-04-01
Recent improvements in the engineering practice of chemical grouting have provided increased confidence in this method of ground modification. Designers can significantly improve the success of chemical grouting by defining their grouting program obj...
Direct cementitious waste option study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dafoe, R.E.; Losinski, S.J.
A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste andmore » casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickenheim, B.; Hansen, E.; Leishear, R.
A 10-inch READCO mixer is used for mixing the premix (45 (wt%) fly ash, 45 wt% slag, and 10 wt% portland cement) with salt solution in the Saltstone Production Facility (SPF). The Saltstone grout free falls into the grout hopper which feeds the suction line leading to the Watson SPX 100 duplex hose pump. The Watson SPX 100 pumps the grout through approximately 1500 feet of piping prior to being discharged into the Saltstone Disposal Facility (SDF) vaults. The existing grout hopper has been identified by the Saltstone Enhanced Low Activity Waste Disposal (ELAWD) project for re-design. The current nominalmore » working volume of this hopper is 12 gallons and does not permit handling an inadvertent addition of excess dry feeds. Saltstone Engineering has proposed a new hopper tank that will have a nominal working volume of 300 gallons and is agitated with a mechanical agitator. The larger volume hopper is designed to handle variability in the output of the READCO mixer and process upsets without entering set back during processing. The objectives of this task involve scaling the proposed hopper design and testing the scaled hopper for the following processing issues: (1) The effect of agitation on radar measurement. Formation of a vortex may affect the ability to accurately measure the tank level. The agitator was run at varying speeds and with varying grout viscosities to determine what parameters cause vortex formation and whether measurement accuracy is affected. (2) A dry feeds over addition. Engineering Calculating X-ESR-Z-00017 1 showed that an additional 300 pounds of dry premix added to a 300 gallon working volume would lower the water to premix ratio (W/P) from the nominal 0.60 to 0.53 based on a Salt Waste Processing Facility (SWPF) salt simulant. A grout with a W/P of 0.53 represents the upper bound of grout rheology that could be processed at the facility. A scaled amount of dry feeds will be added into the hopper to verify that this is a recoverable situation. (3) The necessity of baffles in the hopper. The preference of the facility is not to have baffles in the hopper; however, if the initial testing indicates inadequate agitation or difficulties with the radar measurement, baffles will be tested.« less
Leach test of cladding removal waste grout using Hanford groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serne, R.J.; Martin, W.J.; Legore, V.L.
1995-09-01
This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. Themore » semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.« less
Design and Control of Chemical Grouting : Volume 1 - Construction Control
DOT National Transportation Integrated Search
1983-04-01
This report presents the results of a laboratory and field research program investigating innovative method for design and control of chemical grouting in soils. Chemical grouting practice is reviewed and standard evaluation and measurement technique...
PIMS:Remediation of Soil and Groundwater Contaminated With Metals
2006-06-01
24 4.4.1.1 Bioremediation/ Phytoremediation ...........................................24 4.4.1.2 Physical...ii 5.3.2 Grouting and Off-Site Disposal .................................................................31 5.3.3 Phytoremediation ...Above Background in Sieved Soil ...................................... 12 Table 3. Leachate Monitoring Results
ICPP tank farm closure study. Volume 2: Engineering design files
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less
Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, David E.; Delegard, Calvin H.; Schmidt, Andrew J.
2015-03-30
Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactivemore » sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, J.L.
1993-09-01
Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and wastemore » minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.« less
SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
NOEMAIL), J; David Allison; John Mccord, J
2009-05-06
The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that amore » nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.J.; Phillips, M.; Etheridge, D.
2012-07-01
Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less
This protocol was developed under the Environmental Protection Agency's Environmental Technology Verification (ETV) Program, and is intended to be used as a guide in preparing laboratory test plans for the purpose of verifying the performance of grouting materials used for infra...
Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less
1985-02-20
Surface Cemennt/entonte Grout Rat 20/1 6" Diameter Bore "Ole 8 Foit B.G.S. Bentorito 4" Diameter POes" Schedle 409 Fee S.O.S.PVC Riser Pipe with...Casing with Locking Cap GRiser Pipe StickupGround Surface 2.2Fe Cement/BSentonite Grout Ratio 20/1 8" Diameter Bore Hole cv Ile- 3 Feet B.G.S...Ground Surface 4’. Ground Surface .0~ Cemtert/Bentonlte Grout Rat 20/1 8" Diamneter Bore Hole__ 4" Diameter Pl O Schedule 404 PVC Riser Pipe FetBGS
1979-07-01
lines, offset by 4 ft. These grout lines were drilled and grouted by the split spacing method along the centerline of the dam. Three stage grouting was...estimated as 656,000 gallons per day (450 gpm), as computed by the Darcy Short Path Method . Permeable zones in the bedrock foundation were also encountered...upstream and downstream embankments was evaluated at Sta. 11+75 (maximum section) using the Swedish Circular Arc Method . The analyses considered a 48
DATA QUALITY OBJECTIVE SUMMARY REPORT FOR THE 105 K EAST ION EXCHANGE COLUMN MONOLITH
DOE Office of Scientific and Technical Information (OSTI.GOV)
JOCHEN, R.M.
2007-08-02
The 105-K East (KE) Basin Ion Exchange Column (IXC) cells, lead caves, and the surrounding vault are to be removed as necessary components in implementing ''Hanford Federal Facility Agreement and Consent Order'' (Ecology et al. 2003) milestone M-034-32 (Complete Removal of the K East Basin Structure). The IXCs consist of six units located in the KE Basin, three in operating positions in cells and three stored in a lead cave. Methods to remove the IXCs from the KE Basin were evaluated in KBC-28343, ''Disposal of K East Basin Ion Exchange Column Evaluation''. The method selected for removal was grouting themore » six IXCs into a single monolith for disposal at the Environmental Restoration Disposal Facility (ERDF). Grout will be added to the IXC cells, IXC lead caves containing spent IXCs, and in the spaces between the lead cave walls and metal skin, to immobilize the contaminants, provide self-shielding, minimize void space, and provide a structurally stable waste form. The waste to be offered for disposal is the encapsulated monolith defined by the exterior surfaces of the vault and the lower surface of the underlying slab. This document presents summary of the data quality objective (DQO) process establishing the decisions and data required to support decision-making activities for the disposition of the IXC monolith. The DQO process is completed in accordance with the seven-step planning process described in EPA QA/G-4, ''Guidance for the Data Quality Objectives Process'', which is used to clarify and study objectives; define the appropriate type, quantity, and quality of data; and support defensible decision-making. The DQO process involves the following steps: (1) state the problem; (2) identify the decision; (3) identify the inputs to the decision; (4) define the boundaries of the study; (5) develop a decision rule (DR); (6) specify tolerable limits on decision errors; and (7) optimize the design for obtaining data.« less
Cementitious waste option scoping study report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.E.; Taylor, D.D.
1998-02-01
A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored asmore » a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitratemore » waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.« less
The differences between soil grouting with cement slurry and cement-water glass slurry
NASA Astrophysics Data System (ADS)
Zhu, Mingting; Sui, Haitong; Yang, Honglu
2018-01-01
Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.
1992-08-01
recommend that representatives of the WES Concrete Technology Division be onsite during the placement and postplacement phases to offer technical...written before field placement. PREFACE The work described in this report is part of an ongoing research effort accomplished in the Concrete Technology ... Division (CTD), Structures Laboratory (SL), U.S. Army Engineer Waterways Experiment Station (WES), under Interagency Agreement from the Department of
Residence time effects on technetium reduction in slag-based cementitious materials.
Arai, Yuji; Powell, Brian A; Kaplan, D I
2018-01-15
A long-term disposal of technetium-99 ( 99 Tc) has been considered in a type of cementitious formulation, slag-based grout, at the U.S. Department of Energy, Savannah River Site, Aiken SC, U.S.A. Blast furnace slag, which contains S and Fe electron donors, has been used in a mixture with fly ash, and Portland cement to immobilize 99 Tc(VII)O 4 - (aq) in low level radioactive waste via reductive precipitation reaction. However the long-term stability of Tc(IV) species is not clearly understood as oxygen gradually diffuses into the solid structure. In this study, aging effects of Tc speciation were investigated as a function of depth (<2.5cm) in slag-based grout using X-ray absorption spectroscopy. All of Fe(II) in solids was oxidized to Fe(III) after 117d. However, elemental S, sulfide, and sulfoxide persists at the 0-8mm depths even after 485d, suggesting the presence of a reduced zone below the surface few millimeters. Pertechnetate was successfully reduced to Tc(IV) after 29d. Distorted hydrolyzed Tc(IV) octahedral molecules were partially sulfidized and or polymerized at all depths (0-8mm) and were stable in 485d aged sample. The results of this study suggest that variable S species contribute to stabilize the partially sulfidized Tc(IV) species in aged slag-based grout. Copyright © 2017 Elsevier B.V. All rights reserved.
Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, Daniel I.
The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less
Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.
Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun
2018-03-29
Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.
Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses
Cho, Gye-Chun
2018-01-01
Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5) and mid-strain (10−5 to 10−3) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass. PMID:29596371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman-Pollard, J.R.
1994-03-02
This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J.; Conca, J.
1996-10-01
The objective of this Cooperative Research and Development Agreement (CRADA) was to develop and commercialize a technology conceived by scientists at Pacific Northwest National Laboratory (PNNL) and manufactured by Beckman Instruments, Inc. (Beckman), and to apply this technology to the characterization of and soils. The technology is the Unsaturated Flow Apparatus (UFA). The UFA provides a highly efficient method of direct, rapid measurement of hydraulic conductivity and other flow properties according to Darcy-Buckingham principles because the operator controls both the fluid driving force, using an ultracentrifuge, and the flow into the sample while it is spinning, with a rotating sealmore » assembly. The concept of using centrifugation to significantly decrease the time needed, from years or months to days, for study of subsurface transport, particularly under unsaturated conditions, was conceived by James Conca, Ph.D., and Judith Wright, Ph.D., in 1986. The prototype UFA was developed in 1988 because there was a need to rapidly and accurately determine transport parameters in soils, sediments, and rocks for the Grout Waste Disposal Program. Transport parameters are critical to modeling outcomes for site-specific solutions to environmental remediation and waste disposal problems.« less
Antenna grout replacement system
NASA Technical Reports Server (NTRS)
Mcclung, C. E. (Inventor)
1983-01-01
An epoxy grout suitable for use in mounting and positioning bearing runner plates used in hydrostatic bearing assemblies for rotatably mounting large radio telescope structures to stationary support pedestals is described. The epoxy grout may be used in original mountings or may be used as part of a replacement system for repairing cavities in existing grout resulting from grout deterioration. The epoxy grout has a relatively short work life and cure time even in the presence of hydraulic oil. The epoxy grout cures without shrinking or sagging to form a grout which is sufficiently strong and durable to provide a grout especially well suited for use under the high pressure loading and close tolerance requirements of large hydrostatic bearing assemblies.
1993-08-01
grout is pumped through a central tube in the push rod cable and exits through the probe tip. Retraction grouting (as the rod is withdrawn through the...soil) with a microfine Portland cement grout is normally utilized for all projects; however, subfreezing weather mandated that post - retraction grouting...ELECTRODES (4) P2 RESISTIVITY C2 MODULE GROUTING TUBES (2) 24 IN(61 CM) Grout Injector -- 1.4 IN(3.57 CM) o.D. 0" RINGS GROUTING CONE SLEEVE FRICTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2009-08-01
Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according tomore » the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and accumulators, gas cylinders, and associated debris were removed and are currently pending treatment and disposal as MW. (3) At CAS 05-19-02, Contaminated Soil and Drum, as a BMP, an empty drum was removed and disposed as sanitary waste. (4) At CAS 18-01-01, Aboveground Storage Tank, approximately 165 gal of lead-impacted liquid were removed and are currently pending disposal as HW, and approximately 10 gal of lead shot and 6 yd{sup 3} of wax embedded with lead shot were removed and are currently pending treatment and disposal as MW. As a BMP, approximately 0.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, approximately 55 gal of liquid were removed and disposed as sanitary waste, and two metal containers were grouted in place. (5) At CAS 18-99-03, Wax Piles/Oil Stain, no further action was required; however, as a BMP, approximately l.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, and one metal container was grouted in place.« less
NASA Astrophysics Data System (ADS)
Wang, Hua
2018-02-01
In the mine construction, the surface pre-grouting technology is an important method to prevent water blast in excavation process of vertical shaft when the shaft must pass through the thick, water-rich and high water-pressure bedrock aquifer. It has been nearly 60 years since the technology was used to reform wall rock of vertical shaft in coal mine in China for the first time, and the existing technology can basically meet the needs of constructing 1000m deep vertical shaft. Firstly, the article introduces that in view of Magg’s spherical seepage theory and Karol’s spherical seepage theory, Chinese scholars found that the diffusion of grout from borehole into the surrounding strata in horizontal direction is irregular through a lot of research and engineering practice of using the surface pre-grouting technology to reform wall rock of vertical shafts, and put forward the selecting principles of grout’s effective diffusion radius in one grouting engineering; Secondly, according to the shape of the grouting boreholes, surface pre-grouting technology of vertical shaft is divided into two stages: vertical borehole stage and S-type borehole stage. Thirdly, the development status of grouting materials and grouting equipment for the technology is introduced. Fourthly, grouting mode, stage height and pressure of the technology are introduced. Finally, it points out that with the increasing depth of coal mining in China, the technology of reforming wall rock of 1000~2000m deep vertical shafts will face many problems, such as grouting theory, grouting equipment, grouting finishing standard, testing and evaluation of grouting effect, and so on. And it put forward a preliminary approach to solving these problems. This paper points out future research directions of the surface pre-grouting technology in China.
Evaluation of final waste forms and recommendations for baseline alternatives to group and glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleier, A.
1997-09-01
An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidatemore » alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining candidates, those of glass-ceramics (devitrified matrices) represent the best compromise for meeting the probable stricter disposal requirements in the future.« less
PREPARATION OF U-PLANT FOR FINAL DEMOLITION AND DISPOSAL - 12109E
DOE Office of Scientific and Technical Information (OSTI.GOV)
FARABEE OA; HERZOG B; CAMERON C
2012-02-16
The U-Plant is one of the five major nuclear materials processing facilities at Hanford and was chosen as a pilot project to develop the modalities for closure of the other four facilities at Hanford and the rest of the Department of Energy (DOE) complex. The remedy for this facility was determined by a Record of Decision (ROD) pursuant to the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). That remedy was to 'Close in Place - Partially Demolished Structure'. The U-Plant facility is identified as the 221-U Building and is a large, concrete structure nominally 247m (810 ft)more » long, 20 M (66 ft) wide and 24 m (77 ft) high with approximately 9 m (30 ft) being below grade level. It is a robust facility with walls ranging from 0.9 m to 2.7 m (3 ft to 9 ft) thick. One large room extends the entire length of the building that provides access to 40 sub-grade processing cells containing tanks, piping and other components. The work breakdown was divided into three major deliverables: (1) Tank D-10 Removal: removal of Tank D-10, which contained TRU waste; (2) Equipment Disposition: placement of contaminated equipment in the sub-grade cells; and (3) Canyon Grouting: grouting canyon void spaces to the maximum extent practical. A large number of pieces of contaminated equipment (pumps, piping, centrifuges, tanks, etc) from other facilities that had been stored on the canyon operating floor were placed inside of the sub-grade cells as final disposition, grouted and the cell shield plug reinstalled. This action precluded a large volume of waste being transported to another burial site. Finally, {approx}19,000 m3 ({approx}25,000 yd3) of grout was placed inside of the cells (in and around the contaminated equipment), in the major galleries. the ventilation tunnel, the external ventilation duct, and the hot pipe trench to minimize the potential for void spaces and to reduce the mobility, solubility, and/or toxicity of the grouted waste. The interim condition of the facility is 'cold and dark'. Upon availability of funding the structure will have contamination fixative applied to all contaminated surfaces and may be explosively demolished, with the remaining structure buried under an engineered barrier.« less
NASA Astrophysics Data System (ADS)
Minto, J. M.; Hingerl, F.; Lunn, R. J.; Benson, S. M.
2016-12-01
ContextWe utilise the urea hydrolysing capability of soil bacteria Sporosarcina pasteurii to precipitate CaCO3 in a process termed Microbially Induced Carbonate Precipitation (MICP). MICP injection fluid properties are low particle size and low viscosity giving excellent grout penetrability. The CaCO3 grout has been shown to be effective at reducing permeability in porous and fractured media. MICP has consequently been proposed as an alternative to more traditional cement and chemical grouts, particularly in the fields of radioactive waste disposal and geological sequestration of CO2. This study investigates the role of fluid flow/CaCO3 feedback during precipitation and accelerated dissolution to better understand the longevity of an MICP grout under low pH environmental conditions such as found in a carbon sequestration reservoir. MethodsExperiments were conducted on a single Berea sandstone core in a high pressure core holder to characterise permeability, porosity and multiphase flow behaviour at sequestration reservoir temperature and pressure. Characterisation was carried out before MICP, after MICP, and after accelerated dissolution with hydrochloric acid. At each step the entire core was scanned in a medical x-ray CT scanner to spatially resolve (with a resolution of 0.5x0.5x1mm) the changes in porosity and saturation with CaCO3 precipitation and dissolution. Finally, the dried core was scanned with μ-CT at 30μm (full core) and 10μm (sub-volume) resolutions to investigate structural changes to the Berea at near pore scale. ResultsSix MICP treatment cycles over two days reduced core permeability from 886 mDarcy to 40 mDarcy with a greater reduction in porosity at the inlet. Dissolution with acid restored much of the porosity, but did not restore permeability to the same extent. Preferential flow paths formed during the dissolution step were visible in the first 4mm of the 100mm core, but did not extend further into the core. DiscussionThis study provides evidence that MICP can potentially produce a long lasting seal, even in challenging subsurface environments, provided that a thick enough layer of CaCO3 can be precipitated with a low initial permeability. Challenges remain for ensuring that such a barrier can be created in the subsurface and are the subject of further investigation.
Thermally conductive cementitious grout for geothermal heat pump systems
Allan, Marita
2001-01-01
A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.
Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones.
Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong
2016-11-22
The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%-38% and their uniaxial compressive strength is 16%-54% of the non-grouted samples. Peak strain, however, is greater by 150%-270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol.
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai
2018-02-01
Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.
1989-04-01
the shape it had as it was ex- truded from the grout tube . Figure 3 shows the type of voids in which the ma- terial is expected to form a barrier...has promising characteristics for coastal engi- neering applications. Microfine Cement, a company which markets ultrafine ce- ment, claims the product...can penetrate fine sand, and is strong and durable with a 4- to 5-hr set time. Fifty percent of Microfine Cement’s particles are less than 4 microns
River Protection Project (RPP) Dangerous Waste Training Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
POHTO, R.E.
2000-03-09
This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Titlemore » 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.« less
Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint
NASA Astrophysics Data System (ADS)
Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob
2018-02-01
Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.
Laboratory Testing of Silica Sol Grout in Coal Measure Mudstones
Pan, Dongjiang; Zhang, Nong; Xie, Zhengzheng; Feng, Xiaowei; Kong, Yong
2016-01-01
The effectiveness of silica sol grout on mudstones is reported in this paper. Using X-ray diffraction (XRD), the study investigates how the silica sol grout modifies mudstone mineralogy. Micropore sizes and mechanical properties of the mudstone before and after grouting with four different materials were determined with a surface area/porosity analyser and by uniaxial compression. Tests show that, after grouting, up to 50% of the mesopore volumes can be filled with grout, the dominant pore diameter decreases from 100 nm to 10 nm, and the sealing capacity is increased. Uniaxial compression tests of silica sol grouted samples shows that their elastic modulus is 21%–38% and their uniaxial compressive strength is 16%–54% of the non-grouted samples. Peak strain, however, is greater by 150%–270%. After grouting, the sample failure mode changes from brittle to ductile. This paper provides an experimental test of anti-seepage and strengthening properties of silica sol. PMID:28774061
Monitoring of Grouting Compactness in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers
Jiang, Tianyong; Kong, Qingzhao; Wang, Wenxi; Huo, Linsheng; Song, Gangbing
2016-01-01
A post-tensioning tendon duct filled with grout can effectively prevent corrosion of the reinforcement, maintain bonding behavior between the reinforcement and concrete, and enhance the load bearing capacity of concrete structures. In practice, grouting of the post-tensioning tendon ducts always causes quality problems, which may reduce structural integrity and service life, and even cause accidents. However, monitoring of the grouting compactness is still a challenge due to the invisibility of the grout in the duct during the grouting process. This paper presents a stress wave-based active sensing approach using piezoceramic transducers to monitor the grouting compactness in real time. A segment of a commercial tendon duct was used as research object in this study. One lead zirconate titanate (PZT) piezoceramic transducer with marble protection, called a smart aggregate (SA), was bonded on the tendon and installed in the tendon duct. Two PZT patch sensors were mounted on the top outside surface of the duct, and one PZT patch sensor was bonded on the bottom outside surface of the tendon duct. In the active sensing approach, the SA was used as an actuator to generate a stress wave and the PZT sensors were utilized to detect the wave response. Cement or grout in the duct functions as a wave conduit, which can propagate the stress wave. If the cement or grout is not fully filled in the tendon duct, the top PZT sensors cannot receive much stress wave energy. The experimental procedures simulated four stages during the grout pouring process, which includes empty status, half grouting, 90% grouting, and full grouting of the duct. Experimental results show that the bottom PZT sensor can detect the signal when the grout level increases towards 50%, when a conduit between the SA and PZT sensor is formed. The top PZT sensors cannot receive any signal until the grout process is completely finished. The wavelet packet-based energy analysis was adopted in this research to compute the total signal energy received by PZT sensors. Experimental results show that the energy levels of the PZT sensors can reflect the degree of grouting compactness in the duct. The proposed method has the potential to be implemented to monitor the tendon duct grouting compactness of the reinforced concrete structures with post tensioning. PMID:27556470
Development of a polymetric grout for the hydrostatic bearing at DSS 14
NASA Technical Reports Server (NTRS)
Mcclung, C. E.; Schwendeman, J. L.; Ball, G. L., III; Jenkins, G. H.; Casperson, R. D.; Gale, G. P.; Riewe, A. A.
1981-01-01
Results of an investigation into the causes of the deterioration and premature failure of the grout under the hydrostatic bearing runner at DSS 14 are reported. Generic types of materials were screened and tested to find a grout material more resistive to the causes of grout failure. Emphasis was placed on the physical properties, strength, modulus of elasticity, and resistance to erosion and chemical attack by oil and unique requirements imposed by each material for mixing, placing, compacting, and cooling. The polymetric grout developed to replace the dry grout is described.
NASA Astrophysics Data System (ADS)
Deng, Shaohui; Wang, Xiaoling; Yu, Jia; Zhang, Yichi; Liu, Zhen; Zhu, Yushan
2018-06-01
Grouting plays a crucial role in dam safety. Due to the concealment of grouting activities, complexity of fracture distribution in rock masses and rheological properties of cement grout, it is difficult to analyze the effects of grouting. In this paper, a computational fluid dynamics (CFD) simulation approach of dam foundation grouting based on a 3D fracture network model is proposed. In this approach, the 3D fracture network model, which is based on an improved bootstrap sampling method and established by VisualGeo software, can provide a reliable and accurate geometric model for CFD simulation of dam foundation grouting. Based on the model, a CFD simulation is performed, in which the Papanastasiou regularized model is used to express the grout rheological properties, and the volume of fluid technique is utilized to capture the grout fronts. Two sets of tests are performed to verify the effectiveness of the Papanastasiou regularized model. When applying the CFD simulation approach for dam foundation grouting, three technical issues can be solved: (1) collapsing potential of the fracture samples, (2) inconsistencies in the geometric model in actual fractures under complex geological conditions, and (3) inappropriate method of characterizing the rheological properties of cement grout. The applicability of the proposed approach is demonstrated by an illustrative case study—a hydropower station dam foundation in southwestern China.
Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, P.H.
The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.
Johnson, W.H.
1971-02-02
A method is described for constructing a lined underground cavity. The process includes the steps of securing a casing in a borehole by grouting, underreaming the casing, filling the underreamed region with additional grouting, and then drilling through and underreaming the added grouting, thereby forming a room having a lining formed of the grouting. By using a structurally strong grouting that is impervious to water, the resulting room is waterproof and is suitable for on-site storage of an atomic device and its associated equipment prior to an underground atomic event. Such cavities also have other uses; for example, the cavities may be made very deep and used for storage of various fluids such as natural gas storage. (5 claims)
Radionuclide Retention in Concrete Wasteforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.
2011-09-30
Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less
Radionuclide Retention in Concrete Wasteforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.
2012-09-24
Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.« less
Dimensional Stability of Grout-like Materials Used in Field-Cast Connections
DOT National Transportation Integrated Search
2016-12-01
The wide use of grouts and grout-like materials in the construction industry is seen in applications such as joint sealing, structural repair, and connections in prefabricated bridge elements (PBEs). Currently, different types of grouts are available...
NASA Astrophysics Data System (ADS)
Xie, Xiongyao; Liu, Yujian; Huang, Hongwei; Du, Jun; Zhang, Fengshou; Liu, Lanbo
2007-09-01
For shield tunnelling construction in soft soil areas, the coverage uniformity and quality of consolidation of the injected grout mortar behind the prefabricated tunnel segment is the main concern for tunnel safety and ground settlement. In this paper, ground-penetrating radar (GPR) was applied to evaluate the grout behind the tunnel lining segments in Shanghai, China. The dielectric permittivity of the grout material in Shanghai Metro tunnelling construction was measured in the laboratory. Combining physical modelling results with finite different time domain numerical modelling results, we suggest that the antenna with frequency 200 MHz is well suited to penetrate the reinforced steel bar network of the tunnel lining segment and testing grout patterns behind the segment. The electromagnetic velocity of the grout behind the segment of the tunnel is 0.1 m ns-1 by the analysis of field common-middle point data. A wave-translated method was put forward to process the GPR images. Furthermore, combining the information acquired by GPR with experience data, a GPR non-destructive test standard for the grout mortar evaluation in Shanghai Metro tunnel construction was brought forward. The grout behind the tunnel lining segment is classified into three types: uncompensated grout mortar with a thickness less than 10 cm, normal grout mortar with a thickness between 10 cm and 30 cm and overcompensated grout mortar, which is more than 30 cm thick. The classified method is easily put into practice.
Goffeng, Lars Ole; Kjuus, Helge; Heier, Mona Skard; Alvestrand, Monica; Ulvestad, Bente; Skaug, Vidar
2008-01-01
The aim of the study was to examine possible persisting visual system effects in tunnel workers previously exposed to acrylamide and N-methylolacrylamide during grouting work. Visual field light sensitivity threshold and colour vision has been examined among 44 tunnel workers 2-10 years after exposure to acrylamide and N-methylolacrylamide containing grouting agents. Forty-four tunnel workers not involved in grouting operations served as control group. Information on exposure and background variables was obtained for all participants from a questionnaire. Visual light sensitivity threshold was measured using Humphrey Visual Field Static Perimeter 740, program 30-2 Fastpack, with red stimuli on white background, and colour vision, using Lanthony D-15 Desaturated Color test. Based on D-15d test results, colour confusion index (CCI), and a severity index (C-index) was calculated. The exposed group had a significantly higher threshold for detecting single stimuli in all parts of the inner 30 degrees of the visual field compared to the control group. The foveal threshold group difference was 1.4 dB (p=0.002) (mean value, both eyes). On the Lanthony 15 Hue Desaturated test, the exposed subjects made more errors in sorting blue colours, and a statistically significant increase in C-index was observed. Surrogate measures for duration and intensity of exposure gave no further improvement of the model. The results indicate slightly reduced light sensitivity and reduced colour discrimination among the exposed subjects compared to the controls. The findings may be due to previous exposure to acrylamide containing grouts among the tunnel workers.
De la Varga, I; Muñoz, J F; Bentz, D P; Spragg, R P; Stutzman, P E; Graybeal, B A
2018-05-01
Bond between two cementitious materials is crucial in applications such as repairs, overlays, and connections of prefabricated bridge elements (PBEs), to name just a few. It is the latter that has special interest to the authors of this paper. After performing a dimensional stability study on grout-like materials commonly used as connections between PBEs, it was observed that the so-called 'non-shrink' cementitious grouts showed a considerable amount of early-age shrinkage. This might have negative effects on the integrity of the structure, due not only to the grout material's early degradation, but also to a possible loss of bond between the grout and the prefabricated concrete element. Many factors affect the bond strength between two cementitious materials (e.g., grout-concrete), the presence of moisture at the existing concrete substrate surface being one of them. In this regard, pre-moistening the concrete substrate surface prior to the application of the grout material is sometimes recommended for bond enhancement. This topic has been the focus of numerous research studies in the past; however, there is still controversy among practitioners on the real benefits that this practice might provide. This paper evaluates the tensile bond performance of two non-shrink cementitious grouts applied to the exposed aggregate surface of a concrete substrate, and how the supply of moisture at the grout-concrete interface affects the bond strength. "Pull-off" bond results show increased tensile bond strength when the concrete surface is pre-moistened. Reasons to explain the observed increased bond strength are given after a careful microstructural analysis of the grout-concrete interface. Interfaces where sufficient moisture is provided to the concrete substrate such that moisture movement from the grout is prevented show reduced porosity and increased hydration on the grout side of the interface, which is thought to directly contribute to the increased tensile bond strength.
The Epoxytec, Inc. CPP™ epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the Uni...
The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...
Methods and system for subsurface stabilization using jet grouting
Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.
1999-01-01
Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.
Epoxy Grout With Silica Thickener
NASA Technical Reports Server (NTRS)
Mcclung, C. E.
1984-01-01
Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.
NASA Astrophysics Data System (ADS)
Akin, Muge K.
2016-04-01
The term of ground improvement states to the modification of the engineering properties of soils. Jet-grouting is one of the grouting methods among various ground improvement techniques. During jet-grouting, different textures of columns can be obtained depending on the characteristics of surrounding subsoil as well as the adopted jet-grouting system for each site is variable. In addition to textural properties, strength and index parameters of jet-grout columns are highly affected by the adjacent soil. In this study, the physical and mechanical properties of jet-grout columns constructed at two different sites in silty and sandy soil conditions were determined by laboratory tests. A number of statistical relationships between physical and mechanical properties of soilcrete were established in this study in order to investigate the dependency of numerous variables. The relationship between qu and γd is more reliable for sandy soilcrete than that of silty columns considering the determination coefficients. Positive linear relationships between Vp and γd with significantly high determination coefficients were obtained for the jet-grout columns in silt and sand. The regression analyses indicate that the P-wave velocity is a very dominant parameter for the estimation of physical and mechanical properties of jet-grout columns and should be involved during the quality control of soilcrete material despite the intensive use of uniaxial compressive strength test. Besides, it is concluded that the dry unit weight of jet-grout column is a good indicator of the efficiency of employed operational parameters during jet-grouting.
The Protective Liner Systems International, Inc. Epoxy Mastic PLS-614 coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and T...
Summary of Group Development and Testing for Single Shell Tank Closure at Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harbour, John, R.
2005-04-28
This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closuremore » which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.« less
Brief overview of the various families of grouts and their aplications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandts, A.
