Science.gov

Sample records for growing cold dark

  1. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  2. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  3. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  4. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  5. Condensation of galactic cold dark matter

    SciTech Connect

    Visinelli, Luca

    2016-07-07

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M{sub χ}c{sup 2}≈10{sup −24} eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  6. Astronomical Constraints on Quantum Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  7. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  8. Axion cold dark matter in nonstandard cosmologies

    SciTech Connect

    Visinelli, Luca; Gondolo, Paolo

    2010-03-15

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  9. Halo cold dark matter and microlensing

    SciTech Connect

    Gates, Evalyn; Turner, Michael S.

    1993-12-01

    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least $10^{-25}\\gcmm3$. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.

  10. Hot News for Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Astronomers have used NASA's Chandra X-ray Observatory to make the most detailed probe yet of the distribution of dark matter in a massive cluster of galaxies. Their results indicate that about 80 percent of the matter in the universe consists of cold dark matter - mysterious subatomic particles left over from the dense early universe. Chandra observed a cluster of galaxies called Abell 2029 located about a billion light years from Earth. The cluster is composed of thousands of galaxies enveloped in a gigantic cloud of hot gas, and an amount of dark matter equivalent to more than a hundred trillion Suns. At the center of this cluster is an enormous, elliptically shaped galaxy that is thought to have been formed from the mergers of many smaller galaxies. The X-ray data show that the density of dark matter increases smoothly all the way into the central galaxy of the cluster. This discovery agrees with the predictions of cold dark matter models, and is contrary to other dark matter models that predict a leveling off of the amount of dark matter in the center of the cluster. "I was really surprised at how well we could measure the dark matter so deep into the core of a rich cluster," said Aaron Lewis of the University of California, Irvine, lead author of a paper describing the results in a recent issue of The Astrophysical Journal. "We still have very little idea as to the exact nature of these particles, but our results show that they must behave like cold dark matter." Cold dark matter gets its name from the assumption that the dark matter particles were moving slowly when galaxies and galaxy clusters began to form. Dark matter particles interact with each other and "normal" matter only through gravity. The astronomers' success in placing such tight constraints on the dark matter distribution was partly due to Chandra's ability to make a high resolution intensity and temperature map, and partly due to their choice of a target. The cluster and central galaxy are

  11. Axions as hot and cold dark matter

    SciTech Connect

    Jeong, Kwang Sik; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-02-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}∼

  12. The cosmological constant and cold dark matter

    NASA Astrophysics Data System (ADS)

    Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1990-12-01

    It is argued here that the success of the cosmological cold dark matter (CDM) model can be retained and the new observations of very large scale cosmological structures can be accommodated in a spatially flat cosmology in which as much as 80 percent of the critical density is provided by a positive cosmological constant. In such a universe, expansion was dominated by CDM until a recent epoch, but is now governed by the cosmological constant. This constant can also account for the lack of fluctuations in the microwave background and the large number of certain kinds of objects found at high redshift.

  13. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  14. Search for pseudoscalar cold dark matter

    SciTech Connect

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  15. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  16. Cold dark matter. 1: The formation of dark halos

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  17. The second coming of cold dark matter?

    SciTech Connect

    Zurek, W.H.; Warren, M.S.; Quinn, P.J.; Salmon, J.K.

    1993-12-31

    In recent years standard cold dark matter (CDM) theory, which enjoyed a large following throughout much of the past decade, has been abandoned by virtually all of its early supporters. The most serious argument against CDM was the incompatibility between the relatively high value of the pairwise radial velocity dispersion between galaxies, {sigma}{sub v}, inferred from numerical simulation with the much lower observational estimates. We reexamine this argument in the light of our new, high-resolution, COBE-normalized simulations and conclude that {sigma}{sub v} is significantly overestimated in simulations which do not have sufficient resolution (i.e., which have masses of galaxies comparable to the mass of N-body particles) and that it is also difficult to reliably estimate {sigma}{sub v} from the observational catalogues used for this purpose. We conclude that inflationary cosmology and CDM are not -- contrary to the presently prevailing prejudice -- incompatible with the observations of small scale peculiar velocities, as characterized, for example, by {sigma}{sub v}.

  18. Is Cold Dark Matter a Vacuum Effect?

    NASA Astrophysics Data System (ADS)

    Houlden, Michael A.

    Current theories about the Universe based on an FLRW model conclude that it is composed of ~4% normal matter, ~28 % dark matter and ~68% Dark Energy which is responsible for the well-established accelerated expansion: this model works extremely well. As the Universe expands the density of normal and dark matter decreases while the proportion of Dark Energy increases. This model assumes that the amount of dark matter, whose nature at present is totally unknown, has remained constant. This is a natural assumption if dark matter is a particle of some kind - WIMP, sterile neutrino, lightest supersysmmetric particle or axion, etc. - that must have emerged from the early high temperature phase of the Big Bang. This paper proposes that dark matter is not a particle such as these but a vacuum effect, and that the proportion of dark matter in the Universe is actually increasing with time. The idea that led to this suggestion was that a quantum process (possibly the Higgs mechanism) might operate in the nilpotent vacuum that Rowlands postulates is a dual space to the real space where Standard Model fundamental fermions (and we) reside. This could produce a vacuum quantum state that has mass, which interacts gravitationally, and such states would be `dark matter'. It is proposed that the rate of production of dark matter by this process might depend on local circumstances, such as the density of dark matter and/or normal matter. This proposal makes the testable prediction that the ratio of baryonic to dark matter varies with redshift and offers an explanation, within the framework of Rowlands' ideas, of the coincidence problem - why has cosmic acceleration started in the recent epoch at redshift z ~0.55 when the Dark Energy density first became equal to the matter density?. This process also offers a potential solution to the `missing baryon' problem.

  19. Cosmological simulations of multicomponent cold dark matter.

    PubMed

    Medvedev, Mikhail V

    2014-08-15

    The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.

  20. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    SciTech Connect

    Piattella, O.F.; Martins, D.L.A.; Casarini, L. E-mail: denilsonluizm@gmail.com

    2014-10-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100.

  1. Cold Positrons from Decaying Dark Matter

    SciTech Connect

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  2. Detection of interstellar hydrogen sulfide in cold, dark clouds

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.; Ziurys, L. M.

    1989-01-01

    Interstellar H2S has been detected toward the cold, dark clouds L134N and TMC 1. Total column densities at the SO peak of L134N and the NH3 peak of TMC 1 are found to be about 2.6 X 10 to the 13th/sq cm and 7.0 X 10 to the 12th/sq cm, respectively. The results suggest that grain surface reactions may play a major role in the synthesis of H2S in cold, dark clouds.

  3. A tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.

    1992-01-01

    A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.

  4. THE COLD AND DARK PROCESS AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-31

    The deactivation and decommissioning (D&D) of a facility exposes D&D workers to numerous hazards. One of the more serious hazards is coming into contact to hazardous energy sources (e.g. electrical, pressurized steam). At the Savannah River Site (SRS) a formal process for identifying and eliminating sources of hazardous energy was developed and is called ''Cold & Dark''. Several ''near miss'' events involving cutting of energized conductors during D&D work in buildings thought to be isolated identified the need to have a formal process to identify and isolate these potentially hazardous systems. This process was developed using lessons learned from D&D activities at the Rocky Flats Environmental Technology Site (Rocky Flats) in Colorado. The Cold & Dark process defines an isolation boundary (usually a building perimeter) and then systematically identifies all of the penetrations through this boundary. All penetrations that involve hazardous energy sources are then physically air-gapped. The final product is a documented declaration of isolation performed by a team involving operations, engineering, and project management. Once the Cold & Dark declaration is made for a building work can proceed without the usual controls used in an operational facility (e.g. lockout/tagout, arc flash PPE). It is important to note that the Cold & Dark process does not remove all hazards from a facility. Work planning and controls still need to address hazards that can be present from such things as chemicals, radiological contamination, residual liquids, etc., as well as standard industrial hazards.

  5. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1992-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  6. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  7. The Structure and Evolution of Cold Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Diemand, Jürg; Moore, Ben

    2011-02-01

    In the standard cosmological model a mysterious cold dark matter (CDM) component dominates the formation of structures. Numerical studies of the f ormation of CDM halos have produced several robust results that allow unique tests of the hierarchical clustering paradigm. Universal properties of halos, including their mass profiles and substructure properties are roughly consistent with observational data from the scales of dwarf galaxies to galaxy clusters. Resolving the fine grained structure of halos has enabled us to make predictions for ongoing and planned direct and indirect dark matter detection experiments. While simulations of pure CDM halos are now very accurate and in good agreement (recently claimed discrepancies are addressed in detail in this review), we are still unable to make robust, quantitative predictions about galaxy formation and about how the dark matter distribution changes in the process. Whilst discrepancies between observations and simulations have been the subject of much debate in the literature, galaxy formation and evolution needs to be understood in more detail in order to fully test the CDM paradigm. Whatever the true nature of the dark matter particle is, its clustering properties must not be too different from a cold neutralino like particle to maintain all the successes of the model in matching large scale structure data and the global properties of halos which are mostly in good agreement with observations.

  8. A hydrodynamic approach to cosmology - Texture-seeded cold dark matter and hot dark matter cosmogonies

    NASA Technical Reports Server (NTRS)

    Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.

    1991-01-01

    Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.

  9. Galaxies and gas in a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Katz, Neal; Hernquist, Lars; Weinberg, David H.

    1992-01-01

    We use a combined gravity/hydrodynamics code to simulate the formation of structure in a random 22 Mpc cube of a cold dark matter universe. Adiabatic compression and shocks heat much of the gas to temperatures of 10 exp 6 - 10 exp 7 K, but a fraction of the gas cools radiatively to about 10 exp 4 K and condenses into discrete, highly overdense lumps. We identify these lumps with galaxies. The high-mass end of their baryonic mass function fits the form of the observed galaxy luminosity function. They retain independent identities after their dark halos merge, so gravitational clustering produces groups of galaxies embedded in relatively smooth envelopes of hot gas and dark matter. The galaxy correlation function is approximately an r exp -2.1 power law from separations of 35 kpc to 7 Mpc. Galaxy fluctuations are biased relative to dark matter fluctuations by a factor b about 1.5. We find no significant 'velocity bias' between galaxies and dark matter particles. However, virial analysis of the simulation's richest group leads to an estimated Omega of about 0.3, even though the simulation adopts Omega = 1.

  10. COBE DMR-normalized open inflation cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Ratra, Bharat; Sugiyama, Naoshi; Banday, Anthony J.

    1995-01-01

    A cut-sky orthogonal mode analysis of the 2 year COBE DMR 53 and 90 GHz sky maps (in Galactic coordinates) is used to determine the normalization of an open inflation model based on the cold dark matter (CDM) scenario. The normalized model is compared to measures of large-scale structure in the universe. Although the DMR data alone does not provide sufficient discriminative power to prefer a particular value of the mass density parameter, the open model appears to be reasonably consistent with observations when Omega(sub 0) is approximately 0.3-0.4 and merits further study.

  11. The Cold Dark Matter Search test stand warm electronics card

    SciTech Connect

    Hines, Bruce; Hansen, Sten; Huber, Martin; Kiper, Terry; Rau, Wolfgang; Saab, Tarek; Seitz, Dennis; Sundqvist, Kyle; Mandic, Vuk; /Minnesota U.

    2010-11-01

    A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.

  12. Cell physiology of plants growing in cold environments.

    PubMed

    Lütz, Cornelius

    2010-08-01

    The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of

  13. Redshift space clustering of galaxies and cold dark matter model

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  14. Gravitational lensing in a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh; White, Simon D. M.

    1988-01-01

    Gravitational lensing due to mass condensations in a biased cold dark matter (CDM) universe is investigated using the Press-Schechter (1974) theory with density fluctuation amplitudes taken from previous N-body work. Under the critical assumption that CDM haloes have small core radii, a distribution of image angular separations for high-z lensed quasars with a peak at about 1 arcsec and a half-width of a factor of about 10. Allowing for selection effects at small angular separations, this is in good agreement with the observed separations. The estimated frequency of lensing is somewhat lower than that observed, but the discrepancy can be removed by invoking amplification bias and by making a small upward adjustment to the density fluctuation amplitudes assumed in the CDM model.

  15. Stochastic gravitational wave background from cold dark matter halos

    SciTech Connect

    Carbone, Carmelita; Baccigalupi, Carlo; Matarrese, Sabino

    2006-03-15

    The current knowledge of cosmological structure formation suggests that Cold Dark Matter (CDM) halos possess a nonspherical density profile, implying that cosmic structures can be potential sources of gravitational waves via power transfer from scalar perturbations to tensor metric modes in the nonlinear regime. By means of a previously developed mathematical formalism and a triaxial collapse model, we numerically estimate the stochastic gravitational-wave background generated by CDM halos during the fully nonlinear stage of their evolution. Our results suggest that the energy density associated with this background is comparable to that produced by primordial tensor modes at frequencies {nu}{approx_equal}10{sup -18}-10{sup -17} Hz if the energy scale of inflation is V{sup 1/4}{approx_equal}1-2x10{sup 15} GeV, and that these gravitational waves could give rise to several cosmological effects, including secondary CMB anisotropy and polarization.

  16. Cold dark matter. 2: Spatial and velocity statistics

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We examine high-resolution gravitational N-body simulations of the omega = 1 cold dark matter (CDM) model in order to determine whether there is any normalization of the initial density fluctuation spectrum that yields acceptable results for galaxy clustering and velocities. Dense dark matter halos in the evolved mass distribution are identified with luminous galaxies; the most massive halos are also considered as sites for galaxy groups, with a range of possibilities explored for the group mass-to-light ratios. We verify the earlier conclusions of White et al. (1987) for the low-amplitude (high-bias) CDM model-the galaxy correlation function is marginally acceptable but that there are too many galaxies. We also show that the peak biasing method does not accurately reproduce the results obtained using dense halos identified in the simulations themselves. The Cosmic Background Explorer (COBE) anisotropy implies a higher normalization, resulting in problems with excessive pairwise galaxy velocity dispersion unless a strong velocity bias is present. Although we confirm the strong velocity bias of halos reported by Couchman & Carlberg (1992), we show that the galaxy motions are still too large on small scales. We find no amplitude for which the CDM model can reconcile simultaneously and galaxy correlation function, the low pairwise velocity dispersion, and the richness distribution of groups and clusters. With the normalization implied by COBE, the CDM spectrum has too much power on small scales if omega = 1.

  17. Cold dark matter. 2: Spatial and velocity statistics

    NASA Astrophysics Data System (ADS)

    Gelb, James M.; Bertschinger, Edmund

    1994-12-01

    We examine high-resolution gravitational N-body simulations of the omega = 1 cold dark matter (CDM) model in order to determine whether there is any normalization of the initial density fluctuation spectrum that yields acceptable results for galaxy clustering and velocities. Dense dark matter halos in the evolved mass distribution are identified with luminous galaxies; the most massive halos are also considered as sites for galaxy groups, with a range of possibilities explored for the group mass-to-light ratios. We verify the earlier conclusions of White et al. (1987) for the low-amplitude (high-bias) CDM model-the galaxy correlation function is marginally acceptable but that there are too many galaxies. We also show that the peak biasing method does not accurately reproduce the results obtained using dense halos identified in the simulations themselves. The Cosmic Background Explorer (COBE) anisotropy implies a higher normalization, resulting in problems with excessive pairwise galaxy velocity dispersion unless a strong velocity bias is present. Although we confirm the strong velocity bias of halos reported by Couchman & Carlberg (1992), we show that the galaxy motions are still too large on small scales. We find no amplitude for which the CDM model can reconcile simultaneously and galaxy correlation function, the low pairwise velocity dispersion, and the richness distribution of groups and clusters. With the normalization implied by COBE, the CDM spectrum has too much power on small scales if omega = 1.

  18. Effects of the cosmological constant on cold dark matter clusters

    NASA Astrophysics Data System (ADS)

    Membrado, M.; Pacheco, A. F.

    2014-07-01

    Context. Cold dark matter inhomogeneities are considered in a homogeneous background of matter, radiation, and the cosmological constant in a flat universe. Aims: We investigate the influence of the cosmological constant on the non-linear collapse of cold dark matter clusters. Methods: For simplicity, a spherical infall model has been used to describe the collapse of non-relativistic mass shells; besides, an average distribution of density around a cluster of galaxies has been taken. Boundary conditions are imposed by the solution of the linearized equation for the growth of matter perturbations and by the cold dark matter power spectrum. Results: For an average cluster, the radii of shells and masses enclosed by them have been obtained at their zero proper acceleration (ZA) redshifts, at their turn-around (TA) redshifts and at their virialization (VIR) redshifts. According to our results at present, the shell that reaches its turn-around point shows [rTA] 0 = 6.85 Mpc and [ℳTA] 0 = 6.76 × 1014 ℳ⊙. The virializing shell fulfills [rTA] 0 = 4.57 [rVIR] 0 and [ℳTA] 0 = 1.95 [ℳVIR] 0. These results differ appreciably from those derived from a model with cosmological constant equal to zero in a flat universe: [rTA(Λ = 0)] 0 = 6.62 [rVIR(Λ = 0)] 0 and [ℳTA(Λ = 0)] 0 = 5.26 [ℳVIR(Λ = 0)] 0; this discrepancy could be considered as a new independent proof of the existence of dark energy. The shell with zero proper acceleration presents [rZA] 0 = 1.59 [rTA] 0 and [ℳZA] 0 = 1.63 [ℳTA] 0. We have found that there is a limit to the mass of the average cluster, which is able to virialize; its value is { ℳVIR } MAX = 8.1 × 1014 M⊙. As expected, we found that shells present null proper acceleration at redshift values that are smaller than 0.755. Conclusions: We have noticed that the cosmological constant imposes an upper limit for the mass enclosed by shells, which are able to reach zero proper velocity. Hence, this mass is the maximum mass of the

  19. The least-action method, cold dark matter, and omega

    NASA Technical Reports Server (NTRS)

    Dunn, A. M.; Laflamme, R.

    1995-01-01

    Peebles has suggested an interesting technique, called the least-action method, to trace positions of galaxies back in time. This method applied on the Local Group galaxies seems to indicate that we live in an omega approximately = 0.1 universe. We have studied a cold dark matter (CDM) N-body simulation with omega = 0.2 and H = 50 km/s/Mpc and compared trajectories traced back by the least-action method with the ones given by the center of mass of the CDM halos. We show that the agreement between these sets of trajectories is at best qualitative. We also show that the line-of-sight peculiar velocities of halos are underestimated. This discrepancy is due to orphans, i.e., CDM particles which do not end up in halos. We vary the value of omega in the least-action method until the line-of-sight velocities agree with the CDM ones. The best value for this omega underestimates one of the CDM simulations by a factor of 4-5.

  20. A hydrodynamic treatment of the cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah

    1992-01-01

    The evolution of structure in a postrecombination Friedmann-Robertson-Walker universe containing both gaseous baryons and cold dark matter (CDM) is studied by means of an Eulerian code coupled with a standard particle-mesh code. Ionization state and radiative opacity are calculated in detail, and the hydrodynamic simulations make it possible to compute properties of gas distribution on scales larger than three cell sizes. The model yields a soft X-ray background consistent with the latest cosmic nucleosynthesis values, and can accurately reproduce the galaxy-galaxy two-point correlation. The rate of galaxy formation peaks at a relatively late epoch. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of m(b) = 10 exp 9.2 solar masses with a reasonable fit to the Schecter luminosity function if the baryon mass to blue light ratio is approximately 4. Overall, the simulations provide strong support for the CMD scenario. Of particular interest is that, while the baryons are not biased on scales greater than 1/h Mpc, the galaxies are, and that the 'galaxies' have a correlation function of the required slope and the correct amplitude.

  1. Velocity fields in non-Gaussian cold dark matter models

    NASA Astrophysics Data System (ADS)

    Lucchin, F.; Matarrese, S.; Messina, A.; Moscardini, L.; Tormen, G.

    1995-02-01

    We analyse the large-scale velocity field obtained by N-body simulations of cold dark matter (CDM) models with non-Gaussian primordial density fluctuations, considering models with both positive and negative primordial skewness in the density fluctuation distribution. We study the velocity probability distribution and calculate the dependence of the bulk flow, one-point velocity dispersion and cosmic Mach number on the filtering size. We find that the sign of the primordial skewness of the density field provides poor discriminatory power on the evolved velocity field. All non-Gaussian models considered here tend to have lower velocity dispersion and bulk flow than the standard Gaussian CDM model, while the cosmic Mach number turns out to be a poor statistic in characterizing the models. We also compare the large-scale velocity field of a composite sample of optically selected galaxies as described by the Local Group properties, bulk flow, velocity correlation function and cosmic Mach number with the velocity field of mock catalogues extracted from the N-body simulations. The comparison does not clearly single out the best model: the standard Gaussian model is, however, marginally preferred by the maximum likelihood analysis.

  2. A hydrodynamic treatment of the cold dark matter cosmological scenario

    NASA Astrophysics Data System (ADS)

    Cen, Renyue; Ostriker, Jeremiah

    1992-07-01

    The evolution of structure in a postrecombination Friedmann-Robertson-Walker universe containing both gaseous baryons and cold dark matter (CDM) is studied by means of an Eulerian code coupled with a standard particle-mesh code. Ionization state and radiative opacity are calculated in detail, and the hydrodynamic simulations make it possible to compute properties of gas distribution on scales larger than three cell sizes. The model yields a soft X-ray background consistent with the latest cosmic nucleosynthesis values, and can accurately reproduce the galaxy-galaxy two-point correlation. The rate of galaxy formation peaks at a relatively late epoch. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of m(b) = 10 exp 9.2 solar masses with a reasonable fit to the Schecter luminosity function if the baryon mass to blue light ratio is approximately 4. Overall, the simulations provide strong support for the CMD scenario. Of particular interest is that, while the baryons are not biased on scales greater than 1/h Mpc, the galaxies are, and that the 'galaxies' have a correlation function of the required slope and the correct amplitude.

  3. D{sub 6} family symmetry and cold dark matter at CERN LHC

    SciTech Connect

    Kajiyama, Yuji; Kubo, Jisuke; Okada, Hiroshi

    2007-02-01

    We consider a nonsupersymmetric extension of the standard model with a family symmetry based on D{sub 6}xZ{sub 2}xZ{sub 2}, where one of Z{sub 2}'s is exactly conserved. This Z{sub 2} forbids the tree-level neutrino masses and simultaneously ensures the stability of cold dark matter candidates. From the assumption that cold dark matter is fermionic we can single out the D{sub 6} singlet right-handed neutrino as the best cold dark matter candidate. We find that an inert charged Higgs with a mass between 300 and 750 GeV decays mostly into an electron (or a positron) with a large missing energy, where the missing energy is carried away by the cold dark matter candidate. This will be a clean signal at LHC.

  4. The COBE normalization for standard cold dark matter

    NASA Technical Reports Server (NTRS)

    Bunn, Emory F.; Scott, Douglas; White, Martin

    1995-01-01

    The Cosmic Background Explorer Satellite (COBE) detection of microwave anisotropies provides the best way of fixing the amplitude of cosmological fluctuations on the largest scales. This normalization is usually given for an n = 1 spectrum, including only the anisotropy caused by the Sachs-Wolfe effect. This is certainly not a good approximation for a model containing any reasonable amount of baryonic matter. In fact, even tilted Sachs-Wolfe spectra are not a good fit to models like cold dark matter (CDM). Here, we normalize standard CDM (sCDM) to the two-year COBE data and quote the best amplitude in terms of the conventionally used measures of power. We also give normalizations for some specific variants of this standard model, and we indicate how the normalization depends on the assumed values on n, Omega(sub B) and H(sub 0). For sCDM we find the mean value of Q = 19.9 +/- 1.5 micro-K, corresponding to sigma(sub 8) = 1.34 +/- 0.10, with the normalization at large scales being B = (8.16 +/- 1.04) x 10(exp 5)(Mpc/h)(exp 4), and other numbers given in the table. The measured rms temperature fluctuation smoothed on 10 deg is a little low relative to this normalization. This is mainly due to the low quadrupole in the data: when the quadrupole is removed, the measured value of sigma(10 deg) is quite consistent with the best-fitting the mean value of Q. The use of the mean value of Q should be preferred over sigma(10 deg), when its value can be determined for a particular theory, since it makes full use of the data.

  5. Two-singlet model for light cold dark matter

    SciTech Connect

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-05-01

    We extend the standard model by adding two gauge-singlet Z{sub 2}-symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  6. Instrument Packages for the Cold, Dark, High Radiation Environments

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Millar, P. S.; Yeh, P. S.; Beamna, B.; Brigham, D.; Feng, S.

    2011-01-01

    We are developing a small cold temperature instrument package concept that integrates a cold temperature power system and radhard ultra low temperature ultra low power electronics components and power supplies now under development into a cold temperature surface operational version of a planetary surface instrument package. We are already in the process of developing a lower power lower tem-perature version for an instrument of mutual interest to SMD and ESMD to support the search for volatiles (the mass spectrometer VAPoR, Volatile Analysis by Pyrolysis of Regolith) both as a stand alone instrument and as part of an environmental monitoring package.

  7. Toward electroweak scale cold dark matter with local dark gauge symmetry and beyond the DM EFT

    NASA Astrophysics Data System (ADS)

    Ko, Pyungwon

    2016-06-01

    In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among these fields are completely fixed by local gauge principle. The idea of singlet portals including the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory or simplified DM models without the full SM gauge symmetry, and emphasize the importance of the full SM gauge symmetry and renormalizability especially for collider searches for DM.

  8. Perceiving the equation of state of Dark Energy while living in a Cold Spot

    SciTech Connect

    Valkenburg, Wessel

    2012-01-01

    The Cold Spot could be an adiabatic perturbation on the surface of last scattering, in which case it is an over-density with comoving radius of the order of 1 Gpc. We assess the effect that living in a similar structure, without knowing it, has on our perception of the equation of state of Dark Energy. We find that structures of dimensions such that they could cause the Cold Spot on the CMB, affect the perceived equation of state of Dark Energy possibly up to ten percent.

  9. THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES

    SciTech Connect

    González-Samaniego, A.; Avila-Reese, V.; Colín, P.

    2016-03-10

    By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the

  10. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  11. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  12. Statistics of the cosmic Mach number from numerical simulations of a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Suto, Yasushi; Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    Results are presented of an analysis of the cosmic Mach number, M, the ratio of the streaming velocity, v, to the random velocity dispersion, sigma, of galaxies in a given patch of the universe, which was performed on the basis of hydrodynamical simulations of the cold dark matter scenario. Galaxy formation is modeled by application of detailed physical processes rather than by the ad hoc assumption of 'bias' between dark matter and galaxy fluctuations. The correlation between M and sigma is found to be very weak for both components. No evidence is found for a physical 'velocity bias' in the quantities which appear in the definition of M. Standard cold-dark-matter-dominated universes are in conflict, at a statistically significant level, with the available observation, in that they predict a Mach number considerably lower than is observed.

  13. Scalar representations in the light of electroweak phase transition and cold dark matter phenomenology

    SciTech Connect

    AbdusSalam, Shehu S.; Chowdhury, Talal Ahmed E-mail: chowdhu@sissa.it

    2014-05-01

    The extension of the standard model's minimal Higgs sector with an inert SU(2){sub L} scalar doublet can provide light dark matter candidate and simultaneously induce a strong phase transition for explaining Baryogenesis. There is however no symmetry reasons to prevent the extension using scalars with higher SU(2){sub L} representations. By making random scans over the models' parameters, we show that in the light of electroweak physics constraints, strong first order electroweak phase transition and the possibility of having sub-TeV cold dark matter candidate the higher representations are rather disfavored compared to the inert doublet. This is done by computing generic perturbativity behavior and impact on electroweak phase transitions of higher representations in comparison with the inert doublet model. Explicit phase transition and cold dark matter phenomenology within the context of the inert triplet and quartet representations are used for detailed illustrations.

  14. Hyperfine anomalies of HCN in cold dark clouds

    SciTech Connect

    Walmsley, C.M.; Churchwell, E.; Nash, A.; Fitzpatrick, E.

    1982-07-15

    We report observations of the J = 1..-->..0 line of HCN measured toward six positions in nearby low-temperature dark clouds. The measured relative intensities of the hyperfine components of the J = 1..-->..0 line are anomalous in that the F = 0..-->..1 transition is stronger than would be expected if all three components (F = 2..-->..1, F = 1..-->..1, F = 0..-->..1) had equal excitation temperatures. Differences of approximately 20% in the populations per sublevel of J = 1 could account for the observations. The results are in contrast to the situation observed in warmer molecular clouds associated with H II regions where the F = 1..-->..1 line is anomalously weak. The apparent overpopulation of J = 1, F = 0 in dark clouds may be related to the phenomenon observed in the J = 1..-->..0 transitions of HCO/sup +/ and HNC in the same objects where /sup 13/C substituted version of these species is found to be stronger than the /sup 12/C species.

  15. Cold dark matter from heavy right-handed neutrino mixing

    SciTech Connect

    Anisimov, Alexey; Di Bari, Pasquale

    2009-10-01

    We show that, within the seesaw mechanism, an almost decoupled right-handed (RH) neutrino species N{sub DM} with mass M{sub DM} > or approx. 100 GeV can play the role of dark matter (DM). The N{sub DM}'s can be produced from nonadiabatic conversions of thermalized (source) RH neutrinos with mass M{sub S} lower than M{sub DM}. This is possible if a nonrenormalizable operator is added to the minimal type I seesaw Lagrangian. The observed DM abundance can be reproduced for M{sub DM}{delta}{sup 1/4}{approx}10{sup -13}{lambda}{sub eff}{xi}, where {lambda}{sub eff} is a very high energy new physics scale, {delta}{identical_to}(M{sub DM}-M{sub S})/M{sub DM}, and {xi} < or approx. 1 is a parameter determined by the RH neutrino couplings.

  16. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Gan, Nanqin; Liu, Jin; Zheng, Lingling; Li, Lin; Song, Lirong

    2017-03-01

    Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15°C or 4°C, with illumination) or darkness, and subsequent recovery in standard conditions (25°C with illumination). On exposure to 15°C, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15°C. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15°C. M. aeruginosa cells exposed to lower temperature light stress (4°C) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield ( F v/ F m) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.

  17. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Gan, Nanqin; Liu, Jin; Zheng, Lingling; Li, Lin; Song, Lirong

    2016-05-01

    Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15°C or 4°C, with illumination) or darkness, and subsequent recovery in standard conditions (25°C with illumination). On exposure to 15°C, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15°C. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fi tness of surviving cells at 15°C. M. aeruginosa cells exposed to lower temperature light stress (4°C) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield (F v/F m) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic effi ciency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our fi ndings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.

  18. The double dark resonance in a cold gas of Cs atoms and molecules.

    PubMed

    Feng, ZhiFang; Li, WeiDong; Xiao, LianTuan; Jia, SuoTang

    2008-09-29

    We theoretically investigated the properties of the effective four-level stimulated Raman adiabatic passage scheme in a cold gas of Cs atoms and molecules, where exists the tunnelling coupling between two excited molecular states due to the 0(g)- (6S,6P(3/2)) double well structure. The double dark resonance is predicted in the absorption spectrum when the tunnelling coupling strength is large enough. The double dark resonance not only reveals the formation of the ultra-cold molecules, but also provides further evidence for the tunnelling as one effective coupling mechanism between the two excited molecular states. The effect of the various experimental conditions on this phenomena has been discussed.

  19. Coarse graining the distribution function of cold dark matter - II

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.

    2004-12-01

    We study analytically the coarse- and fine-grained distribution function (DF) established by the self-similar infall of collisionless matter. We find this function explicitly for isotropic and spherically symmetric systems in terms of cosmological initial conditions. The coarse-grained function is structureless and steady but the familiar phase-space sheet substructure is recovered in the fine-grained limit. By breaking the self-similarity of the halo infall we are able to argue for a central density flattening. In addition there will be an edge steepening. The best-fitting analytic density function is likely to be provided by a high-order polytrope fit smoothly to an outer power law of index -3 for isolated systems. There may be a transition to a -4 power law in the outer regions of tidally truncated systems. As we find that the central flattening is progressive in time, dynamically young systems such as galaxy clusters may well possess a Navarro, Frenk and White type density profile, while primordial dwarf galaxies, for example, are expected to have cores. This progressive flattening is expected to end either in the non-singular isothermal sphere, or in the non-singular metastable polytropic cores; as the DFs associated with each of these arise naturally in the bulk halo during the infall. We suggest, based on previous studies of the evolution of de-stabilized polytropes, that a collisionless system may pass through a family of polytropes of increasing order, finally approaching the limit of the non-singular isothermal sphere, if the `violent' collective relaxation is frequently re-excited by `merger' events. Thus central dominant (cD) galaxies, and indeed all bright galaxies that have grown in this fashion, should be in polytropic states. Our results suggest that no physics beyond that of wave-particle scattering is necessary to explain the nature of dark matter density profiles. However, this may be assisted by the scattering of particles from the centre of the

  20. Cold- and Growing-Season Microbial Substrate Use in Arctic Tundra Soil

    NASA Astrophysics Data System (ADS)

    Schimel, J.; McMahon, S.

    2006-12-01

    Microbial communities will play a critical role in determining arctic ecosystem response to warming due to global climate change since decomposition, which is responsible for both CO2 evolution and plant nutrient availability, is a microbially-mediated process. Microorganisms living in tundra soil have access to two broad categories of carbon compounds via decomposition: complex polymers such as cellulose, lignin, protein and soil organic matter, and simple monomers such as glucose, phenolics and amino acids. Thermodynamically, labile substrates are easier to degrade because the activation energy of the reaction is lower than for more recalcitrant polymers. Thus, metabolic processes involving simple compounds are more likely under frozen conditions during the cold season. To test this theory, we incubated soils collected at Toolik Lake, Alaska before and after snowmelt and freeze-up with a variety of 13C-labelled substrates to track microbial carbon use during cold- and growing-season conditions. Surprisingly, tussock soils respired more protein-derived carbon under frozen pre-thaw conditions than late growing-season conditions. Organic shrub soils respired more glutamic acid-derived carbon under all conditions. Since nitrogen is more abundant in shrub than tussock soils, microbes in the shrub soil can afford to respire glutamic acid as an energy source rather than incorporate it into microbial biomass as a nitrogen source. This study indicates that winter substrate use may not follow predictions made strictly on a thermodynamic basis and hints at the complex nature of cold-tolerant microorganisms.

  1. The shape-alignment relation in Λ cold dark matter cosmic structures

    NASA Astrophysics Data System (ADS)

    Basilakos, S.; Plionis, M.; Yepes, G.; Gottlöber, S.; Turchaninov, V.

    2006-01-01

    In this paper, we study the supercluster-cluster morphological properties using one of the largest (2 × 5123) smoothed particle hydrodynamics (SPH)+N-body simulations of large-scale structure formation in a Λ cold dark matter (ΛCDM) model, based on the publicly available code GADGET. We find that filamentary (prolate-like) shapes are the dominant supercluster and cluster dark matter halo morphological feature, in agreement with previous studies. However, the baryonic gas component of the clusters is predominantly spherical. We investigate the alignment between cluster haloes (using either their dark matter or their baryonic components) and their parent supercluster major-axis orientation, finding that clusters show such a preferential alignment. Combining the shape and the alignment statistics, we also find that the amplitude of supercluster-cluster alignment increases, although weakly, with supercluster filamentariness.

  2. Large-scale structure formation and cosmic microwave anisotropy in a cold plus hot dark matter universe

    NASA Technical Reports Server (NTRS)

    Schaefer, Robert K.; Shafi, Qaisar; Stecker, Floyd W.

    1989-01-01

    Several particle physics models suggest the simultaneous existence of both cold and hot forms of dark matter particles. Assuming a Harrison-Zel'dovich spectrum of primordial density fluctuations and Omega = 1, the formation of structure in a universe dominated by a combination of cold dark matter and massive neutrinos is explored. It is found that the presence of the hot dark matter component can cause enough power on large scales to explain some recent observations, while there is still sufficient power on small scales to allow galactic structure formation. Spatial anisotropies in the microwave background radiation are computed and found to be compatible with observational limits.

  3. Galaxy and cluster formation in a universe dominated by cold dark matter

    SciTech Connect

    Primack, J.R.

    1984-07-01

    The dark matter (DM) that appears to be gravitationally dominant on all astronomical scales larger than the cores of galaxies can be classified, on the basis of its characteristic free-streaming damping mass M/sub D/, as hot (M/sub D/ approx. 10/sup 15/ M/sub mass/), warm (M/sub D/ approx. 10/sup 11/ M/sub mass/), or cold (M/sub D < 10/sup 8/ M/sub mass/). For the case of cold DM, the shape of the DM fluctuation spectrum is determined by (a) the primordial spectrum (on scales larger than the horizon), and (b) stagspansion, the stagnation of the growth of DM fluctuations that enter the horizon while the universe is still radiation-dominated. An attractive feature of the cold dark matter hypothesis is its considerable predictive power: the post-recombination fluctuation spectrum is calculable, and it in turn governs the formation of galaxies and clusters. Good agreement with the data is obtained for a Zeldovich spectrum of primordial fluctuations.

  4. Recent observations of organic molecules in nearby cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Ohishi, M.; Morimoto, M.; Kaifu, N.; Friberg, P.

    1985-01-01

    Recent investigations of the organic chemistry of relatively nearby cold, dark interstellar clouds are reported. Specifically, the presence of interstellar tricarbon monoxide (C3O) in Taurus Molecular Cloud 1 (TMC-1) is confirmed. The first detection in such regions of acetaldehyde (CH3CHO), the most complex oxygen-containing organic molecule yet found in dark clouds is reported, as well as the first astronomical detection of several molecular rotational transitions, including the J = 18-17 and 14-13 transitions of cyanodiacetylene (HC5N), the 1(01)-0(00) transition of acetaldehyde, and the J = 5-4 transition of C3O. A significant upper limit is set on the abundance of cyanocarbene (HCCN) as a result of the first reported interstellar search for this molecule.

  5. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1984-01-01

    Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.

  6. Fingerprints of the initial conditions on the density profiles of cold and warm dark matter haloes

    NASA Astrophysics Data System (ADS)

    Polisensky, E.; Ricotti, M.

    2015-06-01

    We use N-body simulations of dark matter haloes in cold dark matter (CDM) and a large set of different warm dark matter (WDM) cosmologies to demonstrate that the spherically averaged density profile of dark matter haloes has a shape that depends on the power spectrum of matter perturbations. Density profiles are steeper in WDM but become shallower at r < 0.01Rvir. Virialization isotropizes the velocity dispersion in the inner regions of the halo but does not erase the memory of the initial conditions in phase space. The location of the observed deviations from CDM in the density profile and in phase space can be directly related to the ratio between the halo mass and the filtering mass and are most evident in small mass haloes, even for a 34 keV thermal relic WDM. The rearrangement of mass within the haloes supports analytic models of halo structure that include angular momentum. We also find evidence of a dependence of the slope of the inner density profile in CDM cosmologies on the halo mass with more massive haloes exhibiting steeper profiles, in agreement with the model predictions and with previous simulation results. Our work complements recent studies of microhaloes near the filtering scale in CDM and strongly argue against a universal shape for the density profile.