1989-04-01
It is difficult to maintain an up-to-date overview of all the grouts presently used on the international market. Better grouts are continuously developed and more formulators are making their appearance. Consequently, it is difficult to clearly define all of the products in the industry. This topic has been the subject of numerous papers and textbooks. Most authors, however, only focus on their fields of interest: applications in geotechnical, or rehabilitation, or seepage control in civil engineering, oil or mining industry. There has been a limited transfer of technology from one field to the other because of the enormous differences inmore » magnitude, site conditions and consequently the application techniques. The tools an engineer has are: his expertise in grouting and engineering background, equipment available or to be designed or modified to carry out a particular job, relevant data available from other sciences, and products with a variety of characteristics. This paper concentrates on product selection. The most suitable product for a particular project requires a good understanding of the general chemical and mechanical characteristics of the grout. The grouts have been classified into four categories for the purpose of this paper. There may be other methods of classification; however, this is only an attempt to help the industry with the selection of the most suitable grout for a given application. The four categories are: suspension grouts, chemical grouts, hot melts, and precipitation grouts. 1 fig.« less
Hillsboro Canal bridge monitoring.
DOT National Transportation Integrated Search
2011-12-01
This report describes the implementation of a testing and monitoring program for bridge 930338 in Belle Glade. Glass-fiber : reinforced polymer (GFRP) deck panels and plates were installed over an existing steel superstructure using grouted steel : s...
Environmental Assessment of Selected Cone Penetrometer Grouts and a Tracer
1993-08-01
Bentonite Clay ............ ...................... A2 Attapulgite Clay ................................... A22 Microfine Portland Cement...and the tracer are a. Bentonite clay. b. Attapulgite clay. c. Microfine portland cement. d. Joosten grout (calcium silicate grout). e. Urethane grout. f...Inc., on an attapulgite clay product (trade name: Zeogel). " Microfine portland cement. Information was obtained for two micro- fine portland cements
Injection of coal combustion byproducts into the Omega Mine for the reduction of acid mine drainage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, T.A.; Moran, T.C.; Broschart, D.W.
1998-12-31
The Omega Mine Complex is located outside of Morgantown, West Virginia. The mine is in the Upper Freeport Coal, an acid-producing coal seam. The coal was mined in a manner that has resulted in acid mine drainage (AMD) discharges at multiple points. During the 1990`s, the West Virginia Division of Environmental Protection (WVDEP) assumed responsibility for operating a collection and treatment system for the AMD. Collection and treatment costs are approximately $300,000 per year. An innovative procedure of injecting grout into the mine workings to reduce AMD and the resulting treatment costs is proposed. The procedure involves injecting grout mixesmore » composed primarily of coal combustion byproducts (CCB`s) and water, with a small quantity of cement. The intention of the injection program is to fill the mine voids in the north lobe of the Omega Mine (an area where most of the acidity is believed to be generated) with the grout, thus reducing the contact of air and water with potentially acidic material. The grout mix design consists of an approximate 1:1 ratio of fly ash to byproducts from fluidized bed combustion. Approximately 100 gallons of water per cubic yard of grout is used to help achieve flowability. Observation of the mine workings via subsurface borings and downhole video camera operation confirmed that first-mined areas were generally open while second-mined areas were generally partially collapsed. Closer injection hole spacing was used in second-mined areas to account for collapsed workings. The construction documents have been prepared with the project being bid in late 1997. The engineer`s cost estimate was approximately $2,500,000, with the low bid of approximately $2,300,000 being submitted by Howard Concrete Pumping of Bridgeville, PA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive groutmore » slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL.« less
Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.
2013-07-01
A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA)more » led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)« less
Jinpeng, Zhang; Limin, Liu; Futao, Zhang; Junzhi, Cao
2018-04-04
With cement, bentonite, water glass, J85 accelerator, retarder and water as raw materials, a new composite grouting material used to seal groundwater inflow and reinforce wall rock in deep fractured rock mass was developed in this paper. Based on the reaction mechanism of raw material, the pumpable time, stone rate, initial setting time, plastic strength and unconfined compressive strength of multi-group proportion grouts were tested by orthogonal experiment. Then, the optimum proportion of composite grouting material was selected and applied to the grouting engineering for sealing groundwater inflow and reinforcing wall rock in mine shaft lining. The results show the mixing proportion of the maximum pumpable time, maximum stone rate and minimum initial setting time of grout are A K4 B K1 C K4 D K2 , A K3 B K1 C K1 D K4 and A K3 B K3 C K4 D K1 , respectively. The mixing proportion of the maximum plastic strength and unconfined compressive strength of grouts concretion bodies are A K1 B K1 C K1 D K3 and A K1 B K1 C K1 D K1 , respectively. Balanced the above 5 indicators overall and determined the optimum proportion of grouts: bentonite-cement ratio of 1.0, water-solid ratio of 3.5, accelerator content of 2.9% and retarder content of 1.45%. This new composite grouting material had good effect on the grouting engineering for sealing groundwater inflow and reinforcing wall rock in deep fractured rock mass.
Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S.; Katman, Herdayati; Husain, Nadiah Md
2014-01-01
Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911
Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md
2014-01-01
Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.
Effects of Coal Gangue on Cement Grouting Material Properties
NASA Astrophysics Data System (ADS)
Liu, J. Y.; Chen, H. X.
2018-05-01
The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.
Bio-grout based on microbially induced sand solidification by means of asparaginase activity
Li, Mengmeng; Fu, Qing-Long; Zhang, Qiuzhuo; Achal, Varenyam; Kawasaki, Satoru
2015-01-01
Bio-grout, a new ground improvement method, has been recently developed to improve the mechanical properties, decrease the permeability of porous materials, reinforce or repair cementitious materials and modify the properties of soil or sand. Bio-grout production depends on microbially induced calcite precipitation (MICP), which is driven mainly by an enzyme, urease. However, urease-based MICP process produces excessive ammonia, in addition to secondary pollution generated by urea that is used as substrate in it. In the present study, we reported asparaginase-based MICP process for sand bio-grout development using Bacillus megaterium, and results were also compared with urease-based bio-grouts. The asparaginase activity led to significantly less ammonia production compared to urease without compromising with desired properties of a novel grout. The UCS of bio-grout was obtained at 980 kPa, while the permeability was decreased substantially. The mineralogical composition of precipitated substance was identified as calcite using XRD and the crystal morphology was observed under SEM. The mass percentage of calcite in bio-grout was calculated by thermogravimetric analysis and XCT verified calcite precipitation in it. The results confirmed that biocalcification by means of bacterial asparaginase is a potential solution for geotechnical problems. The asparaginase-based MICP process could be of wider acceptance in future. PMID:26525435
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey
A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at themore » Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.« less
Finite element Analysis of Semi-Grouting Sleeve Connection Member Based on ABAQUS
NASA Astrophysics Data System (ADS)
Bao, Longsheng; Fan, Qianyu; Wang, Ling
2018-05-01
This paper use investigates the force transfer mechanism and failure form of semi-grouting sleeve members under axial load, analyze the weak points of structural bearing capacity and verify the reliability of the connection of steel bars through finite element analysis software. The results show that adding the axial load to semi-grouting sleeve forms a 45°oblique compression zone, which help to transfer stress between reinforcement, grouting material and sleeve. Because the maximum stress of sleeve doesn’t reach its tensile resistance and the deformation of the sleeve is located at the junction of the grouting and the threaded section when the stress value of steel bars at each end of the semi-grouting sleeve reach its ultimate tensile strength, we conclude that the semi-grouting sleeve members can meet the construction quality requirements and be used to connect the steel bars at the joints of the assembled structures. It is necessary to avoid breaking down, since the deformation section will accumulate large plastic deformation during the processing of the sleeve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwood, R.G.; Billington, C.J.; Buitrago, J.
1996-12-01
A Technical Core Group (TCG) was set up in March 1994 to review the design practice provisions for grouted pile to sleeve connections, mechanical connections and repairs as part of the international harmonization process for the new ISO Standard, ISO 13819-2, Petroleum and Natural Gas Industries--Offshore Structures, Part 2: Fixed Steel Structures. This paper provides an overview of the development of the proposed new design provisions for grouted connections including, the gathering and screening of the data, the evolution of the design formulae, and the evaluation of the resistance factor. Detailed comparisons of the new formulae with current design practicemore » (API, HSE and DnV) are also included. In the development of the new provisions the TCG has been given access to the largest database ever assembled on this topic. This database includes all the major testing programs performed over the last 20 years, and recent UK and Norwegian research projects not previously reported. The limitations in the database are discussed and the areas where future research would be of benefit are highlighted.« less
Dimensional Stability of Grout-Type Materials Used as Connections for Prefabricated Bridge Elements
DOT National Transportation Integrated Search
2016-05-01
The research presented in this report focuses on addressing performance concerns related to dimensional stability (primarily early age shrinkage) of 11 commercially available grout-type materials. Some of these grouts, especially those classified as ...
Corrosion performance of prestressing strands in contact with dissimilar grouts.
DOT National Transportation Integrated Search
2013-01-01
To improve the corrosion protection provided to prestressing strands, anti-bleed grouts are used to fill voids in post-tensioning : ducts that result from bleeding and shrinkage of older Portland Cement grouts. Environmental differences caused by exp...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2011-08-30
The Saltstone facility has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The dry feeds and the salt solution are already mixed in the mixer prior to being transferred to the hopper tank. The hopper modeling study through this work will focusmore » on fluid stirring and agitation, instead of traditional mixing in the literature, in order to keep the tank contents in motion during their residence time so that they will not be upset or solidified prior to transferring the grout to the Saltstone disposal facility. The primary objective of the work is to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45{sup o} pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45{sup o} pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed with the FLUENT{trademark} codes. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet. The modeling results show that when the two-stage agitator consisting of a 45{sup o} pitched propeller and radial flat-plate blades is run at 140 rpm speed with 28 in diameter, the agitator provides an adequate stirring of the feed materials for a wide range of yield stresses (1 to 21 Pa) and the vortex system is shed into the remote region of the tank boundary by the blade passage in an efficient way. The results of this modeling study were used to develop the design guidelines for the agitator stirring and dispersion of the Saltstone feed materials in a hopper tank.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.P.; Burns, H.H.; Langton, C.
2013-07-01
The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up tomore » 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in K{sub d}/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software tools. Modification of the existing tools can provide many opportunities to bring defense in depth in prediction of the performance of cementitious barriers over time. (authors)« less
Silica sol as grouting material: a physio-chemical analysis.
Sögaard, Christian; Funehag, Johan; Abbas, Zareen
2018-01-01
At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.
Well Abandonment at Various Sites, John F. Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
Damphousse, Sarah Joan
2016-01-01
Between January 29 and March 9, 2016, a total of 23 monitoring wells were properly abandoned-in-place at five KSC sites (OPF-1&2, OPF-3, RDG, SRB, and HSB). The total abandonment encompassed 489.06 linear feet. The wells abandoned were constructed of PVC with diameters ranging from 1-inch to 2-inches. The shallowest well abandoned was measured to be 11.6 ft bls (OPF) and the deepest well abandoned was documented to be 51.45 feet bls (HSB). All aboveground completions were removed and each area was re-graded and/or grouted to surface to match existing surroundings. All materials (concrete pads, well casings, etc.) were disposed of accordingly.
Design and Control of Chemical Grouting : Volume 4 - Executive Summary
DOT National Transportation Integrated Search
1983-04-01
This report focuses on the engineering practice of chemical grouting, summarizing the findings of a study to improve design and control techniques for chemical grouting in soils. Improved methods for the planning, control and evaluation of chemical g...
Impact Of Standing Water On Saltstone Placement II - Hydraulic Conductivity Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Pickenheim, B. R.
2012-12-06
The amount of water present during placement and subsequent curing of saltstone has the potential to impact several properties important for grout quality. An active drain water system can remove residual standing water and expose the surface of the placed saltstone to air. Oxidation of the saltstone may result in an increase in the leachability of redox sensitive elements. A dry surface can lead to cracking, causing an increase in hydraulic conductivity. An inactive drain water system can allow standing water that generates unnecessary hydrostatic head on the vault walls. Standing water that cannot be removed via the drain systemmore » will be available for potential incorporation into subsequent grout placements. The objective of this work is to study the impact of standing water on grout quality pertaining to disposal units. A series of saltstone mixes was prepared and cured at ambient temperature to evaluate the impact of standing water on saltstone placement. The samples were managed to control drying effects on leachability by either exposing or capping the samples. The water to premix ratio was varied to represent a range of processing conditions. Samples were analyzed for density, leachability, and hydraulic conductivity. Report SRNL-STI-2012-00546 was issued detailing the experimental procedure, results, and conclusions related to density and leachability. In the previous report, it was concluded that: density tends to increase toward the bottom of the samples. This effect is pronounced with excess bleed water; drying of the saltstone during curing leads to decreased Leachability Index (more leaching) for potassium, sodium, rhenium, nitrite, and nitrate; there is no noticeable effect on saltstone oxidation/leachability by changing the water to premix ratio (over the range studied), or by pouring into standing water (when tested up to 10 volume percent). The hydraulic conductivity data presented in this report show that samples cured exposed to the atmosphere had about three orders of magnitude higher hydraulic conductivity than any of the other samples. Considering these data, along with the results presented in the previous report, leads to the conclusion that small changes in water to premix ratio and the inclusion of up to 10 volume percent standing water should not be expected to have a detrimental effect on saltstone grout quality. The hydraulic conductivity results further demonstrate that curing in a moist environment is critical to maintaining saltstone quality.« less
Jiang, Tianyong; Song, Gangbing
2017-01-01
With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors’ previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct. PMID:28961173
Jiang, Tianyong; Zheng, Junbo; Huo, Linsheng; Song, Gangbing
2017-09-29
With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors' previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct.
Application of resistivity monitoring to evaluate cement grouting effect in earth filled dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jin-Mo; Yoon, Wang-Jung
In this paper, we applied electrical resistivity monitoring method to evaluate the cement grouting effect. There are a lot of ways to evaluate cement grouting effect. In order to do this evaluation in a great safety, high efficiency, and lower cost, resistivity monitoring is found to be the most appropriate technique. In this paper we have selected a dam site from Korea to acquire resistivity monitoring data and compare the results of inversion to estimate the cement grouting effect.
TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanko, D.; Langton, C.
The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement and performance properties; (3) Design up to 2 additional grout systems for filling the Tank 18-F and Tank 19-F equipment; (4) Prepare samples of candidate grouts and measure fresh properties, thermal properties and cured properties; (5) Recommend a grout for the Tier 1A equipment fill mock up - ADMP 4 foot high mock up, 1 inch and 2 inch pipes; (6) Support procurement of materials for the Tier 1A equipment fill mock up test; (7) Prepare samples of the recommended grout for hydraulic property measurements which can be used for comparison to values used in the F- Tank Farm Performance Assessment (PA); and (8) Document equipment fill grout data and recommendations in a report.« less
DOT National Transportation Integrated Search
2016-10-16
n Accelerated Bridge Construction (ABC) methods, one way to connect prefabricated columns is by using grouted steel bar couplers. As of October 2016, in the U.S., only Utah DOT allows the use of grouted couplers in plastic hinge locations in seismic ...
Municipalities are discovering rapid degradation of infrastructures in wastewater collection and treatment facilities due to infiltration of leaking water from the surrounding environments. Rehabilitation of these facilities by in situ methods, including the use of grouting, is u...
Municipalities are discovering rapid degradation of infrastructures in wastewater collection and treatment facilities due to infiltration of leaking water from the surrounding environments. Rehabilitation of these facilities by in situ methods, including the use of grouting, is u...
DOT National Transportation Integrated Search
2014-06-01
This report contains a summary of the research performed to develop a replacement for the high-temperature grout : fluidity (HTGF) test. The HTGF test was employed in the past by FDOT to qualify post-tensioning (PT) grouts for use in : post-tensioned...
Research in Foundation Grouting with Cement
1960-03-01
grout is mixed. 2. For cracks of the order of 0.05 in., a grout in which the ratio[ of water to cement is 0.75 by volune gives the r’ost desirable 4... thickness of the order of t5 in. 4. 3hear tests on grout films fog-cured at 70 F for 28 days denon- stratel that increasing the pressure within the...alkaline water dripre.I through cracks in the concrete lidng of some of the penstock tunnels Jai daaged the paint an- metal -work. The uplift pressure
1994-05-01
utilizes drill bits and tubing to cut through the soil. Unlike the auger method, a slurry mixture is used to keep the drill bit clean and assist in...is applied. In the sleeve pipe method, or also called tube -a-manchette, the sleeve pipe is installed in the grout hole, and sealed in place with a...acts as a one-way valve. allowing grout out of the pipe, but not back into the sleeve. A grouting tube with double packer is used to inject the grout
The physical model for research of behavior of grouting mixtures
NASA Astrophysics Data System (ADS)
Hajovsky, Radovan; Pies, Martin; Lossmann, Jaroslav
2016-06-01
The paper deals with description of physical model designed for verification of behavior of grouting mixtures when applied below underground water level. Described physical model has been set up to determine propagation of grouting mixture in a given environment. Extension of grouting in this environment is based on measurement of humidity and temperature with the use of combined sensors located within preinstalled special measurement probes around grouting needle. Humidity was measured by combined capacity sensor DTH-1010, temperature was gathered by a NTC thermistor. Humidity sensors measured time when grouting mixture reached sensor location point. NTC thermistors measured temperature changes in time starting from initial of injection. This helped to develop 3D map showing the distribution of grouting mixture through the environment. Accomplishment of this particular measurement was carried out by a designed primary measurement module capable of connecting 4 humidity and temperature sensors. This module also takes care of converting these physical signals into unified analogue signals consequently brought to the input terminals of analogue input of programmable automation controller (PAC) WinPAC-8441. This controller ensures the measurement itself, archiving and visualization of all data. Detail description of a complex measurement system and evaluation in form of 3D animations and graphs is supposed to be in a full paper.
NASA Astrophysics Data System (ADS)
Shi, Yaokun; Luo, Mingzhang; Li, Weijie; Song, Gangbing
2018-05-01
The concrete-filled fiber-reinforced polymer tube (CFFT) is a type of structural element widely used in corrosive environments. Poor grout compactness results in incomplete contact or even no contact between the fiber-reinforced polymer (FRP) tube and the concrete grout, which reduces the load bearing capacity of a CFFT. The monitoring of grout compactness for CFFTs is important. The piezoceramic-based electromechanical impedance (EMI) method has emerged as an efficient and low-cost structural health monitoring technique. This paper presents a feasibility study using the EMI method to monitor grout compactness of CFFTs. In this research, CFFT specimens with different levels of compactness (empty, 1/5, 1/3, 1/2, 2/3, and full compactness) were prepared and subjected to EMI measurement by using four piezoceramic patches that were bonded circumferentially along the outer surface of the CFFT. To analyze the correlation between grout compactness and EMI signatures, a compactness index (CI) was proposed based on the root-mean-square deviation (RMSD). The experimental results show that the changes in admittance signatures are able to determine the grout compactness qualitatively. The proposed CI is able to effectively identify the compactness of the CFFT, and provides location information of the incomplete concrete infill.
Thermal Response Testing Takes a Step Forward
Clemenzi, Rick; Ewbank, Garen; Siglin, Judy; ...
2017-09-01
Oak Ridge National Labs has independently confirmed the accuracy of a new breakthrough Advanced Thermal Response Test (TRT) method that it claims “uses less than half of the test time, allows for a fluctuating or interruptible heat flux, performs quality validation of a GHEX installation, and yields new insights into ground thermal conductivity that warrant further research.” The new Advanced TRT approach will reduce costs and, for the first time, also determine the actual thermal conductivity of grout as it is installed. As everyone in the ground source heat pump (GSHP) industry knows, assuring the quality of the grout jobmore » of a ground heat exchanger (GHEX) is an especially vexing problem. Unless one is standing at the borehole head the entire time grouting is underway, they basically have no idea how good or bad the grouting job is or even if the loop pipe itself is installed correctly. This problem has been further brought to light with formal third party grout reports confirming that grout had been poured from the surface and that many loops were shorter than the specified depth in several projects« less
Thermal Response Testing Takes a Step Forward
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemenzi, Rick; Ewbank, Garen; Siglin, Judy
Oak Ridge National Labs has independently confirmed the accuracy of a new breakthrough Advanced Thermal Response Test (TRT) method that it claims “uses less than half of the test time, allows for a fluctuating or interruptible heat flux, performs quality validation of a GHEX installation, and yields new insights into ground thermal conductivity that warrant further research.” The new Advanced TRT approach will reduce costs and, for the first time, also determine the actual thermal conductivity of grout as it is installed. As everyone in the ground source heat pump (GSHP) industry knows, assuring the quality of the grout jobmore » of a ground heat exchanger (GHEX) is an especially vexing problem. Unless one is standing at the borehole head the entire time grouting is underway, they basically have no idea how good or bad the grouting job is or even if the loop pipe itself is installed correctly. This problem has been further brought to light with formal third party grout reports confirming that grout had been poured from the surface and that many loops were shorter than the specified depth in several projects« less
NASA Astrophysics Data System (ADS)
Høien, Are Håvard; Nilsen, Bjørn
2014-05-01
The Løren road tunnel is a part of a major project at Ring road 3 in Oslo, Norway. The rock part of the tunnel is 915 m long and has two tubes with three lanes and breakdown lanes. Strict water ingress restriction was specified and continuous rock mass grouting was, therefore, carried out for the entire tunnel, which was excavated in folded Cambro-Silurian shales intruded by numerous dykes. This paper describes the rock mass grouting that was carried out for the Løren tunnel. Particular emphasis is placed on discussing grout consumption and the challenges that were encountered when passing under a distinct rock depression. Measurement while drilling (MWD) technology was used for this project, and, in this paper, the relationships between the drill parameter interpretation (DPI) factors water and fracturing are examined in relation to grout volumes. A lowering of the groundwater table was experienced during excavation under the rock depression, but the groundwater was nearly re-established after completion of the main construction work. A planned 80-m watertight concrete lining was not required to be built due to the excellent results from grouting in the rock depression area. A relationship was found between leakages mapped in the tunnel and the DPI water factor, indicating that water is actually present where the DPI water factor shows water in the rock. It is concluded that, for the Løren tunnel, careful planning and high-quality execution of the rock mass grouting made the measured water ingress meet the restrictions. For future projects, the DPI water factor may be used to give a better understanding of the material in which the rock mass grouting is performed and may also be used to reduce the time spent and volumes used when grouting.
NASA Astrophysics Data System (ADS)
Liu, Yong Jun; Li, Chao; Zhou, When Jun
2018-06-01
This paper presents some numerical simulation results of tensile properties of reinforcing bars spliced by grout-filled coupling sleeves under fire conditions to identify the effect of load ratio on fire resistance time of spliced reinforcing bars, which provide a useful base for predicting structural behaviors of pre-cast reinforced concrete buildings in fires. A spliced rebar system investigated in this paper consists of two equal-diameter steel reinforcing bars with 25mm diameter and a straight coupling sleeve with 50mm outer and 45mm inner diameters. As a result, the thickness of grout between steel bars and sleeves are 20mm. Firstly, the temperature distributions in steel bars connected by grout- filled coupling sleeves exposed to ISO 834 standard fire were calculated utilizing finite element analysis software ANSYS. Secondly, the stress changes in heated steel bars connected by grout-filled coupling sleeves under different constant tensile loads were calculated step by step until the rebar system failed due to fire. Thus, the fire resistant time of rebar spliced by grout-filled coupling sleeves under different axial tensile loads can be determined, further, the relationship between fire resistance time and axial tensile loads ratio can could be obtained. Finally, the fire resistant times versus axial tensile load ratios curve of grout-filled splice sleeve rebars exposed to ISO 834 standard fire is presented.
Modification of hydraulic conductivity in granular soils using waste materials.
Akbulut, S; Saglamer, A
2004-01-01
This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fachinger, Johannes; Muller, Walter; Marsat, Eric
2013-07-01
Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. Themore » most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero or negligible porosity and a water impermeable structure. Structural analysis shows that the glass in the composite has replaced the pores in the graphite structure. The typical pore volume of a graphite material is in the range of 20 vol.%. Therefore no volume increase will occur in comparison with the former graphite material. This IGM material will allow the encapsulation of graphite with package densities larger than 1.5 ton per cubic meter. Therefore a huge volume saving can be achieved by such an alternative encapsulation method. Disposal performance is also enhanced since little or no leaching of radionuclides is observed due to the impermeability of the material NNL and FNAG have proved that IGM can be produced by hot isostatic pressing (HIP) which has several advantages for radioactive materials over the HVP process. - The sealed HIP container avoids the release of any radionuclides. - The outside of the waste package is not contaminated. - The HIP process time is shorter than the HVP process time. The isostatic press avoids anisotropic density distributions. - Simple filling of the HIP container has advantages over the filling of an axial die. (authors)« less
DOT National Transportation Integrated Search
2017-03-01
The use of prefabricated bridge elements and systems (PBES) saves time and money, both for transportation agencies and the traveling public. PBES is an emphasis area in the Federal Highway Administrations Every Day Counts program in which FHWA and...
Heckman, R. A.
1971-12-14
Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)
Heckman, R.A.
1971-12-14
Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)
Ahrens, Ernst H.
1999-01-01
An ultrafine cementitious grout in three particle grades containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 30 wt. % to about 70 wt. % Portland cement; from about 30 wt. % to about 70 wt. % pumice containing at least 70% amorphous silicon dioxide; and from 1.2 wt. % to about 5.0 wt. % superplasticizer. The superplasticizer is dispersed in the mixing water prior to the addition of dry grout and the W/CM ratio is about 0.4 to 1/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.
WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E; Timothy Jones, T; Tommy Edwards, T
2009-03-20
The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thusmore » providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the grouts for measurements. All of the cured grouts were measured for bleed and set. All of the cured grouts satisfied the bleed and set requirements, where no bleed water was observed on any of the grout samples after one day and all had set within 3 days of curing. This data indicates, for a well mixed product, bleed and set requirement are satisfied for the range of acidic feeds tested in this task. The yield stress measurements provide both an indication on the mixability of the salt solution with dry materials and an indication of how quickly the grout is starting to form structure. The inability to properly mix these two streams into a well mixed grout product will lead to a non-homogeneous mixture that will impact product quality. Product quality issues could be unmixed regions of dry material and hot spots having high concentrations of americium 241. Mixes that were more difficult to incorporate typically resulted in grouts with higher yield stresses. The mixability from these tests will provide Waste Solidification Building (WSB) an indication of which grouts will be more challenging to mix. The first yield stress measurements were statistically compared to a list of variables, specifically the batched chemicals used to make the acidic solutions. The first yield stress was also compared to the physical properties of the acidic solutions, physical and pH properties of the neutralized/pH adjusted solutions, and chemical and physical properties of the grout.« less
Pratelli, Chiara; Betti, Giacomo; Marradi, Alessandro
2018-01-01
In the last forty, years semi-flexible pavements have been successfully employed, especially in those areas subjected to heavy and slow-moving loads. They usually comprise a wearing course of Grouted Macadam, a composite pavement material that provides significant advantages in comparison to both concrete and asphalt pavements. On the other hand, the laying process of this material is a two-stage operation, and the realization complexity leads to long realization times and high initial costs. Therefore, the use of semi-flexible pavements has been limited to some fields of application and areas. Recently, an innovative material has been developed to be used as an alternative to Grouted Macadam for semi-flexible pavement wearing course realization. This material should provide similar or even superior characteristics compared to traditional Grouted Macadam. This will reduce semi-flexible pavement construction time and avoid the need for dividing the laying process. This paper presents an experimental program involving the use of FastFWD, as an APT device, to evaluate in-situ properties and performance of this material. The achieved results regarding the validation of this new material by means of FastFWD appear promising both in terms of the material’s properties and resistance to dynamic load repetitions. PMID:29659543
Pratelli, Chiara; Betti, Giacomo; Giuffrè, Tullio; Marradi, Alessandro
2018-04-16
In the last forty, years semi-flexible pavements have been successfully employed, especially in those areas subjected to heavy and slow-moving loads. They usually comprise a wearing course of Grouted Macadam, a composite pavement material that provides significant advantages in comparison to both concrete and asphalt pavements. On the other hand, the laying process of this material is a two-stage operation, and the realization complexity leads to long realization times and high initial costs. Therefore, the use of semi-flexible pavements has been limited to some fields of application and areas. Recently, an innovative material has been developed to be used as an alternative to Grouted Macadam for semi-flexible pavement wearing course realization. This material should provide similar or even superior characteristics compared to traditional Grouted Macadam. This will reduce semi-flexible pavement construction time and avoid the need for dividing the laying process. This paper presents an experimental program involving the use of FastFWD, as an APT device, to evaluate in-situ properties and performance of this material. The achieved results regarding the validation of this new material by means of FastFWD appear promising both in terms of the material's properties and resistance to dynamic load repetitions.
Esteban, María Dolores; Rodríguez, Raúl Rubén; Ibanco, Francisco José; Sánchez, Isidro
2017-01-01
At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement. PMID:28767078
Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel
2017-08-02
At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement.
NASA Astrophysics Data System (ADS)
Xie, Chengyu; Jia, Nan; Shi, Dongping; Lu, Hao
2017-10-01
In order to study the slurry diffusion law during grouting, Richards unsaturated-saturated model was introduced, the definition of the grouting model is clear, the Richards model control equation was established, And the BP neural network was introduced, the improved fluid-solid coupling model was constructed, Through the use of saturated - unsaturated seepage flow model, As well as the overflow boundary iterative solution of the mixed boundary conditions, the free surface is calculated. Engineering practice for an example, with the aid of multi - field coupling analysis software, the diffusion law of slurry was simulated numerically. The results show that the slurry diffusion rule is affected by grouting material, initial pressure and other factors. When the slurry starts, it flows in the cracks along the upper side of the grouting hole, when the pressure gradient is reduced to the critical pressure, that is, to the lower side of the flow, when the slurry diffusion stability, and ultimately its shape like an 8. The slurry is spread evenly from the overall point of view, from the grouting mouth toward the surrounding evenly spread, it gradually reaches saturation by non-saturation, and it is not a purely saturated flow, when the slurry spread and reach a saturated state, the diffusion time is the engineering grouting time.
Erdmann, Bryan J; Powell, Brian A; Kaplan, Daniel I; DeVol, Timothy A
2018-05-01
One-dimensional scans of gamma-ray emitting contaminants were conducted on lysimeters from the RadFLEX facility at the Savannah River Nationals Laboratory (SRNL). The lysimeters each contained a contamination source that was buried in SRNL soil. A source consisted of Cs, Co, Ba, and Eu incorporated either into a solid waste form (Portland cement and reducing grout) or applied to a filter paper for direct soil exposure. The lysimeters were exposed to natural environmental conditions for 3 to 4 y. The initial contaminant activities range from 4.0 to 9.0 MBq for the solid wasteforms and 0.25 to 0.47 MBq for the soil-incorporated source. The measurements were performed using a collimated high-purity germanium gamma-ray spectrometer with a spatial resolution of 2.5 mm. These scans showed downward mobility of Co and Ba when the radionuclides were incorporated directly into the SRNL soil. When radionuclides were incorporated into the solid waste forms positioned in the SRNL soil, Cs exhibited both upward and downward dispersion while the other radionuclides showed no movement. This dispersion was more significant for the Portland cement than the reducing grout wasteform. Europium-152 was the only radionuclide of those studied that showed no movement within the spatial resolution of the scanner from the original placement within the lysimeter. Understanding radionuclide movement in the environment is important for developing strategies for waste management and disposal.
Pullout Performances of Grouted Rockbolt Systems with Bond Defects
NASA Astrophysics Data System (ADS)
Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan
2018-03-01
This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.
A portable high-power diode laser-based single-stage ceramic tile grout sealing system
NASA Astrophysics Data System (ADS)
Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.