  7. Anisotropies of the cosmic microwave background in nonstandard cold dark matter models

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Silk, Joseph

    1992-01-01

    Small angular scale cosmic microwave anisotropies in flat, vacuum-dominated, cold dark matter cosmological models which fit large-scale structure observations and are consistent with a high value for the Hubble constant are reexamined. New predictions for CDM models in which the large-scale power is boosted via a high baryon content and low H(0) are presented. Both classes of models are consistent with current limits: an improvement in sensitivity by a factor of about 3 for experiments which probe angular scales between 7 arcmin and 1 deg is required, in the absence of very early reionization, to test boosted CDM models for large-scale structure formation.

  8. Bounds on galactic cold dark matter particle candidates and solar axions from a Ge-spectrometer

    SciTech Connect

    Gelmini, G.

    1986-11-01

    The ultralow background Ge spectrometer developed by the USC/PNL group is used as a detector of cold dark matter candidates from the halo of our galaxy and of solar axions (and other light bosons), yielding interesting bounds. Some of them are: heavy standard Dirac neutrinos with mass 20 GeV less than or equal to m less than or equal to 1 TeV are excluded as main components of the halo of our galaxy; Dine-Fischler-Srednicki axion models with F/2x/sub e/' less than or equal to 0.5 x 10/sup 7/ GeV are excluded. 22 refs., 7 figs.

  9. Cold exposure impairs dark-pulse capacity to induce REM sleep in the albino rat.

    PubMed

    Baracchi, Francesca; Zamboni, Giovanni; Cerri, Matteo; Del Sindaco, Elide; Dentico, Daniela; Jones, Christine Ann; Luppi, Marco; Perez, Emanuele; Amici, Roberto

    2008-06-01

    In the albino rat, a REM sleep (REMS) onset can be induced with a high probability and a short latency when the light is suddenly turned off (dark pulse, DP) during non-REM sleep (NREMS). The aim of this study was to investigate to what extent DP delivery could overcome the integrative thermoregulatory mechanisms that depress REMS occurrence during exposure to low ambient temperature (Ta). To this aim, the efficiency of a non-rhythmical repetitive DP (3 min each) delivery during the first 6-h light period of a 12 h:12 h light-dark cycle in inducing REMS was studied in the rat, through the analysis of electroencephalogram, electrocardiogram, hypothalamic temperature and motor activity at different Tas. The results showed that DP delivery triggers a transition from NREMS to REMS comparable to that which occurs spontaneously. However, the efficiency of DP delivery in inducing REMS was reduced during cold exposure to an extent comparable with that observed in spontaneous REMS occurrence. Such impairment was associated with low Delta activity and high sympathetic tone when DPs were delivered. Repetitive DP administration increased REMS amount during the delivery period and a subsequent negative REMS rebound was observed. In conclusion, DP delivery did not overcome the integrative thermoregulatory mechanisms that depress REMS in the cold. These results underline the crucial physiological meaning of the mutual exclusion of thermoregulatory activation and REMS occurrence, and support the hypothesis that the suspension of the central control of body temperature is a prerequisite for REMS occurrence.

  10. Water and complex organic chemistry in the cold dark cloud Barnard 5: Observations and Models

    NASA Astrophysics Data System (ADS)

    Wirström, Eva; Charnley, Steven B.; Taquet, Vianney; Persson, Carina M.

    2015-08-01

    Studies of complex organic molecule (COM) formation have traditionally been focused on hot cores in regions of massive star formation, where chemistry is driven by the elevated temperatures - evaporating ices and allowing for endothermic reactions in the gas-phase. As more sensitive instruments have become available, the types of objects known to harbour COMs like acetaldehyde (CH3CHO), dimethyl ether (CH3OCH3), methyl formate (CH3OCHO), and ketene (CH2CO) have expanded to include low mass protostars and, recently, even pre-stellar cores. We here report on the first in a new category of objects harbouring COMs: the cold dark cloud Barnard 5 where non-thermal ice desorption induce complex organic chemistry entirely unrelated to local star-formation.Methanol, which only forms efficiently on the surfaces of dust grains, provide evidence of efficient non-thermal desorption of ices in the form of prominent emission peaks offset from protostellar activity and high density tracers in cold molecular clouds. A study with Herschel targeting such methanol emission peaks resulted in the first ever detection of gas-phase water offset from protostellar activity in a dark cloud, at the so called methanol hotspot in Barnard 5.To model the effect a transient injection of ices into the gas-phase has on the chemistry of a cold, dark cloud we have included gas-grain interactions in an existing gas-phase chemical model and connected it to a chemical reaction network updated and expanded to include the formation and destruction paths of the most common COMs. Results from this model will be presented.Ground-based follow-up studies toward the methanol hotspot in B5 have resulted in the detection of a number of COMs, including CH2CO, CH3CHO, CH3OCH3, and CH3OCHO, as well as deuterated methanol (CH2DOH). Observations have also confirmed that COM emission is extended and not localised to a core structure. The implications of these observational and theoretical studies of B5 will be discussed

  11. Cold or warm? Constraining dark matter with primeval galaxies and cosmic reionization after Planck

    SciTech Connect

    Lapi, A.; Danese, L. E-mail: danese@sissa.it

    2015-09-01

    Dark matter constitutes the great majority of the matter content in the Universe, but its microscopic nature remains an intriguing mystery, with profound implications for particle physics, astrophysics and cosmology. Here we shed light on the longstanding issue of whether the dark matter is warm or cold by combining the measurements of the galaxy luminosity functions out to high redshifts 0z∼ 1 from the Hubble Space Telescope with the recent cosmological data on the reionization history of the Universe from the Planck mission. We derive robust and tight bounds on the mass of warm dark matter particle, finding that the current data require it to be in the narrow range between 2 and 3 keV . In addition, we show that a mass not exceeding 3 keV is also concurrently indicated by astrophysical constraints related to the local number of satellites in Milky Way-sized galaxies, though it is in marginal tension with analysis of the Lyman-α forest. For warm dark matter masses above 3 keV as well as for cold dark matter, to satisfy the Planck constraints on the optical depth and not to run into the satellite problem would require invoking astrophysical processes that inhibit galaxy formation in halos with mass M{sub H} ∼< few × 10 {sup 8} M{sub ⊙}, corresponding to a limiting UV magnitude M{sub UV}≈ −11. Anyway, we predict a downturn of the galaxy luminosity function at z∼ 8 faintward of M{sub UV}≈ −12, and stress that its detailed shape is extremely informative both on particle physics and on the astrophysics of galaxy formation in small halos. These expectations will be tested via the Hubble Frontier Fields and with the advent of the James Webb Space Telescope, which will enable probing the very faint end of the galaxy luminosity function out to z ∼ 8–10.

  12. Can cold neutrons give hint to understanding nature of dark matter?

    NASA Astrophysics Data System (ADS)

    Rybolt, Ben

    2017-01-01

    The composition of Dark Matter remains a mystery despite numerous searches. We explore an alternative to the WIMP paradigm in which Ordinary Matter and Dark Matter ``Mirror'' sectors are made of the same particles with the Standard Model interactions in each sector, except two sectors do not interact with each other by the Standard Model interactions. They only interact gravitationally and by some BSM mechanisms that can mix neutral components from both sectors. Thus, for example, photons can mix with sterile mirror photons via ``kinetic mixing'' mechanism, neutrinos can oscillate into sterile mirror neutrinos, and neutrons into sterile mirror neutrons. I explore the possibility to search for this Dark ``Mirror'' Sector by looking at mixing between neutron and mirror neutron. This can be done in a cold neutron beam where neutrons can oscillate into mirror neutrons and pass through a neutron absorber and then transform back into ordinary neutrons where they are detected. The regeneration of neutron depends on the magnitude and direction of a magnetic field.

  13. Cold dark matter confronts the cosmic microwave background - Large-angular-scale anisotropies in Omega sub 0 + lambda 1 models

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola

    1992-01-01

    A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.

  14. The mass-concentration-redshift relation of cold and warm dark matter haloes

    NASA Astrophysics Data System (ADS)

    Ludlow, Aaron D.; Bose, Sownak; Angulo, Raúl E.; Wang, Lan; Hellwing, Wojciech A.; Navarro, Julio F.; Cole, Shaun; Frenk, Carlos S.

    2016-08-01

    We use a suite of cosmological simulations to study the mass-concentration-redshift relation, c(M, z), of dark matter haloes. Our simulations include standard Λ-cold dark matter (CDM) models, and additional runs with truncated power spectra, consistent with a thermal warm dark matter (WDM) scenario. We find that the mass profiles of CDM and WDM haloes are self-similar and well approximated by the Einasto profile. The c(M, z) relation of CDM haloes is monotonic: concentrations decrease with increasing virial mass at fixed redshift, and decrease with increasing redshift at fixed mass. The mass accretion histories (MAHs) of CDM haloes are also scale-free, and can be used to infer concentrations directly. These results do not apply to WDM haloes: their MAHs are not scale-free because of the characteristic scale imposed by the power spectrum suppression. Further, the WDM c(M, z) relation is non-monotonic: concentrations peak at a mass scale dictated by the truncation scale, and decrease at higher and lower masses. We show that the assembly history of a halo can still be used to infer its concentration, provided that the total mass of its progenitors is considered (the `collapsed mass history'; CMH), rather than just that of its main ancestor. This exploits the scale-free nature of CMHs to derive a simple scaling that reproduces the mass-concentration-redshift relation of both CDM and WDM haloes over a vast range of halo masses and redshifts. Our model therefore provides a robust account of the mass, redshift, cosmology and power spectrum dependence of dark matter halo concentrations.

  15. Pairwise velocities of dark matter haloes: a test for the Λ cold dark matter model using the bullet cluster

    NASA Astrophysics Data System (ADS)

    Thompson, Robert; Nagamine, Kentaro

    2012-02-01

    The existence of a bullet cluster (such as 1E 0657-56) poses a challenge to the concordance Λ cold dark matter (ΛCDM) model. Here we investigate the velocity distribution of dark matter (DM) halo pairs in large N-body simulations with differing box sizes (250 h-1 Mpc? Gpc) and resolutions. We examine various basic statistics such as the halo masses, pairwise halo velocities (v12), collisional angles and pair separation distances. We then compare our results to the initial conditions required to reproduce the observational properties of 1E 0657-56 in non-cosmological hydrodynamical simulations. We find that the high-velocity tail of the v12 distribution extends to greater velocities as we increase the simulation box size. We also find that the number of high v12 pairs increases as we increase the particle count and resolution with a fixed box size; however, this increase is mostly due to lower mass haloes which do not match the observed masses of 1E 0657-56. We find that the redshift evolution effect is not very strong for the v12 distribution function between z= 0.0 and z˜ 0.5. We identify some pairs whose v12 resemble the required initial conditions, however, even the best candidates have either wrong halo mass ratios or too large separations. Our simulations suggest that it is very difficult to produce such initial conditions at z= 0.0, 0.296 and 0.489 in comoving volumes as large as (2 h-1 Gpc)3. Based on the extrapolation of our cumulative v12 function, we find that one needs a simulation with a comoving box size of (4.48 h-1 Gpc)3 and 22403 DM particles in order to produce at least one pair of haloes that resembles the required v12 and observed masses of 1E 0657-56. From our simulated v12 probability distribution function, we find that the probability of finding a halo pair with v12≥ 3000 km s-1 and masses ? to be 2.76 × 10-8 at z= 0.489. We conclude that either 1E 0657-56 is incompatible with the concordance ΛCDM universe or the initial conditions

  16. Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Stompor, Radoslaw; Juszkiewicz, Roman

    1993-01-01

    We conduct a Monte Carlo simulation of the cosmic microwave background (CMB) anisotropy in the UCSB South Pole 1991 degree-scale experiment. We examine cold dark matter cosmology with large-scale structure seeded by the Harrison-Zel'dovich hierarchy of Gaussian-distributed primordial inhomogeneities normalized to the COBE-DMR measurement of large-angle CMB anisotropy. We find it statistically implausible (in the sense of low cumulative probability F lower than 5 percent, of not measuring a cosmological delta-T/T signal) that the degree-scale cosmological CMB anisotropy predicted in such models could have escaped a detection at the level of sensitivity achieved in the South Pole 1991 experiment.

  17. Is a massive tau neutrino just what cold dark matter needs?

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Gyuk, Geza; Turner, Michael S.

    1994-01-01

    The cold dark matter (CDM) scenario for structure formation in the Universe is very attractive and has many successes; however, when its spectrum of density perturbations is normalized to the COBE anisotropy measurement the level of inhomogeneity predicted on small scales is too large. This can be remedied by a tau neutrino of mass 1 MeV - 10MeV and lifetime 0.1 sec - 100 sec whose decay products include electron neutrinos because it allows the total energy density in relativistic particles to be doubled without interfering with nucleosynthesis. The anisotropies predicted on the degree scale for 'tau CDM' are larger than standard CDM. Experiments at e(sup +/-) collides may be able to probe such a mass range.

  18. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    NASA Technical Reports Server (NTRS)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  19. The formation of galaxies and quasars in a texture-seeded cold dark matter cosmogony

    SciTech Connect

    Gooding, A.K.; Turok, N.; Spergel, D.N. Princeton University Observatory, NJ )

    1991-05-01

    The nonGaussian perturbations produced by global texture lead to the early formation of stars, quasars, and galaxies. Growth of the density fluctuation in cold dark matter induced by the unwinding of a texture 'knot' is calculated and the evolution of the mass multiplicity function in this galaxy formation model is determined. By z of about 50, about 3 percent of the mass of the universe has formed nonlinear objects of mass greater than 10 to the 6th solar masses - these objects may have reionized the universe. Most objects larger than 10 to the 12th solar masses form by z about 2-3, consistent with the observed epoch of QSO formation. Today, about 35 percent of the mass of the universe is in bound objects of mass greater than 10 to the 12th solar masses. It is found that the slope and the amplitude of the multiplicity function is consistent with the observed galaxy luminosity function. 24 refs.

  20. An Isocurvature Cold Dark Matter Cosmogony. I. A Worked Example of Evolution through Inflation

    NASA Astrophysics Data System (ADS)

    Peebles, P. J. E.

    1999-01-01

    I present a specific worked example of evolution through inflation to the initial conditions for an isocurvature cold dark matter (ICDM) model for structure formation. The model invokes three scalar fields: one that drives power-law inflation, one that survives to become the present-day CDM, and one that gives the CDM field a mass that slowly decreases during inflation and therefore ``tilts'' the primeval mass fluctuation spectrum of the CDM. The functional forms for the potentials and the parameter values that lead to an observationally acceptable model for structure formation do not seem to be out of line with current ideas about the physics of the very early universe. I argue in an accompanying paper that the model offers a not unacceptable fit to main observational constraints.

  1. Is Cold Dark Matter Still a Strong Buy? The Lesson From Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Governato, Fabio; Ghigna, Sebastiano; Moore, Ben

    For the last few years the Cold Dark Matter model (ticker: CDM), has been the dominant theory of structure formation. We briefly review the recent advancements and predictions of the model in the field of galaxy clusters. A new set of very high resolution simulations of galaxy clusters show that they have (1) density profiles with central slopes very close to -1.6 and (2) abundance of subhalos similar to the ones observed in real clusters. These results show a remarkably small cluster to cluster variation and a weak dependence from the particular CDM cosmology chosen (LCDM having ~40% less substructure than SCDM). While still a speculative theory with a high prediction/evidence ratio, subject to strong challenges from observational data and competition from other hierarchical theories, we give CDM a rating of ``market outperform'' and of ``long term BUY''.

  2. Limits on cold dark matter cosmologies from new anisotropy bounds on the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Meinhold, Peter; Lubin, Philip; Muciaccia, Pio Francesco; Silk, Joseph

    1991-01-01

    A self-consistent method is presented for comparing theoretical predictions of and observational upper limits on CMB anisotropy. New bounds on CDM cosmologies set by the UCSB South Pole experiment on the 1 deg angular scale are presented. An upper limit of 4.0 x 10 to the -5th is placed on the rms differential temperature anisotropy to a 95 percent confidence level and a power of the test beta = 55 percent. A lower limit of about 0.6/b is placed on the density parameter of cold dark matter universes with greater than about 3 percent baryon abundance and a Hubble constant of 50 km/s/Mpc, where b is the bias factor, equal to unity only if light traces mass.

  3. Is dark matter with long-range interactions a solution to all small-scale problems of Λ cold dark matter cosmology?

    PubMed

    van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph

    2012-12-07

    The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.

  4. A hydrodynamic treatment of the tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-01-01

    A standard hydrodynamic code coupled with a particle-mesh code is used to compute the evolution of a tilted cold dark matter (TCDM) model containing both baryonic matter and dark matter. Six baryonic species are followed, with allowance for both collisional and radiative ionization in every cell. The mean final Zel'dovich-Sunyaev y parameter is estimated to be (5.4 +/- 2.7) x 10 exp -7, below currently attainable observations, with an rms fluctuation of about (6.0 +/- 3.0) x 10 exp -7 on arcmin scales. The rate of galaxy formation peaks at a relatively late epoch (z is about 0.5). In the case of mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of 10 exp 9.1 solar masses, with a reasonable fit to the Schechter luminosity function if the baryon mass to blue light ratio is about 4. It is shown that a bias factor of 2 required for the model to be consistent with COBE DMR signals is probably a natural outcome in the present multiple component simulations.

  5. The evolving intergalactic medium - The uncollapsed baryon fraction in a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1991-01-01

    The time-varying density of the intergalactic medium (IGM) is calculated by coupling detailed numerical calculations of the thermal and ionization balance and radiative transfer in a uniform IGM of H and He to the linearized equations for the growth of density fluctuations in both gases and a dark component in a cold dark matter universe. The IGM density is identified with the collapsed baryon fraction. It is found that even if the IGM is never reheated, a significant fraction of the baryons remain uncollapsed at redshifts of four. If instead the collapsed fraction releases enough ionizing radiation or thermal energy to reionize the IGM by z greater than four as required by the Gunn-Peterson (GP) constraint, the uncollapsed fraction at z of four is even higher. The known quasar distribution is insufficient to supply the ionizing radiation necessary to satisfy the GP constraint in this case and, if stars are instead responsible, a substantial metallicity must have been produced by z of four.

  6. A new parameter space study of the fermionic cold dark matter model

    NASA Astrophysics Data System (ADS)

    Bagherian, Z.; Ettefaghi, M. M.; Haghgouyan, Z.; Moazzemi, R.

    2014-10-01

    We consider the standard model (SM) extended by a gauge singlet fermion as cold dark matter (SFCDM) and a gauge singlet scalar (singlet Higgs) as a mediator. The parameter space of the SM is enlarged by seven new ones. We obtain the total annihilation cross section of singlet fermions to the SM particles and singlet Higgs at tree level. Regarding the relic abundance constraint obtained by WMAP observations, we study the dependency on each parameter separately, for dark matter masses up to 1 TeV. In particular, the coupling of SFCDM to singlet Higgs gs, the SFCDM mass mψ, the second Higgs mass mh2, and the Higgs bosons mixing angel θ are investigated accurately. Three other parameters play no significant role. For a maximal mixing of Higgs bosons or at resonances, gs is applicable for the perturbation theory at tree level. We also obtain the scattering cross section of SFCDM off nucleons and compare our results with experiments which have already reported data in this mass range; XENON100, LUX, COUPP and PICASSO collaborations. Our results show that the SFCDM is excluded by these experiments for choosing parameters which are consistent with perturbation theory and relic abundance constraints.

  7. Large-scale structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Spergel, David N.; Turok, Nail

    1991-01-01

    This paper studies the formation of large-scale structure by global texture in a flat universe dominated by cold dark matter. A code for evolution of the texture fields was combined with an N-body code for evolving the dark matter. The results indicate some promising aspects: with only one free parameter, the observed galaxy-galaxy correlation function is reproduced, clusters of galaxies are found to be significantly clustered on a scale of 20-50/h Mpc, and coherent structures of over 50/h Mpc in the galaxy distribution were found. The large-scale streaming motions observed are in good agreement with the observations: the average magnitude of the velocity field smoothed over 30/h Mpc is 430 km/sec. Global texture produces a cosmic Mach number that is compatible with observation. Also, significant evolution of clusters at low redshift was seen. Possible problems for the theory include too high velocity dispersions in clusters, and voids which are not as empty as those observed.

  8. A new parameter space study of the fermionic cold dark matter model

    SciTech Connect

    Bagherian, Z.; Ettefaghi, M.M.; Haghgouyan, Z.; Moazzemi, R. E-mail: mettefaghi@qom.ac.ir E-mail: r.moazzemi@qom.ac.ir

    2014-10-01

    We consider the standard model (SM) extended by a gauge singlet fermion as cold dark matter (SFCDM) and a gauge singlet scalar (singlet Higgs) as a mediator. The parameter space of the SM is enlarged by seven new ones. We obtain the total annihilation cross section of singlet fermions to the SM particles and singlet Higgs at tree level. Regarding the relic abundance constraint obtained by WMAP observations, we study the dependency on each parameter separately, for dark matter masses up to 1 TeV. In particular, the coupling of SFCDM to singlet Higgs g{sub s}, the SFCDM mass m{sub ψ}, the second Higgs mass m{sub h{sub 2}}, and the Higgs bosons mixing angel θ are investigated accurately. Three other parameters play no significant role. For a maximal mixing of Higgs bosons or at resonances, g{sub s} is applicable for the perturbation theory at tree level. We also obtain the scattering cross section of SFCDM off nucleons and compare our results with experiments which have already reported data in this mass range; XENON100, LUX, COUPP and PICASSO collaborations. Our results show that the SFCDM is excluded by these experiments for choosing parameters which are consistent with perturbation theory and relic abundance constraints.

  9. The evolution of X-ray clusters in a cold plus hot dark matter universe

    NASA Technical Reports Server (NTRS)

    Bryan, Greg L.; Klypin, Anatoly; Loken, Chris; Norman, Michael L.; Burns, Jack O.

    1994-01-01

    We present the first self-consistently computed results on the evolution of X-ray properties of galaxy clusters in a cold + hot dark matter (CHDM) model. We have performed a hydrodynamic plus N-body simulation for the COBE-compatible CHDM model with standard mass components: Omega(sub hot) = 0.3, Omega (sub cold) = 0.6 and Omega(sub baryon) = 0.1 (h = 0.5). In contrast with the CDM model, which fails to reproduce the observed temperature distribution function dN/dT (Bryan et al. 1994b), the CHDM model fits the observational dN/dT quite well. Our results on X-ray luminosity are less firm but even more intriguing. We find that the resulting X-ray luminosity functions at redshifts z = 0.0, 0.2, 0.4, 0.7 are well fit by observations, where they overlap. The fact that both temperatures and luminosities provide a reasonable fit to the available observational data indicates that, unless we are missing some essential physics, there is neither room nor need for a large fraction of gas in rich clusters: 10% (or less) in baryons is sufficient to explain their X-ray properties. We also see a tight correlation between X-ray luminosity and gas temperature.

  10. The peculiar velocities of rich clusters in the hot and cold dark matter scenarios

    NASA Technical Reports Server (NTRS)

    Rhee, George F.; West, Michael J.; Villumsen, Jens V.

    1993-01-01

    We present the results of a study of the peculiar velocities of rich clusters of galaxies. The peculiar motion of rich clusters in various cosmological scenarios is of interest for a number of reasons. Observationally, one can measure the peculiar motion of clusters to greater distances than galaxies because cluster peculiar motions can be determined to greater accuracy. One can also test the slope of distance indicator relations using clusters to see if galaxy properties vary with environment. We have used N-body simulations to measure the amplitude and rms cluster peculiar velocity as a function of bias parameter in the hot and cold dark matter scenarios. In addition to measuring the mean and rms peculiar velocity of clusters in the two models, we determined whether the peculiar velocity vector of a given cluster is well aligned with the gravity vector due to all the particles in the simulation and the gravity vector due to the particles present only in the clusters. We have investigated the peculiar velocities of rich clusters of galaxies in the cold dark matter and hot dark matter galaxy formation scenarios. We have derived peculiar velocities and associated errors for the scenarios using four values of the bias parameter ranging from b = 1 to b = 2.5. The growth of the mean peculiar velocity with scale factor has been determined and compared to that predicted by linear theory. In addition, we have compared the orientation of force and velocity in these simulations to see if a program such as that proposed by Bertschinger and Dekel (1989) for elliptical galaxy peculiar motions can be applied to clusters. The method they describe enables one to recover the density field from large scale redshift distance samples. The method makes it possible to do this when only radial velocities are known by assuming that the velocity field is curl free. Our analysis suggests that this program if applied to clusters is only realizable for models with a low value of the bias

  11. How do anions grow in the cold upper atmosphere of Titan? Insights from the laboratory

    NASA Astrophysics Data System (ADS)

    Biennier, L.; Carles, S.; Codier, S.; Guillemin, J.-C.; Bourgalais, J.; Le Picard, S.; Faure, A.

    2013-09-01

    The Cassini-Huygens probe has revealed the existence of a profusion of negatively charged molecular species in the cold upper atmosphere of Titan (˜950 km). The presence of large amounts of negative ions was unexpected and the chemical pathways leading to their formation mostly unknown. The investigation of the negative ion chemistry appears therefore to be a key factor for modeling Titan's upper atmosphere. According to a recent study, the formation of aerosols in Titan's upper atmosphere could also be directly related to ion processes [1]. Here, we present the first low temperature experimental kinetic studies involving CN-and C3N-. These negative ions were proposed by Vuitton et al. [2] to be responsible for the low mass peaks emerging from the mass spectrum measured by the CAPS-ELS instrument onboard the Cassini spacecraft. The temperature dependence of the rate coefficient of the CN-+ HC3N reaction was explored over the 49-294 K temperature range in uniform supersonic flows using the CRESU technique. Cyanoacetylene, HC3N, represents one of the most abundant nitrogen containing constituents of the atmosphere of Titan, with a strong acidity that could promote the charge transfer. Our measurements show that the kinetics of this reaction is fast (k˜5×10-9cm3 molec-1 s-1) and presents a slightly negative temperature dependence well reproduced by long-range based capture theory. C3N-+ HCN represents the dominant exit channel demonstrating that this reaction could participate efficiently to the growth of negative ions in the atmosphere of Titan. In order to understand how the ions grow further, the study has been then extended to C3N-+ HC3N using an isotopically labeled nitrogen 15N precursor for the negative ion. Preliminary results have allowed to identify proton exchange as the major channel. The temperature dependence of the reaction will be examined. Our research illustrates that the accurate determi- nation of reaction rate coefficients over relevant cold

  12. The redshift dependence of the structure of massive Λ cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Navarro, Julio F.; Cole, Shaun; Frenk, Carlos S.; White, Simon D. M.; Springel, Volker; Jenkins, Adrian; Neto, Angelo F.

    2008-06-01

    We use two very large cosmological simulations to study how the density profiles of relaxed Λ cold dark matter dark haloes depend on redshift and on halo mass. We confirm that these profiles deviate slightly but systematically from the NFW form and are better approximated by the empirical formula, d logρ/d logr ~ rα, first used by Einasto to fit star counts in the Milky Way. The best-fitting value of the additional shape parameter, α, increases gradually with mass, from α ~ 0.16 for present-day galaxy haloes to α ~ 0.3 for the rarest and most massive clusters. Halo concentrations depend only weakly on mass at z = 0, and this dependence weakens further at earlier times. At z ~ 3 the average concentration of relaxed haloes does not vary appreciably over the mass range accessible to our simulations (M >~ 3 × 1011h-1Msolar). Furthermore, in our biggest simulation, the average concentration of the most massive, relaxed haloes is constant at ~ 3.5-4 for 0 <= z <= 3. These results agree well with those of Zhao et al. and support the idea that halo densities reflect the density of the universe at the time they formed, as proposed by Navarro, Frenk & White. With their original parameters, the NFW prescription overpredicts halo concentrations at high redshift. This shortcoming can be reduced by modifying the definition of halo formation time, although the evolution of the concentrations of Milky Way mass haloes is still not reproduced well. In contrast, the much-used revisions of the NFW prescription by Bullock et al. and Eke, Navarro & Steinmetz predict a steeper drop in concentration at the highest masses and stronger evolution with redshift than are compatible with our numerical data. Modifying the parameters of these models can reduce the discrepancy at high masses, but the overly rapid redshift evolution remains. These results have important implications for currently planned surveys of distant clusters.

  13. The rise and fall of a challenger: the Bullet Cluster in Λ cold dark matter simulations

    NASA Astrophysics Data System (ADS)

    Thompson, Robert; Davé, Romeel; Nagamine, Kentaro

    2015-09-01

    The Bullet Cluster has provided some of the best evidence for the Λ cold dark matter (ΛCDM) model via direct empirical proof of the existence of collisionless dark matter, while posing a serious challenge owing to the unusually high inferred pairwise velocities of its progenitor clusters. Here, we investigate the probability of finding such a high-velocity pair in large-volume N-body simulations, particularly focusing on differences between halo-finding algorithms. We find that algorithms that do not account for the kinematics of infalling groups yield vastly different statistics and probabilities. When employing the ROCKSTAR halo finder that considers particle velocities, we find numerous Bullet-like pair candidates that closely match not only the high pairwise velocity, but also the mass, mass ratio, separation distance, and collision angle of the initial conditions that have been shown to produce the Bullet Cluster in non-cosmological hydrodynamic simulations. The probability of finding a high pairwise velocity pair among haloes with Mhalo ≥ 1014 M⊙ is 4.6 × 10-4 using ROCKSTAR, while it is ≈34 × lower using a friends-of-friends (FoF)-based approach as in previous studies. This is because the typical spatial extent of Bullet progenitors is such that FoF tends to group them into a single halo despite clearly distinct kinematics. Further requiring an appropriately high average mass among the two progenitors, we find the comoving number density of potential Bullet-like candidates to be of the order of ≈10-10 Mpc-3. Our findings suggest that ΛCDM straightforwardly produces massive, high relative velocity halo pairs analogous to Bullet Cluster progenitors, and hence the Bullet Cluster does not present a challenge to the ΛCDM model.

  14. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  15. The formation of cosmic structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III

    1992-01-01

    The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.

  16. Cold dark matter dominated, inflationary universe with Omega(0) less than 1 and n less than 1

    SciTech Connect

    Vittorio, N.; Matarrese, S.; Lucchin, F.

    1988-05-01

    The theoretical prejudice for a flat universe with an initially scale-invariant power spectrum has restricted the number of cosmological scenarios investigated for studying the formation of structure in the universe. A cold dark matter-dominated universe with a density parameter Omega(0) and a primordial spectral index n different from unity is considered, and its possible consistency with the inflationary model is discussed. It is shown that some of the difficulties of a flat cold dark matter scenario can be avoided by having Omega(0) less than 1 and n less than 1. For Omega(0) roughly 0.4 and n roughly 0.75 a good agreement is obtained with the large-scale drifts, the bounds on the cosmic microwave background smoothness, the Abell cluster abundance, and their correlation function. 85 references.

  17. NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Macciò, Andrea V.; Dekel, Avishai; Wang, Liang; Stinson, Gregory; Obreja, Aura; Di Cintio, Arianna; Brook, Chris; Buck, Tobias; Kang, Xi

    2016-09-01

    We use ˜100 cosmological galaxy formation `zoom-in' simulations using the smoothed particle hydrodynamics code GASOLINE to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M200 ˜ 1010 M⊙) to Milky Way (M200 ˜ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ˜10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ɛSF ≡ (Mstar/M200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ɛR ≡ r1/2/R200. We provide an analytic formula depending on ɛSF and ɛR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.

  18. Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors

    PubMed Central

    Sforza, Eleonora; Simionato, Diana; Giacometti, Giorgio Mario; Bertucco, Alberto; Morosinotto, Tomas

    2012-01-01

    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently. PMID:22745696

  19. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors.

    PubMed

    Sforza, Eleonora; Simionato, Diana; Giacometti, Giorgio Mario; Bertucco, Alberto; Morosinotto, Tomas

    2012-01-01

    Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.

  20. The asymmetry of existence: do we owe our existence to cold dark matter and the weak force?

    PubMed

    Borchers, Andrea T; Davis, Paul A; Gershwin, M Eric

    2004-01-01

    A common theme throughout biology is homochirality, including its origin and especially implications. Homochirality has also intrigued scientists because of the hypothesis that life, as it currently exists, could not have occurred without it. In this review, we discuss several hypotheses regarding homochirality and their linkage to processes that range from subatomic in scale to processes that help define the structure of the universe. More importantly, this exploration begins with the knowledge that humans inhabit the universe in which there is an excess of normal matter over antimatter. It is a universe characterized by homochirality but is nonetheless contained in what is most easily described as a 3+1 dimensional spacetime wherein most laws of physics are invariant under spacetime transformations. This restriction on spacetime poses significant constraints on the processes that can be invoked to explain homochirality. However, in dealing with such restraints, including the total mass contained in the universe, the concepts of cold dark matter and dark energy can be incorporated into cosmological models with resultant behaviors and predictions very much in accord with the findings of the cosmic background surveys. Indeed, the introduction of cold dark matter and dark energy to solve problems relating to the mass found in the universe may provide a means for generating the needed asymmetry to allow homochirality to arise.

  1. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1989-01-01

    The spatial distribution of the cold-dark-matter (CDM) and baryonic components of CDM-dominated cosmological models are characterized, summarizing the results of recent theoretical investigations. The evolution and distribution of matter in an Einstein-de Sitter universe on length scales small enough so that the Newtonian approximation is valid is followed chronologically, assuming (1) that the galaxies, CDM, and the intergalactic medium (IGM) are coupled by gravity, (2) that galaxies form by taking mass and momentum from the IGM, and (3) that the IGM responds to the energy input from the galaxies. The results of the numerical computations are presented in extensive graphs and discussed in detail.

  2. Cold Dark Matter Substructure and Galactic Disks I: Morphological Signatures of Hierarchical SatelliteAccretion

    SciTech Connect

    Kazantzidis, Stelios; Bullock, James S.; Zentner, Andrew R.; Kravtsov, Andrey V.; Moustakas, Leonidas A.

    2007-12-03

    We conduct a series of high-resolution, fully self-consistent dissipation less N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the {Lambda}CDM paradigm of structure formation. Our simulation campaign is based on a hybrid approach combining cosmological simulations and controlled numerical experiments. Substructure mass functions, orbital distributions, internal structures, and accretion times are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. We demonstrate that accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z {approx} 1 should be common occurrences. In contrast, extremely few satellites in present-day CDM halos are likely to have a significant impact on the disk structure. This is due to the fact that massive subhalos with small orbital pericenters that are most capable of strongly perturbing the disk become either tidally disrupted or suffer substantial mass loss prior to z = 0. One host halo merger history is subsequently used to seed controlled N-body experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. These simulations track the effects of six dark matter substructures, with initial masses in the range {approx} (0.7-2) x 10{sup 10} M{sub {circle_dot}} ({approx} 20-60% of the disk mass), crossing the disk in the past {approx} 8 Gyr. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a long-lived, low-surface brightness, ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams in configuration space. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard 'thin-thick' disk decomposition, where the 'thick' disk component has emerged

  3. Cold-acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae)

    PubMed Central

    2012-01-01

    Background Ecotypes of Colobanthus quitensis Kunt Bartl (Cariophyllaceae) from Andes Mountains and Maritime Antarctic grow under contrasting photoinhibitory conditions, reaching differential cold tolerance upon cold acclimation. Photoinhibition depends on the extent of photodamage and recovery capability. We propose that cold acclimation increases resistance to low-temperature-induced photoinhibition, limiting photodamage and promoting recovery under cold. Therefore, the Antarctic ecotype (cold hardiest) should be less photoinhibited and have better recovery from low-temperature-induced photoinhibition than the Andean ecotype. Both ecotypes were exposed to cold induced photoinhibitory treatment (PhT). Photoinhibition and recovery of photosystem II (PSII) was followed by fluorescence, CO2 exchange, and immunoblotting analyses. Results The same reduction (25%) in maximum PSII efficiency (Fv/Fm) was observed in both cold-acclimated (CA) and non-acclimated (NA) plants under PhT. A full recovery was observed in CA plants of both ecotypes under dark conditions, but CA Antarctic plants recover faster than the Andean ecotype. Under PhT, CA plants maintain their quantum yield of PSII, while NA plants reduced it strongly (50% and 73% for Andean and Antarctic plants respectively). Cold acclimation induced the maintenance of PsaA and Cyt b6/f and reduced a 41% the excitation pressure in Antarctic plants, exhibiting the lowest level under PhT. xCold acclimation decreased significantly NPQs in both ecotypes, and reduced chlorophylls and D1 degradation in Andean plants under PhT. NA and CA plants were able to fully restore their normal photosynthesis, while CA Antarctic plants reached 50% higher photosynthetic rates after recovery, which was associated to electron fluxes maintenance under photoinhibitory conditions. Conclusions Cold acclimation has a greater importance on the recovery process than on limiting photodamage. Cold acclimation determined the kinetic and extent of

  4. European cold wave during February 2012 and impacts in wine growing regions of Moldavia (Romania)

    NASA Astrophysics Data System (ADS)

    Planchon, Olivier; Quénol, Hervé; Irimia, Liviu; Patriche, Cristi

    2015-05-01

    A severe cold wave hits a large part of Europe between late January and mid-February 2012 and caused damages in the vineyard of Moldavia in Northeastern Romania. During the cold wave, the daily minimum temperature fell near -30 °C at some weather stations in Moldavia, but the hilly terrain caused strong temperature differences at small scales: up to 10 °C in a few kilometres. Three main cold spells with very low minimum temperatures were identified in association with the succession of three circulation types (according to the Hess-Brezowsky classification): Fennoscandian high anticyclonic (HFA, January 29-February 4), Central European ridge (BM, February 5-7) and northeast anticyclonic NEA (NEA, February 8-11). A multi-scale agroclimatic analysis in the vineyard of Cotnari (Moldavia, Romania) was carried out in the particular meteorological context of the early 2012 European cold wave. The results especially pointed out the local-scale (topoclimatic) effects on the high spatial variability of temperature and consequently a contrasting spatial distribution of damage on grape vine. The analysis of data recorded from temperature loggers installed in several test sites in the vineyard of Cotnari, depending on its topographical features, and of the observations of frost damage on grape vines (on vine buds, vine canes and even vine arms and trunks) pointed out a significant correlation between the topographic position and the grape vine variety.