2002-02-01
By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.
NASA Astrophysics Data System (ADS)
Bonacci, Ognjen; Roje-Bonacci, Tanja
2010-05-01
Construction of grout curtains in karst terrains is primarily connected with dams and reservoirs. Their role is to increase watertightness and prevent progressive erosion. In this presentation hourly continuous measurement of groundwater level in two deep piezometers near the Đale reservoir is analysed. The Đale reservoir in the Cetina River began operation in 1989. The total length of the grout curtain is 3.9 km. It spreads 120 m bellow the Đale dam. First analysed piezometer A is drilled in the interior part of the system, between the reservoir and the grout curtain, while the second one B is located in its external part. Distance between them is 200 m. In natural conditions, prior the grout curtain construction, groundwater level fluctuation in both of them was similar (practically the same). Construction of the grout curtain extremely changed groundwater behaviour in each of them. During the six month of continuous monitoring, differences between groundwater levels in them range between +19.86 m (groundwater in B is lower than in A) and -12.77 m (groundwater in A is lower than in B). During the 77% of analysed period the groundwater level in interior piezometer A is higher than the groundwater level in external piezometer B. In other 23% of analysed period the groundwater level in outside piezometer B is higher than in inside A. The construction of the grout curtain caused unnaturally high hydrostatic gradients, which can accelerate the dissolutional expansion of karst fractures. As a result, unbearable leakage of the reservoir Đale can occur over its lifetime. Careful analyses of groundwater level behaviour discover some other very important characteristics of karst underground morphology.
Development of Freshwater Grout Subsequent to the Bell Canyon Tests (BCT).
1986-04-01
specimens of those grouts cured and studied in the SL, to three-years age. Selected data from earlier tests of related fresh-water grouts are...specimens were either coated with a strippable plastic momn;rane, or sealed in plastic cylinders with tightly fitting lids. Sealed in plastiC habs in...for expansion prisms, the strippable coating applied to SPDV specimens did not prevent water loss. Lower strength gain may be attributable to partial
Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles.
Ortega Álvarez, José Marcos; Esteban Pérez, María Dolores; Rodríguez Escribano, Raúl Rubén; Pastor Navarro, José Luís; Sánchez Martín, Isidro
2016-11-08
Nowadays, the use of micropiles has undergone a great development. In general, they are made with cement grout, reinforced with steel tubing. In Spain, these grouts are prepared using OPC, although the standards do not forbid the use of other cements, like sustainable ones. Micropiles are in contact with soils and groundwater, in which the presence of sulphates is common. Their deleterious effects firstly affect to the microstructure. Then, the aim of this research is to study the effects of sulphate attack in the microstructure of micropiles grouts, prepared with OPC, fly ash and slag commercial cements, compared to their behaviour when they are exposed to an optimum hardening condition. The microstructure evolution has been studied with the non-destructive impedance spectroscopy technique, which has never been used for detecting the effects of sulphate attack when slag and fly ash cements are used. Its results have been contrasted with mercury intrusion porosimetry and "Wenner" resistivity ones. The 28-day compressive strength of grouts has been also determined. The results of microstructure characterization techniques are in agreement, although impedance spectroscopy is the most sensitive for following the changes in the porous network of grouts. The results showed that micropiles made using fly ash and slag cements could have a good performance in contact with aggressive sodium sulphate media, even better than OPC ones.
Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles
Ortega Álvarez, José Marcos; Esteban Pérez, María Dolores; Rodríguez Escribano, Raúl Rubén; Pastor Navarro, José Luís; Sánchez Martín, Isidro
2016-01-01
Nowadays, the use of micropiles has undergone a great development. In general, they are made with cement grout, reinforced with steel tubing. In Spain, these grouts are prepared using OPC, although the standards do not forbid the use of other cements, like sustainable ones. Micropiles are in contact with soils and groundwater, in which the presence of sulphates is common. Their deleterious effects firstly affect to the microstructure. Then, the aim of this research is to study the effects of sulphate attack in the microstructure of micropiles grouts, prepared with OPC, fly ash and slag commercial cements, compared to their behaviour when they are exposed to an optimum hardening condition. The microstructure evolution has been studied with the non-destructive impedance spectroscopy technique, which has never been used for detecting the effects of sulphate attack when slag and fly ash cements are used. Its results have been contrasted with mercury intrusion porosimetry and “Wenner” resistivity ones. The 28-day compressive strength of grouts has been also determined. The results of microstructure characterization techniques are in agreement, although impedance spectroscopy is the most sensitive for following the changes in the porous network of grouts. The results showed that micropiles made using fly ash and slag cements could have a good performance in contact with aggressive sodium sulphate media, even better than OPC ones. PMID:28774026
Injectable barriers for waste isolation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persoff, P.; Finsterle, S.; Moridis, G.J.
In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture themore » formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.« less
A new design concept of fully grouted rock bolts in underground construction
NASA Astrophysics Data System (ADS)
Phich Nguyen, Quang; Nguyen, Van Manh; Tuong Nguyen, Ke
2018-04-01
The main problem after excavating an underground excavation is to maintain the stability of the excavation for a certain period of time. Failure in meeting this demand is a threat to safety of men and equipment. Support and reinforcement are different instruments with different mechanisms. Among the common support systems in tunnelling and mining, rock bolts have been widely used to reinforce rock mass and also to reduce geological hazards. Furthermore rock bolts can be applied under varying different geological conditions with cost-effectiveness. Although different methods are developed for grouted rock bolts design until now, the interaction mechanism of the rock bolts and rock mass is still very complicated issue. The paper addresses an analytical model for the analysis and design of fully grouted rock bolts based on the reinforcement principle. According to this concept the jointed rock mass reinforced by grouted rock bolts is considered as composite material which includes rock mass, the grout material and the bolt shank. The mechanical properties of this composite material depend on the ratio of the components. The closed-form solution was developed based on the assumption that the rock mass arround a circular tunnel remained elastic after installing fully grouted rock bolts. The main parameters of the rock-bolt system (the diameter and length of bolt shank, the space between the bolts) are then easily estimated from the obtained solution.
NASA Astrophysics Data System (ADS)
Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu
2011-10-01
A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.
Silicate-catalyzed chemical grouting compositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1972-09-28
Chemical grouting compositions for stabilizing earth, sand, and other porous particulate formations or agglomerates of solids are described. The composition for producing a chemically grouting structure consists of an aqueous base solution of: (1) vegetative polyphenolic material consisting of condensed type tannins, and an aqueous catalyst solution of (2) a water-soluble alkali metal silicate. The polyphenolic material is present in an amount from 5% to 40% based on the weight of the base solution, and the water- soluble alkali metal silicate is present in an amount to provide from 1% to 15% SiOD2U in the silicate compound based on themore » weight of the polyphenolic material. These grouting compositions are completely safe to operating personnel and to surrounding environment, since the potassium or sodium silicate catalysts are nontoxic. (15 claims)« less
Process for impregnating a concrete or cement body with a polymeric material
Mattus, A.J.; Spence, R.D.
1988-05-04
A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.
Analysis on pile testing results of post-grouting bored pile
NASA Astrophysics Data System (ADS)
Zheng, A. R.
2017-04-01
Based on static load test results, the bearing capacity of bored piles with pile-toe and pile-shaft post-grouting has been analyzed. The analysis reveals that: with post-grouting, the interface between pile and surrounding soil are strengthened and the relative sliding displacement in between is reduced; end resistance of pile is enhanced and can be mobilized at earlier stage with smaller sliding displacement. As a result, the performance of bored pile is improved with increased bearing capacity and reduced settlement.
1990-09-01
and grouting were performed from the rock surface using expandable-air packers . Grouting was performed by injecting, into a hole, a neat grout ( cement ...Water & cement type I & II Mix: ........................... 6:1 to 0.75:1 Connection: .................... Air packer , close to surface...pressure tested then backfilled. The holes were hydraulic-pressure tested with a single air- expanding packer near the surface at 5 psi gauge pressure. If
Process for impregnating a concrete or cement body with a polymeric material
Mattus, Alfred J.; Spence, Roger D.
1989-01-01
A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.
Rapid Assessment of Remedial Effectiveness and Rebound in Fractured Bedrock
2017-10-01
Permanent 5-inch diameter steel casing was then installed to a depth of 58.3 ft-bgs, and pressure-grouted in place using cement /bentonite grout. Once the...collected from 64 feet to 78 feet bgs. A 2-inch stainless steel well, screened from 64 to 74 feet bgs, was installed within the borehole. A filter pack was...installed from 63.5 ft to 74.5 ft bgs, and the remainder of the borehole was sealed with a bentonite seal and cement /bentonite grout. Therefore
1993-07-01
rod system or through a tremie tube ; both procedures were used interchangeably at Fort Dix to demon- strate the efficiency and effectiveness of each...allows delivery through either a l/4-in.-diam grout tube or a 3/8-in.-diam rout tube . The grout used at Fort Dix consisted of a mixture of water and... microfine , blended Portland cement (Lehigh Geocem’, Leeds, Alabama). The grout is a suspension of a uniformly produced cement clinker interground with
Negative grouting consequences on karst environment
NASA Astrophysics Data System (ADS)
Bonacci, O.; Roje-Bonacci, T.; Gottstein, S.
2009-04-01
Grouting is a procedure by means of which grout is injected into different kinds of karst spaces (cracks, fissures, conduits and caves). It has a wide application in modern civil engineering, especially in karst terrains. It started nearly 200 years ago. In most cases the ingredients for the preparation of mortars and grouting suspensions are: cement, bentonite, clay and fillers, additives for stability and water. In practice the composition of grouting suspension is not standardized. A suspension injected under pressure will circulate in the karst spaces like a more or less viscous fluid until some of the larger suspended particles are blocked where the karst voids get narrower than the size of injected grains. The injection of materials into karst groundwater, i.e. the construction of grouting curtains, definitely could be the cause of unpredictable negative consequences on karst groundwater environments. The building of dams in karst areas always go along the construction of grouting curtains. During the construction of most dams in karst all over the world millions tons of injection mass have been injected in karst underground. It may impact water quantity in vadose zone and in karstic aquifer causing water table lowering and spring desiccation. In such cases the negative impact on local karst environment could be very dangerous. Physically as well as chemically this mass voraciously and quickly destroyed underground habitats and killed an enormous number of endangered and endemic species. Very often this is extremely expensive procedure and in many cases not very successful from the engineering point of view. From the ecological point of view it could causes catastrophic consequences. The greatest problem is that until now neither engineers nor ecologists took care of these great and massive negative influences on underground karst environments. In this paper few examples of different consequences of grouting on the hydrogeological as well as ecological regime on karst environment in the Dinaric karst are given. The goal of this paper is to warn scientific community that is time to start with interdisciplinary research of this problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms,more » and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to radionuclide release from the waste. Because the waste inventory and concentration at both sites is sufficient to generate unacceptable doses to an off-site member of the public or inadvertent intruder in the absence of engineered barriers, the NRC staff review focused on the engineering features DOE plans to put in place to limit radionuclide release. At the FTF, DOE expects that peak doses are delayed beyond a 10,000 year performance period by a combination of (1) the flow-limiting effect of the steel tank liner and (2) chemical conditions created by the stabilizing grout overlying the waste that limit the solubility of key radionuclides for tens of thousands of years. At the SDF, DOE expects that flow will be significantly limited by water shedding along the closure cap lower drainage layer and that radionuclide release will be further limited by radionuclide precipitation or sorption within the high pH, chemically reducing conditions created within the saltstone waste form. Because the performance of both facilities depends on the performance of engineered barriers for thousands of years, the reviews included a detailed evaluation of the expected long-term behavior of these barriers. As previously discussed, NRC staff reviews of DOE waste determinations during consultation are designed to evaluate the three NDAA criteria, whereas the review of an updated PA during monitoring only addresses whether the NRC staff has reasonable assurance that the planned disposal action will meet the performance objectives of 10 CFR Part 61. The NRC staff review of the Waste Determination for the FTF did not include conclusions about whether the planned disposal of residual waste at the FTF would meet the NDAA criteria because of the substantial uncertainties in the degree of waste removal DOE would achieve and other technical uncertainties. The main product of the NRC staff review of the planned FTF disposal action is the recommendation that DOE should conduct waste release experiments to increase support for key modeling assumptions related to: (1) the evolution of pH and Eh in the grouted tank system over time; (2) identification of HRR association with solid phases comprising the residual wastes; and (3) expected solubility of HRRs under a range of environmental or service conditions that the residual wastes in the contaminated zone are expected to be exposed to over time. Implementation of this recommendation is deemed crucial for NRC staff to have reasonable assurance that the performance objectives in 10 CFR Part 61, Subpart C can be met. Given the risk-significance of Tank 18 to the overall PA and the short timeline for closure of this tank, the NRC staff recommended that DOE should initiate discussions with NRC staff regarding implementation of this recommendation for Tank 18 as soon as practical. The NRC staff also recommended that experiments to address this recommendation should be conducted prior to final closure of Tank 18. Results of the Tank 18 residual waste experiments, if conducted, will be evaluated by NRC staff to determine the need for additional data collection, experiments, and modeling for Tank 18, as well as other FTF tanks. Additional information regarding the NRC staff's recommendations in this area, including details on the suggested implementation of other recommendations will be provided in the NRC staff's plan for monitoring the FTF later in FY 2012, after DOE makes a final decision on the waste determination. The NRC staff's review of waste disposal at the SDF is ongoing. When complete, the SDF TER will indicate whether the NRC staff continues to have reasonable assurance that waste disposal at the SDF will meet the performance objectives of 10 CFR Part 61 (NDAA Criterion 3). The TER also will include risk insights that will form the basis of the NRC staff's revised monitoring plan for the SDF. The NRC staff will publish an updated monitoring plan for the SDF later in FY 2012. (authors)« less
Bond of Field-Cast Grouts to Precast Concrete Elements
DOT National Transportation Integrated Search
2017-01-01
The performance of connections between prefabricated concrete elements constructed using field-cast cementitious grouts and groutlike materials is becoming a focus area for accelerated bridge construction (ABC) projects. These connections are require...
Grouting applications in civil engineering. Volume I and II. [800 references
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, H.H.; Barvenik, M.J.
1975-01-01
A comprehensive description of grouting applications in civil engineering is presented that can serve as a basis for the selection of grouting methods in the borehole sealing problem. The breadth and depth of the study was assured by conducting the main part of the review, the collection and evaluation of information, without specifically considering the borehole sealing problem (but naturally incorporating any aspect of civil engineering applications that could be of potential use). Grouting is very much an art and not a science. In most cases, it is a trial and error procedure where an inexpensive method is initially triedmore » and then a more expensive one is used until the desired results are obtained. Once a desired effect is obtained, it is difficult to credit any one procedure with the success because the results are due to the summation of all the methods used. In many cases, the method that proves successful reflects a small abnormality in the ground or structure rather than its overall characteristics. Hence, successful grouting relies heavily on good engineering judgement and experience, and not on a basic set of standard correlations or equations. 800 references. (JRD)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.; Stefanko, D.
2011-03-10
The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibilitymore » issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, M.R.; Daie-e, G.
1988-07-01
There are certain hazardous wastes that must be contained in an extremely secure vessel for transportation and disposal. The vessel, among other things, must be able to withstand relatively large impacts without rupturing. Such containment vessels therefore must be able to absorb substantial amounts of energy during an impact and still perform their function. One of the impacts that the vessel must withstand is a 30-foot fall onto an unyielding surface. For some disposal scenarios it is proposed to encase the waste in a steel enclosure which is to be surrounded by a thick layer of concrete which, in turn,more » is encased by a relatively thin steel shell. Tests on concrete in compression and flexure, including static, dynamic and impact tests, have shown that low modulus concretes tend to behave in a less brittle manner than higher modulus concretes. Tests also show that fiber reinforced concretes have significantly greater ductility, crack propagation resistance and toughness than conventional concretes. Since it is known that concrete is a reasonably brittle material, it is necessary to do impact tests on sample containment structures consisting of thin-walled metal containers having closed ends which are filled with concrete, grout, or fiber reinforced concrete. This report presents the results of simple tests aimed at observing the behavior of sample containment structures subjected to impacts due to a fall from 30 feet. 8 figs., 4 tabs.« less
Experience in sealing water bearing strata during deep shaft sinking
NASA Astrophysics Data System (ADS)
Kipko, E. Ja.; Polozov, Ju. A.; Lagunov, V. A.; Lushnikova, O. Ju.
1984-12-01
The paper deals with major concepts of grouting through holes drilled from the surface. The results of grouting through a single borehole at the location of two 1090 m deep shafts in Donbass are presented.
Method for isolating two aquifers in a single borehole
Burklund, P.W.
1984-01-20
A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.
Method for isolating two aquifers in a single borehole
Burklund, Patrick W.
1985-10-22
A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.
Ahrens, E.H.
1998-07-07
An ultrafine cementitious grout is described having a particle size 90% of which are less than 6 {micro}m in diameter and an average size of about 2.5 {micro}m or less, and preferably 90% of which are less than 5 {micro}m in diameter and an average size of about 2 {micro}m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4--0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {micro}m in width. 4 figs.
Ahrens, Ernst H.
1998-01-01
An ultrafine cementitious grout having a particle size 90% of which are less than 6 .mu.m in diameter and an average size of about 2.5 .mu.m or less, and preferably 90% of which are less than 5 .mu.m in diameter and an average size of about 2 .mu.m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4-0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 .mu.m in width.
NASA Astrophysics Data System (ADS)
Kerem Ertek, M.; Demir, Gökhan; Köktan, Utku
2017-04-01
Liquefaction is an important seismic phenomena that has to be assessed and consequently makes it essential to take measures in order to reduce related hazards. There are several ways to assess liquefaction potential analytically and some constitutive models implemented in FEM softwares presenting cyclic behaviour of sand making it possible to observe shear strain or excess pore pressure ratio which are measures to hold a view about liquefaction occurrence. According to various studies in the literature, post-earthquake inspections show that the measures in terms of grouting, piled rafts and sand mixtures with different non-liquefiable materials reduce liquefaction related damage. This paper aims to provide a brief information about effectiveness of jet-grout columns and recycled material-sand mixtures against liquefaction by the help of numerical analyses performed with MIDAS GTS NX software with regard to generation of shear strains. Key words: liquefaction, numerical analyses, jet-grout, sand mixtures
An experimental study on dynamic response for MICP strengthening liquefiable sands
NASA Astrophysics Data System (ADS)
Han, Zhiguang; Cheng, Xiaohui; Ma, Qiang
2016-12-01
The technology of bio-grouting is a new technique for soft ground improvement. Many researchers have carried out a large number of experiments and study on this topic. However, few studies have been carried out on the dynamic response of solidified sand samples, such reducing liquefaction in sand. To study this characteristic of microbial-strengthened liquefiable sandy foundation, a microorganism formula and grouting scheme is applied. After grouting, the solidified samples are tested via dynamic triaxial testing to examine the cyclic performance of solidified sand samples. The results indicate that the solidified sand samples with various strengths can be obtained to meet different engineering requirements, the use of bacteria solution and nutritive salt is reduced, and solidified time is shortened to 1-2 days. Most importantly, in the study of the dynamic response, it is found that the MICP grouting scheme is effective in improving liquefiable sand characteristic, such as liquefaction resistance.
An FHWA Special Study: Post-Tensioning Tendon Grout Chloride Thresholds
DOT National Transportation Integrated Search
2014-05-01
"Elevated levels of chloride were recently discovered in a commercially available pre-bagged grout product made for : post-tensioned (PT) tendons. Chloride concentrations were reported to be as high as 5.27 percent by weight of cement. : These number...
Corrosion of post-tensioned tendons with deficient grout : final report.
DOT National Transportation Integrated Search
2016-10-20
Recent corrosion failures of post-tensioned (PT) tendons in the Ringling Causeway Bridge (and corrosion development of PT tendons elsewhere in Florida) utilizing pre-packaged low-bleed specified grout products have spurred the need to evaluate what m...
Corrosion performance of prestressing strands in contact with dissimilar grouts : technical summary.
DOT National Transportation Integrated Search
2013-01-01
Inspections of post-tensioned bridges : by the Kansas Department of Transportation : have revealed voids in strand ducts due to : bleeding and shrinkage of older Portland : Cement grouts. The Kansas Department : of Transportation is faced with a deci...
Research on Anchorage Performance of Grouting Anchor Connection of Precast Concrete Structure
NASA Astrophysics Data System (ADS)
Wang, Donghui; Liu, Xudong; Wang, Sheng; Cao, Xixi
2018-03-01
The bonding of grouted anchor bars is one of the vertical connection forms of steel bars in fabricated concrete structures. The performance of grouted connection is mainly affected by the anchorage length and lap length of steel bars. The mechanisms of bond and anchorage between steel bar and concrete are analyzed, and the factors that influence the anchorage performance of steel bar are systematically summarized. Results show that the bond and anchorage performance of steel and concrete have been studied widely, but there are still shortcomings, and the connection forms need to be further improved.
FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, T.; Swingle, R.; Crapse, K.
2011-01-01
The E-Area Low-Level Waste Facility (ELLWF) consists of a number of disposal units described in the Performance Assessment (PA)(WSRC, 2008b) and Composite Analysis (CA)(WSRC, 1997; WSRC, 1999): Low-Activity Waste (LAW) Vault, Intermediate Level (IL) Vault, Trenches (Slit Trenches [STs], Engineered Trenches [ETs], and Component-in-Grout [CIG] Trenches), and Naval Reactor Component Disposal Areas (NRCDAs). This annual review evaluates the adequacy of the approved 2008 ELLWF PA along with the Special Analyses (SAs) approved since the PA was issued. The review also verifies that the Fiscal Year (FY) 2010 low-level waste (LLW) disposal operations were conducted within the bounds of the PA/SAmore » baseline, the Savannah River Site (SRS) CA, and the Department of Energy (DOE) Disposal Authorization Statement (DAS). Important factors considered in this review include waste receipts, results from monitoring and research and development (R&D) programs, and the adequacy of controls derived from the PA/SA baseline. Sections 1.0 and 2.0 of this review are a summary of the adequacy of the PA/SA and CA, respectively. An evaluation of the FY2010 waste receipts and the resultant impact on the ELLWF is summarized in Section 3.1. The results of the monitoring program, R&D program, and other relevant factors are found in Section 3.2, 3.3 and 3.4, respectively. Section 4.0 contains the CA annual determination similarly organized. SRS low-level waste management is regulated under DOE Order 435.1 (DOE, 1999a) and is authorized under a DAS as a federal permit. The original DAS was issued by the DOE-Headquarters (DOE-HQ) on September 28, 1999 (DOE, 1999b) for the operation of the ELLWF and the Saltstone Disposal Facility (SDF). The 1999 DAS remains in effect for the regulation of the SDF. Those portions of that DAS applicable to the ELLWF were superseded by revision 1 of the DAS on July 15, 2008 (DOE, 2008b). The 2008 PA and DAS were officially implemented by the facility on October 31, 2008 and are the authorization documents for this FY2010 Annual Review. Department of Energy Headquarters approval of the 2008 DAS was subject to numerous conditions specified in the document. Two of those conditions are to update the ELLWF closure plan and monitoring plan to align with the conceptual model analyzed in the PA. Both of these conditions were met with the issuance of the PA Monitoring Plan (Millings, 2009a) and the Closure Plan (Phifer et al, 2009a). The PA Monitoring Plan was approved by DOE on July 22, 2009 and the Closure Plan was approved by DOE on May 21, 2009. Both will be updated as needed to remain consistent with the PA. The DAS also specifies that the maintenance plan include activities to resolve each of the secondary issues identified in the DOEHQ review of the 2008 PA that were not completely addressed either with supplemental material provided to the review team or in final revisions to the PA. These outstanding issues were originally documented in the 2008 update of the PA/CA Maintenance Plan (WSRC, 2008a) and in subsequent PA/CA Maintenance Plans (most recently SRNS, 2010a) as required and are actively being worked.« less
DOT National Transportation Integrated Search
2013-05-01
This document is a technical summary of the Federal Highway Administration report, "Guidelines for Sampling, Assessing, and Restoring Defective Grout in Prestressed Concrete Bridge Post-Tensioning Ducts" (FHWA-HRT-13-028). The objectives of this stud...
Simulation of prepackaged grout bleed under field conditions.
DOT National Transportation Integrated Search
2014-04-01
This report contains a summary of the research performed in the area of reproducing and determining the cause of soft : grout, which has been found in several PT (Post-Tensioned) tubes around the state of Florida. A modified version of the : Euronorm...
Demonstration of close-coupled barriers for subsurface containment of buried waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.
1996-05-01
A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed wastemore » remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.« less
Treatment of G1 Baskets at the CEA Marcoule Site - 12027
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fourquet, Line; Boya, Didier
2012-07-01
In the dismantling program for the first-generation French reactors in accordance with the nonproliferation treaty, the CEA is in charge of cleanup and dismantling operations for the facilities at Marcoule, including the decladding units. The G1 decladding was built between 1955 and 1957 in order to de-clad spent fuel elements from the G1 plutonium-producing reactor and prepare them for dissolution. The facility was also used for interim storage of G1, G2 and G3 fuel dissolution baskets, which had been used during plant operation for transfer (from the decladding facility to the UP1 plant) and/or dissolution of spent fuel elements. Onemore » of the cleanup projects involves recovery of the baskets, which will be cut up, sorted, and conditioned in metal bins. The bins will be immobilized with cement grout, then transferred to the onsite solid waste conditioning facility (CDS) and to the repository operated by the French National Radioactive Waste Management Agency (ANDRA). The project is now in progress, after special safety permits were issued and measurement stations and dedicated tools were developed to handle all types of baskets (which differed according to their origin and use). The disposal of all the baskets is scheduled to last 2 years and will produce 55 metal waste bins. (authors)« less
DOT National Transportation Integrated Search
2013-10-01
A significant proportion of the United States bridge inventory is based on bonded post-tensioned (PT) concrete construction. An important aspect of maintaining corrosion protection of these PT systems is assuring that tendon ducts are properly groute...
DOT National Transportation Integrated Search
2013-10-01
"A significant proportion of the U.S. bridge inventory is based on bonded post-tensioned (PT) concrete construction. An : important aspect of maintaining corrosion protection of these PT systems is assuring that tendon ducts are properly grouted : wi...
Municipalities are discovering rapid degradation of infrastructures in wastewater collection and treatment facilities due to the infiltration of water from the surrounding environments. Wastewater facilities are not only wet, but also experience hydrostatic pressure conditions un...
Concrete and cement composites used for radioactive waste deposition.
Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel
2017-11-01
This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measurement of rock mass deformation with grouted coaxial antenna cables
NASA Astrophysics Data System (ADS)
Dowding, C. H.; Su, M. B.; O'Connor, K.
1989-01-01
Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour.
Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Davenport, A; Street, S; Scott, T B
2017-08-11
Uranium encapsulated in grout was exposed to water vapour for extended periods of time. Through synchrotron x-ray powder diffraction and tomography measurements, uranium dioxide was determined the dominant corrosion product over a 50-week time period. The oxide growth rate initiated rapidly, with rates comparable to the U + H 2 O reaction. Over time, the reaction rate decreased and eventually plateaued to a rate similar to the U + H 2 O + O 2 reaction. This behaviour was not attributed to oxygen ingress, but instead the decreasing permeability of the grout, limiting oxidising species access to the metal surface.
Minimizing the impact on water quality of placing grout underwater to repair bridge scour damage.
DOT National Transportation Integrated Search
2003-01-01
The Virginia Department of Transportation (VDOT) has routinely used what is commonly referred to as tremie concrete (concrete or grout placed underwater by way of pumping through a metal tremie pipe) to repair bridge substructure and scour damage. VD...
Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.
Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C
2017-10-01
Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.
Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B
2015-03-21
How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Farooq, Muhammad; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said
2014-01-01
The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway. PMID:24578621
Penstock leakage at the Robert Moses Niagara Power Plant - Investigation, design, and construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumont, M.F.; Baker, C.H.; Broderick, W.
1995-12-31
This paper describes an investigation of observed penstock leakage and related gallery flooding at the Robert Moses Niagara Power Plant, in Lewiston, New York; engineering design of alternative remediation measures; test grouting of a dewatered penstock in 1991; and the subsequent grouting of the remaining twelve penstocks. The Robert Moses Niagara Power Plant is the lower part of the Niagara Pumped Storage Project, which is owned and operated by the New York Power Authority. Water diverted some 4 miles (6.4 km) upstream of the plant is passed through 13 individual penstocks 28 ft (8.5 m) in diameter to a powermore » plant on the right bank of the Niagara River. The net head at the plant is 300 ft (91.4 m), and the hydraulic capacity is about 91,000 cfs (2,575 m{sup 3}/s). The total installed capacity is about 2,000 MW. Since completion of construction in 1962 there had been recurring problems with flooding of the floors at the upper intake galleries. This was particularly noticeable during periods of heavy rainfall when the existing storm drains were close to their design capacity. The paper presents details of the investigations, including penstock inspection, methods of flow measurement and analysis, design criteria for the grout selected, details of the drilling and grout placement, and the anticipated long-term performance of the grout in service.« less
Farooq, Muhammad; Park, Samgyu; Kim, Jung Ho; Song, Young Soo; Amjad Sabir, Mohammad; Umar, Muhammad; Tariq, Mohammad; Muhammad, Said
2014-01-01
The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM) was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.
Data Package for Secondary Waste Form Down-Selection—Cast Stone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serne, R. Jeffrey; Westsik, Joseph H.
2011-09-05
Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations andmore » leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.
Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review andmore » assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
... real-time, multiple-strategy approach (i.e., appropriate grout design and installation, installed... is available in ADAMS) is provided the first time that a document is referenced. Revision 2 of... ``Regulatory Guide'' series. This series was developed to describe and make available to the public information...
DOT National Transportation Integrated Search
2017-02-01
The two focus areas of this research address longstanding problems of (1) cracking of concrete slabs due to creep and shrinkage and (2) high performance compositions for grouting and joining precast concrete structural elements. Cracking of bridge de...
Field testing of jet-grouted piles and drilled shafts.
DOT National Transportation Integrated Search
2014-01-01
A field study of deep foundations supporting high mast lighting and signage was undertaken in typical Florida : soils. Three drilled shafts (48 in x12 ft and two 48 in x18 ft) and two jet-grouted piles (28 in x18 ft) were : constructed in Keystone He...
Repair of the DSS-14 Pedestal Concrete
NASA Technical Reports Server (NTRS)
Mcclure, D.
1985-01-01
About three years after the Goldstone Deep Space Station antenna was dedicated, grout under the hydrostatic bearing runner was found to be interacting with the runner, causing rust to form between the runner and the sole plates upon which it rests. The rust formed unevenly and the runner could not be kept flat so in 1969 the grout was removed and replaced with a Portland cement and sand dry pack grout that was less likely to produce rust. In the years that followed, oil leaking from the runner assembly caused progressive deterioration of the drypack grout. In 1982 over one thousand hours of spacecraft tracking time were lost due to this deterioration. A plan was developed to rehabilitate the bearing. The plan called for raising the rotating structure free from the concrete pedestal and placing it on three pairs of external support columns. With the weight of the structure transferred to the columns, the pads and runner could be removed and the repair started. The very successful repair included the replacement of a significant portion of the antenna pedestal.
NASA Astrophysics Data System (ADS)
Heinz, W. F.
1988-12-01
Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.