  5. Cosmology and astrophysics from relaxed galaxy clusters – V. Consistency with cold dark matter structure formation

    DOE PAGES

    Mantz, A. B.; Allen, S. W.; Morris, R. G.

    2016-07-15

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. In addition, we present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = –0.16 ± 0.07, in agreement with CDM predictions.more » For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = –0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to –1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.« less

  6. Testing the velocity field in non-scale-invariant cold dark matter models

    NASA Astrophysics Data System (ADS)

    Moscardini, Lauro; Tormen, Giuseppe; Matarrese, Sabino; Lucchin, Francesco

    1995-04-01

    We analyze the cosmic peculiar velocity field as traced by a sample of 1184 spiral, elliptical and SO galaxies, grouped in 704 objects. We perform a statistical analysis, by calculating the bulk flow, cosmic Mach number and velocity correlation function for this sample and for mock catalogs extracted from a set of N-body simulations. We run four cold dark matter (CDM) simulations: two tilted models (with spectral index n = 0.6 and n = 0.8), the standard model (n = 1) and a 'blue' one (n = 1.2), with different values of the linear bias parameter b. By means of a maximum-likelihood analysis we estimate the ability of our models to fit the observations, as measured by the above statistics, and to reproduce the Local group properties. On the basis of this analysis we conclude that the best model is the unbiased standard model (n, b) = (1, 1), even though the overall flatness of the joint likelihood function implies that one cannot strongly discriminate models in the range 0.8 less than or = n less than or equal to 1, and 1 less than or = b less than or = 1.5. Models with b greater than or = 2.5 are rejected at the 95% confidence level. For n = 0.8 the values of b preferred by the present analysis, together with the Cosmic Background Explorer (COBE) data, require a negligible contribution to Delta T/T by gravitational waves. Finally, the blue model, normalized to COBE, does not provide a good fit to the velocity data.

  7. Cosmology and astrophysics from relaxed galaxy clusters – V. Consistency with cold dark matter structure formation

    SciTech Connect

    Mantz, A. B.; Allen, S. W.; Morris, R. G.

    2016-07-15

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.

  8. Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1994-01-01

    We study the coupled evolution of the intergalactic medium (IGM) and the emerging structure in the universe in the context of the cold dark matter (CDM) model, with a special focus on the consequences of imposing reionization and the Gunn-Peterson constraint as a boundary condition on the model. We have calculated the time-varying density of the IGM by coupling our detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform, spatially averaged IGM of H and He, including the mean opacity of an evolving distribution of gas clumps which correspond to quasar absorption line clouds, to the linearized equations for the growth of density fluctuations in both the gaseous and dark matter components in a CDM universe. We use the linear growth equations to identify the fraction of the gas which must have collapsed out at each epoch, an approach similar in spirit to the so-called Press-Schechter formalism. We identify the IGM density with the uncollapsed baryon fraction. The collapsed fraction is postulated to be a source of energy injection into the IGM, by radiation or bulk hydrodynamical heating (e.g., via shocks) or both, at a rate which is marginally enough to satisfy the Gunn-Peterson constraint at z less than 5. Our results include the following: (1) We find that the IGM in a CDM model must have contained a substantial fraction of the total baryon density of the universe both during and after its reionization epoch. (2) As a result, our previous conclusion that the observed Quasi-Stellar Objects (QSOs) at high redshift are not sufficient to ionize the IGM enough to satisfy the Gunn-Peterson constraint is confirmed. (3) We predict a detectable He II Gunn-Peterson effect at 304(1 + z) A in the spectra of quasars at a range of redshift z greater than or approx. 3, depending on the nature of the sources of IGM reionization. (4) We find, moreover, that a CDM model with high bias parameter b (i.e., b greater than or approx. 2

  9. Spatial and dynamical properties of voids in a Λ cold dark matter universe

    NASA Astrophysics Data System (ADS)

    Padilla, N. D.; Ceccarelli, L.; Lambas, D. G.

    2005-11-01

    We study the statistical properties of voids in the distribution of mass, dark-matter haloes and galaxies (BJ < -16) in a Λ cold dark matter (ΛCDM)numerical simulation populated with galaxies using a semi-analytic galaxy formation model (GALFORM, Cole et al.). We find that the properties of voids selected from GALFORM galaxies are compatible with those of voids identified from a population of haloes with mass M > 1011.5h-1Msolar, similar to the median halo mass, Mmed= 1011.3h-1Msolar. We also find that the number density of galaxy- and halo-defined voids can be up to two orders of magnitude higher than mass-defined voids for large void radii, however, we observe that this difference is reduced to about half an order of magnitude when the positions are considered in redshift space. As expected, there are outflow velocities that show their maximum at larger void-centric distances for larger voids. We find a linear relation for the maximum outflow velocity, vmax=v0rvoid. The void-centric distance where this maximum occurs follows a suitable power-law fit of the form log(dvmax)=(rvoid/A)B. At sufficiently large distances, we find mild infall motions on to the subdense regions. The galaxy velocity field around galaxy-defined voids is consistent with the results of haloes with masses above the median, showing milder outflows than the mass around mass-defined voids. We find that a similar analysis in redshift space would make both outflows and infalls appear with a lower amplitude. We also find that the velocity dispersion of galaxies and haloes is larger in the direction parallel to the void walls by ~=10-20 per cent. Given that voids are by definition subdense regions, the cross-correlation function between galaxy-defined voids and galaxies is close to ξ=-1 out to separations comparable to the void size, and at larger separations the correlation function level increases, approaching the values of the auto-correlation function of galaxies. The cross

  10. Cosmology and astrophysics from relaxed galaxy clusters – V. Consistency with cold dark matter structure formation

    SciTech Connect

    Mantz, A. B.; Allen, S. W.; Morris, R. G.

    2016-07-15

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. In addition, we present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = –0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = –0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to –1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.

  11. Deuterium fractionation of a distant cold dark cloud along the line of sight of W51

    NASA Astrophysics Data System (ADS)

    Vastel, C.; Mookerjea, B.; Pety, J.; Gerin, M.

    2017-01-01

    Herschel/HIFI observations toward the compact HII region W51 has revealed the presence of a cold dense core along its line of sight in a high-velocity stream located just in front of W51. This detection has been made possible through absorption measurements of low-energy transitions of HDO, NH3, and C3 against the bright background emitted by the star-forming region. We present a follow-up study of this core using the high sensitivity and high spectral resolution provided by the IRAM 30m telescope. We report new detections of this core in absorption for DCO+ (2-1, 3-2), H13CO+ (1-0), DNC (3-2), HN13C (1-0), p-H2CO (20,2-10,1, 30,3-20,2), and in emission for o-NH2D. We also report interferometric observation of this last species using the IRAM/NOEMA telescope, revealing the fragmented nature of the source through the detection of two cores, separated by 0.19-0.24 pc, with average sizes of less than 0.16-0.19 pc. From a non-LTE analysis, we are able to estimate the density ( 2.5 × 104 cm-3) and temperature ( 10 K) of this component, typical of what is found in dark clouds. This component (called W51-core) has the same DCO+/HCO+ ratio (0.02) as TMC-1 and a high DNC/HNC ratio (0.14). Detection of these deuterated species indicates that W51-core is similar to an early-phase low-mass star-forming region, formed from the interaction between the W51 giant molecular cloud and the high-velocity stream in front of it. The W51 complex being at about 5 kpc, these findings lead to what is the first detection of the earliest phase of low-mass star-forming region at such a large distance. IRAM 30m data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A45

  12. Cosmic microwave background anisotropies in cold dark matter models with cosmological constant: The intermediate versus large angular scales

    NASA Technical Reports Server (NTRS)

    Stompor, Radoslaw; Gorski, Krzysztof M.

    1994-01-01

    We obtain predictions for cosmic microwave background anisotropies at angular scales near 1 deg in the context of cold dark matter models with a nonzero cosmological constant, normalized to the Cosmic Background Explorer (COBE) Differential Microwave Radiometer (DMR) detection. The results are compared to those computed in the matter-dominated models. We show that the coherence length of the Cosmic Microwave Background (CMB) anisotropy is almost insensitive to cosmological parameters, and the rms amplitude of the anisotropy increases moderately with decreasing total matter density, while being most sensitive to the baryon abundance. We apply these results in the statistical analysis of the published data from the UCSB South Pole (SP) experiment (Gaier et al. 1992; Schuster et al. 1993). We reject most of the Cold Dark Matter (CDM)-Lambda models at the 95% confidence level when both SP scans are simulated together (although the combined data set renders less stringent limits than the Gaier et al. data alone). However, the Schuster et al. data considered alone as well as the results of some other recent experiments (MAX, MSAM, Saskatoon), suggest that typical temperature fluctuations on degree scales may be larger than is indicated by the Gaier et al. scan. If so, CDM-Lambda models may indeed provide, from a point of view of CMB anisotropies, an acceptable alternative to flat CDM models.

  13. Evaluation of the dark signal performance of different SiPM-technologies under irradiation with cold neutrons

    NASA Astrophysics Data System (ADS)

    Durini, Daniel; Degenhardt, Carsten; Rongen, Heinz; Feoktystov, Artem; Schlösser, Mario; Palomino-Razo, Alejandro; Frielinghaus, Henrich; van Waasen, Stefan

    2016-11-01

    In this paper we report the results of the assessment of changes in the dark signal delivered by three silicon photomultiplier (SiPM) detector arrays, fabricated by three different manufacturers, when irradiated with cold neutrons (wavelength λn=5 Å or neutron energy of En=3.27 meV) up to a neutron dose of 6×1012 n/cm2. The dark signals as well as the breakdown voltages (Vbr) of the SiPM detectors were monitored during the irradiation. The system was characterized at room temperature. The analog SiPM detectors, with and without a 1 mm thick Cerium doped 6Li-glass scintillator material located in front of them, were operated using a bias voltage recommended by the respective manufacturer for a proper detector performance. Iout-Vbias measurements, used to determine the breakdown voltage of the devices, were repeated every 30 s during the first hour and every 300 s during the rest of the irradiation time. The digital SiPM detectors were held at the advised bias voltage between the respective breakdown voltage and dark count mappings repeated every 4 min. The measurements were performed on the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. The two analog and one digital SiPM detector modules under investigation were respectively fabricated by SensL (Ireland), Hamamatsu Photonics (Japan), and Philips Digital Photon Counting (Germany).

  14. Characterization of gene expression of QM from Caragana jubata, a plant species that grows under extreme cold.

    PubMed

    Bhardwaj, Pardeep Kumar; Ahuja, Paramvir Singh; Kumar, Sanjay

    2010-02-01

    Caragana [Caragana jubata (Pall.) Poir] is a temperate plant that thrives well under extremes of cold in high altitude of Himalaya and hence the plant is expected to be a source of genes that might play an important role in tolerance to low temperature (LT). In order to identify LT inducible gene(s), differential display of mRNA (DD) was performed using the apical buds growing under snow as well as growing in the near vicinity without snow, and a LT inducible QM gene (CjQM) homologue was identified. Realizing the importance of QM gene (which encodes human Wilms' tumor suppressor QM protein) in aggregation of 40 and 60S ribosomal subunit and that not much has been reported on this gene in plant systems in relation to its relationship with LT, full length cDNA of CjQM was cloned through rapid amplification of cDNA ends. The gene (977 bp), encoded by small gene family, had an open reading frame of 651 bp and was found to be intronless. The gene exhibited up-regulation within 20 min of exposure to LT and abscisic acid (ABA), but no significant change in gene expression was observed in response to drought stress (DS), salicylic acid (SA) and methyl jasmonate (MJ) application. Up-regulation of CjQM was obtained in the tissues growing in situ under snow. Non-responsiveness of CjQM towards DS, SA and MJ, but up-regulation in response to LT and ABA suggested a specific regulation of the gene in Caragana under varied cues.

  15. Progress report on the search for cold dark matter using ultralow-background germanium detectors at homestake

    NASA Astrophysics Data System (ADS)

    Drukier, A. K.; Avignone, F. T.; Brodzinski, R. L.; Collar, J. I.; Gelmini, G.; Miley, H. S.; Morales, A.; Reeves, J. H.; Spergel, D.

    1992-07-01

    Counting rates from the two 1-kg PNL/USC ultralow-background germanium detectors are ≤0.3 counts keV -1 kg -1 d -1 between 6 and 9 keV and ˜ 2 counts keV -1 kg -1 d -1 between 4 and 6 keV. These data show a significant short-time rate dependence due to blasting and other mining operations in the Homestake good mine. The mean shift in the centroid of the gallium x-ray peak was about 50 eV over a total period of about 500 days, indicating adequate stability for a search for annual modulation of Cold Dark Matter (CDM) particles.

  16. Measurements of the H2(13)CO ortho/para ratio in cold dark molecular clouds

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Dickens, J. E.; Irvine, W. M.; McGonagle, D.

    1995-01-01

    H2(13)CO has been detected for the first time toward cold dark molecular clouds using the NRAO 12 m telescope. The H2(13)CO ortho/para abundance ratio R for B335, which we report as R approximately 1.7, suggests equilibrium at the local kinetic temperature and appears to be distinctly different from that for both TMC-1 and L134N, where R is close to or higher than the statistical value 3. Since only B335 among the observed positions includes an imbedded IR source, this difference may result from heating of the grain surfaces, providing the energy necessary for desorption of formaldehyde formed on the grains.

  17. Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight.

    PubMed

    Alves, J F; Lada, C J; Lada, E A

    2001-01-11

    Stars and planets form within dark molecular clouds, but little is understood about the internal structure of these clouds, and consequently about the initial conditions that give rise to star and planet formation. The clouds are primarily composed of molecular hydrogen, which is virtually inaccessible to direct observation. But the clouds also contain dust, which is well mixed with the gas and which has well understood effects on the transmission of light. Here we use sensitive near-infrared measurements of the light from background stars as it is absorbed and scattered by trace amounts of dust to probe the internal structure of the dark cloud Barnard 68 with unprecedented detail. We find the cloud's density structure to be very well described by the equations for a pressure-confined, self-gravitating isothermal sphere that is critically stable according to the Bonnor-Ebert criteria. As a result we can precisely specify the physical conditions inside a dark cloud on the verge of collapse to form a star.

  18. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    NASA Technical Reports Server (NTRS)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  19. NIHAO X: reconciling the local galaxy velocity function with cold dark matter via mock H I observations

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Udrescu, Silviu M.; Dutton, Aaron A.; Obreja, Aura; Wang, Liang; Stinson, Greg R.; Kang, Xi

    2016-11-01

    We used 87 high-resolution hydrodynamical cosmological simulations from the NIHAO suite to investigate the relation between the maximum circular velocity (V_max^DM) of a dark matter halo in a collisionless simulation and the velocity width of the H I gas in the same halo in the hydrodynamical simulation. These two quantities are normally used to compare theoretical and observational velocity functions and have led to a possible discrepancy between observations and predictions based on the cold dark matter (CDM) model. We show that below 100 km s-1, there is clear bias between H I -based velocities and V_max^DM, that leads to an underestimation of the actual circular velocity of the halo. When this bias is taken into account, the CDM model has no trouble in reproducing the observed velocity function and no lack of low-velocity galaxies is actually present. Our simulations also reproduce the linewidth-stellar mass (Tully-Fisher) relation and H I sizes, indicating that the H I gas in our simulations is as extended as observed. The physical reason for the lower than expected linewidths is that, in contrast to high-mass galaxies, low-mass galaxies no longer have extended thin H I rotating discs, as is commonly assumed.

  20. LOW-MASS SUPPRESSION OF THE SATELLITE LUMINOSITY FUNCTION DUE TO THE SUPERSONIC BARYON-COLD-DARK-MATTER RELATIVE VELOCITY

    SciTech Connect

    Bovy, Jo; Dvorkin, Cora

    2013-05-01

    We study the effect of the supersonic baryon-cold-dark-matter (CDM) flow, which has recently been shown to have a large effect on structure formation during the dark ages 10 {approx}< z {approx}< 1000, on the abundance of luminous, low-mass satellite galaxies around galaxies like the Milky Way. As the supersonic baryon-CDM flow significantly suppresses both the number of halos formed and the amount of baryons accreted onto such halos of masses 10{sup 6} < M{sub halo}/M{sub Sun} < 10{sup 8} at z {approx}> 10, a large effect results on the stellar luminosity function before reionization. As halos of these masses are believed to have very little star formation after reionization due to the effects of photoheating by the ultraviolet background, this effect persists to the present day. We calculate that the number of low-mass 10{sup 6} < M{sub halo}/M{sub Sun} < 5 Multiplication-Sign 10{sup 7} halos that host luminous satellite galaxies today is typically suppressed by 50%, with values ranging up to 90% in regions where the initial supersonic velocity is high. We show that this previously ignored cosmological effect resolves some of the tension between the observed and predicted number of low-mass satellites in the Milky Way, reducing the need for other mass-dependent star-formation suppression before reionization.

  1. The Velocity Width Function of Galaxies from the 40% ALFALFA Survey: Shedding Light on the Cold Dark Matter Overabundance Problem

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil; Martin, Ann M.; Giovanelli, Riccardo; Haynes, Martha P.

    2011-09-01

    The ongoing Arecibo Legacy Fast ALFA (ALFALFA) survey is a wide-area, extragalactic HI-line survey conducted at the Arecibo Observatory. Sources have so far been extracted over ~3000 deg2 of sky (40% of its final area), resulting in the largest HI-selected sample to date. We measure the space density of HI-bearing galaxies as a function of their observed velocity width (uncorrected for inclination) down to w = 20 km s-1, a factor of two lower than the previous generation HI Parkes All-Sky Survey. We confirm previous results that indicate a substantial discrepancy between the observational distribution and the theoretical one expected in a cold dark matter (CDM) universe, at low widths. In particular, a comparison with synthetic galaxy samples populating state-of-the-art CDM simulations imply a factor of ~8 difference in the abundance of galaxies with w = 50 km s-1 (increasing to a factor of ~100 when extrapolated to the ALFALFA limit of w = 20 km s-1). We furthermore identify possible solutions, including a keV warm dark matter scenario and the fact that HI disks in low-mass galaxies are usually not extended enough to probe the full amplitude of the galactic rotation curve. In this latter case, we can statistically infer the relationship between the measured HI rotational velocity of a galaxy and the mass of its host CDM halo. Observational verification of the presented relationship at low velocities would provide an important test of the validity of the established dark matter model.

  2. Seasonal changes in daily metabolic patterns of tegu lizards (Tupinambis merianae) placed in the cold (17 degrees C) and dark.

    PubMed

    Milsom, William K; Andrade, Denis V; Brito, Simone P; Toledo, Luis F; Wang, Tobias; Abe, Augusto S

    2008-01-01

    Abstract Oxygen consumption rate was measured continuously in young tegu lizards Tupinambis merianae exposed to 4 d at 25 degrees C followed by 7-10 d at 17 degrees C in constant dark at five different times of the year. Under these conditions, circadian rhythms in the rate of oxygen consumption persisted for anywhere from 1 d to the entire 2 wk in different individuals in all seasons except the winter. We also saw a progressive decline in standard oxygen consumption rate (at highly variable rates in different individuals) to a very low rate that was seasonally independent (ranging from 19.1 +/- 6.2 to 27.7 +/- 0.2 mL kg(-1) h(-1) across seasons). Although this degree of reduction appeared to take longer to invoke when starting from higher metabolic rates, tegu lizards reduced their metabolism to the low rates seen in winter dormancy at all times of the year when given sufficient time in the cold and dark. In the spring and summer, tegus reduced their standard metabolic rate (SMR) by 80%-90% over the experimental run, but only roughly 20%-30% of the total fall was due to the reduction in temperature; 70%-80% of the total fall occurred at constant temperature. By autumn, when the starting SMR on the first night at 25 degrees C was already reduced by 59%-81% (early and late autumn, respectively) from peak summer values, virtually all of the fall (63%-83%) in metabolism was due to the reduction in temperature. This suggests that the temperature-independent reduction of metabolism was already in place by autumn before the tegus had entered winter dormancy.

  3. Chinese Wild-Growing Vitis amurensis ICE1 and ICE2 Encode MYC-Type bHLH Transcription Activators that Regulate Cold Tolerance in Arabidopsis

    PubMed Central

    Xu, Weirong; Jiao, Yuntong; Li, Ruimin; Zhang, Ningbo; Xiao, Dongming; Ding, Xiaoling; Wang, Zhenping

    2014-01-01

    Winter hardiness is an important trait for grapevine breeders and producers, so identification of the regulatory mechanisms involved in cold acclimation is of great potential value. The work presented here involves the identification of two grapevine ICE gene homologs, VaICE1 and VaICE2, from an extremely cold-tolerant accession of Chinese wild-growing Vitis amurnensis, which are phylogenetically related to other plant ICE1 genes. These two structurally different ICE proteins contain previously reported ICE-specific amino acid motifs, the bHLH-ZIP domain and the S-rich motif. Expression analysis revealed that VaICE1 is constitutively expressed but affected by cold stress, unlike VaICE2 that shows not such changed expression as a consequence of cold treatment. Both genes serve as transcription factors, potentiating the transactivation activities in yeasts and the corresponding proteins localized to the nucleus following transient expression in onion epidermal cells. Overexpression of either VaICE1 or VaICE2 in Arabidopsis increase freezing tolerance in nonacclimated plants. Moreover, we show that they result in multiple biochemical changes that were associated with cold acclimation: VaICE1/2-overexpressing plants had evaluated levels of proline, reduced contents of malondialdehyde (MDA) and decreased levels of electrolyte leakage. The expression of downstream cold responsive genes of CBF1, COR15A, and COR47 were significantly induced in Arabidopsis transgenically overexpressing VaICE1 or VaICE2 upon cold stress. VaICE2, but not VaICE1 overexpression induced KIN1 expression under cold-acclimation conditions. Our results suggest that VaICE1 and VaICE2 act as key regulators at an early step in the transcriptional cascade controlling freezing tolerance, and modulate the expression levels of various low-temperature associated genes involved in the C-repeat binding factor (CBF) pathway. PMID:25019620

  4. High-z objects and cold dark matter cosmogonies - Constraints on the primordial power spectrum on small scales

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1993-01-01

    Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.

  5. The Nature of Damped Lyα Systems and Their Hosts in the Standard Cold Dark Matter Universe

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2012-04-01

    Using adaptive mesh refinement cosmological hydrodynamic simulations with a physically motivated supernova feedback prescription, we show that the standard cold dark matter model can account for extant observed properties of damped Lyα systems (DLAs). With detailed examination of DLAs identified for each redshift snapshot through ray tracing through the simulation volumes containing thousands of galaxies, we find the following: (1) While DLA hosts roughly trace the overall population of galaxies at all redshifts, they are always gas-rich and have tendencies of being slightly smaller and bluer. (2) The history of DLA evolution is cosmological in nature and reflects primarily the evolution of the underlying cosmic density, galaxy size, and galaxy interactions. With higher density and more interactions at high redshift the size of DLAs is a larger fraction of their virial radius. (3) The variety of DLAs at high redshift is richer with a large contribution coming from galactic aqueducts, created through close galaxy interactions. The portion of gaseous disks of galaxies where most stars reside makes a relatively small contribution to DLA incidence at z = 3-4. (4) The majority of DLAs arise in halos of mass Mh = 1010-1012 M ⊙ at z = 1.6-4, as these galaxies dominate the overall population of galaxies then. At z = 3-4, 20%-30% of DLA hosts are Lyman break galaxies (LBGs), 10%-20% are due to galaxies more massive than LBGs, and 50%-70% are from smaller galaxies. (5) Galactic winds play an indispensable role in shaping the kinematic properties of DLAs. Specifically, the high velocity width DLAs are a mixture of those arising in high-mass, high velocity dispersion halos and those arising in smaller mass systems where cold gas clouds are entrained to high velocities by galactic winds. (6) In agreement with observations, we see a weak but noticeable evolution in DLA metallicity. The metallicity distribution centers at [Z/H] = -1.5 to -1 and spans more than three decades at

  6. X-ray clusters from a high-resolution hydrodynamic PPM simulation of the cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Bryan, Greg L.; Cen, Renyue; Norman, Michael L.; Ostriker, Jermemiah P.; Stone, James M.

    1994-01-01

    A new three-dimensional hydrodynamic code based on the piecewise parabolic method (PPM) is utilized to compute the distribution of hot gas in the standard Cosmic Background Explorer (COBE)-normalized cold dark matter (CDM) universe. Utilizing periodic boundary conditions, a box with size 85 h(exp-1) Mpc, having cell size 0.31 h(exp-1) Mpc, is followed in a simulation with 270(exp 3)=10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, Sigma(sub 8)=1.05, Omega(sub b)=0.06, we find the X-ray-emitting clusters, compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. The results, which are compared with those obtained in the preceding paper (Kang et al. 1994a), may be used in conjuction with ROSAT and other observational data sets. Overall, the results of the two computations are qualitatively very similar with regard to the trends of cluster properties, i.e., how the number density, radius, and temeprature depend on luminosity and redshift. The total luminosity from clusters is approximately a factor of 2 higher using the PPM code (as compared to the 'total variation diminishing' (TVD) code used in the previous paper) with the number of bright clusters higher by a similar factor. The primary conclusions of the prior paper, with regard to the power spectrum of the primeval density perturbations, are strengthened: the standard CDM model, normalized to the COBE microwave detection, predicts too many bright X-ray emitting clusters, by a factor probably in excess of 5. The comparison between observations and theoretical predictions for the evolution of cluster properties, luminosity functions, and size and temperature distributions should provide an important discriminator among competing scenarios for the development of structure in the universe.

  7. [Effects of nitrogen addition on available nitrogen content and acidification in cold-temperate coniferous forest soil in the growing season].

    PubMed

    Chen, Gao-Qi; Fu, Wa-Li; Luo, Ya-Chen; Gao, Wen-Long; Li, Sheng-Gong; Yang, Hao

    2014-12-01

    Based on a low-level and multi-form N addition control experiment, this study took cold-temperate coniferous forest in Daxing'an Ling as the research object. After long-term and continuous nitrogen addition in situ, the available nitrogen (NH4(+) -N & NO3(-) -N) contents and pH values of the soil (0-10 cm) were measured in the early growing season (May) and the peak growing season (August) in 2010, 2012 and 2013. The results showed that, the available nitrogen in the early and peak growing seasons was mainly NH4(+) -N which accounted for over 96% of the inorganic nitrogen content, while the content of NO3(-) -N was very low. With the time extension of nitrogen addition, the effects of nitrogen addition on the NH4(+) -N content in 0-10 cm soil were more obvious in the early growing season than that in the peak growing season, and the NH4(+) -N content was mainly affected by the type of nitrogen addition. On the contrary, the NO3(-) -N content in 0-10 cm soil was higher in the peak growing season than that in the early growing season. The effect of N input was obvious on NO3(-) -N content in both early and peak growing seasons, and low nitrogen treatment tended to promote the enrichment of NO3(-) -N. As time went on, the response of NH4(+) -N and NO3(-) -N content to N addition was changed from insignificant in the early stage to significant in the late stage. N addition had a significant impact on the pH value of the 0-10 cm soil in the early and peak growing seasons. The pH values of the soil with low nitrogen treatment and the soil in the peak growing season were relatively lower. With the extension of the nitrogen addition time, the response of pH value also turned from insignificant in the early stage to significant in the late stage. Because of the long-term and continuous nitrogen addition, the 0 - 10 cm soil in this cold-temperate coniferous forest was obviously acidified.

  8. Effects of smoke, heat, darkness and cold stratification on seed germination of 40 species in a cool temperate zone in northern Japan.

    PubMed

    Tsuyuzaki, S; Miyoshi, C

    2009-05-01

    The effects of smoke, heat, darkness and cold stratification on seed germination were examined for 40 species with various life history attributes. These species establish in early successional stages on a volcano and are distributed in cool temperate zones of northern Japan. Smoke decreased seed germination in 11 species and increased it in one species, Leucothoe grayana. Germination of Polygonum longisetum was enhanced by a combination of smoke and cold, and that of Aralia elata by smoke and heat. Heat increased germination for three species and decreased it for one. Cold stratification broke dormancy in seeds of 11 species. Continuous darkness decreased germination of 22 species and did not increase germination for any species, showing that approximately half of the species require light for maximum germination. Although most species are sun plants that establish in early stages of succession and/or in disturbed areas, smoke and heat do not enhance germination of these species after disturbance, even when the disturbance is fire. Germination of slender and/or large seeds tends to be decreased more by smoke, probably because of their larger surface area. Light is more important than smoke and heat for detection of disturbance and for seed germination in this region. However, despite the low fire frequency in the region, germination of a few species was increased by fire-derived stimuli.

  9. THE NATURE OF DAMPED Ly{alpha} SYSTEMS AND THEIR HOSTS IN THE STANDARD COLD DARK MATTER UNIVERSE

    SciTech Connect

    Cen Renyue

    2012-04-01

    Using adaptive mesh refinement cosmological hydrodynamic simulations with a physically motivated supernova feedback prescription, we show that the standard cold dark matter model can account for extant observed properties of damped Ly{alpha} systems (DLAs). With detailed examination of DLAs identified for each redshift snapshot through ray tracing through the simulation volumes containing thousands of galaxies, we find the following: (1) While DLA hosts roughly trace the overall population of galaxies at all redshifts, they are always gas-rich and have tendencies of being slightly smaller and bluer. (2) The history of DLA evolution is cosmological in nature and reflects primarily the evolution of the underlying cosmic density, galaxy size, and galaxy interactions. With higher density and more interactions at high redshift the size of DLAs is a larger fraction of their virial radius. (3) The variety of DLAs at high redshift is richer with a large contribution coming from galactic aqueducts, created through close galaxy interactions. The portion of gaseous disks of galaxies where most stars reside makes a relatively small contribution to DLA incidence at z = 3-4. (4) The majority of DLAs arise in halos of mass M{sub h} = 10{sup 10}-10{sup 12} M{sub Sun} at z = 1.6-4, as these galaxies dominate the overall population of galaxies then. At z = 3-4, 20%-30% of DLA hosts are Lyman break galaxies (LBGs), 10%-20% are due to galaxies more massive than LBGs, and 50%-70% are from smaller galaxies. (5) Galactic winds play an indispensable role in shaping the kinematic properties of DLAs. Specifically, the high velocity width DLAs are a mixture of those arising in high-mass, high velocity dispersion halos and those arising in smaller mass systems where cold gas clouds are entrained to high velocities by galactic winds. (6) In agreement with observations, we see a weak but noticeable evolution in DLA metallicity. The metallicity distribution centers at [Z/H] = -1.5 to -1 and

  10. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation

    NASA Technical Reports Server (NTRS)

    Kang, Hyesung; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1994-01-01

    A new, three-dimensional, shock-capturing hydrodynamic code is utilized to determine the distribution of hot gas in a standard cold dark matter (CDM) model of the universe. Periodic boundary conditions are assumed: a box with size 85 h(exp -1) Mpc having cell size 0.31 h(exp -1) Mpc is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, sigma(sub 8) = 1.05, omega(sub b) = 0.06, and assuming h = 0.5, we find the X-ray-emitting clusters and compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. We find that most of the total X-ray emissivity in our box originates in a relatively small number of identifiable clusters which occupy approximately 10(exp -3) of the box volume. This standard CDM model, normalized to COBE, produces approximately 5 times too much emission from clusters having L(sub x) is greater than 10(exp 43) ergs/s, a not-unexpected result. If all other parameters were unchanged, we would expect adequate agreement for sigma(sub 8) = 0.6. This provides a new and independent argument for lower small-scale power than standard CDM at the 8 h(exp -1) Mpc scale. The background radiation field at 1 keV due to clusters in this model is approximately one-third of the observed background, which, after correction for numerical effects, again indicates approximately 5 times too much emission and the appropriateness of sigma(sub 8) = 0.6. If we have used the observed ratio of gas to total mass in clusters, rather than basing the mean density on light-element nucleosynthesis, then the computed luminosity of each cluster would have increased still further, by a factor of approximately 10. The number density of clusters increases to z approximately 1, but the luminosity per typical cluster decreases, with the result that evolution in the number density of bright

  11. Hot gas in the cold dark matter scenario: X-ray clusters from a high-resolution numerical simulation

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Cen, Renyue; Ostriker, Jeremiah P.; Ryu, Dongsu

    1994-06-01

    A new, three-dimensional, shock-capturing hydrodynamic code is utilized to determine the distribution of hot gas in a standard cold dark matter (CDM) model of the universe. Periodic boundary conditions are assumed: a box with size 85 h-1 Mpc having cell size 0.31 h-1 Mpc is followed in a simulation with 2703 = 107.3 cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, sigma8 = 1.05, omegab = 0.06, and assuming h = 0.5, we find the X-ray-emitting clusters and compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. We find that most of the total X-ray emissivity in our box originates in a relatively small number of identifiable clusters which occupy approximately 10-3 of the box volume. This standard CDM model, normalized to COBE, produces approximately 5 times too much emission from clusters having Lx is greater than 1043 ergs/s, a not-unexpected result. If all other parameters were unchanged, we would expect adequate agreement for sigma8 = 0.6. This provides a new and independent argument for lower small-scale power than standard CDM at the 8 h-1 Mpc scale. The background radiation field at 1 keV due to clusters in this model is approximately one-third of the observed background, which, after correction for numerical effects, again indicates approximately 5 times too much emission and the appropriateness of sigma8 = 0.6. If we have used the observed ratio of gas to total mass in clusters, rather than basing the mean density on light-element nucleosynthesis, then the computed luminosity of each cluster would have increased still further, by a factor of approximately 10. The number density of clusters increases to z approximately 1, but the luminosity per typical cluster decreases, with the result that evolution in the number density of bright clusters is moderate in this redshift range, showing a broad peak near z = 0

  12. Dark matter and dark energy: The critical questions

    SciTech Connect

    Michael S. Turner

    2002-11-19

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% {+-} 1% baryons; 29% {+-} 4% cold dark matter; and 66% {+-} 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up.

  13. Release of the β-Galactosidase-Synthesizing System from Ultraviolet Catabolite Repression by Cyclic 3′,5′-Adenosine Monophosphate, Dark Repair, Photoreactivation, and Cold Treatment

    PubMed Central

    Swenson, P. A.

    1972-01-01

    Recovery from the inhibitory effect of ultraviolet irradiation on the induced synthesis of β-galactosidase was studied in Escherichia coli B/r. When irradiated cells (520 ergs/mm2 at 254 nm) were induced and incubated in minimal medium supplemented with Casamino Acids (conditions of catabolite repression), the ability to form enzyme was greatly reduced for about 100 min and then recovery began. The inhibition observed immediately after ultraviolet irradiation was partially reversed by cyclic 3′,5′-adenosine monophosphate (cyclic AMP) or by photoreactivation treatment. Inhibition was reduced if the cells were given cold treatment (5 C) before or during irradiation; the kinetics of induced enzyme formation in each case were similar to those of irradiated cells receiving cyclic AMP. These kinetics suggest that the cold treatments, like cyclic AMP, cause the release of the β-galactosidase-synthesizing system from catabolite repression. When irradiated cells were incubated for various times before cyclic AMP or photoreactivation treatment, some reversal of the inhibition of induced enzyme formation was obtained, but by 100 min the treatments were ineffective. Because 100 min was also the time at which dark recovery of enzyme formation began, the recovery process was interpreted to be the result of completion of DNA repair, which, in turn, released the β-galactosidase-synthesizing system from catabolite repression. PMID:4333380

  14. Galaxy evolution from strong-lensing statistics: the differential evolution of the velocity dispersion function in concord with the Λ cold dark matter paradigm

    NASA Astrophysics Data System (ADS)

    Chae, Kyu-Hyun

    2010-03-01

    We study galaxy evolution from z = 1 to 0 as a function of velocity dispersion σ for galaxies with σ >~ 95kms-1 based on the measured and Monte Carlo realized local velocity dispersion functions (VDFs) of galaxies and the revised statistical properties of 30 strongly lensed sources from the Cosmic Lens All-Sky Survey, the PMN-NVSS Extragalactic Lens Survey and the Hubble Space Telescope Snapshot survey. We assume that the total (luminous plus dark) mass profile of a galaxy is isothermal in the optical region for 0 <= z <= 1 as suggested by mass modelling of lensing galaxies. This study is the first to investigate the evolution of the VDF shape as well as the overall number density. It is also the first to study the evolution of the total and the late-type VDFs in addition to the early-type VDF. For the evolutionary behaviours of the VDFs, we find that: (1) the number density of massive (mostly early-type) galaxies with σ >~ 200kms-1 evolves differentially in the way that the number density evolution is greater at a higher velocity dispersion; (2) the number density of intermediate- and low-mass early-type galaxies (95kms-1 <~ σ <~ 200kms-1) is nearly constant and (3) the late-type VDF transformed from the Monte Carlo realized circular velocity function is consistent with no evolution in its shape or integrated number density consistent with galaxy survey results. These evolutionary behaviours of the VDFs are strikingly similar to those of the dark halo mass function (DMF) from N-body simulations and the stellar mass function (SMF) predicted by recent semi-analytic models of galaxy formation under the current Λ cold dark matter hierarchical structure formation paradigm. Interestingly, the VDF evolutions appear to be qualitatively different from `stellar-mass-downsizing' evolutions obtained by many galaxy surveys. The co-evolution of the DMF, the VDF and the SMF is investigated in quantitative detail based on up-to-date theoretical and observational results in a

  15. The Formation of Milky Way-mass Disk Galaxies in the First 500 Million Years of a Cold Dark Matter Universe

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Tenneti, Ananth; Bird, Simeon; Battaglia, Nicholas; Wilkins, Stephen

    2015-07-01

    Whether or not among the myriad tiny protogalaxies there exists a population with similarities to present-day galaxies is an open question. We show, using BlueTides, the first hydrodynamic simulation large enough to resolve the relevant scales, that the first massive galaxies to form are predicted to have extensive rotationally supported disks. Although their morphology resembles in some ways Milky Way types seen at much lower redshifts, these high-redshift galaxies are smaller, denser, and richer in gas than their low-redshift counterparts. From a kinematic analysis of a statistical sample of 216 galaxies at redshift z = 8-10, we have found that disk galaxies make up 70% of the population of galaxies with stellar mass {10}10{M}⊙ or greater. Cold dark matter cosmology therefore makes specific predictions for the population of large galaxies 500 million years after the Big Bang. We argue that wide-field satellite telescopes (e.g., WFIRST) will in the near future discover these first massive disk galaxies. The simplicity of their structure and formation history should make new tests of cosmology possible.

  16. Life in the Slow, Dark, Salty, Cold and Oxygen-Depleted Lane - Insights on Habitability from Lake Vida

    NASA Astrophysics Data System (ADS)

    Murray, A.