Long-Term Mechanical Behavior of Nano Silica Sol Grouting
Zhang, Nong; Zhang, Chenghao; Qian, Deyu; Han, Changliang; Yang, Sen
2018-01-01
The longevity of grouting has a significant effect on the safe and sustainable operation of many engineering projects. A 500-day experiment was carried out to study the long-term mechanical behavior of nano silica sol grouting. The nano silica sol was activated with different proportions of a NaCl catalyst and cured under fluctuating temperature and humidity conditions. The mechanical parameters of the grout samples were tested using an electrohydraulic uniaxial compression tester and an improved Vicat instrument. Scanning electron microscope, X-ray diffraction, and ultrasonic velocity tests were carried out to analyze the strength change micro-mechanism. Tests showed that as the catalyst dosage in the grout mix is decreased, the curves on the graphs showing changes in the weight and geometric parameters of the samples over time could be divided into three stages, a shrinkage stage, a stable stage, and a second shrinkage stage. The catalyst improved the stability of the samples and reduced moisture loss. Temperature rise was also a driving force for moisture loss. Uniaxial compressive stress-strain curves for all of the samples were elastoplastic. The curves for uniaxial compression strength and secant modulus plotted against time could be divided into three stages. Sample brittleness increased with time and the brittleness index increased with higher catalyst dosages in the latter part of the curing time. Plastic strength-time curves exhibit allometric scaling. Curing conditions mainly affect the compactness, and then affect the strength. PMID:29337897
Installation and use of epoxy-grouted rock anchors for skyline logging in southeast Alaska.
W.L. Schroeder; D.N. Swanston
1992-01-01
Field tests of the load-carrying capacity of epoxy-grouted rock anchors in poor quality bedrock on Wrangel Island in southeast Alaska demonstrated the effectiveness of rock anchors as substitutes for stump anchors for logging system guylines. Ultimate capacity depends mainly on rock hardness or strength and length of the imbedded anchor.
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.
2018-01-01
To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.
NASA Astrophysics Data System (ADS)
Lawrence, J.; Li, L.; Spencer, J. T.
1998-04-01
Work has been conducted using a 60 Wcw high power diode laser (HPDL) in order to determine the feasibility and characteristics of sealing the void between adjoining ceramic tiles with a specially developed grout material having an impermeable enamel surface glaze. A two-stage process has been developed using a new grout material which consists of two distinct components: an amalgamated compound substrate and a glazed enamel surface; the amalgamated compound seal providing a tough, heat resistant bulk substrate, whilst the enamel provides an impervious surface. HPDL processing has resulted in crack free seals produced in normal atmospheric conditions. The basic process phenomena are investigated and the laser effects in terms of seal morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O 2 and Ar, during laser processing. Tiles were successfully sealed with power densities as low as 500 W/cm 2 and at rates up to 600 mm/min. Contact angle measurements revealed that due to the wettability characteristics of the amalgamated oxide compound grout (AOCG), laser surface treatment was necessary in order to alter the surface from a polycrystalline to a semi-amorphous structure, thus allowing the enamel to adhere. Bonding of the enamel to the AOCG and the ceramic tiles was identified as being principally due to van der Waals forces, and on a very small scale, some of the base AOCG material dissolving into the glaze.
Use of fly-ash slurry in backfill grouting in coal mines.
Jiang, Ning; Zhao, Jinhai; Sun, Xizhen; Bai, Liyang; Wang, Changxiang
2017-11-01
Cave backfill grouting implies grouting of the caving rock mass prior to it being compacted. The filling materials strengthen the caving rock and support the overlying strata to achieve the purpose of slowing down the surface subsidence. The broken roof will fail and collapse during mining operations performed without appropriate supporting measures being taken. It is difficult to perform continuous backfill mining on the working face of such roofs using the existing mining technology. In order to solve the above problems, fly ash and mine water are considered as filling materials, and flow characteristics of fly-ash slurry are investigated through laboratory experiments and theoretical analyses. Laws governing the diffusion of fly-ash slurry in the void of caving rock masses and in the void between a caving rock mass and a basic roof are obtained and verified. Based on the results obtained from the above analyses and actual conditions at the Zhaoguan coal mine, Shandong Province, China, a cave backfill grouting system of the hauling pipeline is developed and successfully tested at the 1703 working face in the Zhaoguan coal mine. The results demonstrate that a filling rate of 43.46% is achieved, and the surface subsidence coefficient of the grouting process is found to be 0.475. Compared to the total caving method, the proposed system is found to achieve a reduction rate of 40.63%. This effectively helps in lowering the value of the surface subsidence coefficient. Fly ash and mine water, considered as primary materials in this study, also play a significant role in improving the air quality and water environment.
Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.
Harker, N. J.; Hallam, K. R.; Paraskevoulakos, C.; Banos, A.; Rennie, S.; Jowsey, J.
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed. PMID:26176551
Preparation of grout for stabilization of abandoned in-situ oil shale retorts
Mallon, Richard G.
1982-01-01
A process for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700.degree. C. to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700.degree. C. for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.
Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C. A.; Stefanko, D. B.
2013-04-23
Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify amore » single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). 2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. 3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. 4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). 5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP#8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12. Mix, LP#8-16 is recommended for inclusion in the specification for furnishing and delivering tank closure grout for Tanks 18-F and 19-F [Forty, 2011 c]. A shrinkage compensating variation of this mix, LP#16C, has not been fully developed and characterized at this time.« less
Small Column Ion Exchange Design and Safety Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, T.; Rios-Armstrong, M.; Edwards, R.
2011-02-07
Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streamsmore » for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and includes provisions for equipment maintenance including remote handling. The design includes a robust set of nuclear safety controls compliant with DOE Standard (STD)-1189, Integration of Safety into the Design Process. The controls cover explosions, spills, boiling, aerosolization, and criticality. Natural Phenomena Hazards (NPH) including seismic event, tornado/high wind, and wildland fire are considered. In addition, the SCIX process equipment was evaluated for impact to existing facility safety equipment including the waste tank itself. SCIX is an innovative program which leverages DOE's technology development capabilities to provide a basis for a successful field deployment.« less
HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.
2003-02-27
This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less
Pressurized grout remote backfilling at AML sites near Beulah and Zap, North Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiner, E.J.; Dodd, W.E.
1999-07-01
The Abandoned Mine Lands (AML) Division of the North Dakota Public Service Commission (PSC) is charged with the reclamation of hazardous abandoned mine sites in North Dakota. Several underground lignite coalmines were operated near the cities of Beulah and Zap, North Dakota, from the early 1900's until about 1955. Coal seams in this area were relatively thick and the overburden generally shallow. As these mines have deteriorated with time, deep collapse features, or sinkholes, have surfaced in many areas. These features are very dangerous, especially when they occur at or near residential and commercial areas and public roads. In themore » past five years, sinkholes have surfaced beneath a commercial building (boat dealership, lounge, and gas station) and beneath a nearby occupied mobile home north of Beulah. sinkholes have also surfaced near KHOL Radio Station in Beulah and in the right of way of a public road south of Zap. The AML Division has conducted several emergency sinkhole-filling projects in these areas. In 1995--97, the AML Division conducted exploratory drilling which confirmed the presence of collapsing underground mines at these sites. The remediation of these sites around Beulah/Zap will take place over several years and involve three or more separate contracts due to budget considerations. In 1997, the AML Division began reclamation at these sties utilizing pressurized grout remote backfilling. In this technique, a cementitious grout is pumped through cased drill holes directly into the mine cavities to fill them and thereby stabilize the surface from collapse. The successful contractor for Phase One of the project was The Concrete Doctor, Inc. (TCDI). This paper will concentrate on Phase One of this work performed from June through September 1997. This project is especially interesting because grout was pumped through holes drilled inside the occupied commercial building. Grout was also pumped through angled holes that intercepted mined workings directly beneath the structure. Several specialized monitoring techniques were used to alert contractor if any movement in the structures occurred during grouting activities. Informational meetings were conducted by TCDI and PDC held with landowners, business owners, residents and road authorities before, during and after the project.« less
Installation Restoration Program Phase 2. Confirmation/Quantification. Stage 1. Volume 1.
1986-10-10
FIGUR 1- EEA LNO EFIG I AiNLanfl GUARD BASESHOWING PHSE II INVTIGTOIE I 1- ........ Site No. - I MAA Site No.Northwest Landfill TS Site.No.4 West...Protective Steel PVC Cap Flush Mount in Casing Plastic Nelson Valve Box Land Surface PVC Cap . Cement Grout 0 L n aBentonite Pellet 4" Diameter Seal...12.0 feet BLS. Clays of high plasticity predominate in all three wells. No sand lenses were encountered and the topsoil at all three well locations is
The grout/glass performance assessment code system (GPACS) with verification and benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepho, M.G.; Sutherland, W.H.; Rittmann, P.D.
1994-12-01
GPACS is a computer code system for calculating water flow (unsaturated or saturated), solute transport, and human doses due to the slow release of contaminants from a waste form (in particular grout or glass) through an engineered system and through a vadose zone to an aquifer, well and river. This dual-purpose document is intended to serve as a user`s guide and verification/benchmark document for the Grout/Glass Performance Assessment Code system (GPACS). GPACS can be used for low-level-waste (LLW) Glass Performance Assessment and many other applications including other low-level-waste performance assessments and risk assessments. Based on all the cses presented, GPACSmore » is adequate (verified) for calculating water flow and contaminant transport in unsaturated-zone sediments and for calculating human doses via the groundwater pathway.« less
Method of Remotely Constructing a Room
Michie, J. D.; De Hart, R. C.
1971-10-05
The testing of nuclear devices of high explosive yield has required that cavities of relatively large size be provided at considerable distances below the surface of the earth for the pre-detonation emplacement of the device. The construction of an essentially watertight chamber or room in the cavity is generally required for the actual emplacement of the device. A method is described of constructing such a room deep within the earth by personnel at the surface. A dual wall bladder of a watertight, pliable fabric material is lowered down a shaft into a selected position. The bladder is filled with a concrete grout while a heavy fluid having essentially the same density as the grout is maintained on both sides of the bladder, to facilitate complete deployment of the bladder by the grout to form a room of desired configuration. (10 claims)
Method of remotely constructing a room
Michie, J.D.; De Hart, R.C.
1971-10-05
The testing of nuclear devices of high explosive yield has required that cavities of relatively large size be provided at considerable distances below the surface of the earth for the pre-detonation emplacement of the device. The construction of an essentially watertight chamber or room in the cavity is generally required for the actual emplacement of the device. A method is described of constructing such a room deep within the earth by personnel at the surface. A dual wall bladder of a watertight, pliable fabric material is lowered down a shaft into a selected position. The bladder is filled with a concrete grout while a heavy fluid having essentially the same density as the grout is maintained on both sides of the bladder, to facilitate complete deployment of the bladder by the grout to form a room of desired configuration. (10 claims)
Preparation of grout for stabilization of abandoned in-situ oil shale retorts. [Patent application
Mallon, R.G.
1979-12-07
A process is described for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700/sup 0/C to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700/sup 0/C for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.
Detecting grouting quality of tendon ducts using the impact-echo method
NASA Astrophysics Data System (ADS)
Qu, Guangzhen; Sun, Min; Zhou, Guangli
2018-06-01
The performance, durability and safety of prestressed concrete bridge were directly affected by the compaction of prestressed pipe. However, the pipe was hidden in the beam, and its grouting density was difficult to detect. The paper had modified three different status of gouting quality through making test model. After that, the impact-Echo method was adopted to detect the grouting quality of tendon ducts, the study was sunmmarized as follow. If the reflect time of slab bottom and nominal thickness of slab increased, the degree of density will increase; testing from half-hole of web, the reflect time and nominal thickness of slab was biggest. At the same time, the reflect time of compacted and uncompacted tendon ducts were mainly. At last, the method was verified by the engineering project, which provided reference value.
Properties of Tuffs, Grout and Other Materials.
1982-01-01
analysis , and tested in uniaxial strain. Table 2 presents the physical properties, ultrasonic data, and the per- manent volume compaction resulting from the... methods provide an accuracy of ±2% on pressure and stress measure- ments. Strain Measurements - Strains are measured using cantilever arms inside the...that are used in nuclear blast effects analysis , and specifically to assist in the analysis of the grout sphere explosive tests being conducted by the
Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel
2017-05-30
Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the "Wenner" resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC.
Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel
2017-01-01
Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958
TANKS 18 AND 19-F STRUCTURAL FLOWABLE GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanko, D.; Langton, C.
2011-11-01
Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: (1) physically stabilize the final landfill by filling the empty volume in the tanks with a non compressible material; (2) provide a barrier for inadvertent intrusion into the tank; (3) reduce contaminant mobility by (a) limiting the hydraulic conductivity of the closed tank and (b) reducing contact between the residual waste and infiltrating water; and (4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identifymore » a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: (1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical admixtures used for adjusting the flow properties needed to be updated because the original admixture products are no longer available. Also, the sources of cement and fly ash have changed, and Portland cements currently available contain up to 5 wt. % limestone (calcium carbonate). (2) Prepare and evaluate the placement, compressive strength, and thermal properties of the selected formulation with new admixture dosages. (3) Identify opportunities for improving the mix selected by HLW Closure Project personnel and prepare and evaluate two potentially improved zero bleed flowable fill design concepts; one based on the reactor fill grout and the other based on a shrinkage compensating flowable fill mix design. (4) Prepare samples for hydraulic property measurements for comparison to the values in the F and H- Tank Farm Performance Assessments (PAs). (5) Identify a grout mix for the Tanks 18-F and 19-F Grout Procurement Specification [Forty, 2011 a, b, c]. Results for two flowable zero bleed structural fill concepts containing 3/8 inch gravel (70070 Series and LP-8 Series) and a sand only mix (SO Series) are provided in this report. Tank Farm Engineering and SRNL Project Management selected the 70070 mix as the base case for inclusion in Revision 0 of the Tanks 18-F and 19-F grout procurement specification [Forty 2011 a] and requested admixture recommendations and property confirmation for this formulation [Forty, 2011 b]. Lower cementitious paste mixes were formulated because the 70070 mix is over designed with respect to strength and generates more heat from hydration reactions than is desirable for mass pour application. Work was also initiated on a modification of the recommended mix which included shrinkage compensation to mitigate fast pathways caused by shrinkage cracking and poor physical bonding to the tank and ancillary equipment. Testing of this option was postponed to FY12.« less
Rock Testing Handbook (Test Standards 1993)
1993-01-01
surface. ergy lost due to nonuniformity of mediums. progressive failure-formation and development of localized refusal-in grouting, when the rate of...the components of mixed grout, resulting in nonuniform across which it acts. (ISRM) proportions in the mass. shear plane-a plane along which failure of...responr, le techndcal commttee, which you may attend if you teel mt your comments have not received a lair heating you should make your views known to the
Settlement mechanism of piled-raft foundation due to cyclic train loads and its countermeasure
NASA Astrophysics Data System (ADS)
Gu, Linlin; Ye, Guanlin; Wang, Zhen; Ling, Xianzhang; Zhang, Feng
2017-07-01
In this paper, numerical simulation with soil-water coupling finite element-finite difference (FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure (EPWP) of a piled-raft foundation due to cyclic high-speed (speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer (No-9 layer) has better effect on reducing the settlement.
Method and apparatus for constructing an underground barrier wall structure
Dwyer, Brian P.; Stewart, Willis E.; Dwyer, Stephen F.
2002-01-01
A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.
10 CFR 850.32 - Waste disposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal...-contaminated equipment and other items that are disposed of as waste, through the application of waste...
Determining the Release of Radionuclides from Tank 18F Waste Residual Solids: FY2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Pore water leaching studies were conducted on actual Savannah River Site (SRS) Tank 18F residual waste solids to support Liquid Waste tank closure efforts. A test methodology was developed during previous simulant testing to produce slurries of tank residual solids and grout-representative solids in grout pore water solutions (based on SRS groundwater compositions) with pH and E h values expected during the aging of the closed waste tank. The target conditions are provided below where the initial pore water has a reducing potential and a relatively high pH (Reducing Region II). The pore water is expected to become increasingly oxidizingmore » with time (Oxidizing Region II) and during the latter stages of aging (Oxidizing Region III) the pH is expected to decrease. For the reducing case, tests were conducted with both unwashed and washed Tank 18F residual solids. For the oxidizing cases (Oxidizing Regions II and III), all samples were washed with simulated grout pore water solutions prior to testing, since it is expected that these conditions will occur after considerable pore water solution has passed through the system. For the reducing case, separate tests were conducted with representative ground grout solids and with calcium carbonate reagent, which is the grout phase believed to be controlling the pH. Ferrous sulfide (FeS) solids were also added to the reducing samples to lower the slurry E h value. Calcium carbonate solids were used as the grout-representative solid phase for each of the oxidizing cases. Air purge-gas with and without CO 2 removed was transferred through the oxidizing test samples and nitrogen purge-gas was transferred through the reducing test samples during leach testing. The target pH values were achieved to within 0.5 pH units for all samples. Leaching studies were conducted over an E h range of approximately 0.7 V. However, the highest and lowest E h values achieved of ~+0.5 V and ~-0.2 V were significantly less positive and less negative, respectively, than the target values. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively.« less
Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: CAS 03-04-02, Area 3 Subdock Septic Tank CAS 03-59-05, Area 3 Subdock Cesspool CAS 12-59-01, Drilling/Welding Shop Septic Tanks CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document.more » The scope of work required to implement the recommended closure alternatives is summarized below. CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. CAS 12-60-01, Drilling/Welding Shop Outfalls, contains no COCs above action levels. No further action is required for this site; however, as a BMP, three drain pipe openings will be sealed with grout.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.; Smith, F.; Hamm, L.
2014-10-06
Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and datamore » identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: New K d values for iodine, radium and uranium; Elimination of cellulose degradation product (CDP) factors; Updated radionuclide data; Changes in transport behavior of mobile radionuclides; Potential delay in interim closure beyond 2025; and Component-in-grout (CIG) plume interaction correction. Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future ST’s in the West Slit Trench Group based on the Impacted Final SOFs for existing ST’s in that area.« less
2007-04-01
generation, to reduce the amount of cement required, and to provide additional tensile strength to the concrete. Although there was limited success with...generally less workable and requires more cement due to the increased water requirements. He further states that with the equipment currently...52- Table 9. Results of the Type III Grout Scoping Study Mixture Water Cement Ratio Sand Replicate Compressive Strength MPa (psi) Flow Cone
1982-08-01
of Dam Profile and Embankment Section 0-5-1343 Right Abutment 4 Embankment Sections Conduit and Transitions 0-5-1344 5 Embankment Sections Valley and...Cook Construction Company of Jackson, Mississippi. The drilling and grouting for the grout curtain was accomplished by subcontractor, Golden Drilling... Company of Golden, Colorado. The concrete structures for outlet works and stilling basin were done by subcontractor, Bushman Construction Company of
Anchorage performance of a high-pressure pre-tightening resin anchor with a compressed grouting body
Tian, Jiansheng; Hu, Li
2017-01-01
Supports for deep mine roadways located in soft surrounding rock face several problems: difficulty in applying pre-tightening force, low bearing capacity, and poor initial support. To solve these problems, this study proposes a high-pressure pre-tightening resin anchor with a compressed grouting body for use in soft and fractured rock surrounding a deep roadway. Using model experiments, we analyzed the anchorage performance of the proposed anchor and a conventional tensile-type anchor for three different values of the elastic modulus of the surrounding rock. The results showed that regardless of the surrounding rock type, the peak micro-strain (642–541) and displacement (6.09–6.5 mm) at the pull-out end of the proposed anchor were always smaller than the peak micro-strain (1433–1105) and displacement (8.77–9.2 mm) at the pull-out end of the conventional anchor. Furthermore, as the anchor’s pre-tightening force increased from 20 kN to 120 kN, the anchor’s strain remained concentrated over a length of 0.4 m from the bearing end. Compared with conventional tensile-type anchors, the proposed high-pressure pre-tightening resin anchor with a compressed grouting body has a higher ultimate bearing capacity, allows the grouting length to be decreased to 0.4 m, and provides initial support resistance. PMID:28196084
A model for managing sources of groundwater pollution
Gorelick, Steven M.
1982-01-01
The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.
1981-08-01
Design 6 2.2 Construction 6 2.3 Operation 6 2.4 Geology 6 2.5 Evaluation 6 SECTION 3 - VISUAL INSPECTION 3.1 Findings 7 3.2 Evaluation 9 SECTION 4...Downstream of Dam 9 Erosion Behind East Wingwall 10 Erosion and Debris Behind West Wingwall 11 Diagonal Crack in East Wingwall 12 West Wingwall...2.0 H to approximately 1.0 V on 6.0 H. (6) Zoning - Unknown. (7) Impervious core - Unknown. (8) Cutoff - Unknown. ( 9 ) Grout curtain - Unknown. h
ACHP | News | ACHP Issues Program Comment for Disposal of Navy vessels
Search skip specific nav links Home arrow News arrow ACHP Issues Program Comment for Disposal of Navy vessels ACHP Issues Program Comment for Disposal of Navy vessels March 8, 2010 Â The Advisory Council on Historic Preservation (ACHP) has issued a Program Comment, pursuant to 36 CFR 800.14(e), to the U.S. Navy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.
2008-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
NASA Astrophysics Data System (ADS)
Stoddard, K. I.; Hodge, V.; Maxey, G.; Tiwari, C.; Cready, C.; Huggett, D. B.
2017-06-01
Research continues to show that pharmaceutical environmental contamination causes adverse effects to aquatic life. There are also public health risks associated with pharmaceuticals because in-home reserves of medications provide opportunities for accidental poisoning and intentional medication abuse. Pharmaceutical take back programs have been seen as a potential remedy for these issues; however, a thorough review of past programs indicates limited research has been conducted on take back programs. Furthermore, there are significant gaps in take back program research. To address these gaps and ultimately determine if take back programs could improve public health, research was conducted in conjunction with the take back program Denton drug disposal days held in Denton, Texas. Socioeconomic, demographic, and geographic characteristics of Denton drug disposal days participants were investigated using surveys and Geographic Information Systems. Potential impacts of the Denton drug disposal days program on public health were determined by comparing data from Denton drug disposal days events with data supplied by the North Texas Poison Center. Results suggest that Denton drug disposal days events may have prevented accidental poisonings or intentional abuse, however only qualitative comparisons support this statement and there was insufficient empirical evidence to support the conclusion that Denton drug disposal days events were exclusively responsible for public health improvements. An interesting finding was that there was a definitive travel threshold that influenced participation in Denton drug disposal days events. Overall, this study fills some geographic, socioeconomic, and demographic data gaps of take back programs and proposes methods to analyze and improve participation in future take back programs. These methods could also be applied to improve participation in other local environmentally-focused programs such as household hazardous collection events.
Stoddard, K I; Hodge, V; Maxey, G; Tiwari, C; Cready, C; Huggett, D B
2017-06-01
Research continues to show that pharmaceutical environmental contamination causes adverse effects to aquatic life. There are also public health risks associated with pharmaceuticals because in-home reserves of medications provide opportunities for accidental poisoning and intentional medication abuse. Pharmaceutical take back programs have been seen as a potential remedy for these issues; however, a thorough review of past programs indicates limited research has been conducted on take back programs. Furthermore, there are significant gaps in take back program research. To address these gaps and ultimately determine if take back programs could improve public health, research was conducted in conjunction with the take back program Denton drug disposal days held in Denton, Texas. Socioeconomic, demographic, and geographic characteristics of Denton drug disposal days participants were investigated using surveys and Geographic Information Systems. Potential impacts of the Denton drug disposal days program on public health were determined by comparing data from Denton drug disposal days events with data supplied by the North Texas Poison Center. Results suggest that Denton drug disposal days events may have prevented accidental poisonings or intentional abuse, however only qualitative comparisons support this statement and there was insufficient empirical evidence to support the conclusion that Denton drug disposal days events were exclusively responsible for public health improvements. An interesting finding was that there was a definitive travel threshold that influenced participation in Denton drug disposal days events. Overall, this study fills some geographic, socioeconomic, and demographic data gaps of take back programs and proposes methods to analyze and improve participation in future take back programs. These methods could also be applied to improve participation in other local environmentally-focused programs such as household hazardous collection events.
Foundation Report, Dam & Spillway, Taylorsville Lake, Ohio River Basin, Salt River, Kentucky.
1983-04-01
methods. The spacing of the primary holes was set on 10- foot centers, followed by secondary holes on 5- foot centers and tertiary holes on 2.5- foot ...88’ and 5+00. This area was further divided into 100- foot sections and drilled and grouted in alternating sections. Sections 7, 9 and 5 were drilled...100- foot sections and grouted by alternate sections to preclude violating the 100- foot spacing requirement. Many of the first holes on the left abutment
Effects of remedial grouting on the ground-water flow system at Red Rock Dam near Pella, Iowa
Linhart, S. Mike; Schaap, Bryan D.
2001-01-01
Hydrographs, statistical analysis of waterlevel data, and water-chemistry data suggest that underseepage on the northeast side of the dam has been reduced but not completely eliminated. Some areas appear to have been affected to a greater degree and for a longer period of time than other areas. Future monitoring of water levels, water chemistry, and stable isotopes can aid in the evaluation of the long-term effectiveness of remedial grouting.
Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis
NASA Astrophysics Data System (ADS)
Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.
2018-04-01
Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous frequency, which makes weak reflections more noticeable. The mode mixing phenomenon is observed in several tests, but this does not markedly affect the identification results due to the simple medium in bolt tests. The mode mixing can be reduced by ensemble EMD (EEMD) or complete ensemble EMD with adaptive noise (CEEMDAN), which are powerful tools to used analyze the test signal in a complex medium and may play an important role in future studies. The HHT bolt signal analysis method is a self-adaptive and automatic process, which can be programed as analysis software and will make bolt tests more convenient in practice.
Site Selection for the Disposal of LLW in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, W.S.; Chi, L.M.; Tien, N.C.
2006-07-01
This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potentialmore » candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This paper presents the implementation status of the LLW disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes, and preliminary disposal concepts 'NIMBY' (Not in my backyard) is a critical problem for implementation of the final disposal project. Resistance from local communities has been continuously received during site characterization. To overcome this, an incentive program to encourage community acceptance has been approved by the Government. Programs for community promotion are being proposed and negotiations are also underway. (authors)« less
Heat of Hydration of Low Activity Cementitious Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasol, D.
2015-07-23
During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulantsmore » of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.« less
Clay-cement suspensions - rheological and functional properties
NASA Astrophysics Data System (ADS)
Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.
2017-01-01
The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meiers, R.J.; Golden, D.; Gray, R.
1995-12-31
Indianapolis Power and Light Company (IPL) began researching the use of fluid placement techniques of the fixated scrubber sludge (FSS) to reduce surface subsidence from underground coal mines to develop an economic alternative to low strength concrete grout. Abandoned underground coal mines surround property adjacent to IPL`s coal combustion by-product (CCBP) landfill at the Petersburg Generating Station. Landfill expansion into these areas is in question because of the high potential for sinkhole subsidence to develop. Sinkholes manifesting at the surface would put the integrity of a liner or runoff pond containment structure for a CCBP disposal facility at risk. Themore » fluid placement techniques of the FSS as a subsidence abatement technology was demonstrated during an eight week period in September, October, and November 1994 at the Petersburg Generating Station. The success of this technology will be determined by the percentage of the mine void filled, strength of the FSS placed, and the overall effects on the hydrogeologic environment. The complete report for this project will be finalized in early 1996.« less
Medications at school: disposing of pharmaceutical waste.
Taras, Howard; Haste, Nina M; Berry, Angela T; Tran, Jennifer; Singh, Renu F
2014-03-01
This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. At a large urban school district all unclaimed medications were collected at the end of a school year to determine the extent and nature of this problem. Nurses documented unclaimed medications and transported them to a central district location. An environmentally responsible medication disposal program, consisting of sealed containers bound for a local hospital's disposal system, was implemented. In a school district of approximately 133,000 students, there were 926 different medications abandoned at the end of a school year brought to a central disposal area. Nurses complied with the newly implemented protocol. Information collected from nurses indicates acceptance of the program. Disposal of unclaimed medications at a central location, use of secured containers, and transportation to a hospital for environmentally responsible disposal proved to be feasible and acceptable to the staff. Unclaimed medications at school each year pose a potentially huge environmental risk when disposed of improperly. It is feasible to implement an environmentally responsible medication disposal protocol at schools. © 2014, American School Health Association.
Technical Insights for Saltstone PA Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.; Sarkar, S.; Mahadevan, S.
2011-07-20
The Cementitious Barriers Partnership (CBP) is a collaborative program sponsored by the US DOE Office of Waste Processing. The objective of the CBP is to develop a set of computational tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers and waste forms used in nuclear applications. CBP tools are expected to better characterize and reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the assessment process, as the five-year program progresses. In September 2009, entering its second year of funded effort, the CBPmore » sought opportunities to provide near-term tangible support to DOE Performance Assessments (PAs). The Savannah River Saltstone Disposal Facility (SDF) was selected for the initial PA support effort because (1) cementitious waste forms and barriers play a prominent role in the performance of the facility, (2) certain important long-term behaviors of cementitious materials composing the facility are uncertain, (3) review of the SDF PA by external stakeholders is ongoing, and (4) the DOE contractor responsible for the SDF PA is open to receiving technical assistance from the CBP. A review of the current (SRR Closure & Waste Disposal Authority 2009) and prior Saltstone PAs (e.g., Cook et al. 2005) suggested five potential opportunities for improving predictions. The candidate topics considered were (1) concrete degradation from external sulfate attack, (2) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, (3) mechanistic prediction of geochemical conditions, (4) concrete degradation from rebar corrosion due to carbonation, and (5) early age cracking from drying and/or thermal shrinkage. The candidate topics were down-selected considering the feasibility of addressing each issue within approximately six months, and compatibility with existing CBP expertise and already-planned activities. Based on these criteria, the five original topics were down-selected to two: external sulfate attack and mechanistic geochemical prediction. For each of the selected topics, the CBP communicated with the PA analysts and subject matter experts at Savannah River to acquire input data specific to the Saltstone facility and related laboratory experiments. Simulations and analyses were performed for both topics using STADIUM (SIMCO 2008), LeachXS/ORCHESTRA (ECN 2007, Meeussen 2003), and other software tools. These supplemental CBP analyses produced valuable technical insights that can be used to strengthen the Saltstone PA using the ongoing PA maintenance process. This report in part summarizes key information gleaned from more comprehensive documents prepared by Sarkar et al. (2010), Samson (2010), and Sarkar (2010).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.; Moridis, G.J.; Pruess, K.
1994-01-01
The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter
2007-01-01
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less
Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri
2011-01-01
Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF claddingmore » are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.« less
1980-09-30
3/8" pea gravel., Apply I coat of Uniweld or Sika Dur Hi-Mod over old concrete to insure the proper bonding. V 2. Repeat process one for section over...Bay 1. 3. Chip out cracked concrete along Bays 7 and 8, apply one coat Colma Joint Primer and fill with Colma Joint Sealer (As manufactured by Sika ) 4...deck. Cracked concrete should be repaired with Sika Dur. Hi-Mod and application of low slump nonshrink grout’ made with antihydro cement
Support of the Iraq nuclear facility dismantlement and disposal program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Roger; Cochran, John; Danneels, Jeff
2007-07-01
Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDsmore » Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 75-REAL PROPERTY DISPOSAL Utilization of Excess Real Property Guidelines § 102-75.85 Can disposal agencies transfer... transfer excess real property to agencies for programs that appear to be scheduled for substantial...
Space disposal of nuclear wastes. Volume 1: Socio-political aspects
NASA Technical Reports Server (NTRS)
Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.