    2014-04-01

    Ice-entrained Lake Vida brine has provided an accessible natural habitat to study life in the slow lane - where cellular growth is limited, but not extinguished. We measured in situ stable isotopic signatures of N2O, SO42-, H2, conducted experiments utilizing stable isotope geochemical tracers to detect microbial transformations and employed radioisotopically-labeled amino acid precursors to detect cellular macromolecule biosynthesis. The results indicated a dominance of abiotic processes in the brine - yet support metabolically active life through detection of nominal rates of protein biosynthesis. At the same time, the brine has posed a challenge to our understanding of ecosystem energetics. Data collected thus far suggests that the brine is isolated from surfical processes and receives no new mass or energy from above. Calculations have estimated carbon remineralization rates, which indicate that resources should be depleted to the level of small molecules perhaps supporting a methanogenic ecosystem given the amount of time since encapsulation at the temperatures recorded - yet the brine is resource-rich harboring abundant bacteria and large molecules, in addition to a complex mixture of both reduced and oxidized compounds. This has motivated explorations into alternative sources of energy such as hydrogen - which was detected at levels ~ 10 micromolar - that could be generated by brine-rock interactions and supply endogenous energy to this closed ecosystem. This cold, salty, anoxic and organically rich brine, provides insight into a new category of habitable earth ecosystems that may also give us food for thought when considering habitability of giant planet icy worlds or of icy exoplanets. However, the methods we use, and the framework of scientific inquiry applied, are limited by perception and familiarity of rates of change that are important in human time scales. The Vida-icy brine ecosystem provides a model for expansion of our understanding of

  17. X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1994-01-01

    A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.

  18. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  19. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  20. Fingerprinting dark energy. II. Weak lensing and galaxy clustering tests

    SciTech Connect

    Sapone, Domenico; Amendola, Luca

    2010-11-15

    The characterization of dark energy is a central task of cosmology. To go beyond a cosmological constant, we need to introduce at least an equation of state and a sound speed and consider observational tests that involve perturbations. If dark energy is not completely homogeneous on observable scales, then the Poisson equation is modified and dark matter clustering is directly affected. One can then search for observational effects of dark energy clustering using dark matter as a probe. In this paper we exploit an analytical approximate solution of the perturbation equations in a general dark energy cosmology to analyze the performance of next-decade large-scale surveys in constraining equation of state and sound speed. We find that tomographic weak lensing and galaxy redshift surveys can constrain the sound speed of the dark energy only if the latter is small, of the order of c{sub s} < or approx. 0.01 (in units of c). For larger sound speeds the error grows to 100% and more. We conclude that large-scale structure observations contain very little information about the perturbations in canonical scalar field models with a sound speed of unity. Nevertheless, they are able to detect the presence of cold dark energy, i.e. a dark energy with nonrelativistic speed of sound.

  1. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas.

  2. Recirculating System Design, Loading, and Water Quality and Atlantic Salmon Grow-Out Performance at the USDA National Cold Water Marine Aquaculture Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Northeastern U.S has the ideal location and unique opportunity to be a leader in cold-water marine finfish aquaculture. However, problems and regulations on environmental issues, mandatory stocking of 100 percent native North American salmon, and disease have impacted economic viability of the U...

  3. News and Views: Life on Mars? Astronomical model is world's biggest; Prizes for identifying dark matter; NAM 2013: call for sessions; Paintballing to save the planet; Happy Birthday ESO; Dark sky park grows

    NASA Astrophysics Data System (ADS)

    2012-12-01

    The University of Edinburgh, crowdsourcing website Kaggle and Winton Capital Management have joined forces to launch a competition to identify dark matter haloes. The Scientific Organizing Committee of the RAS National Astronomy Meeting 2013, the UK Solar Physics and Magnetosphere, Ionosphere and Solar-Terrestrial meetings, are seeking nominations for parallel discussion session themes. A winner of the 2012 Move an Asteroid Technical Paper Competition suggests painting asteroids white in order to boost their albedo and take advantage of solar radiation pressure to alter their orbits.

  4. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  5. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  6. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  7. Dark Spots and Fans

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As winter turns to spring at the south polar ice cap of Mars, the rising sun reveals dark spots and fans emerging from the cold polar night. Using visual images (left) and temperature data (right) from the Thermal Emission Imaging system on NASA's Mars Odyssey orbiter, scientists have built a new model for the origin of the dark markings. Scientists propose the markings come from dark sand and dust strewn by high-speed jets of carbon-dioxide gas. These erupt from under a layer of carbon-dioxide ice that forms each Martian winter.

  8. Metastable dark energy

    NASA Astrophysics Data System (ADS)

    Landim, Ricardo G.; Abdalla, Elcio

    2017-01-01

    We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2)R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm) dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  9. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  10. Dark matter universe

    NASA Astrophysics Data System (ADS)

    Bahcall, Neta A.

    2015-10-01

    Most of the mass in the universe is in the form of dark matter-a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations-from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology-a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)-fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  11. Theory and Motivations of Dark Sector Dark Matter and Forces

    NASA Astrophysics Data System (ADS)

    Schuster, Philip

    2017-01-01

    We present the theory and motivations underlying ``dark'' or ``hidden'' sector dark matter and new force scenarios. Dark sector scenarios with sub-GeV mass scales have attracted particular attention in the past several years, motivated in part by findings from direct detection, satellite, and LHC experiments, as well as precision measurements. Moreover, these scenarios offer some of the simplest and least explored possibilities for dark matter. As such, sub-GeV dark sector scenarios have become the focus of a broad and growing international program of experiments.

  12. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  13. Cold Stress

    MedlinePlus

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  14. Structure formation with scalar field dark matter: the field approach

    SciTech Connect

    Magaña, Juan; Sánchez-Salcedo, F.J.; Matos, Tonatiuh; Suárez, Abril E-mail: tmatos@fis.cinvestav.mx E-mail: jsanchez@astro.unam.mx

    2012-10-01

    We study the formation of structure in the Universe assuming that dark matter can be described by a scalar field Φ-tilde with a potential V(Φ) = −m{sup 2}Φ-tilde {sup 2}/2+λΦ-tilde {sup 4}/4. We derive the evolution equations of the scalar field in the linear regime of perturbations. We investigate the symmetry breaking and possibly a phase transition of this scalar field in the early Universe. At low temperatures, the scalar perturbations have an oscillating growing mode and therefore, this kind of dark matter could lead to the formation of gravitational structures. In order to study the nonlinear regime, we use the spherical collapse model and show that, in the quadratic potential limit, this kind of dark matter can form virialized structures. The main difference with the traditional Cold Dark Matter paradigm is that the formation of structure in the scalar field model can occur at earlier times. Thus, if the dark matter behaves as a scalar field, large galaxies are expected to be formed already at high redshifts.

  15. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock.

    PubMed

    Lee, Na Kyeong; Oh, Hee-Mock; Kim, Hee-Sik; Ahn, Chi-Yong

    2017-03-01

    Nostoc sp. NK (KCTC 12772BP) was isolated and cultivated in a BG11 medium and a nitrate-free BG11 medium (BG110). To enhance C-phycocyanin (C-PC) content in the cells, different fluorescent lamps (white, plant, and red) were used as light sources for complementary chromatic adaptation (CCA). The maximum biomass productivity was 0.42g/L/d and 0.32g/L/d under BG11 and BG110 conditions, respectively. The maximum C-PC contents were 8.4% (w/w) under white lamps, 13.6% (w/w) under plant lamps, and 18% (w/w) under BG110 and the red light condition. The maximum C-PC productivity was 57.4mg/L/d in BG110 under the red lamp condition. These results indicate that a higher C-PC content could be obtained under a diazotrophic condition and a CCA reaction. The C-PC could be released naturally from cells without any extraction processes, when Nostoc sp. NK was cultivated in the BG110 medium with CO2 aeration and put in dark conditions at 5°C.

  16. Is Dark Energy Falsifiable?

    NASA Astrophysics Data System (ADS)

    Gibson, C. H.; Schild, R. E.

    2011-11-01

    Is the accelerating expansion of the Universe true, inferred through observations of distant supernovae, and is the implied existence of an enormous amount of anti- gravitational dark energy material driving the accelerating expansion of the universe also true? To be physically useful these propositions must be falsifiable; that is, subject to observational tests that could render them false, and both fail when viscous, diffusive, astro-biological and turbulence effects are included in the interpretation of observations. A more plausible explanation of negative stresses producing the big bang is turbulence at Planck temperatures. Inflation results from gluon viscous stresses at the strong force transition. Anti-gravitational (dark energy) turbulence stresses are powerful but only temporary. No permanent dark energy is needed. At the plasma-gas transition, viscous stresses cause fragmentation of plasma proto-galaxies into dark matter clumps of primordial gas planets, each of which falsifies dark-energy cold-dark-matter cosmologies. Clumps of these planets form all stars, and explain the alleged accelerating expansion of the universe as a systematic dimming error of Supernovae Ia by light scattered in the hot turbulent atmospheres of evaporated planets surrounding central white dwarf stars.

  17. Axion dark matter searches

    DOE PAGES

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  18. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.; Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  19. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  20. Common Cold

    MedlinePlus

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest Drinking ...

  1. Dark Matters

    ScienceCinema

    Joseph Silk

    2016-07-12

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  2. Mixed dark matter from technicolor

    SciTech Connect

    Belyaev, Alexander; Frandsen, Mads T.; Sarkar, Subir; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo-Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal abundance alone we find a lower bound of m{sub W} on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC.

  3. Unified dark energy-dark matter model with inverse quintessence

    SciTech Connect

    Ansoldi, Stefano; Guendelman, Eduardo I. E-mail: guendel@bgu.ac.il

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  4. Observational constraints on dark energy with a fast varying equation of state

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Nesseris, Savvas; Tsujikawa, Shinji

    2012-05-01

    We place observational constraints on models with the late-time cosmic acceleration based on a number of parametrizations allowing fast transitions for the equation of state of dark energy. In addition to the model of Linder and Huterer where the dark energy equation of state w monotonically grows or decreases in time, we propose two new parametrizations in which w has an extremum. We carry out the likelihood analysis with the three parametrizations by using the observational data of supernovae type Ia, cosmic microwave background, and baryon acoustic oscillations. Although the transient cosmic acceleration models with fast transitions can give rise to the total chi square smaller than that in the Λ-Cold-Dark-Matter (ΛCDM) model, these models are not favored over ΛCDM when one uses the Akaike information criterion which penalizes the extra degrees of freedom present in the parametrizations.

  5. Growing Crystals for Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Unidirectional solidification yields bulk crystals with compositional homogeneity. Unidirectionaly crystal-growth furnace assembly travels vertically so crystal grows upward from bottom tapered end of ampoule. Separately controlled furnaces used for hot (upper) and cold (lower) zones. New process produces ingots with radial compositional homogeneity suitable for fabricating infrared detectors.

  6. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  7. Dark strings

    SciTech Connect

    Vachaspati, Tanmay

    2009-09-15

    Recent astrophysical observations have motivated novel theoretical models of the dark matter sector. A class of such models predicts the existence of GeV scale cosmic strings that communicate with the standard model sector by Aharonov-Bohm interactions with electrically charged particles. We discuss the cosmology of these 'dark strings' and investigate possible observational signatures. More elaborate dark sector models are argued to contain hybrid topological defects that may also have observational signatures.

  8. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  9. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  10. Partially acoustic dark matter, interacting dark radiation, and large scale structure

    NASA Astrophysics Data System (ADS)

    Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz

    2016-12-01

    The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

  11. Dark matter and dark radiation

    SciTech Connect

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-15

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant {alpha}-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on {alpha}-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies {alpha}-circumflex < or approx. 10{sup -3} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  12. Common cold

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000678.htm Common cold To use the sharing features on this page, please enable JavaScript. The common cold most often causes a runny nose, nasal congestion, ...

  13. Methanol in dark clouds

    NASA Technical Reports Server (NTRS)

    Friberg, P.; Hjalmarson, A.; Madden, S. C.; Irvine, W. M.

    1988-01-01

    The first observation of methanol in cold dark clouds TMC 1, L 134 N, and B 335 is reported. In all three clouds, the relative abundance of methanol was found to be in the range of 10 to the -9th (i.e., almost an order of magnitude more abundant than acetaldehyde), with no observable variation between the clouds. Methanol emission showed a complex velocity structure; in TMC 1, clear indications of non-LTE were observed. Dimethyl ether was searched for in L 134 N; the upper limit of the column density of dimethyl ether in L 134 N was estimated to be 4 x 10 to the 12th/sq cm, assuming 5 K rotation temperature and LTE. This limit makes the abundance ratio (CH3)2O/CH3OH not higher than 1/5, indicating that dimethyl ether is not overabundant in this dark cloud.

  14. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  15. Dark Matter

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  16. Stellar discs in Aquarius dark matter haloes

    NASA Astrophysics Data System (ADS)

    DeBuhr, Jackson; Ma, Chung-Pei; White, Simon D. M.

    2012-10-01

    We investigate the gravitational interactions between live stellar discs and their dark matter haloes, using Λ cold dark matter haloes similar in mass to that of the Milky Way taken from the Aquarius Project. We introduce the stellar discs by first allowing the haloes to respond to the influence of a growing rigid disc potential from z = 1.3 to 1.0. The rigid potential is then replaced with star particles which evolve self-consistently with the dark matter particles until z = 0.0. Regardless of the initial orientation of the disc, the inner parts of the haloes contract and change from prolate to oblate as the disc grows to its full size. When the disc's normal is initially aligned with the major axis of the halo at z = 1.3, the length of the major axis contracts and becomes the minor axis by z = 1.0. Six out of the eight discs in our main set of simulations form bars, and five of the six bars experience a buckling instability that results in a sudden jump in the vertical stellar velocity dispersion and an accompanying drop in the m = 2 Fourier amplitude of the disc surface density. The bars are not destroyed by the buckling but continue to grow until the present day. Bars are largely absent when the disc mass is reduced by a factor of 2 or more; the relative disc-to-halo mass is therefore a primary factor in bar formation and evolution. A subset of the discs is warped at the outskirts and contains prominent non-coplanar material with a ring-like structure. Many discs reorient by large angles between z = 1 and 0, following a coherent reorientation of their inner haloes. Larger reorientations produce more strongly warped discs, suggesting a tight link between the two phenomena. The origins of bars and warps appear independent: some discs with strong bars show little disturbances at the outskirts, while the discs with the weakest bars show severe warps.

  17. Dark-Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  18. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data

    SciTech Connect

    Amendola, Luca; Campos, Gabriela Camargo; Rosenfeld, Rogerio

    2007-04-15

    Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling {delta} between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w{sub DE}(z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w{sub DE} and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy.

  19. Iapetus Bright and Dark Terrains

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Saturn's outermost large moon, Iapetus, has a bright, heavily cratered icy terrain and a dark terrain, as shown in this Voyager 2 image taken on August 22, 1981. Amazingly, the dark material covers precisely the side of Iapetus that leads in the direction of orbital motion around Saturn (except for the poles), whereas the bright material occurs on the trailing hemisphere and at the poles. The bright terrain is made of dirty ice, and the dark terrain is surfaced by carbonaceous molecules, according to measurements made with Earth-based telescopes. Iapetus' dark hemisphere has been likened to tar or asphalt and is so dark that no details within this terrain were visible to Voyager 2. The bright icy hemisphere, likened to dirty snow, shows many large impact craters. The closest approach by Voyager 2 to Iapetus was a relatively distant 600,000 miles, so that our best images, such as this, have a resolution of about 12 miles. The dark material is made of organic substances, probably including poisonous cyano compounds such as frozen hydrogen cyanide polymers. Though we know a little about the dark terrain's chemical nature, we do not understand its origin. Two theories have been developed, but neither is fully satisfactory--(1) the dark material may be organic dust knocked off the small neighboring satellite Phoebe and 'painted' onto the leading side of Iapetus as the dust spirals toward Saturn and Iapetus hurtles through the tenuous dust cloud, or (2) the dark material may be made of icy-cold carbonaceous 'cryovolcanic' lavas that were erupted from Iapetus' interior and then blackened by solar radiation, charged particles, and cosmic rays. A determination of the actual cause, as well as discovery of any other geologic features smaller than 12 miles across, awaits the Cassini Saturn orbiter to arrive in 2004.

  20. Axion dark matter from topological defects

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Saikawa, Ken'ichi; Sekiguchi, Toyokazu

    2015-03-01

    The cosmological scenario where the Peccei-Quinn symmetry is broken after inflation is investigated. In this scenario, topological defects such as strings and domain walls produce a large number of axions, which contribute to the cold dark matter of the Universe. The previous estimations of the cold dark matter abundance are updated and refined based on the field-theoretic simulations with improved grid sizes. The possible uncertainties originated in the numerical calculations are also discussed. It is found that axions can be responsible for the cold dark matter in the mass range ma=(0.9 - 1.4 )×1 0-4 eV for the models with the domain wall number NDW=1 , and ma≈O (1 0-4- 1 0-2) eV with a mild tuning of parameters for the models with NDW>1 . Such higher mass ranges can be probed in future experimental studies.

  1. Dark matter and dark energy accretion on to intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Pepe, C.; Pellizza, L. J.; Romero, G. E.

    2012-03-01

    In this work we investigate the accretion of cosmological fluids on to an intermediate-mass black hole at the centre of a globular cluster, focusing on the influence of the parent stellar system on the accretion flow. We show that the accretion of cosmic background radiation and the so-called dark energy on to an intermediate-mass black hole is negligible. On the other hand, if cold dark matter has a non-vanishing pressure, the accretion of dark matter is large enough to increase the black hole mass well beyond the present observed upper limits. We conclude that either intermediate-mass black holes do not exist, or dark matter does not exist, or it is not strictly collisionless. In the latter case, we set a lower limit for the parameter of the cold dark matter equation of state.

  2. Cold injuries.

    PubMed

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  3. Reconciling MOND and dark matter?

    NASA Astrophysics Data System (ADS)

    Bruneton, Jean-Philippe; Liberati, Stefano; Sindoni, Lorenzo; Famaey, Benoit

    2009-03-01

    Observations of galaxies suggest a one-to-one analytic relation between the inferred gravity of dark matter at any radius and the enclosed baryonic mass, a relation summarized by Milgrom's law of modified Newtonian dynamics (MOND). However, present-day covariant versions of MOND usually require some additional fields contributing to the geometry, as well as an additional hot dark matter component to explain cluster dynamics and cosmology. Here, we envisage a slightly more mundane explanation, suggesting that dark matter does exist but is the source of MOND-like phenomenology in galaxies. We assume a canonical action for dark matter, but also add an interaction term between baryonic matter, gravity, and dark matter, such that standard matter effectively obeys the MOND field equation in galaxies. We show that even the simplest realization of the framework leads to a model which reproduces some phenomenological predictions of cold dark matter (CDM) and MOND at those scales where these are most successful. We also devise a more general form of the interaction term, introducing the medium density as a new order parameter. This allows for new physical effects which should be amenable to observational tests in the near future. Hence, this very general framework, which can be furthermore related to a generalized scalar-tensor theory, opens the way to a possible unification of the successes of CDM and MOND at different scales.

  4. Spectroscopy with cold and ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Abele, Hartmut; Jenke, Tobias; Konrad, Gertrud

    2015-05-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10-4 level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  5. Stability of curvature perturbation with new covariant form for energy-momentum transfer in dark sector

    NASA Astrophysics Data System (ADS)

    Sun, Cheng-Yi; Song, Yu; Yue, Rui-Hong

    2013-02-01

    It was found that the model with interaction between cold dark matter (CDM) and dark energy (DE) proportional to the energy density of CDM ρ m and constant equation of state of DE w d suffered from instabilities of the density perturbations on the super-Hubble scales. Here we suggest a new covariant model for the energy-momentum transfer between CDM and DE. Then using the covariant model, we analyze the evolution of density perturbations on the super-Hubble scale. We find that the instabilities can be avoided in the model with constant w d and interaction proportional to ρ m . Furthermore, we analyze the dominant non-adiabatic mode in the radiation era and find that the mode grows regularly.

  6. Dark matter via massive bigravity

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-05-01

    In this work we investigate the existence of relativistic models for dark matter in the context of bimetric gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic scales. For this purpose we consider two different species of dark matter particles that separately couple to the two metrics of bigravity. These two sectors are linked together via an internal U (1 ) vector field, and some effective composite metric built out of the two metrics. Among possible models only certain classes of kinetic and interaction terms are allowed without invoking ghost degrees of freedom. Along these lines we explore the number of allowed kinetic terms in the theory and point out the presence of ghosts in a previous model. Finally, we propose a promising class of ghost-free candidate theories that could provide the MOND phenomenology at galactic scales while reproducing the standard cold dark matter model at cosmological scales.

  7. Theoretical Comparison Between Candidates for Dark Matter

    NASA Astrophysics Data System (ADS)

    McKeough, James; Hira, Ajit; Valdez, Alexandra

    2017-01-01

    Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.

  8. Dark Spots

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Dark spots (left) and 'fans' appear to scribble dusty hieroglyphics on top of the Martian south polar cap in two high-resolution Mars Global Surveyor, Mars Orbiter Camera images taken in southern spring. Each image is about 3-kilometers wide (2-miles).

  9. Chandra's Find of Lonely Halo Raises Questions About Dark Matter

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Dark matter continues to confound astronomers, as NASA's Chandra X-ray Observatory demonstrated with the detection of an extensive envelope of dark matter around an isolated elliptical galaxy. This discovery conflicts with optical data that suggest a dearth of dark matter around similar galaxies, and raises questions about how galaxies acquire and keep such dark matter halos. The observed galaxy, known as NGC 4555, is unusual in that it is a fairly large, elliptical galaxy that is not part of a group or cluster of galaxies. In a paper to be published in the November 1, 2004 issue of the Monthly Notices of the Royal Astronomical Society, Ewan O'Sullivan of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA and Trevor Ponman of the University of Birmingham, United Kingdom, use the Chandra data to show that the galaxy is embedded in a cloud of 10-million-degree-Celsius gas. X-ray/Optical Composite of NGC 4555 X-ray/Optical Composite of NGC 4555 This hot gas cloud has a diameter of about 400,000 light years, about twice that of the visible galaxy. An enormous envelope, or halo, of dark matter is needed to confine the hot cloud to the galaxy. The total mass of the dark matter halo is about ten times the combined mass of the stars in the galaxy, and 300 times the mass of the hot gas cloud. A growing body of evidence indicates that dark matter - which interacts with itself and "normal" matter only through gravity - is the dominant form of matter in the universe. According to the popular "cold dark matter" theory, dark matter consists of mysterious particles left over from the dense early universe that were moving slowly when galaxies and galaxy clusters began to form. "The observed properties of NGC 4555 confirm that elliptical galaxies can posses dark matter halos of their own, regardless of their environment," said O'Sullivan. "This raises an important question: what determines whether elliptical galaxies have dark matter halos?" DSS Optical Image of NGC

  10. Cold intolerance

    MedlinePlus

    Some causes of cold intolerance are: Anemia Anorexia nervosa Blood vessel problems, such as Raynaud phenomenon Chronic severe illness General poor health Underactive thyroid ( hypothyroidism ) Problem with the hypothalamus (a part ...

  11. Effective theory of interacting dark energy

    SciTech Connect

    Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo; Langlois, David E-mail: langlois@apc.univ-paris7.fr E-mail: filippo.vernizzi@cea.fr

    2015-08-01

    We present a unifying treatment of dark energy and modified gravity that allows distinct conformal-disformal couplings of matter species to the gravitational sector. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities. We compute the equations of motion for background quantities and linear perturbations. We illustrate our formalism with two simple scenarios, where either cold dark matter or a relativistic fluid is nonminimally coupled. This extends previous studies of coupled dark energy to a much broader spectrum of gravitational theories.

  12. [Dark matter and dark energy of the universe].

    PubMed

    Aguilar Peris, José

    2005-01-01

    At the turn of the 20th Century, the Universe was thought to consist of our solar system, the Sun, planets, satellites and comets, floating under the Milky Way. The astronomers were ignorant of the existence of galaxies, clusters, quasars and black holes. Over the last ten years the Cosmology has made remarkable progress in our understanding of the composition of the Universe: 23 per cent is in an unknown form called dark matter; 73 per cent in another form called dark energy; 3 per cent is made of free hydrogen and helium atoms; 0.5 per cent makes up all the light we see in the night including the stars, clusters and superclusters; 0.3 per cent is in free neutrino particles; and finally, 0.03 per cent is in the heavier nuclei of which the Sun, the Earth and ourselves are made. In this work we study specially the dark matter and the dark energy. The first one appears to be attached to galaxies, and astronomers agree that it is cold, meaning that the particles that make up that matter are not moving fast. Very recently astronomers discovered that a tremendous amount of the so-cahled dark energy exists and that it is pushing and accelerating the expansion of the Universe. Should this expansion continue for another 14,000 million years, the sky will darken with only a handful of galaxies remaining visible.

  13. New astrophysical probes of dark matter

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu

    In my thesis, I present four studies to explore astrophysical methods for understanding dark matter properties. To understand the nature of dark matter, I explore a few unstable dark matter models that are invoked as ways to address apparent discrepancies between the predictions of standard cold dark matter and observations of small-scale galactic structure. My studies are aimed at developing independent large-scale constraints on these models. One of the model is a decaying dark matter model such that one dark matter particle decays into two relativistic non-interacting particles. In the second model, a dark matter particle decays into a less massive, stable dark matter particle with a recoil kick velocity Vk and a relativistic non-interacting particle. I consider two types of experiments: one is weak lensing cosmic shear with future or forthcoming surveys like Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST); the other one is Lyman-alpha forest spectrum, which has contemporary data from Sloan Digital Sky Survey (SDSS) and other observations. I found that large-scale structure growth is sensitive to the change of dark matter properties due to these decay processes, and they can provide competitive constraints comparing to other existing limits. On small scale, the gravitational interplay of baryon and dark matter can affect the clustering of dark matter. I examine adiabatic contraction (AC) models what are traditionally used to parametrize the dark matter response to the cooling of baryons by investigating a suite of numerical simulations. We found that the errors in AC reconstructions are correlated with baryonic physics and certain halo properties. Our results indicate that existing AC models need significant calibration in order to predicting realistic matter distribution.

  14. Dark matter

    PubMed Central

    Peebles, P. James E.

    2015-01-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  15. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia E-mail: laviniah@kth.se

    2015-12-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  16. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  17. Cosmological constraints on superconducting dark energy models

    NASA Astrophysics Data System (ADS)

    Keresztes, Zoltán; Gergely, László Á.; Harko, Tiberiu; Liang, Shi-Dong

    2015-12-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge-invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential V , is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In other words, dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively, are confronted with type IA supernovae and Hubble parameter data. In the electric case, a good fit is obtained along a narrow inclined stripe in the Ωm-ΩV parameter plane, which includes the Λ cold dark matter limit as the best fit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution. In the magnetic case the cosmological test selects either (i) parameter ranges of the superconducting dark energy allowing for the standard baryonic sector plus dark matter or (ii) a unified superconducting dark matter and dark energy model, additionally including only the baryonic sector.

  18. (Mainly) axion dark matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  19. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  20. Cold urticaria.

    PubMed

    Claudy, A

    2001-11-01

    Cold urticaria is one form of urticaria that may be associated with other forms of physical urticarias. Frequency is generally estimated at two or three per 100. The triggering effect of cold is found at history taking in most of the cases. The urticaria is usually superficial, and more rarely associated with deep and/or mucosal urticaria. The diagnosis is based on history taking and the ice cube test. An exhaustive search for an etiologic factor is often unfruitful, and the presence of a cryopathy should lead to a complete work-up. Therapy of cold urticaria may prove to be difficult. In patients with secondary cold urticaria, underlying disease must be treated in order to resolve the skin symptoms. H1-antihistamines can be used but the clinical responses are highly variable. Short-time treatment with low concentration corticosteroids suppresses the symptoms only partially and temporarily. In patients who do not respond to previous treatments, induction of cold tolerance may be proposed but the procedure is difficult to carry out in daily life over an extended period. Key word: cryoglobulins.

  1. Leaf-, panel- and latex-expressed sequenced tags from the rubber tree (Hevea brasiliensis) under cold-stressed and suboptimal growing conditions: the development of gene-targeted functional markers for stress response.

    PubMed

    Silva, Carla C; Mantello, Camila C; Campos, Tatiana; Souza, Livia M; Gonçalves, Paulo S; Souza, Anete P

    2014-01-01

    Hevea brasiliensis is a native species of the Amazon Basin of South America and the primary source of natural rubber worldwide. Due to the occurrence of South American Leaf Blight disease in this area, rubber plantations have been extended to suboptimal regions. Rubber tree breeding is time-consuming and expensive, but molecular markers can serve as a tool for early evaluation, thus reducing time and costs. In this work, we constructed six different cDNA libraries with the aim of developing gene-targeted molecular markers for the rubber tree. A total of 8,263 reads were assembled, generating 5,025 unigenes that were analyzed; 912 expressed sequence tags (ESTs) represented new transcripts, and two sequences were highly up-regulated by cold stress. These unigenes were scanned for microsatellite (SSR) regions and single nucleotide polymorphisms (SNPs). In total, 169 novel EST-SSR markers were developed; 138 loci were polymorphic in the rubber tree, and 98 % presented transferability to six other Hevea species. Locus duplication was observed in H. brasiliensis and other species. Additionally, 43 SNP markers in 13 sequences that showed similarity to proteins involved in stress response, latex biosynthesis and developmental processes were characterized. cDNA libraries are a rich source of SSR and SNP markers and enable the identification of new transcripts. The new markers developed here will be a valuable resource for linkage mapping, QTL identification and other studies in the rubber tree and can also be used to evaluate the genetic variability of other Hevea species, which are valuable assets in rubber tree breeding.

  2. Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2010-01-01

    Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…

  3. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  4. Bose-Einstein condensation of dark matter axions.

    PubMed

    Sikivie, P; Yang, Q

    2009-09-11

    We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.

  5. Cold Sores

    MedlinePlus

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area Some people have no symptoms from the ...

  6. Dynamical Dark Matter from strongly-coupled dark sectors

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks

    2017-02-01

    Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. Previous studies of this framework have focused on a particular class of DDM ensembles—motivated primarily by Kaluza-Klein towers in theories with extra dimensions—in which the density of dark states scales roughly as a polynomial of the mass. In this paper, by contrast, we study the properties of a different class of DDM ensembles in which the density of dark states grows exponentially with mass. Ensembles with this Hagedorn-like property arise naturally as the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector; they also arise naturally as the gauge-neutral bulk states of Type I string theories. We study the dynamical properties of such ensembles, and demonstrate that an appropriate DDM-like balancing between decay widths and abundances can emerge naturally—even with an exponentially rising density of states. We also study the effective equations of state for such ensembles, and investigate some of the model-independent observational constraints on such ensembles that follow directly from these equations of state. In general, we find that such constraints tend to introduce correlations between various properties of these DDM ensembles such as their associated mass scales, lifetimes, and abundance distributions. For example, we find that these constraints allow DDM ensembles with energy scales ranging from the GeV scale all the way to the Planck scale, but that the total present-day cosmological abundance of the dark sector must be spread across an increasing number of different states in the ensemble as these energy scales are dialed from the Planck scale down to the GeV scale. Numerous other correlations and constraints are also discussed.

  7. Light's Darkness

    ScienceCinema

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2016-07-12

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  8. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  9. New Efforts to Identify Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Could the dark matter in our universe be warm instead of cold? Recent observations have placed new constraints on the warm dark matter model.Whats the Deal with Cold/Warm/Hot Dark Matter?An example of cold dark matter: MACHOs, massive objects like black holes that are hiding in the halo of our galaxy. [Alain r]Nobody knows what dark matter is made of, but we have a few theories. The objects or particles that could make up dark matter fall into three broad categories cold, warm, and hot dark matter based on something called their free streaming length, or how far they moved due to random motions in the early universe.Neutrinos are an example of hot dark matter: very light particles with free streaming lengths much longer than the size of a typical galaxy. Cold dark matter could consist of objects like black holes or brown dwarfs, or particles like WIMPs all of which are very heavy and therefore have free streaming lengths much shorter than the size of a galaxy.Warm dark matter is whats in between: middle-mass particles with free streaming lengths roughly the size of a galaxy. There arent any known particles that fit this description, but there are theorized particles such as sterile neutrinos or gravitinos that do.Cumulative mass functions at z = 6 for different values of the warm dark matter particle mass mX. The shaded boxs on the left correspond to the observed number density of faint galaxies within different confidence levels. [Menci et al. 2016]Smoothing Out the UniverseThe widely favored model is lambda-CDM, in which cold dark matter makes up the missing matter in our universe. This model nicely explains much of what we observe, but it still has a few problems. The biggest issue with lambda-CDM is that it predicts that there should be many more small, dwarf galaxies than we observe.While this could just mean that we havent yet managed to see all the existing, faint dwarf galaxies, we should also consider alternative models the warm dark matter model chief

  10. Dark interactions and cosmological fine-tuning

    SciTech Connect

    Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E; Reis, Ribamar R R; Waga, Ioav E-mail: orca@if.ufrj.br E-mail: ribamar@if.ufrj.br

    2008-05-15

    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme, this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.

  11. Constraining the dark fluid

    SciTech Connect

    Kunz, Martin; Liddle, Andrew R.; Parkinson, David; Gao Changjun

    2009-10-15

    Cosmological observations are normally fit under the assumption that the dark sector can be decomposed into dark matter and dark energy components. However, as long as the probes remain purely gravitational, there is no unique decomposition and observations can only constrain a single dark fluid; this is known as the dark degeneracy. We use observations to directly constrain this dark fluid in a model-independent way, demonstrating, in particular, that the data cannot be fit by a dark fluid with a single constant equation of state. Parametrizing the dark fluid equation of state by a variety of polynomials in the scale factor a, we use current kinematical data to constrain the parameters. While the simplest interpretation of the dark fluid remains that it is comprised of separate dark matter and cosmological constant contributions, our results cover other model types including unified dark energy/matter scenarios.

  12. Origin of ΔN{sub eff} as a result of an interaction between dark radiation and dark matter

    SciTech Connect

    Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam E-mail: subinoy@physik.rwth-aachen.de

    2012-10-01

    Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decaying into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation.

  13. Non-adiabatic perturbations in Ricci dark energy model

    SciTech Connect

    Karwan, Khamphee; Thitapura, Thiti E-mail: nanodsci2523@hotmail.com

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included.

  14. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  15. Cold Urticaria

    PubMed Central

    Wasserman, Stephen I.; Soter, Nicholas A.; Center, David M.; Austen, K. Frank

    1977-01-01

    Sera were obtained from the venous effluents of cold-challenged arms of patients with idiopathic cold urticaria without plasma or serum cryoproteins; these sera exhibited increased neutrophil chemotactic activity without alterations of the complement system. A two- to fourfold augmentation of the base-line neutrophil chemotactic activity of serum from the immersed extremity began within 1 min, peaked at 2 min, and returned to base-line levels within 15 min, whereas there was no change in the serum chemotactic activity in the control arm. The augmented chemotactic activity in the serum specimens from the challenged arm of each patient appeared in a high molecular-weight region, as assessed by the difference in activity recovered after Sephadex G-200 gel filtration of the paired lesional and control specimens. Sequential purification of this high molecular-weight activity by anion- and cation-exchange chromatography revealed a single peak of activity at both steps. The partially purified material continued to exhibit a high molecular weight, being excluded on Sepharose 4B, and had a neutral isoelectric point. The partially purified material showed a preferential chemotactic activity for neutrophilic polymorphonuclear leukocytes, required a gradient for expression of this function, and exhibited a capacity to deactivate this cell type. This active principle, termed high molecular-weight neutrophil chemotactic factor, exhibited a time-course of release that could be superimposed upon that of histamine and the low molecular-weight eosinophil chemotactic factor and may represent another mast cell-derived mediator. PMID:874083

  16. Dark Skies are a Universal Resource: IYA Programs on Dark Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Bueter, C.; Pompea, S. M.; Berglund, K.; Mann, T.; Gay, P.; Crelin, B.; Collins, D.; Sparks, R.

    2008-05-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also health, ecology, safety, economics and energy conservation. Because of its relevance, "Dark Skies” is a theme of the US Node for the International Year of Astronomy (IYA). Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, the ASP session will immerse participants in hands-on, minds-on activities, events and resources on dark skies awareness. These include a planetarium show on DVD, podcasting, social networking, a digital photography contest, The Great Switch Out, Earth Hour, National Dark Skies Week, a traveling exhibit, a 6-minute video tutorial, Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights, and unaided-eye and digital-meter star counting programs like GLOBE at Night. The ASP "Dark Skies” session is offered to provide IYA dark skies-related programs to a variety of attendees. Participants include professional or amateur astronomers, education and public outreach professionals, science center/museum/planetarium staff and educators who want to lead activities involving dark skies awareness in conjunction with IYA. During the session, each participant will be given a package of educational materials on the various dark skies programs. We will provide the "know-how” and the means for session attendees to become community leaders in promoting these dark skies programs as public events at their home institutions during IYA. Participants will be able to jump-start their education programs through the use of well-developed instructional materials and kits sent later if they commit to leading IYA dark skies activities. For more information about the IYA Dark Skies theme, visit http://astronomy2009.us/darkskies/.

  17. Evidence for dark matter interactions in cosmological precision data?

    SciTech Connect

    Lesgourgues, Julien; Marques-Tavares, Gustavo; Schmaltz, Martin E-mail: gusmt@stanford.edu

    2016-02-01

    We study a two-parameter extension of the cosmological standard model ΛCDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid ΔN{sub fluid} and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak ''dark matter drag'' which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of σ{sub 8}. We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the χ-squared relative to ΛCDM by about 12, corresponding to a preference for non-zero dark matter drag by more than 3σ. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons.

  18. The dark matter distribution of M87 and NGC 1399

    NASA Technical Reports Server (NTRS)

    Tsai, John C.

    1993-01-01

    Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.

  19. Dark atoms with nuclear shell: A status review

    NASA Astrophysics Data System (ADS)

    Cudell, J. R.; Khlopov, M.

    2015-11-01

    Among dark atom scenarios, the simplest and most predictive one is that of O-helium (OHe) dark atoms, in which a leptonlike doubly charged particle O-- is bound to a primordial helium nucleus, and is the main constituent of dark matter. The OHe cosmology has several successes: it leads to a warmer-than-cold-dark matter scenario for large-scale-structure formation, it can provide an explanation for the excess in positron annihilation line in the galactic bulge and it may explain the results of direct dark matter searches. This model liberates the physics of dark atoms from many unknown features of new physics, but it is still not free from astrophysical uncertainties. It also demands a deeper understanding of the details of known nuclear and atomic physics, which are still somewhat unclear in the case of nuclear interacting "atomic" shells. These potential problems of the OHe scenario are also discussed.

  20. Dark Energy in the Dark Ages

    SciTech Connect

    Linder, Eric V.

    2006-04-11

    Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or"reasonable'" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of<~;;2percent of total energy density at z>> 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5percent of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently sigma 8, and the shape and evolution of the nonlinear mass power spectrum for z<2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z=0-1100.