1976-01-01
The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.
Evaluation of DSS-14 pedestal-review of top surface repair procedures
NASA Technical Reports Server (NTRS)
Oesterle, R. G.; Musser, D. W.; Salse, E. A. B.
1983-01-01
Proposed repair procedures for the top surface of the pedestal supporting the hydrostatic bearing runner for the 64m Antenna are presented. These procedures included: (1) removal of existing grout and concrete to approximately 8 in. below original concrete surface using a presplitting technique with expansive cement followed by secondary breaking; (2) preparation of exposed concrete surface including an epoxy bonding agent; and (3) replacement of material removed with 8 in. of new concrete surface including an epoxy bonding agent; and (4) replacement of material removed with 8 in. of new concrete and 4 in. of new grout.
Code of Federal Regulations, 2010 CFR
2010-10-01
... facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation... facilities that receive trade-in vehicles under the CARS program. (a) The disposal facility must: (1) Not... or shredded, report the vehicle to NMVTIS as crushed or shredded. (b) The disposal facility may not...
NASA Astrophysics Data System (ADS)
Knowlton, R. G.; Arnold, B. W.; Mattie, P. D.; Kuo, M.; Tien, N.
2006-12-01
For several years now, Taiwan has been engaged in a process to select a low-level radioactive waste (LLW) disposal site. Taiwan is generating LLW from operational and decommissioning wastes associated with nuclear power reactors, as well as research, industrial, and medical radioactive wastes. The preliminary selection process has narrowed the search to four potential candidate sites. These sites are to be evaluated in a performance assessment analysis to determine the likelihood of meeting the regulatory criteria for disposal. Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research have been working together to develop the necessary performance assessment methodology and associated computer models to perform these analyses. The methodology utilizes both deterministic (e.g., single run) and probabilistic (e.g., multiple statistical realizations) analyses to achieve the goals. The probabilistic approach provides a means of quantitatively evaluating uncertainty in the model predictions and a more robust basis for performing sensitivity analyses to better understand what is driving the dose predictions from the models. Two types of disposal configurations are under consideration: a shallow land burial concept and a cavern disposal concept. The shallow land burial option includes a protective cover to limit infiltration potential to the waste. Both conceptual designs call for the disposal of 55 gallon waste drums within concrete lined trenches or tunnels, and backfilled with grout. Waste emplaced in the drums may be solidified. Both types of sites are underlain or placed within saturated fractured bedrock material. These factors have influenced the conceptual model development of each site, as well as the selection of the models to employ for the performance assessment analyses. Several existing codes were integrated in order to facilitate a comprehensive performance assessment methodology to evaluate the potential disposal sites. First, a need existed to simulate the failure processes of the waste containers, with subsequent leaching of the waste form to the underlying host rock. The Breach, Leach, and Transport Multiple Species (BLT-MS) code was selected to meet these needs. BLT-MS also has a 2-D finite-element advective-dispersive transport module, with radionuclide in-growth and decay. BLT-MS does not solve the groundwater flow equation, but instead requires the input of Darcy flow velocity terms. These terms were abstracted from a groundwater flow model using the FEHM code. For the shallow land burial site, the HELP code was also used to evaluate the performance of the protective cover. The GoldSim code was used for two purposes: quantifying uncertainties in the predictions, and providing a platform to evaluate an alternative conceptual model involving matrix-diffusion transport. Results of the preliminary performance assessment analyses using examples to illustrate the computational framework will be presented. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
Cleland, Charles M; Deren, Sherry; Fuller, Crystal M; Blaney, Shannon; McMahon, James M; Tortu, Stephanie; Des Jarlais, Don C; Vlahov, David
2007-04-01
Effective January 1, 2001, New York State enacted the Expanded Syringe Access Demonstration Program (ESAP), allowing syringes to be sold in pharmacies without a prescription or dispensed through doctors, hospitals, and clinics to adults. A concern in the assessment of ESAP is its effects on syringe disposal practices. Syringe use data regarding the last injection episode were combined from three projects (N = 1,030) recruiting injection drug users. Disposal of syringes by methods known to be safe decreased significantly over time after the implementation of ESAP. Syringes obtained either from syringe exchange programs or ESAP sources were more likely to be disposed of safely than syringes obtained from other sources. Efforts to enlist pharmacists and others involved in ESAP implementation to encourage safe disposal are needed. More detailed information on disposal practices is needed to capture the continuum from least to most safe practices and variation within individuals.
Soil Improvement By Jet Grout Method And Geogrid Against Liquefaction: Example Of Samsun-Tekkeköy
NASA Astrophysics Data System (ADS)
Öztürk, Seda; Banu İkizler, S.; Şadoǧlu, Erol; Dadaşbilge, Ozan; Angın, Zekai
2017-04-01
Liquefaction that occurs due to cyclic and temporary loads on non-cohesive and water-logged sandy soil during earthquake causes considerable loss of lives and property in Turkey and the world. Turkey is a country of which a major part of territories is under earthquake risk due to its tectonic characteristics. Therefore, necessary precautions should be taken against possible disasters such as earthquakes that cannot be prevented in existing conditions. This study focuses on soil improvement applications for a site, located in the influence area of the North Anatolian Fault Zone that is one of the most active strike-slip fault systems of the world. The site was found to have liquefaction potential as a result of the analyses taking into account seismicity of the region and soil conditions. The investigation site is located in the industrial installations, Tekkeköy district of Samsun province and 8 new fuel tanks will be built in the area. Accordingly, as a result of the drilling works performed on the ground for site investigation, the filling layer between 0,9-1,2 m up the ground surface, the medium-tight and medium sand between 6-8 m after filling layer and then at the bottom, following this, medium tight-dense fine-medium sand layers have been encountered. In the Standard Penetration Tests made in this layer, values within N30=11-Refusal (>50) were obtained. It has been determined that the underground water level varies between 1.4-4 m according to the data obtained from the inspection well. In addition, the natural unit weight of the soil was determined as approximately 18 kN/m3 and the internal friction angle as (φ), 30o. The soil is composed of alluviums and layers of medium dense sand of the Holocene age originating from the sea. When all these conditions are evaluated, detailed risk analyses have been deemed necessary, since they indicate a risk of liquefaction. Liquefaction risk analyses were performed according to Seed and Idriss (1971) method for four scenarios of earthquakes with 6.0, 6.5, 7.0 and 7.2 magnitudes. As a result of the analyses made, it has been deemed necessary to improve the soil in order to prevent or reduce the liquefaction effects which may occur in a possible earthquake due to the presence of liquefaction potential in the research area. For this purpose, jet grouting method and geogrid fill system, which are used widely in Turkey, have been chosen as appropriate improvement methods. Geogrids are strong in tension so they are commonly used to reinforce subsoils below foundations. Additionally, jet grouting method provides high bearing capacity; it is solution to the settlement problems, it can be applied to almost any kind of soil and it has a short production period. Within this scope, optimal solution was obtained with 616 pieces of 8 m and 12 m jet grout columns with the diameter of 0.65 m and with geogrid mechanical fillings laid on jet grout columns. Thus, not only the risk of liquefaction was eliminated but also an improvement of more than 3 times of the bearing capacity of the foundation was acquired. In addition, the required quality control tests were carried out for the jet grout columns built in the research area and no adverse effects were observed. Key words: Liquefaction, soil improvement, jet grouting, geogrid
The University of Georgia Chemical Waste Disposal Program.
ERIC Educational Resources Information Center
Dreesen, David W.; Pohlman, Thomas J.
1980-01-01
Describes a university-wide program directed at reducing the improper storage and disposal of toxic chemical wastes from laboratories. Specific information is included on the implementation of a waste pick-up service, safety equipment, materials and methods for packaging, and costs of the program. (CS)
10th Anniversary of the Responsible Appliance Disposal Program Report
The RAD program recognizes partners that commit to collecting and disposing of old refrigerated appliances using the best environmental practices available and going beyond what is requiredby federal law.
36 CFR 223.275 - Establishment of a pilot program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.275 Establishment of a pilot program. This subpart governs the Forest Service's pilot program for the disposal of forest botanical products, as authorized by the...
36 CFR 223.275 - Establishment of a pilot program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.275 Establishment of a pilot program. This subpart governs the Forest Service's pilot program for the disposal of forest botanical products, as authorized by the...
36 CFR 223.275 - Establishment of a pilot program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Forest Botanical Products § 223.275 Establishment of a pilot program. This subpart governs the Forest Service's pilot program for the disposal of forest botanical products, as authorized by the...
Analysis of alternatives for immobilized low activity waste disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burbank, D.A.
This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.
1987-08-01
THE DISPOSAL OF CNEM.. CU) GA TECHNOLOGIES INC SRN DIEGO CA A H SARSELL ET AL. RUG 97 GA-C- i @563 UNLRSS FIED S APEO-CDE-IS- 9 ?SIGDRAA±5-85-D-822...F/ 15/.3 NL I ihhhhhhhhhhhhlm I fflfflffllfllfllfllf smhhhhhhhhhhh ~1.02 U.,5 A I *Pig- FiLE copy CHEMICAL STOCKPILE DISPOSAL PROGRAM RISK ANALYSIS...vr~. ’ . - a ’ a’ ’- . ,I1 - .V [ N- VW; W UU V. , U .U : , r ,,, - . ..... . SECURITY CLASSIFICATION OF THIS PAGE IM : I omApproved
U.S. program assessing nuclear waste disposal in space - A 1981 status report
NASA Technical Reports Server (NTRS)
Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.
1982-01-01
Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.
Code of Federal Regulations, 2011 CFR
2011-01-01
... further Federal utilization or disposal as surplus property at an agreed upon time when the transfer is... PROPERTY DISPOSAL Utilization of Excess Real Property Guidelines § 102-75.85 Can disposal agencies transfer...
Sensor Network Demonstration for In Situ Decommissioning - 13332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagos, L.; Varona, J.; Awwad, A.
2013-07-01
Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensormore » systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single interface. FIU personnel and DOE Fellows monitored the progress and condition of the sensors for a period of six months. During this time, the sensors recorded data pertaining to strain, compression, temperature, crack detection, moisture presence, fluid mobility, shock resistance, monolith movement, and electrical resistivity. In addition, FIU regularly observed the curing process of the grout and documented the cube condition via the nine racks of sensors. The sensors held up throughout the curing process, withstood the natural elements for six months, and monitored the integrity of the grout. The large scale experiment and demonstration conducted at FIU was the first of its kind to demonstrate the feasibility of state of the art sensors for in situ decommissioning applications. These efforts successfully measured the durability, performance, and precision of the sensors in question as well as monitored and recorded the curing process of the selected grout material under natural environmental conditions. The current energy analysis work is resulting in data on the constraints placed by some of the sensor systems on a power network that requires high reliability and low losses. In addition, a sensor system demonstration has determined that it is feasible to develop an integrated data network where data can be accessed in near real-time from all systems, thereby allowing for larger-scale integrated system testing to be performed. Information collected during the execution of this research project will aid decision makers in the identification of sensors to be used in nuclear facilities selected for in situ decommissioning. (authors)« less
Borehole Disposal and the Cradle-To-Grave Management Program for Radioactive Sealed Sources in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, J.R.; Carson, S.D.; El-Adham, K.
2006-07-01
The Integrated Management Program for Radioactive Sealed Sources (IMPRSS) is greatly improving the management of radioactive sealed sources (RSSs) in Egypt. When completed, IMPRSS will protect the people and the environment from another radioactive incident. The Government of Egypt and Sandia National Laboratories are collaboratively implementing IMPRSS. The integrated activities are divided into three broad areas: the safe management of RSSs in-use, the safe management of unwanted RSSs, and crosscutting infrastructure. Taken together, these work elements comprise a cradle-to-grave program. To ensure sustainability, the IMPRSS emphasizes such activities as human capacity development through technology transfer and training, and development ofmore » a disposal facility. As a key step in the development of a disposal facility, IMPRSS is conducting a safety assessment for intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S.'s Greater Confinement Disposal boreholes. This safety assessment of borehole disposal is being supported by the International Atomic Energy Agency (IAEA) through an IAEA Technical Cooperation Project. (authors)« less
40 CFR 265.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., stores, or disposes of hazardous waste in a State with a RCRA hazardous waste program authorized under... apply: (i) If the authorized State RCRA program does not cover disposal of hazardous waste by means of... them out include all Federal program requirements identified in § 271.1(j); (5) The owner or operator...
7 CFR 3550.115 - WWD grant program objectives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 306C Water and Waste Disposal Grants § 3550.115 WWD grant program objectives. The objective of the WWD individual grant program is to facilitate the use of community water and waste disposal systems by the residents of colonias along the border between the U.S. and Mexico. WWD grants are processed the same as...
40 CFR 122.28 - General permits (applicable to State NPDES programs, see § 123.25).
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations; (B) Discharge the same types of wastes or engage in the same types of sludge use or disposal... AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE... or subcategories of discharges or sludge use or disposal practices or facilities described in the...
Drug Enforcement Administration
... Cannabis Plant Counterfeit Prescription Pills Containing Fentanyls: A Global Threat Public Drug Disposal: Search for an Authorized Drug Disposal Location RESOURCE CENTER Controlled Substances Act DEA Museum and Visitors Center Doing Business with DEA Drug Disposal Employee Assistance Program For ...
77 FR 14307 - Water and Waste Disposal Loans and Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...
Chemical Munitions Dumped at Sea near the Hawaiian Islands
NASA Astrophysics Data System (ADS)
Edwards, M.; Bissonnette, M. C.; Briggs, C. W.; Shjegstad, S. M.
2016-12-01
Sea disposal was once internationally accepted as an appropriate method for disposal of excess, obsolete, and unserviceable conventional and chemical munitions. The past decade has seen an increase in the number and complexity of studies to assess the effects of historical munitions disposal in the oceans. The Hawai`i Undersea Military Munitions Assessment (HUMMA) is a comprehensive deep-water (300-600 meter) investigation designed to determine the potential impact of sea-disposed munitions on the ocean environment, and vice versa, at a disposal site south of Pearl Harbor, Oahu, Hawaii. Historical records indicated that as many as 16,000 mustard-filled bombs were disposed in this area following World War II. A secondary objective of HUMMA is to determine best practices and technologies for mapping and sampling sea-disposed munitions. The overarching result from five HUMMA field programs conducted over a decade is that the greatest risk from munitions derives from direct contact; there is little evidence that leakage from munitions into the surrounding environment has a direct pathway to affect human health and the impact on the surrounding environment in Hawaii is detectable only at trace levels. This finding should be modulated based on the quantity of physical samples, which were collected around <1% of the potential 16,000 bombs. In 2014 when the Jason 2 remotely operated vehicle (ROV) directly sampled the internal constituents of bombs, distilled mustard was recovered. Additionally, inconsistent with results from the 2009 and 2012 HUMMA sampling programs, during the ROV-based 2014 field program trace amounts of mustard agent and its breakdown products were detected at control sites. Both findings support a hypothesis that the impacts of sea-disposed munitions change over time. This presentation will describe the technical approach and results of the 2014 HUMMA field program using Jason 2.
DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry
NASA Astrophysics Data System (ADS)
Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.
2016-07-01
The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, E.
A new class of grout material based on molten wax offers a dramatic improvement in permeation grouting performance. This new material makes a perfect in situ containment of buried radioactive waste both feasible and cost effective. This paper describes various ways the material can be used to isolate buried waste in situ. Potential applications described in the paper include buried radioactive waste in deep trenches, deep shafts, Infiltration trenches, and large buried objects. Use of molten wax for retrieval of waste is also discussed. Wax can also be used for retrieval of air sensitive materials or drummed waste. This papermore » provides an analysis of the methods of application and the expected performance and cost of several potential projects. (authors)« less
Argillite And Crystalline Disposal Research: Accomplishments And Path-Forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Kevin A.; Jove-Colon, Carlos F.; Wang, Yifeng
The intention of this document is to provide a path-forward for research and development (R&D) for two host rock media-specific (argillite and crystalline) disposal research work packages within the Used Fuel Disposition Campaign (UFDC). The two work packages, Argillite Disposal R&D and Crystalline Disposal R&D, support the achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program. These two work packages cover many of the fundamental technical issues that will have multiple implications to other disposal research work packages by bridging knowledge gaps to support the development of the safetymore » case. The path-forward begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-levelradioactive- waste). The path-forward will be maintained as a living document and will be updated as needed in response to available funding and the progress of multiple R&D tasks in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program. This path forward is developed based on the report of “Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED- 2011-000065 REV0)” (DOE, 2011). This document delineates the goals and objectives of the UFDC R&D program, needs for generic disposal concept design, and summarizes the prioritization of R&D issues.« less
This PR notice clarifies EPA's intentions regarding the Pesticide Label Improvement Program for Farmworker Safety (PR Notice 83-2) and Pesticide Storage and Disposal Instructions (PR Notice 83-3) issued on March 26, 1983.
OVERVIEW OF VOLUNTARY STEWARDSHIP EFFORTS TO ADDRESS PHARMACEUTICAL DISPOSAL
This presentation will provide an overview of current federal regulatory guidance for pharmaceutical disposal, currently funded pilot programs for take-back pilot studies, and state programs. The EPA Office of Water's role is to protect our Nation's watersheds and drinking water ...
New DEA rules expand options for controlled substance disposal.
Peterson, David M
2015-03-01
Prescription drug abuse and overdose are rapidly growing problems in the United States. The United States federal Disposal of Controlled Substances Rule became effective 9 October 2014, implementing the Secure and Responsible Drug Disposal Act of 2010 (Disposal Act). These regulations target escalating prescription drug misuse by reducing accumulation of unused controlled substances that may be abused, diverted or accidentally ingested. Clinical areas that can now participate in collecting unused controlled substances include retail pharmacies, hospitals or clinics with an onsite pharmacy, and narcotic treatment programs. Collection methods include placing a controlled substance collection receptacle or instituting a mail-back program. Because prompt onsite destruction of collected items is required of mail-back programs, collection receptacles are more likely to be used in clinical areas. Retail pharmacies and hospitals or clinics with an onsite pharmacy may also place and maintain collection receptacles at long-term care facilities. The Act and Rule are intended to increase controlled substance disposal methods and expand local involvement in collection of unused controlled substances. Potential barriers to participating in controlled substance collection include acquisition of suitable collection receptacles and liners, lack of available space meeting the necessary criteria, lack of employee time for verification and inventory requirements, and program costs.
40 CFR 191.24 - Disposal standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...
40 CFR 191.24 - Disposal standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...
40 CFR 191.24 - Disposal standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...
40 CFR 191.24 - Disposal standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...
40 CFR 191.24 - Disposal standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...
Analysis of decision support system for dredging operations management.
DOT National Transportation Integrated Search
2005-12-01
This research developed an improved method for optimizing the disposal of dredged material : at offshore disposal sites. A nonlinear programming model has been developed to assist in : the development of dredging plans at open water disposal sites. T...
1985-07-01
protein, and AFFF (Air Force Firefighting Foam). The frequency of training exercises has varied considerably over the years. During the early 1970’s...Surface ’ Cement/ Bentonite Grout Bentonite Seal Sand Pack 1. Ground Water Elevation r Mamaur July 4.5, 194 * . FIGURE 3-9 WELL CONSTRUCTION SUMMARY, ZONE...e zzzzzzzzz z I z z Z 0 -. N N E-3 3 0 3 3 w 3 w 0 o z ~ zzzzzzzz z z z z E- 0 0 E- 0z zzzzzzzz zz aua E- 0 4 10 zw 3 E- z 0 0 U)z V fC InZ OE- 3
Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui
2015-07-01
Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushedmore » grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.« less
An alternative soil nailing system for slope stabilization: Akarpiles
NASA Astrophysics Data System (ADS)
Lim, Chun-Lan; Chan, Chee-Ming
2017-11-01
This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.
TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanko, D.; Langton, C.
2012-01-03
High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale upmore » test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.« less
Hess, J A; Mizner, R L; Kincl, L; Anton, D
2012-01-01
This study examined the use of and barriers to H-block and high lift grouting, two alternatives to lifting concrete masonry blocks onto vertical rebar. Peak and cumulative shoulder motions were evaluated, as well as adoption barriers: H-block cost and stakeholder perceptions. Results indicated that using the alternatives significantly decreased peak shoulder flexion (p < 0.001). A case study indicated that building cost was higher with H-block, but the difference was less than 2% of the total cost. Contractors and specifiers reported important differences in perceptions, work norms, and material use and practices. For example, 48% of specifiers reported that use of high lift grouting was the contractor's choice, while 28% of contractors thought it must be specified. Use of H-block or high-lift grouting should be considered as methods to reduce awkward upper extremity postures. Cost and stakeholders' other perceptions present barriers that are important considerations when developing diffusion strategies for these alternatives. This study provides information from several perspectives about ergonomic controls for a high risk bricklaying task, which will benefit occupational safety experts, health professionals and ergonomists. It adds to the understanding of shoulder stresses, material cost and stakeholder perceptions that will contribute to developing effective diffusion strategies.
Thermophysical parameters from laboratory measurements and tests in borehole heat exchangers
NASA Astrophysics Data System (ADS)
Pacetti, Chiara; Giuli, Gabriele; Invernizzi, Chiara; Chiozzi, Paolo; Verdoya, Massimo
2017-04-01
Besides the type of thermal regime, the performance of borehole heat exchangers relies on the overall thermal resistance of the borehole. This parameter strongly depends on the underground thermal conductivity, which accounts for most of the heat that can be extracted. The geometric configuration and the increase of thermal conductivity of the grout filling back the bore can yield a non-negligible enhancement in thermal performances. In this paper, we present a study on a pilot geothermal plant consisting of two borehole heat exchangers, 95 m deep and 9 m apart. Laboratory and in situ tests were carried out with the aim of investigating underground thermal properties, mechanisms of heat transfer and thermal characteristics of the filling grouts. Samples of grouting materials were analysed in the lab for assessing the thermal conductivity. An attempt to improve the thermal conductivity was made by doping grouts with alumina. Results showed that alumina large concentrations can increase the thermal conductivity by 25-30%. The in situ experiments included thermal logs under conditions of thermal equilibrium and thermal response tests (TRTs). The analysis of the temperature-depth profiles, based on the mass and energy balance in permeable horizons with uniform thermo-hydraulic and steady-state conditions, revealed that the underground thermal regime is dominated by conduction. TRTs were performed by injecting a constant heat rate per unit length into the boreholes for 60-90 hours. After TRTs, the temperature drop off (TDO) was recorded at 20-m-depth intervals for one week in both holes. The TRT time series were interpreted according to the classical model of the infinite line source (ILS), to infer the underground thermal conductivity. The TDO records allowed the inference of the underground thermal properties variation with depth. The results of thermal conductivity inferred with the ILS method are consistent with the values obtained from the TDO analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.
The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less
Investigation of a hydrostatic azimuth thrust bearing for a large steerable antenna
NASA Technical Reports Server (NTRS)
Rumbarger, J.; Castelli, V.; Rippel, H.
1972-01-01
The problems inherent in the design and construction of a hydrostatic azimuth thrust bearing for a tracking antenna of very large size were studied. For a load of 48,000,000 lbs., it is concluded that the hydrostatic bearing concept is feasible, provided that a particular multiple pad arrangement, high oil viscosity, and a particular load spreading arrangement are used. Presently available computer programs and techniques are deemed to be adequate for a good portion of the design job but new integrated programs will have to be developed in the area of the computation of the deflections of the supporting bearing structure. Experimental studies might also be indicated to ascertain the life characteristics of grouting under cyclic loading, and the optimization of hydraulic circuits and pipe sizes to insure the long life operation of pumps with high viscosity oil while avoiding cavitation.
Risk Analysis in Support of the Chemical Stockpile Disposal Program. Volume 1. Analysis
1987-12-17
Analysis of Event Probability A-14 A.4.2 Analysis of Event Consequence A-14 A.4.2.1 Agent Release to Atmosphere A-14 A.4.2.2 Toxic P-lume Size A-16 A...Disposal Program (CSDP), which comprises several alternatives for carrying out the disposal effort (U.S. Army Toxic and Hazardous Materials Agency, 1986...or unavoidable accident or event could occur that would expose a nearby civilian population to these toxic chemicals. Such events could occur even
7 CFR 1779.24 - Eligible loan purposes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE (CONTINUED) WATER AND WASTE DISPOSAL PROGRAMS GUARANTEED LOANS § 1779.24 Eligible loan purposes. (a) To construct, enlarge, extend, or otherwise improve rural drinking water, sanitary sewage, solid waste disposal, and storm wastewater disposal facilities. (b) To construct or relocate public buildings...
40 CFR 191.16 - Alternative provisions for disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Alternative provisions for disposal. 191.16 Section 191.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR...
40 CFR 191.16 - Alternative provisions for disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Alternative provisions for disposal. 191.16 Section 191.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR...
40 CFR 191.16 - Alternative provisions for disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Alternative provisions for disposal. 191.16 Section 191.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR...
40 CFR 191.16 - Alternative provisions for disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Alternative provisions for disposal. 191.16 Section 191.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR...
40 CFR 191.16 - Alternative provisions for disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Alternative provisions for disposal. 191.16 Section 191.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR...
Technology Evaluation Report: Non-destructive ...
Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.
Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, D.R.
1979-05-01
The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents aremore » weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, Paul; Rima, Steve
2012-07-01
At the Dukovany Nuclear Power Plant there are large amounts of spent ion exchange resins contained within storage tanks. These resins are a product of the operation of an Active Water Purification System within the Power Plant. Activity levels of the resins are in the range of 105 to 10{sup 6} Bq/l and the main isotopes present are Co-60, Cs-137, Mn-54 and Ag-110m. In order to maintain storage tank availability throughout the planned lifetime of the Power Plant these resins must be removed and disposed of safely. The storage tanks do not have an effective retrieval route for the resinsmore » and the installed agitation system is inoperable. A proven system for retrieving and directly encapsulating these resins to a standard required for the Czech repository is described, together with an overview of operational performance. Experience gained from this and other projects has highlighted some common challenges relating to the treatment of ion-exchange resins and sludges. There are common approaches that can assist in overcoming these challenges. 1. Transport resin / sludge type waste over as short a distance as possible to avoid issues with line plugging. 2. Transport these wastes once and once only wherever possible. 3. Try to keep the treatment process as simple as possible. With sludge or resin handling equipment consider the physical properties foremost - radiological issues can be addressed within any subsequent design. 4. Consider the use of dry-mix technologies. This avoids the requirement for expensive and complicated grouting plant. 5. Avoid the use of make up water for transport purposes if at all possible - it introduces secondary waste that needs to be treated at additional cost. 6. Consider alternative disposal techniques. SIAL{sup R} is AMEC's preferred technology as we developed it and understand it well - additionally the waste loading factors are much higher than for cement. 7. Consider final waste volumes when selecting the disposal technique. Disposal costs will probably make up the bulk of the total life-time cost for any retrieval / encapsulation project. 8. Have a selection of ion-exchange resin/sludge retrieval techniques available - it is difficult and time consuming to develop a technique that will cope with all eventualities, particularly when there are unknown conditions. It is much more productive to switch retrieval techniques as appropriate to deal with evolving conditions. (authors)« less
Crystalline and Crystalline International Disposal Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William
2015-12-21
This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.
76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...) Land Disposal Restrictions Phase IV--Treatment Standards for Wood Preserving Wastes, Paperwork... the Carbamate Land Disposal Restrictions; (5) Clarification of Standards for Hazardous Waste LDR...) Emergency Revision of the Land Disposal Restrictions (LDR) Treatment Standards for Listed Hazardous Wastes...
Rapid Peptide Reagent Isolation in a Disposable Microfluidic Cartridge
2010-09-01
Rapid Peptide Reagent Isolation in a Disposable Microfluidic Cartridge by Dimitra N. Stratis-Cullum, Joshua M. Kogot, and Paul M...Adelphi, MD 20783-1197 ARL-TR-5357 September 2010 Rapid Peptide Reagent Isolation in a Disposable Microfluidic Cartridge Dimitra N...Peptide Reagent Isolation in a Disposable Microfluidic Cartridge 5a. CONTRACT NUMBER DAAD19-03-D-004 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.F.; Schroeder, P.R.
This technical note documents the SETTLE computer program which facilitates the design of a confined disposal facility (CDF) to retain solids, provide initial storage, and meet effluent discharge limitations for suspended solids during a dredged matenal disposal operation. Detailed information can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. SETTLE is a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
Medications at School: Disposing of Pharmaceutical Waste
ERIC Educational Resources Information Center
Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.
2014-01-01
Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…
Feasibility study of tank leakage mitigation using subsurface barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treat, R.L.; Peters, B.B.; Cameron, R.J.
1994-09-21
The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulatingmore » air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.
2012-07-01
In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)« less
76 FR 13112 - Maryland Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... generation, storage, handling, processing, disposal, recycling, beneficial use, or other use of CCBs within... establish requirements pertaining to the generation, storage, handling, processing, disposal, recycling...
Chemical Stockpile Disposal Program. Transportation of Chemical Munitions at Reduced Temperature
1987-08-01
ADA193346 Chemical Stockpile Disposal Program. Transportation of Chemical Munitions at Reduced Temperature. MITRE CORP MCLEAN VA AUG 1987...NO. ACCESSION NO. Aberdeen Proving Ground, fD 21010-5401 11. TITLE (Include Security Classification) Transportation of Chemical Munitions at Reducfd...Year, Month, Day) S. PAGE COUNT nal FROM TO Au USt 1987 65 16. SUPPLEMENTARY NOTATION Prepared for the Chemical Stockpile D’i sal Program Programmatic
40 CFR 270.13 - Contents of part A of the permit application.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Permit..., and disposing of hazardous waste, and the design capacity of these items. (j) A specification of the hazardous wastes listed or designated under 40 CFR part 261 to be treated, stored, or disposed of at the...
40 CFR 270.13 - Contents of part A of the permit application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Permit..., and disposing of hazardous waste, and the design capacity of these items. (j) A specification of the hazardous wastes listed or designated under 40 CFR part 261 to be treated, stored, or disposed of at the...
77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... revised program application, subject to the limitations of the Hazardous and Solid Waste Amendments of... under the authority of sections 2002(a), 3006, and 7004(b) of the Solid Waste Disposal Act as amended 42...
Patient participation in a clinic-based community pharmacy medication take-back program.
Lystlund, Stefanie; Stevens, Eric; Planas, Lourdes G; Marcy, Todd R
2014-01-01
To describe patient interest and involvement in participating in a clinic-based community pharmacy drug take-back program to dispose of unused, unwanted, or expired (UUE) medications and to identify patients' reasons for participating in the program. A convenience sample of patients at the University of Oklahoma Family Medicine Pharmacy was recruited to complete a needs assessment survey regarding interest in drug take-back programs and current practices for handling UUE medications. Participants who purchased a postage-paid drug disposal envelope were asked to complete a program survey identifying sources of UUE medications, experience with drug take-back programs, and reasons for participation. These participants were later contacted for a follow-up telephone survey regarding their experience with the program and medications sent back. 62 needs assessment surveys were collected. 61% of patients reported interest in a drug take-back program. 57% reported having no UUE medications at home. Commonly reported UUE handling practices included disposal in the garbage (53.2%) or sewer (29.0%) and home storage (17.7%). 15 disposal envelopes were sold to 10 participants whose most common reasons for participation included concern about the safety of household members, accidental or intentional ingestion, and environmental impact. For 4 patients who returned a median of 9.5 prescriptions, the most common class of returned drugs was antibiotics (19.0%). Interest in drug take-back programs exists, but awareness and availability of continuous programs is limited. Programs may be more successful if offered at no cost to patients. Future studies are needed on the types of medications sent back and specific reasons for accumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module presents an overview of the land disposal restrictions (LDR) program. It defines the basic terms and describes the structure of the LDR regulations. It identifies the statutory basis for LDR and describes the applicability of LDR. It explains how EPA sets treatment standards and identifies treatment standards for wastes subject to land disposal restrictions and cites the CFR section. It describes and identifies how exemptions and variances from treatment requirements are obtained, including federal register citations. It defines generator and Treatment, Storage, and Disposal Facility (TSDF) requirements under the LDR program. It summarizes the schedule of existing restrictionsmore » and the plan for restricting newly identified wastes.« less
A continuous operating protection system called COPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaperon, G.