  1. Scale of dark QCD

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Schwaller, Pedro

    2014-03-01

    Most of the mass of ordinary matter has its origin from quantum chromodynamics (QCD). A similar strong dynamics, dark QCD, could exist to explain the mass origin of dark matter. Using infrared fixed points of the two gauge couplings, we provide a dynamical mechanism that relates the dark QCD confinement scale to our QCD scale, and hence provides an explanation for comparable dark baryon and proton masses. Together with a mechanism that generates equal amounts of dark baryon and ordinary baryon asymmetries in the early Universe, the similarity of dark matter and ordinary matter energy densities can be naturally explained. For a large class of gauge group representations, the particles charged under both QCD and dark QCD, necessary ingredients for generating the infrared fixed points, are found to have masses at 1-2 TeV, which sets the scale for dark matter direct detection and novel collider signatures involving visible and dark jets.

  2. Chiral Dark Sector

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-01

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U (1 )D , which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U (1 )D quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U (1 )D gauge boson. Alternatively, if the dark pion stays light due to a specific U (1 )D charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  3. The Dark Energy Survey: More than dark energy - An overview

    DOE PAGES

    Abbott, T.

    2016-03-21

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae andmore » other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less

  4. The Dark Energy Survey: More than dark energy - An overview

    SciTech Connect

    Abbott, T.

    2016-03-21

    This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  5. Dark radiation constraints on mixed Axion/Neutralino dark matter

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Lessa, Andre E-mail: baer@nhn.ou.edu

    2013-04-01

    Recent analyses of CMB data combined with the measurement of BAO and H{sub 0} show that dark radiation — parametrized by the apparent number of additional neutrinos ΔN{sub eff} contributing to the cosmic expansion — is bounded from above by about ΔN{sub eff}∼<1.6 at 95% CL. We consider the mixed axion/neutralino cold dark matter scenario which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by hadronic axions with a concommitant axion(a)/saxion(s)/axino(ã) supermultiplet. Our new results include improved calculations of thermal axion and saxion production and include effects of saxion decay to axinos and axions. We show that the above bound on ΔN{sub eff} is easily satisfied if saxions are mainly thermally produced and m{sub LSP} < m{sub ã}∼dark matter are highly constrained by combined CMB, BBN and Xe-100 constraints. In particular, supersymmetric models with a standard overabundance of neutralino dark matter are excluded for all values of the Peccei-Quinn breaking scale. Next generation WIMP direct detection experiments may be able to discover or exclude mixed axion-neutralino CDM scenarios where s → aa is the dominant saxion decay mode.

  6. The Dark Energy Survey: more than dark energy - an overview

    NASA Astrophysics Data System (ADS)

    Dark Energy Survey Collaboration; Abbott, T.; Abdalla, F. B.; Aleksić, J.; Allam, S.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Blazek, J.; Bonnett, C.; Bridle, S.; Brooks, D.; Brunner, R. J.; Buckley-Geer, E.; Burke, D. L.; Caminha, G. B.; Capozzi, D.; Carlsen, J.; Carnero-Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Castander, F. J.; Clerkin, L.; Collett, T.; Conselice, C.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, T. M.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Etherington, J.; Evrard, A. E.; Fabbri, J.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Guarnieri, P.; Gutierrez, G.; Hartley, W.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Jouvel, S.; Kessler, R.; King, A.; Kirk, D.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Makler, M.; Manera, M.; Maraston, C.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Melchior, P.; Merson, A.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morice-Atkinson, X.; Naidoo, K.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Ostrovski, F.; Palmese, A.; Papadopoulos, A.; Peiris, H. V.; Peoples, J.; Percival, W. J.; Plazas, A. A.; Reed, S. L.; Refregier, A.; Romer, A. K.; Roodman, A.; Ross, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sako, M.; Sánchez, C.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Soumagnac, M.; Suchyta, E.; Sullivan, M.; Swanson, M.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Vieira, J. D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Wester, W.; Whiteway, L.; Wilcox, H.; Yanny, B.; Zhang, Y.; Zuntz, J.

    2016-08-01

    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  7. Falsification of dark energy by fluid mechanics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2011-11-01

    The 2011 Nobel Prize in Physics has been awarded for the discovery from observations of increased supernovae dimness interpreted as distance, so that the Universe expansion rate has changed from a rate decreasing since the big bang to one that is now increasing, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current stan- dard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts su- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.

  8. Secretly asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  9. Foreword: Dark energy and CMB

    NASA Astrophysics Data System (ADS)

    Dodelson, Scott; Huterer, Dragan

    2015-03-01

    Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy.

  10. Jovian Dark Spot

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A recently discovered black spot in Jupiter's clouds is darker than any feature ever before observed on the giant planet. The spot may be the result of a downward spiraling wind that blows away high clouds and reveals deeper, very dark cloud layers. These three panels depict the same area of Jupiter's atmosphere. A map of Jovian temperatures near 250 millibar pressure (top) panel is derived from the photopolarimeter-radiometer instrument on NASA's Galileo Jupiter orbiter. This map is compared with maps derived from images of the same area in visible light (middle panel)and thermal radiation sensitive to cloud-top temperatures (bottom panel).

    The single downward-pointing arrow in the top panel indicates the location of a warm area that corresponds to the position of a so-called 'black spot'(shown in the middle panel), a feature that is about a year old. Features this dark are rare on Jupiter. The bottom panel, sensitive to temperatures at Jupiter's cloud tops, shows this feature as a bright object, meaning that upper-level cold clouds are missing - allowing us to see deeper into Jupiter's warmer interior. The dark visible appearance of the feature than most likely represents the color of very deep clouds. The warm temperatures and cloud-free conditions imply that this feature is a region where dry upper-atmospheric gas is being forced to converge, is warmed up and then forced to descend, clearing out clouds. It is the opposite of wet, upwelling gas in areas such as Jupiter's Great Red Spot or white ovals. On the other hand, it is unlike the dry and relatively cloudless feature into which the Galileo probe descended in 1995, because that region had the same temperatures as its surroundings and did not appear nearly as dark as this new spot.

    The temperatures sampled by the photopolarimeter radiometer are near the top of Jupiter's troposphere, where wind motions control the atmosphere. The top row of arrows shows the location of temperature waves in a warm region

  11. Tying dark matter to baryons with self-interactions.

    PubMed

    Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo

    2014-07-11

    Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.

  12. Cough & Cold Medicine Abuse

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold ... Someone Quit? Avoiding DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ...

  13. Impeded Dark Matter

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-12-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario "Impeded Dark Matter". We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  14. Alternative to particle dark matter

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  15. Dark matter search project PICO-LON

    NASA Astrophysics Data System (ADS)

    Fushimi, K.; Ejiri, H.; Hazama, R.; Ikeda, H.; Imagawa, K.; Inoue, K.; Kanzaki, G.; Kozlov, A.; Orito, R.; Shima, T.; Takemoto, Y.; Teraoka, Y.; Umehara, S.; Yasuda, K.; Yoshida, S.; PICO-LON Collaboration

    2016-05-01

    The PICO-LON project aims at search for cold dark matter by means of highly radio-pure and large volume NaI(Tl) scintillator. The NaI powder was purified by chemical processing to remove lead isotopes and selecting a high purity graphite crucible. The concentrations of radioactive impurities of 226Ra and 228Th were effectively reduced to 58 ± 4 µBq/kg and 1.5 ± 1.9 µBq/kg, respectively. It should be remarked that the concentration of 210Pb, which is crucial for the sensitivity to dark matter, was reduced to 24 ± 2 µBq/kg. The total background rate at 10 keVee was as low as 8 keV-1kg-1day-1, which was sufficiently low to search for dark matter. Further purification of NaI(Tl) ingot and future prospect of PICO-LON project is discussed.

  16. Seeded hot dark matter models with inflation

    NASA Technical Reports Server (NTRS)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  17. Gravitational focusing of imperfect dark matter

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Ramazanov, Sabir

    2017-01-01

    Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from a collection of nonrelativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of imperfect dark matter passing near the Sun. This entails strong amplification of imperfect dark matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of cold dark matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the post-Newtonian parameter βPPN, we deduce a stringent constraint on the unique constant of the model.

  18. Sources and distributions of dark matter

    SciTech Connect

    Sikivie, P. |

    1995-12-31

    In the first section, the author tries to convey a sense of the variety of observational inputs that tell about the existence and the spatial distribution of dark matter in the universe. In the second section, he briefly reviews the four main dark matter candidates, taking note of each candidate`s status in the world of particle physics, its production in the early universe, its effect upon large scale structure formation and the means by which it may be detected. Section 3 concerns the energy spectrum of (cold) dark matter particles on earth as may be observed some day in a direct detection experiment. It is a brief account of work done in collaboration with J. Ipser and, more recently, with I. Tkachev and Y. Wang.

  19. Direct and indirect detection of dissipative dark matter

    SciTech Connect

    Fan, JiJi; Katz, Andrey; Shelton, Jessie E-mail: katz.andrey@gmail.com

    2014-06-01

    We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints.

  20. DarkSide search for dark matter

    SciTech Connect

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  1. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  2. Asymmetric dark matter

    SciTech Connect

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  3. Lorentz-violating dark matter

    NASA Astrophysics Data System (ADS)

    Mondragon, Antonio R.

    Observations from the 1930s until the present have established the existence of dark matter with an abundance that is much larger than that of luminous matter. Because none of the known particles of nature have the correct properties to be identified as the dark matter, various exotic candidates have been proposed. The neutralino of supersymmetric theories is the most promising example. Such cold dark matter candidates, however, lead to a conflict between the standard simulations of the evolution of cosmic structure and observations. Simulations predict excessive structure formation on small scales, including density cusps at the centers of galaxies, that is not observed. This conflict still persists in early 2007, and it has not yet been convincingly resolved by attempted explanations that invoke astrophysical phenomena, which would destroy or broaden all small scale structure. We have investigated another candidate that is perhaps more exotic: Lorentz-violating dark matter, which was originally motivated by an unconventional fundamental theory, but which in this dissertation is defined as matter which has a nonzero minimum velocity. Furthermore, the present investigation evolved into the broader goal of exploring the properties of Lorentz-violating matter and the astrophysical consequences-a subject which to our knowledge has not been previously studied. Our preliminary investigations indicated that this form of matter might have less tendency to form small-scale structure. These preliminary calculations certainly established that Lorentz-violating matter which always moves at an appreciable fraction of the speed of light will bind less strongly. However, the much more thorough set of studies reported here lead to the conclusion that, although the binding energy is reduced, the small-scale structure problem is not solved by Lorentz-violating dark matter. On the other hand, when we compare the predictions of Lorentz-violating dynamics with those of classical

  4. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales.

  5. Cold confusion

    SciTech Connect

    Chapline, G.

    1989-07-01

    On March 23 two chemists, Martin Fleischmann and Stanley Pons startled the world with a press conference at the University of Utah where they announced that they had achieved nuclear fusion at room temperatures. As evidence they cited the production of ''excess'' amounts of heat in an electrochemical apparatus and observation of neutron production. While the production of heat in a chemical apparatus is not in itself unusual the observation of neutrons is certainly extraordinary. As it turned out, though, careful measurements of the neutron production in electrochemical apparatus similar to that used by Fleischmann and Pons carried out at dozens of other laboratories has shown that the neutron production fails by many orders of magnitude to support the assertion by Fleischmann and Pons that their discovery represents a new and cheap source of fusion power. In particular, independent measurements of the neutron production rate suggest that the actual rate of fusion energy production probably does not exceed 1 trillionth of a watt. This paper discusses the feasibility that cold fusion is actually being achieved. 7 refs.

  6. Inhomogeneous dark energy

    SciTech Connect

    Chamseddine, Ali H.; Mukhanov, Viatcheslav E-mail: viatcheslav.Mukhanov@lmu.de

    2016-02-01

    We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure formation in the universe.

  7. Dark Fluid: A Unified Framework for Modified Newtonian Dynamics, Dark Matter, and Dark Energy

    NASA Astrophysics Data System (ADS)

    Zhao, HongSheng; Li, Baojiu

    2010-03-01

    Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and νΛ theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.

  8. DARK FLUID: A UNIFIED FRAMEWORK FOR MODIFIED NEWTONIAN DYNAMICS, DARK MATTER, AND DARK ENERGY

    SciTech Connect

    Zhao Hongsheng; Li Baojiu E-mail: b.li@damtp.cam.ac.u

    2010-03-20

    Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and nuLAMBDA theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.

  9. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  10. Holographic Dark Energy Density

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2011-06-01

    In this article we consider the cosmological model based on the holographic dark energy. We study dark energy density in Universe with arbitrary spatially curvature described by the Friedmann-Robertson-Walker metric. We use Chevallier-Polarski-Linder parametrization to specify dark energy density.

  11. Growing Pains (For Parents)

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Growing ... > For Parents > Growing Pains Print A A A What's in ...

  12. Cold energy

    SciTech Connect

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  13. The Dark Matter Problem

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2014-02-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  14. Dark microglia: Why are they dark?

    PubMed

    Bisht, Kanchan; Sharma, Kaushik; Lacoste, Baptiste; Tremblay, Marie-Ève

    2016-01-01

    Using transmission electron microscopy (TEM) we recently characterized a microglial phenotype that is induced by chronic stress, fractalkine receptor deficiency, aging, or Alzheimer disease pathology. These 'dark' microglia appear overly active compared with the normal microglia, reaching for synaptic clefts, and extensively engulfing pre-synaptic axon terminals and post-synaptic dendritic spines. From these findings we hypothesized that dark microglia could be specifically implicated in the pathological remodeling of neuronal circuits, which impairs learning, memory, and other essential cognitive functions. In the present addendum we further discuss about the possible causes of their dark appearance under TEM.

  15. Cold remedies (image)

    MedlinePlus

    Sore throat, cough, stuffy nose, sneezing, runny nose, fever, chills, and muscle aches are all symptoms associated with the common cold. Over-the-counter medicines for a cold only alleviate cold symptoms but do not shorten the duration of a cold. As always, ...

  16. DARK MATTER POWERED STARS: CONSTRAINTS FROM THE EXTRAGALACTIC BACKGROUND LIGHT

    SciTech Connect

    Maurer, A.; Raue, M.; Kneiske, T.; Horns, D.; Elsaesser, D.; Hauschildt, P. H.

    2012-02-01

    The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work, the possible contributions of dark matter powered stars (dark stars, DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to rule out some DS parameter sets.

  17. Future CMB cosmological constraints in a dark coupled universe

    SciTech Connect

    Martinelli, Matteo; Melchiorri, Alessandro; Honorez, Laura Lopez

    2010-05-15

    Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.

  18. Pulsar timing signal from ultralight scalar dark matter

    SciTech Connect

    Khmelnitsky, Andrei; Rubakov, Valery E-mail: rubakov@ms2.inr.ac.ru

    2014-02-01

    An ultralight free scalar field with mass around 10{sup −23}−10{sup −22} eV is a viable dark mater candidate, which can help to resolve some of the issues of the cold dark matter on sub-galactic scales. We consider the gravitational field of the galactic halo composed out of such dark matter. The scalar field has oscillating in time pressure, which induces oscillations of gravitational potential with amplitude of the order of 10{sup −15} and frequency in the nanohertz range. This frequency is in the range of pulsar timing array observations. We estimate the magnitude of the pulse arrival time residuals induced by the oscillating gravitational potential. We find that for a range of dark matter masses, the scalar field dark matter signal is comparable to the stochastic gravitational wave signal and can be detected by the planned SKA pulsar timing array experiment.

  19. Detection of supersymmetric dark matter.

    NASA Astrophysics Data System (ADS)

    Xinrui, Hou; Li, Xueqian; Xinhe, Meng; Zhijian, Tao

    1997-10-01

    A re-analysis of a heavy charged particle production event observed at the cloudy chamber of the Yunnan Cosmic Ray Station (YCRS) in 1972 indicates that the mysterious heavy particle may be identified as a supersymmetric (SUSY) particle produced by bombarding a neutral SUSY cosmic ray particle on a proton. Based on the assumption, following literature studies that the neutral SUSY particle which constitutes the main fraction of the cold dark matter is a scalar neutrino (sneutrino) or neutralino (photino), the authors evaluate the flux of such SUSY particles which gain sufficient energies via elastic scattering with charged cosmic particles on the way to an Earth detector and the capture rates in both the sneutrino and photino cases respectively. The errors appearing in the study are briefly discussed and this work may provide a basis of designing cosmic ray detectors to search for SUSY particles.

  20. The PICASSO Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Wichoski, Ubi

    2011-12-01

    The PICASSO experiment searches for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs) via their spin-dependent interactions with fluorine at SNOLAB, Sudbury—ON, Canada since 2002. The detection principle is based on the superheated droplet technique; the detectors consist of a gel matrix with millions of liquid droplets of superheated fluorocarbon (C4F10) dispersed in it. Recently, a new setup has been built and installed in the Ladder Lab area at SNOLAB. In the present phase of the experiment the Collaboration is running 4.5-litre detector modules with approximately 85 g of active mass per module. Here, we give an overview of the experiment and discuss the progress in background mitigation, in particular background discrimination in the PICASSO detectors.

  1. Enhanced tidal stripping of satellites in the galactic halo from dark matter self-interactions

    NASA Astrophysics Data System (ADS)

    Dooley, Gregory A.; Peter, Annika H. G.; Vogelsberger, Mark; Zavala, Jesús; Frebel, Anna

    2016-09-01

    We investigate the effects of self-interacting dark matter (SIDM) on the tidal stripping and evaporation of satellite galaxies in a Milky Way-like host. We use a suite of five zoom-in, dark-matter-only simulations, two with velocity-independent SIDM cross-sections, two with velocity-dependent SIDM cross-sections, and one cold dark matter (CDM) simulation for comparison. After carefully assigning stellar mass to satellites at infall, we find that stars are stripped at a higher rate in SIDM than in CDM. In contrast, the total bound dark matter mass-loss rate is minimally affected, with subhalo evaporation having negligible effects on satellites for viable SIDM models. Centrally located stars in SIDM haloes disperse out to larger radii as cores grow. Consequently, the half-light radius of satellites increases, stars become more vulnerable to tidal stripping, and the stellar mass function is suppressed. We find that the ratio of core radius to tidal radius accurately predicts the relative strength of enhanced SIDM stellar stripping. Velocity-independent SIDM models show a modest increase in the stellar stripping effect with satellite mass, whereas velocity-dependent SIDM models show a large increase in this effect towards lower masses, making observations of ultrafaint dwarfs prime targets for distinguishing between and constraining SIDM models. Due to small cores in the largest satellites of velocity-dependent SIDM, no identifiable imprint is left on the all-sky properties of the stellar halo. While our results focus on SIDM, the main physical mechanism of enhanced tidal stripping of stars apply similarly to satellites with cores formed via other means.

  2. A Look at the U.S. Cold Snap from NASA Infrared Imagery

    NASA Video Gallery

    This animation of AIRS imagery from NASA's Aqua satellite from Dec. 1 to 11 shows the movement of cold air over the U.S. Cooler temperatures appear in darker blue and warmer temperatures in dark or...

  3. Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case

    SciTech Connect

    Bettoni, Dario; Colombo, Mattia; Liberati, Stefano E-mail: mattia.colombo@studenti.unitn.it

    2014-02-01

    Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales.

  4. Observational effects of the early episodically dominating dark energy

    NASA Astrophysics Data System (ADS)

    Park, Chan-Gyung; Lee, Jae-heon; Hwang, Jai-chan; Noh, Hyerim

    2014-10-01

    We investigate the observational consequences of the early episodically dominating dark energy on the evolution of cosmological structures. For this aim, we introduce the minimally coupled scalar-field dark energy model with the Albrecht-Skordis potential, which allows a sudden ephemeral domination of a dark energy component during the radiation or early matter era. The conventional cosmological parameters in the presence of such an early dark energy are constrained with WMAP and Planck cosmic microwave background radiation data including other external data sets. It is shown that in the presence of such an early dark energy, the estimated cosmological parameters can deviate substantially from the currently known Λ cold dark matter (Λ CDM )-based parameters, with best-fit values differing by several percent for WMAP and by a percent level for Planck data. For the latter case, only a limited amount of dark energy with episodic nature is allowed since the Planck data strongly favor the Λ CDM model. Compared with the conventional dark energy model, the early dark energy dominating near the radiation-matter equality or at the early matter era results in the shorter cosmic age or the presence of tensor-type perturbation, respectively. Our analysis demonstrates that the alternative cosmological parameter estimation is allowed based on the same observations even in Einstein's gravity.

  5. Apparatus for growing crystals

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J. (Inventor); Witt, August F. (Inventor)

    1986-01-01

    An improved apparatus and method for growing crystals from a melt employing a heat pipe, consisting of one or more sections, each section serving to control temperature and thermal gradients in the crystal as it forms inside the pipe.

  6. How Your Baby Grows

    MedlinePlus

    ... Pregnancy > Prenatal care > Pregnancy week by week Pregnancy week by week Week by week Videos Swipe to advance Learn ... grows each week during pregnancy. Pick your week. Weeks 1-2 Conception (also called fertilization) usually happens ...

  7. The Growing Human Population.

    ERIC Educational Resources Information Center

    Keyfitz, Nathan

    1989-01-01

    Discusses the issue of human population. Illustrates the projections of the growing human population in terms of developed and less developed countries. Describes the family planning programs in several countries. Lists three references for further reading. (YP)

  8. Dark Forces and Light Dark Matter

    SciTech Connect

    Hooper, Dan; Weiner, Neal; Xue, Wei

    2012-09-01

    We consider a simple class of models in which the dark matter, X, is coupled to a new gauge boson, phi, with a relatively low mass (m_phi \\sim 100 MeV-3 GeV). Neither the dark matter nor the new gauge boson have tree-level couplings to the Standard Model. The dark matter in this model annihilates to phi pairs, and for a coupling of g_X \\sim 0.06 (m_X/10 GeV)^1/2 yields a thermal relic abundance consistent with the cosmological density of dark matter. The phi's produced in such annihilations decay through a small degree of kinetic mixing with the photon to combinations of Standard Model leptons and mesons. For dark matter with a mass of \\sim10 GeV, the shape of the resulting gamma-ray spectrum provides a good fit to that observed from the Galactic Center, and can also provide the very hard electron spectrum required to account for the observed synchrotron emission from the Milky Way's radio filaments. For kinetic mixing near the level naively expected from loop-suppressed operators (epsilon \\sim 10^{-4}), the dark matter is predicted to scatter elastically with protons with a cross section consistent with that required to accommodate the signals reported by DAMA/LIBRA, CoGeNT and CRESST-II.

  9. Growing America's Energy Future

    SciTech Connect

    2016-06-01

    The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to create a healthier environment for current and future generations.

  10. FDA Throws Cold Water on Whole Body Cryotherapy

    MedlinePlus

    ... html FDA Throws Cold Water on Whole Body Cryotherapy Exposure to ultra-low temperatures shows no benefits ... evidence that a growing trend called whole body cryotherapy is effective, but it does pose a number ...

  11. Investigation of the Strawberry Acute Cold Response through Transcriptome Sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated strawberry (Fragaria xananassa) is a valuable perennial crop, yet in most growing regions cold temperature stress can dramatically impinge on fresh fruit production. In the interest of long-term crop improvement it is important to understand the molecular response of strawberry to cold, a...

  12. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  13. Dark-matter QCD-axion searches.

    PubMed

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  14. Dark-matter QCD-axion searches

    PubMed Central

    Rosenberg, Leslie J

    2015-01-01

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and

  15. Dark Matter 2013

    NASA Astrophysics Data System (ADS)

    Schumann, Marc

    2014-10-01

    This article reviews the status of the exciting and fastly evolving field of dark matter research as of summer 2013, when it was discussed at the International Cosmic Ray Conference (ICRC) 2013 in Rio de Janeiro. It focuses on the three main avenues to detect weakly interacting massive particle (WIMP) dark matter: direct detection, indirect detection, and collider searches. The article is based on the dark matter rapporteur talk summarizing the presentations given at the conference, filling some gaps for completeness.

  16. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  17. Ultra-Cold Atoms on Optical Lattices

    ERIC Educational Resources Information Center

    Ghosh, Parag

    2009-01-01

    The field of ultra-cold atoms, since the achievement of Bose-Einstein Condensation (Anderson et al., 1995; Davis et al., 1995; Bradley et al., 1995), have seen an immensely growing interest over the past decade. With the creation of optical lattices, new possibilities of studying some of the widely used models in condensed matter have opened up.…

  18. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  19. Asymmetric Dark Matter and Dark Radiation

    SciTech Connect

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo E-mail: enfmarti@cern.ch E-mail: redondo@mppmu.mpg.de

    2012-07-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.

  20. Polytropic dark matter flows illuminate dark energy and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Spyrou, N. K.

    2015-04-01

    Currently, a large amount of data implies that the matter constituents of the cosmological dark sector might be collisional. An attractive feature of such a possibility is that, it can reconcile dark matter (DM) and dark energy (DE) in terms of a single component, accommodated in the context of a polytropic-DM fluid. In fact, polytropic processes in a DM fluid have been most successfully used in modeling dark galactic haloes, thus significantly improving the velocity dispersion profiles of galaxies. Motivated by such results, we explore the time evolution and the dynamical characteristics of a spatially-flat cosmological model, in which, in principle, there is no DE at all. Instead, in this model, the DM itself possesses some sort of fluidlike properties, i.e., the fundamental units of the Universe matter-energy content are the volume elements of a DM fluid, performing polytropic flows. In this case, together with all the other physical characteristics, we also take the energy of this fluid's internal motions into account as a source of the universal gravitational field. This form of energy can compensate for the extra energy, needed to compromise spatial flatness, namely, to justify that, today, the total energy density parameter is exactly unity. The polytropic cosmological model, depends on only one free parameter, the corresponding (polytropic) exponent, Γ. We find this model particularly interesting, because for Γ ≤ 0.541, without the need for either any exotic DE or the cosmological constant, the conventional pressure becomes negative enough so that the Universe accelerates its expansion at cosmological redshifts below a transition value. In fact, several physical reasons, e.g., the cosmological requirement for cold DM (CDM) and a positive velocity-of-sound square, impose further constraints on the value of Γ, which is eventually settled down to the range -0.089 < Γ ≤ 0. This cosmological model does not suffer either from the age problem or from the

  1. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  2. Analysis of cold worked holes for structural life extension

    NASA Technical Reports Server (NTRS)

    Wieland, David H.; Cutshall, Jon T.; Burnside, O. Hal; Cardinal, Joseph W.

    1994-01-01

    Cold working holes for improved fatigue life of fastener holes are widely used on aircraft. This paper presents methods used by the authors to determine the percent of cold working to be applied and to analyze fatigue crack growth of cold worked fastener holes. An elastic, perfectly-plastic analysis of a thick-walled tube is used to determine the stress field during the cold working process and the residual stress field after the process is completed. The results of the elastic/plastic analysis are used to determine the amount of cold working to apply to a hole. The residual stress field is then used to perform damage tolerance analysis of a crack growing out of a cold worked fastener hole. This analysis method is easily implemented in existing crack growth computer codes so that the cold worked holes can be used to extend the structural life of aircraft. Analytical results are compared to test data where appropriate.

  3. Plant adaptation to cold climates

    PubMed Central

    Körner, Christian

    2016-01-01

    In this short review, I will first summarize criteria by which environments can be considered “cold”, with plant stature (size, height above ground) playing a central role for the climate actually experienced. Plants adapted to such environments have to cope with both extremes and with gradual influences of low temperature. The first requires freezing resistance, which is tightly coupled to developmental state (phenology) and prehistory (acclimation). Gradual low temperature constraints affect the growth process (meristems) long before they affect photosynthetic carbon gain. Hence, plants growing in cold climates are commonly not carbon limited. PMID:27990251

  4. Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Burch, Benjamin P.

    The precise phase-space distribution and properties of Galactic dark matter necessary for its direct and indirect detection are currently unknown. Since the distributions of normal and dark matter in the Milky Way are coupled to each other as they both move in the same gravitational potential, constraints on the distribution and properties of dark matter can be derived by studying the distribution of visible matter in the Galaxy and making some general assumptions regarding the phase-space distribution of the dark matter. In this study, the visible components of the Galaxy have been comprehensively reviewed to create an axisymmetric model of the Galaxy that is consistent with the available observations, and the dark matter phase-space distribution is assumed to follow a lowered-isothermal form. Poisson's equations are then solved self-consistently to construct models of the spatial and velocity distribution of Galactic dark matter. The total gravitational potential from normal and dark matter are calculated and compared to the current observations of the rotation curve and to the radial velocity distributions of blue horizontal-branch and blue straggler stars. It is found that this analysis allows for a wide range of parameters for the dark matter. The implications for direct and indirect detection of dark matter are discussed in detail. In the appendices, two additional projects are presented. In Appendix A, the recent observations of the positron fraction and the total electron spectrum in cosmic rays are addressed by considering a nested leaky-box model for the propagation of cosmic rays in the Galaxy. This is found to obviate the need for exotic processes such as the annihilation or decay of dark matter to explain the recent observations. In Appendix B, we discuss a novel dark matter detector involving triggered cavitation in acoustic fields. The theory behind the detector is presented in detail, and we discuss the work than has been done to create a prototype

  5. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  6. Cold medicines and children

    MedlinePlus

    ... aspx . Accessed July 26, 2016. Cherry JD. The common cold. In: Cherry JD, Harrison GJ, Kaplan SL, Steinbach ... 2014:chap 7. Miller EK, Williams JV. The common cold. In: Kliegman RM, Stanton BF, St. Geme JW, ...

  7. Skin Reactions to Cold

    PubMed Central

    Talpash, Orest

    1976-01-01

    Although skin reactions to cold are seen surprisingly infrequently in Canada, it is important to manage them correctly when they do occur. Frostbite, cold urticarias, Raynaud's disease and phenomenon, and several miscellaneous changes are discussed. PMID:21308019

  8. Cold knife cone biopsy

    MedlinePlus

    ... biopsy; Pap smear - cone biopsy; HPV - cone biopsy; Human papilloma virus - cone biopsy; Cervix - cone biopsy; Colposcopy - cone biopsy Images Female reproductive anatomy Cold cone biopsy Cold cone removal References American ...

  9. Effects of tidal gravitational fields in clustering dark energy models

    NASA Astrophysics Data System (ADS)

    Pace, Francesco; Reischke, Robert; Meyer, Sven; Schäfer, Björn Malte

    2017-04-01

    We extend a previous work by Reischke et al. by studying the effects of tidal shear on clustering dark energy models within the framework of the extended spherical collapse model and using the Zel'dovich approximation. As in previous works on clustering dark energy, we assumed a vanishing effective sound speed describing the perturbations in dark energy models. To be self-consistent, our treatment is valid only on linear scales since we do not intend to introduce any heuristic models. This approach makes the linear overdensity δc mass dependent and similarly to the case of smooth dark energy, its effects are predominant at small masses and redshifts. Tidal shear has effects of the order of per cent or less, regardless of the model and preserves a well-known feature of clustering dark energy: When dark energy perturbations are included, the models resemble better the Lambda cold dark matter evolution of perturbations. We also showed that effects on the comoving number density of haloes are small and qualitatively and quantitatively in agreement with what were previously found for smooth dark energy models.

  10. Growing Old in Sweden.

    ERIC Educational Resources Information Center

    Berglind, Hans

    This document contains the bases of lectures delivered in Florida by a visiting Stockholm University sociology professor. The first chapter, "Growing Old in Sweden," includes information on the income, standard of living, and quality of services available to the elderly in that country. That information is presented within the changing…

  11. Growing into Leadership

    ERIC Educational Resources Information Center

    Alvy, Harvey; Robbins, Pam

    2005-01-01

    New school principals have the necessity to lead at the very time they are learning the ropes of their new jobs. Some essential themes are identified that can guide new principals into growing in their new leadership roles, which are presented and discussed.

  12. Growing through Literature.

    ERIC Educational Resources Information Center

    Thomas, Barbara J.

    "Growing through Literature" is a curriculum using Joan M. and Erik H. Erikson's theory of the Life Cycle as a structure for selecting and teaching literature to inner-city high school students at Brighton High School in Massachusetts. The program consists of four component parts: Journals, Selected Stories, Discussion, and…

  13. Growing Up with "1984."

    ERIC Educational Resources Information Center

    Franza, August

    1983-01-01

    Relates changing student reaction to George Orwell's "1984" over 20 years of teaching. Finds present high school students' acceptance of Orwell's bleak world vision both a sign of student honesty and a frightening indication of the growing reality of the book. (MM)

  14. GROWING SEEDS, TEACHER'S GUIDE.

    ERIC Educational Resources Information Center

    Elementary Science Study, Newton, MA.

    THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT, "GROWING SEEDS," IN WHICH SUCH BASIC SCIENCE SKILLS AND PROCESSES AS MEASUREMENT, OBSERVATION, AND HYPOTHESIS FORMATION ARE INTRODUCED THROUGH STUDENT ACTIVITIES INVOLVING SEEDS, GERMINATION, AND SEEDLING GROWTH. THE MATERIALS WERE DEVELOPED FOR USE IN…

  15. Families on the Grow.

    ERIC Educational Resources Information Center

    Lee, Irene K.; Phillips, Marjorie M.

    This correspondence course was designed to help parents better understand their growing children and themselves as parents. The introduction briefly sketches the importance of the family in child development. Each of the five illustrated lessons contains 7 to 12 pages on one aspect of family life. Each lesson contains a set of objectives, a…

  16. Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves.

    PubMed

    Gorsuch, Peter A; Pandey, Subedar; Atkin, Owen K

    2010-02-01

    To predict the effects of temperature changes on plant growth and performance, it is crucial to understand the impact of thermal history on leaf morphology, anatomy and physiology. Here, we document a comprehensive range of leaf phenotypes in 25/20 degrees C-grown Arabidopsis thaliana plants that were shifted to 5 degrees C for up to 2 months. When warm-grown, pre-existing (PE) leaves were exposed to cold, leaf thickness increased due to an increase in mesophyll cell size. Leaves that were entirely cold-developed (CD) were twice as thick (eight cell layers) as their warm-developed (WD) counterparts (six layers), and also had higher epidermal and stomatal cell densities. After 4 d of cold, PE leaves accumulated high levels of total non-structural carbohydrates (TNC). However, glucose and starch levels declined thereafter, and after 45 d in the cold, PE leaves exhibited similar TNC to CD leaves. A similar phenomenon was observed in delta(13)C and a range of photosynthetic parameters. In cold-treated PE leaves, an increase in respiration (R(dark)) with cold exposure time was evident when measured at 25 degrees C but not 5 degrees C. Cold acclimation was associated with a large increase in the ratio of leaf R(dark) to photosynthesis. The data highlight the importance of understanding developmental thermal history in determining individual phenotypic traits.

  17. Dark microglia: Why are they dark?

    PubMed Central

    Bisht, Kanchan; Sharma, Kaushik; Lacoste, Baptiste; Tremblay, Marie-Ève

    2016-01-01

    ABSTRACT Using transmission electron microscopy (TEM) we recently characterized a microglial phenotype that is induced by chronic stress, fractalkine receptor deficiency, aging, or Alzheimer disease pathology. These ‘dark’ microglia appear overly active compared with the normal microglia, reaching for synaptic clefts, and extensively engulfing pre-synaptic axon terminals and post-synaptic dendritic spines. From these findings we hypothesized that dark microglia could be specifically implicated in the pathological remodeling of neuronal circuits, which impairs learning, memory, and other essential cognitive functions. In the present addendum we further discuss about the possible causes of their dark appearance under TEM. PMID:28042375

  18. Cold dark matter searches at the Canfranc underground laboratory

    NASA Astrophysics Data System (ADS)

    Cebrián, S.; García, E.; Gonzalez, D.; Irastorza, I. G.; Morales, A.; Morales, J.; Ortiz, A.; Peruzzi, A.; Puimedon, J.; Sarsa, M. L.; Scopel, S.; Villar, J. A.

    2000-07-01

    An overview of the searches for weak interacting massive particles (WIMPs) through detection of their scattering off various target nuclei carried out in the Canfranc Tunnel Astroparticle Laboratory (at 675 and at 2450 metres of water equivalent (m.w.e.)) is given. The main experimental results both for conventional (COSME, IGEX and NaI-32) and for cryogenic detectors (ROSEBUD) are sketched, and a briefing on the forthcoming experiment ANAIS is also presented. The results of a solar axion search are also reported.

  19. Galaxy formation in an Omega = 1 cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Bardeen, James M.

    1986-01-01

    A model for galaxy formation is proposed which assumes that bright galaxies form where the primordial density fluctuations exceed a high threshold. Most of the mass in the universe is uncondensed or associated with low surface brightness galaxies. Physical mechanisms and predicitons for the galaxy-galaxy correlation function are discussed.

  20. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  1. Working the Dark Edges

    ERIC Educational Resources Information Center

    Weston, Anthony

    2014-01-01

    Environmentalism's wider and wilder possibilities today appear as regions of seeming darkness that bracket or frame acceptable environmental thinking. One of these barely-mentionable darknesses is outer space--the cosmos. Another is the inner and chthonic powers of the land and natural beings generally. This essay aims to bring these two kinds of…

  2. Dark Energy, or Worse

    ScienceCinema

    Professor Sean Carroll

    2016-07-12

    General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.

  3. Fingerprinting dark energy

    SciTech Connect

    Sapone, Domenico; Kunz, Martin

    2009-10-15

    Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar-field models) which is often generically called 'dark energy'. We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.

  4. Interacting vacuum energy in the dark sector

    SciTech Connect

    Chimento, L. P.; Carneiro, S.

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  5. Interacting vacuum energy in the dark sector

    NASA Astrophysics Data System (ADS)

    Chimento, L. P.; Carneiro, S.

    2015-03-01

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  6. The Dark Age of the universe.

    PubMed

    Miralda-Escudé, Jordi

    2003-06-20

    The Dark Age is the period between the time when the cosmic microwave background was emitted and the time when the evolution of structure in the universe led to the gravitational collapse of objects, in which the first stars were formed. The period of reionization started with the ionizing light from the first stars, and it ended when all the atoms in the intergalactic medium had been reionized. The most distant sources of light known at present are galaxies and quasars at redshift z congruent with 6, and their spectra indicate that the end of reionization was occurring just at that time. The Cold Dark Matter theory for structure formation predicts that the first sources formed much earlier.

  7. Exploring dark matter with Milky Way substructure.

    PubMed

    Kuhlen, Michael; Madau, Piero; Silk, Joseph

    2009-08-21

    The unambiguous detection of dark matter annihilation in our Galaxy would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a nonperturbative enhancement arising from a long-range attractive force. We applied the Sommerfeld correction to Via Lactea II, a high-resolution N-body simulation of a Milky Way-sized galaxy, to investigate the phase-space structure of the galactic halo. We found that the annihilation luminosity from kinematically cold substructure could be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from as many as several hundred dark clumps that should be detectable by the Fermi satellite.