1987-01-01
The continuous operating protection system called COPS is a diverless solution to achieve the stabilization and protection of subsea pipelines and cables: the system is based on the use of a continuous fabric form work mattress which is spread on the sea bed over the pipeline or cable to be protected by a remotely controlled underwater crawler and simultaneously filled with cement grout. The method has been successfully used in the GULLFAKS field where about 3.6 km of grout mattresses having a cross section of 2 meters by 0.2 meters have been laid. The performances of the system are presentedmore » as well as a trade off comparison with the other stabilization and protection methods currently used: burying, rock dumping or placement of covers.« less
Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon
2014-10-15
A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package vulnerable to LNAPL release; upper bound inventory estimates of LNAPLs; incorporating the lack of any hydraulic resistance of the package vent; the lack of any degradation of dissolved LNAPL; and, significantly, the small threshold displacement pressure assumed at which LNAPL is able to enter initially water-saturated pores. Initial scoping calculations on the latter suggested that the rate at which LNAPL is able to migrate from a waste package is likely to be very small and insignificant for likely representative displacement pressure data: this represents a key result. Adopting a conservative displacement pressure, however, allowed the effect of other features and processes in the system to be assessed. High LNAPL viscosity together with low density contrast with water reduces LNAPL migration potential. Migration to the host rock is less likely if waste package vent fluxes are small, solubility limits are high and path lengths through the backfill are short. The capacity of the system to dissolve all of the free LNAPL will, however, depend on groundwater availability. Even with the conservatisms invoked, the overall conclusion of model simulations of intact and compromised (cracked or corroded) waste packages, for a range of realistic ILW LNAPL scenarios, is that it is unlikely that significant LNAPL would be able to migrate from the waste packages and even more unlikely it would be sufficiently persistent to reach the host rock immediately beyond the GDF. Copyright © 2014. Published by Elsevier B.V.
Responsible Appliance Disposal Program: 2007 Annual Report
Presents 2007 summary and findings for Responsible Appliance Disposal partners participation in following best practices related to reduction of emissions, prevention of releases of hazardous materials, etc.
Responsible Appliance Disposal Program: 2008 Annual Report
Presents 2008 summary and findings for Responsible Appliance Disposal partners participation in following best practices related to reduction of emissions, prevention of releases of hazardous materials, etc.
Responsible Appliance Disposal Program: 2012 Annual Report
Presents 2011 summary and findings for Responsible Appliance Disposal partners participation in following best practices related to reduction of emissions, prevention of releases of hazardous materials, etc.
Responsible Appliance Disposal Program: 2013 Annual Report
Presents 2013 summary and findings for Responsible Appliance Disposal partners participation in following best practices related to reduction of emissions, prevention of releases of hazardous materials, etc.
Responsible Appliance Disposal Program: 2010 Annual Report
Presents 2010 summary and findings for Responsible Appliance Disposal partners participation in following best practices related to reduction of emissions, prevention of releases of hazardous materials, etc.
76 FR 5103 - Maryland Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
..., storage, handling, processing, disposal, recycling, beneficial use, or other use of CCBs within the State... pertaining to the generation, storage, handling, processing, disposal, recycling, beneficial use, or other...
Responsible Appliance Disposal Program: 2014 Annual Report
Presents 2014 summary and findings for Responsible Appliance Disposal partners participation in following best practices related to reduction of emissions, prevention of releases of hazardous materials, etc.
Noble, Marlene A.; Xu, Jingping; Kolak, Jon; Gartner, Anne L.; Rosenberger, Kurt J.
2007-01-01
For nearly a decade, dredged material from San Francisco Bay has been deposited at the U.S. Environmental Protection Agency (EPA) Region IX designated disposal site on the continental slope west of the Farallon Islands. Over the past several years, annual disposal volumes have ranged from 136,170 m3 (61 barge loads) to 2,407,600 m3 (1,173 barge loads) (Ota, personal communication, 2000). The EPA has conducted extensive studies to evaluate the fate and effects of the disposed material (Abdelrhman, 1992; Tetra-Tech, 1992; SAIC, 1992). The EPA has also maintained a long-term monitoring program to collect hydrodynamic, sedimentary, chemical, and biological data that are used to determine whether the dredged material adversely affects the ecology of adjacent water bodies and whether it moves from the disposal site, especially into the Gulf of the Farallones National Marine Sanctuary. As part of this monitoring program, the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) deployed arrays of instruments on three moorings near the EPA disposal site from November 1997 to November 1998. This report describes the results and findings of this field monitoring experiment.
Syringe Disposal Among Injection Drug Users in San Francisco
Martinez, Alexis N.; Carpenter, Lisa; Geckeler, Dara; Colfax, Grant; Kral, Alex H.
2011-01-01
To assess the prevalence of improperly discarded syringes and to examine syringe disposal practices of injection drug users (IDUs) in San Francisco, we visually inspected 1000 random city blocks and conducted a survey of 602 IDUs. We found 20 syringes on the streets we inspected. IDUs reported disposing of 13% of syringes improperly. In multivariate analysis, obtaining syringes from syringe exchange programs was found to be protective against improper disposal, and injecting in public places was predictive of improper disposal. Few syringes posed a public health threat. PMID:20466956
1981-07-01
Disposal Methods 4-31 Evaluation of Past and Present Waste 4-35 Disposal Facilities Landfills 4-35 Dry Wells 4-37 Rating of Waste Disposal Sites 4-37 V 2...Problems Identified at GAPE Landfills 4-36 4.12 Priority Ranking of Potential 4-38 Contamination Sources 4.13 -4.31 Rating Forms for Waste Disposal Sites 4...39 -4-76 5.1 Priority Ranking of Potential Con- 5-2 tamination Sources B.1 Rating Factor System B-2 -B-5 4W EXECUTIVE SUMMARY The Resource
75 FR 17332 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly...(b) of the Solid Waste and Disposal Act, as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: March...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection...
CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.; Burns, H.; Stefanko, D.
2012-01-10
In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservationmore » and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by closure operations. Subsequent down selection was based on compressive strength and saturated hydraulic conductivity results. Fresh slurry property results were used as the first level of screening. A high range water reducing admixture and a viscosity modifying admixture were used to adjust slurry properties to achieve flowable grouts. Adiabatic calorimeter results were used as the second level screening. The third level of screening was used to design mixes that were consistent with the fill material parameters used in the F-Tank Farm Performance Assessment which was developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closures.« less
Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials
NASA Astrophysics Data System (ADS)
Anbergen, Hauke; Sass, Ingo
2016-04-01
Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle • constant radial stress boundary conditions (sigma 2 = sigma 3 = constant) • radial freezing from inside out, following the in-situ freezing direction The results differ substantially from prior test procedures (such as standardized frost tests for concrete or soft soils). Concentric frost-induced cracking was observed. The cracking pattern is in good agreement with cryostatic suction processes and frost heave in fine grained soils. The hydraulic conductivity of the system depends on the composition of the grout. With the developed testing device (and procedure) a unified and independent assessment and quality control becomes feasible. Adequate materials for advanced shallow geothermal systems can be clearly identified.
McNeely, Jennifer; Arnsten, Julia H; Gourevitch, Marc N
2006-01-01
Background We sought to assess injection practices, means of acquiring and disposing of syringes, and utilization and knowledge of harm reduction resources among injection drug users (IDUs) entering methadone maintenance treatment (MMT). Methods Interviews with 100 consecutive patients, including 35 IDUs, entering a MMT program in the Bronx, NY. Results Utilization of unsafe syringe sources was reported by 69% of IDUs in our sample. Most (80%) IDUs reused syringes, and syringe sharing was also common. Fewer than half knew that non-prescription pharmacy purchase of syringes was possible. The most common means of disposing of injecting equipment were the trash (63%) and syringe exchange programs (49%). Conclusions These findings indicate that drug users entering treatment under-utilize sanctioned venues to obtain sterile syringes or safely dispose of used injection equipment. Programs providing services to drug users should adopt a proactive stance to address the safety and health issues faced by injectors. PMID:16503997
DOE`s radioactively - contaminated metal recycling: The policy and its implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, S.; Rizkalla, E.
1997-02-01
In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that themore » Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.« less
NASA Technical Reports Server (NTRS)
1977-01-01
The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) WATER AND WASTE DISPOSAL PROGRAMS GUARANTEED LOANS § 1779.20 Eligibility. (a) Availability of... utility services such as drinking water, sanitary sewer, solid waste disposal or storm drainage facilities...
Responsible Appliance Disposal (RAD) Program: 2009 Annual Report
Presents 2009 summary and findings for Responsible Appliance Disposal partners participation in following best practices related to reduction of emissions, prevention of releases of hazardous materials, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birdsell, Kay Hanson; Stauffer, Philip H.; Atchley, Adam Lee
As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.
Use of a 10.22 m diameter EPB shield: a case study in Beijing subway construction.
Li, Xinggao; Yuan, Dajun; Guo, Yuhai; Cai, Zhiyong
2016-01-01
Beijing subway line 14 includes four stations and approximately 2.8 km of tunnels between the Dongfengbeiqiao and Jingshunlu areas of the city. Due to the surface and underground space limitations of this section, a double-track running tunnel instead of two single-track running tunnels was adopted to connect the two stations. The double-track tunnels were excavated by a 10.22 m diameter earth pressure balance (EPB) shield. It was the first time that an EPB shield more than 10 m in diameter was used in Beijing subway construction. The shield, which passes underneath densely built-up areas of the city and is equipped with a spoke-type cutterhead, with balance between the ground pressure and the earth chamber pressure at the tunnel face, is of great importance. Referring to experiences gained in the EPB shield tunneling, attention was paid to the function of soil conditioning and simultaneous backfilling grouting of the shield, and some special designs were considered in manufacturing the machine. In addition to the agitating rods welded to the cutterhead, two independently driven agitators were added to fully mix everything in the earth chamber. Independent pipelines were arranged for injecting different conditioning agents. Indoor tests in combination with field tests were conducted to find suitable additives and injection ratios of the additives, and determine the mix ratio of the two-component grout for simultaneous backfilling grouting. A scheme was employed for simultaneously injecting the bentonite slurry at 8% concentration and the foam liquid at 5% concentration to condition the excavated soil. The cement-sodium silicate grout was adopted to fill the tail void and the injection volume per ring was 14.1-15.3 m 3 . The performance of the shield and evaluation of the corresponding tunneling technologies are introduced in terms of the shield tunneling induced ground surface settlements. The success of the project is of great significance to Beijing subway construction and underground space utilization. The findings serve as a useful reference for similar projects.
Engineering scale demonstration of a prospective Cast Stone process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Fowley, M.; Hansen, E.
2014-09-30
This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Overmore » three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points were analyzed for rheological properties and density. Both the rheological properties (plastic viscosity and yield strength) and density were consistent with previous and later SCPF runs.« less
Code of Federal Regulations, 2013 CFR
2013-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Code of Federal Regulations, 2010 CFR
2010-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Code of Federal Regulations, 2012 CFR
2012-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Material characterization of field-cast connection grouts.
DOT National Transportation Integrated Search
2013-01-01
Accelerated bridge construction methods can help increase safety and minimize the inconveniences to the traveling public. Many new construction methods have been investigated and implemented using prefabricated subassemblies on bridges. These methods...
High-Performance Algorithms and Complex Fluids | Computational Science |
only possible by combining experimental data with simulation. Capabilities Capabilities include: Block -laden, non-Newtonian, as well as traditional internal and external flows. Contact Ray Grout Group
Chemical Weapons Disposal: Improvements Needed in Program Accountability and Financial Management
2000-05-01
United States General Accounting Office PAQ Report to Congressional Committees May 2000 CHEMICAL WEAPONS DISPOSAL Improvements Needed in Program...warfare materiel, and former production facilities and identify and locate buried chemical warfare materiel. Alternative Technologies and Approaches...production facilities, and buried chemical warfare materiel. These items are described in table 1. Table 1: Nonstockpile Chemical Materiel Category
ERIC Educational Resources Information Center
Moberly, Heather K., Comp.
Solid waste disposal has become a major concern in rural areas, threatening public health, ruining the environment, and hindering economic development due to an overall poor impression of areas. This bibliography serves as a starting point for small communities to examine the issues and begin planning for feasible programs for disposing or…
Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Berry, C.
Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
Ground anchors and anchored systems
DOT National Transportation Integrated Search
1999-06-01
This document presents state-of-the-practice information on the design and installation of cement-grouted ground anchors and anchored systems for highway applications. The anchored systems discussed include flexible anchored walls, slopes supported u...
cross flow from peta-scale, high-fidelity simulations in collaboration with the gas turbine industry. A stratified combustion in the stabilization of flames above a jet in cross flow. Earlier work involved using
41 CFR 109-50.204 - Limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISPOSAL AUTHORITIES 50.2-Math and Science Equipment Gift Program § 109-50.204 Limitations. (a) Excess and... (or unlimited) level of authority. (d) Gifts shall be serviceable and in working order. Disposal...
EARTHSAWtm IN-SITU CONTAINMENT OF PITS AND TRENCHES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest E. Carter, P.E.
2002-09-20
EarthSaw{trademark} is a proposed technology for construction of uniform high quality barriers under and around pits and trenches containing buried radioactive waste without excavating or disturbing the waste. The method works by digging a deep vertical trench around the perimeter of a site, filling that trench with high specific gravity grout sealant, and then cutting a horizontal bottom pathway at the base of the trench with a simple cable saw mechanism. The severed block of earth becomes buoyant in the grout and floats on a thick layer of grout, which then cures into an impermeable barrier. The ''Interim Report onmore » task 1 and 2'' which is incorporated into this report as appendix A, provided theoretical derivations, field validation of formulas, a detailed quantitative engineering description of the technique, engineering drawings of the hardware, and a computer model of how the process would perform in a wide variety of soil conditions common to DOE waste burial sites. The accomplishments of task 1 and 2 are also summarized herein Task 3 work product provides a comprehensive field test plan in Appendix B and a health and safety plan in Appendix C and proposal for a field-scale demonstration of the EarthSaw barrier technology. The final report on the subcontracted stress analysis is provided in Appendix D. A copy of the unified computer model is provided as individual non-functional images of each sheet of the spreadsheet and separately as a Microsoft Excel 2000 file.« less
Analytical Study of the Mechanical Behavior of Fully Grouted Bolts in Bedding Rock Slopes
NASA Astrophysics Data System (ADS)
Liu, C. H.; Li, Y. Z.
2017-09-01
Bolting is widely used as a reinforcement means for rock slopes. The support force of a fully grouted bolt is often provided by the combination of the axial and shear forces acting at the cross section of the bolt, especially for bedding rock slopes. In this paper, load distribution and deformation behavior of the deflecting section of a fully grouted bolt were analyzed, and a structural mechanical model was established. Based on force method equations and deformation compatibility relationships, an analytical approach, describing the contribution of the axial and shear forces acting at the intersection between the bolt and the joint plane to the stability of a rock slope, was developed. Influence of the inclination of the bolt to the joint plane was discussed. Laboratory tests were conducted with different inclinations of the bolt to the joint plane. Comparisons between the proposed approach, the experimental data and a code method were made. The calculation results are in good agreement with the test data. It is shown that transverse shear resistance plays a significant role to the bolting contribution and that the bigger the dip of the bolt to the joint plane, the more significant the dowel effect. It is also shown that the design method suggested in the code overestimates the resistance of the bolt. The proposed model considering dowel effect provides a more precise description on bolting properties of bedding rock slopes than the code method and will be helpful to improve bolting design methods.
Planning and Implementing a Hospital Recycling Program at Naval Hospital, Camp Pendleton, California
1992-08-01
communities have refused to license incinerators, saying "not in my back yard!" Recycling is quick, it’s economical, it can save natural resources, and...total costs - total credits) 4. Net Savings <Costs>: Present disposal Net recycling Net savings costs program costs <costs> * Assign only a...RECYCLING PROGRAM COSTS $ 9,739 (total costs - total credits) 4. Net Savings <Costs>: $ 9.287 _ $ 9.739 - S > Present disposal Net recycling Net
Practice, awareness and opinion of pharmacists toward disposal of unwanted medications in Kuwait
Abahussain, Eman; Waheedi, Mohammad; Koshy, Samuel
2012-01-01
Background The disposal of unwanted medications has been a concern in many countries, as pharmaceutical waste enters the ecosystem, ultimately having an effect on human health and environment. Earlier studies in Kuwait found that the method of disposal by the public was by disposing in the garbage or by flushing down the drain. In accordance with patient preference and environment safety, it would be appropriate to use local government pharmacies as collection points for proper disposal. Objective To determine the practice of pharmacists, working in government healthcare sectors, with regard to disposal of returned unwanted medications by the public. This study also aims to assess pharmacists’ awareness toward the impact of improper disposal on the environment and to investigate whether pharmacists agree to have their pharmacies as collection points for future take-back programs. Method A random sample of 144 pharmacists from the six main governmental hospitals and 12 specialized polyclinics in Kuwait, completed a self-administered questionnaire about their practice of disposal, awareness and opinion on using pharmacies as collection points for proper disposal of UMs. Data were analyzed using descriptive statistics. Results A total of 144 pharmacists completed the survey. Throwing UMs in the trash was the main method of disposal by majority of the respondents (73%). Only 23 pharmacists disposed UMs according to the guidelines of Ministry of Health, Kuwait (MOH). However, about 82% are aware that improper disposal causes damage to the environment and 97% agree that it is their responsibility to protect the environment. About 86–88% of the pharmacists agree to have government hospital pharmacies and polyclinics as collection points for future take-back programs. Conclusion Even though the current practice of disposal by majority of pharmacists is inappropriate, they are aware of the damage and acknowledge their responsibilities toward environment protection. Concerned authorities should monitor and implement proper disposal guidelines in all pharmacies. Majority of pharmacists support the idea of having the government pharmacies as collection points for safe disposal of UMs in Kuwait. PMID:23960793
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Stauffer, Philip H.; Birdsell, Kay H.
As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.
NASA Astrophysics Data System (ADS)
Erdmann, Bryan James
The objective of this work is to quantify the one-dimensional spatial distribution of radionuclides in field lysimeters from the Radionuclide Field Lysimeter Experiment (RadFLEX) facility at the Savannah River Nationals Laboratory (SRNL). The lysimeters, containing 137Cs, 60Co, 133Ba and 152Eu incorporated either into solid wasteforms (Portland cement and reducing grout) or introduced into soil via a filter paper wasteform, were weathered for three to four years. The initial contaminant activities range from 4.0 to 9.0 MBq for the cementitious wasteforms and 0.25 to 0.47 MBq for the filter paper wasteform. An analytical method was developed to perform non-destructive measurements to quantify the spatial distributions measured in field lysimeters. This method provides an alternative to traditional destructive techniques to determine the spatial distribution of activity. This non-destructive method also allows for multiple scans to be performed periodically. Observing how these distributions change with time would improve modeling transport parameters. The detection system consists of a collimated high-purity germanium (HPGe) radiation detector coupled with a linear translational table. A lead collimator is used to achieve spatial resolution as high as 0.25 cm. The lysimeters are positioned relative to the detector using a linear translation stage that can move vertically via a computercontrolled stepping motor. A user control interface was developed with National Instruments LabVIEWRTM that synchronizes the data acquisition from the radiation detector with the lysimeter movement and positioning thus allowing the lysimeter scans to be automated. The detection efficiency of the system was investigated using two methods. Europium-152 is an ideal candidate for calibration source due to its multiple gamma-ray emissions across a wide range of energies. One method uses a 152Eu point source as the calibration standard while the other method uses the 152Eu within the lysimeter systems themselves as the calibration standard. These methods show that system geometry and source distribution are the key factors influencing the detection efficiency. This suggest that to reduce the impact from the source distribution and geometry variability within a volume, that lysimeters be rotated during measurements. These scans showed downward mobility of 60Co and 133Ba when the radionuclides were incorporated directly into the Savannah River Site (SRS) soil via the filter paper wasteform. When radionuclides were incorporated into the cementitious wasteforms positioned in the SRSS soil, 137Cs exhibited both upward and downward dispersion while the other radionuclides showed no movement. This dispersion was more significant for the Portland cement than the reducing grout wasteform. In the case of the filter paper wasteform, 137Cs mobility was greatly reduced. This suggests the presence of a cementitious wasteform enhances 137Cs mobility. The movement of 137Cs from the solid wasteform was modelled using a retarded diffusion model. Retardation factors for 137Cs are determined to range from approximately 700-2500 for Portland cement, 1500-4000 for reducing grout, and up to 2500-8000 the filter paper wasteform. Numerical simulations were run to investigate the hypothesis that ions released from the wasteforms compete for sorption sites in the SRS soil, enhancing the mobility of 137Cs. These simulations suggest ion-competition could be a factor, but more data is needed to explore this mechanism for Cs+ transport. Understanding radionuclide movement in the environment is important for informing strategies used for waste management and disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.
2011-11-01
Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less
ERIC Educational Resources Information Center
Cleland, Charles M.; Deren, Sherry; Fuller, Crystal M.; Blaney, Shannon; McMahon, James M.; Tortu, Stephanie; Des Jarlais, Don C.; Vlahov, David
2007-01-01
Effective January 1, 2001, New York State enacted the Expanded Syringe Access Demonstration Program (ESAP), allowing syringes to be sold in pharmacies without a prescription or dispensed through doctors, hospitals, and clinics to adults. A concern in the assessment of ESAP is its effects on syringe disposal practices. Syringe use data regarding…
Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.
ERIC Educational Resources Information Center
Ridgley, Susan M.; Galvin, David V.
The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…
40 CFR Table Hh-2 to Subpart Hh of... - U.S. Per Capita Waste Disposal Rates
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. HH, Table HH-2 Table HH-2 to Subpart HH of Part 98—U.S. Per Capita Waste Disposal Rates... 40 Protection of Environment 21 2011-07-01 2011-07-01 false U.S. Per Capita Waste Disposal Rates...
U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985
NASA Astrophysics Data System (ADS)
Ragone, Stephen E.
1986-09-01
In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program
Permanent Ground Anchors : Nicholson Design Criteria
DOT National Transportation Integrated Search
1982-09-01
This study discusses the methods used by Nicholson Construction Company in the design of permanent ground anchors specifically as related to retaining walls. Basic soil parameters, design concepts, drilling and grouting methods for ground anchors are...
Corrosion of post-tensioned tendons with deficient grout : [summary].
DOT National Transportation Integrated Search
2016-10-01
Stressed steel cables greatly increase the strength and capability of concrete structural : components, providing tensile strength that concrete alone does not possess. The cables : called tendons run through sealed tubes in the concrete whic...
Material Characterization of Field-Cast Connection Grouts : TechBrief
DOT National Transportation Integrated Search
2013-01-01
There is a growing need for durable and resilient highway bridge construction/reconstruction systems that facilitate rapid completion of onsite activities, thus minimizing intrusion on the traveling public. Modular components can provide highquality,...
Injected polyurethane slab jacking : interim report
DOT National Transportation Integrated Search
2000-09-01
Conventional methods for raising in-place concrete slabs to align roadway sections or to counteract subsidence requires pressure-injecting grout under the slab. As other transportation organizations have had success with the URETEK Method, which util...
Corrosion characteristics of post-tensioning strands in ungrouted ducts : summary.
DOT National Transportation Integrated Search
2011-01-01
To prevent corrosion of post-tensioning strands, FDOT construction specifications currently require post-tensioning ducts to be grouted within seven calendar days of strand installation. This period challenges construction schedules on large projects...
Injected polyurethane slab jacking : final report.
DOT National Transportation Integrated Search
2002-06-01
Conventional methods for raising in-place concrete slabs to align roadway sections or to counteract subsidence requires pressure-injecting grout under the slab. As other transportation organizations have had success with the URETEK Method, which util...
Progress and future direction for the interim safe storage and disposal of Hanford high-level waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.
This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less
Safe syringe disposal is related to safe syringe access among HIV-positive injection drug users.
Coffin, Phillip O; Latka, Mary H; Latkin, Carl; Wu, Yingfeng; Purcell, David W; Metsch, Lisa; Gomez, Cynthia; Gourevitch, Marc N
2007-09-01
We evaluated the effect of syringe acquisition on syringe disposal among HIV-positive injection drug users (IDUs) in Baltimore, New York City, and San Francisco (N = 680; mean age 42 years, 62% male, 59% African-American, 21% Hispanic, 12% White). Independent predictors of safe disposal were acquiring syringes through a safe source and ever visiting a syringe exchange program. Weaker predictors included living in San Francisco, living in the area longer, less frequent binge drinking, injecting with an HIV+ partner, peer norms supporting safe injection, and self-empowerment. Independent predictors of safe "handling"-both acquiring and disposing of syringes safely-also included being from New York and being older. HIV-positive IDUs who obtain syringes from a safe source are more likely to safely dispose; peer norms contribute to both acquisition and disposal. Interventions to improve disposal should include expanding sites of safe syringe acquisition while enhancing disposal messages, alternatives, and convenience.
30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS UNDERGROUND MINING GENERAL PERFORMANCE... materials produced from an underground mine and not disposed in underground workings or used in backfilling...
This document provides assistance to those seeking to submit a variance request for LDR treatability variances and determinations of equivalent treatment regarding the hazardous waste land disposal restrictions program.
Rethink Disposable: Packaging Waste Source Reduction Pilot Project
Information about the SFBWQP Rethink Disposable: Packaging Waste Source Reduction Pilot Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Radioactive waste disposal in the marine environment
NASA Astrophysics Data System (ADS)
Anderson, D. R.
In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.
Chemical Handling and Waste Disposal Issues at Liberal Arts.
ERIC Educational Resources Information Center
Gannaway, Susan P.
1990-01-01
Findings from a survey of 20 liberal arts colleges which did not have graduate programs in chemistry are presented. Discussed are regulations, actions taken and costs of academic laboratories regarding the disposal of hazardous waste. (CW)
International Collaboration Activities in Different Geologic Disposal Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, Jens
This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s Internationalmore » Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.« less
SEMINAR PROCEEDINGS: RCRA CORRECTIVE ACTION STABILIZATION TECHNOLOGIES
The seminar publication provides an overview of many technologies that can be used in applying the stabilization concept to RCRA cleanup activities. Technologies discussed include covers, grouting, slurry walls, hydrofracture, horizontal well drilling, a vacuum extraction, and b...
Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon
2014-01-01
In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis. PMID:28788708
Micaceous Soil Strength And Permeability Improvement Induced By Microbacteria From Vegetable Waste
NASA Astrophysics Data System (ADS)
Omar, R. C.; Roslan, R.; Baharuddin, I. N. Z.; Hanafiah, M. I. M.
2016-11-01
Green technology method using vegetable waste are introduced in this paper for improvement of phyllite residual soil from UNITEN, Campus. Residual soil from phyllite are known as micaceous soils and it give problem in managing the stability of the slope especially in wet and extensively dry seasons. Micaceous soil are collected using tube sampler technique and mixed with liquid contain microorganism from fermented vegetable waste name as vege-grout to form remolded sample. The remolded sample are classify as 15.0%, 17.5%, 20.00% and 22.5% based on different incremental percentages of vege-grout. The curing time for the sample are 7, 14, 21, 28, and 35 days before the tests were conducted. Observation of the effect of treatment shows 20.0% of liquid contain Bacillus pasteurii and Bacillus Subtilis with 21 days curing time is the optimum value in strengthening the soil and improve the permeability.
Ju, Hyunjin; Lee, Deuck Hang; Cho, Hae-Chang; Kim, Kang Su; Yoon, Seyoon; Seo, Soo-Yeon
2014-06-23
In this study, hydrophilic chemical grout using silanol (HCGS) was adopted to overcome the performance limitations of epoxy materials used for strengthening existing buildings and civil engineering structures. The enhanced material performances of HCGS were introduced, and applied to the section enlargement method, which is one of the typical structural strengthening methods used in practice. To evaluate the excellent structural strengthening performance of the HCGS, structural tests were conducted on reinforced concrete beams, and analyses on the flexural behaviors of test specimens were performed by modified partial interaction theory (PIT). In particular, to improve the constructability of the section enlargement method, an advanced strengthening method was proposed, in which the precast panel was directly attached to the bottom of the damaged structural member by HCGS, and the degree of connection of the test specimens, strengthened by the section enlargement method, were quantitatively evaluated by PIT-based analysis.
Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qingbang, Han; Ling, Chen; Changping, Zhu
2014-02-18
The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain,more » the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.« less
GUIDE TO SEPTAGE TREATMENT AND DISPOSAL
This guide presents information on the handling, treatment, and disposal of septage in a format easily used by administrators of waste management programs, septage haulers, and managers or operators of septage handling facilities. The guide does not provide detailed engineering d...
Perspectives of Future R and D on HLW Disposal in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steininger, W.J.
2008-07-01
The 5. Energy Research Program of the Federal Government 'Innovation and New Technology' is the general framework for R and D activities in radioactive waste disposal. The Ministry of Economics and Technology (BMWi), the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the Ministry of Education and Research (BMBF) apply the Research Program concerning their respective responsibilities and competences. With regard to the Government's obligation to provide repositories for HLW (spent fuel and vitrified HAW) radioactive waste basic and applied R and D is needed in order to make adequate knowledge available to implementers, decision makersmore » and stakeholders in general. Non-site specific R and D projects are funded by BMWi on the basis of its Research Concept. In the first stage (1998 -2001) most R and D issues were focused on R and D activities related to HLW disposal in rock salt. By that time the R and D program had to be revised and some prioritization was demanded due to changes in politics. In the current version (2001 -2006) emphasize was put on non-saline rocks. The current Research Concept of BMWi is presently subjected to a sort of revision, evaluation, and discussion, inter alia, by experts from several German research institutions. This activity is of special importance against the background of streamlining and focusing the research activities to future demands, priorities and perspectives with regard to the salt concept and the option of disposing of HLW in argillaceous media. Because the status of knowledge on disposal in rock salt is well advanced, it is necessary to take stock of the current state-of-the-art. In this framework some key projects are being currently carried out. The results may contribute to future decisions to be made in Germany with respect to HLW disposal. The first project deals with the development of an advanced safety concept for a HLW waste repository in rock salt. The second project (also carried out in the frame of the 6. Framework Program of the European Commission) aims at completing and optimizing the direct disposal concept for spent fuel by a full-scale demonstration of the technology of emplacement in vertical boreholes. The third project is devoted to the development of a reference concept to dispose of HLW in deep geological repository in clay in Germany. In the following a brief overview is given on the achievements, the projects, and ideas about the consequences for HLW disposal in Germany. (author)« less
Myette-Côté, Étienne; Doucet, Éric; Prud'homme, Denis; Rabasa-Lhoret, Rémi; Lavoie, Jean-Marc; Brochu, Martin
2015-01-01
This study aims to investigate individual characteristics that explain interindividual variations in glucose disposal in response to a 6-month weight loss program in obese postmenopausal women. The cohort was divided into tertiles based on changes in glucose disposal after weight loss. Only women in the upper tertile (positive responders: Δ glucose disposal ≥ 0.92 mg/kg/min; n = 19) and lower tertile (negative responders: Δ glucose disposal ≤ -0.23 mg/kg/min; n = 19) were considered for analyses. Outcome measures included body weight, lean body mass (LBM), LBM index (= LBM / height [m]), fat mass (FM), FM index (= FM / height [m]), visceral fat, subcutaneous abdominal fat, high-sensitivity C-reactive protein (hsCRP) levels, interleukin-6, lipid profile, physical activity levels, fasting blood glucose and insulin levels, glucose disposal by hyperinsulinemic-euglycemic clamp technique, and resting blood pressure. At baseline, positive responders had higher triglycerides and hsCRP levels and lower glucose disposal (0.01 < P < 0.05) than negative responders. Except for visceral fat, the entire cohort showed significant decreases in all measures of body composition (P < 0.005) after weight loss, with greater decreases in body weight, body mass index, and FM index in positive responders (P < 0.005). Finally, data revealed that only positive responders showed decreases in LBM, LBM index, and hsCRP levels after weight loss (P between 0.01 and 0.001). An important interindividual variability in changes in glucose disposal after weight loss is observed. Interestingly, participants who display improvements in glucose disposal also show significant decreases in LBM, LBM index, and hsCRP after weight loss.
Alternate paddle configuration for improved wear resistance in the saltstone mixer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M.; Fowley, M.
The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configurationmore » similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the same way. The wear rate from wear test 2a was approximately double the wear rate from wear test 2b for paddle pairs 4 and 5. For both configurations, there was little or no wear on paddle pairs 1, 2, 3 and 6 based on mass change, indicating that the un-wetted and fully wetted premix materials cause less wear than the partially wetted premix. Additionally, inspection of the wear surface of the paddles showed more deformation on the flat paddles than the helical paddles which was consistent with the wear rates. Aligning of the auger discharge flight with paddle pair 1 resulted in a lower wear rate paddle pair 1 rather than having them misaligned with the feed augers. During the paddle wear tests, polishing wear was observed on the inside barrel of the mixer. The polishing wear is evident on the upper housing clamshell and the lower housing clamshell primarily at paddle pairs 4 and 5, which is the transition region of the mixer. Wear on the mixer barrel increases the space between the paddles and the barrel, resulting in increased grout build up on the barrel. Since the mixer barrel cannot be reconfigured or replaced in the SPF, the method for mitigating wear on the barrel is to move the more viscous grout through the transition region as quickly as possible. In addition, the location of the liquid inlet does not allow for sufficient cleaning of the mixer since residual grout remains on paddle pairs 1 - 4. As the paddles continue to wear and the self-cleaning capability of the paddles is lost, the lack of sufficient flushing would aid in grout build up between the barrel and the paddles which could eventually lead to decreased throughput capacity of the dry feeds. Changing the paddle configuration from flat to helical resulted in no change to the rheological properties of the grout mixture. Both tests produced a grout that is within the processing range of the SPF. Based on the results of this testing, it is recommended for the currently installed SPF mixer that paddle pairs 1 through 6 be helical rather than flat, with the paddle pair 1 aligned with the feed augers in order to minimize the wear occurring in the SPF mixer. Based on the results of this testing, it is recommended that the mixer be inspected and critical measurements be taken whenever the SPF processing schedule allows in order to establish a wear rate of the 10-inch mixer paddles.5 Based on these measurements, the lifetime of paddles in the transition region can be established in order to set up a maintenance schedule for the mixer. Since replacing the entire mixer is very expensive and time intensive, replacing the worn paddles after a specific time period would allow for planned shutdowns as well as process optimization such that the mixer throughput is not compromised. In addition, further testing should be performed to determine an alternate liquid inlet location to better flush the mixer of residual grout at the end of processing. Sufficiently cleaning the mixer will help eliminate another potential source of wear. Another potential method for reducing the wear rate in the mixer is to reduce the mixer speed without affecting the throughput capacity. Since wear rate is a function of impact velocity of the grout and mixing paddles, testing could be done using the 2-inch mixer determine the optimum mixer speed to reduce wear but not adversely impact facility operations (e.g. throughput capacity and grout properties).« less
U.S. Geological Survey toxic Waste-Groundwater Contamination Program, fiscal year 1985
Ragone, S.E.
1986-01-01
In fiscal year 1982, the U S Geological Survey began an interdisciplinary research thrust entitled Toxic Waste-Groundwater Contamination Program The objective of the thrust was to provide earth sciences information necessary to evaluate and mitigate existing groundwater contamination problems resulting from the planned or inadvertant disposal of wastes and from certain land-use practices, and to improve future waste disposal and land-use practices The program supports process-oriented and interdisciplinary field research, and regional groundwater quality studies This article provides an overview of the current (Fiscal Year 1985) activities of the Toxic Waste Program ?? 1986 Springer-Verlag New York Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.« less
Development of High Performance Grouts for Bonded Post-tensioned Structures
DOT National Transportation Integrated Search
1999-10-01
The use of post-tensioning in bridges can provide durability and structural benefits to the system while expediting the construction process. When post-tensioning is combined with precast elements, traffic interference can be greatly reduced through ...
Long-term post-tensioned beam exposure test specimens : final evaluation.
DOT National Transportation Integrated Search
2003-08-01
In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for : multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon ...
Post-Tensioning Duct Air Pressure Testing Effects on Web Cracking
DOT National Transportation Integrated Search
2015-01-01
Nevada Department of Transportation (NDOT) post-tensioned concrete bridges have experienced web cracking near the post-tensioning ducts during the construction process. The ducts were air pressure tested to ensure the duct can successfully be grouted...
PERMEABLE REACTIVE BARRIER TECHNOLOGIES FOR CONTAMINANT REMEDIATION
Environmental scientists are generally familiar with the concept of barriers for restricting the movement of contaminant plumes in ground water. Such barriers are typically constructed of highly impermeable emplacements of materials such as grouts, slurries, or sheet pilings to ...
Field testing of jet-grouted pile : [summary].
DOT National Transportation Integrated Search
2014-01-01
In many areas of Florida, local geology dictates the use of deep foundations for transportation structures bridges, noise walls, signage, etc. When concrete piles are used, they are either prestressed at the casting yard, cast in situ through a h...
Seismic retrofit of spliced sleeve connections for precast bridge piers.
DOT National Transportation Integrated Search
2017-03-01
Grouted Splice Sleeve (GSS) connectors are being considered for connecting bridge columns, footings, and pier caps in Accelerated Bridge Construction (ABC). A repair technique for precast reinforced concrete bridge column-to-footing and column-to-pie...
Simulation of prepackaged grout bleed under field conditions : [summary].
DOT National Transportation Integrated Search
2014-04-01
Post-tensioning (PT) is a method of compensating : for concretes weakness under tension by adding : steel. Tubes (ducts) are cast into concrete : components; after the concrete sets, high-strength steel cables (tendons or strand) are run : through...
Maughan, Brandon C; Hersh, Elliot V; Shofer, Frances S; Wanner, Kathryn J; Archer, Elizabeth; Carrasco, Lee R; Rhodes, Karin V
2016-11-01
Individuals who abuse prescription opioids often use leftover pills that were prescribed for friends or family members. Dental surgery has been identified as a common source of opioid prescriptions. We measured rates of used and unused opioids after dental surgery for a pilot program to promote safe drug disposal. We conducted a randomized controlled trial of opioid use patterns among patients undergoing surgical tooth extraction at a university-affiliated oral surgery practice. The primary objective was to describe opioid prescribing and consumption patterns, with the number of unused opioid pills remaining on postoperative day 21 serving as the primary outcome. The secondary aim was to measure the effect of a behavioral intervention (informing patients of a pharmacy-based opioid disposal program) on the proportion of patients who disposed or reported intent to dispose of unused opioids. (NCT02814305) Results: We enrolled 79 patients, of whom 72 filled opioid prescriptions. On average, patients received 28 opioid pills and had 15 pills (54%) left over, for a total of 1010 unused pills among the cohort. The behavioral intervention was associated with a 22% absolute increase in the proportion of patients who disposed or reported intent to dispose of unused opioids (Fisher's exact p=0.11). Fifty-four percent of opioids prescribed in this pilot study were not used. The pharmacy-based drug disposal intervention showed a robust effect size but did not achieve statistical significance. Dentists and oral surgeons could potentially reduce opioid diversion by moderately reducing the quantity of opioid analgesics prescribed after surgery. Copyright © 2016. Published by Elsevier Ireland Ltd.
EVALUATION OF FABRIC MEMBRANES FOR USE IN SALTSTONE DRAIN WATER SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickenheim, B.; Miller, D.; Burket, P.
2012-03-08
Saltstone Disposal Unit 2 contains a sheet drain fabric intended to separate solids from drain water to be returned to the Salt Feed Tank. A similar system installed in Vault 4 appears to be ineffective in keeping solids out of the drain water return lines. Waste Solidification Engineering is considering installation of an additional fabric membrane to supplement the existing sheet drain in SDU 2. Amerdrain 200 is the product currently installed in SDU 2. This product is no longer available, so Sitedrain 94 was used as the replacement product in this testing. Fabrics with apparent opening sizes of 10,more » 25, 50 and 100 microns were evaluated. These fabrics were evaluated under three separate test conditions, a water flow test, a solids retention test and a grout pour test. A flow test with water showed that installation of an additional filter layer will predictably reduce the theoretical flux through the sheet drain. The manufacturer reports the flux for Sitedrain 94 as 150 gpm/ft{sup 2} by ASTM D-4491. This compares reasonably well with the 117 gpm/ft{sup 2} obtained in this testing. A combination of the 10 micron fabric with Sitedrain 94 could be expected to decrease flux by about 10 times as compared to Sitedrain 94 alone. The different media were used to filter a slag and fly ash mixture from water. Slag historically has the smallest nominal particle size of the premix components. Cement was omitted from the test because of its reactivity with water would prohibit accurately particle size measurements of the filtered samples. All four media sizes were able to remove greater than 95% of particles larger than 100 microns from the slurry. The smaller opening sizes were increasingly effective in removing more particles. The 10 micron filter captured 15% of the total amount of solids used in the test. This result implies that some insoluble particles may still be able to enter the drain water collection system, although the overall solids rejection is significantly improved over the current design. Test boxes were filled with grout to evaluate the performance of the sheet drain and fabrics in a simulated vault environment. All of the tests produced a similar amount of drain water, between 8-11% of the amount of water in the mix, which is expected with the targeted formulation. All of the collected drain waters contained some amount of solids, although the 10 micron filter did not appear to allow any premix materials to pass through. The solids collected from this box are believed to consist of calcium carbonate based on one ICP-AES measurement. Any of the four candidate fabrics would be an improvement over the sheet drain alone relative to solids removal. The 10 micron fabric is the only candidate that stopped all premix material from passing. The 10 micron fabric will also cause the largest decrease in flux. This decrease in flux was not enough to inhibit the total amount of drain water removed, but may lead to increased time to remove standing water prior to subsequent pours in the facility. The acceptability of reduced liquid flux through the 10 micron fabric will depend on the amount of excess water to be removed, the time available for water removal and the total area of fabric installed at the disposal cell.« less
40 CFR 257.25 - Assessment monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 257.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste...
PRN 83-3: Label Improvement Program - Storage and Disposal Label Statements
This Notice is to inform all registrants that the label of all pesticide products must include updated storage and disposal statements. No application for amended registration is required if you use the exact wording contained in this Notice.
EPA serves as a technical clearinghouse on responsible appliance disposal program development and implementation; calculates annual and cumulative program benefits in terms of ODS and GHG emission savings and equivalents, etc.
Technical and design update in the AUBE French low-level radioactive waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marque, Y.
1989-01-01
Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less
Decontamination systems information and research program. Quarterly report, April--June 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains separate reports on the following subtasks: analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using CFD; drain enhanced soil flushing using prefabricated vertical drains; performance and characteristics evaluation of acrylates as grout barriers; development of standard test protocol barrier design models for desiccation barriers, and for in-situ formed barriers; in-situ bioremediation of chlorinated solvents at Portsmouth Gaseous Diffusion Plant; development of a decision support system and a prototype database for management of the EM50 technology development program; GIS-based infrastructure for site characterization and remediation; treatment of mixed wastes via fluidized bed steammore » reforming; use of centrifugal membrane technology to treat hazardous/radioactive waste; environmental pollution control devices based on novel forms of carbon; development of instrumental methods for analysis of nuclear wastes and environmental materials; production and testing of biosorbents and cleaning solutions for D and D; use of SpinTek centrifugal membrane and sorbents/cleaning solutions for D and D; West Virginia High Tech Consortium Foundation--Environmental support program; small business interaction opportunities; and approach for assessing potential voluntary environmental protection.« less
Vatovec, Christine; Van Wagoner, Emily; Evans, Corey
2017-08-01
Pharmaceutical pollution in surface waters poses a range of risks to public health and aquatic ecosystems. Consumers contribute to pharmaceutical pollution via use and disposal of medications, though data on such behaviors is limited. This paper investigates the purchasing, use, and disposal practices among a population that has been researched only minimally to date, yet will determine pharmaceutical pollution for decades to come: young adults represented by a university student population. We employed an online, 21-question survey to examine behaviors related to pharmaceuticals among students at the University of Vermont (n = 358). Results indicate that the majority of respondents had purchased medications in the previous 12 months (94%), and had leftover drugs (61%). Contrary to previous studies of older populations, only a small proportion of students had disposed of drugs (18%); municipal trash was the primary route of drug disposal (25%), and very few students disposed drugs via flushing (1%). Less than a quarter of students were aware of drug take-back programs (24%), and only 4% had ever used take-back services. These findings indicate that the university student population may be storing a large volume of unused drugs that will require future disposal. Increasing awareness of, access to, and participation in pro-environment pharmaceutical behaviors, such as purchasing over-the-counter medication in smaller quantities and utilizing drug take-back programs, could minimize future pharmaceutical pollution from this population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) WATER AND WASTE DISPOSAL PROGRAMS GUARANTEED LOANS § 1779.2 Definitions. The following general... agencies with authority delegated by the Secretary of Agriculture to administer the Water and Waste... collection), solid waste, and storm drainage facilities. WW. An acronym for Water and Waste Disposal. ...
Code of Federal Regulations, 2010 CFR
2010-01-01
... type of properties (such as large farms and business property) requiring valuation. For Farmer Programs... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property Use of Contractors to Dispose of Inventory Property § 1955.128 Appraisers. (a) Real property. The State Director may authorize the County...
Corrosion resistance of grouted post-tensioning systems : [summary].
DOT National Transportation Integrated Search
2013-08-01
The increased popularity of post-tensioned bridge construction in the United States has led to concerns about corrosion and its impact on the life cycle of these bridges. Although the vast majority of post-tensioned bridges in the United States have ...
Improved connection details for adjacent prestressed bridge beams.
DOT National Transportation Integrated Search
2015-03-01
Bridges with adjacent box beams and voided slabs are simply and rapidly constructed, and are well suited to : short to medium spans. The traditional connection between the adjacent members is a shear key lled with a : conventional non-shrink grout...
DOT National Transportation Integrated Search
2015-11-01
The objectives were to evaluate the ability of different NDE methods to detect and quantify : defects associated with corrosion of steel reinforcement and grout defects in post-tensioning : applications; and to evaluate the effectiveness of selected ...
ECONOMICS OF GROUND FREEZING FOR MANAGEMENT OF UNCONTROLLED HAZARDOUS WASTE SITES
Ground freezing for hazardous waste containment is an alternative to the traditional and expensive slurry wall or grout curtain barrier technologies. The parameters quantified in this analysis of it include thermal properties, refrigeration line spacing, equipment mobilization an...
DOT National Transportation Integrated Search
2015-08-01
Advancements and increased use of accelerated bridge construction (ABC) : often result in the use of newly developed, or modified, technologies and/or : construction techniques that are sometimes untested in this new application. : For designers and ...
ERIC Educational Resources Information Center
Dyckman, Claire; And Others
This teaching unit is part of the final report of the Household Hazardous Waste Disposal Project. It consists of activities presented in an introduction and three sections. The introduction contains an activity for students in grades 4-12 which defines terms and concepts for understanding household hazardous wastes. Section I provides activities…
Overview of ORNL/NRC programs addressing durability of concrete structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, D.J.; Oland, C.B.
1994-06-01
The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal.
1988-05-01
include poly- chlorinated biphenyls (PCBs) and related chlorinated pesticides of similar polarity in addition to the petroleum hydrocarbons . The...Ui It tILL (JV: FIELD VERIFICATION PROGRAM (AQUATIC DISPOSAL).’Wh TECHNICAL REPORT D-87-6 COMPARISON OF FIELD AND LABORATORY BIOACCUMULATION OF...Laboratory Bioaccumulation of Organic and Inorganic Contaminants from Black Rock Harbor Dredged Material 12 PERSONAL AUTHOR(S) Lake, James L.; Galloway
40 CFR 230.80 - Advanced identification of disposal areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... from approved Coastal Zone Management programs and River Basin Plans; (e) The permitting authority...
40 CFR 230.80 - Advanced identification of disposal areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... from approved Coastal Zone Management programs and River Basin Plans; (e) The permitting authority...
40 CFR 230.80 - Advanced identification of disposal areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... from approved Coastal Zone Management programs and River Basin Plans; (e) The permitting authority...
40 CFR 230.80 - Advanced identification of disposal areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... from approved Coastal Zone Management programs and River Basin Plans; (e) The permitting authority...
40 CFR 230.80 - Advanced identification of disposal areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Advanced identification of disposal areas. 230.80 Section 230.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN... from approved Coastal Zone Management programs and River Basin Plans; (e) The permitting authority...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS PROCEDURES FOR... specific effluent limitations and conditions or standards for sewage sludge use or disposal, including a... sludge use or disposal as required by § 122.44 and reasons why they are applicable or an explanation of...
24 CFR 982.609 - Congregate housing: Housing quality standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
... URBAN DEVELOPMENT SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Special Housing... apply in place of § 982.401(c) (food preparation and refuse disposal). Congregate housing is not subject... area. (b) Food preparation and refuse disposal: Additional performance requirements. The following...
Dryden Flight Research Center Chemical Pharmacy Program
NASA Technical Reports Server (NTRS)
Davis, Bette
1997-01-01
The Dryden Flight Research Center (DFRC) Chemical Pharmacy "Crib" is a chemical sharing system which loans chemicals to users, rather than issuing them or having each individual organization or group purchasing the chemicals. This cooperative system of sharing chemicals eliminates multiple ownership of the same chemicals and also eliminates stockpiles. Chemical management duties are eliminated for each of the participating organizations. The chemical storage issues, hazards and responsibilities are eliminated. The system also ensures safe storage of chemicals and proper disposal practices. The purpose of this program is to reduce the total releases and transfers of toxic chemicals. The initial cost of the program to DFRC was $585,000. A savings of $69,000 per year has been estimated for the Center. This savings includes the reduced costs in purchasing, disposal and chemical inventory/storage responsibilities. DFRC has chemicals stored in 47 buildings and at 289 locations. When the program is fully implemented throughout the Center, there will be three chemical locations at this facility. The benefits of this program are the elimination of chemical management duties; elimination of the hazard associated with chemical storage; elimination of stockpiles; assurance of safe storage; assurance of proper disposal practices; assurance of a safer workplace; and more accurate emissions reports.
Generic repository design concepts and thermal analysis (FY11).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Robert; Dupont, Mark; Blink, James A.
2011-08-01
Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less
75 FR 62893 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... for using portland cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of the structure... of the structure depends on the functional reliability of the structure's principal strength elements...
Rheology limits for grout materials used for precast bent cap pile pockets in hot weather.
DOT National Transportation Integrated Search
2017-02-28
While prefabricated bridge elements and systems (PBES) have been used for many years in Florida, The Florida Department : of Transportation (FDOT) is currently developing local specifications for PBES to ad- dress the Federal Highway : Administration...
ERIC Educational Resources Information Center
Popke, Michael
2000-01-01
Examines the difficulties and solutions to wet environment repairs in pools and locker rooms. Issues include crack and leak repairs, repairs to grout and tile, on-deck accessories, and underwater lights. Several "tricks-of-the-trade" notes are included as is a brief discussion on emergency shutdowns. (GR)
84. Photographic copy of historic photo, February 17, 1930 (original ...
84. Photographic copy of historic photo, February 17, 1930 (original print filed in Record Group 115, National Archives, Washington, D.C.). OWYHEE DAM-HIGH PRESSURE GROUTING EQUIPMENT, AND 25-TON GASOLINE LOCOMOTIVE. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Concrete Durability: A Multibillion-Dollar Opportunity
1987-01-01
Fum -Containing Products 79 MDF Materials 85 Fiber-Reinforced Materials 85 Modified - Sulfur Concretes 87 References 88 APPENDIX: BIOGRAPHICAL SKETCHES...construction. MODIFIED - SULFUR CONCRETES Molten sulfur-sand grouts have been used for many years in the constructLin of acid vats because of their
Laboratory investigation of grouted coupler connection details for ABC bridge projects.
DOT National Transportation Integrated Search
2015-08-01
With an ever increasing desire to utilize accelerated bridge construction (ABC) techniques, it is becoming critical that bridge : designers and contractors have confidence in typical details. The Keg Creek Bridge on US 6 in Iowa was a recent ABC exam...
Identification of techniques to meet pH standard during in-stream construction.
DOT National Transportation Integrated Search
2014-03-01
Many of Marylands tributaries traverse highway infrastructure via culverts that are managed : and maintained by SHA. These culverts are often made of galvanized steel and over time are : subjected to scour. Concrete grout is often used as a repair...
DOT National Transportation Integrated Search
2014-06-01
Concretes remarkable role in construction depends on its marriage with reinforcing steel. Concrete is very strong in compression, but weak in tension, so reinforcing steel is added to increase tensile strength, yielding structural components capab...
Effect of voids in grouted, post-tensioned concrete bridge construction : seminar slides.
DOT National Transportation Integrated Search
2009-02-26
Post-tensioned (PT) bridges have several advantages over other bridge types: they can span longer distances, can be constructed relatively fast, and are economical. The tendons of PT bridges are critical components, essentially the backbone of the PT...
1987-09-21
a difficult process to control; continuous generation of acidic products results in the possibility of side reactions and in gaseous by- products . Ion...dissolved in hydrochlorlo acid. The acid chlorination forms non-toxic reaction products as per Figure 3-3. (2) To initiate the neutralization process ...et al, "Emission and Control of By- Products From Hazarduus Waste Combustion Processes ", Land Disposal, Remedial Action, Incineration and Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinga, K.R.
Volume II of the sixth annual report describing the progress and evaluating the status of the Subseabed Disposal Program contains the appendices referred to in Volume I, Summary and Status. Because of the length of Volume II, it has been split into two parts for publication purposes. Part 1 contains Appendices A-Q; Part 2 contains Appendices R-MM. Separate abstracts have been prepared for each appendix for inclusion in the Energy Data Base.
40 CFR 501.32 - Procedures for revision of State programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SEWAGE SLUDGE STATE SLUDGE MANAGEMENT PROGRAM REGULATIONS Program Approval, Revision and Withdrawal § 501... requires revision to comply with amendments to federal regulations governing sewage sludge use or disposal...
NASA Astrophysics Data System (ADS)
Philipose, K.; Shenton, B.
2011-04-01
The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA). To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1), Quebec, Canada (250 MWe) was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE) methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) WATER AND WASTE DISPOSAL PROGRAMS GUARANTEED LOANS § 1779.1 General. (a) This part contains the regulations for Water and Waste Disposal (WW) loans guaranteed by the Agency and applies to lenders, holders... or improvement of water and waste projects serving the financially needy communities in rural areas...
DEVELOPMENT OF RISK ASSESSMENT METHODOLOGY FOR SURFACE DISPOSAL OF MUNICIPAL SLUDGE
This is one of a series of reports that present methodologies for assessing the potential risks to humans or other organisms from the disposal or reuse of municipal sludge. he sludge management practices addressed by this series include distribution and marketing programs, landfi...
Regional Management of an Aquifer for Mining Under Fuzzy Environmental Objectives
NASA Astrophysics Data System (ADS)
BogáRdi, IstváN.; BáRdossy, AndráS.; Duckstein, Lucien
1983-12-01
A methodology is developed for the dynamic multiobjective management of a multipurpose regional aquifer. In a case study of bauxite mining in Western Hungary, ore deposits are often under the piezometric level of a karstic aquifer, while this same aquifer also provides recharge flows for thermal springs. N + 1 objectives are to be minimized, the first one being total discounted cost of control by dewatering or grouting; the other N objectives consist of the flow of thermal springs at N control points. However, there is no agreement among experts as to a set of numerical values that would constitute a "sound environment"; for this reason a fuzzy set analysis is used, and the N environmental objectives are combined into a single fuzzy membership function. The constraints include ore availability, various capacities, and the state transition function that describes the behavior of both piezometric head and underground flow. The model is linearized and solved as a biobjective dynamic program by using multiobjective compromise programming. A numerical example with N = 2 appears to lead to realistic control policies. Extension of the model to the nonlinear case is discussed.
Liquid secondary waste: Waste form formulation and qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Dixon, K. L.; Hill, K. A.
The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity and water characteristic curves) were comparable to the properties measured on the Savannah River Site (SRS) Saltstone waste form. Future testing should include efforts to first; 1) determine the rate and amount of ammonia released during each unit operation of the treatment process to determine if additional ammonia management is required, then; 2) reduce the ammonia content of the ETF concentrated brine prior to solidification, making the waste more amenable to grouting, or 3) manage the release of ammonia during production and ongoing release during storage of the waste form, or 4) develop a lower pH process/waste form thereby precluding ammonia release.« less
Machan, Melissa D; Monaghan, W Patrick; McDonough, John; Hogan, Gerard
2013-04-01
The purpose of this evidence-based project was to determine the perceptions of anesthesia providers regarding the use of disposable laryngoscope blades. Frequency of use, ease of use, and complications encountered when using the disposable blade were evaluated before and after an in-service program designed to increase the use of disposable blades. Participants completed an anonymous questionnaire about their knowledge and practice regarding disposable laryngoscope blades. Then they received an investigator-developed article to read about the best and most recent practices regarding disposable laryngoscope blades. The same anonymous questionnaire was completed 3 months later. Inventory of the disposable laryngoscope blades was collected before the project and 1 and 3 months later. After the intervention, 25% of anesthesia providers described performance as their reason for not using the disposable laryngoscope blade, which was down from 60% at the project's start. Inventory showed a 23% increase in use of disposable laryngoscope blades after the intervention, which a single-proportion Z test showed was statistically significant (Z = 2.046, P = .041). This evidence-based project shows that a change in practice was evident after dissemination of the best and most recent clinical evidence regarding laryngoscope blades, which should translate to improved patient outcomes.
Disposing of Excess Vaccines After the Withdrawal of Oral Polio Vaccine
Ramirez Gonzalez, Alejandro; Dolan, Samantha B.; Garon, Julie; Veira, Chantal Laroche; Hampton, Lee M.; Chang Blanc, Diana; Patel, Manish M.
2017-01-01
Abstract Until recently, waste management for national immunization programs was limited to sharps waste, empty vaccine vials, or vaccines that had expired or were no longer usable. However, because wild-type 2 poliovirus has been eradicated, the World Health Organization’s (WHO’s) Strategic Advisory Group of Experts on Immunization deemed that all countries must simultaneously cease use of the type 2 oral polio vaccine and recommended that all countries and territories using oral polio vaccine (OPV) “switch” from trivalent OPV (tOPV; types 1, 2, and 3 polioviruses) to bivalent OPV (bOPV; types 1 and 3 polioviruses) during a 2-week period in April 2016. Use of tOPV after the switch would risk outbreaks of paralysis related to type 2–circulating vaccine-derived poliovirus (cVDPV2). To minimize risk of vaccine-derived polio countries using OPV were asked to dispose of all usable, unexpired tOPV after the switch to bOPV. In this paper, we review the rationale for tOPV disposal and describe the global guidelines provided to countries for the safe and appropriate disposal of tOPV. These guidelines gave countries flexibility in implementing this important task within the confines of their national regulations, capacities, and resources. Steps for appropriate disposal of tOPV included removal of all tOPV vials from the cold chain, placement in appropriate bags or containers, and disposal using a recommended approach (ie, autoclaving, boiling, chemical inactivation, incineration, or encapsulation) followed by burial or transportation to a designated waste facility. This experience with disposal of tOPV highlights the adaptability of national immunization programs to new procedures, and identifies gaps in waste management policies and strategies with regard to disposal of unused vaccines. The experience also provides a framework for future policies and for developing programmatic guidance for the ultimate disposal of all OPV after the eradication of polio. PMID:28838168
76 FR 38213 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... quality standards for using Portland Cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of... strength elements. Thus, any significant deterioration of the prestressing elements caused by corrosion may...
Corrosion characteristics of unprotected post-tensioning strands under stress : [summary].
DOT National Transportation Integrated Search
2014-05-01
Post tensioned concrete is used in many Florida : transportation structures, many of which are : exposed to fresh or salt water. The steel strands : that supply the tension are encased in a plastic : duct which is later filled with grout, so the stra...
Identification of techniques to meet pH standard during in-stream construction : research summary.
DOT National Transportation Integrated Search
2014-03-01
Many of Marylands tributaries traverse highway infrastructure via culverts that are managed : and maintained by SHA. These culverts are often made of galvanized steel and over time are : subjected to scour. Concrete grout is often used as a repair...
GROUTING TECHNIQUES IN BOTTOM SEALING OF HAZARDOUS WASTE SITES
Bottom sealing of hazardous waste sites involves the injection or insertion of an inert impermeable and continuous horizontal barrier in soil below the source of contamination. This type of containment strategy could be used in conjunction with other technology such as slurry wal...
Cost Analysis of Remediation Systems for Depleted Uranium
2014-04-01
situ stabilization and phytoremediation . In-situ stabilization includes the use of amend- ments, capping, and grouting to immobilize the contaminant in...its current location. Adding amendments to the soil solidifies the DU into insoluble particles. Phytoremediation is the use of plants to help reduce
Bonding agents for portland cement concrete and mortar.
DOT National Transportation Integrated Search
1983-01-01
Structural repairs of bridge piers and abutements require patching concrete : used depends upon the depth of the patch to be made. In some instances, the : use of a liquid bonding agent has been specified in the mixes as well as in a : grout scrubbed...