  8. Morphological instability of a thermophoretically growing deposit

    NASA Technical Reports Server (NTRS)

    Castillo, Jose L.; Garcia-Ybarra, Pedro L.; Rosner, Daniel E.

    1992-01-01

    The stability of the planar interface of a structureless solid growing from a depositing component dilute in a carrier fluid is studied when the main solute transport mechanism is thermal (Soret) diffusion. A linear stability analysis, carried out in the limit of low growth Peclet number, leads to a dispersion relation which shows that the planar front is unstable either when the thermal diffusion factor of the condensing component is positive and the latent heat release is small or when the thermal diffusion factor is negative and the solid grows over a thermally-insulating substrate. Furthermore, the influence of interfacial energy effects and constitutional supersaturation in the vicinity of the moving interface is analyzed in the limit of very small Schmidt numbers (small solute Fickian diffusion). The analysis is relevant to physical vapor deposition of very massive species on cold surfaces, as in recent experiments of organic solid film growth under microgravity conditions.

  9. Macromolecular crystal growing system

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S. (Inventor); Herren, Blair J. (Inventor); Carter, Daniel C. (Inventor); Yost, Vaughn H. (Inventor); Bugg, Charles E. (Inventor); Delucas, Lawrence J. (Inventor); Suddath, Fred L. (Inventor)

    1991-01-01

    A macromolecular crystal growing system especially designed for growing crystals in the low gravity of space as well as the gravity of earth includes at least one tray assembly, a carrier assembly which receives the tray, and a refrigeration-incubation module in which the carrier assembly is received. The tray assembly includes a plurality of sealed chambers with a plastic syringe and a plug means for the double tip of the syringe provided therein. Ganging mechanisms operate the syringes and plugs simultaneously in a precise and smooth operation. Preferably, the tray assemblies are mounted on ball bearing slides for smooth operation in inserting and removing the tray assemblies into the carrier assembly. The plugging mechanism also includes a loading control mechanism. A mechanism for leaving a syringe unplugged is also provided.

  10. Non-virialized clusters for detection of dark energy-dark matter interaction

    NASA Astrophysics Data System (ADS)

    Le Delliou, M.; Marcondes, R. J. F.; Lima Neto, G. B.; Abdalla, E.

    2015-10-01

    The observation of galaxy and gas distributions, as well as cosmological simulations in a ΛCDM cold dark matter universe, suggests that clusters of galaxies are still accreting mass and are not expected to be in equilibrium. In this work, we investigate the possibility to evaluate the departure from virial equilibrium in order to detect, in that balance, effects from a dark matter-dark energy interaction. We continue, from previous works, using a simple model of interacting dark sector, the Layzer-Irvine equation for dynamical virial evolution, and employ optical observations in order to obtain the mass profiles through weak-lensing and X-ray observations giving the intracluster gas temperatures. Through a Monte Carlo method, we generate, for a set of clusters, measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium factors. We found a compounded interaction strength of -1.99^{+2.56}_{-16.00}, compatible with no interaction, but also a compounded rest virial ratio of -0.79 ± 0.13, which would entail a 2σ detection. We confirm quantitatively that clusters of galaxies are out of equilibrium but further investigation is needed to constrain a possible interaction in the dark sector.

  11. Growing up with Retinoblastoma

    ERIC Educational Resources Information Center

    Maley, Tom

    2005-01-01

    An account is given of growing up as a child blinded as a result of a cancer of the eye known as retinoblastoma. The role of his mother is brought out, variously as a source of objective knowledge, of one's personal worth, and of the worth of other people in one's community. The strengths and weaknesses of his first school in his home area and…

  12. Resurrection of neutrinos as dark matter

    SciTech Connect

    Schramm, D.N.

    1986-05-01

    It is shown that new observations of large scale structure in the universe (voids, foam, and large-scale velocity fields) are best understood if the dominant matter of the universe is in the form of massive (9eV less than or equal to m/sub nu/ less than or equal to 35 eV) neutrinos. Cold dark matter, even with biasing, seems unable to duplicate the combination of these observations (although a fine-tuned loophole with cold matter and percolated explosions may also marginally work.) The previous fatal problems of galaxy formation with neutrinos can be remedied by combining them with either cosmic strings or explosive galaxy formation. The former naturally gives the scale-free correlation function for galaxies, clusters, and superclusters, and gives large, but not necessarily spherical voids. The latter naturally gives spherical voids, but requires fine tuning and percolation to get the large scales and the scale-free correlation function. 39 refs.

  13. Significant gamma lines from inert Higgs dark matter.

    PubMed

    Gustafsson, Michael; Lundström, Erik; Bergström, Lars; Edsjö, Joakim

    2007-07-27

    One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite.

  14. Evolution of velocity dispersion along cold collisionless flows

    SciTech Connect

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.

  15. Evolution of velocity dispersion along cold collisionless flows

    DOE PAGES

    Banik, Nilanjan; Sikivie, Pierre

    2016-05-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results aremore » used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.« less

  16. Pseudoscalar portal dark matter

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Gori, Stefania; Lin, Tongyan; Wang, Lian-Tao

    2015-07-01

    A fermion dark matter candidate with a relic abundance set by annihilation through a pseudoscalar can evade constraints from direct detection experiments. We present simplified models that realize this fact by coupling a fermion dark sector to a two-Higgs doublet model. These models are generalizations of mixed bino-Higgsino dark matter in the minimal supersymmetric standard model, with more freedom in the couplings and scalar spectra. Annihilation near a pseudoscalar resonance allows a significant amount of parameter space for thermal relic dark matter compared to singlet-doublet dark matter, in which the fermions couple only to the standard model (SM) Higgs doublet. In a general two-Higgs doublet model, there is also freedom for the pseudoscalar to be relatively light and it is possible to obtain thermal relic dark matter candidates even below 100 GeV. In particular, we find ample room to obtain dark matter with mass around 50 GeV and fitting the Galactic center excess in gamma-rays. This region of parameter space can be probed by LHC searches for heavy pseudoscalars or electroweakinos, and possibly by other new collider signals.

  17. Testing the interaction between dark energy and dark matter with H(z) data

    NASA Astrophysics Data System (ADS)

    Yu, Pan; Li, Li; Shuo, Cao; Na-na, Pan; Yi, Zhang; Zi-xuan, Hu

    2016-04-01

    With the Markov Chain Monte Carlo (MCMC) method, we constrain an interactive dark energy model by combing the up-to-date observational data of Hubble parameter H(z) with the 7-year baryon acoustic oscillation (BAO) data, and the cosmic microwave background (CMB) data observed by the Planck satellite. Under the joint constraint of the three kinds of data, the best-fit values of the model parameters and their 1-σ errors are obtained as follows: the energy density Ωm =0.266-0.028+0.028 (1 σ) , the interaction factor γ =0.090-0.098+0.100 (1 σ) , the parameter of state equation of dark matter wX = -1.307-0.269+0.263 (1 σ) , and the Hubble Constant H0 =7420-4.56+4.66 (1 σ) , where the coupling parameter γ > 0 means that the energy is transferred from dark matter to dark energy, and the coincidence problem in the Lambda-Cold Dark Matter (ΛCDM) model is slightly alleviated in the 1σ range. For comparisons, we constrain the same model with the BAO+CMB observations and H(z) data separately. The results are as follows: (1) The H(z) data could put stricter constraint on the parameter γ than the BAO+CMB observations. (2) The ΛCDM model is best fitted, and the coupling parameter γ is correlated with parameters Ωm and H0. (3) The inconsistency of the constraint results of H0 between the local distance ladder measurements and the Planck observations can be alleviated after taking account of the interaction between dark energy and dark matter.

  18. Dark matter velocity dispersion effects on CMB and matter power spectra

    SciTech Connect

    Piattella, O.F.; Casarini, L.; Fabris, J.C.; Pacheco, J.A. de Freitas E-mail: luciano.casarini@cosmo-ufes.org E-mail: pacheco@oca.eu

    2016-02-01

    Effects of velocity dispersion of dark matter particles on the CMB TT power spectrum and on the matter linear power spectrum are investigated using a modified CAMB code. Cold dark matter originated from thermal equilibrium processes does not produce appreciable effects but this is not the case if particles have a non-thermal origin. A cut-off in the matter power spectrum at small scales, similar to that produced by warm dark matter or that produced in the late forming dark matter scenario, appears as a consequence of velocity dispersion effects, which act as a pressure perturbation.

  19. SBC Dark Current Measurement

    NASA Astrophysics Data System (ADS)

    Ogaz, Sara

    2013-10-01

    This takes a series of SBC dark measurements over a continuous period of about 6 hours {4 orbits}. The aim is to collect dark images during an extended SBC on-time. Earlier measurements indicate that the dark current increases with SBC on-time and may also be increasing with overall SBC use. The 6-hour time matches the longest time used by any observer. As with all SBC observations this needs continuous SAA free time.This program is executed once per cycle. The last exposures were taken in Mar 2013 under Program 13161.

  20. Dark matter in voids

    NASA Astrophysics Data System (ADS)

    Fong, Richard; Doroshkevich, Andrei G.; Turchaninov, Victor I.

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids'' or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.''

  1. Virialisation-induced curvature as a physical explanation for dark energy

    SciTech Connect

    Roukema, Boudewijn F.; Ostrowski, Jan J.; Buchert, Thomas E-mail: Jan.Ostrowski@astro.uni.torun.pl

    2013-10-01

    The geometry of the dark energy and cold dark matter dominated cosmological model (ΛCDM) is commonly assumed to be given by a Friedmann-Lemaître-Robertson-Walker (FLRW) metric, i.e. it assumes homogeneity in the comoving spatial section. The homogeneity assumption fails most strongly at (i) small distance scales and (ii) recent epochs, implying that the FLRW approximation is most likely to fail at these scales. We use the virialisation fraction to quantify (i) and (ii), which approximately coincide with each other on the observational past light cone. For increasing time, the virialisation fraction increases above 10% at about the same redshift ( ∼ 1–3) at which Ω{sub Λ} grows above 10% ( ≈ 1.8). Thus, instead of non-zero Ω{sub Λ}, we propose an approximate, general-relativistic correction to the matter-dominated (Ω{sub m}; = 1,Ω{sub Λ} = 0), homogeneous metric (Einstein-de Sitter, EdS). A low-redshift effective matter-density parameter of Ω{sub m}{sup eff}(0) = 0.26±0.05 is inferred. Over redshifts 0 < z < 3, the distance modulus of the virialisation-corrected EdS model approximately matches the ΛCDM distance modulus. This rough approximation assumes ''old physics'' (general relativity), not ''new physics''. Thus, pending more detailed calculations, we strengthen the claim that ''dark energy'' should be considered as an artefact of emerging average curvature in the void-dominated Universe, via a novel approach that quantifies the relation between virialisation and average curvature evolution.

  2. Non-Abelian dark matter and dark radiation

    NASA Astrophysics Data System (ADS)

    Buen-Abad, Manuel A.; Marques-Tavares, Gustavo; Schmaltz, Martin

    2015-07-01

    We propose a new class of dark matter models with unusual phenomenology. What is ordinary about our models is that dark matter particles are weakly interacting massive particles; they are weakly coupled to the standard model and have weak scale masses. What is unusual is that they come in multiplets of a new dark non-Abelian gauge group with milliweak coupling. The massless dark gluons of this dark gauge group contribute to the energy density of the Universe as a form of weakly self-interacting dark radiation. In this paper we explore the consequences of having (i) dark matter in multiplets, (ii) self-interacting dark radiation, and (iii) dark matter which is weakly coupled to dark radiation. We find that (i) dark matter cross sections are modified by multiplicity factors which have significant consequences for collider searches and indirect detection, and (ii) dark gluons have thermal abundances which affect the cosmic microwave background (CMB) as dark radiation. Unlike additional massless neutrino species the dark gluons are interacting and have vanishing viscosity and (iii) the coupling of dark radiation to dark matter represents a new mechanism for damping the large scale structure power spectrum. A combination of additional radiation and slightly damped structure is interesting because it can remove tensions between global Λ CDM fits from the CMB and direct measurements of the Hubble expansion rate (H0) and large scale structure (σ8).

  3. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-06

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  4. Climate change: is the dark Soay sheep endangered?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Mitchell, Duncan

    2009-12-23

    It was recently reported that the proportion of dark-coloured Soay sheep (Ovis aries) in the Hebrides has decreased, despite the fact that dark sheep tend to be larger than lighter sheep, and there exists a selective advantage to large body size. It was concluded that an apparent genetic linkage between loci for the coat colour polymorphism and loci with antagonistic effects on body size explained the decrease. Those results explain why the proportion of dark animals is not increasing, but not why it is decreasing. Between 1985 and 2005 there was a significant increase in mean ambient temperature near the islands. We suggest that, while in the past a dark coat has offset the metabolic costs of thermoregulation by absorbing solar radiation, the selective advantage of a dark coat may be waning as the climate warms in the North Atlantic. In parallel, Bergman's rule may be operating, reducing the selective advantage of large body size in the cold. Either or both of these mechanisms can explain the decrease in the proportion of dark-coloured larger sheep in this population in which smaller (and light-coloured) sheep should be favoured by their lower gross energy demand. If environmental effects are the cause of the decline, then we can expect the proportion of dark-coloured Soay sheep to decrease further.

  5. Composite dark matter from a model with composite Higgs boson

    SciTech Connect

    Khlopov, Maxim Yu.; Kouvaris, Chris

    2008-09-15

    In a previous paper [Phys. Rev. D77, 065002 (2008)], we showed how the minimal walking technicolor model can provide a composite dark matter candidate, by forming bound states between a -2 electrically charged techniparticle and a {sup 4}He{sup ++}. We studied the properties of these techni-O-helium tOHe 'atoms,' which behave as warmer dark matter rather than cold. In this paper, we extend our work on several different aspects. We study the possibility of a mixed scenario where both tOHe and bound states between +2 and -2 electrically charged techniparticles coexist in the dark matter density. We argue that these newly proposed bound states are solely made of techniparticles, although they behave as weakly interacting massive particles, due to their large elastic cross section with nuclei, can only account for a small percentage of the dark matter density. Therefore, we conclude that within the minimal walking technicolor model, composite dark matter should be mostly composed of tOHe. Moreover, in this paper, we put cosmological bounds in the masses of the techniparticles, if they compose the dark matter density. Finally, we propose within this setup, a possible explanation of the discrepancy between the DAMA/NaI and DAMA/LIBRA findings and the negative results of CDMS and other direct dark matter searches that imply nuclear recoil measurement, which should accompany ionization.

  6. Dark energy and the quietness of the local Hubble flow

    NASA Astrophysics Data System (ADS)

    Axenides, M.; Perivolaropoulos, L.

    2002-06-01

    The linearity and quietness of the local (<10 Mpc) Hubble flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM (cold dark matter) cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0) of dark energy obeying the time independent equation of state pX=wρX. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms~=40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and ΩX. Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow.

  7. Dragging force on galaxies due to streaming dark matter

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Miyoshi, Shigeru

    1990-01-01

    It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.

  8. Cold Osmotic Shock in Saccharomyces cerevisiae

    PubMed Central

    Patching, J. W.; Rose, A. H.

    1971-01-01

    Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201

  9. Understanding Dark Energy

    NASA Astrophysics Data System (ADS)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum

  10. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  11. The Dark Universe

    NASA Astrophysics Data System (ADS)

    Livio, Mario

    2010-04-01

    1. A brief history of dark matter Vera Rubin; 2. Microlensing towards the Magellanic Clouds Kailash Sahu; 3. Searching for galactic dark matter Harvey Richer; 4. Hot gas in clusters of galaxies and Omega Megan Donahue; 5. Tracking the Baryon density from the Big Bang to the present Gary Steigman; 6. Modified Newtonian dynamics and its implications Bob Sanders; 7. Cosmological parameters and quintessence from radio galaxies Ruth Daly and Eric Guerra; 8. The mass density of the Universe Neta Bahcall; 9. Growth of structure in the Universe John Peacock; 10. Cosmological implications of the most distant supernova (known) Adam Riess; 11. Dynamical probes of the Halo mass function Chris Kochanek; 12. Detection of gravitational waves from inflation Marc Kamionkowski and Andrew Jaffe; 13. Cosmological constant problems and their solution Alex Vilenkin; 14. Dark Matter and dark energy: a physicist's perspective Michael Dine.

  12. Ghost dark matter

    SciTech Connect

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Sugiyama, Naoshi; Mukohyama, Shinji E-mail: shu@a.phys.nagoya-u.ac.jp E-mail: naoshi@a.phys.nagoya-u.ac.jp

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality, and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.

  13. Is dark energy evolving?

    SciTech Connect

    Nair, Remya; Jhingan, Sanjay E-mail: sanjay.jhingan@gmail.com

    2013-02-01

    We look for evidence for the evolution in dark energy density by employing Principal Component Analysis (PCA). Distance redshift data from supernovae and baryon acoustic oscillations (BAO) along with WMAP7 distance priors are used to put constraints on curvature parameter Ω{sub k} and dark energy parameters. The data sets are consistent with a flat Universe. The constraints on the dark energy evolution parameters obtained from supernovae (including CMB distance priors) are consistent with a flat ΛCDM Universe. On the other hand, in the parameter estimates obtained from the addition of BAO data the second principal component, which characterize a non-constant contribution from dark energy, is non-zero at 1σ. This could be a systematic effect and future BAO data holds key to making more robust claims.

  14. Inflatable Dark Matter

    NASA Astrophysics Data System (ADS)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-01

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ˜MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  15. Dark matter detectors as dark photon helioscopes.

    PubMed

    An, Haipeng; Pospelov, Maxim; Pradler, Josef

    2013-07-26

    Light new particles with masses below 10 keV, often considered as a plausible extension of the standard model, will be emitted from the solar interior and can be detected on Earth with a variety of experimental tools. Here, we analyze the new "dark" vector state V, a massive vector boson mixed with the photon via an angle κ, that in the limit of the small mass mV has its emission spectrum strongly peaked at low energies. Thus, we utilize the constraints on the atomic ionization rate imposed by the results of the XENON10 experiment to set the limit on the parameters of this model: κ×mV<3×10(-12)  eV. This makes low-threshold dark matter experiments the most sensitive dark vector helioscopes, as our result not only improves current experimental bounds from other searches by several orders of magnitude but also surpasses even the most stringent astrophysical and cosmological limits in a seven-decade-wide interval of mV. We generalize this approach to other light exotic particles and set the most stringent direct constraints on "minicharged" particles.

  16. Galaxy halos and the nature of dark matter

    NASA Astrophysics Data System (ADS)

    Moore, Ben

    1995-07-01

    One of the few observational facts that we know about dark matter is that within about one tenth of the virial radius, the dark halos of some galaxies have density profiles which fall with the radius as ρ(r)~rn, where n~=0. Any successful dark matter candidate must be able to reproduce these observations. Cold dark matter (CDM) particles interact primarily by gravity and therefore cluster with no preferred scale, hence galaxy halos are predicted to have singular density profiles with approximately isothermal power law slopes on all scales (Filmore & Goldreich 1984, Bertschinger 1985). The theoretical predictions do not take account of the irregular merging and virialisation processes taking place during structure formation. Therefore, we must compare the observations with numerical N-body simulations which are ideally suited for this type of problem and have just begun to probe structure formation on these scales. The highest resolution simulations (Dubinski & Carlberg 1991, Warren et al. 1992, Carlberg 1993, Crone et al. 1994) produce halo density profiles which fall too steeply to match the data (Moore 1994, Flores & Primack 1994). Moreover, Crone et al. (1994) claim that after correcting for force softening the density profiles match the analytic predictions. If these results are confirmed by higher resolution studies then we can reject the hypothesis that the dark matter is a cold, dissipationless particle. However, there is some disagreement between the results of the above authors and the slightly lower resolution studies of Katz & White (1993) and Navarro, Frenk & White (1994).

  17. Dark Matter Astrophysics

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Kamionkowski, Marc; Sigurdson, Kris

    This chapter is intended to provide a brief pedagogical review of dark matter for the newcomer to the subject. We begin with a discussion of the astrophysical evidence for dark matter. The standard weakly interacting massive particle (WIMP) scenario—the motivation, particle models, and detection techniques—is then reviewed. We provide a brief sampling of some recent variations to the standard WIMP scenario, as well as some alternatives (axions and sterile neutrinos). Exercises are provided for the reader.

  18. The Local Dark Matter

    SciTech Connect

    Helfer, H.L.

    2005-10-21

    The observations of the extended rotation curves of some galaxies provide important constraints upon the nature of the local dark matter present in the halos of these galaxies. Using these constraints, one can show that the halo dark matter cannot be some population of conventional astronomical objects and (most probably) cannot be a population of exotic non-interacting particles. We suggest that the halos can be regarded as large spatial fluctuations in a classic scalar field.

  19. Simulations: The dark side

    NASA Astrophysics Data System (ADS)

    Frenkel, D.

    2013-01-01

    This paper discusses the Monte Carlo and Molecular Dynamics methods. Both methods are, in principle, simple. However, simple does not mean risk-free. In the literature, many of the pitfalls in the field are mentioned, but usually as a footnote --and these footnotes are scattered over many papers. The present paper focuses on the "dark side" of simulation: it is one big footnote. I should stress that "dark", in this context, has no negative moral implication. It just means: under-exposed.

  20. Growing plants on atoll soils

    SciTech Connect

    Stone, E L; Migvar, L; Robison, W L

    2000-02-16

    year. Except on the driest of atolls, air temperature and humidity range only within limits set by the surrounding sea. There are no cold seasons, no frosts, no cold soils, no dry winds, and no periodic plagues of insects or diseases moving from miles away. Problems of soil drainage or salinity are few and easily recognized. Nor are there problems with acid soils, soil crusting, or erosion that challenge cultivators in many other areas. On the contrary, some of the black soils at the center of wide islands rank with the best soils of Russia and the American Midwest, except for their shortage of potassium and the uncertainties of rainfall. Some of these atoll soils contain more total nitrogen than many of the world's most productive agricultural soils and, in some, the total phosphorus content is so high as to be almost unbelievable--two to five tons of the element per acre. Certainly, problems exist in growing plants on atolls. There are also some special concerns not encountered in other environments, such as the wind and salt spray near shore. The two major physical limitations, however, are inadequate rainfall in some years and in many places, and soil fertility limitations. The alkaline or ''limy'' make-up of atoll soils means that a few plant nutrients, especially iron, limit growth of many introduced plants, and this is difficult to correct. As elsewhere in the world, many--but not all--atoll soils lack enough nitrogen and/or phosphorus for high yield, and all lack sufficient potassium. There is no practical way of overcoming drought except by use of tolerant plants such as coconut (ni) and Pandanus (bob), plus collection and careful use of whatever water is available. There are opportunities to overcome nutritional limitations mentioned above, first, by intensive use of all organic debris and household wastes in small gardens and, second, by use of commercial fertilizers. Imported fertilizers are expensive, certainly, but much less so on a family basis than the

  1. Modeling the distribution of dark matter and its connection to galaxies

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan

    2016-06-01

    Despite the mysterious nature of dark matter and dark energy, the Lambda-Cold Dark Matter (LCDM) model provides a reasonably accurate description of the evolution of the cosmos and the distribution of galaxies. Today, we are set to tackle more specific and quantitative questions about the galaxy formation physics, the nature of dark matter, and the connection between the dark and the visible components. The answers to these questions are however elusive, because dark matter is not directly observable, and various unknowns lie between what we can observe and what we can calculate. Hence, mathematical models that bridge the observable and the calculable are essential for the study of modern cosmology. The aim of my thesis work is to improve existing models and also to construct new models for various aspects of the dark matter distribution, as dark matter structures the cosmic web and forms the nests of visible galaxies. Utilizing a series of cosmological dark matter simulations which span a wide dynamical range and a statistical sample of zoom-in simulations which focus on individual dark matter halos, we develop models for the spatial and velocity distribution of dark matter particles, the abundance of dark substructures, and the empirical connection between dark matter and galaxies. As more precise observational results become available, more accurate models are then required to test the consistency between these results and the LCDM predictions. For all the models we investigate, we find that the formation history of dark matter halos always plays a crucial role. Neglecting the halo formation history would result in systematic biases when we interpret various observational results, including dark matter direct detection experiments, the detection of dark substructures with strong-lensed systems, the large-scale spatial clustering of galaxies, and the abundance of dwarf galaxies. Rectifying this, our work will enable us to fully utilize the complementary power of

  2. Dark matter cores all the way down

    NASA Astrophysics Data System (ADS)

    Read, J. I.; Agertz, O.; Collins, M. L. M.

    2016-07-01

    We use high-resolution simulations of isolated dwarf galaxies to study the physics of dark matter cusp-core transformations at the edge of galaxy formation: M200 = 107-109 M⊙. We work at a resolution (˜4 pc minimum cell size; ˜250 M⊙ per particle) at which the impact from individual supernovae explosions can be resolved, becoming insensitive to even large changes in our numerical `sub-grid' parameters. We find that our dwarf galaxies give a remarkable match to the stellar light profile; star formation history; metallicity distribution function; and star/gas kinematics of isolated dwarf irregular galaxies. Our key result is that dark matter cores of size comparable to the stellar half-mass radius r1/2 always form if star formation proceeds for long enough. Cores fully form in less than 4 Gyr for the M200 = 108 M⊙ and ˜14 Gyr for the 109 M⊙ dwarf. We provide a convenient two parameter `CORENFW' fitting function that captures this dark matter core growth as a function of star formation time and the projected stellar half-mass radius. Our results have several implications: (i) we make a strong prediction that if Λcold dark matter is correct, then `pristine' dark matter cusps will be found either in systems that have truncated star formation and/or at radii r > r1/2; (ii) complete core formation lowers the projected velocity dispersion at r1/2 by a factor of ˜2, which is sufficient to fully explain the `too-big-to-fail problem'; and (iii) cored dwarfs will be much more susceptible to tides, leading to a dramatic scouring of the sub-halo mass function inside galaxies and groups.

  3. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. Fermi National Accelerator Lab., Batavia, IL )

    1993-06-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the [open quotes]standard model[close quotes] of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for [open quotes]new physics.[close quotes] The compelling candidates are a very light axion (10[sup [minus]6]--10[sup [minus]4] eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs.

  4. Dark matter: theoretical perspectives.

    PubMed Central

    Turner, M S

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. PMID:11607395

  5. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. |

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  6. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  7. Cold Strontium Ion Source for Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  8. Probing dark energy beyond z=2 with CODEX

    NASA Astrophysics Data System (ADS)

    Vielzeuf, P. E.; Martins, C. J. A. P.

    2012-04-01

    Precision measurements of nature’s fundamental couplings and a first measurement of the cosmological redshift drift are two of the key targets for future high-resolution ultrastable spectrographs such as CODEX. Being able to do both gives CODEX a unique advantage, allowing it to probe dynamical dark energy models (by measuring the behavior of their equation of state) deep in the matter era and thereby testing classes of models that would otherwise be difficult to distinguish from the standard lambda-cold dark matter paradigm. We illustrate this point with two simple case studies.

  9. [Cold-induced urticaria].

    PubMed

    Delorme, N; Drouet, M; Thibaudeau, A; Verret, J L

    2002-09-01

    Cold urticaria is characterized by the development of urticaria, usually superficial and/or angioedematous reaction after cold contact. It was found predominantly in young women. The diagnosis is based on the history and ice cube test. Patients with a negative ice cube test may have represented systemic cold urticaria (atypical acquired cold urticaria) induced by general body cooling. The pathogenesis is poorly understood. Cold urticaria can be classified into acquired and familial disorders, with an autosomal dominant inheritance. Idiopathic cold urticaria is most common type but the research of a cryopathy is necessary. Therapy is often difficult. It is essential that the patient be warned of the dangers of swimming in cold water because systemic hypotension can occur. H1 antihistamines can be used for treatment of cold urticaria but the clinical responses are highly variable. The combination with an H2 antagonists is more effective. Doxepin may be useful in the treatment. Leukotriene receptor antagonists may be a novel, promising drug entity. In patients who do not respond to previous treatments, induction of cold tolerance may be tried.

  10. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  11. Sleep to grow smart?

    PubMed

    Volk, Carina; Huber, Reto

    2015-01-01

    Sleep is undisputable an essential part of our life, if we do not sleep enough we feel the consequences the next day. The importance of sleep for healthy brain functioning has been well studied in adults, but less is known for the role of sleep in the paediatric age. Childhood and adolescence is a critical phase for brain development. The increased need for sleep during this developmental phase fosters the growing recognition for a central role of sleep during development. In this review we summarize the findings that demonstrate a close relationship between sleep and brain maturation, discuss the consequences of insufficient sleep during childhood and adolescence and outline initial attempts that have been made in order to improve sleep in this age range.

  12. Growing a market economy

    SciTech Connect

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view of society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.

  13. Dark Skies Awareness Programs for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.

  14. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis.

  15. The distribution of the dark matter in galaxies as the imprint of its Nature

    NASA Astrophysics Data System (ADS)

    Frigerio Martins, Christiane

    2009-03-01

    The standard framework within which cosmological measurements are confronted and interpreted nowadays, called Lambda Cold Dark Matter, presents a Universe dominated by unknown forms of energy and matter. My Thesis is devoted to investigate the distribution of dark matter in galaxies and addresses the fact that the local universe-the small objects that orbit galaxies and the galaxy cores-turns out to be a marvelous laboratory for examining the nature of dark matter and the fundamental physics involved in structure formation and evolution. I develop tests, based on mass modeling of rotation curves, for the validation of dark matter models on galactic scales. These tests have been applied in analyzing the phenomenology of the cusp vs core controversy, and the phenomenon of non-Keplerian rotation curves as modification of the laws of gravity. I further investigate the properties and scaling laws of dark matter halos. My conclusion is that galactic observations provide strong imprints on the nature of dark matter.

  16. Nonlinear evolution of dark matter subhalos and applications to warm dark matter

    SciTech Connect

    Pullen, Anthony R.; Moustakas, Leonidas A.; Benson, Andrew J.

    2014-09-01

    We describe the methodology to include nonlinear evolution, including tidal effects, in the computation of subhalo distribution properties in both cold (CDM) and warm (WDM) dark matter universes. Using semi-analytic modeling, we include effects from dynamical friction, tidal stripping, and tidal heating, allowing us to dynamically evolve the subhalo distribution. We calibrate our nonlinear evolution scheme to the CDM subhalo mass function in the Aquarius N-body simulation, producing a subhalo mass function within the range of simulations. We find tidal effects to be the dominant mechanism of nonlinear evolution in the subhalo population. Finally, we compute the subhalo mass function for m {sub χ} = 1.5 keV WDM including the effects of nonlinear evolution, and compare radial number densities and mass density profiles of subhalos in CDM and WDM models. We show that all three signatures differ between the two dark matter models, suggesting that probes of substructure may be able to differentiate between them.

  17. Substructure of fuzzy dark matter haloes

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.

    2017-02-01

    We derive the halo mass function (HMF) for fuzzy dark matter (FDM) by solving the excursion set problem explicitly with a mass-dependent barrier function, which has not been done before. We find that compared to the naive approach of the Sheth-Tormen HMF for FDM, our approach has a higher cutoff mass and the cutoff mass changes less strongly with redshifts. Using merger trees constructed with a modified version of the Lacey & Cole formalism that accounts for suppressed small-scale power and the scale-dependent growth of FDM haloes and the semi-analytic GALACTICUS code, we study the statistics of halo substructure including the effects from dynamical friction and tidal stripping. We find that if the dark matter is a mixture of cold dark matter (CDM) and FDM, there will be a suppression on the halo substructure on small scales which may be able to solve the missing satellites problem faced by the pure CDM model. The suppression becomes stronger with increasing FDM fraction or decreasing FDM mass. Thus, it may be used to constrain the FDM model.

  18. Levitating dark matter

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  19. Exercise in the Cold

    PubMed Central

    Fudge, Jessie

    2016-01-01

    Context: Hypothermia and frostbite injuries occur in cold weather activities and sporting events. Evidence Acquisition: A PubMed search was used to identify original research and review articles related to cold, frostbite, and hypothermia. Inclusion was based on their relevance to prevention and treatment of cold-related injuries in sports and outdoor activities. Dates of review articles were limited to those published after 2010. No date limit was set for the most recent consensus statements or original research. Study Design: Clinical review. Level of Evidence: Level 5. Results: Frostbite and hypothermia are well-documented entities with good prevention strategies and prehospital treatment recommendations that have changed very little with time. A layered approach to clothing is the best way to prevent injury and respond to weather changes. Each athlete, defined as a participant in a cold weather sport or activity, will respond to cold differently depending on anthropometric measurements and underlying medical risk factors. An understanding of wind-chill temperatures, wetness, and the weather forecast allows athletes and event coordinators to properly respond to changing weather conditions. At the first sign of a freezing cold injury, ensure warm, dry clothes and move to a protected environment. Conclusion: Cold injuries can be prevented, and cold weather activities are safe with proper education, preparation, and response to changing weather conditions or injury. PMID:26857732

  20. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  1. Cold-Weather Sports

    MedlinePlus

    ... Surgery? A Week of Healthy Breakfasts Shyness Cold-Weather Sports KidsHealth > For Teens > Cold-Weather Sports Print A A A What's in this ... Equipment Ahh, winter! Shorter days. Frigid temperatures. Foul weather. What better time to be outdoors? Winter sports ...

  2. Cold Sores (HSV-1)

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) A A A What's in this article? ... or around a person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't ...

  3. Chilling Out With Colds

    MedlinePlus

    ... Your head hurts. You don't have the energy to even get out of bed. And you can't breathe out of your nose. What's wrong? You may have a cold! Having a cold is the #1 reason kids visit the doctor and stay home from school. Kids can get six to ten ...

  4. Growing for different ends.

    PubMed

    Catts, Oron; Zurr, Ionat

    2014-11-01

    Tissue engineering and regenerative biology are usually discussed in relation to biomedical research and applications. However, hand in hand with developments of this field in the biomedical context, other approaches and uses for non-medical ends have been explored. There is a growing interest in exploring spin off tissue engineering and regenerative biology technologies in areas such as consumer products, art and design. This paper outlines developments regarding in vitro meat and leather, actuators and bio-mechanic interfaces, speculative design and contemporary artistic practices. The authors draw on their extensive experience of using tissue engineering for non-medical ends to speculate about what lead to these applications and their possible future development and uses. Avoiding utopian and dystopian postures and using the notion of the contestable, this paper also mentions some philosophical and ethical consideration stemming from the use of non-medical approaches to tissue constructs. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.

  5. Instability of supersonic cold streams feeding galaxies - I. Linear Kelvin-Helmholtz instability with body modes

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad

    2016-12-01

    Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.

  6. Isentropic analysis of polar cold air mass streams

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Kanno, Yuki

    2015-04-01

    1. Introduction A diagnostic method is presented of polar cold air mass streams defined below a threshold potential temperature. The isentropic threshold facilitates a Lagrangian view of the cold air mass streams from diabatic generation to disappearance. 2. Mass-weighted isentropic zonal mean (MIM) cold air streams In winter hemispheres, MIM's mass stream functions show a distinct extratropical direct (ETD) cell in addition to the Hadley cell. The mass stream functions have local maxima at around (280K, 45N) for NH winter and, around (280K, 50S) for SH winter. Thus, =280K may be appropriate to a threshold of the polar cold air mass for both hemispheres. The high-latitude downward motion indicates the diabatic generation of cold air mass, whereas the mid-latitude equatorward flow does its outbreak. The strength of equatorward flow is under significant control of wave-mean flow interactions. 3. Geographical distribution of the cold air mass streams in the NH winter In the NH winter, the polar cold air mass flux has two distinct mainstreams, hereafter called as East Asian (EA) stream and the North American (NA) stream. The former grows over the northern part of the Eurasian continent, turns down southeastward toward East Asia and disappears over the western North Pacific Ocean. The latter grows over the Arctic Ocean, flows toward the East Coast of North America and disappears over the western North Atlantic Ocean. These coincide well with main routes of cold surges. 4. Comparison between NH and SH winter streams The cold air mass streams in NH winter are more asymmetric than those in SH winter. The NH total cold air mass below =280K is about 1.5 times greater than the SH one. These come mainly from the topography and land-sea distribution. The mid-latitude mountains steer the cold air mass streams on the northern sides and enhance the residence time over its genesis region.

  7. Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory

    NASA Astrophysics Data System (ADS)

    2002-10-01

    has successfully distinguished dark matter from MOND. The researchers also found that the Chandra data fit predictions of the cold dark matter theories, according to which dark matter consists of slowly moving particles, which interact with each other and "normal" matter only through gravity. Other forms of dark matter, such as self-interacting dark matter, and cold molecular dark matter, are not consistent with the observation in that they require a dark matter halo that is too round or too flat, respectively. "Chandra's ability to precisely identify and locate the point-like sources contaminating the diffuse emission in the X-ray image was absolutely essential," said Buote. "Only then could we make accurate measurements of the shape and orientation of the X-ray image contours." The conclusion from the Chandra data that NGC 720 possesses a dark matter halo assumes that the hot gas cloud has not been unduly disturbed by collisions or mergers with other galaxies in the last 100 million years. The lack of evidence of such activity indicates that this assumption is valid. Chandra observed NGC 720, which is about 80 million light years from Earth, for 11 hours with the Advanced CCD Imaging Spectrometer (ACIS). Other members of the team include Tesla Jeltema and Claude Canizares of Massachusetts Institute of Technology (MIT) in Cambridge, and Gordon Garmire of Pennsylvania State University in University Park. Penn State and MIT developed the instrument for NASA. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  8. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-09

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  9. Dark chocolate exacerbates acne.

    PubMed

    Vongraviopap, Saivaree; Asawanonda, Pravit

    2016-05-01

    The effects of chocolate on acne exacerbations have recently been reevaluated. For so many years, it was thought that it had no role in worsening acne. To investigate whether 99% dark chocolate, when consumed in regular daily amounts, would cause acne to worsen in acne-prone male subjects, twenty-five acne prone male subjects were asked to consume 25 g of 99% dark chocolate daily for 4 weeks. Assessments which included Leeds revised acne scores as well as lesion counts took place weekly. Food frequency questionnaire was used, and daily activities were recorded. Statistically significant changes of acne scores and numbers of comedones and inflammatory papules were detected as early as 2 weeks into the study. At 4 weeks, the changes remained statistically significant compared to baseline. Dark chocolate when consumed in normal amounts for 4 weeks can exacerbate acne in male subjects with acne-prone skin.