Liu, Bingyu; Chen, Jiang; Zhang, Yiping
2016-01-01
In this study, two short precast concrete columns and two cast-in-situ concrete columns were tested under cyclic loads. It was shown that the sleeve grouted connection was equivalent to the cast-in-situ connections for short columns when the axial compression ratio was 0.6. In order to determine the influence of the axial compression ratio and the shear-span ratio on the shear capacity of the horizontal joint, a FE model was established and verified. The analysis showed that the axial compression ratio is advantageous to the joint and the shear capacity of the horizontal joint increases with increase of the shear-span ratio. Based on the results, the methods used to estimate the shear capacity of horizontal joints in the Chinese Specification and the Japanese Guidelines are discussed and it was found that both overestimated the shear capacity of the horizontal joint. In addition, the Chinese Specification failed to consider the influence of the shear-span ratio. PMID:27861493
Nondestructive spectroscopic characterization of building materials
NASA Astrophysics Data System (ADS)
Kassu, Aschalew; Walker, Lauren; Sanders, Rachel; Farley, Carlton; Mills, Jonathan; Sharma, Anup
2017-04-01
The purpose of this research project is to demonstrate the application of Raman spectroscopy technique for characterization and identification of the distinct Raman signatures of construction materials. The results reported include the spectroscopic characterization of building materials using compact Raman system with 785 nm wavelength laser. The construction materials studied include polyblend sanded grout, fire barrier sealant, acrylic latex caulk plus and white silicone. It is found that, both fire barrier sealant and acrylic latex caulk plus has a prominent Raman band at 1082 cm-1, and three minor Raman signatures located at 275, 706 and 1436 cm-1. On the other hand, sand grout has three major Raman bands at 1265, 1368 and 1455 cm-1, and four minor peaks at 1573, 1683, 1762, and 1868 cm-1. White silicone, which is a widely used sealant material in construction industry, has two major Raman bands at 482 and 703 cm-1, and minor Raman characteristic bands at 783 and 1409 cm-1.
Soil mixing of stratified contaminated sands.
Al-Tabba, A; Ayotamuno, M J; Martin, R J
2000-02-01
Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.
Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danny Anderson
2014-07-01
As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.« less
National low-level waste management program radionuclide report series, Volume 15: Uranium-238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.P.
1995-09-01
This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.
77 FR 34229 - Idaho: Final Authorization of State Hazardous Waste Management Program; Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... capability for the disposal of remote-handled low-level radioactive waste ((LLW) generated at the Idaho... (FONSI), for the Remote-Handled Low-Level Radioactive Waste Onsite Disposal (RHLLWOD) on an Environmental... regulating phosphate (mineral processing) plants within the state. In response to this commenter's concerns...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... Installation Designated for Disposal: Naval Air Station Alameda, Alameda, California AGENCY: Department of the... at Naval Air Station Alameda, Alameda, California. FOR FURTHER INFORMATION CONTACT: Ms. Laura Duchnak, Director, Naval Facilities Engineering Command, Base Realignment and Closure Program Management Office...
38 CFR 74.29 - When will VA dispose of records?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) VETERANS SMALL BUSINESS REGULATIONS Records Management § 74.29 When will VA dispose of records? The records, including those pertaining to businesses not determined to be eligible for the program... of the last Notice of Verified Status Approval letter. Longer retention will not be required unless a...
1984-10-01
resulting from previous waste disposal practices at Hancock Field o Recommend measures to mitigatc, adverse impacts at identified contaminated areas o...well GW-8 is downgradient of both disposal sites and this will be the best well to use in judging water quality impacts caused by the disposal...groundwater quality and quantity samples. The amount of water added to each well was in the order of 2 to 4 gallons. This should not adversely impact
Radioisotope Thermoelectric Generators Emplaced in the Deep Ocean, Recover or Dispose in Situ
1986-03-01
00 0 M! Technical Report 1106 Cll ) March 1986 Radioisotope Thermoelectric 00 Generators Emplaced in the Deep Ocean Recover or Dispose In Situ? 00...PROGRAM ELEMENT NO PROJECT NO8 TASK NO WORK UN IT NO NAV’COMPT 141 N A8 WR00026 I I TITLE i,cmvd. Secunty CIaxssIoe,o’,) Radioisotope Thermoelectric ...disposal alternatives. . RTG DESCRIPTIONS Each RTG consists of a strontium-90 titanate heat source, thermoelectric generator, thermal insulation
2011-09-01
Disposal Efforts 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...8 40 U.S.C. § 102(3). 9 DOD has delegated authority to dispose of properties located at military...the State Historic Preservation Officer, among others, to consider a method to best preserve the historic value of the property prior to authorizing
RAD partner programs help protect the ozone layer and reduce emissions of greenhouse gases by disposing of older, inefficient refrigerated appliances using the best environmental practices and technologies available.
The Louisiana State University waste-to-energy incinerator
NASA Astrophysics Data System (ADS)
1994-10-01
This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.
Evaluation of maintenance/rehabilitation alternatives for continuously reinforced concrete pavement
NASA Astrophysics Data System (ADS)
Barnett, T. L.; Darter, M. I.; Laybourne, N. R.
1981-05-01
The design, construction, performance, and costs of several maintenance and rehabilitation methods were evaluated. Patching, cement grout and asphalt undersealing, epoxying of cracks, and an asphalt overlay were considered. Nondestructive testing, deflections, reflection cracking, cost, and statistical analyses were used to evaluate the methods.
ERIC Educational Resources Information Center
Kennedy, Mike
2000-01-01
Discusses the types of washroom fixtures and locker room equipment that can help minimize and discourage student mischief. Topics include germ control by avoiding the use of tile grout and substituting epoxy paint, using phenolic toilet-stall partitions to reduce vandalism, and using expanded metal lockers to control locker odor. (GR)
Dowel bar retrofit evaluation, district 12, Orange County, Interstate 405
DOT National Transportation Integrated Search
2002-09-01
A dowel bar retrofit project on Interstate 405 near Irvine in Orange County began to exhibit sights of failure in the bond between the existing concrete and the backfill grout in the dowel bar slots. It was requested the Office of Rigid Pavement and ...
DOT National Transportation Integrated Search
2014-08-01
Existing full-depth precast concrete deck systems use either open channels or pockets to accommodate the shear connectors of supporting girders for achieving composite systems. The use of open channels or pockets requires cast-in-place concrete/grout...
DOT National Transportation Integrated Search
2009-09-01
Post-tensioned (PT) bridges are major structures that carry significant traffic. These bridges are designed and : constructed because they are economical for spanning long distances. In Texas, there are several signature PT : bridges. In the late 199...
97. Photographic copy of historic photo, October 17, 1930 (original ...
97. Photographic copy of historic photo, October 17, 1930 (original print filed in Record Group 115, National Archives, Washington, D.C.). OWYHEE DAM, SHOWING SCHEME OF PANEL POURING, AND ARRANGEMENT OF GROUT AND DRAIN PIPES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Disposal of children's stools and its association with childhood diarrhea in India.
Bawankule, Rahul; Singh, Abhishek; Kumar, Kaushalendra; Pedgaonkar, Sarang
2017-01-05
Children's stool disposal is often overlooked in sanitation programs of any country. Unsafe disposal of children's stool makes children susceptible to many diseases that transmit through faecal-oral route. Therefore, the study aims to examine the magnitude of unsafe disposal of children's stools in India, the factors associated with it and finally its association with childhood diarrhea. Data from the third round of the National Family Health Survey (NFHS-3) conducted in 2005-06 is used to carry out the analysis. The binary logistic regression model is used to examine the factors associated with unsafe disposal of children's stool. Binary logistic regression is also used to examine the association between unsafe disposal of children's stool and childhood diarrhea. Overall, stools of 79% of children in India were disposed of unsafely. The urban-rural gap in the unsafe disposal of children's stool was wide. Mother's illiteracy and lack of exposure to media, the age of the child, religion and caste/tribe of the household head, wealth index, access to toilet facility and urban-rural residence were statistically associated with unsafe disposal of stool. The odds of diarrhea in children whose stools were disposed of unsafely was estimated to be 11% higher (95% CI: 1.01-1.21) than that of children whose stools were disposed of safely. An increase in the unsafe disposal of children's stool in the community also increased the risk of diarrhea in children. We found significant statistical association between children's stool disposal and diarrhea. Therefore, gains in reduction of childhood diarrhea can be achieved in India through the complete elimination of unsafe disposal of children's stools. The sanitation programmes currently being run in India must also focus on safe disposal of children's stool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Last, George V.; Snyder, Michelle M.V.; Um, Wooyong
Performance and risk assessments of immobilized low-activity waste (ILAW) at the Integrated Disposal Facility (IDF) have shown that risks to groundwater are quite sensitive to adsorption-desorption interactions occurring in the near- and far-field environment. These interactions between the underlying sediments and the contaminants present in the leachates that descend from the buried glass, secondary waste grouts, and potentially Cast Stone low-activity waste packages have been represented in these assessments using the contaminant distribution coefficient (Kd) construct. Some contaminants (99Tc, 129I, and Cr) present in significant quantities in these wastes have low Kd values and tend to drive risk to publicmore » health and the environment. Relatively small changes in the Kd value can cause relatively large changes in the retardation factor. Thus, even relatively small uncertainty in the Kd value can result in a relatively large uncertainty in the risk determined through performance assessment modeling. The purpose of this study is to further reduce the uncertainty in Kd values for 99Tc, iodine (iodide and iodate), and Cr (chromate; CrO42-) by conducting systematic adsorption-desorption experiments using actual sand-dominated Hanford formation sediments from beneath the IDF and solutions that closely mimic Hanford vadose zone pore water and leachates from Cast Stone and ILAW glass waste forms. Twenty-four batch and 21 flow-through column experiments were conducted, yielding 261 Kd measurements for these key contaminants, and contributing to our understanding for predicting transport from wastes disposed to the IDF. While the batch Kd methodology is not well-suited for measuring Kd values for non-sorbing species (as noted by the U.S. Environmental Protection Agency), the batch Kd results presented here are not wholly inconsistent with the column Kd results, and could be used for sensitivity purposes. Results from the column experiments are consistent with the best estimate and lower range of Kd values reported by Krupka et al. and Cantrell et al.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell
The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less
Goethite Bench-scale and Large-scale Preparation Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Gary B.; Westsik, Joseph H.
2011-10-23
The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetiummore » that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Requirements and limitations for disposal facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Requirements and limitations for disposal facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Requirements and limitations for disposal facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Requirements and limitations for disposal facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.F.; Schroeder, P.R.; Engler, R.M.
This technical note describes procedures for determining mean hydraulic retention time and efficiency of a confined disposal facility (CDF) from a dye tracer slug test. These parameters are required to properly design a CDF for solids retention and for effluent quality considerations. Detailed information on conduct and analysis of dye tracer studies can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. This technical note documents the DYECON computer program which facilitates the analysis of dye tracer concentration data and computes the hydraulic efficiency of a CDF as part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This technical note describes the current capabilities and availability of the Automated Dredging and Disposal Alternatives Management System (ADDAMS). The technical note replaces the earlier Technical Note EEDP-06-12, which should be discarded. Planning, design, and management of dredging and dredged material disposal projects often require complex or tedious calculations or involve complex decision-making criteria. In addition, the evaluations often must be done for several disposal alternatives or disposal sites. ADDAMS is a personal computer (PC)-based system developed to assist in making such evaluations in a timely manner. ADDAMS contains a collection of computer programs (applications) designed to assist in managingmore » dredging projects. This technical note describes the system, currently available applications, mechanisms for acquiring and running the system, and provisions for revision and expansion.« less
Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-03-01
This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastesmore » still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
Regulatory basis for the Waste Isolation Pilot Plant performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.
2000-05-22
The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA tomore » demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.« less
DOT National Transportation Integrated Search
2009-11-01
Segmental, post-tensioned (PT) bridges are major structures that carry significant traffic. These bridges are designed and constructed because they are economical for spanning long distances. In Texas, there are several signature PT bridges. In the l...
2010-11-30
16 Figure 10. Top and Bottom Connections ...Masonry Beams ...............................66 Figure 61. Resistance-displacement Idealization for Reinforced Masonry Beams .......................66...patterns on exterior walls. Masonry can form structural elements (bearing walls, columns , or pilasters) and/or finished cladding systems. Masonry
DOT National Transportation Integrated Search
2009-09-01
Post-tensioned (PT) bridges are major structures that carry significant traffic. PT bridges are economical for spanning long distances. : In Texas, there are several signature PT bridges. In the late 1990s and early 2000s, several state highway agenc...
87. ARAIII. GCRE reactor building (ARA608) Mechanical equipment room. Utility ...
87. ARA-III. GCRE reactor building (ARA-608) Mechanical equipment room. Utility air receiver, dryer, and compressor sit on their foundations prior to grouting. December 22, 1958. Ineel photo no. 58-6429. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
DOT National Transportation Integrated Search
1999-07-01
Many of the major highway crossings over coastal waters in the Hampton area of Virginia are supported by prestressed concrete piles, some of which are showing signs of reinforcement corrosion. Grout jacketing alone is an inadequate protection against...
Flood Grouting for Infiltration Reduction on Private Side Sewers (WERF Report INFR5R11)
The sewers in Seattle’s Broadview neighborhood, built in the 1950s, experience significant inflow and infiltration. Intense wet weather events have resulted in sewer overflows into private residences and the environment and previous work indicates that the majority of this excess...
75 FR 39008 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... Dry Storage. Waste Area Group--7 Update. In-Situ Grouting. Comment Resolution--Environmental... meeting be announced in the Federal Register. DATES: Wednesday, July 14, 2010 8 a.m.-5 p.m. Opportunities... management in the areas of environmental restoration, waste management, and related activities. Tentative...
75 FR 9590 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... current agenda): Progress to Cleanup. InSitu Grouting--Work Plan Follow-up Discussion. Experimental... meeting be announced in the Federal Register. DATES: Tuesday, March 16, 2010, 8 a.m.-5 p.m. Opportunities... in the areas of environmental restoration, waste management, and related activities. Tentative Topics...
An Operational Safety and Health Program.
ERIC Educational Resources Information Center
Uhorchak, Robert E.
1983-01-01
Describes safety/health program activities at Research Triangle Institute (North Carolina). These include: radioisotope/radiation and hazardous chemical/carcinogen use, training, monitoring, disposal; chemical waste management; air monitoring and analysis; medical program; fire safety/training, including emergency planning; Occupational Safety and…
Child Feces Disposal Practices in Rural Orissa: A Cross Sectional Study
Majorin, Fiona; Freeman, Matthew C.; Barnard, Sharmani; Routray, Parimita; Boisson, Sophie; Clasen, Thomas
2014-01-01
Background An estimated 2.5 billion people worldwide lack access to improved sanitation facilities. While large-scale programs in some countries have increased latrine coverage, they sometimes fail to ensure optimal latrine use, including the safe disposal of child feces, a significant source of exposure to fecal pathogens. We undertook a cross-sectional study to explore fecal disposal practices among children in rural Orissa, India in villages where the Government of India's Total Sanitation Campaign had been implemented at least three years prior to the study. Methods and Findings We conducted surveys with heads of 136 households with 145 children under 5 years of age in 20 villages. We describe defecation and feces disposal practices and explore associations between safe disposal and risk factors. Respondents reported that children commonly defecated on the ground, either inside the household (57.5%) for pre-ambulatory children or around the compound (55.2%) for ambulatory children. Twenty percent of pre-ambulatory children used potties and nappies; the same percentage of ambulatory children defecated in a latrine. While 78.6% of study children came from 106 households with a latrine, less than a quarter (22.8%) reported using them for disposal of child feces. Most child feces were deposited with other household waste, both for pre-ambulatory (67.5%) and ambulatory (58.1%) children. After restricting the analysis to households owning a latrine, the use of a nappy or potty was associated with safe disposal of feces (OR 6.72, 95%CI 1.02–44.38) though due to small sample size the regression could not adjust for confounders. Conclusions In the area surveyed, the Total Sanitation Campaign has not led to high levels of safe disposal of child feces. Further research is needed to identify the actual scope of this potential gap in programming, the health risk presented and interventions to minimize any adverse effect. PMID:24586864
Child feces disposal practices in rural Orissa: a cross sectional study.
Majorin, Fiona; Freeman, Matthew C; Barnard, Sharmani; Routray, Parimita; Boisson, Sophie; Clasen, Thomas
2014-01-01
An estimated 2.5 billion people worldwide lack access to improved sanitation facilities. While large-scale programs in some countries have increased latrine coverage, they sometimes fail to ensure optimal latrine use, including the safe disposal of child feces, a significant source of exposure to fecal pathogens. We undertook a cross-sectional study to explore fecal disposal practices among children in rural Orissa, India in villages where the Government of India's Total Sanitation Campaign had been implemented at least three years prior to the study. We conducted surveys with heads of 136 households with 145 children under 5 years of age in 20 villages. We describe defecation and feces disposal practices and explore associations between safe disposal and risk factors. Respondents reported that children commonly defecated on the ground, either inside the household (57.5%) for pre-ambulatory children or around the compound (55.2%) for ambulatory children. Twenty percent of pre-ambulatory children used potties and nappies; the same percentage of ambulatory children defecated in a latrine. While 78.6% of study children came from 106 households with a latrine, less than a quarter (22.8%) reported using them for disposal of child feces. Most child feces were deposited with other household waste, both for pre-ambulatory (67.5%) and ambulatory (58.1%) children. After restricting the analysis to households owning a latrine, the use of a nappy or potty was associated with safe disposal of feces (OR 6.72, 95%CI 1.02-44.38) though due to small sample size the regression could not adjust for confounders. In the area surveyed, the Total Sanitation Campaign has not led to high levels of safe disposal of child feces. Further research is needed to identify the actual scope of this potential gap in programming, the health risk presented and interventions to minimize any adverse effect.
77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...
77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...
75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...
Kim, Young-Chan; Hong, Won-Hwa
2017-06-01
The safe management and disposal of asbestos is a matter of considerable importance. A large number of studies have been undertaken to quantify the issue of waste management following a disaster. Nevertheless, there have been few (if any) studies concerning asbestos waste, covering the amount generated, the cost of disposal, and the degree of hazard incurred. Thus, the current study focuses on developing a program for the management of Asbestos Containing Building Materials (ACBMs), which form the source of asbestos waste in the event of a disaster. The study will also discuss a case study undertaken in a specific region in Korea in terms of: (1) the location of ACBM-containing buildings; (2) types and quantities of ACBMs; (3) the cost of ACBM disposal; (4) the amount of asbestos fiber present during normal times and during post-disaster periods; (5) the required order in which ACBM-containing buildings should be dismantled; and (6) additional greenhouse gases generated during ACBM removal. The case study will focus on a specific building, with an area of 35.34m 2 , and will analyze information concerning the abovementioned points. In addition, the case study will focus on a selected area (108 buildings) and the administrative district (21,063 buildings). The significance of the program can be established by the fact that it visibly transmits information concerning ACBM management. It is a highly promising program, with a widespread application for the safe management and optimal disposal of asbestos in terms of technology, policy, and methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R.
Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium,more » cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the inorganic species measured in the leachate do not exceed the MCL, SMCL or TW limits. (4) The inorganic waste species that exceeded the MCL by more than a factor of 10 were nitrate, nitrite and the sum of nitrate and nitrite. (5) Analyses met all quality assurance specifications of US EPA SW-846. (6) The organic species (benzene, toluene, 1-butanol, phenol) were either not detected or were less than reportable for the vault classification samples. (7) The gross alpha and radium isotopes could not be determined to the MCL because of the elevated background which raised the detection limits. (8) Most of the beta/gamma activity was from 137Cs and its daughter 137mBa. (9) The concentration of 137Cs and 90Sr were present in the leachate at concentrations 1/40th and 1/8th respectively than in the 2003 vault classification samples. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the SCHWMR R.61-79.261.24(b) RCRA metals requirements for a nonhazardous waste form. The TCLP leachate concentrations for nitrate, nitrite and the sum of nitrate and nitrite were greater than 10x the MCLs in SCDHEC Regulations R.61-107.19, Part I A, which confirms the Saltstone Disposal Facility classification as a Class 3 Landfill. The saltstone waste form placed in the Saltstone Disposal Facility in 2QCY11 met the R.61-79.268.48(a) non wastewater treatment standards.« less
ERIC Educational Resources Information Center
Carnegie, John W.
This lesson deals with special considerations that should be made when choosing a sludge solids management program, briefly describing the source of solids in wastewater and why they must be dealt with. The various solids handling processes and ultimate disposal methods are also briefly described, followed by a detailed discussion of the technical…
ERIC Educational Resources Information Center
Ridgley, Susan M.
Four general product classes (pesticides, paint products, household cleaners, and automotive products) are reviewed in this document. Each product class is described, and several aspects of the problem associated with product use or disposal are examined, including estimates of volumes used and environmental impacts. Technical data on the specific…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Education DISPOSAL AND UTILIZATION OF SURPLUS FEDERAL REAL PROPERTY FOR EDUCATIONAL PURPOSES Distribution of...'s proposed educational use at the site of the surplus Federal real property; (2) Considering the quality of each applicant's proposed program and plan of use; and (3) Considering each applicant's ability...
Cost effectiveness of recycling: a systems model.
Tonjes, David J; Mallikarjun, Sreekanth
2013-11-01
Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Louisiana State University waste-to-energy incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-26
This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes aremore » produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.« less
Industrial Pretreatment Program for New England
The Industrial Pretreatment Program prevents the discharge of pollutants to Publicly-Owned Treatment Works (POTWs) which will interfere with the operations of the POTW or its use and disposal of municipal biosolids.
Report of foreign travel to Paris, France, June 1, 1990--June 12, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoesen, S.D.; Jones, L.S.
1990-07-01
The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Central Waste Management Division, participated in a technology exchange program on French --- US low-level radioactive waste (LLW) management facility design, construction, and operation. Visits were made to the new French LLW disposal facility currently under construction, the Centre de Stockage de l'Aube (CSA), to the La Hague reprocessing facility to visit LLW conditioning and storage facilities, and to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM). A meeting was also held with representatives of the Agence National pour lamore » Gestion des Dechets Radioactifs (ANDRA) to discuss overall French and Oak Ridge LLW disposal facility development programs and to review the status of the efforts being conducted under the current subcontract with NUMATEC/Societe General pour les Techniques Nouvelles (SGN)/ANDRA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This decision document, a Record of Decision (ROD), presents the selected remedial action for the AC W Site, Installation Restoration Program (IRP) Site 12, at Mather Air Force Base (AFB), Sacramento County, California. Reports indicate that from 1958 to 1966 waste solvents and transformer oils were disposed in a waste disposal pipe in the AC W area. Investigations conducted as part of the Air Force Installation Restoration Program (IRP) failed to locate the waste disposal pipe but did find trichloroethylene (TCE) contamination in the shallow water bearing zone (SWBZ) in the AC W area. The SWBZ is classified as amore » potential source of drinking water by the State of California, although it is not currently used in the AC W area. The selected remedy will address the potential threat to human health posed by TCE contamination in groundwater (primarily in the SWBZ).« less
Classification of the Inventory of Spent Sealed Sources at INSHAS Storage Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Adham, K.; Geleel, M.A.; Mahmoud, N.S.
2006-07-01
The Egyptian Atomic Energy Authority (EAEA) is responsible for the recovery, transportation, conditioning, storage and disposal of all unwanted spent sealed radioactive sources (SSSs) in Egypt. Because of radioactive decay, damage, misuse or changing technical conditions, approximately 600 unwanted SSSs are now in storage at the EAEA's Hot-Laboratories Center in INSHAS. For the safe recovery, transportation, conditioning and storage of these unwanted SSSs the EAEA uses an International Atomic Energy Agency's (IAEA's) categorization system. The IAEA system classifies sealed radioactive sources (SRSs) into five categories based on potential risks to current workers and the public. This IAEA system allows Membermore » States like Egypt to apply a graded approach to the management of SRSs and SSSs. With over 600 unwanted SSSs already in storage, the EAEA is planned to dispose unwanted SSSs in near surface vault structures with solidified low- and intermediate-level radioactive wastes. The IAEA's categorization system is not designed to protect future populations from the possible long-term migration of radioactive wastes from a disposal system. This paper presents the basis of a second categorization system, designed to protect the public in Egypt from radioactive wastes that may migrate from a near-surface disposal facility. Assuming a release of radionuclides from the near-surface vaults 150 years after disposal and consumption of contaminated groundwater at the 150 m fence-line, this classification systems ranks SSSs into two groups: Those appropriate for near-surface disposal and those SSSs requiring greater isolation. Intermediate depth borehole disposal is proposed for those SSSs requiring greater isolation. Assistance with intermediate-depth borehole disposal is being provided by the Integrated Management Program for Radioactive Sealed Sources (IMPRSS) and by the IAEA through a Technical Cooperation Project. IMPRSS is a joint Egyptian / U.S. program that is greatly improving the cradle-to-grave management of SRSs and SSSs in Egypt. As a component of IMPRSS, Sandia National Laboratories is transferring knowledge to the Egyptian counterparts from implementation of the Greater Confinement Disposal boreholes in the U.S. (authors)« less
Long-term surveillance plan for the Green River, Utah, disposal site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-06-01
The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and detailsmore » how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).« less
Solid wastes from nuclear power production.
Soule, H F
1978-01-01
Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244
NASA Astrophysics Data System (ADS)
Massoud, May A.; Chami, Ghida; Al-Hindi, Mahmoud; Alameddine, Ibrahim
2016-05-01
Pharmaceuticals comprise an extensive group of compounds whose release into the environment has potential adverse impacts on human health and aquatic ecosystems. In many developing countries the extent of the problem and the occurrence of pharmaceuticals in water bodies are generally unknown. While thousands of tons of pharmaceutical substances are used annually, little information is known about their final fate after their intended use. This paper focuses on better understanding the management of human-use pharmaceutical wastes generated at the residential level within the Administrative Beirut Area. A survey encompassing 300 households was conducted. Results revealed that the majority of respondents were found to dispose of their unwanted medications, mainly through the domestic solid waste stream. Willingness to participate in a future collection program was found to be a function of age, medical expenditure, and the respondents' views towards awareness and the importance of establishing a collection system for pharmaceutical wastes. Respondents who stated a willingness to participate in a collection program and/or those who believed in the need for awareness programs on the dangers of improper medical waste disposal tended to favor more collection programs managed by the government as compared to a program run by pharmacies or to the act of re-gifting medication to people in need. Ultimately, collaboration and coordination between concerned stakeholders are essential for developing a successful national collection plan.
EVALUATION OF THE DURABILITY OF THE STRUCTURAL CONCRETE OF REACTOR BUILDINGS AT SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.; Reigel, M.
2011-02-28
The Department of Energy (DOE) intends to close 100-150 facilities in the DOE complex using an in situ decommissioning (ISD) strategy that calls for grouting the below-grade interior volume of the structure and leaving the above-grade interior open or demolishing it and disposing of it in the slit trenches in E Area. These closures are expected to persist and remain stable for centuries, but there are neither facility-specific monitoring approaches nor studies on the rate of deterioration of the materials used in the original construction or on the ISD components added during closure (caps, sloped roofs, etc). This report willmore » focus on the evaluation of the actual aging/degradation of the materials of construction used in the ISD structures at Savannah River Site (SRS) above grade, specifically P & R reactor buildings. Concrete blocks (six 2 to 5 ton blocks) removed from the outer wall of the P Reactor Building were turned over to SRNL as the first source for concrete cores. Larger cores were received as a result of grouting activities in P and R reactor facilities. The cores were sectioned and evaluated using microscopy, x-ray diffraction (XRD), ion chromatography (IC) and thermal analysis. Scanning electron microscopy shows that the aggregate and cement phases present in the concrete are consistent with the mix design and no degradation mechanisms are evident at the aggregate-cement interfaces. Samples of the cores were digested and analyzed for chloride ingress as well as sulfate attack. The concentrations of chloride and sulfate ions did not exceed the limits of the mix design and there is no indication of any degradation due to these mechanisms. Thermal analysis on samples taken along the longitudinal axis of the cores show that there is a 1 inch carbonation layer (i.e., no portlandite) present in the interior wall of the reactor building and a negligible carbonation layer in the exterior wall. A mixed layer of carbonate and portlandite extends deeper into the interior (2-3 inches) and exterior (1-2 inches) walls. This is more extensive than measured in previous SRS structures. Once the completely carbonated layer reaches the rebar that is approximately 2-3 inches into the concrete wall, the steel is susceptible to corrosion. The growth rate of the carbonated layer was estimated from current observations and previous studies. Based on the estimated carbonation rate, the steel rebar should be protected from carbonation induced corrosion for at least another 100 years. If degradation of these structures is dominated by the carbonation mechanism, the length of time before water intrusion is expected into the process room of P-reactor is estimated to be between 425-675 years.« less
3. Photographic copy of photograph dated 1941; Gerald Young, Chicago, ...
3. Photographic copy of photograph dated 1941; Gerald Young, Chicago, photographer; Original in Rath collection at Grout Museum, Waterloo, Iowa; Filed under: Rath Parking Company, Box 5; SKINNING CATTLE IN THE OLD BEEF HOUSE - Rath Packing Company, Cooler Building-1929 Beef House, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA
40 CFR 440.132 - General definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... grouting the tailings pond or wastewater holding facility. (e) “In-situ leach methods” means the processes... land on or in which grading has been completed to return the earth to desired contour and reclamation... evaporation data. (c) “Appropriate treatment of the recycle water” in subpart J, § 440.104 includes, but is...
75 FR 346 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... current agenda): Progress to Cleanup. InSitu Grouting--Draft Remedial Design and Remedial Action Work Plan... this meeting be announced in the Federal Register. DATES: Wednesday, January 20, 2010, 8 a.m.-5 p.m... in the areas of environmental restoration, waste management, and related activities. Tentative Topics...
NASA Technical Reports Server (NTRS)
Vanbibber, L. E.; Parker, W. G.
1973-01-01
A computer program was adapted from a previous generation program to analyze the temperature and internal pressure response of a radioactive nuclear waste material disposal container following impact on the earth. This program considers component melting, LiH dissociation, temperature dependent properties and pressure and container stress response. Analyses were performed for 21 cases with variations in radioactive power level, container geometry, degree of deformation of the container, degree of burial and soil properties. Results indicated that the integrity of SS-316 containers could be maintained with partial burials of either underformed or deformed containers. Results indicated that completely buried waste containers, with power levels above 5 kW, experienced creep stress rupture failures in 4 to 12 days.
Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM
NASA Astrophysics Data System (ADS)
Cai, Fei; Ugai, Keizo
2003-06-01
This paper reports the limitation of the conventional Bishop's simplified method to calculate the safety factor of slopes stabilized with anchors, and proposes a new approach to considering the reinforcing effect of anchors on the safety factor. The reinforcing effect of anchors can be explained using an additional shearing resistance on the slip surface. A three-dimensional shear strength reduction finite element method (SSRFEM), where soil-anchor interactions were simulated by three-dimensional zero-thickness elasto-plastic interface elements, was used to calculate the safety factor of slopes stabilized with anchors to verify the reinforcing mechanism of anchors. The results of SSRFEM were compared with those of the conventional and proposed approaches for Bishop's simplified method for various orientations, positions, and spacings of anchors, and shear strengths of soil-grouted body interfaces. For the safety factor, the proposed approach compared better with SSRFEM than the conventional approach. The additional shearing resistance can explain the influence of the orientation, position, and spacing of anchors, and the shear strength of soil-grouted body interfaces on the safety factor of slopes stabilized with anchors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, J.T.
1997-03-01
A sinkhole formed over the former salt mine used for crude oil storage by the U.S. Strategic Petroleum Reserve at Weeks Island, Louisiana. This created a dilemma because in-mine grouting was not possible, and external grouting, although possible, was impractical. However, environmental protection during oil withdrawal and facility decommissioning was considered critical and alternative solutions were essential. Mitigation of, the sinkhole growth over the salt mine was accomplished by injecting saturated brine directly into the sinkhole throat, and by constructing a cylindrical freeze curtain around and into the dissolution orifice at the top of the salt dome. These measures vastlymore » reduced the threat of major surface collapse around the sinkhole during oil transfer and subsequent brine backfill. The greater bulk of the crude oil was removed from the mine during 1995-6. Final skimming operations will remove residual oil trapped in low spots, concurrent with initiating backfill of the mine with saturated brine. Environmental monitoring during 1995-9 will assure that environmental surety is achieved.« less