  10. Big Questions: Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  11. Dark matter searches

    NASA Astrophysics Data System (ADS)

    Bettini, Alessandro

    These lectures begin with a brief survey of the astrophysical and cosmological evidence for dark matter. We then consider the three principal theoretically motivated types of dark matter, sterile neutrinos, axions and SUSY WIMPs. In chapter 4 we discuss the motivations for the so-called neutrino minimal standard model, nuMSM, an extension of the SM with three sterile neutrinos with masses similar to the charged fermions. In chapter 5 we briefly recall the strong CP problem of the SM and the solution proposed by Peccei and Quinn leading to the prediction of axions and of their characteristics. We then discuss the experimental status and perspectives. In chapter 6 we assume that the reader to be acquainted with the theoretical motivations for SUSY and move directly to the direct search for dark matter and the description of the principal detector techniques: scintillators, noble fluids and bolometers. We conclude with an outlook on the future perspectives.

  12. Nearly Supersymmetric Dark Atoms

    SciTech Connect

    Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  13. Tunguska dark matter ball

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-04-01

    It is suggested that the Tunguska event in June 1908 was due to a cm-large ball of a condensate of bound states of 6 top and 6 antitop quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  14. Nearly Supersymmetric Dark Atoms

    DOE PAGES

    Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; ...

    2011-01-01

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models, supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed, and several benchmarkmore » models are described. General features of nonrelativistic supersymmetric bound states are emphasized.« less

  15. Does Dark Matter Exist?

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.; Kosowsky, A.

    The success of the ΛCDM model on large scales does not extend down to galaxy scales. We list a dozen problems of the dark matter hypothesis, some of which arise in specific models for the formation of structure in the universe, while others are generic and require fine tuning in any dark matter theory. Modifications to the theory, such as adding properties to the DM particles beyond gravitational interactions, or simply a better understanding of the physics of galaxy formation, may resolve some problems, but a number of conspiracies and correlations are unlikely to yield to this approach. The alternative is that mass discrepancies result from of a non-Newtonian law of gravity, a hypothesis which avoids many of the more intractable problems of dark matter. A modified law of gravity is not without formidable difficulties of its own, but it is no longer obvious that they are any more daunting than those facing DM.

  16. Dark matter candidates

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.

  17. Dark Energy. What the ...?

    SciTech Connect

    Wechsler, Risa

    2007-10-30

    What is the Universe made of? This question has been asked as long as humans have been questioning, and astronomers and physicists are finally converging on an answer. The picture which has emerged from numerous complementary observations over the past decade is a surprising one: most of the matter in the Universe isn't visible, and most of the Universe isn't even made of matter. In this talk, I will explain what the rest of this stuff, known as 'Dark Energy' is, how it is related to the so-called 'Dark Matter', how it impacts the evolution of the Universe, and how we can study the dark universe using observations of light from current and future telescopes.

  18. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-01

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  19. An MCMC fitting method for triaxial dark matter haloes

    NASA Astrophysics Data System (ADS)

    Corless, Virginia L.; King, Lindsay J.

    2008-11-01

    Measuring the 3D distribution of mass on galaxy cluster scales is a crucial test of the Λ cold dark matter (ΛCDM) model, providing constraints on the behaviour of dark matter. Recent work investigating mass distributions of individual galaxy clusters (e.g. Abell 1689) using weak and strong gravitational lensing has revealed potential inconsistencies between the predictions of structure formation models relating halo mass to concentration and those relationships as measured in massive clusters. However, such analyses employ simple spherical halo models while a growing body of work indicates that triaxial 3D halo structure is both common and important in parameter estimates. Though lensing is sensitive only to 2D projected structure and is thus incapable of independently constraining 3D models, the very strong assumptions about the symmetry of the lensing halo implied with circular or perturbative elliptical Navarro, Frenk & White (NFW) models are not physically motivated and lead to incorrect parameter estimates with significantly underestimated error bars. We here introduce a Markov Chain Monte Carlo (MCMC) method to fit fully triaxial models to weak lensing data that gives parameter and error estimates that fully incorporate the true uncertainty present in nature. Using weak lensing data alone, the fits are sensitive to the Bayesian priors on axis ratio; we explore the impact of various general and physically motivated priors, and emphasize the need for future work combining lensing data with other data types to fully constrain the 3D structure of galaxy clusters. Applying the MCMC triaxial fitting method to a population of NFW triaxial lenses drawn from the shape distribution of structure formation simulations, we find that including triaxiality cannot explain a population of massive, highly concentrated clusters within the framework of ΛCDM, but easily explains rare cases of apparently massive, highly concentrated, very efficient lensing clusters. Our MCMC

  20. A Newly Forming Cold Flow Protogalactic Disk, a Signature of Cold Accretion from the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan

    2016-06-01

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool (T ˜ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Lyα emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous (R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 1012 M ⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  1. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  2. Cosmological implications of the dark matter equation of state

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Li, Hang; Wu, Yabo; Lu, Jianbo

    In this paper, we study a model which is composed of the cosmological constant and dark matter with nonzero equation of state parameter, which could be called as ΛwDM. In the synchronous gauge, we obtain the perturbation equations of dark matter, and deduce the evolution equations of growth factor about the dark matter and baryons. Based on the Markov Chain Monte Carlo (MCMC) method, we constrain this model by the recently available cosmic observations which include cosmic microwave background (CMB) radiation, baryon acoustic oscillation (BAO), type Ia supernovae (SNIa) and fσ8(z) data points from redshift-space distortion (RSD). The results present a tighter constraint on the model than the case without fσ8(z) data. In 3σ regions, we find the dark matter equation of state parameter wdm = 0.00011‑0.00070‑0.00135‑0.00178+0.00069+0.00134+0.00179. The currently available cosmic observations do not favor the nonzero dark matter equation of state parameter, no deviation from the lambda cold dark matter (ΛCDM) model is found in 1σ region.

  3. Cosmological bounds on dark-matter-neutrino interactions

    SciTech Connect

    Mangano, Gianpiero; Melchiorri, Alessandro; Serra, Paolo; Cooray, Asantha; Kamionkowski, Marc

    2006-08-15

    We investigate the cosmological effects of a neutrino interaction with cold dark-matter. We postulate a neutrino that interacts with a ''neutrino-interacting dark-matter'' (NIDM) particle with an elastic-scattering cross section that either decreases with temperature as T{sup 2} or remains constant with temperature. The neutrino-dark-matter interaction results in a neutrino-dark-matter fluid with pressure, and this pressure results in diffusion-damped oscillations in the matter power spectrum, analogous to the acoustic oscillations in the baryon-photon fluid. We discuss the bounds from the Sloan Digital Sky Survey on the NIDM opacity (ratio of cross section to NIDM-particle mass) and compare with the constraint from observation of neutrinos from supernova 1987A. If only a fraction of the dark matter interacts with neutrinos, then NIDM oscillations may affect current cosmological constraints from measurements of galaxy clustering. We discuss how detection of NIDM oscillations would suggest a particle-antiparticle asymmetry in the dark-matter sector.

  4. Agegraphic dark energy: growth index and cosmological implications

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Basilakos, S.; Mehrabi, A.; Davari, Z.; Rezaei, M.

    2017-01-01

    We study the main cosmological properties of the agegraphic dark energy model at the expansion and perturbation levels. Initially, using the latest cosmological data, we implement a joint likelihood analysis in order to constrain the cosmological parameters. Then, we test the performance of the agegraphic dark energy model at the perturbation level and we define its difference from the usual Lambda cold dark matter (ΛCDM) model. Within this context, we verify that the growth index of matter fluctuations depends on the choice of the considered agegraphic dark energy (homogeneous or clustered). In particular, assuming a homogeneous agegraphic dark energy, we find, for the first time, that the asymptotic value of the growth index is γ ≈ 5/9, which is close to that of the usual Λ cosmology, γ(Λ) ≈ 6/11. Finally, if the distribution of dark energy is clustered, then we obtain γ ≈ 1/2 which is ˜8 per cent smaller than that of the ΛCDM model.

  5. The prolate dark matter halo of the Andromeda galaxy

    SciTech Connect

    Hayashi, Kohei; Chiba, Masashi E-mail: chiba@astr.tohoku.ac.jp

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  6. Dark-energy thermodynamic models

    SciTech Connect

    Besprosvany, Jaime; Izquierdo, German

    2010-12-07

    We study cosmological consequences of dark-energy thermodynamic models. The assumption that dark energy is conformed of quanta, and an extensivity argument generalize its equation of state. This implies that dark energy and another key component exchange energy. The energy densities of dark energy and the other component then tend asymptotically to a constant, thus explaining the coincidence of dark matter and dark energy today. On the other hand, a model of non-relativistic particles in a Bose-Einstein condensate, with a short-range attractive interaction, produces acceleration. It is shown that the phantom-acceleration regime, at the beginning of the universe, solves the horizon problem.

  7. How Do Galaxies Grow?

    NASA Astrophysics Data System (ADS)

    2008-08-01

    Astronomers have caught multiple massive galaxies in the act of merging about 4 billion years ago. This discovery, made possible by combining the power of the best ground- and space-based telescopes, uniquely supports the favoured theory of how galaxies form. ESO PR Photo 24/08 ESO PR Photo 24/08 Merging Galaxies in Groups How do galaxies form? The most widely accepted answer to this fundamental question is the model of 'hierarchical formation', a step-wise process in which small galaxies merge to build larger ones. One can think of the galaxies forming in a similar way to how streams merge to form rivers, and how these rivers, in turn, merge to form an even larger river. This theoretical model predicts that massive galaxies grow through many merging events in their lifetime. But when did their cosmological growth spurts finish? When did the most massive galaxies get most of their mass? To answer these questions, astronomers study massive galaxies in clusters, the cosmological equivalent of cities filled with galaxies. "Whether the brightest galaxies in clusters grew substantially in the last few billion years is intensely debated. Our observations show that in this time, these galaxies have increased their mass by 50%," says Kim-Vy Tran from the University of Zürich, Switzerland, who led the research. The astronomers made use of a large ensemble of telescopes and instruments, including ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, to study in great detail galaxies located 4 billion light-years away. These galaxies lie in an extraordinary system made of four galaxy groups that will assemble into a cluster. In particular, the team took images with VIMOS and spectra with FORS2, both instruments on the VLT. From these and other observations, the astronomers could identify a total of 198 galaxies belonging to these four groups. The brightest galaxies in each group contain between 100 and 1000 billion of stars, a property that makes them comparable

  8. Big Mysteries: Dark Energy

    SciTech Connect

    Lincoln, Don

    2014-04-15

    Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.

  9. Big Mysteries: Dark Energy

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.

  10. The Dark Energy Survey

    SciTech Connect

    Flaugher, Brenna; /Fermilab

    2004-11-01

    Dark Energy is the dominant constituent of the universe and they have little understanding of it. They describe a new project aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of {approx} 5%, with four separate techniques. The survey will image 5000 deg{sup 2} in the southern sky and collect 300 million galaxies, 30,000 galaxy clusters, and 2000 Type Ia supernovae. The survey will be carried out using a new 3 deg{sup 2} mosaic camera mounted at the prime focus of the 4m Blanco telescope at CTIO.

  11. Integrated Sachs-Wolfe effect in a quintessence cosmological model: Including anisotropic stress of dark energy

    SciTech Connect

    Wang, Y. T.; Xu, L. X.; Gui, Y. X.

    2010-10-15

    In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the {Lambda}CDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex{sub s}{sup 2}) and that of {delta}{sub de}/{delta}{sub m} with the variation of c-circumflex{sub s}{sup 2}.

  12. Early-matter-like dark energy and the cosmic microwave background

    SciTech Connect

    Aurich, R.; Lustig, S. E-mail: sven.lustig@uni-ulm.de

    2016-01-01

    Early-matter-like dark energy is defined as a dark energy component whose equation of state approaches that of cold dark matter (CDM) at early times. Such a component is an ingredient of unified dark matter (UDM) models, which unify the cold dark matter and the cosmological constant of the ΛCDM concordance model into a single dark fluid. Power series expansions in conformal time of the perturbations of the various components for a model with early-matter-like dark energy are provided. They allow the calculation of the cosmic microwave background (CMB) anisotropy from the primordial initial values of the perturbations. For a phenomenological UDM model, which agrees with the observations of the local Universe, the CMB anisotropy is computed and compared with the CMB data. It is found that a match to the CMB observations is possible if the so-called effective velocity of sound c{sub eff} of the early-matter-like dark energy component is very close to zero. The modifications on the CMB temperature and polarization power spectra caused by varying the effective velocity of sound are studied.

  13. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence

  14. Dark Energy and The Dark Matter Relic Abundance

    SciTech Connect

    Rosati, Francesca

    2004-11-17

    Two mechanisms by which the quintessence scalar could enhance the relic abundance of dark matter particles are discussed. These effects can have an impact on supersymmetric candidates for dark matter.

  15. Dark energy and dark matter from primordial QGP

    SciTech Connect

    Vaidya, Vaishali Upadhyaya, G. K.

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  16. Dark energy and dark matter from primordial QGP

    NASA Astrophysics Data System (ADS)

    Vaidya, Vaishali; Upadhyaya, G. K.

    2015-07-01

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  17. Evidence for interacting dark energy from BOSS

    NASA Astrophysics Data System (ADS)

    Ferreira, Elisa G. M.; Quintin, Jerome; Costa, André A.; Abdalla, E.; Wang, Bin

    2017-02-01

    The result presented by the BOSS-SDSS Collaboration measuring the baryon acoustic oscillations of the Lyman-alpha forest from high-redshift quasars indicates a 2.5 σ departure from the standard Λ -cold-dark-matter model. This is the first time that the evolution of dark energy at high redshifts has been measured, and the current results cannot be explained by simple generalizations of the cosmological constant. We show here that a simple phenomenological interaction in the dark sector provides a good explanation for this deviation, naturally accommodating the Hubble parameter obtained by BOSS, H (z =2.34 )=222 ±7 km s-1 Mpc-1 . By performing a global fit of the parameters with the inclusion of this new data set together with the Planck data for the interacting model, we are able to show that some interacting models have constraints for H (2.34 ) and DA(2.34 ) that are compatible with the ones obtained by the BOSS Collaboration, showing a better concordance than Λ CDM . We also show that the interacting models that have a small positive coupling constant, which helps alleviate the coincidence problem, are compatible with the cosmological observations. Adding the likelihood of these new baryon acoustic oscillations data shows an improvement in the global fit, although it is not statistically significant. The coupling constant could not be fully constrained by the data sets used, but the dark energy equation of state shows a slight preference for a value different from a cosmological constant.

  18. The scalar singlet-triplet dark matter model

    SciTech Connect

    Fischer, O.; Van der Bij, J.J. E-mail: vdbij@physik.uni-freiburg.de

    2014-01-01

    We consider a model for cold dark matter, which combines a real scalar singlet and a real scalar SU(2){sub L} triplet field, both of which are residing in the odd representation of a global Z{sub 2} symmetry. The parameter space of the model is constrained by the inferred dark matter abundance from the WMAP and Planck data, the most recent results from the direct dark matter search experiment LUX, the Z boson decay width from LEP-I and perturbativity of the coupling parameters. The phenomenology of the remaining parameter space is studied. We find that the model allows for DM masses near the electroweak scale and a variety of decay scenarios.

  19. Cold subcutaneous abscesses.

    PubMed Central

    Jackson, R.; Stephens, L.; Kelly, A. P.

    1990-01-01

    Cold abscesses are defined as having no associated erythema, heat, or tenderness. They may be present in immunodeficiency disorders, deep mycoses, and other infectious diseases. As there is a dearth information on this subject in the dermatology, surgery, and infectious disease literature, we present a case of cold abscesses secondary to coccidioidomycosis and discuss the possible role of humoral immunity, cell-mediated immunity, prostaglandins, T cells, and other mediators in cold abscess pathogenesis. In addition, therapeutic guidelines for abscesses are reviewed. Images Figure 1 Figure 2 PMID:2280425

  20. Miniature cold gas thrusters

    NASA Astrophysics Data System (ADS)

    Bzibziak, R. J., Sr.

    1992-07-01

    Cold gas thrusters provide a safe, inexpensive, lightweight and reliable means of propulsive control for small satellites, projectiles and maneuvering control systems. Moog Inc. has designed and developed a family of miniature cold gas thrusters for use on Strategic Defense Iniative flight simulation experiments, sounding rockets, small satellite applications, astronaut control systems, and close proximity maneuvering systems for Space System. Construction features such as coil assembly, core assembly, armature assembly, external housing and valve body are discussed. The design approach, performance characteristics and functional description of cold gas thrusters designed for various applications are presented.

  1. Dark-field competition

    NASA Astrophysics Data System (ADS)

    Baumbach, Christoph; mcissbc

    2014-04-01

    In reply to the physicsworld.com news story “Dark field illuminates X-ray imaging” (25 February, http://ow.ly/ulJnl), which concerns new research by Robert Cernik and colleagues (Proc. R. Soc. A 10.1098/rspa.2013.0629).

  2. Asymmetric condensed dark matter

    SciTech Connect

    Aguirre, Anthony; Diez-Tejedor, Alberto E-mail: alberto.diez@fisica.ugto.mx

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  3. Inflatable Dark Matter

    SciTech Connect

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUT or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.

  4. Inflatable Dark Matter

    DOE PAGES

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUTmore » or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.« less

  5. Dark Barchan Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows north polar sand dunes in the summertime. During winter and early spring, north polar dunes are covered with bright frost. When the frost sublimes away, the dunes appear darker than their surroundings. To a geologist, sand has a very specific meaning. A sand grain is defined independently of its composition; it is a particle with a size between 62.5 and 2000 microns. Two thousand microns equals 2 millimeters. The dunes are dark because they are composed of sand grains made of dark minerals and/or rock fragments. Usually, dark grains indicate the presence of unoxidized iron, for example, the dark volcanic rocks of Hawaii, Iceland, and elsewhere. This dune field is located near 71.7oN, 51.3oW. Dune slip faces indicate winds that blow from the upper left toward lower right. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  6. Dark matter candidates

    SciTech Connect

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of. Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs.

  7. Dark matter on top

    SciTech Connect

    Gómez, M.A.; Jackson, C.B.; Shaughnessy, G. E-mail: chris@uta.edu

    2014-12-01

    We consider a simplified model of fermionic dark matter which couples exclusively to the right-handed top quark via a renormalizable interaction with a color-charged scalar. We first compute the relic abundance of this type of dark matter and investigate constraints placed on the model parameter space by the latest direct detection data. We also perform a detailed analysis for the production of dark matter at the LHC for this model. We find several kinematic variables that allow for a clean signal extraction and we show that the parameter space of this model will be well probed during LHC Run-II. Finally, we investigate the possibility of detecting this type of dark matter via its annihilations into gamma rays. We compute the continuum and the line emission (which includes a possible ''Higgs in Space!'' line) and its possible discovery by future gamma-ray telescopes. We find that the annihilation spectrum has distinctive features which may distinguish it from other models.

  8. The Search for Dark Matter

    ScienceCinema

    Orrell, John

    2016-07-12

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  9. The Search for Dark Matter

    SciTech Connect

    Orrell, John

    2013-11-20

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  10. Dark energy and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Kuhlen, Michael; Strigari, Louis E.; Zentner, Andrew R.; Bullock, James S.; Primack, Joel R.

    2005-02-01

    We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>=-1 and w < -1. Using five simulations with w ranging from -1.5 to -0.5, and with more than ~1600 well-resolved haloes each, we show that the halo concentration model of Bullock et al. accurately predicts the median concentrations of haloes over the range of w, halo masses and redshifts that we are capable of probing. We find that the Bullock et al. model works best when halo masses and concentrations are defined relative to an outer radius set by a cosmology-dependent virial overdensity. For a fixed power spectrum normalization and fixed-mass haloes, larger values of w lead to higher concentrations and higher halo central densities, both because collapse occurs earlier and because haloes have higher virial densities. While precise predictions of halo densities are quite sensitive to various uncertainties, we make broad comparisons to galaxy rotation curve data. At fixed power spectrum normalization (fixed σ8), w > -1 quintessence models seem to exacerbate the central density problem relative to the standard w=-1 model. For example, models with w~=- 0.5 seem disfavoured by the data, which can be matched only by allowing extremely low normalizations, σ8<~ 0.6. Meanwhile w < -1 models help to reduce the apparent discrepancy. We confirm that the halo mass function of Jenkins et al. provides an excellent approximation to the abundance of haloes in our simulations and extend its region of validity to include models with w < -1.

  11. Rubber Hand Illusion Reduces Discomfort Caused by Cold Stimulus

    PubMed Central

    Siedlecka, Marta; Klimza, Anna; Łukowska, Marta; Wierzchoń, Michał

    2014-01-01

    There is a growing interest in body-ownership disruptions and their consequences for subjective experiences such as tactile sensations or pain. Here, we investigated the effect of the rubber hand illusion (RHI) on the perceived discomfort caused by cold stimulus applied to the real hand. The results showed reduced discomfort to cold reflected in behavioural and subjective measures. The stronger the illusion, the later the cold temperature became unpleasant and the less intense the experience was rated. We discuss the link between thermoception and body ownership as well as possible theoretical and methodological implications for studies on pain experience under RHI. PMID:25295527

  12. Dark matter detection

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    2016-08-01

    More than 80 years after its first postulation in modern form, the existence and distribution of dark matter in our Universe is well established. Dark matter is the gravitational glue that holds together galaxies, galaxy clusters and structures on the largest cosmological scales, and an essential component to explain the observed fluctuations in the cosmic microwave background. Yet its existence is inferred indirectly, through its gravitational influence on luminous matter, and its nature is not known. A viable hypothesis is that dark matter is made of new, elementary particles, with allowed masses and interaction strengths spanning a wide range. Two well-motivated classes of candidates are axions and weakly interacting massive particles (WIMPs), and experimental efforts have now reached sensitivities that allow them to test this hypothesis. Axions, produced non-thermally in the early Universe, can be detected by exploiting their predicted couplings to photons and electrons. WIMPs can be detected directly by looking for their collisions with atomic nuclei ultra-low background detectors, or indirectly, through the observation of their annihilation products such as neutrinos, gamma rays, positrons and antiprotons over the astrophysical background. A complementary method is the production of dark matter particles at colliders such as the Large Hadron Collider, where they could be observed indirectly via missing transverse energy, or via associated particle production. I will review the main experimental efforts to search for dark matter particles, and the existing constraints on the interaction cross sections. I will also discuss future experiments, their complementarity and their ability to measure the properties of these particles.

  13. Particle Dark Matter

    NASA Astrophysics Data System (ADS)

    Bertone, Gianfranco

    2013-11-01

    Part I. DM in Cosmology: 1. Particle dark matter G. Bertone and J. Silk; 2. Simulations of CDM haloes B. Moore and J. Diemand; 3. MW substructures J. Bullock, M. Kaplinghat and L. Strigari; 4. Gravitational lensing and dark matter Y. Mellier; 5. Dark matter at the centers of galaxies D. Merritt; 6. Modified gravity as an alternative to DM J. Bekenstein; Part II. Candidates: 7. DM production mechanisms G. Gelmini and P. Gondolo; 8. Supersymmetric DM candidates J. Ellis and K. Olive; 9. DM at the EW scale: non-SUSY candidates G. Servant; 10. Non-WIMP candidates J. L. Feng; 11. Axions P. Sikivie; 12. Sterile neutrinos M. Shaposhnikov; Part III. Colliders Searches: 13. SUSY searches at the LHC T. Plehn and G. Polesello; 14. SUSY DM at colliders M. Battaglia and M. E. Peskin; 15. Extra dimensions at the LHC K. Kong, K. Matchev and G. Servant; 16. SUSY tools F. Boudjema, J. Edsjö and P. Gondolo; Part IV. Direct Detection: 17. Direct detection of WIMPs D. G. Cerdeño and A. Green; 18. Annual modulation with NaI(Tl) R. Bernabei and P. Belli; 19. Particle DM and DAMA N. Fornengo; 20. Cryogenic detectors G. Gerbier and J. Gascon; 21. Liquid noble gases E. Aprile and L. Baudis; 22. Directional detectors N. Spooner; 23. Axion searches S. Asztalos; Part V. Indirect Detection and Astrophysical Constraints: 24. Gamma-rays L. Bergström and G. Bertone; 25. Neutrinos F. Halzen and D. Hooper; 26. Antimatter P. Salati, F. Donato and N. Fornengo; 27. Multi-wavelength S. Profumo and P. Ullio; 28. Dark matter and BBN K. Jedamzik and M. Pospelov; 29. Dark matter and stars G. Bertone; Appendix; References; Index.

  14. Cosmological degeneracy versus cosmography: A cosmographic dark energy model

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Pisani, Giovanni Battista; Troisi, Antonio

    In this work, we use cosmography to alleviate the degeneracy among cosmological models, proposing a way to parametrize matter and dark energy in terms of cosmokinematics quantities. The recipe of using cosmography allows to expand observable quantities in Taylor series and to directly compare those expansions with data. The strategy involves the expansions of q and j, up to the second-order around a(t) = 1. This includes additional cosmographic parameters which are fixed by current values of q0 and j0. We therefore propose a fully self-consistent parametrization of the total energy density driving the late-time universe speed up. This stratagem does not remove all the degeneracy but enables one to pass from the model-dependent couple of coefficients, ω0 and Ωm,0, to model-independent quantities determined from cosmography. Afterwards, we describe a feasible cosmographic dark energy model, in which matter is fixed whereas dark energy evolves by means of the cosmographic series. Our technique provides robust constraints on cosmokinematic parameters, permitting one to separately bound matter from dark energy densities. Our cosmographic dark energy model turns out to be one parameter only, but differently from the lambda cold dark matter (ΛCDM) paradigm, it does not contain ansatz on the dark energy form. In addition, we even determine the free parameter of our model in suitable 1σ intervals through Monte Carlo analyses based on the Metropolis algorithm. We compare our results with the standard concordance model and we find that our treatment seems to indicate that dark energy slightly evolves in time, reducing to a pure cosmological constant only as z → 0.

  15. Cold hardiness in molluscs

    NASA Astrophysics Data System (ADS)

    Ansart, Armelle; Vernon, Philippe

    2003-05-01

    Molluscs inhabit all types of environments: seawater, intertidal zone, freshwater and land, and of course may have to deal with subzero temperatures. Ectotherm animals survive cold conditions by avoiding it by extensive supercooling (freezing avoidant species) or by bearing the freezing of their extracellular body fluids (freezing tolerant species). Although some studies on cold hardiness are available for intertidal molluscs, they are scarce for freshwater and terrestrial ones. Molluscs often exhibit intermediary levels of cold hardiness, with a moderate or low ability to supercool and a limited survival to the freezing of their tissues. Several factors could be involved: their dependence on water, their ability to enter dormancy, the probability of inoculative freezing in their environment, etc. Size is an important parameter in the development of cold hardiness abilities: it influences supercooling ability in land snails, which are rather freezing avoidant and survival to ice formation in intertidal organisms, which generally tolerate freezing.

  16. Colds and flus - antibiotics

    MedlinePlus

    Fashner J, Ericson K, Werner S. Treatment of the common cold in children and adults. Am Fam Physician. 2012; ... gov/pubmed/22962927 . Melio FR, Berge LR. Upper respiratory tract infections. In: Marx JA, Hockberger RS, Walls RM, et ...

  17. Coping with Colds

    MedlinePlus

    ... re hungry. And you might have heard that chicken soup can cure a cold. There's no real ... you have strep throat and need treatment with antibiotics. If your doctor does prescribe antibiotics, be sure ...

  18. The cold reading technique.

    PubMed

    Dutton, D L

    1988-04-15

    For many people, belief in the paranormal derives from personal experience of face-to-face interviews with astrologers, palm readers, aura and Tarot readers, and spirit mediums. These encounters typically involve cold reading, a process in which a reader makes calculated guesses about a client's background and problems and, depending on the reaction, elaborates a reading which seems to the client so uniquely appropriate that it carries with it the illusion of having been produced by paranormal means. The cold reading process is shown to depend initially on the Barnum effect, the tendency for people to embrace generalized personality descriptions as idiosyncratically their own. Psychological research into the Barnum effect is critically reviewed, and uses of the effect by a professional magician are described. This is followed by detailed analysis of the cold reading performances of a spirit medium. Future research should investigate the degree to which cold readers may have convinced themselves that they actually possess psychic or paranormal abilities.

  19. How dark chocolate is processed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This month’s column will continue the theme of “How Is It Processed?” The column will focus on dark chocolate. The botanical name for the cacao tree is Theobroma cacao, which literally means “food of the Gods.” Dark chocolate is both delicious and nutritious. Production of dark chocolate will be des...

  20. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  1. The vacuum's dark particles behave like dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Haller, John

    2015-04-01

    Building on the governing hypothesis that self-information is equal to action, I solve for the time step of the vacuum. The resulting equations (both quantum diffusion and Friedmann's equations) argue that a dark particle, or special black hole, exists at hbar or twice the reduced Planck mass where the Hawking temperature breaks down. It is hypothesized that if neutral hydrogen is nearby the dark particles are able to couple with the background field and thus have a density that looks like dark matter. If hydrogen is not around, the dark particles become frozen leading to a constant density of black body radiation similar to dark energy. If the Universe's dark particles (away from neutral hydrogen) became frozen during the re-ionization of the Universe's history, its BBR density is well within confidence ranges for the cosmological constant. This hypothesis can also explain the recent observations that dark matter decays into dark energy.

  2. Dark Energy Coupled with Dark Matter in the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2004-06-01

    To model the observed Universe containing both dark energy and dark matter, we study the effective Yang Mills condensate model of dark energy and add a non-relativistic matter component as the dark matter, which is generated out of the decaying dark energy at a constant rate Gamma, a parameter of our model. For the Universe driven by these two components, the dynamic evolution still has asymptotic behaviour: the expansion of the Universe is accelerating with an asymptotically constant rate H, and the densities of both components approach to finite constant values. Moreover, OmegaLambdasimeq0.7 for dark energy and Omegamsimeq0.3 for dark matter are achieved if the decay rate Gamma is chosen such that Gamma/H~1.

  3. Measuring the speed of dark: Detecting dark energy perturbations

    SciTech Connect

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-05-15

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a){ne}-1], degrees of freedom distinct from quintessence (c{sub s{ne}}1), and early presence of dark energy [{Omega}{sub de}(a<<1){ne}0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  4. Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    2006-01-01

    More than 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via interactions with nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center.

  5. Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    More than 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via interactions with nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center.

  6. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  7. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  8. Understanding Colds: Anatomy of the Nose

    MedlinePlus

    ... Colds Prevention Treatment Children Complications Special Features References Common Cold Understanding Colds Anatomy of the Nose The nose ... cm (3/8 inch) per minute. What a Common Cold Is A common cold is an illness caused ...

  9. Cores in dwarf galaxies from dark matter with a Yukawa potential.

    PubMed

    Loeb, Abraham; Weiner, Neal

    2011-04-29

    We show that cold dark matter particles interacting through a Yukawa potential could naturally explain the recently observed cores in dwarf galaxies without affecting the dynamics of objects with a much larger velocity dispersion, such as clusters of galaxies. The velocity dependence of the associated cross section as well as the possible exothermic nature of the interaction alleviates earlier concerns about strongly interacting dark matter. Dark matter evaporation in low-mass objects might explain the observed deficit of satellite galaxies in the Milky Way halo and have important implications for the first galaxies and reionization.

  10. Holographik, the k-essential approach to interactive models with modified holographic Ricci dark energy

    NASA Astrophysics Data System (ADS)

    Forte, Mónica

    2016-12-01

    We make a scalar representation of interactive models with cold dark matter and modified holographic Ricci dark energy through unified models driven by scalar fields with non-canonical kinetic term. These models are applications of the formalism of exotic k-essences generated by the global description of cosmological models with two interactive fluids in the dark sector and in these cases they correspond to the usual k-essences. The formalism is applied to the cases of constant potential in Friedmann-Robertson-Walker geometries.

  11. Complex Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  12. Complex Dark Matter

    SciTech Connect

    Lincoln, Don

    2015-04-16

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  13. Dark Skies Rangers

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    2015-08-01

    Creating awareness about the importance of the protection of our dark skies is the main goal of the Dark Skies Rangers project, a joint effort from the NOAO and the Galileo Teacher Training Program. Hundreds of schools and thousands of students have been reached by this program. We will focus in particular on the experience being developed in Portugal where several municipalities have now received street light auditing produced by students with suggestions on how to enhance the energy efficiency of illumination of specific urban areas. In the International Year of Light we are investing our efforts in exporting the successful Portuguese experience to other countries. The recipe is simple: train teachers, engage students, foster the participation of local community and involve local authorities in the process. In this symposium we hope to draft the cookbook for the near future.

  14. Distance to Dark Bodies

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Using the unique orbit of NASA's Spitzer Space Telescope and a depth-perceiving trick called parallax, astronomers have determined the distance to an invisible Milky Way object called OGLE-2005-SMC-001. This artist's concept illustrates how this trick works: different views from both Spitzer and telescopes on Earth are combined to give depth perception.

    Our Milky Way galaxy is heavier than it looks, and scientists use the term 'dark matter' to describe all the 'heavy stuff' in the universe that seems to be present but invisible to our telescopes. While much of this dark matter is likely made up of exotic materials, different from the ordinary particles that make up the world around us, some may consist of dark celestial bodies -- like planets, black holes, or failed stars -- that do not produce light or are too faint to detect from Earth. OGLE-2005-SMC-001 is one of these dark celestial bodies.

    Although astronomers cannot see a dark body, they can sense its presence from the way light acts around it. When a dark body like OGLE-2005-SMC-001 passes in front of a bright star, its gravity causes the background starlight to bend and brighten, a process called gravitational microlensing. When the observing telescope, dark body, and star system are closely aligned, the microlensing event reaches maximum, or peak, brightness.

    A team of astronomers first sensed OGLE-2005-SMC-001's presence when it passed in front of a star in a neighboring satellite galaxy called the Small Magellanic Cloud. In this artist's rendering, the satellite galaxy is depicted as the fuzzy structure sitting to the left of Earth. Once they detected this microlensing event, the scientists used Spitzer and the principle of parallax to figure out its distance. Humans naturally use parallax to determine distance. Each eye sees the distance of an object differently. The brain takes each eye's perspective and instantaneously calculates how far away the object is.

    To determine OGLE

  15. Multi-Component Dark Matter

    SciTech Connect

    Zurek, Kathryn M.

    2008-11-01

    We explore multi-component dark matter models where the dark sector consists of multiple stable states with different mass scales, and dark forces coupling these states further enrich the dynamics. The multi-component nature of the dark matter naturally arises in supersymmetric models, where both R parity and an additional symmetry, such as a Z{sub 2}, is preserved. We focus on a particular model where the heavier component of dark matter carries lepton number and annihilates mostly to leptons. The heavier component, which is essentially a sterile neutrino, naturally explains the PAMELA, ATIC and synchrotron signals, without an excess in antiprotons which typically mars other models of weak scale dark matter. The lighter component, which may have a mass from a GeV to a TeV, may explain the DAMA signal, and may be visible in low threshold runs of CDMS and XENON, which search for light dark matter.

  16. Two distinct plant respiratory physiotypes might exist which correspond to fast-growing and slow-growing species.

    PubMed

    Nogués, Salvador; Aljazairi, Salvador; Arias, Claudia; Sánchez, Elena; Aranjuelo, Iker

    2014-08-15

    The origin of the carbon atoms in CO2 respired by leaves in the dark of several plant species has been studied using 13C/12C stable isotopes. This study was conducted using an open gas exchange system for isotope labeling that was coupled to an elemental analyzer and further linked to an isotope ratio mass spectrometer (EA-IRMS) or coupled to a gas chromatography-combustion-isotope ratio mass spectrometer (GC-C-IRMS). We demonstrate here that the carbon, which is recently assimilated during photosynthesis, accounts for nearly ca. 50% of the carbon in the CO2 lost through dark respiration (Rd) after illumination in fast-growing and cultivated plants and trees and, accounts for only ca. 10% in slow-growing plants. Moreover, our study shows that fast-growing plants, which had the largest percentages of newly fixed carbon of leaf-respired CO2, were also those with the largest shoot/root ratios, whereas slow-growing plants showed the lowest shoot/root values.

  17. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, up–grading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  18. Hints on the nature of dark matter from the properties of Milky Way satellites

    SciTech Connect

    Anderhalden, Donnino; Diemand, Juerg; Schneider, Aurel; Macciò, Andrea V.; Bertone, Gianfranco E-mail: aurel.schneider@sussex.ac.uk E-mail: diemand@physik.uzh.ch

    2013-03-01

    The nature of dark matter is still unknown and one of the most fundamental scientific mysteries. Although successfully describing large scales, the standard cold dark matter model (CDM) exhibits possible shortcomings on galactic and sub-galactic scales. It is exactly at these highly non-linear scales where strong astrophysical constraints can be set on the nature of the dark matter particle. While observations of the Lyman-α forest probe the matter power spectrum in the mildly non-linear regime, satellite galaxies of the Milky Way provide an excellent laboratory as a test of the underlying cosmology on much smaller scales. Here we present results from a set of high resolution simulations of a Milky Way sized dark matter halo in eight distinct cosmologies: CDM, warm dark matter (WDM) with a particle mass of 2 keV and six different cold plus warm dark matter (C+WDM) models, varying the fraction, f{sub wdm}, and the mass, m{sub wdm}, of the warm component. We used three different observational tests based on Milky Way satellite observations: the total satellite abundance, their radial distribution and their mass profile. We show that the requirement of simultaneously satisfying all three constraints sets very strong limits on the nature of dark matter. This shows the power of a multi-dimensional small scale approach in ruling out models which would be still allowed by large scale observations.

  19. Dynamics of Dark Energy

    SciTech Connect

    Copeland, Edmund J.

    2007-11-20

    I briefly review attempts that have been made to model dark energy. These include models of a cosmological constant, dynamical models where a scalar field may be responsible for the observed late time acceleration through to the possibility that we are not fully in control of the gravity sector and the acceleration may be some manifestation of modified gravity. In all cases we will see some degree of fine tuning is required with the current models.

  20. Waharau Dark Sky Weekend

    NASA Astrophysics Data System (ADS)

    McFarlane, Ursuka

    2004-06-01

    The Waharau Dark Sky weekend event, organized by Keith Edwards and Dean Jonkers of the Auckland Astronomical Society, happens at least twice a year, and is not to be missed. The event isn't catered, there are no speakers or lectures, it's not even organized chaos. It is a weekend of relaxation in the company of like-minded friends, exploring the night skies, checking out the latest skywatching tools, and having fun.

  1. Heart of Darkness

    PubMed Central

    2016-01-01

    Abstract Significant literature has an impact on the reader. Reading the novella Heart of Darkness by Joseph Conrad as a young boy rose emotions comparable to those I felt when losing a patient after percutaneous nephrolithotomy (PCNL) as a grown up. The case of a 37-year-old woman with bilateral staghorn and a fatal outcome after PCNL is presented and alternatives are discussed. PMID:27868094

  2. Helmholtz dark solitons.

    PubMed

    Chamorro-Posada, P; McDonald, G S

    2003-05-15

    A general dark-soliton solution of the Helmholtz equation (with defocusing Kerr nonlinearity) that has on- and off-axis, gray and black, paraxial and Helmholtz solitons as particular solutions, is reported. Modifications to soliton transverse velocity, width, phase period, and existence conditions are derived and explained in geometrical terms. Simulations verify analytical predictions and also demonstrate spontaneous formation of Helmholtz solitons and transparency of their interactions.

  3. Natural Neutrino Dark Energy

    SciTech Connect

    Gurwich, Ilya

    2010-06-23

    1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.

  4. Matter power spectra in dynamical dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Fedeli, C.; Dolag, K.; Moscardini, L.

    2012-01-01

    We used a suite of numerical cosmological simulations in order to investigate the effect of gas cooling and star formation on the large-scale matter distribution. The simulations follow the formation of cosmic structures in five different dark energy models: the fiducial Λcold dark matter (ΛCDM) cosmology and four models where the dark energy density is allowed to have a non-trivial redshift evolution. Each simulation includes a variety of gas physics, ranging from radiative cooling to UV heating and supernova feedback [although the active galactic nuclei (AGN) feedback is not incorporated]. Moreover, for each cosmology we have a control run with dark matter only, in order to allow a direct assessment of the effect of baryonic processes. We found that the power spectra of gas and stars, as well as the total matter power spectrum, are in qualitative agreement with the results of previous works not including the AGN effects in the framework of the fiducial model, although several quantitative differences exist. We used the physically motivated halo model in order to investigate the backreaction of gas and stars on the dark matter distribution, finding that it is very well reproduced by simply increasing the average dark matter halo concentration by 17 per cent, irrespective of the mass. This is in agreement with the cooling of gas dragging dark matter in the very centre of haloes, as well as adiabatic contraction steepening the relative potential wells. Moving to model universes dominated by dynamical dark energy, it turns out that they introduce a specific signature on the power spectra of the various matter components, which is qualitatively independent of the exact cosmology considered. This generic shape is well captured by the halo model if we blindly consider the cosmology dependences of the halo mass function, bias and concentration. However, the details of the dark matter power spectrum can be precisely captured only at the cost of a few slight

  5. A WIMP Dark Matter Detector Using MKIDs

    NASA Astrophysics Data System (ADS)

    Golwala, S.; Gao, J.; Moore, D.; Mazin, B.; Eckart, M.; Bumble, B.; Day, P.; Leduc, H. G.; Zmuidzinas, J.

    2008-04-01

    We are pursuing the development of a phonon- and ionization-mediated WIMP dark matter detector employing microwave kinetic inductance detectors (MKIDs) in the phonon-sensing channel. Prospective advantages over existing detectors include: improved reconstruction of the phonon signal and event position; simplified readout wiring and cold electronics; and simplified and more reliable fabrication. We have modeled a simple design using available MKID sensitivity data and anticipate energy resolution as good as existing phonon-mediated detectors and improved position reconstruction. We are doing preparatory experimental work by fabricating strip absorber architectures. Measurements of diffusion length, trapping efficiency, and MKID sensitivity with these devices will enable us to design a 1 cm2×2 mm prototype device to demonstrate phonon energy resolution and position reconstruction.

  6. Unparticle dark energy

    SciTech Connect

    Dai, D.-C.; Stojkovic, Dejan; Dutta, Sourish

    2009-09-15

    We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ({lambda}{sub u}). We study how the evolution of w depends on the parameters B (a function of unparticle scaling dimension d{sub u}), the initial value of the field {phi}{sub i} (or equivalently, {lambda}{sub u}) and the present matter density {omega}{sub m0}. We use observational data from type Ia supernovae, baryon acoustic oscillations and the cosmic microwave background to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale M{sub F}, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.

  7. Colors in the dark

    PubMed Central

    Rodríguez-Villalón, Antía; Gas, Elisabet

    2009-01-01

    Carotenoids are plastidial isoprenoid pigments essential for plant life. High carotenoid levels are found in chloroplasts and chromoplasts, but they are also produced in the etioplasts of seedlings that germinate in the dark. Our recent work has shown that an enhanced production of carotenoids in plastids of dark-grown Arabidopsis thaliana seedlings results in an improved transition to photosynthetic development (greening) upon illumination, illustrating the relevance of regulating etioplast carotenoid biosynthesis for plant fitness. We showed that the biosynthesis of etioplast carotenoids is controlled at the level of phytoene synthase (PSY), the enzyme catalyzing the first committed step of the pathway. Upregulation of PSY is necessary and sufficient to increase the production of carotenoids in dark-grown seedlings, in part because it triggers a feedback mechanism leading to the post-transcriptional accumulation of flux-controlling enzymes of the methylerythritol 4-phosphate (MEP) pathway, which synthesizes the substrates for PSY activity. Based on these and other recent data on the molecular mechanisms controlling deetiolation, we propose a model for the regulation of carotenoid biosynthesis in etioplasts. PMID:19826226

  8. The First dark microhalos

    SciTech Connect

    Zhao, HongSheng; Taylor, James E.; Silk, Joseph; Hooper, Dan; /Oxford U. /Fermilab

    2005-08-01

    Earth-mass dark matter halos are likely to have been the first bound structures to form in the Universe. Whether such objects have survived to the present day in galaxies depends on, among other factors, the rate of encounters with normal stars. In this letter, we estimate the amount of tidal heating and mass loss in microhalos as a result of stellar encounters. We find that while microhalos are only mildly heated in dwarf galaxies of low stellar density, and they should have been completely destroyed in bulge or M32-like regions of high stellar density. In disk galaxies, such as the Milky Way, the disruption rate depends strongly on the orbital parameters of the microhalo; while stochastic radial orbits in triaxial Galactic potential are destroyed first, systems on non-planar retrograde orbits with large pericenters survive the longest. Since many microhalos lose a significant fraction of their material to unbound tidal streams, the final dark matter distribution in the solar neighborhood is better described as a superposition of microstreams rather than as a set of discrete spherical clumps in an otherwise homogeneous medium. Different morphologies of microhalos have implications for direct and indirect dark matter detection experiments.

  9. Stealth dark matter: Dark scalar baryons through the Higgs portal

    NASA Astrophysics Data System (ADS)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X.-Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.; Lattice Strong Dynamics LSD Collaboration

    2015-10-01

    We present a new model of stealth dark matter: a composite baryonic scalar of an S U (ND) strongly coupled theory with even ND≥4 . All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to S U (4 ), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB≳300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

  10. Supermassive Dark Stars: Detectable in JWST

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Ilie, Cosmin; Spolyar, Douglas; Valluri, Monica; Bodenheimer, Peter

    2010-06-01

    The first phase of stellar evolution in the history of the universe may be dark stars (DSs), powered by dark matter (DM) heating rather than by nuclear fusion. Weakly interacting massive particles (WIMPs), which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars for millions to billions of years. In this paper, we show that these objects can grow to be supermassive dark stars (SMDSs) with masses gsim(105-107) M sun. The growth continues as long as DM heating persists, since DSs are large and cool (surface temperature lsim5 × 104 K) and do not emit enough ionizing photons to prevent further accretion of baryons onto the star. The DM may be provided by two mechanisms: (1) gravitational attraction of DM particles on a variety of orbits not previously considered and (2) capture of WIMPs due to elastic scattering. Once the DM fuel is exhausted, the SMDS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes (BHs) that may provide seeds for supermassive BHs in the universe. SMDSs are very bright, with luminosities exceeding (109-1011) L sun. We demonstrate that for several reasonable parameters, these objects will be detectable with the James Webb Space Telescope. Such an observational discovery would confirm the existence of a new phase of stellar evolution powered by DM.

  11. The Angular Momentum Distribution within Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Chen, D.; Jing, Y.

    We study the angular momentum profile of dark matter halos for a statistical sample drawn from a set of high-resolution cosmological simulations of 2563 particles. Two typical Cold Dark Matter (CDM) models have been analyzed, and the halos are selected to have at least 3× 104 particles in order to reliably measure the angular momentum profile. In contrast with the recent claims of Bullock et al. (2001), we find that the degree of misalignment of angular momentum within a halo is very high. About 50 percent of halos have more than 10 percent of halo mass in the mass of negative angular momentum j. After the mass of negative j is excluded, the cumulative mass function M(Dark Matter (WDM) model and a Self-Interacting Dark Matter (SIDM) model. We find that the angular momentum profile of halos in the WDM is statistically indistinguishable from that in the CDM model, but the angular momentum of halos in the SIDM is reduced by the self-interaction of dark matter.

  12. Angular Momentum Profiles of Warm Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Bullock, James S.; Kravtsov, and Andrey V.; Colín, Pedro

    2002-01-01

    We compare the specific angular momentum profiles of virialized dark halos in cold dark matter (CDM) and warm dark matter (WDM) models, using high-resolution dissipationless simulations. The simulations were initialized using the same set of modes, except on small scales, where the power was suppressed in WDM below the filtering length. Remarkably, WDM as well as CDM halos are well described by the two-parameter angular momentum profile of Bullock and coworkers, even though the halo masses are below the filtering scale of the WDM. Although the best-fit shape parameters change quantitatively for individual halos in the two simulations, we find no systematic variation in profile shapes as a function of the dark matter type. The scatter in shape parameters is significantly smaller for the WDM halos, suggesting that substructure and/or merging history plays a role in producing scatter about the mean angular momentum distribution, but that the average angular momentum profiles of halos originate from larger scale phenomena or a mechanism associated with the virialization process. The known mismatch between the angular momentum distributions of dark halos and disk galaxies is, therefore, present in WDM as well as CDM models. Our WDM halos tend to have a less coherent (more misaligned) angular momentum structure and smaller spin parameters than do their CDM counterparts, although we caution that this result is based on a small number of halos.

  13. The Nature of Dark Matter and the Density Profile and Central Behavior of Relaxed Halos

    NASA Astrophysics Data System (ADS)

    Salvador-Solé, Eduard; Manrique, Alberto; González-Casado, Guillermo; Hansen, Steen H.

    2007-09-01

    We show that the two basic assumptions of the model recently proposed by Manrique and coworkers for the universal density profile of cold dark matter (CDM) halos, namely, that these objects grow inside out during periods of smooth accretion and that their mass profile and its radial derivatives are all continuous functions, are both well understood in terms of the very nature of CDM. Those two assumptions allow one to derive the typical density profile of halos of a given mass from the accretion rate characteristic of the particular cosmology. This profile was shown by Manrique and coworkers to recover the results of numerical simulations. In the present paper, we investigate its behavior beyond the ranges covered by present-day N-body simulations. We find that the central asymptotic logarithmic slope depends crucially on the shape of the power spectrum of density perturbations: it is equal to a constant negative value for power-law spectra and has central cores for the standard CDM power spectrum. The predicted density profile in the CDM case is well fitted by the 3D Sérsic profile over at least 10 decades in halo mass. The values of the Sérsic parameters depend on the mass of the structure considered. A practical procedure is provided that allows one to infer the typical values of the best NFW or Sérsic fitting law parameters for halos of any mass and redshift in any given standard CDM cosmology.

  14. Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55.

    PubMed Central

    Berger, F; Morellet, N; Menu, F; Potier, P

    1996-01-01

    The psychrotrophic bacterium Arthrobacter globiformis SI55 was grown at 4 and 25 degrees C, and the cell protein contents were analyzed by two-dimensional electrophoresis. Cells subjected to cold shocks of increasing magnitude were also analyzed. Correspondence analysis of protein appearance distinguished four groups of physiological significance. Group I contained cold shock proteins (Csps) overexpressed only after a large temperature downshift. Group II contained Csps with optimal expression after mild shocks. Group III contained proteins overexpressed after all cold shocks. These last proteins were also overexpressed in cells growing at 4 degrees C and were considered to be early cold acclimation proteins (Caps). Group IV contained proteins which were present at high concentrations only in 4 degrees C steady-state cells and appeared to be late Caps. A portion of a gene very similar to the Escherichia coli cspA gene (encoding protein CS7.4) was identified. A synthetic peptide was used to produce an antibody which detected a CS7.4-like protein (A9) by immunoblotting two-dimensional electrophoresis gels of A. globiformis SI55 total proteins. Unlike mesophilic microorganisms, this CS7.4-like protein was still produced during prolonged growth at low temperature, and it might have a particular adaptive function needed for balanced growth under harsh conditions. However, A9 was induced at high temperature by chloramphenicol, suggesting that CS7.4-like proteins have a more general role than their sole implication in cold acclimation processes. PMID:8655472

  15. Chameleon dark energy models with characteristic signatures

    SciTech Connect

    Gannouji, Radouane; Moraes, Bruno; Polarski, David; Mota, David F.; Winther, Hans A.; Tsujikawa, Shinji

    2010-12-15

    In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today {gamma}{sub 0} can have significant dispersion on scales relevant for large scale structures. The values of {gamma}{sub 0} can be even smaller than 0.2 with large variations of {gamma} on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the {Lambda}-cold-dark-matter ({Lambda}CDM) model in future high-precision observations.

  16. Cold disasters: the most serious meteorological disasters to the cotton production in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Li, Xinjian; He, Qing; Yuan, Yujiang; Tang, Fenglan

    2003-07-01

    After analyzing the heat conditions in the years of serious reduction of cotton yield in the main cotton-growing areas of Xinjiang, it is found that the cold disasters, especially the delaying cold disasters, are the most serious meteorological disasters to the cotton production in Xinjiang.

  17. The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...

  18. Using GWAS to identify SNPs associated with rice seedling cold tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold tolerance at the seedling stage is important for stand establishment when rice (Oryza sativa L.) is planted in cold water or under the cool temperatures that occur early in the growing season in temperate regions or at high elevations in the tropics. The Rice Diversity Panel 1 (RDP1) represent...

  19. Cultural systems for growing potatoes in space

    NASA Technical Reports Server (NTRS)

    Tibbitts, T.; Bula, R.; Corey, R.; Morrow, R.

    1988-01-01

    Higher plants are being evaluated for life support to provide needed food, oxygen and water as well as removal of carbon dioxide from the atmosphere. The successful utilization of plants in space will require the development of not only highly productive growing systems but also highly efficient bioregenerative systems. It will be necessary to recycle all inedible plant parts and all human wastes so that the entire complement of elemental compounds can be reused. Potatoes have been proposed as one of the desirable crops because they are 1) extremely productive, yielding more than 100 metric tons per hectare from field plantings, 2) the edible tubers are high in digestible starch (70%) and protein (10%) on a dry weight basis, 3) up to 80% of the total plant production is in tubers and thus edible, 4) the plants are easily propagated either from tubers or from tissue culture plantlets, 5) the tubers can be utilized with a minimum of processing, and 6) potatoes can be prepared in a variety of different forms for the human diet (Tibbitts et al., 1982). However potatoes have a growth pattern that complicates the development of growing the plants in controlled systems. Tubers are borne on underground stems that are botanically termed 'rhizomes', but in common usage termed 'stolons'. The stolons must be maintained in a dark, moist area with sufficient provision for enlargement of tubers. Stems rapidly terminate in flowers forcing extensive branching and spreading of plants so that individual plants will cover 0.2 m2 or more area. Thus the growing system must be developed to provide an area that is darkened for tuber and root growth and of sufficient size for plant spread. A system developed for growing potatoes, or any plants, in space will have certain requirements that must be met to make them a useful part of a life support system. The system must 1) be constructed of materials, and involve media, that can be reused for many successive cycles of plant growth, 2

  20. Cultural systems for growing potatoes in space.

    PubMed

    Tibbitts, T; Bula, R; Corey, R; Morrow, R

    1988-01-01

    Higher plants are being evaluated for life support to provide needed food, oxygen and water as well as removal of carbon dioxide from the atmosphere. The successful utilization of plants in space will require the development of not only highly productive growing systems but also highly efficient bioregenerative systems. It will be necessary to recycle all inedible plant parts and all human wastes so that the entire complement of elemental compounds can be reused. Potatoes have been proposed as one of the desirable crops because they are 1) extremely productive, yielding more than 100 metric tons per hectare from field plantings, 2) the edible tubers are high in digestible starch (70%) and protein (10%) on a dry weight basis, 3) up to 80% of the total plant production is in tubers and thus edible, 4) the plants are easily propagated either from tubers or from tissue culture plantlets, 5) the tubers can be utilized with a minimum of processing, and 6) potatoes can be prepared in a variety of different forms for the human diet (Tibbitts et al., 1982). However potatoes have a growth pattern that complicates the development of growing the plants in controlled systems. Tubers are borne on underground stems that are botanically termed 'rhizomes', but in common usage termed 'stolons'. The stolons must be maintained in a dark, moist area with sufficient provision for enlargement of tubers. Stems rapidly terminate in flowers forcing extensive branching and spreading of plants so that individual plants will cover 0.2 m2 or more area. Thus the growing system must be developed to provide an area that is darkened for tuber and root growth and of sufficient size for plant spread. A system developed for growing potatoes, or any plants, in space will have certain requirements that must be met to make them a useful part of a life support system. The system must 1) be constructed of materials, and involve media, that can be reused for many successive cycles of plant growth, 2

  1. Perturbations of ultralight vector field dark matter

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Maroto, A. L.; Núñez Jareño, S. J.

    2017-02-01

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with {k}^2≪ Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with {k}^2≫ Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c s 2 ≃ k 2/ m 2 a 2. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order ( Φ - Ψ)/ Φ ˜ c s 2 . Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/ Φ ˜ c s 2 . This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  2. Self Interacting Dark Matter and Baryons

    NASA Astrophysics Data System (ADS)

    Fry, Alexander B.; Governato, Fabio; Pontzen, Andrew; Quinn, Thomas R.

    2015-01-01

    Self Interacting Dark Matter (SIDM) is a cosmologically consistent alternative theory to Cold Dark Matter (CDM). SIDM is motivated as a solution to solve problems of the CDM model on small scales including the core/cusp problem, the missing satellites, and halo triaxiality. Each of these problems has secular astrophysical solutions, however taken together and along with suggestions from dark matter (DM) particle physics it is interesting to place constraints on how strong a self interaction would have to be for us to observe it and conversely the null hypothesis of whether we can rule out SIDM. We use high resolution cosmological simulations to compare evolution of stellar populations and (DM) components of dwarf galaxies. Our advanced smooth particle hydrodynamics N-body simulations combine SIDM with baryon physics including star formation, feedback recipes, metal line cooling, UV background, and thermal diffusion that eliminates artificial surface gas tension. We find for a constant SIDM cross section of 2 cm2 g-1 that DM interactions alone are not significant enough to create cores in dwarf galaxies and for low mass (Vpeak= 25 km s-1) galaxies the introduction of SIDM fails to decrease the DM central density. Our simulations with star formation feedback are in good agreement with observational estimates of Local Group dwarfs. The lower mass (below 108 M⊙) halos have inefficient SF, late formation time, and less DM interactions thus small field halos in CDM and SIDM remain cuspy. We conclude that constant cross section SIDM of 2 cm2 g-1 would be close to unobservable in dwarf galaxies and yet at the same time this cross section is already larger than some observational constraints found in larger (higher velocity) systems. We conclude that to differentiate between SIDM and CDM in an observationally detectable and astrophysically consistent manner a velocity dependent cross section that peaks for halos with small peak velocities will be necessary.

  3. Dark Forces and Dark Matter in a Hidden Sector

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah

    2012-01-01

    Hidden sectors in connection with GeV-scale dark forces and dark matter are not only a common feature of physics beyond the Standard Model such as string theory and SUSY but are also phenomenologically of great interest regarding recent astrophysical observations. The hidden photon in particular is also searched for and constrained by laboratory experiments, the current status of which will be presented here. Furthermore, several models of hidden sectors containing in addition a dark matter particle will be examined regarding their consistency with the dark matter relic abundance and direct detection experiments.

  4. The dark cube: dark and light character profiles.

    PubMed

    Garcia, Danilo; Rosenberg, Patricia

    2016-01-01

    Background. Research addressing distinctions and similarities between people's malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger's character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger's "light" character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people's dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon's Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals' dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast

  5. A Stab in the Dark?

    PubMed Central

    Tompson, Lisa

    2013-01-01

    Objectives: Test the influence of darkness in the street robbery crime event alongside temperature. Methods: Negative binomial regression models tested darkness and temperature as predictors of street robbery. Units of analysis were four 6-hr time intervals in two U.K. study areas that have different levels of darkness and variations of temperature throughout the year. Results: Darkness is a key factor related to robbery events in both study areas. Traversing from full daylight to full darkness increased the predicted volume of robbery by a multiple of 2.6 in London and 1.2 in Glasgow. Temperature was significant only in the London study area. Interaction terms did not enhance the predictive power of the models. Conclusion: Darkness is an important driving factor in seasonal variation of street robbery. A further implication of the research is that time of the day patterns are crucial to understanding seasonal trends in crime data. PMID:25076797

  6. The DarkSide awakens

    NASA Astrophysics Data System (ADS)

    Davini, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2016-05-01

    The DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 103 relative to atmospheric argon. The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.

  7. Enter the DarkSide

    NASA Astrophysics Data System (ADS)

    Davini, Stefano

    2014-04-01

    A wide range of astrophysical measurements evidence that the stars and gas in all galaxies are immersed in a much larger cloud of non-luminous and non-baryonic dark matter. The nature of the dark matter is still totally unknown, and the resolution of the dark matter puzzle is of fundamental importance to cosmology, astrophysics, and elementary particle physics. One of the major lines of researches directing their efforts at detection of dark matter is direct searches of Weakly Interacting Massive Particles (WIMPs) with detectors operated in deep underground laboratories. The new generation of direct searches of WIMPs promises to probe the most interesting region of parameters for the dark matter candidates. I will review and describe the DarkSide-50 underground Argon detector at Laboratori Nazionali del Gran Sasso.

  8. Review of dark photon searches

    NASA Astrophysics Data System (ADS)

    Denig, Achim

    2016-11-01

    Dark Photons are hypothetical extra-U(1) gauge bosons, which are motivated by a number of astrophysical anomalies as well as the presently seen deviation between the Standard Model prediction and the direct measurement of the anomalous magnetic moment of the muon, (g - 2)μ. The Dark Photon does not serve as the Dark Matter particle itself, but acts as a messenger particle of a hypothetical Dark Sector with residual interaction to the Standard Model. We review recent Dark Photon searches, which were carried out in a global effort at various hadron and particle physics facilities. We also comment on the perspectives for future invisble searches, which directly probe the existence of Light Dark Matter particles.

  9. Constraining Dark Energy

    NASA Astrophysics Data System (ADS)

    Abrahamse, Augusta

    2010-12-01

    Future advances in cosmology will depend on the next generation of cosmological observations and how they shape our theoretical understanding of the universe. Current theoretical ideas, however, have an important role to play in guiding the design of such observational programs. The work presented in this thesis concerns the intersection of observation and theory, particularly as it relates to advancing our understanding of the accelerated expansion of the universe (or the dark energy). Chapters 2 - 4 make use of the simulated data sets developed by the Dark Energy Task Force (DETF) for a number of cosmological observations currently in the experimental pipeline. We use these forecast data in the analysis of four quintessence models of dark energy: the PNGB, Exponential, Albrecht-Skordis and Inverse Power Law (IPL) models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of these models. We examine the potential of the data for differentiating time-varying models from a pure cosmological constant. Additionally, we introduce an abstract parameter space to facilitate comparison between models and investigate the ability of future data to distinguish between these quintessence models. In Chapter 5 we present work towards understanding the effects of systematic errors associated with photometric redshift estimates. Due to the need to sample a vast number of deep and faint galaxies, photometric redshifts will be used in a wide range of future cosmological observations including gravitational weak lensing, baryon accoustic oscillations and type 1A supernovae observations. The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from such observations. We introduce a method for parameterizing uncertainties in modeling assumptions affecting photometric redshift calculations and for propagating these

  10. Intermediate complex morphophysiological dormancy in seeds of the cold desert sand dune geophyte Eremurus anisopterus (Xanthorrhoeaceae; Liliaceae s.l.)

    PubMed Central

    Mamut, Jannathan; Tan, Dun Yan; Baskin, Carol C.; Baskin, Jerry M.

    2014-01-01

    Background and Aims Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level. Methods Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated. Key Results At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD. Conclusions Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment. PMID:25180288

  11. Dark Polar Dunes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    20 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in December 2004, shows dark, windblown sand dunes in the north polar region of Mars. A vast sea of sand dunes nearly surrounds the north polar cap. These landforms are located near 80.3oN, 144.1oW. Light-toned features in the image are exposures of the substrate that underlies the dune field. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  12. Dark Energy Stars

    SciTech Connect

    Chapline, G

    2005-03-08

    Event horizons and closed time-like curves cannot exist in the real world for the simple reason that they are inconsistent with quantum mechanics. Following ideas originated by Robert Laughlin, Pawel Mazur, Emil Mottola, David Santiago, and the speaker it is now possible to describe in some detail what happens physically when one approaches and crosses a region of space-time where classical general relativity predicts there should be an infinite red shift surface. This quantum critical physics provides a new perspective on a variety of enigmatic astrophysical phenomena including supernovae explosions, gamma ray bursts, positron emission, and dark matter.

  13. Direct search for dark matter

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  14. Birth of space plant growing

    NASA Technical Reports Server (NTRS)

    Mashinskiy, A.; Nechitaylo, G.

    1983-01-01

    The attempts, and successes, to grow plants in space, and get them to fully develop, bloom and produce seeds using orchids are presented. The psychological advantages of the presence of plants onboard space vehicles and space stations is indicated.

  15. Sociology: The growing climate divide

    NASA Astrophysics Data System (ADS)

    Hoffman, Andrew J.

    2011-07-01

    Climate change has reached the level of a 'scientific consensus', but is not yet a 'social consensus'. New analysis highlights that a growing divide between liberals and conservatives in the American public is a major obstacle to achieving this end.

  16. Method for growing plants aeroponically.

    PubMed

    Zobel, R W; Del Tredici, P; Torrey, J G

    1976-03-01

    A simple, inexpensive system for growing plants with their roots bathed in nutrient mist is described. The aeroponics system uses a spinner from a home humidifier to propel nutrient solution into a polyethylene-lined plywood box atop which plants are supported on plastic light-fixture "egg crating." Success in growing a number of herbaceous and woody species, including nodulated legumes and nonlegumes, is reported.

  17. Out in the cold.

    PubMed

    Bates, Jane

    2016-05-04

    Every now and then, you say something to a patient and wonder whether you should have kept quiet. On this occasion, a female patient and I were indulging in a moment of shared empathy over an annoying symptom we both experience - permanently cold feet.

  18. Teaching "In Cold Blood."

    ERIC Educational Resources Information Center

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one…

  19. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership…

  20. Recent Cold War Studies

    ERIC Educational Resources Information Center

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  1. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  2. Expert Cold Structure Development

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  3. Dark Energy Found Stifling Growth in Universe

    NASA Astrophysics Data System (ADS)

    2008-12-01

    development to slow down." Vikhlinin and his colleagues used Chandra to observe the hot gas in dozens of galaxy clusters, which are the largest collapsed objects in the universe. Some of these clusters are relatively close and others are more than halfway across the universe. The results show the increase in mass of the galaxy clusters over time aligns with a universe dominated by dark energy. It is more difficult for objects like galaxy clusters to grow when space is stretched, as caused by dark energy. Vikhlinin and his team see this effect clearly in their data. The results are remarkably consistent with those from the distance measurements, revealing general relativity applies, as expected, on large scales. "For years, scientists have wanted to start testing how gravity works on large scales and now, we finally have," said William Forman, a co-author of the study from the Smithsonian Astrophysical Observatory. "This is a test that general relativity could have failed." When combined with other clues -- supernovas, the study of the cosmic microwave background, and the distribution of galaxies -- this new X-ray result gives scientists the best insight to date on the properties of dark energy. The study strengthens the evidence that dark energy is the cosmological constant. Although it is the leading candidate to explain dark energy, theoretical work suggests it should be about 10 raised to the power of 120 times larger than observed. Therefore, alternatives to general relativity, such as theories involving hidden dimensions, are being explored. "Putting all of this data together gives us the strongest evidence yet that dark energy is the cosmological constant, or in other words, that 'nothing weighs something'," said Vikhlinin. "A lot more testing is needed, but so far Einstein's theory is looking as good as ever." These results have consequences for predicting the ultimate fate of the universe. If dark energy is explained by the cosmological constant, the expansion of the

  4. Dark Matter, Waves, and Identification

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2011-10-01

    In 1994 I wrote article for Physics Essays (Waves in Dark Matter) showing how the solar system is organized and stabilized by dark matter standing waves from the dark matter oscillating sun. Wave velocity is apparently inversely proportional to the square root of the dark matter density. At the sun's surface the wave velocity is near 1.25 m/s. More recently I have found local dark matter waves that appear to travel near 25 m/s near April 1 and appear to organize plants. They travel between plants and artificial transmitters and receivers, and penetrate my local hill. From my measurements the local dark matter density is a function of the time of year. The data indicate that dark matter interacts much more than just with gravity as others have surmised. I present experimental proofs and a local dark matter density equation in terms of the measured velocity. The waves and the earth's location may be very important for nature's organization. The observed behavior appears to go a long way towards dark matter identification. These waves also may explain the rings of the gaseous planets in terms of oscillating layers. See the ring article on the web site Darkmatterwaves.com.

  5. Model for neutrino masses and dark matter with a discrete gauge symmetry

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Wong, Chi-Fong

    2012-01-01

    A simple renormalizable U(1) gauge model is constructed to explain the smallness of the active neutrino masses and provide the stable cold dark matter candidate simultaneously. The local U(1) symmetry is assumed to be spontaneously broken by a scalar field around the TeV scale. The active neutrino masses are then generated at one-loop level. This model contains several cold dark matter candidates whose stability is guaranteed by a residual discrete gauge Z2 symmetry à la the Krauss-Wilczek mechanism. Unlike the other dark matter models, no further global discrete or continuous symmetry is introduced. Moreover, the masses of all fermionic degrees of freedom beyond the standard model are closely related to the scale of spontaneous breaking of U(1); thus they could be probed at or below the TeV scale. The possible cosmological and phenomenological consequences are briefly discussed.

  6. Sizes of voids as a test for dark matter models

    NASA Astrophysics Data System (ADS)

    Ghigna, Sebastiano; Borgani, Stefano; Bonometto, Silvio A.; Guzzo, Luigi; Klypin, Anatoly; Primack, Joel R.; Giovanelli, Riccardo; Haynes, Martha P.

    1994-12-01

    We use the void probability function (VPF) to study the distribution of galaxies in a volume-limited sub-sample of the Perseus-Pisces survey. We compare observational results with theoretical predictions based on high-resolution N-body simulations for two realizations of the cold + hot dark matter (CHDM) model and for unbiased (b = 1) and biased (b = 1.5) cold dark matter (CDM) models in a 50/h Mpc box. We identify galaxies as peaks of the evolved density field. Overmerged structures are fragmented into individual galaxies so as to reproduce both the correct luminosity function (after assuming M/L values for the resulting galaxy groups) and the two-point correlation function. We also try to reproduce the observational biases of the observational data as best we can. Our main result is that on intermediate 2-8/h Mpc scales the VPF for the standard CHDM model with Omega cold/Omega hot/Omega bar = 0.6/0.3/0.1 exceeds the observational VPF with a high confidence level. CDM models produce smaller VPF, whose shape is independent of the biasing parameter. We verify the robustness of this result against changing the observer position in the simulations and the threshold for galaxy identification.

  7. Optical Dark Rogue Wave

    NASA Astrophysics Data System (ADS)

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-02-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.

  8. Optical Dark Rogue Wave.

    PubMed

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-02-11

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.

  9. Optical Dark Rogue Wave

    PubMed Central

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099

  10. THE DARK ENERGY CAMERA

    SciTech Connect

    Flaugher, B.; Diehl, H. T.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Buckley-Geer, E. J.; Honscheid, K.; Abbott, T. M. C.; Bonati, M.; Antonik, M.; Brooks, D.; Ballester, O.; Cardiel-Sas, L.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Boprie, D.; Campa, J.; Castander, F. J.; Collaboration: DES Collaboration; and others

    2015-11-15

    The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  11. The Dark Energy Camera

    SciTech Connect

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.

  12. The Dark Energy Camera

    DOE PAGES

    Flaugher, B.

    2015-04-11

    The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar.more » The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.« less

  13. Monodromy Dark Matter

    NASA Astrophysics Data System (ADS)

    Jaeckel, Joerg; Mehta, Viraf M.; Witkowski, Lukas T.

    2017-01-01

    Light pseudo-Nambu-Goldstone bosons (pNGBs) such as, e.g. axion-like particles, that are non-thermally produced via the misalignment mechanism are promising dark matter candidates. An important feature of pNGBs is their periodic potential, whose scale of periodicity controls their couplings. As a consequence of the periodicity the maximal potential energy is limited and, hence, producing the observed dark matter density poses significant constraints on the allowed masses and couplings. In the presence of a monodromy, the field range as well as the range of the potential can be significantly extended. As we argue in this paper this has important phenomenological consequences. The constraints on the masses and couplings are ameliorated and couplings to Standard Model particles could be significantly stronger, thereby opening up considerable experimental opportunities. Yet, monodromy models can also give rise to new and qualitatively different features. As a remnant of the periodicity the potential can feature pronounced ``wiggles''. When the field is passing through them quantum fluctuations are enhanced and particles with non-vanishing momentum are produced. Here, we perform a first analysis of this effect and delineate under which circumstances this becomes important. We briefly discuss some possible cosmological consequences.

  14. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview.

  15. The Dark Surfaces of Mars: Mantles and Sand Sheets

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] (A) Sinus Sabaeus, dark mantle and bright drifts.

    [figure removed for brevity, see original site] (B) Sinus Sabaeus, dark mantle with cracks.

    [figure removed for brevity, see original site] (C) Ganges Chasma Sand Sheet.

    [figure removed for brevity, see original site] (D) Ganges Chasma 3-D Context.

    When seen through a telescope from Earth, Mars reveals a pattern of bright and dark regions. Early astronomers speculated that the dark regions were seas. Later astronomers suggested that the dark regions were vast tracts of vegetation. As recently as the early 1960s, it still seemed possible to a few astronomers that the dark regions had some kind of plant life because they seemed to darken each summer as if plants were growing in response to sunlight.

    Since the Mariner missions to Mars (1965-1972), purely geological explanations have been proposed to explain the dark regions and the changes we see in them. In particular, dust storms have been observed on Mars. Thus wind and dust storms are the suspected culprits that created the 19th Century illusion that something was growing and changing with each martian season. Just as there are 'hurricane seasons' and 'monsoon seasons' on Earth, there may be 'dust storm seasons' on Mars.

    The dark regions of Mars are now being seen in greater detail than ever before by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC). As expected, none of these areas are covered by vegetation! But what has been a surprise is the great variety of dark surfaces seen. Before MGS, most had been thinking that these areas are sandy because all of the large martian sand dunes are dark, too. But in many cases, dark dunes and sand are not found in the MOC images--such areas instead are thickly blanketed by a cracked, crusty covering of what may be fine silt instead of sand. Other areas--in particular the floor of Ganges Chasma in the Valles Marineris region--show thick

  16. The Photosynthetic Dark Reactions Do Not Operate in the Dark.

    ERIC Educational Resources Information Center

    Lonergan, Thomas A.

    2000-01-01

    Discusses the common misconception persistent in high school and college level introductory biology texts that "dark reactions" of the Calvin cycle actually occur in the dark. Explains that they are indirectly dependent on the presence of light for their activity. (ASK)

  17. Neutrino signals from dark matter

    NASA Astrophysics Data System (ADS)

    Erkoca, Arif Emre

    Large-scale neutrino telescopes will be powerful tools to observe multitude of mysterious phenomena happening in the Universe. The dark matter puzzle is listed as one of them. In this study, indirect detection of dark matter via neutrino signals is presented. The upward muon, the contained muon and the hadronic shower fluxes are calculated, assuming annihilation/decay of the dark matter in the core of the astrophysical objects and in the Galactic center. Direct neutrino production and secondary neutrino production from the decay of Standard Model particles produced in the annihilation/decay of dark matter are studied. The results are contrasted to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss for the upward muon flux. The dependence of the dark matter signals on the density profile, the dark matter mass and the detector threshold are discussed. Different dark matter models (gravitino, Kaluza-Klein and leptophilic) which can account for recent observations of some indirect searches are analyzed regarding their detection in the kilometer size neutrino detectors in the near future. Muon and shower rates and the minimum observation times in order to reach 2sigma detection significance are evaluated, with the result suggesting that the optimum cone half angles chosen about the Galactic center are about 10° (50°) for the muon (shower) events. A detailed analysis shows that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers yield promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. The analytical results for the final fluxes are also obtained as well as parametric forms for the muon and shower fluxes for the dark matter models considered in this study.

  18. The double-dark portal

    NASA Astrophysics Data System (ADS)

    Curtin, David; Tsai, Yuhsin

    2014-11-01

    In most models of the dark sector, dark matter is charged under some new symmetry to make it stable. We explore the possibility that not just dark matter, but also the force carrier connecting it to the visible sector is charged under this symmetry. This dark mediator then acts as a Double-Dark Portal. We realize this setup in the dark mediator Dark matter model (dmDM), featuring a fermionic DM candidate χ with Yukawa couplings to light scalars ϕ i . The scalars couple to SM quarks via the operator . This can lead to large direct detection signals via the 2 → 3 process χ N → χ N ϕ if one of the scalars has mass ≲ 10 keV. For dark matter Yukawa couplings y χ ˜ 10-3 -10-2, dmDM features a thermal relic dark matter candidate while also implementing the SIDM scenario for ameliorating inconsistencies between dwarf galaxy simulations and observations. We undertake the first systematic survey of constraints on light scalars coupled to the SM via the above operator. The strongest constraints are derived from a detailed examination of the light mediator's effects on stellar astrophysics. LHC experiments and cosmological considerations also yield important bounds. Observations of neutron star cooling exclude the minimal model with one dark mediator, but a scenario with two dark mediators remains viable and can give strong direct detection signals. We explore the direct detection consequences of this scenario and find that a heavy dmDM candidate fakes different WIMPs at different experiments. Large regions of dmDM parameter space are accessible above the irreducible neutrino background.

  19. Cold Regions Environmental Considerations

    DTIC Science & Technology

    2009-02-03

    Vegetation types in the subarctic are primarily forest-tundra, taiga , and open woodlands. The northern edge of the Subarctic MOE (the boundary between the...continuous discontinuous Soils (sediments, loess, dust) very limited limited abundant Vegetation (boreal forest, taiga ) not present not present present...you can hear and see exceptionally well over open snow-covered terrain. However, in a deep snow-covered forest ( taiga ), it becomes extremely dark

  20. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    SciTech Connect

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.